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Preface

The scientific study of electric and magnetic forces started as two distinct
sciences during the second half of the 18" Century. The concepts of electric and
magnetic fields were introduced as independent constructs to facilitate the
calculation of forces. However, after the discovery by Oersted in 1819 that an
electric current produces a magnetic field, and the discovery by Faraday in 1831 that
a variable magnetic field induces currents, it became clear that electric and magnetic
fields are related and that they are very important physical concepts. In 1873,
Maxwell unified electricity and magnetism in a single theory, called
electromagnetism, based on four fundamental equations. An important prediction of
this theory was the existence of electromagnetic waves that propagate with the speed
of light. This prediction was confirmed experimentally by Hertz in 1887.

Thanks to the discovery of induction, the large-scale production of electricity
became possible, opening the door to a new technological era in the second half of
the 19" Century. The discovery of electromagnetic waves and the development of
electronics generated a real revolution in telecommunications in the 20" Century
with considerable economical, social, cultural and political impact.

The electromagnetic field, which is an association of the electric and magnetic
fields, is a real physical object with energy, momentum, and angular momentum,
which may be static or propagating as waves exactly like sound, elastic waves, or
even particles. This is the first example of field theories in modern physics. It was
followed by the discovery of the gravitational field in the framework of General
Relativity and quantum fields in the framework of Quantum Electrodynamics and
Quantum Chromodynamics. On the other hand, Maxwell’s theory solved the very
long-standing problem of the nature of light; it is an electromagnetic wave of short
wavelength. Thus, Maxwell’s work unified electricity, magnetism and optics in a
single theory. Electromagnetic theory is in such complete agreement with
experiments that any theory in conflict with it should be modified or abandoned.
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The formulation of the electromagnetic theory was a major event in the history
of physics in its incessant search to explain the maximum of phenomena with the
minimum of basic principles. Furthermore, electromagnetism is the prototype of the
so-called gauge theories in modern physics. They include the unification of
electromagnetic and weak interactions by Glashow, Salam and Weinberg around
1967, Quantum Chromodynamics around 1973 and the so-called Grand Unification
Theories that try to unify all interactions in Nature.

The electromagnetic theory posed two challenging problems, which produced
real revolutions in physics and even in philosophy at the beginning of the 20™
Century. The first was the disagreement of the propagation of light with the Galilean
transformation, which is one of the basic principles of Classical Mechanics. This
was shown by several experiments (namely Michelson’s historical experiment) and
it is fundamental since Maxwell’s equations, which are obeyed by light as
electromagnetic waves, are not covariant in the Galilean transformation. This
contradiction was solved by the Special Theory of Relativity that modified the
Galilean transformation, and had far-reaching consequences. The second problem
was the understanding of the black body radiation and the discrete emission
spectrum of atoms, which contradict both Classical Mechanics and the
electromagnetic theory. Its solution led to the formulation of Quantum Theory. At
present, the interaction of electromagnetic radiations with matter remains a very
important subject both in theoretical physics and in various domains of applied
physics.

Electromagnetism plays an important part in almost all branches of physics:
atomic physics, molecular physics, solid-state physics, astrophysics, atmospheric
physics, etc., and it even intervenes in chemistry and biology. In fact, almost all
properties of matter are fundamentally electromagnetic on both the macroscopic
scale and the atomic and molecular microscopic scale. On the other hand,
electromagnetic waves play a fundamental part in the transfer of energy and
information. Thus, a good understanding of electromagnetism is essential in any
scientific activity and in the training of future physicists and engineers.

The purpose in writing this book is to study electromagnetism at the upper
undergraduate level following teaching experience of several years. The goal is to
understand the concept of electromagnetic fields, to obtain Maxwell’s equations and
to analyze some of their consequences regarding the propagation and emission of
radiation.

Writing a book on electromagnetism is not an easy task for two reasons: the first
is that the subject is so well established and so many excellent books already exist
that one can expect originality only in didactical details: selection of topics, clear
presentation of the material, choice of exercises, etc. The second is that
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electromagnetism is very connected to other subjects, namely quantum theory,
relativity, properties of matter, and it has countless applications. Thus, it is hard to
set the limits of the text.

Some authors prefer to start with Maxwell’s equations as basic equations and
then study time-independent phenomena and time-dependent phenomena. This
approach is similar to starting Classical Mechanics with Newton’s principles or, at a
higher level, starting with Hamilton’s principle and Lagrange equations. I think that
the traditional approach, starting with the time-independent phenomena, is more
pedagogical because of the mathematical complexity of the fields as functions of
space and time, and the complexity of Maxwell’s equations as partial differential
equations for vector quantities. Thus, this text may be divided into four parts:

— The first part of seven chapters studies the time-independent electric and
magnetic phenomena. This study goes beyond introductory electricity and
magnetism by the use of vector calculus, differential and partial differential
equations, etc. In this part, the basic concepts of electric and magnetic fields, energy
and symmetries are analyzed, as well as the properties of dielectrics and magnetic
matter. Conduction in solids is introduced, but we do not develop circuit analysis. In
Chapter 5, some useful mathematical techniques (Legendre polynomials, Bessel’s
functions and multipole expansion) are introduced.

— The second part studies the time-dependent phenomena. It includes a detailed
study of induction with some of its applications in Chapter § and the formulation of
Maxwell’s equations in Chapter 9.

— The third part studies the propagation effects. It includes a detailed study of
electromagnetic waves in Chapter 10 (including propagation in dielectrics, in
conductors and in plasmas, the quantization of radiation and its emission),
reflection, interference, diffraction and diffusion in Chapter 11, and guided waves in
Chapter 12.

— The fourth part includes Chapter 13 on the Special Theory of Relativity
(including its applications to mechanics and electrodynamics), the motion of
charged particles in electromagnetic fields (both non-relativistic and relativistic) in
Chapter 14, and the emission of electromagnetic waves by antennas and particles in
Chapter 15. The chapter on the Special Theory of Relativity is necessary as an
introduction to the subject and for a better understanding of the electromagnetic
theory.

Electromagnetism if one of the first physics courses in which vector calculus and
partial differential equations are extensively used. The electromagnetic theory in
vacuum requires one electric field and one magnetic field, and the electromagnetic
theory in matter requires two more fields. All of them are vector fields. They may be
represented by their 12 components measured with respect to convenient Cartesian
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axes. The four Maxwell’s equations couple these components to the charge and
current densities. It is unthinkable to handle these equations and analyze their
consequences without the use of vector calculus. Only this analysis allows us to
study electromagnetism independently of the used frame and to use curvilinear
coordinates, which are very often more convenient to solve the equations. Thus,
some knowledge of mathematical analysis (both real and complex) and vector
calculus are assumed. The required mathematical techniques are introduced as the
need arises. Appendix A summarizes the principal mathematical formulas, integrals
and vector analysis.

I have tried to use clear notations by assigning similar symbols for the various
physical quantities: a boldfaced symbol for a vector quantity, an italic symbol for a
scalar quantity or a component of a vector quantity, an underlined symbol for a
complex quantity, and script symbol for a curve, a surface, a volume and some
special quantities. Physical quantities of the same type are referred to by symbols
with different indexes: for instance, Fg, Fy, fiex), €tc., for the different types of force.
The charge densities, per unit volume, per unit surface and per unit length are
respectively ¢y, gs and ¢;. To avoid confusion with the components of the electric
field E, the energy is designated by U (U for the kinetic energy, Ug for the electric
energy, etc.). The frequency is represented by V , instead of the usual Greek symbol
Vv, to avoid confusing it with the velocity v.

A unit vector is often represented by e, while the unit vectors of the axes are e,,
e, and e, In order to write summations in a condensed form, the Cartesian
coordinates x, y and z are sometimes designated by x;, x, and x; respectively, and the
components of a vector V by V, =V, V, =V, and V3 = V,. The partial derivatives of
u(x, y, z, f) are represented by dyu for 0u/dx, 0°xu for 0°u/dx ot, etc. We also use the
notation 9du for du/dx, and dgV, for dVy/dxg (and B =1, 2, 3) and
occasionally 11 for du/ot or du/dt and ii for 0*u/or.

Some sections, indicated by an asterisk (*), have some difficulty and may be
omitted without loss of continuity. At the end of each chapter, I have included
numerous problems, which are ordered according to the sections of the chapter. The
answers to most of the problems are given in a special addendum entitled Answers to
Some Problems, which enables the student to check the results.

I hope that this text makes the subject more accessible for students, and that it is
utilized as a good teaching tool for professors.

T. Bécherrawy
May 2012
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Chapter 1

Prologue

Most physical phenomena are fundamentally electromagnetic. This makes
electromagnetism a basic theory in many branches of physics (solid state physics,
electronics, atomic and molecular physics, relativity, atmospheric physics, etc.) also
in some other sciences and most technologies.

Although physics is an experimental science, it uses mathematical language to
formulate its theories and its laws and analyze their consequences.
Electromagnetism is a typical theory that is impossible to formulate without
extensive use of vector analysis, differential equations, complex analysis, etc. The
use of mathematics can even lead to the prediction of new physical laws and new
phenomena (the discovery of the electromagnetic waves by Maxwell is a typical
example). However, only experiments can decide whether a particular solution or
prediction and even the whole theory is acceptable. Until now, no experiment has
contradicted electromagnetic theory, both on the macroscopic scale and the
microscopic scale (nuclear, atomic or molecular).

Although permanent magnets and electrification by rubbing were known in
antiquity, scientific observations of magnetism began around 1270 with the French
army engineer Pierre de Marincourt. The observation of electric effects began much
later with the French botanist C. Dufay around 1734. Contrary to the gravitational
interaction between masses, the large majority of objects around us are globally
neutral and, if they become charged, they discharge rapidly in the surrounding air.
The scientific study of electricity started with Franklin (1706-1790), Priestley (1733-
1804), Cavendish (1731-1810), Coulomb (1736-1806), Laplace (1749-1827),
Ampeére (1775-1836), Gauss (1777-1855), and Poisson (1781-1840) who formulated the
laws of electricity and magnetism. Faraday (1791-1867) introduced the notions of

Electromagnetism: Maxwell Equations, Wave Propagation and Emission Tamer Bécherrawy
© 2012 ISTE Ltd. Published 2012 by ISTE Ltd.
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influence and fields and discovered electric induction, which allowed the large-scale
production of electricity. Electricity and magnetism were unified in a single theory
by Maxwell in 1864. This long itinerary led to the present technological era with the
considerable influence of electromagnetism and its consequences on our industrial,
economical and cultural environment.

In this chapter, we introduce some basic mathematical methods and some
general invariances and symmetries that we use in the formulation of any theory and
especially electromagnetic theory.

1.1. Scalars and vectors

The basic elementary concepts in the formulation of physical theories are
position and time. The position is specified by the coordinates with respect to a
reference frame Oxyz, supported by a material body and represented by an origin O
and three mutually orthogonal axes. Although these concepts seem to be simple,
their analysis poses deep practical and philosophical questions even in classical
mechanics. In modern physics, their analysis has been one of the corner-stones of
the special theory of relativity (see Chapter 13), general relativity, and quantum
theory.

Some physical quantities are determined by a single algebraic quantity with no
characteristic orientation. Mass, time, temperature, and electric charge are examples
of such quantities; these are scalar quantities. They may be strictly positive (mass,
pressure, etc.), positive or negative (position along an axis, potential energy, electric
charge, etc.), or even complex (wave function, impedance, etc.). Other physical
quantities A are specified, each one by a positive magnitude A and an orientation;
these are said to be vector quantities. Displacement, velocity, acceleration, force,
electric field, magnetic field, etc., are examples of vector quantities. A more precise
definition of a vector quantity is given in section 1.2.

A vector A is conveniently specified by its Cartesian components Ay, 4y and 4,
with respect to a frame Oxyz (Figure 1.1a). We may write A = A.e, + A,e,+ 4, e,
where e, e, and e, are the unit vectors of the axes Ox, Oy and Oz; they are the basis
vectors of the reference frame Oxyz. To simplify the writing of summations, we use
the numbers 1, 2 and 3 instead of x, y and z to label the components and we write

A=A41et Ares + Az e;3 =ZaAaea 0L21,2,and3 [11]

The component A4;, for instance, is the projection of A on the axis Ox. It is well
known that the decomposition [1.1] is unique.
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The product kA of a scalar k and a vector A is the vector kKA parallel to A and of
magnitude & times the magnitude of A. The components of kA are simply those of A
multiplied by k. The resultant (or sum) (A + B) of two vectors A and B is defined by
the usual parallelogram rule (Figure 1.1b). The components of (A + B) is simply the
sum of the corresponding components of A and B:

kA=, kdge, and A+B=3, (4o + By) €. [1.2]

(@) (b) (©) (d)

Figure 1.1. @) Cartesian components of a vector. b) Sum of two vectors A and B.
¢) The cross product A X B. d) The triple scalar product (AXB).C

Scalar product

The scalar product (or dot product) of two vectors A and B, written as A.B, is
the product of their magnitudes and the cosine of their angle 6. Thus, the scalar
product of a vector A by itself, written as A%, is the square of its magnitude, A* = A°.
We note that the scalar product is linear in A and B. In the case of the basis vectors,
we have e,” = 1 and e,.eg= 0 if o.# B. Using the Kronecker symbols 8qp, we may
write:

eq-ep = dop, where dqp=1 if =P and d3=0 if o =p. [1.3]
This allows us to write the scalar product of A and B in terms of their components:

A.B =B84 cos 0 =(Xg Aue)-(XpBpep) = 2op AoBp (€0-ep) = Xap AoBp Sup
=20 AuBo. [1.4]

The unitary vector eg in the direction of a vector B is obtained by dividing B by
its magnitude

es = B/B, ie. B=Bes [1.5]

If a vector A forms an angle 6 with B, the projection of A on B is
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Ag=(A.eg) = A cos 6 = (A.B)/B. [1.6]
A may be written as A = Ay+ A}, where A/ is parallel to B and A is normal to B:
Aj=Apeg =(A.B)B/B>  and A =A-A)=A - (AB)B/B’. [L7]
Cross product
The cross product (or vector product), designated by A x B, is the vector
V=AXB=4Bsin0 n, [1.8]

where n is the unit vector that is normal to the plane containing the vectors A and B
and oriented according to the right-hand rule: if the thumb and the forefinger are in
the directions of A and B, respectively, the middle finger points in the direction of
AXB (Figure 1.1c). Note that the area of the parallelogram of sides A and B is just
the magnitude of A x B.

Contrary to the scalar product, the cross product A X B is not commutative: it is
odd in the exchange of the vectors: (A X B) = — (B X A). The cross product of two
parallel (or antiparallel) vectors is equal to zero because 6 = 0 (or 6 = 7). It may be
verified that e, X eg = e,, where (0., B, Y) is a circular permutation of (1, 2, 3), that is

eXxe=e;, e Xe3=ep, e;X e = e. [1.9]
This allows us to write the components (AXB)o, = 4g By— Ay Bp, that is,
(AXB)] = A,B3 — A3B,, (AXB)2 =A3B — A]B3j (AXB)3 =A1B, — A>B,. [110]

We may also write the cross product as a determinant

€] € €3
(AXB) = |4 A 4 [111]
B B, B

Triple scalar product

The so-called triple scalar product of three vectors is defined by U = (A x B).C.
It is invariant in a circular permutation of the vectors and odd in the exchange of any
two vectors. It can be interpreted as the volume of the parallelepiped of sides A, B,
and C with a positive sign if the trihedron A, B, C, taken in this order, is right-
handed and a negative sign otherwise (Figure 1.1d). It may be expressed as the
determinant of the components
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A A A4
(AxB).C = |B B, Bs|. [1.12]
G G G

Differentiation of vectors

The differentiation rules for sums and products of functions hold for vectors. To
simplify the notation, the derivatives Jf/ot, 9°f10xat, etc., are written as 9y, 0%, etc.
If a vector A depends on time, the components A, depend on time. Thus, if the basis
e, is time-independent, the differential of A and its derivative with respect to time
are

dA = Xy dAy eq =20, 0 Ay dt €y and  dA/dt= Xy 0y €. [1.13]
If the basis vectors depend on time, we must write

dA/dt = Za (atAa) [V 2(1 Aa atea. [114]

1.2. Effect of rotations on scalars and vectors

The choice of the origin O and the orientation of the axes of reference are
completely arbitrary and observers in different places and different times often use
different reference frames, different origins of time and even moving frames,
relative to each other. Although these observers may find different coordinates and
different time for any given event, it is evident that they must find the same laws for
any physical phenomenon (otherwise, physics would not be a science at all). This is
known as the relativity principle. Thus, it is necessary to know how physical
quantities are related in different frames Oxyz and O’x’y’z’. A physical quantity that

depends on position OM = r and time ¢ in Oxyz is a field, which we write as f(r, f) or
flxo, 1), Where x, is a shorthand notation for the coordinates x, y and z of r.

’

We consider two parallel frames Oxyz and O’x’y’z’, such that the origin O has a
fixed position OO' = r, (of coordinates Xo, o, With respect to Oxyz), the position of an

event O'M = r’ with respect to O'x’y’z’ is related to its position r with respect to
y
Oxyz by the equation

OM =00 +O0M, thus r=r+r, (i.e xq=xg+Xo0) - [1.15]

This is a simple translation in space. Any field, whatever its nature, must be
specified by equal values f{r, ¢) and f”(r’, ¢) in these frames, thus
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(0, H=Ar,1, ie f/(',0)=Ar+r,, ). [1.16]

We consider now the more interesting case of reference frames related by
rotations. The basis vectors e'g of the frame O’x"y’z" are related to the basis e, of the
frame Oxyz by a linear transformation

e =g Rpu€p, and  e€o =ZgR gy ep, [1.17]

where R is a 3x3 matrix and R ' is its inverse. Writing A = X, 4, e, and expressing
the e, in terms of the e'g by using [1.17], we find

A= Z(XB AocRBot e’ﬁ. [1.18]
Comparing with A = Xg 4’5 e'g, we deduce that
A'y = 2o Rpo Ao and Ag =g R 'po A’y [1.19]

In particular, these transformations hold for the coordinates that are the components
of the vector r. Using vector notation, we write

r'=Rr, A'=RA, and r=R"'r, A=R'A" [1.20]

The transformation R conserves the scalar products (and in particular the magnitude

of vectors) if it is orthogonal (that is, its transposed R is equal to its inverse). In
other words, it verifies the condition

RR=RR=1, i.e. Rpo Rpy=Ooy [1.21]
where / is the unit matrix (that is, it has 8,y as matrix elements).

A physical quantity fis a scalar if it is invariant in any rotation R. If it is a scalar
field, it must verify the condition

f(r)y=1(r"), where r'=Rr. [1.22]

This is the case of r* or any scalar function of r’(le. r= vr? ).

The three quantities 4, are the components of a vector A if they transform
according to [1.19], exactly as the coordinates x,, in any rotation R. The functions
Ag(r) are the components of a vector field A(r), if they transform according to

A'o(r’) = Rop Ap(rY) , where r’'=Rr. [1.23]



Prologue 7

1.3. Integrals involving vectors

Circulation of a vector field

The circulation of a vector field E in a displacement dr = dx ex+ dy e, + dz e,is
E.dr (Figure 1.2a). The work of a force is a typical example of circulation. The
circulation of E along a curve ¢ going from r to r, is the line integral

Cc= fg drE= [ drE= [ drE;= [°[dxE +dy E, +dz E3], [1.24]

where dr is the infinitesimal displacement along the path ¢ and E, is the tangential
component of E. The circulation is a scalar quantity defined as the limit of the sum
of the scalar products dr,.E, of the infinitesimal elements dr, of € and the fields E,
at these elements. To calculate the integral in the general case, a parametric
representation of the curve x = x(u), y = y(u) and z = z(u) may be used, where u is
any parameter with u and u, corresponding to the extreme positions r and r,. The
components £y become functions of u and the circulation becomes an integral over u

C=lpdrE= [" du[ (dxldu) Ey(u) + (dyldu) Ex(u) + (dzldu) Ex(u) ].  [1.25]

If the field has a uniform tangential component E;, = E along the path ¢, its
circulation is C = EL,, where L, is the length of the path. On the other hand, if E =

FE e, is uniform in the direction Oz, its circulation is ) ¢dr.E= ff“ dz E=(z, - 2)E.

Figure 1.2. a) Circulation of E along a path € going from r to r,. If E is conservative, this
circulation is equal to V(r) — V(r,) for any €. b) Setting V() =0, V(r) is the circulation of E
along an arbitrary path going from r to infinity. c) The flux of E through an infinitesimal
surface dS. d) The flux through an open surface S bounded by an oriented contour @
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Flux of a vector field

Consider the integral over a surface S
® =[lsdsn.E(r)=[[s dS E(r) cos 0 = [[s dS E/(r), [1.26]

where E(r) is a vector field, n is the unit vector normal to the surface S at the
running point r, 0 is the angle of E with n and £, is the component of E in the
direction of m. This integral is the flux of E through S. The flux d® = ds n.E(r)
through the infinitesimal area dS is a scalar quantity and so is the flux. Note that we
may write d® = dS E,(r), where E,(r) is the normal component of E, or
d® = ds, E(r), where dS| is the projection of dS on the normal plane to E (Figure
1.2¢). d® is positive or negative, depending on whether 0 is acute or obtuse, and it
vanishes if E is tangent to S. Note also that n has two possible orientations; by
changing the direction of n, we change the sign of @. In the case of an open surface,
which is bounded by an oriented closed curve ¢, we choose n according to the right-
hand rule (Figure 1.2d). In the case of a closed surface S, we choose n oriented
outward; @ is then the outgoing flux.

The flux is additive both for the vector field and for the area. In the particular
case of a field having a uniform component in the direction of n, its flux is ® = B, S.
Another physically interesting case is that of a radial field E = Kqr/” of a charge g.
Its flux through a closed surface S is ® = Kq [[s ds n.r/r’ = KgQ, where Q is the
solid angle of the cone, whose apex is at ¢ and which is subtended by S: it is equal
to 4w if ¢ is inside S and equal to 0 if g is outside S .

1.4. Gradient and curl, conservative field and scalar potential

The work of a force F acting on a particle of mass m in a displacement dr is
dW = F.dr. This work is transformed into kinetic energy if no other force acts on the
particle. Conversely, to displace the particle without acquiring kinetic energy dUk,
an external agent must exert a force F* = —F and supply a work dW’= —F.dr. If the
force is comservative, this work is transformed into potential energy dUp of the
particle in the field of force F. This analysis can be repeated for any vector field E.
Its circulation along a path ¢ going from r to r, depends in general on r and r, and
also on the path ¢. Its circulation on a closed path is not necessarily equal to zero.
The differential form dx E| + dy E, + dz Es is a total differential if the components
E are the partial derivatives of a scalar function —V where V is called the scalar
potential corresponding to the field of force F. Then, we have E| = —0,V, E; = —0,V,
and E; = —0;V, which we write in the vector form
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E=-VV, where V =e; 01+ €20, + €30s. [1.27]

The vector differential operator V is called nabla or del and VV is the gradient of V.
It may be shown that the gradient of any scalar function V is a vector. In this case
the circulation [1.24] becomes

C=lodrE=[" dr.E=—[" drNV =—[" dV = V(r) - Vr,). [1.28]

In this special case, the circulation between two points is equal to the drop of the
potential. It depends only on the points r and r, for any path & connecting these
points (Figure 1.2a). In the case of a closed path € (r=r,), the circulation vanishes.
We say that the field E is conservative. For instance, in the case of a uniform field
E, the potential is = —E.r + ¥, and in the case E = qu/r3, V=Kqlr+V,, where V,
is an arbitrary constant. In the last case it is convenient to assume that /" vanishes at
infinity, hence V,= 0, and we may interpret V(r) as the circulation of E along an
arbitrary path going from r to infinity (Figure 1.2b). In the case where E is a
conservative field of force F, we may write F = —VUp, where Up is the potential

energy. The work of F along a path ¢ going from r to r, is jrr" dr.F = Up(r) — Up(r,)

and the work of F along a closed path vanishes.

To know whether a vector field E is conservative, we do not have to evaluate the
circulation on all imaginable paths. We may use the important property that the
partial derivatives of a function are independent of the order of differentiation. If E
is conservative (that is, E = —VV), the equation d,dg ¥ = dgdy} may be written as
dukp— dpEq = 0. Using the differential vector operator V, we define the vector

€ € €3
curlE=VXE= |9, 9d, 03
k. E, E;

= (02E3— 03Er) €1 + (03 E1— 91 E3) e+ (d1 Ex— 02 E)) €. [1.29]
A vector field E is conservative if its curl is identically equal to 0, and it may be

shown that the converse is true: if V X E = 0, E is conservative. In this case, we may
define a potential V" at each point r (see section A.7 in Appendix A)

Even if a vector field A is non-conservative, Stokes’ theorem (see section A.8 of
Appendix A) allows the expression of the circulation of A along a closed path ¢ as

the flux of VX A through any surface S bounded by ¢

[, dr.A=][sds n.(VxA). [1.30]
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Note that the normal n is oriented according to the right-hand rule. We see from this
theorem that, in the special case of a conservative field (V x A = 0), its circulation
along any closed path ¢ vanishes and this is the definition of a conservative field.

1.5. Divergence, conservative flux, and vector potential

In general, the flux of a vector field B through the surfaces S bounded by a given
closed contour ¢ depends on the special choice of S and the flux through a closed
surface is not necessarily equal to zero. We define the divergence of B as

V.B =08+ 0d,B, + 93Bs. [1.31]

It may be shown (see section A.7 of Appendix A) that, if B =V X A, its divergence
vanishes (V.B = 0) and conversely, if V.B = 0, we may write

B=VxA. [1.32]

A is the vector potential. In fact, there are an infinite number of vectors A that
correspond to the same B. They differ by a gradient term

A'=A+Vf [1.33]
because V x Vf'=0. The relation [1.33] is called gauge transformation.

Gauss-Ostrogradsky’s theorem (see section A.9 of Appendix A) allows the
expression of the flux of any vector field B through a closed surface S as the integral

of V.B over the volume 7 enclosed by §
llsdsn.B={ll,dv V.B. [1.34]

Note that to apply this theorem, the unit normal vector n must point outward 5. We
deduce that, if V.B = 0, the flux of B through any closed surface S vanishes. We say

that B has a conservative flux. On the other hand, if V.B > 0 at a point M, the flux of
B outgoing from any surface surrounding M is positive; thus, the field is divergent
from M. On the contrary, if V.B <0, this flux is negative and B is convergent at M.

1.6. Other properties of the vector differential operator

Here are some useful properties of the operator V acting on scalar fields f(r) and
g(r) and on vector fields A(r) and B(r):
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V(f+g=Vf+Vg [1.35]
V(fg)=g Vf+f Vg, [1.36]
VA.B)=(A.V)B+(B.V)A+Ax(VxB)+Bx(VxA), [1.37]
V.fA)=/(V.A)+A.Vf, [1.38]
V.AxB)=B.(VxA)-A.(VxB), [1.39]
VX (fA) =1 (V x A) + (V/) X A, [1.40]
Vx(AxB)=A (V.B)-B(V.A)+ (B.V)A—(A.V)B, [1.41]
A(fg)=fAg+2(VN)(Vg) +gAf, [1.42]

where (A.V) =Xy Aq 0o, = A1 01 + A 02 + Ay 03 is a scalar operator.

The successive application of V on scalar and vector fields is very useful in
physics. In Cartesian coordinates, if we evaluate the divergence of the gradient of a
scalar function, we find

V.(Vf) = X €0 00-[Zp €p 0pf 1 = Zap (€q-€p)0 apf = Lo O oaf = A, [1.43]
where the operator A, called Laplacian, is defined by
A=V’ =P+ Oy + . [1.44]

As V is a vector operator, the Laplacian is a scalar operator. Acting on a scalar
field, it gives a scalar field and, acting on a vector field, it gives the vector field

AA = Zaﬁ V(x Vu (AB eﬁ) = ZB (AAB) €p. [1.45]

Thus, in Cartesian coordinates (and only in these coordinates), the components of
AA are simply A4, Other useful relationships may be obtained by successive
applications of V:

curl (grad f) = Vx(Vf)=0, [1.46]
div (curl A) =V.(VxA)=0, [1.47]
curl (curl A)=V (V.A) — AA. [1.48]

1.7. Invariance and physical laws

By transformation, we mean a change of the coordinates or the variables of a
system. A transformation is said to be continuous if it depends on parameters taking
continuous values (as in the case of translations and rotations), otherwise it is said to
be discrete (as in the case of reflections). A physical system is invariant in a
transformation if it remains unchanged in the transformation (for instance, an
infinite homogeneous medium is invariant in translations and a cone is invariant in
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rotations about its axis). A physical theory is invariant if it remains valid in the
transformation (for instance, classical mechanics is invariant in the translation of
time) and a physical quantity is invariant if it is unchanged in the transformation. An
equation is said to be covariant in a transformation if it remains valid in the
transformation (although the value of its terms may change in the transformation).

The invariance of a physical theory imposes some restrictions on the
mathematical formulation of the laws and the allowed processes. A general
principle, which was formulated by Noether, associates a conserved physical
quantity with each invariance in a continuous transformation.

a) Invariance in geometrical transformations

Geometrical transformations are those of spatial coordinates and time, which
conserve distances and intervals of time in classical physics. They include
translations, rotations, and reflections. In a transformation (r, f) — (r/, ¢’), a physical
quantity (or a field) f(r, #) becomes f{r’, ¢).

It is evident that physical laws do not depend on the origin of coordinates. In
other words, an isolated system evolves in the same way, whatever its position in
space (we say that the space is homogeneous). Mathematically, any physical law
should not be modified if the positions r of all the particles (k) of the system are
modified by the same translation r'¢y = rqy+ a. For instance, the interaction energy
U, of two particles located at rj and r; is invariant in the translations if U, depends
on R =r; —r; and not on r; and r; separately. Thus, we must have Uj, = U(R).
Consequently, the forces that act on the particles are Fy_,; = —V,Ug = —VRU and
F,_,1 = -V Ug = VRU, where V means the vector differential operator with respect
to the components of R. Thus, the invariance in translations implies that Fj, = —F»,
and, consequently, the conservation of the total momentum of a system of
interacting particles such as electrically charged particles.

On the other hand, the physical laws do not depend on the orientation of the axes
of coordinates. In other words, the space is isotropic. Mathematically, any physical
law should not be modified if the reference frame is rotated. This requires, for
instance, that the interaction energy of two particles is U, = U(R), i.e. a function of
the magnitude of R and not its direction. Consequently, the force F;_,, may be
written as Fy_,, = —VrRU=—(dU/OR) R/R. Thus, it is oriented along the line that joins
the two particles. This implies that the total angular momentum of an isolated
system of particles L = X m; rj X v; is conserved.

Physical laws obey another important invariance law: they do not depend on the
choice of the origin of time. In other words, if an experiment is repeated in time, the
result should be the same. Mathematically, any physical law should not be modified
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in translations of time ¢'= ¢ + ¢,. This invariance requires that the potential energy of
two bodies does not depend explicitly on time. Thus, the total energy of an isolated
system is conserved if there are no dissipative forces.

To implement these invariance laws, the physical quantities must have well-
defined transformation laws: they must be scalars, vectors, or other types of
mathematical objects. A typical vector is the position r. Quantities, such as the force
F and the electric field E(x, y, z), that transform exactly like r in rotations are
vectors. For instance, in a rotation through an angle @ about Oz, they transform
according to:

x'=xcos @+ ysin @, y'=-xsin@+ycosQ, z'=z, (forr)
F'y=Fycos o+ FysinQ, Fy=-F,sin@+Fycoso, Fy=F, (forF)
E\=E.cosQ+Eysin@Q, Ey=-Esino+E,cosq, Ex=E, (forE)

Here, the components of the field E are functions of the coordinates, E'x(x', y', z')
and Ex(x, y, z) = Ex(x" cos @ — y'sin @, x" sin ¢ + y' cos @, z'). A scalar is a quantity
that is invariant in rotations, such as the distance r?, the scalar product of two vectors
A.B and the potential V(x, y, z).

b) Invariance in reflections

To formulate physical laws, only right-handed reference frames Oxyz are usually
used. However, nothing forbids to use systematically left-handed frames Ox'y’z’".
Typical transformations of a right-handed frame to a left-handed one are reflections
such as the rotal reflection ¥' = —r (i.e. x'=—x, y'=—y and z' = —z) and the reflection
with respect to the Oxy plane (i.e. X' = x, y' =y and z' = —z as in a mirror). The
invariance of physical laws in reflections (that are discrete transformations) is not as
evident as in translations and rotations (that are continuous transformations).
However, the experiment shows that this invariance holds in mechanics, in
electromagnetism and in the case of strong (nuclear) interactions. It is violated in the
case of weak interactions (see section 1.9d).

Some vectors have components that transform in reflections exactly like the
coordinates x,; these are said to be frue vectors. Similarly, some scalars do not
change in reflections; these are true scalars. This is the case for the distance

d= 1lx2+ y2+2z% and the scalar product of two true vectors A.B. On the other hand, the

cross product of two true vectors U = A X B transforms like r in rotations but, in
reflections, the components Uy, transform like x,, with an additional change of sign.

For instance, in the total reflection (x, — —x,), the components U, remain
unchanged (Uy, — Uy) and, in the reflection with respect to the Oxy plane (x — x,
y = y and z — —z), the U, transform according to the relations Uy — —U,
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Uy— —Uy and U,— U,. We say that U is a pseudo-vector. This is also the case for
the cross product of two pseudo-vectors, while the cross product of a true vector and
a pseudo-vector is a true vector. The scalar product of a true vector and a pseudo-
vector is a pseudo-scalar: it is invariant in rotations but it changes sign in reflections;
this is the case of the triple scalar product of three true vectors A.(B x C).

A physical law, written as a mathematical relationship between physical
quantities, can be valid only if it is covariant in the preceding transformations. Thus,
we may add, subtract or write equalities of quantities of the same type. It is not valid
to add a vector to a pseudo-vector or write the equality of one component of two
vectors without having the other components equal. For instance, the fundamental
law of mechanics F = m d’r/df requires that F be a true vector (like r) and the
definition of the potential energy by the relation dUp = — F.dr requires that Up and
the energy in general be true scalars.

1.8. Electric charges in nature

Although matter is neutral on the macroscopic scale, it is comprised of charged
and neutral particles. The experiment shows that, on the microscopic scale, the
electric charge takes only discrete values (0, te, +2e, + 3e, etc.) that are integer
multiples of the elementary charge

e=1.6021892x 107 C. [1.49]

This quantization was established for the first time in 1913 by Millikan’s oil drop
experiment (see Problem 14.3). The stable particles, which are the building blocks
of matter, are the proton of charge +e, the electron of charge —e, and the neutron
(which is neutral as its name indicates). The electrification by rubbing is simply a
transfer of electrons from a body of low electronic affinity to another of higher
affinity.

The equality of the charge of the proton and the charge of the electron in
absolute values, i.e. the neutrality of the hydrogen atom, is verified by the absence of
any deviation of this atom by electric or magnetic fields with a precision of 1 to 10%.
On the other hand, the electric charge of particles does not depend on their velocity
or on physical conditions, such as temperature, pressure, etc., even in extreme
conditions, as in the core of stars or in the early stage of the formation of the
Universe. The electron and the proton are absolutely stable. It is not possible to
eliminate one of them individually but an electron and a proton may interact and
produce a neutron and a neutrino. Conversely, a neutron may decay into a proton, an
electron and an antineutrino. More generally, physical, chemical or biological
transformations may occur in an isolated system leading to the exchange of charged
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particles between the constituents of the system, the creation or the annihilation of
pairs of oppositely charged particles, but the total charge of the system is conserved.

The quantization of electric charge and its numerical value as well as the equality
of proton and electron charges in absolute values are not understood even today. On
the macroscopic scale, the elementary charge is extremely small and often has no
observable effect. For instance, a negative charge of 1 pC corresponds to 6 x 10"
electrons and a current of 1 A carries 3.2 x 10" electrons per second! When
speaking of a point charge, it may be an elementary particle or a macroscopic object
of small size compared to the dimensions of the system. It is often a very good
approximation to consider an extended macroscopic charge as a continuous charge
distribution.

a) Macroscopic bodies and molecules

Molecules and atoms are constituted by charged or neutral particles (electrons,
protons, and neutrons). Their electric interactions are responsible for the cohesion of
matter and most of its physical and chemical properties. Materials may be classified
as conductors if some of the electrons are more or less free to move, insulators if the
electrons are strongly bound to the atoms, and semiconductors whose conduction is
intermediary between conductors and insulators. In solids and liquids, the spacing
between atoms is of the order of the atoms’ diameter (i.e. a fraction of a nanometer =
10~ m). In gases, the molecules are separated by much longer distances. They are
normally neutral at normal and low temperatures but some may become ionized by
collisions, which become more and more frequent and energetic at high temperature.
A gas may also become ionized if an energetic particle or radiation passes through
it. A gas that is totally or partially ionized is a plasma.

b) Atoms, electrons, protons, and neutrons

The late 19™ Century experiments have shown that atoms contain negatively
charged electrons. To be globally neutral, the atoms must also contain positively
charged particles, protons. To explain the stability of atoms, Thomson assumed that
positive charges as well as the negative charges are distributed within a sphere of
radius of the order of 107'°m. However, Rutherford’s experiment in 1911 showed
that the positive charge is concentrated in a nucleus with a radius of the order of
10" m (see section 14.3). To explain the stability of the atom, in 1913 Bohr
proposed a model in which the electrons maintain circular or elliptical orbits with a
radius of the order of 10™'°m around the nucleus, bound by electric force. This
orbital motion is similar to that of the planets around the Sun via gravitational force.
Later, quantum theory abandoned this simple model in favor of a negatively charged
electronic cloud around a positively charged nucleus. The state of the electrons in
the atom is governed by the laws of quantum mechanics and, in principle, the
properties of macroscopic matter can be deduced, but this is a difficult procedure.
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The number of charged particles in matter is enormous. The number of
molecules or atoms in a mole! of substance is the Avogadro number Ny = 6 X
10 mol™ and each atom of a given chemical element contains Z electrons and Z
protons. The hydrogen atom (Z = 1), for instance, is formed by one proton and one
electron. The helium atom (Z = 2) contains two electrons and two protons. If it
contains no other particles, its atomic mass would be approximately twice that of
hydrogen; experimentally it is four-times heavier. Thus the atomic nuclei must
contain neutral particles. These particles, called neutrons, were observed by Chadwick
in 1938 with a mass that is slightly higher than the mass of protons (i.e. about 1840
times the mass of the electron). The helium nucleus, called also alpha particle, is formed
by two protons and two neutrons. The protons and neutrons, which constitute the
atomic nuclei are referred to as nucleons. The atom is thus formed by Z electrons, Z
protons, and N neutrons. Its mass is M = Zm. + Zm, + Nm, = (Z + N) my = Amy,
where we have neglected the mass difference between the proton and the neutron,
the binding energy of the nucleons (responsible for the cohesion of the nucleus), and
the binding energy of electrons to the nucleus (responsible for the cohesion of the
atom). The chemical properties of elements are closely related to the atomic number
Z, while the physical properties, in which mass plays an important part, are related
to the mass number A.

c¢) Elementary particles and quarks

Particles are usually considered as elementary if they are the smallest part of
matter that may be isolated. Besides electrons, protons and neutrons, which are the
building blocks of ordinary matter, there are many additional particles, which are
observed in cosmic rays or produced in collisions carried out in laboratories using
accelerators. Particles are characterized by their mass, charge, spin (intrinsic angular
momentum), magnetic moment, etc. A particle may be stable (the electron, the
proton, the photon, and the neutrino) or unstable (the free neutron, for instance); in
the latter case, they are characterized by their average lifetime ranging from 107s
to 898 s for the neutron. Some characteristics of stable particles are listed in
Table 1.1.

It is well established that each particle has a corresponding antiparticle of the
same mass but opposite charge and some other characteristics. For instance, the

positron (e) is the antiparticle of the electron (¢7), the antiproton ( p ) is the
antiparticle of the proton (p), etc. The antiparticle and the particle may be identical

as in the case of the photon; they are then necessarily neutral. However, the
antiparticle of a neutral particle may be different from the particle. This is the case

for the antineutron n whose gyromagnetic ratio is opposite to that of the neutron. A

1 A mole is the amount of substance that contains the same number of particles (molecules,
atoms, ions, electrons as specified) as there are atoms in 12 g of pure carbon nuclide '*C.
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particle and its antiparticle may be produced simultaneously in a reaction. For
instance, a photon () of sufficiently high energy may be transformed into a pair
(e"+ ¢) if it collides with a nucleus or another particle N according to the reaction
Y+ N — N + ¢ + ¢". Conversely, if a positron encounters an electron, they may
annihilate into two photons at least, according to the reaction e + ¢" — 2y. These
two reactions are examples of the conservation of the electric charge. No nuclear
reaction or particle reaction that violates this law of conservation has ever been
observed until now. Thus, it is considered to be a fundamental law of nature. In a
process, it is possible to have a transfer of charge, a creation or annihilation of
particles of opposite charges, but the total charge of any electrically isolated system
is conserved. The total charge of the Universe (which is an isolated system because
there is nothing else) is a constant (and probably zero).

Zsst;;lrenbol Mass (kg) Charge | Spin x:il::tic ;?f\:;‘;gee Decay mode
Electron (¢7) |9.10953x107" | —e B2 | -1.001145 pg | Stable
Proton (p) 1.67265x1077 | +e 2| 279275 p, Stable
Neutron (n) | 1.67495x107%7 |0 B2 | -1.91315u, |898s nopte+v e
Photon () 0 0 h 0 Stable
Neutrinos (v) | Very small 0 W2 1o Stable

Table 1.1. Characteristic quantities of some particles. ug = efi/2me = 9.274x1072* A.m?
is Bohr’s magneton and pg, = eh/2mp = 5.05 1x10727 A.m? is the nuclear magneton.
h=h2n=1.054 589 x 1073* I.s is Planck’s reduced constant. me is the electron mass
and my, is the proton mass. The particles behave as small magnets with a magnetic moment
parallel to their spin. There are several species of neutrinos

Elementary particles are extremely small and the concept of size is ambiguous at
this scale. The electron has an extremely small radius to be measured with present
techniques; thus, for all purposes, it is considered to be a point particle. Protons and
neutrons have radii of the order of 10™"° m. However, although neutrons are neutral,
they have a magnetic moment. Protons are strictly stable, while neutrons may be
stable inside the nucleus but, if free, a neutron decay into a proton, an electron, and
an antineutrino (beta decay) with a mean lifetime of 898 s. A particle is considered
as “stable” if its mean lifetime is long enough to be observed in a bubble chamber,
for instance.

Besides the photon, fundamental particles can be classified into /eptons and
hadrons. The leptons (including the electron, the muon, the neutrinos, etc.) have
electromagnetic and weak interactions but no strong interactions. They are actually
considered as strictly elementary. Hadrons (counting about 300 types of particles
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including nucleons) have all types of interactions. They have a complex structure, so
they are not considered elementary, but are comprised of more fundamental entities
of charge +e/3 or +2¢/3, called quarks. However, until now, quarks have never been
observed as a separate entity. Thus, the isolated charges are always integer multiples
of the elementary charge e. Nucleons are formed by three quarks, but other hadrons
are formed by two quarks.

1.9. Interactions in nature

Actually, we know four types of interactions. They can be distinguished by their
strength and their range, i.e. the distance over which the forces are significant. They
are also characterized by selection rules that we will not consider here.

a) Gravitational interactions

The interaction of two point masses m and M may be expressed by the law of
universal attraction F = —GMmr/r’, where G = 6.67 x 10" m’/kg.s>. The
corresponding interaction potential energy Ug = GMm/r decreases slowly with the
distance, like 1/r. We say that this is a long-range force. As all bodies that have
mass have gravitational interaction, this is the dominant force on the cosmic scale. It
is responsible for the cohesion of celestial bodies, the binding of satellites to planets,
of planets to stars, the stars to galaxies and the galaxies within the Universe.

b) Electromagnetic interactions

These interactions include the Coulomb force between electric charges
Fe = Kyq1q2/P* (where K, = 9x 10° N.m%C?) and the magnetic forces between
charges in motion, magnetic matter, and electric currents. These interactions are
much more intense than gravitational forces. In the hydrogen atom, for instance, the
electrons and the proton are separated by an average distance r = 0.53 x 107"° m.
Their electric attraction is Fg = —K,e*/r* = —=8.2 x 10* N, while their gravitational
attraction is only Fg = —Gmpmo/r* = —-3.6 x 107" N, thus 10* times weaker.
However, the electric forces are rarely perceived on the macroscopic scale, as
macroscopic bodies are usually neutral. The Coulomb interaction potential energy is
Ug = Koqiq2/r, and decreases with distance like 1/r; thus, electromagnetic
interactions are long-range forces. The binding energy of particles by
electromagnetic forces is of the order of the electron-volt (1eV =
1.602189 x 107" J) and particles that decay by electromagnetic interactions have a
mean lifetime of the order of 107" to 107 s.

¢) Strong interactions

These interactions are responsible for the binding of nucleons within nuclei and
the binding of quarks within hadrons. They are about 10° times more intense than
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electromagnetic forces. Their typical binding energy in nuclei is of the order of
8 MeV per nucleon. The particles, which decay by strong interactions (called
resonances), have a mean lifetime of the order of 107 to 107 s. The strong
interactions cannot be formulated as a classical law of force. However, we know that
they have a very short range (of the order of the size of the nucleus, i.e. =107 m).
For this reason, they play no part in atomic and molecular physics (where particles
are separated by distances of the order of 107'° m) in macroscopic physics and in
chemistry.

d) Weak interactions

These interactions are responsible for beta decay of the neutron and atomic
nuclei and the decay of most of the elementary particles. They are about 10" times
weaker than electromagnetic interactions, but much more intense than gravitational
forces. They have an extremely short range. The particles, which decay by weak
interactions, have a mean lifetime of the order of 107 to 107 s and sometimes much
longer if the decay energy is small (for instance, the neutron has a mean lifetime of
898 s).

1.10. Problems

Scalar and vectors

P1.1 Designating the derivatives by primed quantities, show that
[A().B(D)] = (A'B) + (A.B") and [A@)|' = (A.A")/]A|.

P1.2 a) Consider the rotation through an angle ¢ about Oz. Express the new basis
¢’y in terms of the basis eg. Write the transformation equations for the components
of a vector field A. Write this transformation in the matrix form A' = RA. What are
the transposed matrix R and the inverse matrix R™'? Verify that R is orthogonal.
b) Suppose that a magnetic field is given by B = (uol/2m) (= ex + x ey). Write its
expression in the new frame. Considering this rotation, can the expression
B’ = (uol/2mr)(y ex + x ey) be a vector field?

P1.3 To handle complicated vector analysis, it is practical to introduce Levi-Civitta
symbols of permutations Eup, . Any permutation (o, f, y) of (1, 2, 3) may be
obtained by successive exchange of indices. We define Eugy as equal to =+I
depending on whether the number of exchanges is even or odd and Eupy = 0 if two
indices are the same. Thus Eypyis odd in the exchange of any two indices (Eqpy =
—Eoy = Epyo.= Eyop)- a) Verify that these symbols obey the relation 2o Eapy Eopy =
dpy 8y — dpy Oy and that the Kronecker symbols obey the contraction relations
28 Oup Oy = Ooy and Xop Oopdpe = 3. Deduce that the symbols Eyp, verify the
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contraction relations 2op Eupy Eapy = 20y and 2opy Eopy Eupy = 6. The second
relation expresses simply that the number of different permutations of (1, 2, 3) is 3!
= 6. b) Verify that the determinant of a matrix Mg may be written as det(Mqp) =
2opy Eapy A1 Aop A3y and, more generally, Eupy det(Auy) = Zuvn Ewvi Apo Avp Any.
¢) Verify the following relations of the cross product and the triple scalar product

eoXep= Eopyey, AXB=Ey s AuBpe, (AXB).C= EupydaBgC,.
d) Use these Levi-Civitta symbols to calculate the more complicated products:

(A xB)*=A’B*- (A.B)’,
Ax(BxC)=(A.C)B-(A.B)C,

VX(fB) = f(VxB) + VfxB,

(AxV)xB + (BxV)xA = V(A.B) — A(V.B) - B(V.A),
Ax(VxA) =% V(A%) - (A.V) A,

Vx(VxB)=V (V.B)-V’B,
Vx(AxB)=A(V.B)-B(V.A)+(B.V)A—-(A.V)B.

Integrals involving vectors

P1.4 Calculate the flux of the vector field E = f{r) e, through the sphere of center O
and radius R. Calculate the divergence of E and its integral over the enclosed
volume and verify Gauss-Ostrogradsky’ theorem.

Gradient and curl, conservative field and scalar potential

P1.5 Verify that the differential operator V is a vector operator. Deduce that the
gradient Vf'is a vector, the divergence V.A is a scalar and the curl VXA is a vector.

P1.6 a) Let V' be a scalar potential. Show that dV(r) = VV.dr. Deduce that the
component of VV in the direction of the unit vector e is dV/du, where du is the
displacement in this direction. b) Show that E = —VJV is orthogonal to the
equipotential surface (¥ = constant) and it points in the direction of the higher rate of
decrease of the potential. ¢) A scalar field f{r) depends only on the distance r to the
origin O. Calculate its gradient. Consider the special case /= K/r.

P1.7 Show that V x r = 0 and that V x (fB) = /' (V x B) + V/'x B. Deduce that the
curl of the electrostatic field of a point charge E = Kqr/s” is equal to zero. As any
electrostatic field is produced by point charges, the curl of any electrostatic field is
equal to zero.

P1.8 a) The potential of an electric dipole moment p is ¥ = K(p.r)/r. Calculate the
corresponding electric field E = —=VV. Suppose that p = pe,. Calculate V" and E at the
point r(0, 3, 4). b) The vector potential of a magnetic dipole moment 7 is
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A = k(# x r)/r’. Calculate the corresponding magnetic field B = V x A. Suppose
that % = 7 e,. Calculate A and B at the point r(0, 3, 4).

P1.9 In a given frame of reference, a vector field E has the components Fy =
6x -5z, Ey=—8y and E,=—5x. Is this field the gradient of a scalar field f? If yes,
write the expression of f'in this frame.

P1.10 Consider the uniform vector field B = Be,. Show that there is a vector A such
that B=V x A. Write the expression of A. Show that A is not unique but it is always
possible to impose the condition V.A = 0.

P1.11 A surface S encloses a volume 7. Let n be the unit vector normal to S. Show
that, for any scalar field f'and vector field A, we have

llydvVi=llsdsny, ll,dvVxA=[lsds(nxA).

Divergence, conservative flux and vector potential

P1.12 a) Calculate the divergence of the vector fields B = kr and B = rf(r).
b) Show that V(/B) = B.Vf+f(V.B).

Other properties of the vector differential operator

P1.13 Let f'be a function of r = |r|. Verify that Af{r) = d&f ld* + (2/r) (dfidr). Verify
that 1/r is a solution of Laplace’s equation Af'= 0.

P1.14 Let fand g be arbitrary scalar fields while A and B are vector fields. Show the
following relations:

V(fe)=fVe+gVf,  VxVf=0, Vx (Vg)=0, V.(VxA)=0,
V(fA) = VLA + f(V.A), V.(AXB) = B.(VXA) — A.(VXB).

P1.15 a) Let ¥ and @ be two scalar functions defined on a surface S and in the
enclosed volume 7 and 0, be the differential operator with respect to the outgoing
normal coordinate x;, on the surface S. Show the following Green’s theorems

[lsds (0.%) =lly &7 (® AY + VD .VV),
[ls ds (® 0,¥ — ¥0,®) = [Ify d7 (® AY — ¥ AD).

b) Show that any function @ verifies the relations
[lsds n(@ V@) =ll, & [® A® — (A®Y),  [Isds 9,@ = [ll, d AD).

¢) Let ¥ and @ be solutions of Laplace’s equation (i.e. A® = AY = 0). Show that
they verify the relation [[s ds ® (0,¥) = Ils dS¥ (3,®). €) If ¥, A¥ and AD are
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defined on a closed surface S and in the enclosed volume 7, show the Green
representation

lsds® @,¥)=ll, &0 ¥ (® AY + VO VV¥).

Invariances of physical laws

P1.16 The interaction potential energy of two particles located at r; and r; is a
certain scalar function U(ry, r;) if this interaction does not depend on any other
physical quantity. a) Show that the homogeneity of space (i.e. the invariance under
arbitrary translations of the reference frame) implies that U does not depend on r;
and r, separately but on the relative position r = r;— r,. The force that the particle
(1) exerts on particle (2) is F1_, = — V,U(r), where V; is the gradient with respect to
the coordinates of particle (2). Similarly, the force that particle (2) exerts on particle
(1) is Fo_y; ==V U(r). Verify that F,_,; =—F,_,; (principle of action and reaction).
b) If the particles have no structure enabling the specification of special directions in
space, show that space isotropy (i.e. the invariance in arbitrary rotations) implies
that U(r) does not depend on the direction of r but only on the distance r; thus we
have V' = U(r). Calculate in this case F|_,; and F,_,; and verify that they are in the
direction of r (central forces).

P1.17 a) The basis vectors e'g and e are related by the relation e, = Zg Rpo, €'p.
Show that the components of a vector A transform according to A5 = Zq Rpg Ao.
b) Show that the transformation Rp, conserves the orthonormality of the basis if it is

orthogonal, i.e. R R=R R = I. Show that, in this case, it conserves the scalar product
of any two vectors A and B, thus their angle. ¢) Show that these transformations
must have a determinant det(M) = +1. Rotations are typical transformations such
that det(M) = +1 while reflections are typical transformations such that det(M) = —1.
Show that the cross product of two vectors V = A x B transforms according to
V'q = det(M) Zg MypVp. Thus V transforms as a vector in rotations while, in
reflections it acquires a supplementary change of sign. Verify that the triple scalar
product S = A.(B x C) transforms according to S' = det(M) §; thus it is a pseudo-
scalar.

Electric charges and interactions in nature

P1.18 What is the number of electrons, protons, and neutrons in a piece of copper of
mass 5 g (Z =29, N =35, and atomic mass 63.5)? How long it takes for a current of
10 A to carry the charge of these electrons? Assume that 1/10° of these atoms lose
one electron and that these electrons are transferred on an identical piece situated at
10 cm. What is the attraction force of these pieces? Compare this electric force to
their gravitational attraction.



Chapter 2

Electrostatics in Vacuum

The interaction of electric charges, as expressed by Coulomb force, is formulated
according to the Newtonian concept of action-at-a-distance: if a charge g’ is
produced at r’ at a time ¢, a charge g located at r feels the action of ¢’
instantaneously, whatever the distance |r —r’| and the medium that separates the
charges. The concept of field was developed by Faraday, Maxwell, Lorentz,
Einstein, and many others. In modern physics, all interactions are conceived as
local, i.e. involving quantities defined at the same point r and at the same time ¢.
Fields are physical entities that are endowed with energy, momentum, etc., and they
may propagate with some finite speed as waves. Furthermore, in quantum theory,
the same objects (electrons for instance) have both particle and wave properties.

In this chapter, we introduce the concepts of electric field and potential, we
derive the fundamental equations of electrostatics in vacuum, and we discuss some
of their properties and the concept of electrostatic energy.

2.1. Electric forces and field

In a famous experiment, Coulomb used a torsion balance to measure the force of
interaction of electric charges. He verified that a small charge ¢; acts on a small
charge ¢, situated at a distance r with a force F = Koq1¢»/r* oriented along the line
joining the charges. This force is repulsive between like charges and attractive
between unlike charges. It has a similar mathematical form to Newton’s law of

universal gravitation Fy = —Gmimy/r*. To specify both the direction and the
magnitude, we write
_ 3 —
Fi2=Koq192 Ri2/R12°,  where  Rpp=r2—r. [2.1]
Electromagnetism: Maxwell Equations, Wave Propagation and Emission Tamer Bécherrawy
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Coulomb’s force obeys the principle of action and reaction. K, is a constant that
depends on the adopted unit of charge. Using the coulomb (C) as the unit of charge
and the Heaviside or rationalized system, we write

K, = 1/4ne, = 8.987 551 79 x 10° N.m*/C?,
where €,=8.854 187 82 x 1072 C¥/N.m’. [2.2]

€, 18 the permittivity of vacuum. The factor 4w is introduced to simplify the writing
of equations. The electric force is much more intense than the gravitational force and
the coulomb is an enormous charge on the human scale: electric sparks are produced
by less than one microcoulomb (1 pC = 107° C) and rubbing produces a charge of the
order of the nanocoulomb per square centimeter (1 nC =107 C).

In accordance with the superposition principle, the total force that several
charges g; located at the points r; exert on a charge ¢ placed at r is the vector sum of
the forces exerted by each charge g; if it acts individually

F= Zi Koqqi Ri/Riz, where Ri =r-r; [23]

In the following, the charge ¢ on which the force acts is considered as a fest charge,
while the charges g; that produce the force are considered as the source charges. If

the source charges are continuously distributed in a volume %, on a surface S or a
curve ¢, the source charge g; must be replaced by ¢(r") &7, qs(r’) dS or qi(v') dL,
where gy, ¢s, and g are the charge densities, respectively, per unit volume, per unit
area, and per unit length, and then integrate on the source charge distribution.

By analogy to the gravitational field represented by the acceleration g and the
magnetic field near magnetized bodies, which exist independently of the test bodies,
we define the electric field E such that the force acting on a test charge g is

F=qE(r) [2.4]

without reference to the charges, which produce E. The test charge ¢ must be small
in order that its action on the source charges and, consequently, on the field E itself
be negligible.

From expression [2.3] of the force exerted by the point charges g; at rjon ¢ at r,
we deduce the electric field produced by these charges E = F/g and we may
generalize it to continuous charge distributions; we get

E(r) = Zi KoqiRi/R?, where Ri=r—r; or R=r—r"
E(r) =K, [l ¢, () R/IR’, K,[lsdS qr)R/R’, or KJ,dL q (r)R/R’. [2.5]
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We note that a distribution of point charges g; at points r; may be considered as a
volume charge distribution of density ¢,(r')=X; ¢; 8'(r' — r;) where &(r' — ry) is the
three-dimensional Dirac function centered at rj (see section A.11 of Appendix A).
Similarly, a surface charge density gs(r') corresponds to gu(r') = gs(r') d(z' — z),
where z;, is a coordinate that is normal to the charged surface, and a linear charge
density ¢p(r') corresponds to gy (r')= qr(r') d(x' — x,) 6(y' — yn), where x, and y, are
the coordinates that are normal to the charged line.

2.2. Electric energy and potential

The concept of energy is very important, especially in modern physics, because
of its conservation in the case of isolated systems. Energy may have several forms.
We are concerned here with the electric potential energy of the charges. The test
charge ¢ being subject to the conservative electric force F, the analysis of section 1.4
allows us to define an electric potential energy Ug such that F = —VUg. It may be
shown that the electrostatic interaction of two charges ¢ and ¢; corresponds to a
potential energy Ug = K,qqi/R;, where R; = |r — rj|. In the case of a test charge
q = 1 C, F becomes the electric field and the potential energy of the unit charge is
the electrostatic potential V such that

Ex=—0V, Ey=-09,V, E,=-9,V. [2.6]
The potentials produced by discrete or continuous charge distributions are given by

r) =K, Zi gi/Ri,
V(r) = Kllydv’ g (r')R, Klsds’ q(r')/R, or KJzdL qi(r')/R. [2.7]

The SI (Systeme International, the international system of units) unit of potential
is the joule per coulomb (J/C) called the volt (V), and the unit of electric field is the
(N/C), which may also be called volt per meter (V/m). In atomic, nuclear, and
particle physics, the elementary charge e is frequently used. For this, it is convenient
to use the electron-volt (eV) as the unit of energy; this is the energy that is gained or
lost by an electron as it moves between two points with a difference of potential of
1 V; thus, 1 eV =1.602 189 2 x 107" J. The keV = 10° eV, the MeV = 10° eV, the
GeV =10° eV, and the TeV = 102 eV are also used.

The drop in potential is the work of the electric force on the positive unit charge.
We may also interpret the increase of V as the work of an external agent in
displacing the positive unit charge without varying its kinetic energy. This work is
independent of the path because E is conservative. Particularly, if the potential is
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taken to be zero at infinity, as in the expressions [2.7], the potential V(r) is the work
that is required to bring the unit charge from infinity to the point r along any path.

(@ (b)

Figure 2.1. a) Cylindrical coordinates, and b) spherical coordinates

2.3. The two fundamental laws of electrostatics

a) Evaluation of the field from the potential and the potential from the field
In the case of time-independent phenomena, the electric field is conservative and
we may introduce the electrostatic potential such that

E=-VV. [2.8]

Considering a displacement or = 9/ e along an arbitrary axis D of unit vector e, the
variation of the potential is 6V = or.VV = — 8/ E.e = — 8/ Ep, where Ep is the
component of E along D. We deduce that

ED:— SV/SZ |D~ [29]

This relation holds even if we know ¥ only on the line D and it may be generalized
to curvilinear coordinates. We obtain in the case of cylindrical coordinates and
spherical coordinates (see Figure 2.1):

2 O dgV O
Ep——w——apl/, E(p——m——T, and EZ——S—Z——BZV, [210]
O _ 3V _ 9 _ ¥ 9V
Ee=mgr=0b Bo= g = a4 Bo= a5~ s 1211

The relation E = -V V shows that, if V' is constant, E = 0 and conversely, if E = 0,
V is constant. The surface of equation V(r) = C, where C is a constant, is an
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equipotential surface (see Figure 2.2). As the potential has a unique value at each
point r, two equipotential surfaces cannot intersect. The field E is orthogonal to the
equipotential surface and it points toward the decreasing potential.

Conversely, the potential may be evaluated if the expression of the field E is
known by using the equation

dV=dx oV +dy 0,V + dz 9,V = VV.dr = —E.dr. [2.12]

Sometimes, this equation may be directly integrated. For instance, the field of a
charge ¢’ is E(r) = Kyq'(r — r')/lr— r/’. Setting R = r —r’ and noting that
dR*=2R.dR = dR*= 2R dR, equation [2.12] may be written as

r—r' R.dR RdR dR
dVv=- '——dr=—K, ¢ ——=-Ky¢g'—— =—-K,q'—-.
0oq |r_r'|3 r oq |R|3 oqd I’ oq R2

Integrating this equation, we find M(r) = K,q/R + C =K, q"/|r — |+ C.

Generally, integrating equation [2.12] between r, and r, as E is conservative, we
obtain the potential difference between r, and r over any path

[ drE@)=[" dV = V(r)- Vo) [2.13]

This equation determines the potential V(r) up to an arbitrary additive constant. We
may add to ¥(r) the same constant everywhere without modifying the field or any
physical law. It is possible to fix this constant by assigning a value V, at a particular
point r,. This is possible if there is no electric charge or linear charge distribution at
this point (as the potential is then infinite). A practical choice is to take V' = 0 at
infinity as in the expressions [2.7]. In this case, if V(eo) = 0, we have

Vir)=[" dr" E(r') . [2.14]

The addition of an arbitrary constant V, to the potential (}J' =V + V) is a
dynamic transformation. According to Noether’s theorem, the invariance of the laws
of electrostatics in this continuous transformation is associated with a conservation
law, which is the conservation of electric charge. To show this, let us consider a
reaction 4 + B — C+ D+ ..., where 4, B, ... are bodies of charges ga, ¢s, ... If this
reaction occurs in a region where the electric potential is V, the conservation law of
the total energy may be written as E;+ goV + qgV = E¢r + qcV + gpV + ..., where Ej
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and Ef are the non-electric initial energy and final energy, respectively. As this
relation remains valid in the transformation V' = V' + V, for any V,,, we must have
qaVo T q8Vo = qcVot qpV,+ ... and, consequently, the conservation law of electric
chargega +gs=¢qc+¢p+ ...

b) The first fundamental equation of electrostatics: E is conservative

As the second derivatives do not depend on the order of differentiation, for
instance dydyV = 0,0« ¥, we deduce from equations [2.6] that

OE,—0,E,=0,  0,FE—dE, =0,  9Ey—dE=0. [2.15]

The left-hand sides of these equations are the components of VXE. Thus, the fact
that the electrostatic field E is conservative is equivalent to the equation

VXE=0. [2.16]

We may show this result in a different way: applying equation [2.13] to a closed
path & (r =r,), we find

$ ,dr.E=0. [2.17]

Using Stokes’ theorem (see section A.8 of Appendix A), we may transform the
integral into the flux of VXE through the surface S bounded by ¢

[,drE=[,dsn(VxE)=0. [2.18]

It vanishes for any S if VXE = 0. This is the first fundamental equation of
electrostatics.

Figure 2.2. Equipotential surfaces Figure 2.3. Gauss’s law
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¢) The second fundamental equation of electrostatics: Gauss’s law

Consider first the flux of the field of a point charge ¢ taken at the origin O
(Figure 2.3). Its field at M on the surface S is E(r) = gr/4ne,, where r =OM .
According to the analysis of section 1.3, the flux of E outgoing from a closed
surface S is gQ/4me,, where Q is the solid angle of the cone whose apex is at O and
which is subtended by the surface S. If ¢ is inside S, the total solid angle Q is 47
and the flux is ® = g/g, and if ¢ is outside S, Q = 0 and so is ®. Any field E is the
resultant of the fields E; produced by all the charges gi. The flux of E through any
closed surface S is the sum of the fluxes @y of the fields Ey, i.e. @y = qi/€, if gy is
inside S and @y = 0 if gy is outside S. Thus, the total flux of E is given by Gauss’s
law

go Op = 0™, [2.19]

where Q1 = % q(i“)j is the total charge inside S. In the case of a volume charge
distribution density g(r) in the volume 7 enclosed by S, we find Gauss’s law in the
integrated form

g0 llsds n.E = [[l, v q.(r). [2.20]

Using Gauss-Ostrogradsky’s theorem (see section A.9 of Appendix A), we may
transform the outgoing flux of E through S into the volume integral of the
divergence of E over the enclosed volume 7. Thus, equation [2.20] takes the form
eo llydv V.E = [[l, & q,(r) for any volume 2. Thus, we must have

V.E(r) = g\(r)/e, . [2.21]
This is the local form of Gauss’s law. It is the second fundamental law of
electrostatics. In the case of electrostatic phenomena, it is equivalent to Coulomb’s
law but, contrary to Coulomb’s law in its simple form [2.5], we shall see that
Gauss’s law is valid even in the case of time-dependent phenomena.

2.4. Poisson’s equation and its solutions

Substituting the expression E = —VV in Gauss’s equation V.E(r) = ¢,(r)/e,, we
find that the potential obeys Poisson’s equation

AV(Y) = — gy(r)/go. [2.22]

Particularly if there is no charge (¢, = 0), this equation reduces to Laplace’s equation
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AV(r) = 0. [2.23]

The partial differential equations have many solutions that depend on arbitrary
functions. It may be verified that Poisson’s equation [2.22] has a solution

vy =K, [l @' qu(x'yr — v [2.24]

with terms of the forms [2.7] in the case of surface, line and point charge
distributions. These expressions are such V' ~ 1/r as r —oo. We may add to [2.24]
any solution ¥, of Laplace’s equation [2.23] and obtain another solution

V(r) = Vo) + Ko [l d7 que'yie = v, [2.25]

To determine the solution, we must know, besides ¢, at each point r', the
boundary conditions at infinity in the case of an infinite space or on the surfaces of
the system if it is bounded. It is always possible to find V,, such that V verifies these
boundary conditions. Thus, there is always a solution /" and this solution is unique.
Once V is known, the equation E = -V 7 allows us to determine the field E. It should
be noted that only charges that contribute to E and V should appear on the right-
hand side of equation [2.22] and its solution. For instance, if we study the action of a
field E“ on a body carrying charge g, the g; should not appear in [2.22] and its
solution even if the body is extended, as they do not contribute to the potential /.

In some cases, some mathematical conditions have to be imposed (for instance,
V has a unique determination and it is finite at points where there is no point charge
or lines of charge). On the other hand, if the space is formed by different regions,
Poisson’s equation must be solved in each region and appropriate boundary
conditions must be imposed on their interface. The problem may be further
complicated if the charges are mobile and their positions depend on the field to be
calculated (as in a conductor) or if the electric properties of the material depend on
the field (as in the case of a dielectrics). On the other hand, often the solution is too
complicated to be written in terms of known or simple functions. Approximation or
numerical methods must be used in such cases.

To illustrate the use of Laplace and Poisson’s equations, let us consider a ball of
radius R and uniform charge density g,. The potential V" verifies Poisson’s equation
inside the ball and Laplace’s equation outside the ball. Using the expression of the
Laplacian in spherical coordinates and noting that ¥ does not depend on 6 and @
because of the spherical symmetry, we get the equations

L d g Gy
2 d},["2 dl”] £ (forr<R) and 2 dr[r r] 0 (forr>R).
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These differential equations have solutions that depend on two arbitrary constants:
W = _ gr*/6g, + B/r+ C (forr<R) and V=B'r+ C' (forr>R).

The condition that ¥ is finite at the center of the ball (as there is no point charge or
linear charge) imposes that B = 0 and, having no charge at infinity, we may take
V(o) = 0, thus C' = 0. Using equation [2.11] of the gradient, we obtain the field
E™ = (gur/3e, + B/r?) e, (for r < R) and E = (B'/#?) e, (for r > R). As the surface of
the ball carries no point charge or linear and surface charge densities, the continuity
of V and E at » = R imposes the conditions —qVR2/6£0 + C = B'/R and q,R/3¢, =
B'/R?; thus, we find

yv = K, —2% GR-7), E™=K, % e, VO=KZ adEV=KGe.
r

2.5. Symmetries of the electric field and potential

The electric charge being the source of the electrostatic field E and potential V,
the symmetries of the sources are reflected on the field and the potential. Although
the vector analysis is simpler in the Cartesian coordinates, the determination of the
field and the potential is greatly simplified if we use curvilinear coordinates that
have some of the symmetries of the charge. The most commonly used are the
cylindrical coordinates (p, ¢ and z) and spherical coordinates (r, ® and @) illustrated
in Figure 2.1. The basis vectors, the relations of the curvilinear components to the
Cartesian components as well as the expressions of the vector differential operator
are given in the section A.10 of Appendix A.

a) If the charge configuration has a translational symmetry in a direction D
(Figure 2.4a), it is convenient to take one axis of coordinates, Oz for instance, in the
direction of D and use the Cartesian coordinates or cylindrical coordinates around D.
Then, V and the components of E do not depend on z and we may write:

V=WV(x,y) and E=-VV=-0,Ve, -0,/ e,, [2.26]
V=V(p,¢) and E=-VV= —[d,Ve,+p"' 9y V eyl [2.27]

In this case, the field is orthogonal to the direction of translation D.
b) If the charge configuration has rotational symmetry about an axis Oz (Figure

2.4b), it is convenient to use cylindrical coordinates (or spherical coordinates) about
Oz. Then, V and the cylindrical components E,, E, and E, (or the spherical

components £, Eg, and E) do not depend on the azimuthal angle ¢ about Oz:
V="Wp,z) and E(p,z)=-VV=—=[d,V e, + 09,V e,], [2.28]
V="Wr,0) and  E(r,0)=-VV=—[0.V e +r" defeg]. [2.29]
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As Ey=0, E is everywhere in the azimuthal plane I1; containing Oz and the point M.
On Oz itself, if E is finite and it has a unique determination as a function of
p (near p = 0), it must be collinear with Oz, thus Ey(0, 2) = = dpV]p—o = 0. If V' is
finite, it must have a maximum or a minimum in p on Oz (p = 0).

(@) (b) (©) (d)

Figure 2.4. Effects of charge symmetries on the electric field: a) translation in the direction
of Oz, b) rotation about Oz, c) combined rotation about Oz and translation in the
direction of Oz, and d) rotation around O

¢) In the case of a configuration of charge, which has both rotational symmetry
about Oz and translational symmetry in the direction of Oz (Figure 2.4c), it is
convenient to use cylindrical coordinates; then, V" and E depend only on p:

V="Wp) and E(p)=-VV=-9,Ve,. [2.30]

In this case, E points in the radial direction € On Oz itself, if E is finite and it has a
unique determination, it must vanish and, if V is finite, it verifies the condition
dpV |p-0 = 0. Thus, ¥(p) must have a maximum or a minimum for p = 0.

d) If the charge configuration has a rotational symmetry around a point O (Figure
2.4d), it is convenient to use spherical coordinates r, 6 and ¢ around O. Then, V and
the components E;, Eg and £, do not depend on the angles 0 and ¢:

V=) and  E()=-VV=-0/e,. [2.31]

Thus E is radial in this case. This is also required by the rotational symmetry about
the radial direction OM or the reflection symmetries with respect to the planes IT,
and IT;. At the center O itself, if E is finite and it has a unique determination, it must
vanish and, if the potential V' is finite, it must have a maximum or a minimum in r.

e) From the definition of the electric field, F = gE, and the definition of the
potential by the relation dV = — E.dr, as ¢q is a true scalar while r and F are true
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vectors, E must be a true vector and V" a true scalar. In a reflection with respect to
Oxy, for instance, the components of E transform like r, while 7 is unchanged:

EX(xa Y, Z) = E,X(xn Y, _Z)s Ey(xa Y, Z) = E,y(xa Y, _Z)a EZ(x9 Y, Z) = _E'Z(xo Y, _Z)
V(xa Y, Z) = V/(xa ) _Z)' [232]

— If the charge configuration is symmetric with respect to Oxy, we find
V(X,y,_z) = V(.x,y,Z), E//(X,y,Z) = E//(x’y,_z)3 and EZ(x:y’Z) = _EZ(-X’y’_Z)' [233]

From the third relation, we deduce that E,(x, y, 0) = 0. The same symmetry or
antisymmetry in z hold in cylindrical coordinates while, in spherical coordinates the
symmetric points with respect to Oxy are M(r, 6, ¢) and M'(r, 16, @).

In the case of a charge distribution that is symmetric with respect to an arbitrary
plane IT (Figure 2.5a), i.e. gy(M) = gq(M") at any point M and M’ symmetric with
respect to I, the potential and the field verify the symmetry conditions

viM)=viM'), Ey(M)=E,M"), and  E (M)=-E (M) [2.34]

Particularly, at the point M, of I1, we must have E, (M,) = —-E (M,). If E is finite at
M,, we must have E, (M,) = 0. Thus the field at M, lies in the plane IT.

E q E
M B /‘\q <> pE. M T
M,

E// E//
M, —> E, 11 o I
" < =LY
SN E'
E\LE + \‘/ ! q lE? M
— /!
(a) (b)

Figure 2.5. a) Symmetry with respect to a plane I1, and b) antisymmetry with respect to I1

— If the charge configuration is antisymmetric in the reflection with respect to
Oxy, that is, gy(x, y, —z) = —qv(x, ¥, z), E must verify the antisymmetry relations:

E//(x’ Nz Z) = _E//(x3 s _Z) and EZ('x’ Y Z) = EZ(-x3 s _Z)' [235]

From the first relation, we deduce that Ej(x, y, 0) = 0. In the more general case of a
charge distribution that is antisymmetric with respect to a plane IT (Figure 2.5b),
that is, gy(M) = —q(M'") at any points M and M' symmetric with respect to I1, E
verifies the antisymmetry relations:

E/(M) =—E;(M") and E (M) =E (M. [2.36]
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Particularly, at points M, of II, we must have E/ (M, = -E/M,), thus
E/ (M,) =0, that is, E is normal to I. The potential being defined up to a constant, it
verifies the condition V(M) = —V(M") + C, where C is a constant. Particularly, at
points M, of I, ¥(M,) = C/2. The symmetry plane IT is thus equipotential.

@ (b)

Figure 2.6. a) Field of an electric dipole, and b) its lines of field (solid lines)
and equipotential surfaces (dotted lines)

2.6. Electric dipole

An electric dipole is a charge distribution that may be modeled as two charges
—q and +q that we take at 4~ and 4" of coordinates —d/2 and +d/2 on the z axis
(Figure 2.6a). The system having rotational symmetry about Oz, E and ¥ do not
depend on the azimuthal angle ¢. Thus, we may evaluate E and V in the Oyz plane
for instance. On the other hand, as the charge is symmetric in the reflection with
respect to the Oyz plane, we have Ey(0, y, z) = 0 (see [2.34]) and, as the charge is
antisymmetric in the reflection with respect to the Oxy plane, we have
E,(x, y, z) = E/x, y, —z) (see [2.35]). Thus it is sufficient to calculate E and V at M
with z>0:
AM  AM
U

1 and Wr)=K,[—Z 4 4 [2.37]

Hn=hle TR

As A*M =r Fd/2, we find at large distances, to the first order in d/r,

E() =K, Bpr<-B] and V=K, BY, wherep=gd. [2.38]
r r r

p is the dipole moment. Its field and potential decrease at large distances like 1/#°

and 1/#2, respectively, while those of a charge decrease like 1/7*and 1/r. Figure 2.6b

illustrates the lines of field and the equipotential surfaces of a dipole.
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More generally, consider the electric charges gy occupying the positions ry near
the origin O. Their potential at a point r is V(r) = K,k qi/|r — ri|. At large distances
(r >> ry), expanding in a power series in 1/r, we obtain to the first order in ry/r

r—r|"' =" -2rr + 2 =r"[1 = 2(r.r )/ ] = Ur + (rr)/r. [2.39]
The potential at large distances may be written as

V(r) = Kog/r + Ko(p.x)/7°, [2.40]
where we have set

q = Z qx, P = Zk gk Ik [2.41]

q is the fotal charge and p is the electric dipole moment of the charge distribution. If
q = 0, p does not depend on the origin O in spite of the appearance of ry in its
expression. In the case of a continuous distribution of charge in a volume 7, the sums
must be replaced by integrals and we obtain

q=llav q,(), p=1Ill,dvq.(x) r. [2.42]

At large distances, the potential is the sum of the potential of a charge ¢ (which
decreases like 1/r) and that of an electric dipole moment p (which decreases like
1//%). If ¢ = 0 (as in the case of non-ionized atoms and molecules) the dominant term
is that of the dipole. Some molecules (of water, for instance) are globally neutral but
the barycenter 4" of positive charges Q (the nuclei) is at a distance d from the
barycenter 4~ of negative charges —Q (the electrons). Thus, the molecule has a
permanent electric dipole moment p = Od.

Let us consider now the action of an external electric field E on the electric

dipole moment p = gd = g A~ A" modeled by the charges —q at 4~ and +¢ at A*. The
forces exerted by E on the charges —¢ and +¢ are F =—¢gE(4") and F' = gE(4")
(Figure 2.7a). If the field is uniform [E(47) = E(4")], the resultant of these forces is
zero: the dipole undergoes no translational motion. However, the moment of these
forces is

[=04 xF + 04" xF'=q(04"-04" )xE=qdxE=pxE. [243]

We take Ox in the direction of E and p in the Oxy plane and making an angle 6 with
E. Then, E = Ee,, p = p (cos 0 e, + sin 0 e,) and

=—pEsinbe,=pXxE. [2.44]
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If ® > 0, I' is oriented in the opposite direction to Oz. Thus, the dipole rotates to
align itself with E in a stable equilibrium position. Conversely, to maintain p at an
angle 0’ with E, a moment I'" = —T" = pE sin 6’ e, must be exerted to counterbalance
the electric moment of force. To rotate the dipole through an angle d0’, a work
dW' =T"d0' = pE sin 0' d0' is required. The total work required to rotate the dipole
from the equilibrium position 6 = 0 to the position 0 is

Wise= [JdW" =[(d® pE sin® = - pE cos 0 + pE. [2.45]

This is the electric potential energy of the dipole p if it makes an angle 6 with E.
Dropping the constant term pE, we may write

Ug = —pE cos 6 =—(p.E) = (p.V)). [2.46]

In this expression, we do not take into account the binding energy of the dipole,
since it is an internal and constant energy. Thus, Uk is the interaction energy of the
dipole with the field E.

*q

T 4" Fy 7\
0O
e
1
(a

e’> /j
A

F
)

Figure 2.7. a) Forces exerted by a uniform electric field on a dipole, and
b) forces exerted by a non-uniform field on a dipole

Consider now the case of a non-uniform electric field and the charges —¢ and +¢
located at r' = r — %d and r” = r + "4d/2 (Figure 2.7b). If E varies slowly over the
distance d, we may write its components as power series of d up to the first order

Eo(r % Y4d) = Eq(x £ Yady, y + Vadyy 2 Vid,)
= Eo(x, y, 2) £ 2d(OxEq) £ 2dy(OyEq) £ V2d (0, q) = qEu(r) + /2(d.V)E, .

The resultant of the electric forces acting on the dipole has the components

Fo = q[Eo(r+d/2) — Eo(r—d/2)] = ¢(d.V) Eo(r) = (p.V) Eo(r). [2.47]
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Using the expression of E in terms of the potential V" and the expression of the
potential energy of the dipole Ug = —23 pgEp, We may write

Fo=2p pp (OpE«) =2 p pp (°poV) = = 0a (Xp pp OpV) = 0oZp (pp Ep)
= — 0u(~p.E + pE) = — 0uUs. [2.48]

Thus we find the general expression
F=-VU. [2.49]

Here Uk is a function of the coordinates r(x, y, z) of the center O of the dipole and V
is the vector differential operator with respect to these coordinates.

For instance, if E points in the direction of Ox (E = Eey), it acts on the dipole p
to orient it in the direction Ox (thus, py> 0 and py = p,= 0). If E is non-uniform, the
relation [2.48] gives the components of the resultant force F, = py do.E. For instance,
if E is an increasing function of z (0xE = dyE = 0 and d,E > 0), the resultant force has
one component F, = py d,E > 0. Thus the force F points toward the increasing field.

We have shown that the field and the potential, which are produced at large
distances by the distribution of charges gy located at points ry are the superposition
of those of a single charge ¢ = X gx and an electric dipole p = Xy gyxry. Let us now
consider the action of an external field E = =V on these charges. If the distances 7
of the charges from the origin O are small and V varies slowly in the region that is
occupied by these charges, we may make a power series expansion of V in the
coordinates up to the first order

V(xe) = V(0) + 2o, 0oV o Xo, T -.. = V(0) — X Ee(0) x0, = V(0) — r.E(0), [2.50]

where the derivatives Oy} are evaluated at x, = 0. The potential energy of the
charges gy in the field is

U = >k i V(1) = 2k q[V(0) — r.E(0)] = g V(0) — p.E(0). [2.51]

The first term is the potential energy of the total charge ¢ = % gx and the second
term is the potential energy of the electric dipole moment p = X g ry, both located
at 0. Knowing Ug, we may show that the resultant force exerted by E on the charges
is the force exerted on the total charge ¢ and the resultant moment of the electric
force is the moment I = p X E exerted on p. Particularly, if the total charge is zero
(as in the case of a non-ionized atoms and molecules), the action of E on the charge
distribution reduces to its action on the dipole moment p.
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2.7. Electric field and potential of simple charge configurations

The potential and the field of any charge distribution may be evaluated by using
the integrals [2.5] and [2.7]. If the charge has some symmetry, it is sometimes
possible to find a closed surface S, on which E is normal with a uniform magnitude.

The electric flux through this surface is ®g= ES. On a part of S, the flux of E may
be zero either because E is zero or E is tangent to S. If 0™ is the charge within S,
Gauss’s law gives E = 0"/e,S. In this section we give the expressions of the field
and the potential of some simple charge configurations.

— Field and potential on the axis of a uniformly charged ring of radius R and
charge ¢ at a distance z from its center:

Koq
\/R2 +z°

— Field and potential on the axis of a disk of radius R and uniform charge
density g, at a distance z from its center:

S _ 4 [pri 7
E(z) = 2. [|Z| \/m]ez, "(z) 2. [\/R°+z 2|]. [2.53]

E(z) = _ Kogz e "(z) =

(RZ +Zz)3/z z [2.52]

—Field and potential of a plane of uniform charge density ¢:
E(z) =+ (g42¢,) e,, M(z) = F (qsz/2¢,) + (qsR/28,). [2.54]

— Field and potential of an infinite thin rod of uniform charge density g at a
distance p from the rod (p, is a reference distance where the potential is taken equal
to zero):

E(p) = 2Koqr/p)ey,  V(p) = (2Koqr/p) In(po/p). [2.55]

— Field and potential of a uniformly charged infinite cylinder of radius R and
charge density g per unit length at a distance p from its axis:

E™ = (2K.qLp/R*)e, Vi = Kogi[1 — pYR* + 2 In(po/R)], [2.56]
E= (2K.q1/p) €p, V) = 2K g1 In(po/p). [2.57]

— Field and potential at a distance » from the center of a spherical shell of radius
R and uniform charge QO:

E™(r)=0, Vi = K. O/R,
Er) = (K0 e, V'V =K0r. [2.58]
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— Field and potential at a distance » from the center of a ball of radius R and
uniform charge Q:

E™(r) = K,Or/R* = (¢,/3¢,)r, Vi = (K, 02R)(3 — */R?) = (¢,/6€0) 3R> — 1),
E(r) = (K,0/7) r= (¢ R 3e,r)r, V' =K,0lr = (q.R/3eor). [2.59]

2.8. Some general properties of the electric field and potential

If the potential V" is constant in a region, the field E = —VV is zero and Gauss’s
law V.E = g,/¢, implies that there is no charge density in this region. The reciprocal
is not always true: if the charge density is zero in a region, the field E is not
necessarily zero but Gauss’s law implies that V.E = 0. The flux of E through any
closed surface S entirely in this region is zero. The electric field lines that enter S on
one side leave it on the other. For instance, this is the case of a uniform field (the
field lines are then parallel as in Figure 2.8a) and in the case of the field lines of a
ball (the field lines are then radial as in Figure 2.8b).

= </ oL = s 13 S
P
(a) (b) (© (d)

Figure 2.8. Electric field lines in a region depending on the charge density

If the potential has a maximum at M, as the field points toward the decreasing
potential, it must diverge from M (Figure 2.8c). The outgoing flux from a surface S
surrounding M is positive and Gauss’s law implies that S contains a positive charge.
As S may be taken arbitrarily small, we deduce that a positive charge must exist at
M. By a similar argument, we show that, if the potential has a minimum at M, the
field must converge toward M and a negative charge must exist at this point (Figure
2.8d). It is not necessary that the charge at M be a point charge. For instance, in the
case of a charged sphere, the center is a maximum or a minimum of the potential
without having a point charge.

Singularities and discontinuities of the field and the potential

The expressions of the field and the potential given in section 2.7 show that E
and V are not always regular and continuous functions:
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a) Near a point charge ¢, the field and the potential of this charge are much more
important than those of the other charges. The field lines diverge in all directions
from the position O of ¢ (if ¢ is positive) and converge toward O (if g is negative).
Thus, the direction of E is not defined at O (Figure 2.9a). Furthermore, E and V" are
infinite like E = (Koq/r)e; and V = Koq/r as r —oo (Figure 2.9b).

\.V=-2K,q;Inp

E= 2KoQ1/P

(a) (b) (© (d)

Figure 2.9. a) At the position of a point charge, the direction of E is not defined, and b) E
behaves like Koq/r* and V like K,q/r. c) At some point on a charged line, the direction of E is

not defined, and c) E behaves like 2K qi/p and V like — 2Koq; In p

b) Near a point M of a line of charge density ¢;, the most important contribution
to E and V" are those of a small element of the line on both sides of M. The field lines
diverge from M in all directions normally to the charged line (if ¢; is positive) and
converge toward M (if ¢; is negative). Thus, the direction of E is not defined
(Figure 2.9¢). By considering a small Gaussian cylinder around an element of the
charged line, we find that the dominant terms of E and V' are E = (2K,g/p)e, and
V' =—=2Koq;In p. Thus E and V are infinite on the charged line (Figure 2.9d).

¢) In the case of a surface S of charge density g5, we consider a small cylindrical
Gaussian surface, with a lateral surface that is very short and normal to S and its
bases are situated on both sides of S (Figure 2.10a). Assuming that there is no point
charge or line charge on S, the total charge situated inside the cylinder is ¢g; dS. Let
n; be the unit vector normal to S and oriented toward the medium (2). Gauss’s law
for the cylinder may be written as dS E;.nj;— dSE;.nj; = dS gs/€,. We deduce that
the normal component of the field undergoes a discontinuity on the surface

E)np—-Ejn;= qS/EO, ie. By —E; 1 = qs/go. [260]



Electrostatics in Vacuum 41

(b)

Figure 2.10. a) On a surface carrying a charge density qs, the normal component of E is
finite but it has a discontinuity qy/€,, while the tangential component is finite and continuous.

b) In the case of a volume charge distribution, E and V are finite and continuous

Consider now a rectangular path ABCD of sides AB and CD parallel to S and
situated on one side S and the other, while BD and AC are very short. As E is

conservative, its circulation on this path is equal to zero, thus, E,. AB+ E,. CD= 0,
i.e. Eyy AB— Eyy CD = 0. As AB = CD, we deduce that

Eyy=Ey. [2.61]

This relation holds for any direction of 4B and CD parallel to S. Thus the tangential
component of E is continuous on the charged surface. In order to understand this
result, we consider a point M near the charged surface and surround it by a small
sphere that contains a small zone S, of the charged surface (Figure 2.10a). Let S', be
the remaining part of S that lies outside the sphere. The field and the potential at M
may be written as

) =K, | jso ds'qr')/|r —r'|+ K, | js,o ds' qx)|r-r,
E(r) =K, -USO ds q ') —r)|r—rP+K, _US,G ds' qx’)x—r)|r—-rP. [2.62]

If M is close to S, the integrals over S5 are continuous and finite as |r — r’| does not
vanish. The integrals over S, are approximately the potential and the field of a disk
of radius (R* — 2" = R and charge density g;. According to [2.54], these are
Viisk = qsR/2€, and Egigx = T(gs/2€,)e,. Thus, the potential of the disk vanishes in the
limit R—0 and z—0 but Eg;s, which is normal to the disk, remains finite and has a
discontinuity gs/€,. We deduce that, on a charged surface, V' and the tangential
component of E are finite and continuous while the normal component of E is finite
but it has a discontinuity g4/€,.
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d) In the case of a volume charge distribution, let us consider a small sphere 7, of
center M and radius R (Figure 2.10b). According to [2.59], the field and the potential
produced by the sphere at its center M are E, = 0 and V, = g,R*2¢,. Thus they
vanish in the limit R — 0 while E and V* that are produced by the charges
outside the sphere 7, are finite and continuous, as the distance |r — r’| in [2.5] and
[2.7] does not vanish. We deduce that the field and the potential produced by any
volume charge distribution are continuous and finite both inside and outside the
charged volume if it contains no point charges, linear charge, or surface charge.

By comparing the linear charge to a cylinder and the point charge to a ball, we
find that the singularities of E and V are due to the zero radius limit of the cylinder
and the ball. Also, the discontinuity of E; on a charged surface is due to the zero
thickness of the charge distribution (see Problem 2.21). In fact, the point charge, the
linear charge and the surface charge are mathematical idealizations. On the
macroscopic scale, all bodies have always non-zero dimensions. On the microscopic
scale, the elementary particles (such as electrons or protons) are considered as a
point, but the concepts of position and radius lose their classical significations.

Because of the quantization of electricity as point-like particles, the
superposition of their individual fields E; and potentials V; gives the microscopic
field and potential, which undergo large fluctuations and they even become infinite
at the positions of the particles. A macroscopic element of volume, area or length are
assumed to be sufficiently large to contain a very large number of particles. The
field E and the potential V, evaluated by using continuous charge densities, are said
to be macroscopic. These are the averaged values of the microscopic field and
potential over finite space element and time intervals.

Consider a small sphere S surrounding a particle (i) and containing no other
charge (Figure 2.10b). The total average field <E> in S is the vector sum <E;> +
<E’> where E; is the field of the particle (i) and E’ is the field of the other particles
located outside S. As E;isradial and it has a spherical symmetry, its average value
in S is zero, while E' is regular inside S. Thus the macroscopic field is regular. In
the same way, we may show the regularity of the potential in the case of volume
charge distribution and surface charge distribution.

2.9. Electrostatic energy of a system of charges

The energy U of a system of particles without intrinsic structure is the sum of
their kinetic energies Ug; = Vamivi? and their interaction potential energy. The
electrostatic interaction potential energy Ug is the work required to bring the initially
far away particles to their actual positions r; without acquiring kinetic energy. As the
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electrostatic forces are conservative, Ugis a function of the relative positions |r;— rj|
of all the pairs of charged particles.

Figure 2.11. Interaction potential energy: a) for a system of discrete charges,
and b) for a continuous charge distribution

Consider, for instance three charged particles g (i = 1, 2, and 3) (Figure 2.11a).
To bring ¢, from infinity to its position r; in the absence of the other charges, no
work is necessary. Then, to bring g, from infinity to its position r; in the presence of
q1, a force —F; must be exerted and a work U), = K,q1q2/r12 is required. Finally, to
bring ¢; from infinity to its position rj, a force — (Fi3 + F»3) must be exerted and
work Uz + U,z is required. Thus, the total work necessary to assemble the three
charges is

Ug= U+ U+ Uy =Ko (q1q2/7112 + q193/713 + 4293 /1723). [2.63]

This result may be easily generalized to systems of several charges ¢; (i = 1, 2, N).
Each pair of charges contributes a term Uj; to the total potential energy. Thus, we
may write Ug as

Uk = Ypairs Uij = V2 2 iz Ui, where Uy = Koqigi/rij. [2.64]

In the expression Ug = Xairs Ujj, the summation is carried over all the 2AN(N-1)
pairs of particles and, in the expression Ug = %2 2ix Ujj, the summation is carried
over all distinct particles (the factor 4 takes into account the fact that each pair is
counted twice). Explicitly, we find

Us="% 3000 a; [ Ko X5/ 5 1= 2000 ¢ V(o) [2.65]
where V'(r;) = K X gj/r;j is the potential produced at r; by all the charges except g;.

Note that 7’ is finite and different from the potential " produced by all the particles
(which is infinite at the positions r; of the point charges g;).
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As the potential energy is defined up to the addition of a constant, we choose this
constant such that U; — 0 in the limit rj; —eo. The potential energy Ur may be
positive or negative. If Ug > 0, a positive work must be done against the repulsive
forces in order to assemble the charges in their actual positions. If the system is then
left to itself, these repulsive forces disperse the charged bodies; the potential energy
Uk is then transformed into kinetic energy. But, if Ug < 0, the particles are attracted
toward each other and a negative work must be done against the attractive forces in
order to prevent the particles from acquiring kinetic energy. If the system is then left
to itself, these attractive forces maintain the particles bound together, as the negative
potential energy Ug cannot be transformed into kinetic energy (which is always

positive). A work W = —Ugis required to completely separate the charges; W is the
binding energy of the system of bound charges.

In the case of a continuous charge distribution with a density ¢.(r) (Figure
2.11b), an infinitesimal volume @7 near r; contains the charge dgq; = q.(r;) @7;. The
interaction energy of d? and d7; is U;j = 2K.d?; d?; q.(xi)q(x;)/|ri—rj| and the total
interaction energy is

Uz = Y%K llly v Ity dv q.(¢)q (e)e=x'| = % [Il, dv q.(x) V(r). [2.66]

In the second expression, V(r) = K,[ll, &' q,(r')/|r—x’| is the potential produced at r
by all the charge of 2. As in [2.65], in principle, we should consider different
elements of volume &7 and @7 and use the potential }'(r) of the whole volume 7
except 7. However, the potential of ¢ tends to zero with the dimensions of &7 (see,
for instance, equation [2.59] in the case of a small sphere of radius R). Thus, we may
use the total potential V instead of V. Similar relations to [2.66] may be written in
the case of a surface charge but not in the case of a linear charge as the potential of

an element of length dL does not go to zero with dL (see section 2.7 and Problem
2.18).

Using Gauss’s law, we may write the electrostatic energy [2.66] in a form that
uses only the potential and the field:

Ut = Ysgo llly @0 (V.E) V(v) = Ysg, [lly @0 V(VE) + Vg, [l o B2, [2.67]
where we have used the relation
(VEY =ZaVoEa.V = 2oV EaV) ~Ea-VoaV] = ZaVa(EoV) + EoEq = V.(VE) + E2.
If we are only interested in the total electrostatic energy of a charge distribution that

occupies a finite 7, the first term of equation [2.67] is the integral of the divergence
of (VE) over this volume. It may be transformed into the outgoing flux of (VE) from



Electrostatics in Vacuum 45

a large surface S enclosing the system on which /" and E go to zero rapidly enough
for the flux to be zero!. Thus we may write

U = Y5, Il dv B2, [2.68]
This expression is equivalent to an electric energy of volume density
Upy= Y €.E? [2.69]

at each point in an electric field E. For instance, in the case of a parallel plate
capacitor, the field has a magnitude E = g¢¢/e, = Q/Sg, and it is localized between the
plates. Thus, the electric energy is stored with a density Uy = Y5€,(0/S€,)* in this
region and the total energy is Ug =?Ug, = 0°/2¢,.

This result is not a simple mathematical equivalence. The electric energy is
effectively localized where there is an electric field, exactly as calorific energy is
localized at hot places in a medium. Equation [2.68] gives not only the interaction
energy of the whole system, but the energy in each volume 7 of the system. Contrary
to equation [2.69], equation [2.66] does not interpret Y2q,(r)V(r) as the electric
energy density, since it incorrectly implies that the energy density vanishes at points
where g,(r) = 0. On the other hand, the expression Y2¢,(r)/(r) is inadequate for the
energy density, as it may be arbitrarily modified by adding a constant to V.

The practical relevance of the localization of energy is that the conservation of
energy is not only global in the Universe but local in each element of volume. In
each volume 7, there is a certain stored energy, a certain dissipated energy, and a
certain energy being exchanged with the exterior through the surface S that encloses
the volume 7. The dissipation of energy and its propagation are important in
theoretical physics and in the applications of physics.

If two systems interact (two atoms within a molecule for instance), the total
interaction energy may be split into internal interaction energies Ug,; and Ug,
(between the pairs of each systems considered separately) and the interaction energy
Ug,(1,2) of the particles of one system with the particles of the other:

Ug=Ug,1+ Ugx+ Ug1). [2.70]

1 On a sphere of large radius r, for instance, the element of area dS increases like I (4
decreases like 7, E decreases like 7™ and the product VE decreases like 2" The flux of
VE through this sphere goes to zero if —2n—1+2 is negative, i.e. if n > Y.
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Adding the kinetic energies and the other forms of energy for each system, the total
energy may be written as:

U= U1 + U2+ UE,(l,Z): where U1 = UK,l + UE,l and U2: UK,2+ UE,Z- [271]

The interaction energy Ug 12 may be expressed in terms of the potential V; or V,
produced by the particles of one of the systems at the positions of the charges of the
other system

Usao= 2 43, V2(6) = 25 a4, Vi(x,) [2.72]

where the summations are carried over the charges of one of the systems. The
knowledge of the interaction energy Ug( ) allows the force exerted by one system
on the other to be determined. For instance, if system (2) is rigid and its position is
specified by a coordinate x, the x component of the force acting on it is
Fy = —0xUg12)(x). Similarly, if its orientation is specified by an angle 6 about the
axis Oz, the moment of the electric forces has a component I', = —dgUg (12) about Oz.

If system (2) consists of a single particle of charge g and position r, its
interaction energy with system (1) is, according to [2.72], Ug(12)= q Vi(r) where V;
is the potential produced by system (1). The force exerted on this particle is

F= —VUE(LQ): —q VV](I') =—q [aleeer 8yV1ey + 8ZV1eZ] = qu. [273]

More generally, if the interaction energy Ug of system (1) with a set of particles is
expressed as a function of their coordinates, the force exerted on the particle (i) is

Fi==ViUg(ry, ra,... 1), [2.74]

where Vs the vector differential operator with respect to the coordinates x;, y;, z; of
the particle (i).

In the case of time-dependent phenomena, this analysis must undergo two
important modifications: the appearance of magnetic forces that are non-
conservative (as they depend on velocities) and the non-validity of the action-at-a-
distance. Then, it is imperative to use the interaction through the fields, which
propagate and carry their proper energy, momentum, and angular momentum.

A system is in a state of equilibrium if it remains indefinitely in this state without
any modification. The equilibrium is stable if it corresponds to the minimum
potential energy Ug. Indeed, to move spontancously away from this position, the
potential energy of the system must increase (from the minimum), thus its kinetic
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energy Ux must decrease and this is impossible as Ug cannot be negative. If the
system is slightly displaced away from this position and left without initial velocity,
it may only come back and oscillate near this position. The potential energy of a
charge ¢ in a potential V being Ug = ¢V, a minimum of V is a stable equilibrium
position for a positive charge g and a maximum of V is a stable equilibrium position
for a negative charge ¢. For instance, the point situated halfway between two
charges +¢ in Figure 2.12a is unstable for a charge —¢' in longitudinal motion and
for a charge +¢' in transversal motion. Thus, whatever the charge, it will not be in a
stable equilibrium position for the motion in at least some directions.

+q _q'\ll +q +q +q’1\ +q
O-€—@—>-0O O-—>0-€—0

1 J

(@ (b)

Figure 2.12. a) A system of charges cannot be stable under the effect of electric forces alone.
b) A body carrying bound charges q; cannot be stable in an external field

Consider now an extended, non-conducting, rigid body carrying bound charges
gi at points M; (Figure 2.12b). Assume that this body is in equilibrium under the

effect of mechanical forces and internal forces (including the electric interactions of
the charges). If an external electric field acts on this body, new forces g;E(r;) appear.
Let rc be the position of the center of mass of this body. The positions of the charges

from the origin are rj = rc+ cM i . The translational motion of the body is that of the
center of mass, i.e. a point mass m equal to the total mass of the body and subject to
the resultant of the electric forces Fr = X; ¢E(r;). If V¢ is the vector differential
operator with respect to the coordinates of the center of mass and V; is the vector
differential operator with respect to the components of r;, the force Fg verifies the
equation

Vc.FE = Zj UA] Vc.E(l'j) = Zj qi Vj.E(l‘j). [275]

If there are no source charges of E at point rj, Poisson’s equation may be written as
V,;.E(rj) = 0. Thus, we have V¢.Fg = 0. This means that Fg cannot converge toward a
given point. Thus, this point cannot be a stable equilibrium position for the motion
of the center of mass. It may be that the body is in an indifferent equilibrium. For
instance, an electric dipole placed in a uniform field E is in an indifferent
equilibrium for translational motion as the resultant electric force is zero for any
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position of the dipole. It may also be shown that there is no stable configuration of
charges on a rigid conductor placed in a non-uniform external field E, but an
indifferent equilibrium is possible (in a uniform field E for instance).

2.10. Electrostatic binding energy of ionic crystals and atomic nuclei

In an ionic crystal, the ions are arranged in a periodic array. For instance, in the
table salt (NaCl) crystal, the CI” and Na" ions form a face-centered cubic unit cell of
sides d (Figure 2.13). The number of ions per mole N is of the order of Avogadro’s
number Ny = 6.022 x 10%. The cohesion of the crystal is due to the attractive
electric forces. However, the binding energy is easier to analyze and to measure as it
is related to several physical quantities. The relative configuration of the ions with
respect to each other is the same everywhere in the crystal except at its surface. If
the crystal is large, this surface effect may be neglected. The electrostatic energy of
the crystal is then N times the interaction energy of one of the ions (the central ion in
Figure 2.13, for instance) with the others. It is given by

U =YiNKo Yo, 014/ 7 - [2.76]

It is obviously unthinkable to carry out this summation, even by using the most
powerful computer. The most important terms correspond to the shortest distances
rij. If the ion (1) is Na’, the closest neighbors are the six CI ions situated at the
centers of the faces of the cubic unit cell at a distance 71;= '2d; their contribution is
—12K,e%/d. The next neighbors are the 12 Na' situated at the middle of the 12 edges
at a distance rj = d/2"; their contribution is (12x2”)K,e*/d. Then come the eight CI”
ions at the vertexes at a distance 3"d/2; their contribution is —(16/3")K,e*/d and so
on. Thus, the total energy is

U= (NKo@?2d) (12 + 124/2 = 16/43 + ) =—1.748 (NK,¥/d).  [2.77]

The final result is obtained using a computer. The negative value of Ug shows the
dominance of the interaction with the closest neighbors and it explains the stability
of the crystal. The energy that is required to extract one of the ions is

Ug(N) — Ug(N-1) = 1.748 (K.€/d). [2.78]
As it is positive, the crystal is stable against spontaneous disintegration.

Equation [2.77] shows that the energy of the crystal decreases (in algebraic
value) if d decreases. You may think that the most stable configuration would be
that with pairs of oppositely charged ions at the same point. This is not true because,
at short distance, quantum effects become important and they are equivalent to a
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repulsive force between positive and negative ions. d is just the distance at which the
repulsive quantum force counterbalances Coulomb attraction.

X-ray diffraction experiments give d =0.564 nm for the NaCl crystal. Thus,
Koe*ld = 4.09x 107" J. A mole contains 6.022 x 10* molecules, thus, N = 1.204 x
10** ions, and the molar binding energy is Ug = —8.61 x 10° J/mol. This is the energy
required to completely disperse the ions. It may be compared to the evaporation
energy of 7.64 x 10° J/mol. The agreement with experiment is of the order of 90%.
To improve it, we must take into account other forms of energy such as the vibration
energy of ions, surface effects, etc.

4.32 MeV
4.46 MeV
2 MeV
2.14 MeV
——— 0MeV
-7 1982 MeV
0 MeV
Figure 2.13. Unit cell of NaCl Figure 2.14. Energy levels of ''B and ''C

The dominant force in atomic nuclei is the nuclear force that binds the nucleons
despite Coulomb repulsion between protons. It has a very short range (i.e. it is
completely negligible at distances larger than about 107"°m). This force also depends
on the relative velocity and the orientation of the nucleons spins, but it does not
depend on the electric charge of the nucleons (the nuclear p-p, n-n and n-p
interactions are the same). The charge independence of nuclear forces is evident if
we compare the spectrums of nuclei having the same mass number 4 (i.e. the same
number of nucleons), but different atomic numbers Z (i.e. the same number of
protons) such as "B (Z = 5) and the ''C (Z = 6). The energy levels of these nuclei are
shown in Figure 2.14. The levels of !'B are at 2.14, 4.46, 5.03 MeV, etc., above the
ground state, while those of ''C are at 2,00, 4.32, 4.81 MeV, etc. If the interaction
between the nucleons was only nuclear, the levels would be identical. In fact, those
of ''C seem to be 1.982 MeV higher. This difference may be explained by Coulomb
repulsion, which is more important in the case of ''C as it contains more protons.
Taking into account the rest energy of the nucleons, the energy levels may be
written as

E(B) = 5mpc’® + 6myc® + Uny + Up(''B), E(C) = 6myuc” + 5mpc” + Un + Ug(''C) ,



50 Electromagnetism

where we have assumed the same nuclear energy Uy for both nuclei and Ug is the
electrostatic energy. Thus, we find the difference of levels:

E(C) — E(B) = myc®— my®+ Up("'C) — Ug("'B) = Ug("'C) — Ue(*'B) —1.2935 MeV.

To evaluate the electrostatic energy Ug, let us assume that the nuclei are
spherical of radius R = R,4"* with R, = 1.2 x 107> m (which means that all nuclei
have the same nuclear density). The radius of ""Band ''C is then R =2.67 x 107" m.
Using the expression (3/5)K,0%R for the energy of a charge distribution in a ball
(see Problem 2.31), we find Ug = (3/5)(K,Z*€*/R). It is a better approximation to
replace Z* by Z(Z-1), which is twice the number of protons pairs, hence

Us(Z) = (3/5)Z(Z-1)Koe*/R = 5.172x107* Z(Z —1) T = 0.3232 Z(Z —1) MeV. [2.79]
We deduce that Ug(''C) — Ug(''B) = 3.232 MeV, thus
E(C) - E(B)=-1.2935 MeV +3.232 MeV = 1.939 MeV.

This result is in good agreement with the experimental values.

2.11. Interaction-at-a-distance and local interaction®

We have seen that it is possible to have two formulations of the electric
interactions: the Coulombian formulation [2.1] in accordance with the Newtonian
concept of the instantaneous action-at-a-distance, even if the charges are very far
away, and the local interaction formulation [2.4] of a field emitted by a source
charge ¢' and acting on a test charge ¢ (Figure 2.15a). You may think that the two
formulations are equivalent and that the concept of field is nothing but a convenient
mathematical tool. This is true only in the case of static phenomena. If the system
undergoes any modification (as in the case of moving particles, production or
disappearance of charges), the instantaneous action-at-a-distance is no longer valid.

After the formulation of special relativity by Einstein in 1905, it became evident
that the velocity of light in vacuum c is the upper limit of velocity for particles and
the transfer of any physical quantity, interaction, or information. The existence of a
higher speed would violate causality, as an observer moving at this speed may find
that an effect precedes its cause. Thus, all interactions must be local, i.e. expressed
in terms of quantities defined at the same space point r and time .

The source charge ¢’ emits a radiation (i.e. a field), which propagates in space
with a certain speed v and modifies the space structure around ¢'. For instance, if ¢’
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is created at time #,, its field is not established instantaneously everywhere but it
reaches at time ¢ the points of the sphere of radius R = v(¢ — ¢,). At this time, no field
exists outside this sphere (Figure 2.15a). An eventual test charge ¢ at r will not
detect the influence of ¢’ before ¢t = ¢, + |r — r’|/v. The case of a charge source ¢'
which moves on a curve ¢ is much more complicated (Figure 2.15b). To evaluate
the force that it exerts at time ¢ on the test charge ¢ located at r, the position of ¢'
must be taken at an earlier time ' = ¢ — |r — r'(¢')|/v. The determination of ¢ as the
root of this equation and, consequently, the position r'(#') and the electric force may
be a very complicated mathematical problem. It is possible that this equation has no
roots (in that case E = 0) or more than one root. It is even possible that the field
exists while its source has already disappeared. Even in the static case, the charge ¢'
may not act on a test charge ¢ if they are separated by an obstacle in which the field
does not propagate (a metallic plate, for instance).

(a) (b) (c)

Figure 2.15. a) The field produced by ¢’ > 0 at t = t, propagates with a speed v and at time t
reaches a sphere of radius r = v(t — t,). Then, it acts on the test charge q > 0. b) The field

produced at ¥ by a moving charge q'. ¢) Interaction by exchange of particles

In the 19™ Century, the Universe was considered to be composed of matter and
radiation, two distinct entities but interacting. Both entities are characterized by
measurable physical quantities (energy, momentum, etc.). In classical physics, a
particle occupies a very small region of space, while radiation occupies an extended
region. Particles obey second-order differential equations of motion, while radiation
obeys partial differential equations of propagation. Initially, the concept of field was
considered as a convenient representation (by lines of force) or a mathematical tool
to study interactions. However, after the formulation of electromagnetism by
Maxwell, it became clear that electromagnetic radiation (including light) are fields
that propagate and carry energy and momentum. The interaction of two systems
occurs via the exchange of radiation.

After the formulation of the special theory of relativity by Einstein, it became
clear that the velocity of propagation never exceeds the velocity of light in vacuum
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and the interaction must be local (i.e. it involves quantities defined at the same space
point and time). Thus, the concept of fields is necessary to formulate the interaction
instead of the action-at-a-distance.

On the other hand, after the formulation of quantum theory, light waves and
photons became two aspects of the same physical entity. This concept of particle-
wave duality was extended by de Broglie to massive particles. The interaction
between particles may be conceived as a process of emission and absorption of
radiation or a process of exchange of particles. This exchange allows the transfer of
energy, momentum, angular momentum, etc., which is the manifestation of forces.
Figure 2.15c is a representation of the interaction between an electron and a proton
by the exchange of a photon. It is called a Feynman diagram.

2.12. Problems

Electric forces and field

P2.1 a) A charge Q is distributed uniformly on a sphere of radius R. We use
spherical coordinates around a diameter Oz. What is the force that the spherical band
situated between the parallels 6 and 6 + d6 exerts on a point charge ¢ situated at the
point of coordinate z on the z axis? What is the force exerted by the entire sphere?
b) A charge Q is distributed uniformly in a ball of radius R. Decomposing this ball
into successive spherical shells, calculate the force that the ball exerts on the charge
q. What is the limit of this force if ¢ is at the center of the ball? Interpret this result.

P2.2 Two charges equal to g are located at positions —a and +a on the x axis. What
is the total force that they exert on a charge ¢’ of coordinate y on the y axis? Deduce
the work that is necessary to bring this charge from infinity to the origin along the
axis Oy. Does this work depend on the path?

Electric energy and potential

P2.3 Consider a first set of charges ¢; at the points r;. Calculate their potentials
M(r's) at the points r'yx. Consider a second set of charges g'x at the points r'y
producing the potentials V'(r;) at ri. Show Gauss identity >; ¢; V'(r;) = 2k q'x V(r'y).

P2.4 Two charges g; = +10 nC and ¢, = —20 nC are placed at x = 0 and x = +5 cm,
respectively, on the x axis. a) Calculate the potential V(x) at an arbitrary point of the
x axis and plot V versus x. Deduce the expression of E(x) on the x axis. Using the
expression of E(x) find ¥(x). b) Calculate V(x, y) at an arbitrary point of the Oxy
plane. Deduce the expression of E. Verify the expressions of question (a).
¢) What are the limits of /" and E at large distance? Do you expect this result?
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The two fundamental laws of electrostatics

P2.5 a) Show that the angle whose apex is at O and which is subtended by an
element of length dL is d® = dL (n.R)/R* where R is the position of the middle of dL
from O. Verify that the total angle for a closed plane curve ¢ is 2r if O is inside ¢
and 0 if O is outside ¢. b) Show that the solid angle of the cone whose apex is at O
and which is subtended by an element of area ds is dQ = dS (n.R)/R’* where R is the
position of the center of dS from O. Verify that the solid angle for a closed surface S
is 47 if O is inside S and 0 if O is outside S. ¢) Deduce Gauss law €,Pg =X q(i“).

P2.6 Consider a uniform field E pointing in the direction Ox. Let M(x, y) be a point
of the Oxy plane and P its projection on Ox. Calculate the potential V(x, y) by
integrating the equation E = —VV and taking V' = V, at the origin. Calculate V(x, y)
by integrating along the straight line OM, on the path OP + PM formed by two
rectilinear segments and on the half-circle OPM. What is the work required to
displace an electron from O to M(2 cm, 1 cm) if £ =2 x 10’ V/m? Does this work
depend on the path?

Poisson’s equation and its solutions

P2.7 a) What are the charge densities that produce the potentials ¥, = a(x*— %) and
Vo= b(x*+ y*)? Calculate the corresponding electrostatic fields and verify the local
Gauss equation. b) Which one of the fields E; = (3x —y)e, + 3y + x) e, and
E;= (3x —y)e, + (3y —x)e, may be effectively an electrostatic field? Calculate the
corresponding potential and charge density. Verify the local Poisson’s equation.

P2.8 A plate of thickness d has plane faces of very large dimensions, parallel to the
Oyz plane at x = —d/2 and x = +d/2 respectively. It carries a uniform volume charge
density g,. a) Using the symmetries and Gauss law, determine the electric field E
and deduce the potential V" everywhere. Is it possible to take V' = 0 at infinity in this
case? b) Using Poisson’s equation and the continuity conditions of V' and E,
determine J and deduce E. ¢) A particle of charge g, mass m, and velocity v is fired
from far away perpendicularly to this plate. Depending on the sign of the charges,
discuss whether the particle may reach the plate and cross it. The particle is assumed
to have only electric interaction with the plate. It may help to plot the potential
energy of the particle versus x by taking /= 0 at O. d) Assume now that the plate
has surface charge densities —gs on the face x = —d/2 and +¢; on the face x = d/2.
Calculate the potential and the electric field inside and outside the plate and plot V'
and E versus x. Verify Laplace and Poisson’s equations and the discontinuity of the
electric field on the faces.

P2.9 Consider a model of the atom as a point-like nucleus of charge Ze surrounded
by an electronic cloud of charge density g, = —go(1 — #*/R%). a) Interpret R and
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determine g, if the total electronic charge is —Ze. b) What is the electronic charge
that is enclosed inside the sphere of radius »? ¢) Using Gauss law, determine the
field and deduce the potential. d) Using Poisson’s equation, the symmetries and the
boundary conditions, determine directly the potential V() of the electronic cloud.
What is the potential of the system nucleus+electronic cloud? Deduce the field.

P2.10 Using the relation A(1/jr — r'|) = 47 &(r — r') where &(r — r') is the three-
dimensional Dirac function (see section All of Appendix A), show that
V(r) = KJIl & q,(r')/|r — r'| is a solution of Poisson’s equation and that V.E = g,/e,.

Electric dipole

P2.11 An electric dipole is modeled as two charges —g and +g situated at 4~ and 4"
of coordinates —d/2 and +d/2 on the z axis. a) Analyze the symmetries of this system
and their consequences on V and E. b) Evaluate directly /" and E at points of Oz and
Ox. ¢) Show that, at large distance, E and V" are given by equation [2.38] and that, in
spherical coordinates, E, = 2K,p cos 8/ and Eg = Kyp sin 8/7. d) Using the
expression V = K (p.r)/r’, show that E(r) = K, [3(p.r)r/r" —p/r’]. Using the
expression V=K, p cos 0/12, show the expressions of E; and Ejy,

P2.12 a) Show that the electric dipole moment p of a charge distribution given by
equation [2.42] does not depend on the choice of the origin if the total charge is
equal to 0. b) Calculate p in the case of a single charge ¢, in the case of the charges
+ ¢ of Figure 2.16a and in the case of two opposite dipole moments separated by a
distance 2b (Figure 2.16b). ¢) A charge g is located at r. What is the mean value of
its field in the sphere of center O and radius a? Generalize to the case of several
charges.

+q94 §
—471B
(a) (b) (@ (b)
Figure 2.16. Problem 2.12 Figure 2.17. Problem 2.13

P2.13 In a water molecule, the protons of the hydrogen atoms are at a distance
r =9 nm from the oxygen nucleus O in directions making an angle 6 = 104° (Figure
2.17). Assuming that the electron of each hydrogen atom has equal probability to be
around its proton as around O, estimate the electric dipole moment of the molecule.
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P2.14 a) Calculate the interaction energy of a dipole p at r and a charge ¢ at r".
Deduce the force and the moment of force acting on the dipole. b) A dipole p’ is
modeled as a charge —¢' at O and a charge +¢' at 4 such that O4= d’. Using the
result of question (a), calculate the force and the moment of force exerted by p’ on p.

P2.15 Assume that a potential V(r) is established in a region of space. Calculate the
work required to successively bring charges —g and +¢ to points r; = r —d/2 and
r,=r + d/2. Deduce the work required to bring a dipole p from infinity to a position
making an angle 6 with E by using a model of the dipole as two charges —q and +¢
separated by a distance d.

Electric field and potential of simple charge configurations

P2.16 Evaluate the field and the potential of the simple charge configurations of
section 2.7.

P2.17 a) A charge ¢ is uniformly distributed on a circular ring of radius R. Analyze
the symmetries of the field and the potential. Calculate the potential at M(0, 0, z).
Deduce the expression of E on the Oz axis. Analyze the variation of V and E as
functions of z. Determine the points where the field is minimum and where it is
maximum. b) An electron may move on Oz. What is the force that acts on this
electron? What is the asymptotic limit of this force for large values of z? Justify this
result. Is there any equilibrium position for the electron? Is it stable? What is the
frequency of oscillations of the electron near this position? ¢) Would this analysis be
different if the charge density was not uniform?

P2.18 A thin rod of length L and uniformly distributed charge QO lies on the z axis
between A4 and B of coordinates —L/2 and +L/2. a) Discuss the symmetries and their
consequences on V and E at a point M(p, ¢, z) in cylindrical coordinates. b) Let P be
a running point of the rod and 6 the angle that Oz forms with PM. Show that

E = K(g/p)[(cos 61— cos 6,) e, + (sin 6, —sin 0;) e,] and V'=Kyq In (D/D")

where D* = [4p2 + (L *£22)*)* ¥ L — 2z, while 8, and 0, are the angles that Oz forms
with AM and BM, respectively. Verify that /" and E tend toward the potential and the
field of a point charge Q at large distance. Verify that, in the limit of an infinite
length L (with p finite) or in the limit p — 0 (with L finite), we find E = 2K, (g/p) €,
and V' =2K,q; In(L/p). As V' — oo if L — oo, we may take the potential to have the
value V, at p = p,, thus V(p, @, z) = 2K,q; In(p,/p) + V, .

P2.19 A disk has a uniform charge density ¢s. Considering the element of area
ds = p dp d¢ in polar coordinates, calculate the field E and the potential } at points



56 Electromagnetism

M on its axis Oz. Using the expression of V, deduce the expression of E. Verify that,
near the disk,  and E are the same as those of an infinite plane.

P2.20 Two parallel planes P and P’ are separated by a distance d and carry the
uniform charge densities g5 and ¢g¢'. We take Oxy parallel to the planes and situated
at equal distance from them. a) Using the expressions of the potential and the field
of a uniformly charged plane, write the expressions of the potential and the field
everywhere. b) Discuss the symmetries and deduce that /' depends only on :z.
Deduce that E is parallel to Oz and uniform in the planes z = constant. ¢) Using the
symmetries, establish directly these properties of E. Using Gauss’s law, show that E
is uniform in the three regions of this system and deduce the expressions of the field.
Discuss the special cases g; = ¢'s and g3 = —¢s.

P2.21 Let the surface charge density ¢ of a plane surface S be, in reality, a thin
layer of thickness d and volume charge ¢,. Show that ¢, = ¢s/d. Analyze the
variation of V and E on both sides of this layer and inside it. Verify that the average
field in the layer is 2(E; + E,) where E| and E, are the fields outside the layer.
Verify that, in the limit d — 0, one finds the field and the potential of a plane
surface.

P2.22 a) A long cylindrical shell of radius R carries a uniform surface charge
density ¢s. Use Gauss’s law to calculate the electric field inside and outside this
shell. b) Find this result by using Coulomb law and decomposing the shell into
infinitesimal elements of area in cylindrical coordinates. ¢) Use this result to
calculate the field inside and outside a cylinder of infinite length and uniform
volume charge density ¢,. d) Using the relation E = —VV in cylindrical coordinates,
deduce the potential everywhere.

P2.23 a) Use Coulomb’s law to calculate the field and the potential of a spherical
ball of radius R and uniformly distributed charge Q in its volume. For this,
decompose the ball into infinitesimal volume elements @7 = r** sin 0' dr' dO' d¢' of
charge dg' = gy @7’ and integrate over the ball. b) Let us assume that there is an
additional point charge g at the center of the charged ball. Determine the potential
and the field of this charge configuration. Application: determine the potential and
the field of an atom whose nucleus has a charge Ze and the Z electrons are uniformly
distributed in a sphere of radius R. Plot V(r) and E(7).

P2.24 A ball of radius R has a concentric cavity of radius R, and it carries a uniform
volume charge density g, between R; and R,. a) Using Gauss’s law, calculate the
field everywhere. Deduce the potential. b) Assuming that the center of the cavity is
on the z axis at a distance d from the center of the ball, calculate the potential at a
point M of spherical coordinates r, © and ¢. Deduce the electric field.
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Some general properties of the electric field and potential

P2.25 a) Consider a charge ¢ at point r and a sphere S of center O and radius R. Let
<I>g¢ be the average value of the potential of ¢ on S. Show that, if ¢ is inside S,
<> is equal to the potential produced at r by the sphere S carrying a uniformly
distributed charge g. Show that, if ¢ is outside S, <V>s is equal to the potential
produced by g at the center of S. Consider an arbitrary volume charge distribution.
Show that <V>g = V™(0) + K,q"™/R where V**(0) is the potential produced at O
by all the charges that are outside S and ¢™ is the total charge situated inside S.
Deduce that V' is regular. b) Applying Gauss’s law to a small sphere, show that E is
regular and continuous even on the bounding surface of the charge distribution.

Electrostatic energy of a system of charge

P2.26 What is the SI unit of €,? Three charges ¢g; = +5 uC, ¢ = —10 pC and g3 =
+2 uC are placed at points x; = —4 cm, x, = 6 cm and x, respectively, on the x axis

(Figure 2.18). Calculate the interaction energy of this system as a function of x.
Deduce the resultant force exerted by the charges ¢g; and ¢, on g3 if x =12 cm.

............ J AR — L o
Ot @O 0P MO
q1 q2 q3 . D "
Figure 2.18. Problem 2.26 Figure 2.19. Problem 2.27

P2.27 A rod of length L and uniformly distributed charge ¢ lies on the Ox axis with
its middle at O (Figure 2.19). a) Calculate the force that it exerts on a point charge ¢’
located at the point M’ of coordinate x' on Ox. b) What is the force exerted by this
rod on another rod of total charge ¢’ uniformly distributed, of length L’ and lying on
the x axis with its middle at a distance D from O? Assume that the rods do not
overlap. What is the value of this force for large D?

P2.28 Calculate the potential, which corresponds to the field of components
Ey=-3y, E,=-3x + 10y — z and E, = —y. Calculate directly the circulation of E over
the line OM joining the origin O to the point M(1, 2, 0) and verify that is equal to
V(M) — 1(0).

P2.29 Consider a chain of 2N charges ¢, —q, q, —q, etc. Two consecutive charges are
separated by a distance d. Calculate the electrostatic energy of this chain if NV is very
large. It helps to use the expansion of In(1+x) as a power series.

P2.30 We consider a configuration of charges ¢; at points r; and we assume that the
potential V'(ry) produced at ry by all the charges except gy is finite. V'(ry) is related
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to the charges by a linear relation V'(ry) = Ziu Ak ¢i, where the coefficients Ay;
depend on the relative positions of the charges. a) To calculate the electrostatic
energy, we may assume that the charges are gradually increased from 0 to their final
values g;. Assume that, at a certain time, the charges are equal to ogx, where o is
increased from O to 1. Calculate the required energy to increase oL to o+ do
(by bringing the charges dgy = gy do. from infinity to ry). Deduce that the energy of
the charges may be written as Ug = Y22 V' (ri)qx = 2 Zk Zix Aki gk gi- b) Use this
result to calculate the energy of a ball of radius R and uniform charge Q. ¢) To
calculate the energy of the ball, let us assume that successive shells are brought from
infinity. At a certain time, the radius is . Calculate the work required to bring the
charge of the shell of thickness dr and deduce the electrostatic energy of the ball.

P2.31 a) Using the expression Ug = YKl dS'[[s dS q<(r)gs(r')/)r — r'|, show that
the electrostatic energy of a sphere of radius R and charge Q that is uniformly
distributed on the surface is Ug = %2K,Q/R. Find the same result by using the energy
density Ug, = %g,E” b) Using the expression of the energy of a volume charge
distribution Ug = VK Jlly &' IIly @ qr)qo(r')/|[r — '], show that the electrostatic
energy of a ball of radius R and charge O, which is uniformly distributed in the
volume, is Ug = (3/5)K,0/R. Find the same result by using the energy density
Upy= 15e,E?. ¢) In special relativity, a particle of mass m at rest has an energy mc?,
where ¢ is the speed of light in vacuum. Deduce the radius of the electron if it is
modeled as a ball of radius R.

P2.32 Two balls of radius R, and R, have their centers at points of coordinates —a
and +a on the z axis and they have no common parts. Their charges Q; and O, are
uniformly distributed in their volumes. a) Calculate the potential and the electric
field inside and outside these balls. b) Calculate the energy density. Deduce the
proper energy of the balls, their interaction energy and their force of interaction.
What is the work necessary to bring these balls from infinity to their actual
positions? ¢) Calculate the force of interaction of these balls by using Coulomb
interaction of their volume elements. d) Let us consider the particular case Q)= -0,
Ry =R, and a << R,. Show that the global field at large distance is the same as that
of a sphere with a surface charge density proportional to cos 0 where 0 is the angle
with Oz as polar axis.

P2.33 Two electrons are separated by a distance d. The total field at any point is
E =E, + E; where E| and E, are their individual fields. The total energy density is
Ugy = 1/280[E12 +E,> +2E 1.E;]. The integrals of the first two terms over the whole
space are the proper energies of the electrons (infinite in the limit of point particles).
Show that the integral of the third term gives U = e*/4ne d as expected.
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P2.34 a) Calculate the electrostatic energy that is necessary to assemble the 92
protons of the uranium nucleus in a sphere of radius 7.4 x 107> m. Express your
result in joules and in MeV. b) Using the nuclear radius R = R,4"", estimate the
variation of the electrostatic energy of the uranium nucleus (Z = 92, 4 = 236), if it
undergoes fission into two identical nuclei.



Chapter 3

Conductors and Currents

We have seen that materials may be classified as insulators or conductors,
although the distinction is not clear cut, as semiconductors have a conductivity that
is intermediary between conductors and insulators. Similar to heat conduction, some
materials are better conductors than others. The historic Hall experiment has shown,
even before the discovery of the electron, that conduction of metals is due to the
motion of negative charges (see section 6.1). Actually, we know that the external
electrons in some atoms are weakly bound; this makes them free to move from one
atom to the other; these are the free electrons (or conduction electrons). In
electrolytic solutions, the molecules are dissociated into two ions of opposite charge
and both are free to move and contribute to electric conduction. In this chapter, we
analyze the properties of solid conductors in equilibrium and study their conduction
properties.

3.1. Conductors in equilibrium

In a body, each charge is subject to the electric field of the other bodies and that of
the other charges of the body itself. If the body is a conductor, the free charges move
very rapidly under the influence of these fields until they reach a stable electrostatic
equilibrium configuration. Besides this orderly motion in a given direction, the
particles have a random motion, called thermal agitation, which increases with
temperature and which is equally probable in all directions if the temperature of the
body is uniform. It does not correspond to a mean displacement of the particles and
it persists even in the state of electrostatic equilibrium. In the following, we assume
that the only forces that act on the charges are electric (thus, neglecting the weight,
magnetic forces, etc.). We also assume that the external electric field is time-
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independent, as a variable electric field induces a magnetic field that exerts magnetic
forces. Finally, we assume that the field inside the conductors obeys the same
equations as in vacuum. This last assumption is justified by the agreement of its
consequences with experiment.

A conductor may be either disconnected from other bodies (its total charge Q is
then constant) or maintained at constant potential V' (by generators). The analysis of
its electrostatic equilibrium determines its voltage (or its charge), the distribution of
the charge, and the electric field. These quantities depend on the electric influence of
the nearby bodies. It may be shown that this electrostatic problem has a unique
solution. The superposition principle is obviously valid and it may help to find this
solution.

(@) (b) (© (d)

Figure 3.1. Conductors in electrostatic equzllbrlum a) the charges are distributed on the
surface in such a way that E (M = 0 gnd E¢ ex =0.b) Conduclor placed i m an external field.
¢) Inside the conductor, q, = 0, on its external surface, E“Y, =0 and E® 1 =qs/€o. The
conductor is equipotential and d) conductor wzth cavity

Here are some properties of ideal conductors in electrostatic equilibrium:

a) Inside a conductor in equilibrium, there is no electric field!
E™ =0. [3.1]

Indeed, if there was a field E™, the free charges would move under the electric
force and the conductor would not be in electrostatic equilibrium. If non-electric
forces act on the conduction charges, these charges move to equilibrium positions
and create in the conductor an electric field E™ such that the electric force F = gE™

1 In this case the macroscopic field and charge density are averaged on volumes that are large
enough to contain a large number of atoms. Because of the thermal agitation, the microscopic
field and charge density undergo large variation in space and time and they may even be
infinite at the positions of the charged particles.
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counterbalances the non-electric forces. This is the case inside electric generators
and a conductor that is immersed in a magnetic field (see Hall’s experiment in
section 6.1).

b) Inside a conductor in electrostatic equilibrium, there is no net electric charge
density (Figure 3.1). Indeed, the electric field inside the conductor being zero, the
local form of Gauss’s law V.E™ = ¢, /e, gives

gv="0. [3.2]

The absence of net charge inside the conductor may be easily explained by the
mobility of the conduction electrons. If the net charge density was negative in a part
of the conductor, due to an excess of electrons, these would repulse each other and
would settle in equilibrium on the external surface of the conductor. Similarly, if
there was a positive charge density in a part of the conductor, due to a lack of
electrons, this positive charge would attract the free electrons to become neutralized
and leave the surface of the conductor positively charged.

c) A conductor in electrostatic equilibrium can carry charges only on its
external surface. Outside a conductor, just near its surface, the electric field is
normal to the surface. As we have seen in section 2.8(b), the tangential component
of E is continuous on boundary surfaces (since the circulation of E vanishes on any
closed path), while the normal component is finite but it has a discontinuity
E>.nj;; — Ej.npp = g4/€, (given by Gauss law). Taking the conductor as medium (1)
and the exterior as medium (2), n;; is the normal unit vector outgoing from the
conductor. The field being zero inside the conductor, we must have

E//z =0 and Ez.nlz = EZJ_: qs/ﬁo. [33]

Any charge of the conductor, whether it is due to the displacement of the
conduction electrons, deposed on it or induced by the presence of other charged
bodies nearby, can only be on its external surface. The surface charge density may
be positive on certain parts of the surface and negative on others in a distribution
such that the total field E in the conductor is zero (Figure 3.1b). In the usual
conductors, the depth of the charged layer on the surface is of the order of the
nanometer (i.e. atomic size).

d) All points inside and on the surface of a conductor in electrostatic equilibrium
are at the same potential: indeed, as E = 0 inside the conductor, its circulation inside
the conductor along any path between any two points M and N is zero (Figure 3.1c).
Using equation [2.13], we deduce that V(M) = V(N). Thus, the surface of the
conductor and its interior are equipotential and this agrees with the orthogonality of
the field on this surface. This property may be established directly. Indeed, if V(M)
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was different from V(N), the conduction electron would move toward the higher
potential to reduce the total potential energy and the equilibrium would be lost. To
set a conductor at a positive potential V,, it may be connected to the positive
terminal of a generator of electromotive force V,, and to set it to a negative potential
—V,, it may be connected to the negative terminal, the other terminal being
grounded. In order to maintain a conductor to zero potential, it may be grounded.

3.2. Conductors with cavities, electric shielding

In the case of a conductor with cavities, the preceding results concerning E and
inside the conductor and on its external surface remain valid (Figure 3.1d). Let us
consider a Gaussian surface S’ entirely situated within the conductor and containing
a cavity. The field in the conductor being zero, the flux of E through S’ is zero and
Gauss’s law implies that the total charge inside S’ is zero. Thus, the total charge
carried by the surface of the cavity S, is the opposite of the total charge that it
contains.

If the cavity contains no charge, the total charge on S, is zero. So, if it has some
positive surface charge density at 4 and a negative charge density at B, the field
points from the positive charge toward the negative charges. The circulation of E

along a path going from A4 to B would be jj dr.E= Vo —Vp > 0 and this is

impossible as the conductor is equipotential. Thus, if the cavity contains no charge,
its surface charge density must be zero. We may reverse the argument and say that,
points 4 and B of a conductor being equipotential and the cavity containing no
charge, V has between 4 and B no maximum or minimum; it must be constant and
the field E = =V must vanish in the cavity as well as in the conductor. Consider
now a Gaussian surface S" having a part in the cavity and the other in the conductor.
The flux through S" being zero, the total charge that it contains is zero. This is
possible for any S" only if the cavity surface carries no charge.

It should be noted that, if we admit the property that E® = 0 in a conductor, all
the other properties result from Gauss’s law, which is itself a consequence of the 1/
dependence of Coulomb force. The vanishing of the internal charge was verified
experimentally by Cavendish in 1772. He introduced a charged metallic ball into a
metallic box and let the ball touch the box; the ball became neutral. Thus, if the
force law was 1/*™, he verified that 1 < 0.02. A modern version of this experiment
was realized by Plimpton and Lawton. They used two metallic concentric enclosures
and set the external one to a high alternating potential (of the order of 10* V) and
low frequency (of the order of 2 Hz). Using an amplifier able of detect a difference
of potential as low as 107° V, they did not find any difference of potential between
the enclosures and deduced thatn <2 x 10~.
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More generally, the electrostatic phenomena in the cavity do not depend on the
exterior. For instance, if the charge density in the cavity is g, the potential in the
cavity is a solution of Poisson’s equation AV = — g,/€, and the field is E = -V/V.
Among these solutions, we must choose the one that verifies the conditions V' =V,
and E.n = g4/€, on the surface S, of the cavity. V, is the potential of the enclosure,
which is an unimportant constant, n is the unit vector normal to S, and pointing
toward the interior of the cavity and ¢ is the charge density of S.. ¥ must also be
finite in the cavity if it contains no point charges or linear charges. It may be shown
that this mathematical problem has a unique solution. We note that we consider here
only static phenomena, as time-dependent electric fields induce magnetic fields.
This constitutes an electromagnetic wave, which may propagate through the
enclosure (if it is thin) and produce an electric and a magnetic field in the cavity.
This property of the cavity results in electric shielding. Delicate electric devices or
circuits are enclosed within a metallic, grounded, conducting casing to protect them
against external electric disturbances. It is not necessary that the enclosure be
hermetic. It may have small holes or it may be a simple grid allowing the evacuation
of heat.

Figure 3.2. a) Grounded conductor with cavity, Figure 3.3. Sharp point effect: E is
b) the same conductor set to a potential V,, intense at sharp points and edges

The enclosure does not protect the exterior against electrostatic phenomena in
the cavity. For instance, if a charge is introduced in the cavity, an equal charge
appears on the external surface of the enclosure, this modifies its potential and
produces an electric field outside it. The shielding acts in both directions if the
enclosure is grounded (Figure 3.2a) or maintained at a fixed potential V, (Figure
3.2b). The electric potentials ™ in the cavity and ¥ outside the enclosure are
solutions of Poisson’s equation in their respective regions with the boundary
condition M(r) = V, on the enclosure. The solution is unique in each region
independently of the others.

Let us consider two distant conducting spheres of radii R and r, connected by a
conducting wire (Figure 3.3a). They form a single conductor at a potential V. Their
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charges are Qg = 4ne RV and O, = 4ne,rV and the field near their surface is Eg= V/R
and E.= V/r; thus, E./Er = ¢,,/qsr = R/r. This example shows that the field and the
charge density are very large at the sharp points or edges of a conducting body, as
their radius of curvature is very small (Figure 3.3b). Lightning conductors are an
application of this effect: a metallic rod ending by several needle-like conductors is
placed on the top of buildings and connected to the ground. The Earth is not
completely neutral but it has a charge density of about =10~ C/m’. Its field at
ground level is about 100 V/m and it may be very intense near lightning conductors.
This favors atmospheric discharge through the conductor.

The sharp point effect explains the so-called corona discharge brought on by the
ionization of a fluid surrounding a sharp conductor at high potential. Air, for
instance, is a poor conductor of electricity but it contains always some charged
particles and ions that are produced by cosmic rays. The high electric field near the
sharp points acts on these charged particles and ions and accelerates them strongly.
In their displacement, they collide with the air atoms, producing other ions and
emitting intense light. The motion of the charges also produces so-called electric
wind, which may be detected by a flame placed near the sharp point.

3.3. Capacitors

a) Mutual influence of conductors, capacitance

If two conductors are close to each other, the field of each one acts on the free
charges of the other and modifies the charge distribution and total charge if they are
not isolated. We say that the conductors are in mutual electric influence. The field
lines always start from the positive charges on one of them (or at infinity) and end at
the negative charges on the other (or at infinity). As the Earth is a conductor, it must
be considered as a part of the system.

We consider in this section the case of two conductors in mutual electric
influence and in electrostatic equilibrium (Figure 3.4a). Let S'be a Gaussian surface
formed by a thin tube of field lines and closed at the ends by two surfaces inside the
conductors. The field being tangent to the lateral surface of the tube and equal to zero
inside the conductors, its flux through S’ is equal to zero. The surface elements of
the conductors that it contains must have opposite charges dg; and dg,. If all the
field lines start on one of the conductors and end on the other, we say that the two
conductors are in fotal mutual influence. Then, they carry opposite charges O and
—Q. This is the case, for instance, if one of the conductors is in a cavity within the other
and also the case of two ideally isolated conductors carrying opposite charges. Two
large plane parallel plates carrying opposite charge densities are almost in total
mutual influence if edge effects are neglected (Figure 3.5a).
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Figure 3.4. a) Two conductors in total influence.
The superposition of the states b) and c) is the state d)

To derive the relation of the charges to the potentials, we consider a first
configuration such that the first conductor is at potential ¥} and the second at zero
potential (Figure 3.4b). The relation of the charges to the potentials being linear, the
charges of the conductors are proportional to V7, of the form Q' = Cy;V; and
Q' = C31V1. In a second configuration with the first conductor at zero potential and
the second at potential V, (Figure 3.4c), the charges are proportional to V5, of the
form Q") = Cp;pV, and Q" = CpV,. It is evident that the configuration of the
conductors at potentials V; and V7, is a superposition of the preceding configurations
(Figure 3.4d). We deduce that the charges Q; are then the sums of the charges Q'; and

Q”i:
O1=Cy i+ Cpaby, and  Or=Cy Vi + Cpba. [3.4]

The Cix are the coefficients of electric influence. They depend on the geometrical
form of the bodies, their relative position, and also the non-conducting medium
separating them. If the influence is total, we have 0, = —Q, for any potentials. This is
possible if Cj; = —C,; and Cy = —Cpp. We will show in section 3.4 the symmetry
relation Cjx = Cy;. On the other hand, if, for instance, V', = 0 and V] is positive, O,
must be positive. Thus we have Cy; = Cyy = —C1, = —Cy; > 0. This set-up of the
conductors is then called a capacitor and the conductors are its plates (or electrodes).
Designating the charge of the positive plate as O and the common value of the mutual
coefficients as C, called capacitance, we obtain the relation

O=CV, where V=V-"V,. [3.5]

The SI unit of capacitance is the coulomb per volt (C/V), called farad (F). Usual
capacitances are of the order of the microfarad (uF = 10°F) and picofarads (pF =
107" F). A single isolated conductor may be considered to be in total influence with
the Earth. If it has a potential V, its charge is Q = CV. The coefficient C is also called
capacitance of the body. For instance, the capacitance of a sphere is C = 4ne,R. We
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consider in this chapter only empty capacitors or, to a good approximation, air-filled
capacitors.

b) Calculation of the capacitance

The simplest capacitor to analyze is the parallel plate capacitor, formed by two
metallic plates of large area S and separated by a distance d (Figure 3.5a). The edge
effects are negligible if the distance d is much smaller than the dimensions of the
plates. For the calculation of /" and E, this assumes that the plates are infinite planes.
The electric field is then the superposition of the fields tgs/2¢, of two planes of
uniform charge densities t¢; (see section 2.7). The total field is zero outside the
plates (where the fields of the plates are +gqy/2¢, and —g/2¢,) and equal to gy/€,
between them (where both fields are equal to gy/2¢,). The difference of potential
between the plates is then

V=VW(A)-V(B)= [; dr.E = Ed. [3.6]
The charge of the positive plate is

0=5qs=¢,ES. [3.7]
Thus, the capacitance is

C=0Q/V=¢g,5/d. [3.8]

For instance, if § =2 m’andd = | mm, we find C = 17.7 x 10°F = 17.7 nF. This
example shows that the farad is an enormous capacitance.

A cylindrical capacitor consists of a cylindrical conductor of radius R; and
length L surrounded by a coaxial cylindrical shell of internal radius R, (Figure 3.5b).
Let Q be the charge of the cylinder and —Q that of the shell. Applying Gauss’s law
to a coaxial cylindrical surface of radius r, we get £ = Q/2ne,Lr (see section 2.7).
Thus, the difference of potential between the cylinder and the shell is

V=WA)- V(B)= [} dr.E=2K(0/L)| ff drlr = 2K((O/L) In(Ry/Ry).  [3.9]

The capacitance of this capacitor is

0 2ng L
C===—"—"— 3.10
V' In(R,/R)) [3.10]
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A Geiger counter uses ionization to detect particles. It is essentially a capacitor
formed by a metallic cylinder surrounding a conducting wire whose potential is
about 1 kV higher than the cylinder. This tube is filled with a gas at low pressure. If
a particle enters though a small opening at its end, some gas atoms are ionized. The
produced electrons are strongly attracted toward the wire and they ionize other
atoms, producing an avalanche and a signal, which may be amplified and detected.
This instrument may count particles but it cannot measure their energy.

z
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Figure 3.5. a) Parallel plate capacitor, b) cylindrical capacitor, and c) spherical capacitor

A spherical capacitor is a sphere of radius R; surrounded by a concentric
spherical shell of internal radius R, (Figure 3.5¢). Let QO be the charge of the sphere

and —Q that of the shell. Applying Gauss’s law to a concentric spherical surface of
radius , we get E = K,O/” (see section 2.7). Thus, the difference of potential
between the sphere and the shell is

V=WA)-V(B)= [¥ dr.E=K,0 Lff drir? = K,Q [1/R1—1/R,). [3.11]

The capacitance of the capacitor is
C:Q/V:4TE80R1R2/d, where d:Rz—Rl. [312]

If d << Ry, the capacitance becomes C = 4me R*/d = €,5/d, i.e. the same as for a
capacitor of thickness d and surface S of the sphere. On the other hand, if R, is finite
and R, is infinite, we find C; = 4me,R,. This is the capacitance of a sphere of radius
R;. The capacitance of Earth for instance is 710 pF.

¢) Energy of capacitors

A capacitor stores electric energy. To evaluate it, assume that, at a certain time,
the charges of the plates are Q1 = uQ and Q" = —uQ, where u is increased from 0 to
1. By linearity, the potentials of the plates are V'; = uV and V', = uV);. To increase u
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by du, a charge dQ'1 = du Q must be brought from infinity to the positive plate and
dQ" = — du Q to the negative plate. This requires work

dw = dQ'l Vl + dQ'z sz du Q uV1 —du Q quz duu QV
The energy of the capacitor is the total work required to increase u from 0 to 1, i.e.

Ug= [ dW =0V j(‘)duu =1%QV=" CV*=" Q*/C. [3.13]

This is also the energy stored in the volume 7 = Sd with a uniform volume density
Ug., = Ys€,E*, where E = V/d = Q /&,S.

d) Use of capacitors

Capacitors may be connected in an electric circuit in two ways with specific
advantages and disadvantages for each one:

a) By connecting one of the terminals of all the capacitors to a point 4 and the
other to a point B, we obtain capacitors in parallel (Figure 3.6a). If a voltage V is
applied between 4 and B, the capacitors acquire the charge Q; = CiV. The total
charge of the combination is Q =2>,0; = V 2,;C;. Thus, it is equivalent to a single
capacitance

C=Q/V=%;C. [3.14]

The stored energy is evidently the sum of the energies of the capacitors:

Up=Y; Usi= %Y C; 1V} =%CV>. [3.15]
It is the same as the energy of the equivalent capacitor.

This combination of capacitors increases the charge without increasing V. This is
convenient if the individual capacitors cannot support high voltage. A practical way
to achieve this is to pile metallic foils separated by insulating sheets and to connect
the odd numbered foils to 4 and the even numbered foils to B. The number of
capacitors in parallel is that of the insulating sheets.

______
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Figure 3.6. a) Three capacitors in parallel and b) three capacitors in series
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b) By connecting the output plate of one capacitor to the input plate of another, we
obtain capacitors in series (Figure 3.6b). The potential V' is applied between the
input A of the first capacitor and the output B of the last capacitor. If the capacitors
were not initially charged, the charge inside the Gaussian surface S, for instance,
remains zero. Thus, the plates that it contains carry opposite charges —Q and +Q and
the difference of potential between 4 and B may be written as

V=WA)-V(B) = [V(4)- V(O] + [NC)-ND)] + [V(D) -V(B)]
= 0/Cy + QICy+ Q/Cs = Q(1/Cy + 1/Cy + 1/C5).

Thus, this combination of capacitors has an equivalent capacitance C given by
1/C=VIQ=2; 1/Ci. [3.16]
The energy stored in this set-up is
U= Ugi =% X Q°/Ci =% Q> 3 1/Cy = O°/C. [3.17]
It is the same as the energy of the equivalent capacitor.

The advantage of this combination of capacitors is to have a high voltage
between the terminals, while the individual capacitors are at low voltage. A practical
way to achieve this is to pile metallic foils separated by insulating sheets. The
tension V is applied between the extreme metallic foils. The number of capacitors in
series is that of the insulating sheets.

Capacitors are currently used as components in electronic circuits. They serve to
regularize electric currents, to produce time delays, and transmit and detect
electromagnetic signals in electronic equipment. Capacitors come in different forms.
Small capacitors of the type used in electronic circuits are formed by two metallic
foils (usually aluminum), separated by a sheet of dielectric (waxed paper, Mylar,
etc.) and rolled up in a small cylinder. Large capacitors are obtained by immersing
large metallic plates in insulating oil, and variable capacitors are obtained by rotating
movable plates between a set of stationary plates. The effective surfaces of the
capacitors are then only the parts facing each other. Capacitors of large capacitance,
called electrolytic capacitors, are composed of a metallic foil (often in a spiral
form), which acts as an electrode, immersed in an electrolytic solution in a metallic
container, which acts as the second electrode. If a voltage is applied between the foil
and the container, a layer of metal oxide is formed close to the foil. This acts as a
very thin insulator while the solution remains conducting. This kind of capacitor has
a specific polarity that must be maintained.
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Capacitors may store a large amount of charge in a relatively small voltage and
deliver them in a very short interval of time, avoiding the use of high voltages, which
may cause electric breakdown. This discharge cannot be obtained by using batteries.
It may be used to produce light flashes, accelerate particles, study nuclear fusion,
etc. If the plates of a high-capacitance capacitor are short-circuited, its fast discharge
may produce sparks and if one accidently touches both plates, the discharge current
across the body may have grave consequences (especially if it passes the heart).
Conversely, in the case of heart attack, a fast discharge of electrical energy through
the heart may stop cardiac fibrillation (rapid and irregular heart beating).

3.4. Mutual electric influence of conductors

The results that we have established for two conductors may be generalized to
several conductors in mutual influence (Figure 3.7). By the same argument using
tubes of field, there is a correspondence between opposite charges on conductors in
electric influence. Considering states of only one conductor (i) at the potential V; and

the others at zero potential and then making the superposition of these states, we get
the relations:

O =Cny N+ Cpla+ Cils+ ... =% Ci Wy,
QZ =Cy Vi + CpVo+ CxsVs+... =2 Cy Vk,
etc., ie. 0;=Z Ci . [3.18]

ey
ﬁﬁ%ﬂn

Figure 3.7. Conductors in mutual influence

Let us recall Gauss identity X; ¢; V'(r;) = Zk ¢’k V(r’y) for two configurations of
charges ¢; at r; and ¢’y at r'y different from the r; (see problem 2.3). The first
produces the potential V(ry) = K,Z; qi/ryi at point ry and the second produces the
potential V'(r;)) = KXz ¢'x/r«i at the point ri. Applying this identity to the
configurations of the conductors (i) at potentials V; and charges Q; and the same
conductors at potentials Jx and charges Q, we get the relation X; Q; V' = X O Vi
Using [3.18], this relation may be written also as Xix CyViVi = Zix CiiV'iVk
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Considering the configurations such that all the potentials are zero except two of
them, V; and V}, we deduce the exchange symmetry relation

Cik = Gyi. [3.19]

Consider now a configuration of conductors i = 1, 2, etc., in total influence and at
zero potential except the conductor (i) at potential ;= V> 0. The field points from

the conductor (i) toward the others. Thus, the charge of the conductor (i) is positive,
while all the other conductors (k) have negative charge, hence

O0i=% Cy 'k=Ci V>0 and Qk;&i:Em Cim V= Ci V<0 (k'_'t.])
Thus, all the Cj; are positive and the Cj, (with i #k) are negative
C;>0 and Gi<0 1#j). [3.20]

On the other hand, the potential is defined up to an additive constant and the
charges are not modified if one adds the same quantity V, to all the potentials. Thus,

we must have O;= %y Cy V=2 Ci (Vx+ V) for any V,,, hence
Y Cik=GCii+ Zii Cic =0, 1. Cjj=— X Cike [3.21]

This means that X Oy = 0, which is valid if the conductors are in total influence. If
the influence is partial, we find the inequality Cj; > — Zy4 Cik.

To deduce the energy, we may generalize the method of the preceding section.
We may also directly use the expression of the interaction energy of the charges g

ds;, thus

Up =YX ds qiVi= 25 Vi dS; qsi= 2 5 ViQi = Va2 Gy ViV, [3.22]

where we have used the expression [3.18] for the charge.

3.5. Electric forces between conductors

Let us consider the simple case of a parallel plate capacitor (Figure 3.5a). To
calculate the force acting on one of the plates, we must consider it as a test body in
the field of the other (not the field E of both plates). Taking the origin O on the
positive plate and the axis Oz normal to the plates and oriented toward the negative
plate, the field of the positive plate is E; = (¢¢/2€,)e,. An element of area dS of the

negative plate has a charge —¢s dS; thus, it is subject to a force exerted by the
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positive plate dF =—g, dS E| = — (¢5*/2€,) dS e,. The total force exerted on the
negative plate is

’s _ 0 _ gsV?

e e, _280562_ Ve e,.

0

Follyap -9, [[oas--

T [3.23]

More generally, knowing the expression of the energy of a system of conductors
Ug, we may use the method of virtual displacements to calculate the force F that is
exerted on one of them; conductor (1), for instance. For this we may assume either
that the conductors are disconnected from any other body or maintained at a
constant potential.

a) If the conductors are disconnected from other bodies, their charges Q; are
fixed. If conductor (1), for instance, is subject to a force F, to displace it by dx, an
external agent must exert a force F' =—F and a work 8W = —F, dx. This work is
transformed into stored electric energy dUg = —Fx Ox, hence (at constant charge)

Fx:— SUE/8x=—8XUE |Q. [324]

b) If the conductors are maintained at constant potentials by using batteries, to
displace conductor (1) by Ox, the external agent must exert a force F' =—F and a
work 8W = —Fdx. However, the charges of the conductors vary by 6Q; and the
generators must supply an electric energy dU, = X; V; 80;. Thus the variation of the
stored energy is OUg = —Fy0x + Z; V; 8Q;, hence (at constant potentials V;)

Fo=3 Vi 80/8x — 9xUg |v. [3.25]

In the case of the conductors being the plates of a parallel plate capacitor, using
the virtual displacement at constant charge and writing Ug = 40%/C = 0%x/2€,5,
equation [3.24] gives the force on the negative plate

Fyo = %(0YC?) 0,C = — 0*2¢,S. [3.26]

Using the virtual displacement at constant potential and the expressions Ug =
KBCV? = £,8V*2x and O, = -0, = CV, we find Z; V; 8Qi/dx = 1> 0,C = —e,SV*/x*.
Thus, equation [3.25] gives

Fy = —€,SVIx* + £,8V*2x* = —€,SV?/2x". [3.27]

A similar method may be used to calculate the moment I' of the electric forces
exerted on a conductor. To calculate the component I'y, we have only to consider a
virtual rotation through an angle 80 about the axis Ox, thus

I'x =—8Ug/00 = — dp Ukl (at constant charges Q;),
Iy =2 V; 00:/80 — dpUE |v (at constant potentials V). [3.28]
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For instance, if the plane plates of a capacitor form an angle 0, the capacitance
depends on 6. The moment of the electric force on the negative plate is

T =-00Us | 9= (0"2C)@36C). Ty =1(36C) — (9Ur) | v = %:V(36C). [3.29]

In the case of several conductors, we may use the expression Ug= Y2 2jj Cjj ViV
or Ug="25i C lij 0i0;. We find the relations

Fx==%2i0C 500 or Fx= Y% X oxCy ViV, [3.30]
l“x =-1 Zij a(-)C_lij Qin or l“x =1 Zij 89Cij VJG [3.31]

Application: Kelvin absolute electrometer

The Kelvin absolute electrometer, illustrated in Figure 3.8, uses the attraction
force of the plates of a parallel plate capacitor to measure the potential difference of
the plates. This force is balanced by a weight mg by using a precision balance. To
eliminate edge effects, one of the capacitor plates is a circular disk of area S
surrounded by a circular ring. The mechanical equilibrium is established if

mg = £,SV*2d%, where we have used the relation [3.23], hence V=d [2mgle, S .

Shielding O I Glass rod
Leaf spring “»~

[

Ring Disk d Ring
Plate P

Figure 3.8. Kelvin electrometer Figure 3.9. Electrostatic pressure

Electrostatic pressure

Consider a charged conductor and an element dS of its surface assimilated to a
small disk (Figure 3.9). The electrostatic field E¥ = (g4/e,) n;» at point P just
outside the conductor is the superposition of the field Egisx = (¢s/2€,)n;; of the disk
and the field E’ of the other charges of the conductor and the other bodies. Inside the
conductor, the total field is zero and it is the superposition of E” and the field of the
disk —(gs/2€,)n12. We deduce that E” = (gs/2€,)n1;. The element of surface dS,
considered as a test charge, is subject to the field E’, thus to a force dF = ¢;dS E’' =
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ds (gs’/2€,) ny,. This force is orthogonal to the surface of the conductor and it
always points outward. It is equivalent to an electrostatic pressure

Py = dFlds = (q5/2¢€,) = Y2 €,E. [3.32]

This pressure tends to increase the volume of the conductor. It is numerically equal
to the density of electrostatic energy just outside the surface.

3.6. Currents and current densities

An electric current is an ordered flow of charged particles. It may be of three
types: a beam of charged particles moving in vacuum (electrons, protons, alpha
particles, etc.), a conduction current in solid conductors and solutions, and a
convection current produced by moving bodies carrying charges. In this chapter we
consider mostly the conduction currents in solids. Electric currents have some
physical and chemical effects and they transport energy and signals. The motion of
charged particles is always impeded by friction forces, which dissipate energy and
ultimately end the motion. Thus a sustained current can be established only if a
generator acts on the charges and supplies them with energy.

If an average electric charge dQ traverses a surface S in the time interval &t
(Figure 3.10a), we say that the current intensity (in amperes) through S is

1=380/5t. [3.33]

If a charge d¢ moves from a point 4 to a point B with a potential drop Vag= Vs — Vs,
the charge loses electric potential energy &g Vap. This energy is supplied to the
circuit between 4 and B. It may be stored as electric energy in a capacitor or as
magnetic energy in a coil, dissipated as heat in a resistor, transformed to mechanical
energy or chemical energy, etc. If no generator exists between these points and the
electric current flows from higher to lower potential, it supplies energy. The total
energy in a circuit is obviously supplied by the generators. In the case of a
continuous current I, the charge passing during &¢ is 8¢ = I ot and the energy
supplied by the charge dg between 4 and B is dWag = dq Vag =1 Vapdt. Thus the
supplied power by the electric current is

Pap=1Vag. [3.34]
The motion of charged particles may be more significant at some places than at

others. Thus, we define at each point r a current density j(r), such that the current
intensity that traverses an element of area dS placed at r is

dl=(j.n) ds=jcos 0 ds. [3.35]
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Thus dI is the flux of j(r) through the element of area ds. It is evident that df
vanishes if j is tangent to dS and dI is maximum if j is normal to dS. The intensity
that traverses a finite surface S is the flux of j through S

1=[lsar=1lsds Gn). [3.36]

(b) ©

Figure 3.10. a) Lines of current and volume current density, b) surface
current density, and c) conservation of electric charge

It is possible to relate the current density to the charge density ¢,(r) per unit
volume and the mean velocity v(r) of the charge carriers. Indeed, the charge that
traverses dS in the time interval 0t is contained in the cylinder whose base is dS and
length v &f (Figure 3.10a). The height of this cylinder is 64 = (n.v &f), its volume is
ds &h = (n.v) &t dS and the charge that it contains is ddg = ¢,(r) (n.v) 8¢ dS. Thus,
the current intensity that traverses dS is dI = ddq/dt = q(r) (n.v) dS. Comparing
with the expression [3.35], we deduce that the current density may be written as

J(0) = gy(r) v(r). [3.37]

Thus, j(r) points in the direction of the mean velocity of charge carriers if the charge
carriers are positive and in the opposite direction if the charge carriers are negative.
The lines of current are tangent to j at each point r.

In a conductor at electrostatic equilibrium, we have g, = 0. As we shall see in
section 9.4, this property holds approximately in the quasi-static approximation (i.e.
slowly varying phenomena). Thus, in metallic conductors, the negative charge
density of the conduction electrons is counterbalanced by the positive charge density
of the positively ionized atoms. As the ions are heavy, they do not move and do not
contribute to the current. If the number of conduction electrons per unit volume is
ne(r) and their average velocity is ve(r), the current density may be written as

J(r) = —e ne(r) ve(r). [3.38]
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If the current is due to the motion of several types (k) of particles of charges g,
numbers 7((r) per unit volume and average velocity v (r), the current density may
be written as j(r) = 2k g Hao(r) Vao(r). In ionic solutions, for instance, we have
G0 M) (1) + gy~ My (r) = 0 and both positive and negative ions move, hence

i) =200 q00” 10 (1) Vao (1) + X g0 1y (1) Vi (). [3.39]

The conventional direction of the current is that of the positive charges or,
equivalently, the opposite direction of the motion of negative charges.

In some cases, the conduction charges move in a thin layer, forming a surface
current. If the surface S contains a charge density ¢g; moving with a mean velocity v,
the surface S carries a surface current density js (Figure 3.10b). js is related to the
intensity d/ that traverses an infinitesimal segment dL by the relation d/ = dL.js. The

charge that traverses dL in the time interval &¢ is contained in the parallelogram of
sides dL and v &¢. We deduce that

Js(r) = gs(r) v(r). [3.40]

Usual current intensities in electric circuit vary from a fraction of milliampere to
few amperes. In electronic components, it varies from a picoampere (107> A) to a
fraction of the ampere. It may attain hundreds of thousands of amperes in
electrolysis solutions.

Consider a region of space in which the charge and current distributions are
continuous and time-dependent (Figure 3.10c). The electric charge that leaves a
closed surface S in the time interval ¢ is

Sqou = 8t [|sds (om) =8t [, (V.§), [3.41]

where n is the unit vector normal to S and pointing outward S. To write the last
form, we have used Gauss-Ostrogradsky’s theorem to transform the flux of j into the
integral of V.j over the volume 7 enclosed by S. The total charge contained in 7 is
¢"™ = [Ily @ q,(r) and its decrease in the time interval 8t is —8¢'™ = -8 (9,g™) =
— 8t [Ilydv (9.g+). The conservation of charge requires that this decrease be equal to
the charge [3.41] that leaves surface S. Thus, we have

[Ty (V.5) = Iy v (3, [3.42]
which must be valid for any volume 7, hence the continuity equation

V.j+dqy =0. [3.43]
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This is the local expression of the conservation of electric charge. Particularly, if the
phenomena are time-independent (dygy = 0), the continuity equation reduces to

V.j=o. [3.44]

In this case, the charge [3.41] that flows out of a closed surface S vanishes. Thus,
the total current intensity leaving S is equal to zero. This result holds in the case of
stationary currents and approximately in the case of quasi-static currents. In the case
of an electric circuit, if S contains no nodes but only one branch of current entering
it and one branch leaving it, these branches carry the same current. If S encloses a

node, the sum of the entering intensities is equal to the sum of the leaving intensities
(Kirchhoff node rule).

3.7. Classical model of conduction, Ohm’s law and the Joule effect

It is well known that in metals the current is carried by the conduction electrons
(that is, the electrons that are weakly bound to atoms). Under the action of the
electric field Fg = gE a conduction electron is accelerated but, because of its

collisions with other electrons and the immobile ions, it follows a zigzag path and its
average velocity v is in the direction of Fg. The effect of the collisions is equivalent

to a resistance force Fr= —bv. Its velocity quickly attains a drift velocity v4 such that
Fg+ Fr= 0, that is, gE —bvy = 0, thus vq4= (¢/b)E. This velocity is always very small
(of the order of the millimeter per second). The relation [3.37] may be written in the
form, known as Ohm'’s law,

j=oE or E=pj. [3.45]

G = neq*/b is the conductivity of the material and p = 1/c = b/n.g” is its resistivity.
If the medium is isotropic, G is independent of the direction of the field, but if the
medium is anisotropic, © is a second rank tensor G, and Ohm’s law becomes

Ja=2p 0o Ep. [3.46]
In this case, the current density is not necessarily in the direction of the field E.

The friction constant b is a phenomenological parameter. In classical theory, b
may be related to the collision time T. For this, assume that between two collisions
the electron experiences an electric force Fg = gE, thus an acceleration a = gE/m. Its
velocity varies according to v = v, + (gE/m)t, where v, is its velocity just after the
last collision. v, is randomly oriented in all directions for the conduction electrons.
If we take the mean value for all the electrons, the average of v, is zero and the
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equation reduces to v = (gE/m)t. In the average, the electrons drift with a velocity

vqg = (1/7) IOT dt v = (qt/2m) E, where 1 is the collision time, i.e. the average time

between two collisions. Thus, the relation [3.38] gives j = (¢’nct/2m)E and we
deduce Drude’s formula

j=GoE, with 6 = ¢*n.t/2m. [3.47]

The drift velocity vq is not to be mistaken for the average speed v of the
electrons in the conductor, which may be as high as 10°m/s. Also, vqshould not be
mistaken for the velocity of transmission of electric signals along the conductors
used as a transmission line (telephone, electric current, etc.), which propagate with
the speed of light as an electromagnetic wave in the medium outside the conductors.
As the collision time is T = I/ v where [ is the mean free path, i.e. the average
distance traveled by the electron between two collisions, the conductivity may be
written as 6 = ¢°n.//2m v . The mean free path is of the order of the spacing between

atoms (= 107" m). The average speed v may be related to the thermal agitation by
the statistical physics relation Uk = (B2)kgT = Y2 mv° , thus v = (3kgT/m)”, where

ks = 1.38 x 107 is Boltzmann’s constant and 7 is the absolute temperature. This
classical model predicts a value of / about 10 times smaller than the real value and a

resistivity p proportional to JT instead of the experimental proportionality to 7.
This discrepancy is removed by quantum mechanical models.

Material p(inQm) | o,(inK" Material p(Qm) | oK™
Aluminum | 2.82 x 107 | 3.9x107 Germanium 0.46 -0.048
Constantan | =44 x 10~ | 2x107° Silicon 100-1000 | —0.075
Copper 1.7x10° | 3.9x107° Glass 10"°-10™

Iron ~10x10° | 5x107° Hard rubber 107

Manganin ~44 x10° | ~10° Sulfur 102

Mercury 96 % 107 8.9x107* Fused quartz 75 x 10'°

Nichrome 1x10° 4x107* Polyethylene 10%- 10°

Platinum 11x107° 3.927x107° Polystyrene 107- 10"

Gold 244 x10° | 3.4x107 Porcelain 10'% 10"

Silver 159 x10° | 3.8x107 Teflon 10"

Tungsten 56x107° 4,5x107 Sodium chloride | 0.044 —0.005
Carbon 3.5%x107 —5x107* Blood 1.5

Lead 22 x 1078 3.9x107° Fat 25

Table 3.1. Resistivity p and temperature coefficient o, of some common materials.
Constantan is ~ 60 % Cu and ~ 40 % Ni, manganin is ~ 84 % Cu, ~ 12 % Mn,

and ~ 4 % Ni, and nichrome is ~ 59 % Ni, ~ 23 % Cu, and ~ 16 % Cr.

The quoted values correspond to 20°C
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The electric power supplied by the electric field to each -electron is
P.= Fg.vq = gE.vq = bvq.vq = —Frv4 Thus, the supplied power is dissipated by the
friction force as Joule heat with a density given by the local form of Joule’s law

Py y=n.P.=Ej=cE =pj. [3.48]

As we have seen, there is no sharp distinction between conductors and insulators.
Substances (such as metals) with a resistivity less than about 10° Q.m are
considered as conductors, while materials (such as glass, rubber, air, pure water,
etc.) with a resistivity higher than about 10° Q.m are considered as insulators (see
Table 3.1). Materials whose resistivity lies between 10~ and 10° Q.m are called
semiconductors (silicon, germanium, tellurium, etc.). Their resistivity depends
strongly on the impurities they contain (small amounts of foreign atoms that are
introduced into the semiconductor).

3.8. Resistance of conductors

Experimental studies starting with Ohm in 1826 showed that each segment of a
conductor has a characteristic quantity, known as the resistance R, such that the drop
in the potential between its ends is related to the current by Ohm’s law

V=RI [3.49]

The SI unit of R is the volt/ampere, called oim (£2). R depends on the material and
the geometrical form of the conductor, on the impurities that it contains, and its
temperature. Ohm’s law applies to a variety of conductors said to be Ohmic. A plot
of V versus [ (called characteristic) for an Ohmic conductor is a straight line passing
through the origin with a slope R (Figure 3.11a). In other words, for such materials,
R (defined as V/I) is independent of I (or V) and, if the potential difference is
reversed, the current through the conductor is reversed without change of intensity.
Metals are almost Ohmic, but there are many conductors that are not (see Figure
3.11b and 3.11c). An ionized gas, a diode, etc., are non-Ohmic. Connection wires of
reasonable length have usually a very small resistance and a conductor that serves to
introduce a resistance in the circuit is called resistor. The dissipated power in the
conductor of resistance R is

PAB = IVAB :RABI2 = VABz/RAB. [350]

To see how the resistance depends on the shape of a conductor, let us consider a
cylindrical wire of uniform cross section S and length L with the potential V" applied
between its ends. The conservation of electric charge implies that the current
intensity is the same at any point of the wire and, if the section is uniform and the
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current density is uniform over the cross section, the current density j = //S is the
same everywhere in the conductor. On the other hand, the translational symmetry
implies that the electric field E has the same magnitude along the wire; thus, using
the local form of Ohm’s law E = pj, we find V' = EL = pjL = (pL/S)I. This
corresponds to a resistance R = pL/S. In more complicated shapes, the current
density and the field are not uniform and the calculation is more complicated.

I I
ﬁ 0 V
0 y
(a) (b) (©)

Figure 3.11. a) The characteristic of an Ohmic conductor is a line of slope equal to R.
b) The characteristic of a junction diode is not linear and the current does not take opposite
values if V is reversed. c) Discharge current in a gas as a function of V

3.9. Variation of resistivity with temperature, superconductivity

The experiment shows that the resistivity of a conductor increases with
temperature. This can be explained by the increase of the thermal agitation and the
scatterings of electrons with atoms and ions. Consequently, the electric resistance
increases. For small variations of temperature, the variation of p is almost linear in
T, of the form

p = po(l + 0 AT), [3.51]

where p, is the resistivity at some reference temperature 7, and AT = T — T, is the
difference in temperature from 7,. 0. is the temperature coefficient of resistivity. In
fact, the relation [3.51] constitutes the first two terms of the power series of p(7)
about T,. For large AT, higher terms may be important. For most pure metals in the
temperature range 0 to 100°C, o, varies between 3.2x 107 and 6.2 x 107 K™
(i.e. = 1/273 K™"). This means that, if the reistivity is extrapolated to very low
temperatures it vanishes at absolute zero. In other words G is proportional to T
(Figure 3.12).
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In 1911 Kamerlingh Onnes discovered that, at very low temperature, most metals
depart radically from equation [3.51]. Their resistance falls to zero (Figure. 3.12);
they become superconductors. Kamerlingh Onnes used liquid helium as a
refrigerant down to about 1 K and found that the resistance of mercury slowly
decreases with T, but at a critical temperature T,= 4.154 K, it drops to an extremely
small value. Kamerlingh Onnes concluded that mercury undergoes a phase transition
to a superconducting state. The transition interval 87 is of the order of only 10~ K.
Only 27 elements become superconducting under ordinary pressure, at critical
temperatures below 4.2 K. They include aluminum (7. = 1.175 K), lead
(T.= 7.23 K), niobium (7, = 9.25 K), tin (7, = 3.721 K), and tungsten (7. = 0.0154
K). Good conductors, such as platinum, gold, silver, and copper do not become
superconductors but thousands of alloys and compounds undergo this remarkable
transition. The critical temperature depends on the presence of impurities and the
internal stress in the sample. It depends also on the atomic weight of the isotope of

the superconductor like 1/ V4.

T

Figure 3.12. Variation of resistivity as a function of temperature

Contrary to substances in normal state, a superconductor has no resistivity (it is
less than 4 x 1072 Q.m). An electric current, once established in the superconducting
body, continues to circulate, perhaps indefinitely, without an applied electromotive
force (emf) or an electric field. The so-called BCS theory (proposed in 1957 by
Bardeen, Cooper and Schrieffer) explains the superconducting behavior as a
quantum mechanical effect of pairing of electrons (because of a long range quantum
mechanical attraction) unlike conductors in the normal state where electrons behave
independently. The densely packed electrons are all linked together and act as a
coherent unit and no single electron can be scattered to produce resistance.

In 1986, Berdnoz and Miiller (1987 Nobel Prize) discovered that a ceramic
compound (an oxide of barium, lanthanum, and copper) has a high critical
temperature of 35 K. In 1987 another ceramic was found with 7, = 98 K and by 1988
another compound (T1-Ba-Ca-Cu-O) was found with 7, = 125 K, and recently, a



84  Electromagnetism

compound (HgBa,Ca,Cu303) was found with 7. = 134 K). Relatively high-
temperature superconductors will certainly have very important technological
applications.

3.10. Band theory of conduction, semiconductors*

The classical model of section 3.7 cannot explain some aspects of conduction,
such as the free path in copper, which is = 6 nm while the spacing of the atoms is
= 0.1 nm, and the variation of conductivity with temperature. On the other hand,
classical physics cannot explain why some materials are insulators while others are
conductors or semiconductors. Only quantum theory can answer these questions. As
this theory is outside the scope of this book, the analysis in this section is only
qualitative.

The basic idea of quantum mechanics is wave-particle duality. The electrons of
momentum p also behave as a wave of wavelength given by the de Broglie formula

A=hip, [3.52]

where & = 6.626 176 x 107 Is is Planck’s constant. The square of the modulus of
the wave function P(r,t) is interpreted as the probability of finding the particle at
point r at time ¢ W verifies Schrodinger’s wave equation, which involves the
potential energy of the electron in the medium. The electronic wave in the conductor
being extended, the classical concepts of mean free path and of relaxation time
become vague. In the case of the diffraction of a light wave by a diffraction grating,
the wave is not diffracted by a particular slit of the grating but by all of them.
Similarly, if the electronic wavelength is comparable to the distance between the
atoms of the medium, we cannot say that the electron collides with a particular atom.
The exact periodicity of the optical diffraction grating is essential: if a single slit is
absent or displaced, the diffraction pattern is completely modified or even destroyed.
The analogy is more striking with the diffraction of X-rays by a crystal (see section
11.12). If Bragg condition 2d sin 8 = nA, which expresses that the waves reflected by
the atomic planes are in phase, is satisfied, the wave is reflected with a high
intensity, as if it traverses the crystal without collision with the atoms. In classical
terms, the mean free path is then very large. This property is invalidated by
impurities in the crystal: absence of atoms, the presence of different atoms, or
simply a displacement of some atoms.

The wave behavior of electrons also explains the variation of conductivity with
temperature. At lower temperature, there is less thermal agitation of the atoms and
the crystal is more regular. Thus it is more transparent to the electronic wave and
this results in higher conductivity. Similarly, if the crystal contains some impurities,
its regularity is reduced as is its conductivity.
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a) The free electrons model

To simplify, we consider a metallic parallelepiped of sides a, b, and ¢ in the
directions Ox, Oy, and Oz, respectively (Figure 3.13a). We treat the electrons as free

particles in this box. Their wave function has the form ¥ =4 ¢ ® %" where 4 is a

constant, k is the wave vector, and ® is the angular frequency (see section 10.1),
related to the momentum p and the energy E of the particle by the relations

k=2m/\ =2mp/h, 0=2nv =2nk/h. [3.53]

The confinement of the electrons in the box means that ¥ = 0 on the faces x = 0,
x=a,y=0,y=>b,z=0, and z = c. Thus, the possible modes have the forms

W = A4 sin(xky) sin(yky) sin(zk,) €, ky=Tnnda, ky=mngb, k,=mn,jc. [3.54]

As only [* has a direct physical meaning as a probability density, changing the
signs of ny, ny, and n, does not change the state. Thus we may take ny, ny, and n,

positive integers. The corresponding momentum p and energy of the electrons are
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Figure 3.13Db illustrates £ as a function of one component of the momentum. The
representative points are on the parabola E = p?/2m. The modes are represented by
well-separated points.

On the other hand, electrons have a spin (i.e. an intrinsic angular momentum)
with two possible spin states and Pauli exclusion principle forbids that two electrons
occupy the same quantum state (determined by the numbers n,, ny, and n, and the
polarization state). Thus each state [3.54] may contain, at most, two electrons (one
in each polarization state). At absolute zero, the electrons occupy the lowest energy
levels up to the energy Ef, called Fermi energy; but, at finite temperature 7, some
electrons may be excited to occupy higher levels, leaving some unoccupied lower
states, especially near Ey, as they are easier to excite.

@ (b) ©

Figure 3.13. Free electrons in a box: a) the box, b) possible states in the plane (p, E), and
¢) the distribution of electrons as a function of their energy at a given temperature
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If the medium contains » electrons per unit volume, quantum statistical physics
gives the mean number of electrons that occupy a level Ej, called Fermi-Dirac

distribution function, <n> = 1/[C ¢"/**T +1 ], where C is determined by the
condition that the total number of electrons is n. Figure 3.13c illustrates this
distribution function at 7' = 0 (the rectangle up to the energy Ey) and at finite
temperature. In the latter case the width of the transition band near Eris about k7.

Taking the electric potential outside the conductor to be zero, the Fermi energy
E¢ is just the energy needed to extract an electron occupying this level from the
conductor; it is called work function, usually written as el where V is in volts. This
quantum property of the metal is at the origin of the so-called junction effect: if two
metals are in contact, a difference of potential V| — V, appears between them; it
depends only on their chemical composition and their temperature.

If the metal is exposed to an external field, the electrons may be excited to higher
levels; this gives them a momentum in the direction of the electric field. However,
this free electron model cannot explain some properties of solids, particularly why
certain materials are conductors, insulators, or semiconductors. Some of these
properties are related to the interaction of the electrons with the individual atoms.

b) Bands theory of solids

Until now, we assumed that the electrons are free. In fact, they interact with the
immobile ionized atoms. The fundamental property of a crystal is its periodicity in
all directions. By analogy to the diffraction of X-rays by a crystal, whose atomic
planes have a spacing d, let us assume that, if the electronic wave satisfies Bragg
condition for 6 = /2

Pt
2m  gmd*’

2d=nh = % , where E = [3.56]
it is almost entirely reflected by the atomic planes back and forth like a standing
wave. Then, the wave cannot propagate in the metal and the electron cannot be at all
considered as free. This means that the presence of ions forbids levels with a
momentum near p = nh/2d. The same result is obtained if one solves Schrodinger’s
equation for electrons in a three-dimensional periodic potential. The states in the
plane (p, E) are illustrated in Figure 3.14: the levels are grouped in allowed bands,
each one containing a certain number of energy levels. The allowed bands are
separated by forbidden zones. Let i = 1, 2, etc., label the allowed bands. For higher i,
the forbidden zones become narrower and, at very large i, the spectrum become
continuous.
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Figure 3.14. a) Band structure of solids. b) Case of an insulator with a filled first band and
the second band empty. c) Case of a conductor whose first band is filled and the second band
is partially filled. d) Case of a semiconductor whose first band is filled and the second band is

empty, but with a very narrow forbidden zone

Several electric properties of materials may be explained by their band structure.
If the applied electric field is not very high, it cannot produce significant
modifications of the energy of the electrons, because it acts only in a very short time
interval, between two collisions. Thus, an electron cannot be excited from an
allowed band to a higher one. However, if the last occupied allowed band contains
non-occupied states, the electrons of this band may be excited by the electric field to
a higher energy level in the same band; the material is then a conductor. Its last
incomplete band is called conduction band, while the preceding filled band is the
valence band. Conversely, if the last occupied allowed band is filled and the
forbidden zone is large, the electrons cannot be excited from this last occupied band
to a higher energy level in the next allowed band unless the electric field is very
high. In this case the material is non-conductor. A narrowing of the forbidden zone
or an overlap of allowed bands considerably increases the conductivity.

In a good conductor, such as copper, the atoms are singly ionized; this releases
about one electron per atom. Its band structure is similar to that of Figure 3.14b with
one allowed band having two unoccupied energy levels below the first forbidden
zone. Even a weak electric field, may excite conduction electrons to one of these
unoccupied levels; this makes copper a good conductor. The band structure of
aluminum is similar to that of Figure 3.14c. Its first band is completely filled; thus it
does not contribute to conduction. The electrons occupy some levels of the second
allowed band and sometimes the third allowed band. The electrons of these partially
occupied bands contribute to the electric conduction. The band structure of diamond
is formed by a completely filled allowed band and a completely empty second
allowed band and they are separated by a wide forbidden zone of 5 eV. As the
thermic energy of electrons at normal temperatures is approximately 0.02 eV, the
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electrons of the first band cannot be excited to the second band. This makes
diamond an almost perfect insulator.

If some impurities are added to the material, the periodicity of its crystalline
structure is altered; this increases its resistivity. Thus, by using various alloys (iron-
nickel, iron-nickel-chrome, etc.), it is possible to have materials to realize resistors
of any resistance, for use in electronic circuits, rheostats, heaters, etc. It is also
possible to have alloys with a temperature coefficient as small as 10. The
resistivity of some metals varies if they are exposed to a magnetic field. For
instance, the resistivity of bismuth increases in a magnetic field perpendicular to the
current; this enables the measurement of magnetic fields. Also, the resistance of
certain alloys varies if they are under high pressure (because of the modification of
their band structure) and the resistivity of some semiconductors, such as silicon,
varies if they are exposed to radiation (because of the photoelectric effect).

¢) Semiconductors

Figure 3.14d shows the band structure of a semiconductor, such as silicon or
germanium. It is formed by a completely filled first band, but the forbidden zone is
only 1.08 eV for silicon and 0.8 eV for germanium. Thus, the electrons may be
easily excited from the first band to the second band, which becomes a conduction
band. By doing so, the electrons leave the first band with vacancies, called holes.
The conductivity is contributed to by the electrons of the formed conduction band
and also from the electrons of the first band, which may move to occupy the holes.
The latter are equivalent to positive charge carriers. This gives these materials
conduction properties that are intermediate between insulators and conductors; they
are called intrinsic semiconductors. The number of holes per unit volume is
obviously equal to the number of free electrons 7. but the holes move with a velocity
vy in the direction of E, while the free electrons move with a velocity v, in the
opposite direction. If the field E is not very high, v, and v, are proportional to E.
Thus, the global current density in the direction of E is

J = ne(=e)(=ve) + ne(e)(ve) = ene(ve+ vi) = 0 E. [3.57]

o increases rapidly with temperature, as the thermal energy of electrons (3/2)kT
increases, but it remains much lower than the conductivity of good metallic
conductors. ¢ also increases if the body is exposed to a radiation, as the absorbed
energy may excite an electron toward the conduction band and create a hole in the
valence band. This formation of an electron-hole pair is called photoconduction.
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Figure 3.15. a) Crystalline structure of silicon, b) impurity produced
by a donor, and c) impurity produced by an acceptor

The conductivity of a semiconductor is strongly affected by the presence of
impurities, i.e. atoms of a different type replacing a small proportion (of the order of
1/10%) of the atoms of the crystalline lattice. Consider, for instance, silicon or
germanium. These elements belong to the group 4 of the periodic table. They have
the same crystalline structure as diamond; thus, each atom shares its four valence
electrons with the neighboring atoms; two neighboring atoms share two valence
electrons, one from each atom (Figure 3.15a). If an atom of silicon is replaced by an
atom of the group 5 elements (As or Sb), which has five valence electrons, the
additional valence electron remains in the vicinity of this atom in order to maintain
its neutrality, but it is weakly bound to the atom. This atom is said to be a donor.
This electron occupies an energy level situated in the forbidden zone (Figure 3.15b)
and it may be easily excited to the conduction band. In this case, the semiconductor
is said to be of the #ype-n (for negative). Conversely, if the impurity belongs to the
group 3 elements (Al, Ga or In), one of the covalence electrons is missing; an
electron of the neighboring atoms from the valence band may come to occupy this
state. In this case, the impurity atom is said to be an acceptor. The energy level of
this hole is in the forbidden zone (Figure 3.15c) and a valence electron may be
excited to occupy it. Thus, the atoms become positive, one after the other; this is
equivalent to the displacement of a positive charge (a hole), similar to the
displacement of an air bubble in a liquid. In this case the semiconductor is said to be
of the type-p (for positive).

In general, a semiconductor with P donor atoms, N acceptor atoms, 7 conduction
electrons, and p conduction holes per unit volume has a total charge density
qv=e(P—-N+p—n). [3.58]
The electric field is E = — VV where the potential obeys Poisson’s equation

AV=—(ele) P-—N+p—n). [3.59]
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3.11. Electric circuits

The purpose of circuit analysis is to determine the electric current in branches of
a circuit. Once the currents are determined, it is easy to determine the potentials. The
currents are supplied by generators. A generator transforms a non-electric energy
into electric energy to be supplied to the circuit. An ideal generator maintains a
constant voltage £ between its terminals 4 and B called the emf. The supplied
current /ag depends on the circuit. The total supplied power to the circuit is then
Elrp. A real generator has some internal resistance r, which dissipates a power
rlxg®. Thus, the supplied power to the external circuit is Elxp — 71, g2 If Vap is the
potential difference between the terminals, this power is also Vap/ag. Thus we must
have Vap = € — rlap; this means that the generator is equivalent to an ideal generator
of emf £ and a resistance r in series.

To analyze an electric circuit, we may use Kirchhoff’s rules, which are
statements of the law of conservation of electric charge and the law of conservation
of energy:

— the algebraic sum of the currents that meet at a node is zero;

— the algebraic sum of the potential drops and the emf around a closed path is
Zero.

These rules apply in the case of time-independent regimes and time-dependent
regimes in quasi-permanent approximation, low-frequency alternating currents and
slow transients, for instance (see section 9.4). In applying these rules, all voltages
(including induced emf) and currents of various types must be taken into account.

These rules allow us to deduce the required equations. If the electric elements of
the circuit are linear, the obtained equations are linear. Thus, it is possible to analyze
the circuit with each generator separately and make the superposition of the
solutions for all the generators. In the case of a sinusoidal emf £ = &, cos(Q¢ + ¢),
the superposition principle allows us to consider the circuit with the exponential emf
E=En V=g ¥ to determine its solution and take its real part at the end of
the calculation.

In the permanent regime and the quasi-permanent regime, the relations of the
difference of potential at the terminals of any electric element to the current are valid
for complex currents and potentials in the forms Vg = RI, Vc= Q/C = [ dt1/Cand

V. = L dl/dt at the terminals of a resistor, a capacitor and a self-inductance

respectively. In the case of a sinusoidal current / = I, ¥ , these relations become

V=127, where Zr=R, Zc=1/1CQ and Z; = iQL. [3.60]
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Z is the complex impedance of the circuit element; this is a generalization of the
concept of resistance. It is useful because complex impedances in series are
equivalent to a single impedance Z = %; Z; and impedances in parallel are equivalent
to a single impedance given by 1/Z=1%; 1/Z;.

As a simple example, consider a single loop circuit containing a resistance R, a

capacitance C, and a self-inductance L connected in series to the terminals of a

generator of emf £ = &, e

series is Z= R + i(QL — 1/CQ) = Z¢&*% , where Z =\/R2 +(LQ-1/CQ)? is the real

impedance and ¢, = arctan (LQ — 1/QC)/R with —1/2 < ¢, < /2. The Kirchhoff loop
rule gives / Z = £, hence

(Figure 3.16a). The impedance of these elements in

[=E/Z=(E/Z) %) | [=1,cos(Qt—d,) where [n=En/Z.  [3.61]
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Figure 3.16. a) Sustained LCR circuit, b) amplitude of the
current versus , and c) dissipated power versus €

The variation of the amplitude of the current I, as a function of € is illustrated in
Figure 3.16b. It has a maximum equal to E/R for Q = ®, = 1/+VLC . The

instantaneous power supplied by the generator of the emf is
Plex) = 1€ = InEm cos(Q) cos(Qt — ¢,) [3.62]
and its average value over a period is

< Pley) > = Y2 [1nEn €08 O, = Yo (RIy/Z) InEm= "5 (RIZ®) Ex’>= 4RI, [3.63]

This is also the power that is dissipated in the resistor as Joule heat. The quantity
cos ¢, = R/Z is the power factor. We note that the instantaneous power is not a linear
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quantity in &; thus, it must be calculated from real quantities. However, if we are
only interested in averaged values, we may write < P(ex) > = R (2[*E ). The relation
< Plex) > = 5RI,* shows that the average supplied power by an alternating current
I = I, cos(®t — 0,) in the circuit is the same as the power that is supplied by a direct

current of intensity Zeg = I/ V2 in the resistance R. Legr 1s the effective intensity of the

alternating current and Veg= Vp, / JE is the effective voltage. The fact that [, and
<P(exy> have sharp maximums for Q = , is qualified as resonance and the
frequency interval, which corresponds to <Py > larger than half its maximum is the
resonance bandwidth T"= R/2L. Figure 3.16c¢ illustrates the variation of <Py>
versus Q.

3.12. Problems

Conductors in electrostatic equilibrium

P3.1 a) Assume that the charge on the surface of a conductor forms in fact a layer of
thickness d and uniform volume charge density ¢,. Express g5 in terms of d and ¢.
Determine the electric field inside the conductor, in the layer, and just outside the
conductor. b) Make the same analysis if the charge density varies with the depth x
according to the relation g, = 4 exp(—dx) where 4 and  are two constants. Express
gs in terms of 4 and 3. ¢) Air may support a maximum electric field of 4 x 10° V/m
without a risk of discharge. What should the maximum charge of a sphere of radius
R be? What is the corresponding potential for spheres of radii 5 cm and 1 m?
Assume that the charge in a silver sphere is due to one electron per atom. Calculate
the thickness of charge on the surface of the sphere.

P3.2 A metallic ball of radius R; = 10 cm is surrounded by a concentric spherical
shell of internal radius R, = 25 cm and external radius R; = 30 cm (see Figure 3.5¢).
These bodies were initially neutral. a) A charge ¢ = 5 nC is placed on the ball.
Determine the charge distributions, the field, and the potential everywhere. Does the
ball act on a charge ¢’ placed outside the shell? Does g’ act on the ball? What can
you say about the principle of action and reaction? b) Assume that the potential of
the ball is V; = 100 V and that of the shell is /', = 200 V. Determine the charge
distributions, the field and the potential everywhere. Can you say that there is an
electric shielding of each region against the other?

Capacitors

P3.3 The Earth has a surface charge density gs=— 0.9 nC/m’. a) What is its field E
near the ground? What is the difference of potential between the ground and a point
at a height 1.8 m (the top of your head)? Does this difference of potential produce
any current in your body? b) A metallic plate of area 1 m’ is initially neutral and
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placed horizontally at a height # =2 m. Does it get any surface charge density? One
connects this plate to the ground through a ballistic galvanometer. What charge does
it indicate?

P3.4 A Geiger counter is formed by a conducting wire of radius 0.1 mm surrounded
by a coaxial metallic cylindrical shell of internal radius 1 cm. The difference of
potential between the wire and the shell being 1 kV, calculate the field £ near the
wire and near the cylinder. What is the charge of these conductors per unit length of
the wire and the cylinder? What is the capacitance per unit length? The air may be
ionized by a field £ > 10° V/m. Up to which distance from the wire, this instrument
may detect particles?

P3.5 Two capacitors of 5 and 10 puF are charged under 100 V. Calculate their
charges and their energies. One disconnects them from the batteries and connects
their plates of the same polarity. Calculate the new voltage and the new charges. Is there
any loss of energy? Do the same if one connects plates of opposite polarities.

P3.6 a) Three metallic plates (1), (2) and (3) of area 3 m” are parallel. Plates (1) and
(2) are 3 cm apart while (2) and (3) are 2 cm apart. Plate (2) is connected to the
terminal 4 while (1) and (3) are connected to the terminal B. What is the capacitance
of this set up between 4 and B? b) Assuming that plate (2) had a charge O = 50 pC
before placing the other plates. Determine the charge of the three plates.

Energy of capacitors

P3.7 a) Assume that the charge of a capacitor is increased gradually from 0 to Q.
Show that the total required energy is %40%C. b) Use the density of electrostatic
energy to show this result in the cases of a parallel plate capacitor and a cylindrical
capacitor. ¢) Consider the case of the cylindrical capacitor. What is the radius of a
cylindrical surface that divides the energy into two equal parts?

P3.8 Two metallic spheres of radii R; and R, are at large distance from each other.
The first has a charge O, while the second is neutral. One connects them by a
conducting wire. At a given moment, the charge of the first is ¢ and that of the
second is Q — ¢g. What is the electric energy Ug of the system? Verify that Ug
decreases to a minimum. Calculate the corresponding value of ¢ and verify that the
two sphere are then at the same potential. Is energy conserved in this process?
Assuming that R; = 1 cm, R, = 1 m, and Q = 5 pC, calculate the charges, the
potential of the spheres, the initial and the final energies.
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Electric forces between conductors

P3.9 A parallel plate capacitor of thickness x and area S is charged under a potential
V,. a) The battery is disconnected and the thickness is varied by dx. What are the
variations of the capacitance and the energy? Deduce the force of interaction of the
plates. b) Assume now that the battery remains connected and the thickness is varied
by Ox. What is the corresponding variation of the energy? What is the energy
supplied by the battery? Deduce the expression of the force.

P3.10 The discharge field in air is 4 x10° V/m. This is the electric field strength that
produces discharge. a) Two metallic plates have a difference of potential of 500 V.
Up to which distance apart, they can be approached without a risk of discharge?
What is then their force of attraction per unit area? b) A cloud of area 4 km?is at an
altitude of 1 km and it carries a charge ¢. Neglecting edge effects, what is the
capacitance of the capacitor that it forms with the ground? What is the field between
the cloud and the ground? What should the charge ¢ be to produce electric
discharge? What then is the difference of potential between the Earth and the cloud?
Assuming that the discharge is total, what is the liberated energy? c) A typical
cardiac stimulator is essentially a capacitor of 100 pF. It is charged under 4.5 kV.
What are the stored charge and energy? Assuming that the discharge is produced in
5 ms, what is the power of the instrument?

P3.11 a) How is the capacitance of a parallel plate capacitor of thickness d modified
if a metallic sheet of thickness d’ is introduced between the plates? Does the result
depend on whether the sheet is parallel to the plates or not? b) Assuming that the
plates and the sheet are squares of sides L and the sheet is introduced a distance x in
the capacitor. Neglecting edge effects, write the capacitance as a function of x. What
then is the energy of the capacitor if it has a charge Q or a potential '? Deduce the
expression of the force exerted on the sheet.

P3.12 The plates of a capacitor are squares of sides L but they form a small angle 0.
Show that the capacitance is C = (¢,L%/q)(1— a 8/2d). Calculate the moment of the

forces I" acting on one of the plates. To evaluate C, decompose it into thin bands.

Conduction and Joule effect

P3.13 Estimate v4 in copper, assuming one conduction electron per atom, a current
of 2 A and a cross-sectional area of 1 mm?’,

P3.14 a) Calculate the resistance of a hollow cylindrical conductor between its
internal and external cylindrical surfaces. b) Calculate the resistance of a hollow
spherical conductor between its internal and external spherical surfaces. ¢) Assume
that a difference of potential ' is maintained between the end surfaces S;and S, of a
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conductor of arbitrary shape. Show that its resistance R and the capacitance of a
capacitor having the same shape with S; and S, as electrodes are related by the

relation RC = pe.

P3.15 The electric energy of 1 MW produced by a power plant must be transported a
distance of 100 km by using a line with a resistance of 0.20 Q/km. Compare the lost
energy by the Joule effect if the energy is transmitted at a voltage of 220 V, 22 kV,
and at 220 kV?

P3.16 We consider the following model for a diode: electrons are emitted by
thermionic effect by a cathode and collected by an anode. The electrodes are plane
and parallel of area S and have a difference of potential V,. Let N be the number of
emitted electrons per second, n(x) the electronic density at the distance x from the
cathode and v(x) their speed. a) Show that N = S n(x)v(x) and that the current
intensity is / = Ne. b) Show that n(x) = —(g./e) dxE(x). ¢) Assuming that the electrons
are emitted without velocity, show that I = (e/2m)” (8e,5/9d") V,**.

P3.17 Consider an anisotropic parallelepiped of sides a, b and c in the directions Ox,
Oy and Oz and of conductance G,q. a) A field E is applied in the Oz direction.
Determine the current density? b) A current density j flows in the Oz direction.
Determine the field E and the difference of potential between the opposite faces.

Figure 3.17. Wheatstone bridge

P3.18 A Wheatstone bridge, illustrated in Figure 3.17, allows the comparison of
impedances. G is usually a sensitive galvanometer of impedance z or any detector of
current. Calculate the current in the galvanometer. To measure Z;, for instance, one
maintains two other impedances constant and varies the third until the galvanometer
indicates no current. Show that this is the case if Z, Z4= Z,Z;.



Chapter 4

Dielectrics

Insulators or dielectrics are mediums that contain no free charges. If a dielectric
is placed in an electric field, it becomes polarized. We may consider the electronic
polarization as due to the displacement of the electrons within the atoms and
molecules and the orientational polarization due to the alignment of the polar
molecules more or less in the direction of the electric field. The polarization of
dielectrics explains some of their properties, particularly the propagation properties
of electromagnetic waves (reflection, refraction, dispersion, etc.). Usually, the
polarization disappears if the external field is removed, but some materials, called
electrets, retain their polarization. These materials, (generally organic polymers,
waxes, etc.) are the electrical analogs of permanent magnets. They are currently used
in electrostatic microphones for modern phones. The purpose of this chapter is to
study the polarization of dielectrics, the effects of dielectrics on the electric field, the
field equations, and the energy.

4.1. Effects of dielectric on capacitors

In 1837, Faraday observed that, if a capacitor is maintained under a constant
potential (by keeping it connected to a battery) and is filled with a dielectric, its
charge is multiplied by a factor €., which is a characteristic quantity of the dielectric
called relative electric permittivity. Thus, the capacitance is multiplied by €. On the
other hand, if an empty capacitor is charged under a potential V, (Figure 4.1a), the
plates acquire charge densities +gs and Gauss’s law gives the field E, = gy/¢€,
between the plates. If one disconnects the battery and fills the capacitor with the

Electromagnetism: Maxwell Equations, Wave Propagation and Emission Tamer Bécherrawy
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dielectric (Figure 4.1b), the charges of the isolated plates remains evidently the
same, but the potential difference and hence the field are divided by €, to become
V=Vye, and E=VIid=Vy/ed=E,/e =qs/e, where €=¢gg,. [4.1]
€ is the absolute permittivity (or the dielectric constant) of the dielectric. The
capacitance becomes C = Sq¢/V = &, C, where C, is the capacitance of the empty

capacitor.

To increase the capacitance without increasing the area, it is possible to reduce
the thickness d. However, d cannot be less than a certain limit determined by the
electric discharge if the electric field attains the electric strength (or breakdown
field) Ey,. Thus, the breakdown voltage of a capacitor of thickness d is Vy, = Evd. The
solution is to fill the capacitor with a dielectric of high permittivity. This allows the
charge and stored energy to be increased without increasing the voltage. The values
of ¢, and E, for some common dielectrics are given in the Table 4.1.
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Figure 4.1. a) Empty capacitor, b) capacitor filled with a dielectric, and c) polarization

Material € E, (MV/m) Material € E, (MV/m)
Vacuum 1 - Pyrex glass 4.5 13
Air 1.000537 0.3 Paraffin 2.1 05-2
Water (20°) 80.36 - Neoprene 6.9 12
Steam 1.0126 - Mica 5.6 6-7
Paper 3.5 24 Glass 4-9 1-3
Porcelain 6.5 4 Strontium titanate 233 8
Quartz 3.8 13 Barium titanate =1500 8

Table 4.1. Relative permittivity and dielectric strength E} of some dielectrics under normal
conditions (20°C and 1 atm). Those of steam correspond to 110° and 1 atm
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4.2. Polarization of dielectrics

The reduction in the electric field from E, to E = E /¢, if a dielectric is introduced
into a capacitor may be interpreted as due to uniform densities of bound charges
F g5 on the dielectric faces, of opposite signs to the fiee charges tq of the plates
(Figure 4.1b). Thus, the surface charge densities of the plates become + (g5 — g5).
The electric field is then E = (g5 — q's)/€o. As E = E /€, = q4/€,€;, we deduce that

qs =qs (1 —1/¢g;). [4.2]

The densities of bound charges F ¢g;° on the faces of a dielectric body do not
depend on its dimensions. According to [4.2], they depend only on the relative
permittivity € and the densities of free charges + g, on the plates, i.e. the external
electric field acting on the dielectric. We may always consider the dielectric body as
a juxtaposition of small cubes of sides d (Figure 4.1c). If an electric field acts on the
dielectric, bound charges of surface densities + g5 appear on the faces of the cubes,
which are normal to E. The signs ‘+’ correspond to a field leaving the cube or
entering the cube, respectively. Thus, each cube has an electric dipole moment in the
direction of E. We say that the dielectric becomes polarized and the bound charges
of densities + ¢, are also called polarization charges. If the dielectric is uniform (i.e.
€, is the same at all points of the dielectric) and the field E is uniform, the faces of
two cubes, which are in contact, have opposite polarization charge densities +¢s” and
—qs’, which neutralize each other. Only the polarization charge densities + g5 on the
external faces of the dielectric remain. The electric dipole moment of each cube in
the direction of E is p = (¢'sS)d = ¢, where S = d”is the surface of the cube faces
and 7 = & is its volume. The electric dipole moment being proportional to the
volume 7, we may consider infinitesimal volume elements & and define the
polarization density (also called polarization vector or simply polarization) as the
electric dipole moment per unit volume

P=dp/dv=q, E/E= (e —¢,) E. [4.3]
Thus, P is proportional to the field E within the dielectric. We write

P=¢x:cE, where yg=¢ — 1. [4.4]
Xk 1s the electric susceptibility of the dielectric. In the case of an electret, we may

define the polarization P and the polarization charge, but the proportionality of E
and P does not hold (as the permanent polarization P is independent of E).
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4.3. Microscopic interpretation of polarization

In conductors at electrostatic equilibrium, the free electrons are distributed in
such a way that the field E vanishes. In dielectrics, the electrons may move only
within the molecules, this reduces the field E without making it equal to zero. The
molecule is globally neutral and, in most cases, if no external electric field acts on it,
the barycenter of the nuclei and that of the electrons coincide (Figure 4.2a). Thus,
the molecule has no permanent electric dipole moment. If an external electric field
acts on the molecule, it pushes the positive nuclei in its direction and it pulls the
negative electrons in the opposite direction. The barycenter of the total negative
charge —g and that of the positive charge +g are then separated by a distance d
(Figure 4.2b) and the molecule gets an electric dipole moment p. = gd. This
polarization is called electronic polarization as it is essentially due to the
deformation of the electronic cloud in the molecule.
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Figure 4.2. a) Molecule non-submitted to an electric field, b) molecule submitted
to a local field E;, ¢) polar dielectric non-submitted to an external field,
and d) the same dielectric submitted to a macroscopic field E

To study the polarization of a dielectric body (4), we should distinguish various
electric fields. What we call external electric field E* is the field that exists before

we place the body (4). The so-called macroscopic electric field E is the resultant of
the field EY and the field E, produced by the polarized body (4). E, is the

macroscopic field (that is, the averaged field) produced by all the molecules of (4).
The so-called local field E; that acts on a given molecule to polarize it, does not

include the field of that molecule. Thus, we have E;= E® + E’, where E’} is the
averaged field of all the molecules of (4) except the considered molecule. The
electric dipole moment of the molecule p. is proportional to Ej; it may be written as

pe=0cE;. [4.5]

0 is the polarizability of the molecule, which depends on the nature of the molecule
not on the physical conditions of the medium.
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Some molecules are non-symmetric. The barycenter of positive charges and that
of the negative charges do not coincide. Thus, the molecule has a permanent electric
dipole moment py, and it is said to be a polar molecule. This is the case of the
molecules H,O, SO,, and NHj3. If no electric field acts on the body (Figure 4.2¢), the
molecules are randomly oriented in all directions because of thermal agitation and
the frequent collisions of molecules if the medium is a gas. A macroscopic element
of volume &V contains a large number of molecules. Thus, the total electric dipole
moment of 8V, which is equal to the vector sum of the dipole moments of all its
molecules, is equal to zero. If an external field acts on the body, the local field E;
acts on the molecules with a moment of force I', = py, X E; to orient them in the
direction of E;. However, the alignment cannot be complete because of the thermal
agitation (Figure 4.2d). The mean electric dipole moment of the molecule is
proportional to E,. It is called the orientation dipole moment and it may be written as

<p>=0d,E,. [4.6]

The constant o, called orientation polarizability, depends on the physical
conditions, especially temperature (see section 4.13). The orientation polarization is
always accompanied by the electronic polarization, but the latter is often less
important. The total average electric dipole moment is then p = p. + <p> and the
total polarizability is oL = O + Ol,.

A macroscopic element of volume & of the dielectric contains dN = N, &
molecules, where N, is the number of molecules per unit volume. Thus, it has an
electric dipole moment 8P = p N, &7 . In other words, the polarization P = P/ 3 is

P=N,p=N,0E,. [4.7]

To have an estimate of the order of magnitudes, let us consider the hydrogen
atom. To simplify, we assume that the electronic cloud of radius 7, = 10™'° m is not
put out of shape but simply displaced with respect to the nucleus by a distance d in
the opposite direction to E;. The nucleus is then subject to the electric field of this
cloud E, = —K,ed/r,’ and to the local field E;. It is in equilibrium if eE.+ eE; = 0, i.e.
K.ed/ry’ = E,. The electric dipole moment of the atom is then p = ed = (r,"/K,)E,. It
has the form p = o E; with o, = 7,/K, = 10™*° Cm?*V. In some cases, 0, may be
much higher (3 x 107 Cm?/V for sodium, for instance). Even if an electric field of
10° V/m acts on the hydrogen atom, the induced dipole moment is only 107*C.m. It
is much smaller than the permanent electric dipole moments (6.10 x 107*° C.m for a
water molecule, for instance). Obviously, if the medium has a permanent
polarization, it does not depend on the electric field and it must be added to the
induced polarization.
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4.4. Polarization charges in dielectric

To simplify, we model the dipole moment p of the molecule as two charges —¢
and +q separated by a distance d such that p = gd. In the absence of an external
electric field, the polar molecules are randomly oriented (Figure 4.2c). On the
surface of a dielectric, there is equal probability to find bound charges —¢ as bound
charges +¢q. Thus, the surface charge density due to polarization is zero for any
orientation of the dielectric surface. This is also true in the case of non-polar
molecules since the charges —¢ and +¢ coincide. Now, if an electric field acts on a
parallelepiped of dielectric ABED normally to the faces 4B and CD (Figure 4.3a),
the molecules acquire an average dipole moment p in the direction of E. Everything
is the same as if all the charges +¢g of the molecules are displaced by d/2 in the
direction of E and all the charges —¢q displaced by —d/2 in the opposite direction. If S
is the area of the face of the parallelepiped, the displaced positive charge near CD is
q’ = Nyq5d; it corresponds to a surface charge density ¢’s = Nygd = Nyp = P.
Similarly, the negative charge near AB is —¢’ and this corresponds to a surface
polarization charge density ¢’s= —P. The faces AD and BC, which are parallel to the
electric field, acquire no surface polarization charge density.

[ P(r’)

dr

x+dx
r'<y+dy
z+dz

(@) (b) (©)

Figure 4.3. Polarization charges in a dielectric: a) surface charge on a face normal to E,
b) surface charge on an oblique face, and c) volume charge

If P makes an angle 6 with the outward normal n to the face CD, for instance,
(Figure 4.3b), the positively charged layer at this face has a thickness d cos 0 and it
contains a charge N,Sqd cos 0. This corresponds to a surface polarization charge

qs = Ngd cos © = Np cos 6 = P cos 6 =P.n. [4.8]
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This relation holds for any form of the face with n always pointing outward from the
dielectric. On the faces BC and DC, P and n form acute angles (P leaving the
dielectric); thus, ¢ is positive. On the contrary, on the faces AB and 4D, P and n
form obtuse angles (P entering to the dielectric); thus, ¢ is negative. Within the
dielectric, the volume polarization charge density is equal to zero if the polarization
P is uniform.

Consider now the case of a non-uniform polarization and two parallelepipeds
centered at points r(x, y, z) and r’(x+dx, y, z) with a common face AB of area §
parallel to the Oyz plane (Figure 4.3c). Inside each one of these parallelepipeds, P
has approximately the uniform values P(x, y, z) and P(x+dXx, y, z). The normal to the
face AB outgoing from the first parallelepiped is ey; thus, it has a surface charge

density ¢ = P(x, y, z).ex. The normal to the face AB outgoing from the second
parallelepiped is —ey; thus, it has a surface charge density gs" = —P(x+dXx, y, z).ex. The
total polarization charge density on the face AB is S[Px(x, y, z) — Px(x+dx, y, z)] =
—S dx (OPx/9x). It is equivalent to a volume polarization charge density ¢, = —dyPx.

If the parallelepipeds are centered at the points r(x, y, z) and r'(x+dx, y+dy, z+dz),
we find

@/ =—0xPy — 0,Py — 9,P, = ~V.P. [4.9]

We conclude that in a dielectric there are polarization charges of surface density
q's = P.n on the faces of the dielectric and a volume density q'y = —V.P within the
dielectric. On the contrary to the conduction charges, the polarization charges are
completely bound to the molecules of the dielectric.

4.5. Potential and field of polarized dielectrics

Let us consider a dielectric occupying a volume 7 and bounded by a surface S.
An element of volume &7’ of dielectric near the point r’ is equivalent to an electric
dipole moment dp” = P(r") d?’ where P(r’) is the polarization. Using the results of
section 2.6, the potential produced by this element of volume at a point r outside the
dielectric (thus at large distance from the dipoles) is

dVy(r)=K, & ’R.P(r')/R’,  whereR=r-r". [4.10]
The total potential due to the polarization is obtained by integration over?, hence

Vy(r) =K, [[l,do’ P(c').RIR® = K, [Il, v’ P(r’).V'(1/R), [4.11]



104  Electromagnetism

where we have used the relation R/R* = V’(1/R) with V’ designating the vector
differential operator with respect to the coordinates (x’, )/, z’). Then, using the
relation V'[P(r')/R ] = (1/R) V'.P(x") + P(r").V’(1/R), we may write

Vo(r) = K, Il @0’ V' [P(r')R] - K, [ly do” (1/R)V".P(r). [4.12]

Using Gauss-Ostrogradsky’s theorem, we may transform the first integral into the
flux of P(r")/R over the surface S of the dielectric, hence

Vo(r) = K, [[sds n' . P(r')/R - K, [l ¢ (1/R) V'.P(1"), [4.13]

where n” is the outward unit vector normal to the surface S. This is the same
potential as that of a polarization charge of surface density ¢;'(r’) = n".P(r") and
volume density ¢,’(r’) = —=V".P(r"). Thus, we may write the potential and the electric
fields by using these polarization charge densities:

Vot) = Ko llzds g/ (VR + Ko Wyt (¥R [4.14]
Ey(r) = KullsdS g/ () RIR + K, [l g,/ (r') RIR’ [4.15]

It is not obvious that these expressions hold for the potential and the electric field
at points M inside the dielectric, as the expression [4.10] used to derive them is not
valid for the potential near the dipole moment and it becomes infinite if R — 0. Let
us surround the point M by a small sphere of radius R; (Figure 4.4a). It may be
verified that, for some geometrical configurations of molecules, the potential of this
sphere of dielectric at its center M vanishes in the limit R; — 0. To evaluate the
potential of the dielectric occupying the volume 7, outside the sphere, we may use
the expression [4.14] as M is outside 7. However, for this calculation, we must
include the potential of the polarization charges on the surface S of the sphere as on
the external surfaces S of the dielectric. The normal unit vector outgoing from S is
—n; = — R/R pointing toward M, hence

Volr) = Ko [Il,, 47 ¢/ (XY R + KollsdS q'(X')R + K, [ dS' q'(r'VR. [4.16]

We may extend the integral on 75 to the whole volume 7 of the dielectric. Indeed, by
doing so, we add the integral over?, i.e. a term

31Vp(r) =K, jﬁ% dv' q'\xR=K, q'y f(fl dR R* [;d6'sin & jg”d(p' /R = 21K, q' R1%,
which vanishes in the limit R; — 0. Also, the third term in [4.16] may be written as

& Vp(l') =K, ”51 ds' q'\(x"/R=-K, ”51 ds' P(r').n/R
=~ K R\P [[d®' sin &' cos & [[7d¢' =— K R, P sin’0’| §=f = 0.
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We deduce that the expression [4.14] for the potential and hence the expression
[4.15] for the field are valid both inside and outside of the dielectric.

In the particular case of a uniform polarization (V.P = 0), the effect of the
polarization reduces to that of the surface charge density ¢, = n.P. This is
effectively the case if a plate of dielectric is introduced in a parallel plate capacitor
(Figure 4.1b). P is then oriented from the positive plate to the negative plate. On the
dielectric face that is close to the positive plate, P points toward the dielectric and g’
= P.n is negative. On the contrary, on the dielectric face that is close to the negative
plate, P points outward the dielectric and ¢;" = P.n is positive. Thus, the field of the
polarization E, is in the opposite direction to that of the capacitor plates. We say the
E, is a depolarizing field.

Bound charges
(a) (b)
Figure 4.4. a) Evaluation of E in a dielectric. b) Gauss’s law @ = (Q(i“)-f-Q'(in))/e0

uses both free charges Q(m) and bound charges Q'(m) inside S.
¢) It may be written also as ®p= Q(m /€

4.6. Gauss’s law in the case of dielectrics, electric displacement

To write Gauss’s law for E, we must use both the polarization charges and the
free charges (Figure 4.4b). Thus, the integral form of Gauss’s law may be written as

®p=|[_ds nE=(Q"+ Q0 ")e,,
where Q"= ”.[7 d? ¢, and Q'™W=-— _[”7/ dv V.P. [4.17]

S is a Gaussian surface assumed not to have point charges, linear charge, or surface
charge and 7 is the enclosed volume by S. Using Gauss-Ostrogradsky’s theorem, we
may transform the integral of V.P into the flux of P outgoing from S and write

[Jcds n.(E+Ple)=0", e, ®@p=[[_dsnD=0".  [418]
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D is the electric displacement field (or electric induction)
D=¢,E +P. [4.19]

Gauss’s law, written in the form [4.18], expresses that the flux of D outgoing
from a closed surface S is equal to the free charge that it contains (Figure 4.4c).
If the dielectric is linear and isotropic, we have seen that the polarization is
P = (¢ — &,)E (see equation [4.3]). Thus, the electric displacement may be written as

D =¢E. [4.20]

For instance, let us consider a plate of linear and isotropic dielectric introduced
in a parallel plate capacitor. Let S be a cylindrical Gaussian surface having a base of
area  in the dielectric and the other within the positive plate (Figure 4.1b). Because
of the symmetries, E and D are uniform and perpendicular to the plates. Their fluxes
outgoing from S are Es# and D+ The free charge inside S is Q'™ = g4 and the

polarization charge is Q""" = —g/# = go#(e,/e —1), where we have used [4.2].
Gauss’s law in the form [4.17] gives EA# = go4/€ and, in the form [4.18], it gives
D= g4 We deduce that £ = g/€ and D = g;=€E.

4.7. Electrostatic equations in dielectrics
The electrostatic phenomena in the presence of dielectrics are specified by two

fields: the electric field E and the electric displacement D (or E and the polarization
P). Two fundamental laws govern these phenomena:

a) The electric field E is conservative: its circulation between any two points 4
and B depends on these points but not on the path

[Ydr.E=V)-Vp. [4.21]
Particularly, the circulation of E over a closed path ¢ ( 4 = B) is zero:

§€ dr.E =0. [4.22]
As we have seen in section 2.3b, this is equivalent to the local equation

VXE=0, [4.23]

which is obviously satisfied if

E=-VV. [4.24]
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b) The electric field verifies Gauss’s law: this law may be written in the integral
form [4.17] that uses E and P. Transforming the flux into a volume integral of the
divergence by using Gauss-Ostrogradsky’s theorem, we find

Iy V.[e.E(r) + P(r)] = [l g (r) . [4.25]
As this equation is valid for any volume %, we must have
€, V.E(r) — V.P(r) = g\(r), i.e.,, €V.E(r)=gqy(r)+q(r). [4.26]

If, instead of P, we use the electric displacement D = ¢,E + P, the integral form
of Gauss’s law may be written as

[lsds D) = [l ¢,(r), [4.27]

while equation [4.26] becomes
V.D(r) = gy(r). [4.28]

Although the solution of the electrostatic problem exists and is unique, the field
equations V X E = 0 and &,V.E = g, + ¢’, are not sufficient to determine E. Even in
the absence of dielectrics (¢’y= 0), the solution of these equations is not unique. On
the other hand, in the presence of dielectrics, the polarization charge density ¢’y =
—V.P depends on P hence on E that we have to determine. The problem is even
more complicated if the exact position of the free charges is not completely known
as in the case of charges on conductors and if the region in which the field has to be
calculated is confined by surfaces.

The analysis is slightly simplified if the dielectric is linear and isotropic. Then,
the polarization P and D are proportional to E

P=¢x:E, and D=¢E, with e=¢,(1+%g) [4.29]
and the two fundamental equations [4.23] and [4.28] take the form

VXE=0, and  V.E=g/e. [4.30]

Knowing E, we may determine the potential /" and the fields D and P by using the
relation [4.29] and the polarization charge density ¢’y = (g,/€ —1) gy.

It is often more convenient to determine the potential first and then deduce the
field E. Indeed, substituting the expression E = — VJV in Gauss’s equation
V.E = g,/¢, we find the Poisson equation in the dielectric

AV =—gyle. [4.31]
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Assume that we look for a solution in a region %, which contains a dielectric of
permittivity € (which may be non-uniform). The region? may be infinite or bounded
by some surfaces .éi (of conductors or any other material) with known boundary
conditions. If we know the free charges at each point of 7 (excluding the charges on
the surfaces S, which are taken into account by the boundary conditions), the
Poisson equation [4.31] has the general solution

V(r) = Vo(r) + (1/470) [Ify 0’ ¢ (x')/eR + (1/4T0)[[ s dS” g4(x')/eR
+ (1/47) dl’ q(¥')/eR + (1/4m) i qi/eR, . [4.32]

Vo(r) is any solution of Laplace equation (AV = 0) and the four other terms
correspond to volume charges, surface charges, linear charges and point charges
with R =r —r’ and R = r — ry. In these terms, the permittivity € may depend on the
position r’ or ry of the source charges. The corresponding field E is

E(r) = Eo(r) + (1/47) [l v’ q.(rR/eR® + (1/4)[| s dS” q5(r)R/ER?
+(1/4m) [odl’ q(r)R/ER® + (1/41) Ty qi Ry /eR [4.33]

where E,= —VV,. It may be shown that it is always possible to choose V,(r) in order
to respect the boundary conditions on the surfaces S;. Thus, the physical problem

has a unique solution. In the particular case of a uniform and isotropic dielectric
filling all the volume 7, the solution is the same as without dielectric but divided by

the relative permittivity €.

Dielectric (g) Dielectric (g,) n AD;
E, E;. n
ny, TEw: 0 4 Eyp Tl _ Dy,
m | * u O — .

s qs

L
o) cLE4 Ezg
Dielectric (&;)

@ H G

Conductor : E=0,D=0

(a) (b)

Figure 4.5. a) The field at the interface of a conductor and
a dielectric. b) The field at the interface of two dielectrics
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Let S be the interface of a dielectric (1) and a medium (2) (which may be a
dielectric or a conductor) and ¢ the surface density of free charge on S (Figure 4.5).
Because of the discontinuity on S, the fields E and D may have discontinuities and
we cannot use the two fundamental laws of electrostatics in the local forms VXE = 0
and V.D = ¢,, but in the integral forms [4.22] and [4.27]. Repeating the analysis of
section 2.8 by considering a narrow rectangular path ABCD and a cylindrical thin
Gaussian surface on both sides of S, we find that the tangential component of E is
continuous, while the normal component of D has a discontinuity equal to g

El// = Ez// and n21.D1 — 1’121.D2 = (s- [434]

— If the medium (1) is a linear and isotropic dielectric of permittivity € and the
medium (2) is a conductor (Figure 4.5a), we have E; = 0 and D, = 0. Equations
[4.34] and the relation D, = ¢,E, give E;, =0 and n,.E| = ¢s/€. We deduce that

E|=(gs/e)m1, Di=¢E;=gmy, and Py =D;—&E; =gy(l-es/e)ny;. [4.35]
The polarization charge density on S is
g5 =Prnp=— (1 —&/e1) gs. [4.36]

— If 5 separates two dielectrics (1) and (2) and carries no free charge
(Figure 4.5b), equations [4.34] and the relations D; = €,E; and D, = &;E; give

Eyy=Ey, mi(eE;—gEy)=0,
P =(e —£)E; and P=(g;—&,)Es. [4.37]

The polarization charge density on S is
gs =Prnpp + Py =g,y 1.(E; — Ey) . [4.38]
Using the relation [4.21] of the potential to the field E, we deduce that V" cannot
have a discontinuity on the interface of a dielectric and a conductor or another
dielectric. However, V is infinite at points where there are point charges or linear
charges.

4.8. Field and potential of permanent dielectrics

We consider in this section a dielectric of given permanent uniform polarization
P and we neglect the induced polarization. In this case, the relations D = ¢,E + P,



110  Electromagnetism

V X E =0 and V.D = g, are valid but the proportionality relations of P, D, and E are
not. The field is the same as that of a surface polarization charge density ¢'s= P.n.

a) Field of a uniformly polarized cylinder in the direction of its axis

The field of a cylinder, which is polarized in the direction of its axis, is the same
as that of two disks, which carry the surface charge densities +¢'s= £P and coincide
with the bases of the cylinder (Figure 4.6). The field at points, which are off the axis,
cannot be expressed in terms of simple functions.

If the cylinder is very thin (polarized plate as in Figure 4.6a), the field is uniform
like that of a parallel plate capacitor. Applying Gauss’s law to the surfaces S and
55, we get

D=0, D™=0, thus E®=0, E™=-Pf, [4.39]

where we have used the relation D = ¢,E + P. The field E may also be evaluated
directly by using the polarization charge densities 2¢'s= P of the bases assimilated
to infinite planes.

Lines of E and D'

(a) (b) (c)
Figure 4.6. Field of a cylinder that is uniformly polarized in the direction of its axis

in the cases a) of a thin cylinder, b) of a thick cylinder, and c) of a long rod

If the length of the cylinder 2/ is not very small, compared to R (Figure 4.6b),
using the expression [2.53] for the field of a disk, we may write the expressions of
the field on the axis of the cylinder outside and inside the cylinder

E®(2) = (P2ey)[(z+ h)/ | R*+(z + h)? — z=h)/ \|R*+(z—1)? ],

E(z) = — (P/2e)[2 = (z+ h)/\|[R?+(z + h)? + (z—h)/ |R*+(z = h)* ]. [4.40]
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Particularly, the field at the center is E(0) = —(P/eo)[1 — 4/ R>+h> 1. If the length

of the cylinder 2/ is much larger than R (a polarized rod, Figure 4.6¢), the field at
the center is E™(0) = —(R*/2e,4*)P. Outside the dielectric, the lines of the fields D
and E coincide, as D = ¢,E, but they are distinct within the dielectric.

b) Field of a uniformly polarized ball

We use spherical coordinates with the origin O at the center of the ball and Oz
pointing in the direction of P (Figure 4.7a). The surface polarization charge density
is ¢ = P.n = P cos 0. The potential at a point M(r, 0, ¢) is independent of ©,
because of the symmetry about Oz; thus, we may calculate it for ¢ = 0. An element
of area dS’= R® sin 0’ d0' d¢’ at the point P(R, 0', ¢') on the surface of the ball, has

the charge dQ’ = ¢'; dS"; the potential that it produces at M is
q\ds R? cos ©'sin 0 d' dg'

dV(r)=K,+———=K,P
r—r'|

\/Rz +r*=2Rr cos@ cosd' — 2Ry sind sin®' cos ¢'

Instead of making a complicated integration, we use an approximation method
based on a simple physical idea. Let us assume that the polarization of each
molecule is due to the displacement of a positive charge ¢ by d/2 in the direction of
P and a displacement of a negative charge —q by —d/2. The electric dipole moment
of a molecule is then p = gd and the polarization of the medium is P = N, gd where
N, is the number of molecules per unit volume. The polarized ball is thus equivalent
to two balls of charge densities Nyg and —N,q and of centers O, and O, separated by
a distance 0,0, = d (Figure 4.7b). The total charges of these balls are
+0 = +(4/3)nR’N,q and the total potential that they produce at a point M outside
them is the same as that of two point charges 0 located at their centers O; and O,
ie.

V(r) = K,O(1/r1 = 1/ry) = K,O[1/|r=d/2| =1/|[r+d/2|] = K, O (r.d)/r. [4.41]

As Qd = (4/3)nR’N,qd = P?, where 7 = (4/3) TR*is the volume of the ball, we may
express the electric potential and field outside the ball in terms of P as

V(r) = K@ (r.P)/r = (R*/3e,r”) (r.P), [4.42]
3
E“(r) = - VI(r) = K@ [3(r.P) —33 1= 2 3ep) L 33 ] [4.43]
ror 3e, r r

Particularly, on the surface of the ball
V(r) = R.P /3¢, E(r) = (1/3e,R*) [3(R.P) R — R*P] . [4.44]
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Using the expression [2.59] for the potential inside a charged ball, we may write
the total potential inside the dielectric ball and hence the electric field

in 2 2 2 2\ — — P'R — P
M )(r):KO%[GR —r%) = BR = r)] —Ko%(d.r)— ?—f [4.45]
E™(r) = - VI"(r) = - P/3¢,. [4.46]

The electric field inside the ball is uniform and oriented in the opposite direction to
P. The electric displacement D = P + &,E is then given by the expressions

D(r) =&, E(r) = (R*/3) 3(r.P) r/r* = P/F'], D™(r)=2/3)P. [4.47]

The fields D and E verify the conditions [4.34] on the surface of the dielectric. The
lines of E and D are represented in Figures 4.7¢ and 4.7d, respectively.

(a) (b) © (d)

Figure 4.7. Polarized ball: a) the surface polarization charge density, b) its equivalence
to two balls of opposite charges, c) lines of the field E, and d) lines of the field D

The expressions [4.39], [4.40] and [4.46] show that the electric field due to the
polarized dielectric is in the opposite direction to the polarization P. This is a
general property for any form of the dielectric body. We say that E is a depolarizing
field.

¢) Field in a cavity within a dielectric

Consider a dielectric body (B) of polarization P containing a cavity with no free

charges in it. Let E©©) be the field at a point M in the cavity (Figure 4.8) andE the
field that is produced at the same point M by a dielectric body that may fill the
cavity exactly. It is evident that, if the dielectric body had no cavity, the field at M

would be E = E© +E . This relation holds even if there are free charges and other
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dielectric bodies than the body (B) by including their fields in E and E©. Thus, we
have

E9=E-E. [4.48]

— If the cavity is spherical (Figure 4.8a), E=-P/3g,, thusE© = E + P/3¢,.

— If the cavity is cylindrical and thin in the direction of P (Figure 4.8b), we have

= —P/e,, thus E©= E + P/e,. We also get this result by applying Gauss law to the
cylinder S.

— If the cavity is cylindrical and long in the direction of P (Figure 4.8c), we have

E =0, thus E©=E. We get also this result by writing that the circulation of E over
the closed path ¢ is equal to zero.

(a) (b) (c)

Figure 4.8. Field in a cavity within a dielectric: a) spherical cavity, b) cylindrical cavity that
is thin in the direction of P, and c) cylindrical cavity that is long in the direction of P

4.9. Polarization of a dielectric in an external field

If a dielectric is placed in an external electric field E,, it becomes polarized and
it produces its own field Ep, which superposes to the external field E, so that the
total field is E = E, + E,. We assume that E, is uniform and it is produced by a
system, which is not influenced by the dielectric. At large distances from the
dielectric, the total field E approaches E, asymptotically but, at small distances and
inside the dielectric, E depends on the shape of the dielectric body and its
polarization P, which is unknown (as it depends on E that we have to calculate). In
the general case, the problem is complicated and it may be solved only by
approximations or numerically. In this section we consider two cases, where the
simple geometry facilitates the solution.
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a) Dielectric plate in a uniform and normal field

Consider an infinite plate of dielectric of thickness d placed normally to a
uniform field E,. We take Oz in the direction of E,; thus, E, = E, e, (Figure 4.9a).
Because of the obvious symmetries, the polarization P is in the direction of Oz and,
if the plate is thin, we may admit that P is uniform. The polarization P produces
polarization charge densities =P on the faces of the plate similar to those of a
parallel plate capacitor. Their field is equal to ¢'y/g,, i.e. E,"™ = —(¢'s/go)e, = — P/e,
inside the plate and E,* = 0 outside the plate. Thus, the total field is

E®=E+E, Y =E,, E™=E,+E, "= E,— P/g,. [4.49]

E®=E,

| | .
TP T (l') | ‘ﬁ oS
m) — =
EI ]lio P/e, ‘“

(a) (b)

Figure 4.9. a) Polarization of an infinite plate and b) polarization of a ball

To determine P, we must use the properties of the dielectric. If the medium is
linear, isotropic with a susceptibility yg, we find P = ez E™ = e,xg (E, — P/e,),
hence

i E
p= Sk g g- _To _ Eo [4.50]
I1+xg 1+ XE &r
The electric displacement is
D0 = £ E© = &oE,, ) 80E(in) +P=¢,E,. [4.51]

We may use Gauss’s law in the integral form to show that E is uniform outside the
plate and that D' = D= ¢ E,.
b) Dielectric ball in a uniform field

Let us assume also in this case that the polarization P of the ball is uniform
(Figure 4.9b). According to the section 4.8b, the field of the ball inside it is —P/3&,.
Thus, the total field inside the ball is

E™W=E,- P/3¢,. [4.52]
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If the dielectric is linear and isotropic with a susceptibility ¥g, the polarization is
P = e.e E™ = ey: (Eo, — P/3g,), hence
p- ke g g _3 g [4.53]
3+xg 3+,

Two facts concerning these examples are to be noted: first, the field E, due to the
polarization has the opposite sign to P, thus to E,. The effect of the polarization is
thus to reduce the electric field inside the dielectric (E, is a depolarizing field)!. The
second is that our starting assumption of a uniform polarization without justification
leads to a uniform field E and, consequently, to a uniform polarization. The analysis
is thus coherent. The solution, that we have found, verifies all the required
conditions. As the solution is unique, we are sure that it is the solution and that there
is no other one.

4.10. Energy and force in dielectrics

We have seen in section 2.9 that the electrostatic energy of a system of particles
of charges ¢; is Ug= " % qi V'(r;), where V'(r;) is the potential produced at the point
r; by all the charges except ¢; itself (whose potential at rj is infinite). The
interpretation of Ug as the work required to assemble the charges in their actual

configuration allows us to admit this expression in the case of dielectrics provided
that the g; include only the free charges (as the bound charges may not be displaced
on the macroscopic scale), while the potential is obviously produced by all the
charges (free and bound). In the case of a continuous distribution of free charges
with a density ¢,(r), we have shown that " may be replaced by the total potential V;
thus, Ug may be written as

Ue= %Il &0’ qy(t') V(). [4.54]

Using Gauss’s law in the local form V.D = ¢,, we may also write
Us= % lldv’ [V D) V(') = [l do’ V. [D(") V(x')] - % JI] &’ D().[V". V().

The first term may be transformed into the flux of the vector VD through a surface
S, which contains the system. S may be a sphere of large radius on which ¥(r) and
D(r’) tend to 0. Thus, the first term gives no contribution to Ug. Using the relation
E = -V7Vin the second term, we may write

Us="% Il #0'D(r").E(r"). [4.55]

1 The field of the dielectric E, cannot be in the direction of E as this would lead to
spontaneous polarization of the dielectric if it is subject to any small electric disturbance.
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This relation allows us to express the energy in terms of the fields E and D without
reference to their sources. This means that the energy is localized in the region of the
fields with a volume density

Ug.y= % D.E. [4.56]

Particularly, if the medium is linear, homogeneous and isotropic with a permittivity
€, the energy density may be written as

Us.y= Y€ E2. [4.57]

For instance, in the case of a capacitor, the energy is localized in the dielectric (or
the vacuum) which fills it. We note that, contrary to [4.56], 2q,V in [4.54] cannot be
interpreted as the electric energy density, as it vanishes in a region where there is no
electric charge and V is defined only up to an additive constant. However, if the
potential is taken equal to zero at infinity, the total energy of the whole system has
the same value if we use either expression [4.54] or [4.55].

The electric forces may be calculated by using Coulomb’s law or the fields.
Sometimes, it is practical to use the energy and the method of virtual displacements,
as we have done in the case of the conductors in vacuum. We have seen in section
4.7 that the potential and the field of charges in a dielectric are €, times less intense
than in vacuum. This is true also for the energy of point charges or charged
conductors. Equation [4.57] may also be written in the form Ug , = D*/2¢. As D
depends only on the free charges, if particles or conductors with given charges are
immersed in a dielectric, the energy and the forces are reduced by the factor €;. On
the other hand, if conductors with given potentials are immersed in a dielectric, the
energy and the forces are multiplied by €,.

4.11. Action of an electric field on a polarized medium

We have shown in section 2.6 that a uniform electric field E acts on an electric
dipole p with a moment of force I = p X E and that a non-uniform field acts on the
dipole with a force F = (p.V) E. If the dielectric contains N, dipoles per unit volume
(producing its polarization P = N,p), it is subject to a moment of force per unit
volume

I''=NypXxE=PXE [4.58]
and a force per unit volume

F,=N, (p.V)E=(P.V)E. [4.59]
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If E is uniform, F, vanishes, but if E is non-uniform, its component (k) is given
by

(F\)o. = Zp Pp 0gEq = X 0p(PpEo) — Zp (9pPp)Eo.

The total force that acts on the dielectric is obtained by integrating F, over the
volume 7 of the dielectric. The integral of the first term, which is the divergence of
the vector (E,P), may be transformed into the flux of this vector outgoing from the
surface S of the dielectric and the force that acts on the dielectric may be written as

Fo=llydv (F\)o=ls dS Zg np (P Eq) + Illy @7 (25 0pPp) Eo,
=lls ds .P)Eq + [[l;dv (-V.P)E,.

Using the polarization charge densities ¢'s = (n.P) and ¢', = —(V.P), we may write
the force in the vector form

F=[lsdsq\E+l,dvq" E. [4.60]

This expression means that the force exerted by the field E on a dielectric body is
the resultant of the forces that it exerts on the surface and volume polarization
charges.

If the dielectric is linear and isotropic, the force density F, may be related to the
electrostatic energy density. Indeed, if € is the permittivity, the force density [4.59]
may be written as

F,=(e—-¢,) (E.V)E. [4.61]
Writing explicitly the x component, we find

(FV )X = (8 - 80)(Ex ax + Ey ay +E, az) Ex= (8_80)(Ex axEx + Ey axEy +E, asz)
=Y (e —€,) 0y E?
where, to write the second form, we have used the field equation VXE = 0, which

gives dyEy = dyEy and o\E, = J,E. Similar relations may be written for the other
components of F,. Thus, we may write the vector relation

F,=" (e —¢&,) V(E) = (1 —¢&,/g) VUgy, [4.62]
where we have used equation [4.57] for the energy density. This expression shows

that the force is independent of the direction of E; it points in the direction of
increasing E i.e. of the increasing energy density. The force that acts on an element
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of volume @7 is dF = F, 7. To displace it by 0or, a force dF’ = —dF must be exerted,;
its work is

O dW’=dr.dF' =—or.dF =—-0r. F, dv=—(1 — &,/e) or.V Ugy &
=—(1 — eo/e) SUpy & [4.63]

where 8Ug,, = dr.VUg, is the variation of the energy density in the displacement Jr.

4.12. Electric susceptibility and permittivity

The polarization P is related to the mean electric dipole moment p of the
molecules, which is itself proportional to the local field E;according to the relation
p = oE;. Thus, to derive the relation of P to the macroscopic field E, we need the
relations between E, P, and E,. The difference between E and E; comes from the
field of the molecule, whose polarization is analyzed. As the polarized molecule has
a field in the opposite direction to E;, we expect that £;is less than E.

Consider a dielectric of susceptibility yg. By definition, its polarization density is
related to the macroscopic field E by the relation

P = eqx:E. [4.64]

The local field E;, which acts on a molecule at M, is produced by all bodies except
the considered molecule. To determine E;, we surround this molecule by a small
sphere that contains no free charge but a large number of polarized molecules
(Figure 4.8a). We may write E; = E® + E™ where E is the field of other
bodies except the dielectric situated inside the sphere and E®™ is the field of the
molecules of the sphere except the molecule at M. The molecules inside the sphere,
being at short distance from M, the field E"*™ cannot be evaluated as the field of
dipoles (thus, the same as the field of the polarization charges g'y and ¢%). Its value
depends on the configuration of the molecules within the sphere. The calculation
shows that it vanishes for a cubic crystal lattice. We admit that it is equal to zero for
any crystal and for amorphous dielectrics. On the other hand, E®¥ is equal to the
field E“*(0) at the center of the sphere if it is empty. According to [4.48], it is given
by E€(0) = E + P/3g,, hence

E,=E + P/3¢,. [4.65]
If the medium contains N, molecules per unit volume with an average dipole
moment p = aE,, the polarization density may be written as

P =N,p = NyoE; = Nyo[E + P/3¢,], hence P=N,aE/(1 — N,0/3¢,). [4.66]
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As P = g,yeE, the electric susceptibility and the relative permittivity are given by

N, ole, 142N, 03¢
SR e Y S (I O At 4.67
I-Nope,” ¢ HTUTEET TN ape, [4.671

XE

Conversely, these equations allow the microscopic coefficient o to be determined

in terms of the macroscopic quantity yg or €. The index of refraction of a non-

magnetic dielectric is related to €, by the relation n* = .. Thus, we find the so-called
Clausius-Mossotti equation for non-polar substances

No e -1 »n>-1
&l , 4.68
3e e +2 nt+2 [4.68]

[}

The polarizability o depends only on the nature of the molecule, not on the physical
conditions (temperature, pressure, etc.) but the number of molecules N, per unit
volume depends on them according to the relation N, = mNa/my;, where m, is the
mass density, my; is the molar mass, and N, is Avogadro’s number. Thus, the
relation [4.68] may be written as

oN _my & -1 _my xg or xi= 3o, . [4.69]

Olmolar = ———
O 3e, m, € +2 m, Xg+3 iy — Oy,

Omolar 18 called molar polarization (although it is not really a polarization). For a
given substance, Oupol,r does not depend on physical conditions. Thus, the ratio
(n*— 1)/(n*+ 2) is proportional to the mass density.

The expression [4.69] may be easily compared to experimental values. Consider
oxygen O,, for instance. As a gas under standard conditions, its mass density is

my = 32 x 107/2.241 x 102 = 1.428 kg/m’. The experiment shows that its
susceptibility is 5.23 x 10™. We deduce that Oimelar = 3.91 X 107° m*/mole. In the
liquid state, its mass density is 1190 kg/m’. Equation [4.69] gives xg = 0.509
compared with the experimental value of 0.507.

If the molecules are well separated, the term Ny0/€, is much smaller than 1 and
the electric susceptibility becomes g = 0.N,/€,. This approximation is equivalent to
neglecting the interaction of the molecules. It is a good approximation in the case of
a gas but certainly poor in the case of solids and liquids, particularly if the substance
is polar. The large interaction between molecules increases the electric
susceptibility. On the other hand, if the polarizability and N, are high enough to
make N,0/3€, comparable to 1, the electric susceptibility is large and so is the
polarization, even if the field E is weak. We shall see that this is effectively the case
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if the temperature is close to a critical value 7. Under these conditions, the linear
approximation P = g, gE is not valid and the preceding analysis does not hold.

4.13. Variation of polarization with temperature

Statistical physics enables the analysis of the variation of the polarization of a
polar substance with temperature. The dielectric body being formed by a large
number of molecules, the probability for the energy of a molecule to have a value u
is proportional to e™*»” | where kg = 1.380 658 x 107 J/K is Boltzmann’s constant
and T is the absolute temperature. We take the Oz axis in the direction of the local
field E; and specify the orientation of the electric dipole moment p, by its angles 0
and ¢ of spherical coordinates around Oz (Figure 4.10a). The energy of the dipole p,
in the local electric field E; is u = poE; — po-E; = poEi(1— cos 0). Thus, the probability
that p, points within the solid angle dQ close to the direction (0, @) is dIl =

n e %7 4Qy | where 1M is a constant to be determined by the normalization of the
probability to 1:

[dT1 =n [Tde sin® ["dp e = 1. [4.70]

Using the expression of u, we find
N = (1/4m) x e* /sh(x), where x =p.E/kgT. [4.71]
Because of the rotational symmetry about Oz, the average value of p points

necessarily in the direction of Oz. Thus we have to calculate only the average value
of p,=p, cos 0; we find

<p,>=|dllp,cos = Npal dQ cos® e %67 = 47 po( e~ /A)[x ch(x) — sh(x)].
Using the expression [4.71] of 1, we may write
<p;>=po L(x), where L(x) = coth x — 1/x. [4.72]
L(x) is called Langevin’s function. Thus, the polarization density is
P=N<p,>= Np,L(x). [4.73]

Its variation as a function of x is illustrated in Figures 4.10b and 4.10c.



Dielectrics 121

1Y A T S TR ST W N R |

4(0,-3¢,E) 4(0,-3¢,E)

@ (b) ©

Figure 4.10. Polarization of a polar substance: a) orientation of the dipole moment p,,
b) polarization for T > T, and c) polarization for T < T,

— If x is very large (x >> 1), i.e. in the case of a strong field or very low
temperature, L(x) increases asymptotically to 1 and the polarization density tends
toward a saturation value Nyp,. At this limit, all the dipoles point in the direction of

the local field E; = E + P/3g, = (E + Nypo/3€,)e,. Under standard conditions,
ksT = 4 x 107']. Noting that p, is of the order of 107 C.m for polar molecules and
N, is of the order of 10 molecules/m®, the condition x >> 1 corresponds to an
exceptional field £ >> 4 x 10° V/m. Thus, to have x >> 1, the temperature must be
very low.

— If x is very small (x << 1), i.e. in the case of a weak field or high temperature,
L(x) = x/3, the curve L(x) may be replaced by the tangent D, at the origin. Using
[4.73], we may write

P = Npox/3 = Np2Ef3ks T = 3eo T/ TE,. [4.74]

T. = Ny, /9¢.kg is the critical temperature of the dielectric. Then, the polarizability
a, the susceptibility and the local field E; are given by

— 3TC

_3% L -
T-T,

N, T’

T
T-T,°

and E,=E

0 XE [4.75]
where we have used the equations [4.67] and [4.65]. If T approaches T, the
polarizability tends toward 3¢,/N, and the electric susceptibility becomes very high
(it may be as high as 10°). In the case of a gas (N, = 10* molecules/m?), T, is of the
order of 102 K, but, in the case of liquids and solids (N, = 10?” molecules/m’), T
lies between nearly 1 to 100 K. If the temperature is much higher than T, the

susceptibility is given by Debye-Langevin equation

2
I _ Nopo (T>>T). [4.76]

::,3—
KE= 27 = g kyT
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In order to verify the 1/T dependence experimentally, the number N, of
molecules per unit volume must be kept constant by varying the pressure
simultaneously with the temperature. Otherwise, if the pressure is maintained
constant, the variation of temperature leads to a variation of N, like 1/7 and the
susceptibility varies effectively like 1/T* with temperature.

For intermediary values of x, it is not possible to write the expression of the
polarization P as a function of E. The relation E; = kgTx/p, = E + P/3¢, (see [4.65])
allows the expression of P in terms of x and £. Thus, we have the two equations

P =N, p,L(x), P =3e.kgTx/p, — 3€,F , [4.77]

which may be solved numerically. The two expressions of P versus x may also be
plotted on the same graph. The first is the Langevin curve (C) and the second is a
straight line (D) that intercepts the P axis at the point A(0, —3€&,E). The coordinates
of the intersection M of (C) and (D) determine P and x (thus E) at the temperature 7.
If the macroscopic field E is reduced, the line D moves parallel to itself toward the
origin. If its slope 3€,kT/p, is larger than the slope Npo/3 of the curve (C) at the
origin, the points M and A4 tend toward the origin (Figure 4.10b) and this
corresponds to P =0 and £ = 0. This occurs effectively if 7 is higher than the critical
temperature T, = Nypo*/9¢.kp. On the other hand, if T < T (Figure 4.10c) the point 4
approaches O but M approaches a point M,. This case corresponds to £ = 0 but a
non-zero polarization. Thus, we obtain a permanent polarization (electret).

4.14. Nonlinear dielectrics and non-isotropic dielectrics

Similar to the deformation of a rigid body caused by mechanical forces, the
polarization P is a response of a dielectric body to electric excitation E. We may
write the components of P in terms of the components of E as Py = fo(E1, E>, E3). If
the field E is not strong, we may expand the P, as power series of the components of
the Epin the form

Po(E) = Pof(0) + Zp (P/IER)|o Ep+ Vo 4 (0°Po/OE OE|o EpEy+ ... [4.78]

In the case on a non-permanent dielectric, the polarization vanishes if E = 0; thus,
we must have Py(0) = 0. If the quadratic terms in E,, are negligible and P(0) = 0,
the dielectric is said to be /inear. In this case, the components P, may be written as

Px =& [XxxEx+ XxyEy+ XXZEZ]5
Py =&, [Yyx Ex+ Xyy Ey+ Xy E2 ],
Pz =& [XZX Ex+ Xzy Ey+ Azz Ez ] [479]
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The nine constants g are the components of the electric susceptibility tensor of the
dielectric medium. In general, P and E are not parallel and the polarization P is more
important if the field E is applied in some directions rather than others. The
dielectric is then non-isotropic. It is isotropic if the tensor )qp is diagonal and the
diagonal elements are equal

Xep=0 if a=f and Y= xn2=YkB=X [4.80]
Then, we may write the vector relation
P=¢,yE. [4.81]

In this case, the medium is said to be linear and isotropic. The non-isotropy of some
crystalline materials underlies some electric and optical properties.

If a dielectric medium is isotropic but the second order terms (or higher order
terms) in [4.78] are important, the medium is said to be nonlinear. In this case, D
points in the direction of E but its magnitude has the form

D=¢E+YE* +... [4.82]

If a wave of frequency V is incident on this medium, the analysis of the
propagation shows that waves of frequencies 2V , 3V, etc., are generated in the
medium. Effectively a crystal of barium niobate or sodium niobate, for instance,
transforms an infrared laser beam of wavelength 1060 nm into visible green light of
wavelength 530 nm. Nonlinear optics is used in modern communication systems.

In the case of a field E that varies rapidly in time, the dielectric is not polarized
instantaneously in response to the electric excitation and the polarization does not
disappear instantaneously if E is turned off. In this case, the polarization at time ¢
depends on the field at earlier moments ¢#’. Mathematically, this is expressed by a
relation of the form

P(t)= & ['_dt' ye(t—t") Et). [4.83]
It is more appropriate in this case to analyze the field E and the response P in terms
of their Fourier transforms. Then, it may be shown that, if the field has a

frequency V , the polarization has the same frequency with a relation of the form

P(V) =&, (V) E(V), [4.84]
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where the susceptibility (V) is the Fourier transform of yg(¢ — ¢"). The variation

of % as a function of V is at the origin of the dispersion of electromagnetic waves
(particularly light) in dielectrics.

4.15. Problems

Effects of dielectrics in capacitors

P4.1 a) The plane and parallel plates of a capacitor of area S are maintained with a
difference of potential V and they are separated by a distance d. A dielectric plate of
thickness b (b < d) and permittivity € is introduced in the capacitor. Calculate the
electric field outside and inside the plate, the polarization charge density, and the
capacitance. b) An empty capacitor with § = 0.1 m%*, d = 1 mm is charged at a
potential V=350 V. Calculate its capacitance C, and its charge Q,. If this capacitor
is disconnected and filled with a dielectric, it is found that the potential becomes
280 V. Calculate the new capacitance C, the relative dielectric constant €, and the
polarization charge density on the faces of the plates.

Polarization of dielectrics

P4.2 Applying Gauss-Ostrogradsky’s theorem, show that the total polarization
charge induced on the surface and the volume of a dielectric is equal to zero.
Explain this result by considering the polarization as due to the displacement of
charges in the molecules.

Potential and field in dielectrics, electric displacement

P4.3 A capacitor is formed by a metallic cylinder of radius R, and length L
surrounded by a coaxial cylindrical shell of internal radius R;. A dielectric of
relative permittivity &, fills the cylindrical region between R3; and R4 (such that
Ry <R3 <R4<R;). Assuming a potential V, calculate the vectors E, D, and P as well
as the surface polarization charge densities and volume polarization charge density.

Equations of the field in dielectrics

P4.4 A charge g is placed at the center of a ball of radius R of a dielectric of
permittivity €. Calculate E and D inside and outside the ball. Determine the vector
polarization and the polarization charge densities. Discuss the conservation of
charge.

Field of permanent dielectrics

P4.5 A sphere of radius R is polarized with a uniform polarization density P.
a) Calculate the polarization charge density on its surface. What is the total positive
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polarization charge +¢g'? Where is its barycenter? What is the total negative
polarization charge —g"? Where is its barycenter? What is the electric dipole moment
of the sphere calculated by using the charges *¢' at their respective barycenters?
Compare with the electric dipole moment calculated by using P and the volume of
the sphere. b) Using the polarization density, calculate the potential inside and
outside the sphere. Deduce the field E and the electric displacement D. Verify the
continuity of the tangential component of E and the normal component of D.

P4.6 A cylinder of radius R and length 4 has a polarization P in the direction of its
axis. Calculate the fields E and D at a point of its axis inside and outside the
cylinder. Find the limits of these fields outside the cylinder if # << R and |z| >> R
and inside it if 2 << R. Verify that, at large distance (|z| >> R and |z| >> h), the field
is the same as that of an electric dipole moment p =7P, where 7 is the volume of the
cylinder.

Polarization of a dielectric in an external field

P4.7 Assume that a sphere of a linear dielectric is placed in an initially uniform field
E,. If the susceptibility is low, we may write the polarization and the field as the
power series: P =p, + p; xg+ p2 sz +...and E=e, + e;g+ ez)(E2 +... Determine
the p; and the e; by using the polarization field E, = — P/3¢, of a polarized sphere.

P4.8 Show that the field of a sphere of a crystal of cubic lattice is equal to zero at its
center.

Energy and force in dielectrics

P4.9 After charging a capacitor at a potential V,, it is disconnected and a dielectric
plate of permittivity € and nearly the same thickness as the capacitor is introduced.
Calculate the stored energy before and after the introduction of the plate. Interpret
the variation of the energy in terms of the work required to introduce the plate
without variation of its kinetic energy.

P4.10 A parallel plate capacitor is formed by two square plates of sides L and
spacing d. It is maintained at a voltage V. A dielectric plate of permittivity €, width L
and thickness d’ parallel to the plates is introduced in the capacitor. Let x be the
length of the plate already introduced in the capacitor. What is the electric energy in
this position? What is the force F of attraction of the dielectric plate by the capacitor
plates?



Chapter 5

Special Techniques and
Approximation Methods

A fundamental problem in the application of electrostatics is to determine the
potential ¥, knowing the charge distribution and the dielectric properties of the
medium. V" obeys Poisson’s equation AV = — g,/€, whose solution [2.25] contains an
arbitrary term V(r) that verifies Laplace’s equation AV, = 0. In fact, the expression
[2.25] is not always useful, because we do not know the positions of all the charges
of the Universe and, even if we know some of them, the solution is often too
complicated. On the other hand, the positions of charges on the surface of
conductors and the polarization of dielectrics depend on the electric field that we
have to determine. Finally, the region, in which we have to determine the potential,
is often bounded by surfaces whose potential is given or whose total charge is given.
This imposes boundary conditions on the field and the potential. The linearity of
electrostatic equations (relating the sources, the field, and the potential) may bring
some helpful simplifications to the problem. If a first configuration of charges ¢'";
produces the field E and the potential /A" and a second configuration q(z)j produces
the field E® and the potential /*®, the configuration formed by the superposition of
charges 0,g'"; + B¢®; produces the field oE" + BE® and the potential ot/ + BI42.

In this chapter, we analyze some mathematical techniques and approximation
methods that are frequently used in the study of these problems. They include the
method of images, the solution of Laplace’s equation in Cartesian, spherical and
cylindrical coordinates and the multipole expansion.

Electromagnetism: Maxwell Equations, Wave Propagation and Emission Tamer Bécherrawy
© 2012 ISTE Ltd. Published 2012 by ISTE Ltd.
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5.1. Unicity of the solution
The potential V" that we have to determine is a solution of Poisson’s equation
AV(r) =—q,(r)/g, where re?. [5.1]

This is a partial differential equation. It has an infinity of solutions that depend on
arbitrary functions. We show in this section that, if the boundary conditions are
imposed, the solution 7 is completely determined ant it is unique. Knowing the
potential, the field and the other physical quantities may be determined. In general, it
is only possible to write an exact analytic solution for some simple geometrical
configurations. Approximation methods must be used in the other situations.

Vs

Vs
i u o i R A

@ (b) (©)

Figure 5.1. a) A4 set of conductors of given potentials (Dirichlet boundary conditions),
b) a set of conductors of given total charges (Neumann boundary conditions), and
¢) mixed boundary conditions. The whole set is surrounded by a metallic enclosure

S, whose potential is V. If S, does not really exist, it may be considered
as a sphere of infinite radius and potential V,= 0

Often, the region %, in which we have to determine the potential and the field, is
bounded by conductors with unknown charge distributions, but known total charge
or potential. Thus, we have two types of boundary conditions.

a) If a boundary conductor (i) is maintained at a given potential, /" must verify on
its surface the Dirichlet condition

) — V; ifres;. [5.2]

In particular, the whole system may be bounded by a metallic enclosure S, at a
given potential V. An unbounded space is equivalent to a system in a spherical
enclosure of infinite radius at zero potential.
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b) If a boundary conductor (i) was charged previously and then disconnected
from the battery, the potential on its surface S; is unknown but its total charge Q; is
known. The field just near S; is normal to the surface with a component
E, =—9dV/ox,, where dx, is the displacement normal to S;. The surface charge density
is €,E, and we must have the Neuman boundary condition

o= js‘ ds'eE,=—¢, jjsi ds' IV/iox,=—¢, jjsi ds' n.VIr'). [5.3]

In general, we may have Dirichlet conditions on all the surfaces (Figure 5.1a),
Neumann conditions on all the surfaces (Figure 5.1b), or mixed boundary conditions
(Figure 5.1c). If we have to determine V in different regions separated by interfaces
S', we determine the solution of Poisson’s equation in each region with the
appropriate boundary conditions on S".

To show the unicity of the solution, let us assume that two solutions V and V'
exist with the same boundary conditions. The function 8V = ¥ — V' is obviously a
solution of Poisson’s equation with ¢, = 0 (i.e. Laplace’s equation A3V = 0) with the
boundary conditions 8%; = 0 on the Dirichlet-type surfaces and 8Q; = 0 on the
Neumann-type surfaces. Thus, 0V is the potential in a space that is empty of charges
and bounded by conductors of zero potential or zero charge. However, in the
absence of charges, 6/ can have neither a maximum nor a minimum; thus, 87 must
be constant and the value of this constant is irrelevant. As for the existence of this
solution, we shall not study this problem from the mathematical point of view; but
we know that the physical problem always has a solution. In principle, these
considerations hold for both free and bound charges. Thus, the electrostatic problem
always has a unique solution even in the presence of dielectrics (see problem 5.1).

As an application, consider an enclosure at the potential ¥, containing no charge.
The problem consists of finding the solution to Laplace’s equation AV = 0 with the
boundary condition ¥ — V, on the internal face of the enclosure. It is evident that
the constant potential ¥ = ¥ is a solution to this problem and there is no other
solution. It corresponds to a field E = 0 in the cavity and a surface charge density on
the internal face of the enclosure ¢, = E, /e = 0. Similarly, the potential in the region
situated outside an enclosure is a solution of Poisson’s equation involving only the
external charges with the boundary condition V' = ¥ on the external face of the
enclosure. The existence and the unicity of the solution imply that " and E outside
the enclosure are completely independent of the charges inside the enclosure. Thus,
the enclosure at the potential V, completely separates the interior from the exterior.
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5.2. Method of images

Consider the problem of determining 7 and E in a region of space 7 containing
some charge distribution and bounded by a surface S with some boundary
conditions on it. The unicity of the solution implies that this problem has exactly the
same solution in 7 as any other problem having the same charge in % and the same
boundary conditions on S. In some cases, it is possible to replace the system that is
behind S by some fictive charges (called image charges) whose values and positions
are chosen in such a way that they produce the same boundary conditions on S. The
total potential produced by the real charges in 7 and these image charges is the
solution to our problem in 7. The image charges are always outside 7 (thus, they do
not produce infinite ¥ or E in %) and they are chosen by analogy to other known
problems. In this section we study three examples.

y
1 2
M, \( ) | @) M,
[\\\ r_=
AR -

@ (b) ©

Figure 5.2. Method of images: a) a charge q near the plane face of a conductor at V =0,
b) charge q near a metallic sphere, and c) charge q near the interface of two dielectrics

A) Point charge near the plane face of a conductor at zero potential

Consider a point charge ¢ placed on the axis Oz at a distance a from the face Oxy
of a conductor maintained at zero potential (Figure 5.2a). To study this problem we
recall that two charges +¢g and —¢ produce a potential = 0 on their median plane.
Thus, the solution of both problems is the same in front of the conductor. The charge
—q is the image of the real charge ¢. The potential at M(x, y, z) is

1 1
X+ 17+ (z—a)’ \/xz +y% +(z+a)*

V[5.4]

V(r>=Koq<%—%>:Koq{\/

This potential verifies the boundary condition V(x, y, 0) = 0 on the surface of the
conductor; thus, it is the solution of our problem. The corresponding electric field is

E()=-VV=Kg{[5-5Te+[ -2 e+ 54— e, ). [55]
r r r r r r
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Particularly, on the surface of the conductor, z =0 and r = 7/, thus

— g 99 o — _ 93
E(x,»,0)=-2K, 7 e, =~ 2K, Ty [5.6]

This field is normal to the surface of the conductor, as it should be. It corresponds to
a surface charge density

— - - qa
=&,(E.n)|,—g=¢,(E.e))|,-0=— . 5.7
qs 0( )| 0 0( y)l 0 21'c(x2+y2+ 02)3/2 [ ]

Integrating this charge density over the plane Oxy, we find —¢. The electric field E,
produced by the charged conductor is the same as that of the image charge —¢. In
particular, the force exerted by the conductor on the charge ¢ is the same as the force
exerted by the image charge —¢, i.e. F = —(K,q’/4a”) e,. We note that the potential
and the field in the region (2) inside the conductor (which are equal to zero) are not
the same as those of the charge ¢ and the charge —q.

B) Point charge near a metallic sphere

Consider a point charge ¢ placed on the axis Oz at a distance a from the center O
of a metallic sphere of radius R and zero potential (Figure 5.2b). To determine the
potential " at any point M outside the sphere, we try to replace the sphere by a
charge ¢', such that the potential of the sphere is zero. By symmetry, ¢’ must be on
the axis Oz. Let a' be the unknown coordinate of ¢'. Using spherical coordinates, the
potential of the charges ¢ and ¢’ is

V) = Kot — o
\/r +a” —2ar cos© \/r +a'“—2a'r cos O

).

V= 0 on the sphere for any 6 if g(R>+ a" — 2a'R cos 0)"= —¢'(R*+ a*— 2aR cos 0)”,
This equation shows that ¢’ must have an opposite sign to ¢g. Squaring this equation
and identifying the constant term and the term proportional to cos 6, we obtain the
equations ¢’a’ = ¢”a and ¢*(R* + a”) = ¢*(R* + &°). This gives ¢' = — gR/a and
a'= R*/a. Thus, the potential and the electric field may be written as

1 R

W(r,0) = Kog { -
\/r2+a2—2ar cos O \/r2a2+R4—2arR2 cos O

1 [5.8]
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= — 1 9ry 14
E(r)=-VV= o & T o €0 ¢
r—acos® —R%cos®
=K -
oA (r* + a* = 2ar cos 9)*? (rzaz + R“ 2arR? cos 0)*? e

1 B R’
+a’=2ar cos 0)*? (r2a2+R4—2archos 0)

+ K ga sin 6{ 75 S €. [5.9]

In particular, we find on the surface of the sphere ( = R)

ER) =K, L R -a®

e 5.10
°R (R2+a —2aR cosG)3/2 [ ]

E(R) is normal to the sphere, as it should be. The charge density on the sphere is

R>-a®

=¢,(E.n)=¢,(E.e) = ’
s = €o(E.n) = g,(E.e,) = 41tR (R* + a”® —2aR cos 0)*?

[5.11]

The total charge that is induced on the sphere is obtained by integration

_ _ 4 22\ (T 2. 1 o, R _
0=lsds g,= 7 (R~a’) [d6 Rsin @ TvRe Y [ do =—g+=q"

The force exerted by the sphere on the charge ¢ is the same as the force exerted
by the image charge, that is
| 2
F=k,—2 e =—k, TR0 . [5.12]
(a—a ) (a”—R°)
We note that the potential and the field inside the sphere are not the same as those of
the charges ¢ and the charge image ¢'".

If the sphere is at a potential V, we may use the principle of superposition.
Consider a first state with the sphere at the potential ¥ in the absence of the charge
q. The charge of the sphere is then O, = 4me RV, uniformly distributed. The
potential that it produces at M outside the sphere is Vi(r) = Q,/4ne,r = V R/r.
Consider also a second state with the sphere at zero potential in the presence of the
charge ¢; the corresponding potential V, is [5.8]. The superposition of these two
states corresponds to a sphere at the potential ¥, in the presence of the charge g.
Thus, the potential at point M(7,0,0) is

=R v+ kgt ! - R L [5.13]

\/rz-i- a’=2ar cos 0 \/r2a2+R4—2arR2 cos O
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This is the same as the potential produced by the charge g, the fictive charge
q'=— Rg/a at the distance a’ = R*/a and the fictive charge ¢” = Q, = 4ne RV, placed
at the center of the sphere.

Let us assume that a charge ¢ is brought near an isolated sphere initially carrying
a charge Q,. Consider the state (1) of the charge ¢ near the sphere at zero potential.
The corresponding solution V; is [5.8] and the sphere has the total charge
q' =—Rg/a. Consider also the state (2) with the sphere carrying the charge O, — ¢’ in
the absence of the charge g. The superposition of these two states corresponds to the

sphere carrying a charge O, in the presence of the charge g. The potential is then
1 R

K R
V= _O(Qo+q_)+K0q{ -
r a \/r2+a2—2ar cos O \/r2a2+R4—2arR2 cos 0

v, [5.14]

C) Point charge near the plane interface of two dielectrics

Let us consider two dielectrics separated by a plane surface Oyz and a charge ¢ at
x = — d in the medium (1) (Figure 5.2c). The dielectrics become polarized, each
under the influence of the field of the charge ¢ and also the field of the other
polarized dielectric. To calculate the field in the medium (2) let us try to replace the
effect of the dielectric (1) by a point charge O, at x = — d;. Similarly, to calculate the

field in the medium (1), we try to replace the effect of the dielectric (2) by a point
charge O, at x = d,. The system being symmetric about Ox, the charges O; and O,
should be on this axis and they should not be in the region in which we calculate
their field in order not to have singular fields. We calculate the fields at the point M
of the Oxy plane. The fields E; in medium (1) and E, in medium (2) are then

r r r I
E(r)=Kq— +K,0—%, Ex(r) = Kog— + K01 —%
r ) r n

and the corresponding electric displacements are D; = €,E; and D, = &;,E,. We now

impose the boundary conditions on the interface: the tangential component of E (i.e.
E, and E,) and the normal component of D (i.e. D) are continuous for x = 0. We

find the equations

0, (P +d) =007 +d )"
€1 qd(V+d) -0, (0 + )P =8, qd (P + &)+ g 01 (P + d) R

These equations are satisfied at any point of the interface (i.e. for any y and z) if
di=d,=dand O, = 0, = q(€; — &,)/(¢; + &,). Thus, the electric fields are given by

rn € -&
1”23 €1 +€;

_ 2¢, r
I Ez(r)*Koqm r_3 [5.15]

E1<r):Koq{ri3+
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The corresponding electric displacements are D; = €,E; and D, = &E,, while the
polarizations are Py =D; —¢,E; = (&, — €,)E; and P, =D, — ¢ E, = (¢, — &,) E,. The
polarization charge densities on the interface is

, g —¢ d
qS:PIX_PQX:(81_80)E1X_(82_80)E2X:% 81+Ej (y2+d2)3/2 .

[5.16]

The volume polarization charge density is ¢', = — V.P = (¢ — &,) V.E = 0 in both
mediums.

5.3. Method of analytic functions
Let f{z) be a function of the complex variable z = x + iy. We may consider f'as a
function of the variables x and y. Separating its real part from its imaginary part, we
may write
M2) =flxy) = Ulxy) + i(x.p). [5.17]
If fis a differentiable function of z and if x varies by dx, the variation of fis
df = 0,U dx +1 0,V dx = (dfldz) (3z/9x) dx = (dfldz) dx.
Similarly, if y varies by dy, the variation of fis
df=0,U dy +1i9,V dy = (dfldz) (3z/dy) dy = i (dfldz) dy.
Comparing the two expressions, we deduce that d,U + 1 0V = —i d,U + 9, V, hence
U=09,V and o, U=~ 0o,V. [5.18]
Thus, U and V satisfy the partial differential equations
2 2 rr_ 2 2
I U+0°,,U=0 and 0V + 07, V=0. [5.19]
Let us consider an electrostatic problem with translational symmetry in the
direction Oz. This is the case, for instance, for cylindrical conductors parallel to Oz.
Thus, the potential / does not depend on z and Laplace’s equation reduces to [5.19].
Considering ¥(x, y) as the real part or the imaginary part of an analytic function f{z),

the normal to the equipotential surface V(x, y) = Constant is in the direction of

E=-VV=-0Ve—0,/e,=0,Ue—Ue,. [5.20]
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The last expression shows that E is normal to the vector VU = 0,U e, + 9d,U e,,
which is itself normal to the lines U = Constant. Thus, U = Constant represents the
lines of field and V' = Constant represents the equipotentials (Figure 5.3a).

Let us consider, for instance, the analytic function /= z%, whose real part and
imaginary part are U = x* — y* and ¥ = 2xy. The lines x> — y* = C; (where C; are
constants), which asymptotically approach the bisectors of the axes, may represent
the equipotential lines, while the hyperbolas 2xy = C'; may represent the lines of
field and vice versa (Figure 5.3b). The components of the electric field are in this
case E, = —2x and E, = —2y. The field is weaker near the Ox and Oy axes. This
system, called a quadrupole lens, is used to focalize a beam of charged particles.

/<= U = Constant

Figure 5.3. Method of analytic functions: a) interpretation of the curves U = Constant and
V = Constant as lines of field and equipotential lines, and b) the example f=z*.
5.4. Method of separation of variables

The electrostatic problem in linear and isotropic mediums consists in finding the
solution of Poisson’s equation AV = —q,/e. We have seen that the solution is

1 ; gu(r)
= + —
)= Vo) + 7 [T TETR [5.21]
where 7 is a solution of Laplace’s equation AV, = 0. It may always be chosen to
have V satisfy the imposed boundary conditions.

Contrarily to ordinary differential equations that always have a finite number of
independent solutions, Laplace’s equation, which is a second-order partial
differential equation, has an infinity of independent solutions. Let f;(r) be a set of
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solutions. We say that these functions are complete if any function V(r) may be
written as a linear superposition of these functions:

r)=Z, a,fu(r), [5.22]

where the a, are constant coefficients. The functions f,(r) are orthogonal; they may
be normalized to verify the orthonormalization relations

[T @ p(¥) fiul) £o0X) = B e [5.23]

D is an appropriate domain of integration, p(r) is a characteristic weight function and
O are Kronecker symbols such that ., ,=1if m =n and 8, ,= 0 if m # n.

Using the orthonormalization relation, we may determine the coefficients a,, for
any given function ¥V(r). For this, we multiply both sides of [5.22] by p(r) f.(r) and
integrate over the domain D; we find

[T @7 p(¥) finlt) V(1) = Zy ay [l @ p(X) fo(0) folX) = Zp iy S = e [5.24]

The functions f,(r) play in the “function space” a part similar to that of the
orthonormalized basis in a vector space. The choice of the functions f,(r) is not

unique. In particular, each system of space coordinates corresponds to an adapted set
of functions f,(r).

To determine the function V(r), which allows the boundary conditions to be
imposed, we write V(r) in the form [5.22] and we determine the coefficients a,,. The
functions f;,(r) that are adapted to a given problem are those that have the same

geometrical symmetries as the studied system (or most of them). In some cases, the
series [5.22] may contain a finite number of terms. In others, the coefficients a,

become negligible for high values of n. In some other cases, the series is very slowly
convergent; the method is then inappropriate.

5.5. Laplace’s equation in Cartesian coordinates
In Cartesian coordinates, Laplace’s equation takes the form
PV + Oy V+0°,V=0. [5.25]

If we try solutions of the form V' = X(x) Y(y) Z(z), equation [5.25] takes the form
X"YZ+ XY"Z+ XYZ" = 0. Dividing by XYZ, we obtain

X'IX+ Y'Y+ ZIZ=0. [5.26]
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The terms of this equation are functions of x, y, and z, respectively. The equation
may be identically satisfied only if each one of these terms is constant:

XIX=C,, YIY=C, Z/Z=C; withC,+Cy+C;=0.  [5.27]

Consider one of these equations, X" = CX, for instance. The form of its solution
depends on the sign of Cy:

—if C;> 0, we set C; = &°. The general solution has the exponential form
X=4,e™ +B,e"; [5.28]
—if C, <0, we set C; = —k”. The general solution is simple harmonic of the form
X=4,¢e®+B,e*,  or 4, cos (kx) + B, sin(kx); [5.29]
—if C; =0, the general solution is algebraic of the form
X=A4,+B;x. [5.30]

The values of the constants C;, 4;, and B; are determined by the boundary conditions.

Figure 5.4. A grid parallel to a conducting plate

As an application, let us consider a grid formed by thin metallic wires lying in
the Oxy plane, parallel to the x-axis, and separated by a distance d. A plane metallic
plate P is parallel to the grid at a distance D and it has a potential V,, while the grid
has zero potential (Figure 5.4). We assume that the grid and the plate are infinite and
we determine the potential V(r) everywhere. The potential is independent of x
(because of the translational symmetry in the direction Ox) and it is a periodic
function of y with a period d. Thus, it may be written as a linear combination of
cos(nmy/d) and sin(nmy/d) with coefficients that may depend on z. If the origin is
taken on one of the wires, the system has a reflection symmetry (y — —); thus, the
potential is an even function of y. This excludes the terms sin(nmy/d) and we write
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V(x, y, z) = Zy50 Fn(z) cos (nmy/d). This expression verifies Laplace’s equation
AV =0if F," — (nm/d)* F,= 0, whose general solution is

F,=A,+tB,z, and F, = A, exp(nnz/d) + B, exp(—nnz/d) forn#0
The coefficients 4, and B, are determined from the boundary conditions:
— on the plate (z = D), we have
Vix,y,D)=A,+ B,D + X [4, exp(nnD/d) + B, exp(—nn D/d)] cos (nmy/d) = V.
This condition is satisfied for any y if
Vo=A,+B,D, and A, exp(nnD/d) + B, exp(—nnD/d) = 0.
— The potential of the wires (z = 0 and y = md) is zero if
0=4,+ Zpsg (At By) cos (nmm) = Ay +Zoy (1)™ (Ay + By).

This condition is satisfied for any m if £y (4, + By) = X (=1)" (A, + By) =—4,. All
these conditions are satisfied if A, =0, B, = V,/D and A,= B,= 0 for n # 0. Thus, the
potential is V' = Vz/D; it is the same as if the grid was replaced by a continuous
plate.

5.6. Laplace’s equation in spherical coordinates

In spherical coordinates, Laplace’s equation may be written as

197
sin20 0¢°

28V aV

[ar( ar) s1n9(89)(Sl n® 39 )+

2% 1=0. [531]

Let us find solutions of the form V(r, 0, @) = F(r) G(0) H(¢). Substituting this
expression into the equation, and multiplying by 7*sin’0 /FGH, we obtain

sin’0 d 2dF sin® ¢ H”
7 ( ) = de(smGG')—— 78

[5.32]

The left-hand side of this equation is a function of » and 6, while its right-hand side

is a function of @. It is identically satisfied only if both sides are equal to a constant:
sin’0 d(zdF) sin@ 4 . _ H”

~F = B (sin®G)=C, — =-C [5.33]
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As ¢ is defined up to 2m, the function H(@) has a single determination only if it is a
periodic function with period 2m. This requires that C be positive (as, if C were
negative, H would be exponential). Setting C = m?, the general solution for H is

H(@)=A4 ™ +Be™ ™, [5.34]

Effectively, it has a period 27 if m is an integer that we may take as positive or zero
(a negative value of m is equivalent to exchange the constants 4 and B). In
particular, the solution with m = 0 is symmetric about Oz. Replacing C by m?, the
equation of F' and G may be written as

(1/F)0,(r* 0,F) = — (1/G sin ) 9¢(sin 8 94G) + m*/ sin’6. [5.35]

The left-hand side of this equation being a function of » and the right-hand side a
function of 0, the equation is identically satisfied if both sides are equal to a constant
k. Thus, we find the equations

(1/G sin ©) dg(sin 8 0¢G) — m*/ sin’0 + k=0, (1/F)0,(+* 0.F) = k. [5.36]

Setting u = cos 6, the equation of G becomes

(1 — ) *WG(u) — 2u 9,G(u) + [k — ’"22 1G(u) = 0. [5.37]

1-u
In particular, for m = 0, we find the simpler equation
(1-u?) 9°G(u) — 2u 0,G(u) + k G(u) =0, [5.38]

called the Legendre equation, while [5.37] is the associate Legendre equation. The
solution of the Legendre equation is singular at the points u = 1 (and this is
unacceptable as these points are the limits of the physical domain), unless

k=1(1+1) with /=0,1,2,3, ... [5.39]

For each [, the solution is a polynomial of degree /, called the Legendre polynomial,
given by Rodrigues’ formula

1 d' 2 /
Pu)y=— — (w'—-1), 5.40
(1) T du,( ) [5.40]

where the normalization factor 1/2'7! is chosen so that P(1) = 1 by convention. On
the other hand, the Legendre polynomials verify the orthogonality relation

[') du Pyu) Py(u) =28,,/(21 + 1), [5.41]
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where the §;; are Kronecker symbols. The first Legendre polynomials are
P,=1, P =u,  P,=%Gu’-1), P;="%05u-23u). [542]
These polynomials are even or odd according to whether / is even or odd
Pi(—u) = (~1) P(u). [5.43]

The Legendre polynomials form a complete set for the functions of u. Thus, any
function of ¥ may be written as a linear combination of these polynomials:

fu) =2, a, P,(u). [5.44]

In the general case m # 0, the associate Legendre equation has the solutions
|m|
By = D" (1 =)™ ) [5.45]
u

called associate Legendre functions. They vanish if m > [. The first functions are
B =—(1-u»)"=—sin6, P} =3(1—u?) =3 sin,
P =3u(l-u*)*==3sinBcos O, P =-151-u") (1-u*)"*=~-15 sin’0,
P} =15(1—-u*)u =15 sin0 cos 6,
Pl=—(312)(5u>-1)(1-u*)"*= = (3/2) sin O (5 cos’0 —1). [5.46]

They verify the relations of symmetry, orthogonality, and differentiation

B (=u) = (1) B™(u), [5.47]
I du B0 B = 5 e B [5.48]
(1= 0, B™(u)=(I+m) P%y (u) — lu P™(u). [5.49]

We consider now the radial equation in [5.36] with k= [(/ + 1); it takes the form

0, F(r) + 2r 0,F(r) — I(I+1) F=0. [5.50]

This equation has solutions of the form F =" if p(p + 1) =1+ 1),ie. p=1or
p =—1—-1. Thus, the general solution of [5.50] is

F(ry=A4r+Br'7, [5.51]

where 4 and B are arbitrary constants.
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We conclude that any solution of Laplace’s equation in spherical coordinates is a
superposition of the solutions of the form

(1, 0, ) = 0 Zosmst [A1m €™ + Bime ™ [ Ay’ + By ™ ™' 1 P™ (c050). [5.52]
We note that we may also write
V(r, 0, 0) = Zisg = jemes [ A '+ Bin 771 €™ B™(cos). [5.53]

In particular, if the system is symmetric about Oz, V' is independent of ¢; thus, only
the m = 0 terms contribute to V, hence

V(r, 0) = S0 [A + B;r ™71 1P(cos 0). [5.54]
Sometimes, it helps to use the spherical harmonics

2041 (1 =|m])!
an (I +|m))!

Y"(0.9) = eme P,""‘(cos 0), where-/<m</[  [5.55]

They verify the relations of complex conjugation, symmetry, and orthogonality

" (0.9)*= (D)"Y " (0-9) = 1"(6-9), [5.56]
YO+ mo+2m) =(-1)' 1" (6.9), [5.57]
o7 d [7d6 sin® Y (0.9)" V" (0.9) =8, 1 Sy - [5.58]

They form a complete set of functions of 6 and ¢: any function of 6 and ¢ may be
written as (0, ©) = L Z_jcmg @ Y7 (0.9) . Thus, the general solution of Laplace’s
equation in spherical coordinates may be written as

(7, 8, 0) = Zps0 = igmes (Ao + Bim ¥ 1,7(0.9). [5.59]

The coefficients A4;,, and B,,, may be chosen so that the potential verifies the

boundary conditions of any electrostatic problem. If V' is symmetric about Oz, only
the m = 0 terms contribute to the series.

As an application, we consider a metallic sphere of radius R maintained at zero
potential and placed in an initially uniform field E,. We determine the potential, the
field, and the surface charge density on the sphere (Figure 5.5). We take the origin at
the center of the sphere and Oz in the direction of the field. Oz is an axis of
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symmetry for the system. Writing the solution in the form [5.54], the condition V"= 0
on the sphere (r = R) is satisfied if V(R, 0) = 5 [4; R' + B, R™"™"] P{cos ) = 0,
which must be verified for any 0. The Legendre polynomials being linearly
independent, we must have 4, R' + B;R™~'= 0. This allows us to write the potential

only with the coefficients A;: V(r, 0) = Z;5 4, [/ — ¥ r_H] P/(cos 0). At large
distance r from O, the field reduces to the uniform field E,, whose potential is
V=—-E,z=— E,r cos 6. Thus, we must have in the limit » >> R

V(r, 0) = Zpso A, [ = R r7'711 Py (cos 8) — —Er cos 6.

P/(cos 6) being a polynomial of degree / in cos 0, only the polynomials P, and P;
contribute to ¥, as the polynomials P,, P;, etc. give an asymptotic form which
depends on cos’0, cos’0, etc. Thus, using the expressions [5.42], we find

V=A,[1—R/r]Py(cos 8) + A,[r — R*/r*]1P (cos ) = A, [1-R/r] + A,[r — R*/i*] cos 6,

whose limit at large distance is 4, + A7 cos 0. Comparing with the asymptotic form
—Er cos 6, we deduce that A, = 0 and 4; = —E,,. Thus, the potential is given by

V(r, 8, 9) =— E [r — R*/¥*] cos 6. [5.60]

Figure 5.5. Metallic sphere placed in an electric field

Using the expression of the gradient in spherical coordinates [2.11], we may write
E(r)=-VV=E,[1 +2R/r] cos 0 e,+ E, [R*/r’ — 1] sin 6 eq. [5.61]

In particular, we find on the sphere E(r) = 3E, cos 0 e, which is normal to the
sphere. The surface charge density on the sphere is

qs=€(E.n) =¢,(E.e,) =3¢, E, cos 6. [5.62]
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5.7. Laplace’s equation in cylindrical coordinates

In cylindrical coordinates, Laplace’s equation takes the form

azppV+% BV + 0PV + 3%,V = 0. [5.63]
p

Let us try solutions of the form V(p, ¢, z) = F(p) H(®) Z(z). Substituting this
expression in the equation and dividing by FHZ, we find the equation

F'|F + F|pF + H'|p*H =-Z"/Z.

The left-hand side is a function of p and ¢, while the right-hand side is a function of
z. The equation may be identically satisfied only if both sides are equal to a constant
D. Thus, we have

Z'IZ=D, F’/F + F'|pF + H"/p’H = -D.

Depending on the physical situation, the solution of the equation Z”/Z = D is simple
harmonic if D is negative, exponential if D is positive or algebraic if D = 0.

Separating the variables in the equation of F and H, we find
p’F"/F + pF'|F + Dp*=— H"/H.

The left-hand side is a function of p, while the right-hand side is a function of ¢. The
equation is identically satisfied if both sides are equal to a constant C. Thus, we have

H'/[H=-C, p*F'IF+pF/F+Dp*=C.

By the same argument that we used in the previous section, we must have C = m’

where m is an integer and the solution for H is of the form
Ho()=A ™ +B ¢ ™,
Replacing C by m?*, we find that F(p) is a solution of Bessel equation

2
F+ %F’+( - M \F=o. [5.64]
P

a) The case D > 0:
If D is positive, setting k = VD andu = kp, equation [5.64] takes the form

WF"+uF'+ W —m*) F=0. [5.65]
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It has a solution, called Bessel function of the first kind, which is regular at the origin
and may be expressed as a power series about # =0

_1\?
I = iyt (50" [5.66]

If m is not equal to an integer, a second solution is obtained by changing m into —m.
The general solution of [5.65] is then F(u) = 4 J,(u) + B J_,(u). But, if m is an

integer, J_,(u) is not independent of J, (1), as J_,(u) = (=1)" Ju(u) form =0, 1, 2...
However, equation [5.65] also has a solution called the Besse! function of the second
kind (or Neumann function), which is singular at the origin and given by

Jy (u)cos(um) —J_,, (u)

Ny(u) = lim - [5.67]
p—m sin(Lr)
Thus, the general solution of [5.65] is
F(u) = Ay, Jp(u) + By Np(u). [5.68]

Figure 5.6a illustrates the first three Bessel and Neumann functions.

Figure 5.6. Bessel functions

Here are some useful properties of Bessel functions (X, stands for J, or N)):

= X1 () + Xy (1) = (2m/u) Xyy(u), [5.69]
—dX/du =" Xy_1(u) — Vo Xy (u) = Xy () — (m/u) Xp(u), [5.70]
= (ddu)[u” Xoy(u)] = "Xy 1 (u) = —u™" Xpyi(w), [5.71]

—Jn()= (7" 2m) [T do ) = (—1)"2m j(f"dq) elusindme) =15 771
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The asymptotic expressions of functions J;,, and N,, are

) > % 5y, O % cos(u — mn/2 — /4),

N (1) o0 @ (% )", Ny (1) - \/nz:u sin(u — mn/2— 1/4),

No(u) - %[m(% )+0.5772...], No(u) - \/% sin(u — w/4). [5.73]
The general solution of equation [5.64] is then

F(p) = A Jm (kp) + By Ny(kp). [5.74]

We note that, if V' is regular at the origin, the functions of the second kind N,, are

excluded. The solution for the function Z(z) is then Z(z) = M e+ Ne®and the
general solution of Poisson’s equation in cylindrical coordinates is a superposition
of the modes specified by the integer m and the constant &:

(P, @ 2) = Ty Ty Junlkp)[Mip € + Nype ™1 [A €™ +B, e 1. [5.75]

The electric field is given by

14 1 oV 14

E:_VV:—$ ep— E%e(p— E e, .

[5.76]

To evaluate it, we use equation [5.70] for the derivative of the Bessel functions.
b) The case D <0:
If D is negative, setting K =J-D andu= Kp, equation [5.64] takes the form
WF'"+uF' — @+ n)F=0. [5.77]

This is the so-called modified Bessel equation. It has the independent solutions

Ly g (u)= lim EM.
2 oo pom 2 sin(um)

_ 1
In(u) = szo W
[5.78]

Figure 5.6b illustrates the first three functions 7, and K),. The asymptotic expressions
of the functions 7, and K|, at small and large values of u are:
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I um 1 u
() > — (= (1) —> — e,
m( ) u—0 m! (2) ’ m( ) u—oco /27U
Kyu) — —Inu)+... Ku) — X e,
u—0 ’ U—> o0 2u
Ky — l(m—l)! (2)m Kn(u) — L o (m=0). [5.79]
u—0 2 u- > u—eo V2U
Thus, the general solution of equation [5.64] is
F(p) = A In(p) + By Kin(KP). [5.80]

If V is regular at the origin, the functions K, are excluded. The solution for the

function Z(z) is then Z(z) = M cos(kz) + N sin(kz) and the general solution of
Poisson’s equation is a superposition of the modes specified by the integer m and the
constant x:

V(P,9.2) = ZpnZ Al in(Kp)[M cos(icz) + N sin(kz)] [Ay €™ +B,, ¢ "], [5.81]

The electric field is evaluated by using equation [5.76] and the derivative of the
function 7, given by

dly
B0 @)= 10 = (1) + 2 1), [5.82]

5.8. Multipole expansion

Let us consider the expression [5.21] of the potential of a charge distribution
q,(r). We write [r — r'| = (¥ + "> — 217" cos 0)” where 0 is the angle of r and r'. As
the Legendre polynomials form a complete set for the functions of 0, we may write

Ur =¥ = ("% = 2ru+ Y = Zpo V1Y Pu)  Gfr7<r). [5.83]

If the charge distribution is localized in a volume 7, its potential at large distance
may be written as

() =Kl av’ g, () e = ¥'| = K Jlly dv” g () Zps0 717 Po(u)
=K, [y v’ q () {(UNP(w) + (¥ 117) Py(u) + (1) Py(u) +...}
=K, Il v’ q. (N {Ur + (17 u+ (P27 GuP =1) + ... [5.84]
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We may replace u = cos 0 par (r.r’)/r#" and obtain
7/ 4 1 . ! 7 d /.
) = Ko [ 0 g0+ B e gy = 7 Bug) rar) + ). (585

where o, B =1, 2 and 3. We may also write
V(r) = Koq/r + Kor.p/r + (Ky/21°) Zop Oop T Tp + - s [5.86]

where we have introduced the total charge g, the electric dipole moment p, and the
electric quadrupole moment defined by

g=Ilav’'q ), p=Illdv’q () and Qo =llydv’q () Bx'oex'y —r"8p]. [5.87]
The electric field is then

=-VV =Ko 1/ dv’ q,(c) " {(I+1DPu)'r + P u)[—r’ + r(rx’)/r] },

K, K, K,
Eg= r—3q xp+ s [3 xp(r.p) — rzpﬁ] + 7 [(5/2)r Qg xoxp - Oup Xol.  [5.88]
5.9. Other methods

To determine the potential obeying given boundary conditions, some other
methods may be used. We mention the variational method, which is used in several
branches of physics. It is based on the property that the distribution of charge in
electrostatic equilibrium is the one that makes the electrostatic energy

U.= %l &e E2= % [I] @ (E.D) [5.89]

minimal. Indeed, if it is not, a certain amount of energy is available to displace the
charge and supply them with kinetic energy. Thus, we may look for the solution of
Poisson or Laplace’s equations, which makes the energy minimal. For instance, we
may choose a superposition of the modes with the coefficients as variational
parameters. We calculate the total energy as a function of these parameters and we
determine their values in order to have the minimum energy.

At present, it is possible to use computers to numerically solve physical
problems by using easily programmable methods. The procedure consists in making
all of the physical quantities discrete. In particular, a continuous domain of the
variation of a coordinate x is divided into intervals of width d,. A continuous volume
7 is divided into discrete cells of sides 0, dy, and 6, in the directions Ox, Oy, and Oz
and the continuous points M(x, y, z) of 7 are replaced by the discrete nodes M, of a
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lattice. To integrate a function f{x) over the interval a <x <b, we divide this interval
into N parts by the points x, = a, x|, Xy,..., Xx_1, Xy = b and we replace the continuous
integral by a discrete sum

[ldx fix) = 224 flay+ SN f ) + V) [5.90]

Very often, the problems encountered in the applications of electromagnetism
have no simple analytic solution. Numerical methods can be used to solve the
electrostatic problems, that is, to determine the potential obeying Poisson’s equation
AV = — g, and verifying some boundary conditions. The numerical method
replaces the partial differential equation by a set of algebraic equations relating the
discrete potentials V;; to the nodes of the lattice.

The method of finite differences allows the expression of the derivative in terms
of the difference of the function at the nodes. Let us consider a function of a single
variable f(x) taking the discrete values f; = f{x;) and a function of two variables
V(x, y) taking the discrete values V;;= V(x;, y;). We define the successive derivatives
by the symmetric expressions

offox |; = (fir1 —fi-1)/20y, Of10x% [i= (fisr = 265 + fi)/S,
V/0x [ij= (Vier j— Vi1 )/28s, V19 |ij= (Vijr1— Vij-1)/20,,
IVIOK |ij= (Vierj— 2Vig + Vi )8C, OVIY [yy= (Vijor — 2Vij + Vig-)/B,
*VI0x0y [i5= (Vir1jo1 T Vicrjo1 = Vierjo1 — Vier j+1)/48, 8, ete. [5.91]

The two-dimensional Poisson’s equation 0V + azny: N = —q,/€ becomes

(Vierj=2Vij + Vi )8 + (Vijr = 2Vij + Vij)/8, = e [5.92]

In particular, if 8, = 6, = 0, we find a set of linear algebraic equations
Vig +Vieg + Vign + Vi —4Vi=n; 8 [5.93]

If a node M is situated on the boundary surface S, whose potential is V,, the
Dirichlet boundary condition is imposed simply by setting Vi;x = V,. The
Neumann’s condition £, = —dV/dx, = g/e on S, is more complicated. To simplify,
we consider the one-dimensional case with a node x; on S,. To calculate the
derivative of V at x; by using equations [5.91], we must assume that a fictive node x'
exists on the other side of S, with a potential V' given by (V' — V,) = (g4/€),
(Figure 5.7). Knowing V7, we may calculate the second derivative at x; and write the
discrete Poisson’s equation at the points situated on the boundaries.
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Figure 5.7. Making V discrete on a segment and on a surface

The linear equations [5.92] enable the determination of the potential Vj;y at all
the nodes. We may solve them by using appropriate computer programs. It is also
possible to use the so-called relaxation method. 1t consists in writing equation [5.93]
as

Vig="Vij — vy &,  where Vi=Yi(Virj + Vij+ Vign+ Vig). [5.94]

We start by taking some reasonable values Vi,j“) (that we call first approximation),
use [5.94] to calculate the second approximation Vi,j(z) = Vijj W_ Vam; &%, then use
these values and equation [5.94] to calculate the third approximation and so on,
obtaining, by iteration, Vi,-(kﬂ) =V ®- /an;j until the relative difference between
successive iterations [V} j(k“) - Vij ©y Vi’j(k) becomes less than a certain value, for

instance, 107,

5.10. Problems

P5.1 Consider a volume 7 containing free charges and dielectrics (assumed linear
and isotropic for simplicity) and bounded by surfaces S; and an enclosure S,
(eventually at infinity). To show the unicity of the solution, assume that there are
two solutions ¥ and V. We set 8V =V — V', 8E = E — E' and 8D = D — D' the
corresponding electric field and displacement. a) What are the boundary conditions
of 8V on the conductors whose potential is given and on the conductors whose total
charge is given? b) Consider the vector identity V(87 8D) = 6V (V.6D) + (6D.VdV).
Show Gauss’s equation V.8D = 0, thus V(8V D) = (0D.VdF). Consider the integral
of both sides of the identity on?. Using Gauss-Ostrogradsky’s theorem, show that

[{l,d7 V(8V 8D) = I, ds' n8D(r') 8¥(r) =0,
where the S; stands for all boundary surfaces including the enclosure. Deduce that
[[l,d7 &D.VG&y)=— [[] d7edE* =0,

which is impossible unless OE =0, thus E=E',D=D"'and V= V",
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Method of images

PS.2 A horizontal line is formed by a long cylindrical conductor of radius R and it
lies at height # from the ground (% >> R). Calculate the difference in potential
between the ground and this conductor. Deduce the capacitance per unit length of
this line. What is the capacitance of a line formed par two conductors separated by a
distance d if they lie in a horizontal plane and if they lie in a vertical plane?

Method of analytic functions

P5.3 Consider the logarithmic function f{z) = @ In z + b. Using the exponential
representation z = pei‘p, show that f{z) = V' + iU = (a In p + b) + i@. If the lines
V' = C; are the equipotential lines, the curves ¢ = C are the lines of field (where C;
and () are constants). This is the case of a symmetric field about Oz. Consider a

cylindrical conductor of radius » and zero potential surrounded by a cylindrical shell
of radius R and potential V. Calculate the potential and the field.

Laplace’s equation in Cartesian coordinates

PS.4 Use Laplace’s equation and the method of separation of variables to analyze
the potential and the field of a parallel plate capacitor if one of its plates has zero
potential and the other a potential V.

Figure 5.8. Problem 5.5

P5.5 Determine the potential and the field in a region? bounded by two plane plates
parallel to Oxy and an electrode in the Oxz plane (Figure 5.8). The plates have large
dimensions and are separated by a distance d. They have zero potential and the
electrode has a potential V. Is this set up possible?

Laplace’s equation in spherical coordinates

P5.6 Consider a linear charge of uniform density ¢; between the points of

coordinates —a and +a of the z axis. Using Legendre polynomials, show that the
potential at large distance may be written in the form

V= Kyq1.(2alr) [P(cos 0) + (a*/3r) Py(cos 0 ) + (a*/5r*) Py(cos ) +...
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PS.7 A dielectric ball of radius R and permittivity € is placed in an initially uniform
field E, = E.e,. Using the method of separation of variables, write the general

solution of Laplace’s equation. Impose the continuity conditions on the ball and
deduce that the external and the internal potentials are given by

V=4 —Ez[1 —(e-e )R (e +2e)’] and VW =4, - Ez[3e,/(e + 2¢,].

Deduce that the field is uniform inside the ball and that the polarization is
P = [3e,(e — &,)/(€ + 2¢,)]E,, while the external field is the superposition of the field
E, and that of an electric dipole P? where 7 is the volume of the sphere.



Chapter 6

Magnetic Field in Vacuum

The Earth’s magnetic field and the magnetism of some natural ores or iron rods
that have been stroked by a magnet, have been known in the Middle East and China
since antiquity. In 1821 Oersted discovered that an electric current produces a
magnetic field. This effect was studied by Ampére, Biot, Savart, and others. Ampére
assumed that permanent magnetism is due to microscopic currents in matter; this
idea is retained in modern physics. Conversely, Faraday discovered in 1831 that a
variable magnetic field induces an electric current in circuits. In 1888, Maxwell unified
electricity and magnetism in a single theory, called electromagnetism. Currently,
magnetism has many technological applications: magnets and electromagnets are
used in generators and motors, instruments, computers, telecommunications, etc.

In this chapter, we introduce the concept of magnetic field and we study its
action on magnetic currents. Then we study the creation of magnetic fields by
moving charges and currents, magnetic energy and the interactions of circuits.

6.1. Force exerted by a magnetic field on a moving charge

The magnetic field is defined by its action on a charged particle in motion
(Figure 6.1a in the case of positive charge). The experiment shows that this force is
given by:

Fy=¢vXB. [6.1]

Electromagnetism: Maxwell Equations, Wave Propagation and Emission Tamer Bécherrawy
© 2012 ISTE Ltd. Published 2012 by ISTE Ltd.
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B is the magnetic field or, more precisely, the magnetic induction field. The
magnetic force Fy; vanishes if the particle is at rest or if its velocity is oriented in the

direction of the field B. The SI unit of magnetic field is the kg/s>. A called tesla (T).

The magnetic force always being orthogonal to the charged particle velocity, the
work of this force dW = Fy.dr = Fy.v dt is equal to zero. If the particle is subject to
no other forces, its kinetic energy remains constant. Thus, its speed remains constant
but the direction of its velocity changes. Conversely, to displace a charged particle
in a field B without modification of its kinetic energy, an external agent must exert a
force F” = —Fy; = —q(v X B), but no work is required for this displacement. Thus, it is
not possible to define a potential energy of the particle in the field B. In other words,
this force is not conservative, contrarily to the electric force.

(@) (b) (©)

Figure 6.1. a) Action of a magnetic field on a positive charge. b) Thomson experiment.
¢) Hall effect in the case of negative charge carrier

If a particle of charge ¢ moves with a velocity v in both an electric field E and a
magnetic field B, it is subject to the Lorentz force,

F=g(E+vxB). [6.2]

In a famous experiment in 1897, Thomson observed the action of a known magnetic
field B and an adjustable orthogonal electric field E on a focalized cathode ray
(Figure 6.1b). As the beam was deviated by either field acting separately, it is
formed by charged particles. Turning on both fields, the beam suffers no deviation if

E + v x B =0, thus v=E/B =,/2eV/m , where V is the accelerating potential of the

particles. This experiment allowed Thomson to determine the ratio e/m for electrons.

The Lorentz force manifests itself in the Hall effect. In a famous experiment in
1879, Hall showed (before the discovery of the electron) that the charge carriers in
metallic conductors are negatively charged particles. Figure 6.1c illustrates the
motion of charges in a conducting strip of width 4 and thickness b, carrying a
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current / and placed in a magnetic field B orthogonal to the strip. If the charges are
negative, the magnetic force pushes the charges and makes them accumulate on the
lateral face S; of the strip, leaving the other face S, positively charged. These

surface charges produce a Hall electric field Ey and the flow of charge becomes
stationary if Ey + v X B = 0. The surface S, is then at a higher potential than 5.
This is what Hall observed. In the case of positive charge carriers, the directions of
Fg, Fg and Ey would be reversed and S, would be at a lower potential than 5.
Actually, we know that the charge carriers in metals are the free electrons of charge
—e. The Hall field Ey; = —v X B produces a measurable Hall potential V' = d|vxB| =
vBd. The current density is j = I/bd = eN,v, where N, is the number of free electrons
per unit volume. A measurement of V}; enables us to determine v, and hence, the
number of conduction electrons per unit volume N, = IB/beVy. For instance, in the
case of a strip of silver with d = 1 cm, b = 0.1 mm, carrying an intensity / = 10 A in
a field B =1 T, the Hall potential is of the order of 10 uV. This corresponds to N, =
6 x 10% electrons/cm’® (about 1 free electron per atom). In the case of polyvalent
metals and magnetic metals (iron, nickel, etc.) and in the case of semiconductors, it
is not possible to give a simple interpretation of the Hall effect by using a simple
classical model with electrons as charge carriers. Quantum models are required to
give reasonable agreement with experiment.

The Hall effect is an important means of investigation of the properties of solid
conductors and semiconductors. In the case of semiconductors, we have a
superposition of the Hall effect of electrons and that of positive koles. The number
of charge carriers is much smaller than in metals; thus, the Hall effect is more
important (although it is somehow attenuated by the weakness of the current
density). The Hall potential /'y being proportional to the field B, the Hall effect in a

strip of semiconductor may be used to measure the magnetic field.

6.2. Force exerted by a magnetic field on a current, Laplace’s force

The force that a field B exerts on the conduction charges Fy; = X; g;(v; X B) is
transmitted to the conductor if it is rigid. To simplify, we assume that the current is
due to the displacement of N, particles per unit volume, of charge ¢ and average
velocity v. An element of volume &7 of the conductor contains N, particles. Thus,
it is subject to a force dFy; = g N,@d? v x B = (j XB) &7 , where j = gN,v is the current
density (see section 3.6). The force that acts on the unit volume of the conductor is

Fy,=jxB. [6.3]

Consider an element dL of a thin conductor of section S and volume & = S dL
(Figure 6.2a). The force exerted by the field B on dL is dF\; = d7 F;,, = dLS(j X B).
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As j is oriented in the direction of dL, we may write dL j =j dL. The intensity being
1= 5j, the force may be written as

dFy =1dL x B. [6.4]

This is Laplace’s law for the force on dL. This force is orthogonal to dL and B.

@ (b) © (d)

Figure 6.2. Force exerted by a field B: a) on an element dL of a circuit, and b) on a finite
circuit. c) Absolute measurement of B using a Cotton’s balance. d) Electromagnetic pump

The resultant force exerted by a field B on a finite circuit ¢ is the integral of
Laplace’s force over all the elements dr of the circuit, we find:

Fy=l,dFy=1],drxB, [6.5]
where B is the field acting on dr at each point of ¢. If B is uniform, we may write
Fy=1{l,dr} xB=1(LxB), [6.6]

where L = [ ¢ dr = lim X, dr; is the space vector that joins the origin P of ¢ to its end
O (Figure 6.2b). This relation shows that Fy; does not depend on the shape of the
circuit between P and Q; it is the same as the force acting on a rectilinear circuit joining
P to Q. If a circuit ¢ is closed and placed in a uniform field, | e dr =1lim X, dr;= 0 and
Fy;=0. Thus, a uniform B field exerts no resultant force on a closed circuit.

Cotton’s balance (Figure 6.2¢) provides an absolute measurement of a magnetic
field B by measuring the force that it exerts on a circuit MNPQ of n turns
transporting a known current /. This force is measured by using a balance. The
forces exerted on the vertical parts MN and PQ cancel and the force acting on the
part NP, equal to nLIB, is counterbalanced by the weight mg. We deduce that
B=mg/nLl
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The electromagnetic pump (Figure 6.2d) is another application of the magnetic
force on currents. Consider a conducting liquid flowing in a rectangular pipe whose
lateral faces are two electrodes, between them an electric current is established in the
liquid in the direction Oy over a distance d. A magnetic field B pointing in the
direction Oz acts on the liquid with a force I/Bd. This system may be used in a
nuclear reactor to pump liquid sodium that is used to transfer the heat generated in
the core of the reactor.

6.3. Magnetic flux and vector potential
The flux of B through a surface S is
®=[].dsn.B. [6.7]

The magnetic flux plays an important part in the analysis of magnetic forces and
energy and in the phenomena of induction. One of the important properties of the
magnetic flux is that it is conservative, i.e. the flux through a closed surface is zero

[lcdsnB=0. [6.8]

(b)

Figure 6.3. Conservation of the flux of B: a) through a closed surface S, b) through a tube of
field, and c) the flux of B is the circulation of A on @

The magnetic flux may be visualized as proportional to the number of the lines
of field, which pass through the surface. The conservation of flux means that any
closed surface S may be divided into two parts (Figure 6.3a): S;, where B is ingoing
(thus @ < 0) and S,, where B is outgoing (thus @, > 0). We must have ®; + &, = 0.
In other words, each field line entering S, leaves it. Contrary to the electric field, the
magnetic field cannot diverge from “positive magnetic charges” or converge toward
“negative magnetic charges”. In other words, there are no magnetic charges. If we
consider a field tube, i.e. having its lateral surface tangent to the field, and ending by
two sections S; and S, normal to B (Figure 6.3b). The magnetic fluxes @, and ®,
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through these sections are positive and the flux through the lateral surface is equal to
zero. As @ is inward while @, is outward, the total outward flux through the tube is
& = @, — @, and this must be zero. We deduce that B,S, = B,S; thus, if 85, < 5|, we
must have B, > B,.

Using Gauss-Ostrogradsky’s theorem, we may transform the flux through a
closed surface into the integral of the divergence of B over the enclosed volume 7,

thus J[l, @ V.B = 0 for any 7 and we have the equation:
V.B=0. [6.9]

Similar to Gauss’s law, this is a fundamental equation of electromagnetism, which
remains valid even in the case of time-dependent phenomena. The analogy with
Gauss’s law indicates that there are no magnetic charges. This fact is confirmed
experimentally.

The SI unit of magnetic flux is the kg.m%s>.A or N.m/A called weber (Wb) and
the SI unit of magnetic field is the Wb/m?, called also fesla. The gauss
(1 G =107"T) is another unit of magnetic field that is frequently used. The Earth’s
field is about 0.5 G, the fields produced by electric circuits are of the order of the
gauss and it may reach 10 to 20 kG near the poles of an iron-filled electromagnet
and 100 kG for a superconducting magnet.

Equation V.B = 0 implies that B(r) may be written as the curl of a vector
potential A(r) (see section A.7 of the appendix A)

B=VxA, [6.10]
It should be noted that the gradient of an arbitrary function f may be added to A
A(r) > A'(r)=A(r) + VAr) [6.11]

without changing the field B, because of the identity Vx(Vf) = 0. The transformation
[6.11] is called a gauge transformation. It is always possible to find a gauge function
f'such that A has zero divergence in the case of static phenomena

V.A=0. [6.12]

Using Stokes’ theorem, it is possible to express the flux of the field B through an
open surface S as the circulation of A on the contour ¢ bounding S (Figure 6.3¢)

®=[[sds (n.B) = [[sdsn.(V x A) =], dr.A. [6.13]

This result explains why the flux of B depends only on ¢ and not on the surface S.
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6.4. Magnetic field of particles and currents, Biot-Savart’s law

A particle of charge ¢, position r’, and velocity v (Figure 6.4a) produces at each
point r a magnetic field

B(r)= Ko q(v—>;R) , where R=r—-r". [6.14]
4t R

R is the relative position of the point, where B is evaluated, measured from the
position of the particle. It may be shown that the corresponding vector potential is

- Mo gv
Ar) = . 6.15

@ (b) © (d)

Figure 6.4. Magnetic field and vector potential a) of a charged particle of velocity v, b) of a
circuit element dL (Biot-Savart’s law), c) of a finite thin circuit, and d) of a circular loop

The expression [6.14], which is assumed here without proof, is verified by all its
consequences. We note that it is postulated for a particle of constant velocity. This is
the case for charge carriers in a conductor if the current is constant but not for a free
particle (as it emits radiation and hence energy, momentum, etc.). The constant p, is

the magnetic permeability of vacuum. Its numerical SI value is:
o =41 x 107 kgmA™s72, [6.16]

As we shall see later, electromagnetic theory predicts that the permittivity of
vacuum €, and its magnetic permeability p, are related to the speed of light in
vacuum ¢ by the relation gy, = 1/c*. The SI unit of intensity (the ampere) is defined
in relation to the magnetic interaction of two conductors (see section 6.11C), which
is proportional to p, and the ampere is chosen so that p, is given by [6.16]. As the
meter is actually defined so that ¢ is exactly 299 792 458 m/s, the result is that
g,=1/c’,=8.854 187 82 x 107> A%.s* /m’ kg.
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The magnetic field obeys the superposition principle: the field and the vector
potential produced by several systems (1), (2) ... are the vector sums X;B; and Z;A;

of the fields and the vector potentials of the individual systems. For instance, the
field and vector potential produced at r by the particles of charges g; at points r; are

_ b s qi(viXRy)
B(r)= oy Vi 280
® an RS

. A =Z‘—;zi%, where Ri=r—r. [6.17]

Consider now an element of a thin circuit of length dL and section S carrying a
current / (Figure 6.4b). To simplify, we assume that the charge carriers have equal
charge ¢ and velocity v. The volume of the element being &7 = S dL, the number of
conduction charges that it contains is dN = N, S dL, where N, is the number of
charges per unit volume. If dL is small compared to the distance R to the point r,
where the field is evaluated, the distances R; from the charges to the point r and
hence their fields B;(r) are equal. Thus, the field produced by the element dL at r is
dB(r) = (1,/4™) gN,S dL (v x R)/R’. Noting that the current density is j = N,qv, the
current intensity is / =jS and j dL = j dL (as j is the direction of dL), we get

dB(r)= ke s dLRﬁR, R=r-r. [6.18]

This result is known as Biot-Savart’s law. It expresses the field produced at r by the
element dL in terms of macroscopic quantities (making no reference to the
conduction particles). This elementary field decreases as 1/R*. It may be used to
evaluate the field of a finite circuit ¢ by integration. As [ is the same at any point of
the circuit, we find the field and the vector potential (Figure 6.4c).

dar'xR

dr'
I’E e

B(r)=|,dB=o/], o A=t R=r—-r. [6.19]
4n 47

In the case of currents distributed in a volume 7 with a volume current density

j(r') or on a surface § with a current density j,(r’), we decompose 7 and S into

elements of volume @7’ or of area dS”and we get by integration

Y A XR T i)
B= 2l =—5—. Am=2lhar ==,
_ M ,Js(r)xR _ My Js(r)
B(r)= an ”sds TR A(r)—Eﬁst R [6.20]

We note that a surface current density jy(r') may be considered as a volume
current density j(r') = jy(r') d(z' — z,), where z, is the normal coordinate to the
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surface, and a line current / parallel to Oz corresponds to j,(r') = I &(x'—x,)0(v'"-y,)e,,
where x, and y, are the x and y coordinates to the current carrying line.

As an application, consider a circular loop ¢ of radius a and current /, which we
take in the plane Oxy with its center at O (Figure 6.4d). We evaluate the field B at a
point M on the axis Oz at a distance OM = z. Using Biot-Savart’s law [6.18], an
element dL at P produces at M a field dB that is orthogonal to dL and R = PM .
Thus dB is in the azimuthal plane OMP and its magnitude is dB = (u,//4m)(dL/R?).
The elements dL of the loop being at the same distance R = (a* + z%)”* to M, two
elements dL; and dL, symmetric with respect to O produce two fields dB; and dB,
that are symmetric with respect to Oz. Their components perpendicular to Oz cancel
out. Adding their components along Oz, we get

a_ Wla
R 4np®

2
B=e,],dB,=¢,],dBcosO=¢,],dB ezdezfﬁgng[azu

6.5. Magnetic moment

A) Moment of the magnetic forces on a circuit

A magnetic field B may exert a moment of force on a closed circuit carrying a
current /. This moment may provoke a rotation of the circuit. Consider for instance a
rectangular circuit MNPQ free to rotate about the axis Oz that joins the mid points of
MP and NQ (Figure 6.5a). The forces F; and F, that a uniform field B parallel to Ox
exerts on the sides MQ and PN are opposite and oriented in the direction of Oz.
Thus, they produce no moment with respect to O. The sides MN and PQ of length L
are orthogonal to B. They are subject to opposite forces F3 = —/LB e, and F4 =
ILB e,. Let n be the unit vector normal to the circuit and oriented according to the
right-hand rule and let 6 be the angle that n forms with B measured algebraically
about Oz. The total moment of the magnetic forces with respect to O is the vector
sum of the moments of F5 and F:

I'v=—LL'IBsinBe,=—SIBsin0e,, (uniform field)  [6.22]

where § = LL’ is the area of the circuit. We define the magnetic moment of the
circuit as the vector

7= IS n. [6.23]
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It has a magnitude /S and it is normal to the circuit and oriented according to the
right-hand rule with the circuit oriented in the direction of the current. Thus, the
moment of the magnetic forces may be written as

T'v=%xB (uniform field). [6.24]

This expression is similar to the moment of the electric forces I'r = p X E exerted by

an electric field on an electric dipole moment p. It is valid if the dimensions of the
circuit are small enough for the field B to be considered as constant.

(@ (b) (©

Figure 6.5. a) Moment of the magnetic forces exerted by a uniform field B on a rectangular
circuit, and b) magnetic moment of a circuit, and c) field lines of a magnetic dipole

A large circuit ¢ may be considered as a juxtaposition of infinitesimal small
circuits ¢ as in Figure 6.5b. The coinciding sides carry opposite currents and the
magnetic force on them cancel; thus, we are left with the magnetic force on the
circuit @. Also, the magnetic moment I'y; on ¢ is the vector sum of the magnetic
moments X; / dS; nxB; on these infinitesimal circuits and, in the limit of
infinitesimal dS;, it may be written as the integral

Ty =11lcds’n(r’) x B(r). [6.25]

S is a surface bounded by the circuit ¢, n(r’) is the unit vector normal to S and B(r”)
is the field at the running point r’ of S.

It is only in the case of a uniform magnetic field B over the surface S that the
expression [6.25] may be written as

Ty =%xB, where 7% =1[cds’n(r’)  (uniform field). [6.26]
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7 is the magnetic moment of the circuit ¢. We note that the integral may be
evaluated over any surface S bounded by ¢. Particularly, if the circuit is planar, we
may take for S the plane surface; then, n is the same at all the points of S and

#=SIn. [6.27]

We note also that, if the circuit is formed by N turns, 7 must be multiplied by N.

The expressions [6.26] may be generalized to a distribution of current with density j
in a volume 7, its magnetic moment is

=", v’ v xj(r). [6.28]

Electric motors use the moment of the magnetic forces acting on a coil but in a
radial magnetic field. Galvanometers also use the moment of the magnetic forces
acting on a coil, which is proportional to the current intensity. The magnetic moment
is # = NSI n and the torque exerted by a radial field B is NSIB. If, in addition, the
coil is subject to the restoring torque I = —C0 of a spiral spring, the equilibrium
condition is NSIB = (0. Thus, the current intensity is proportional to the rotation
angle of the coil.

B) Field of a small circuit at large distance

The field of the circular loop of Figure 6.4d at a large distance z is
B=(u#/2nz"),  where #=I1Se~=na’le,. [6.29]

To calculate the field off the axis Oz, as the system has rotation symmetry about Oz,
we evaluate B at points M in the plane Oyz for instance. We specify M by its
spherical coordinates (r, 6, m/2) and the point P of the loop by its polar coordinates
(a, @) in the Oxy plane. The element dL corresponds to a variation d, hence

oP =acos@Qe tasinge, OM =rsinBe,+rcosbe,

R=PM =—acos Qe+ (rsin®-asing)e,+rcosbe,

R=PM=[a*+r* -2 arsin@sin ¢]”*, dL = a(—sin @ e, + cos ¢ e,) do.
Thus, using Biot-Savart’s law, the field at M may be written as

_wlp dLxXR o onde . D
Bfﬁfg 2 —;l—nlajlo ?[rcosG(cosq)eX+s1n(pey)+(a—rs1n6sm(p)ez].

This integral cannot be expressed with simple functions. If we are interested only in
the field at large distance (» >> a), we may write to first order in a/R

R=r[1-(alr)sin®sing], VR = (1/P*) [1 + 3 (a/r) sin O sin ¢ ],



164  Electromagnetism

B = (u,/a’/4r’) [ (3sin @ cos§) e, +(2—3sin’0) e, ]. [6.30]

We may also write B in the vector form
B= 4“_5 B3#x)r— 7], where #=ISe,. [6.31]
o

At the same approximation, the expression [6.19] gives the vector potential at r

A(r) = (uol /4m)] ,dr'/R
= (nola/dnr) joz " de' [-sing’ e, + cos ¢’ e ][1 + (a/r) cos@ cos@’ + (a/r) sing sin@’]
= (Rold’/417) e = (W MHAT) €= (L /4T) (7 % ¥)/7. [6.32]

The expression [6.31] is similar to the expression [2.38] of the electric field E of an
electric dipole p. We say that, at large distances, the loop is equivalent to a magnetic
moment 7. This result is valid for any circuit ¢: its field B and vector potential A at
large distances are given by [6.31] and [6.32] with a magnetic moment

m=1]lsdsn. [6.33]
The field lines of a magnetic dipole at large distances are illustrated in Figure 6.5c.

C) Earth’s magnetic field

Like many celestial bodies, the Earth has its own magnetic field. The field
outside the Earth is almost the same as that of a large magnet NS placed at the center
of the Earth. The south pole of this magnet is in the northern hemisphere while its
north pole is in the southern hemisphere. The geographic poles are the points where
the rotation axis of the Earth intercepts its surface. The magnetic axis makes an
angle of approximately 11.5° with the rotation axis (Figure 6.6). For this reason, a
compass will not align itself exactly due north but toward a point situated at about
1600 km from the geographic North Pole and, in fact, this is the magnetic south pole
of the Earth. Aside from extremely small daily and annual variations, this angle
undergoes important variations with a period of 960 years and has even reversed
many times in the Earth’s geological history. It is widely assumed that the Earth’s
magnetic field is generated by the motion of the liquid metallic core of the Earth.

The Earth’s magnetic field is not horizontal except at the equator; it makes an
angle, o, called inclination, with the horizontal plane. This angle and the magnitude
of the field depend on the geographic location. At a latitude of 45° north,
B=5.8x10"Tand o = 73°. Thus, the vertical component is 5.5 x 10~ T downward
and the horizontal component is 1.7 x 107 T, and it makes an angle called
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declination, which is approximately 15° to the west, with the geographical meridian.
The Earth’s magnetic field extends thousands of kilometers in altitude. Charged
cosmic rays (mostly from the Sun) are trapped by this magnetic field (see section
14.4), they spiral around the field and form Van Allen radiation belts surrounding
the planet. When these particles collide with air molecules, the latter emit light in a
wonderful display of colors called the aurora borealis and aurora australis at more
than 60° latitude north and south.

Earth’s rotation axis: ;=" Magnetic south pole Sy

Magnetic axis

~Geographic north pole Ng

X000,

.  Inclination
—> B
Solar wind i N S (geographic)

—_ £ -Magnetic north pole Ny

209

Magnetic meridian

Geographic south pole Ng

Figure 6.6. Earth’s magnetic field and the equivalent magnet. The magnetic south pole and
north pole are close to the geographic North and South Poles respectively.
The field extends to thousands of kilometers in altitude and is
almost symmetrical about the Earth’s magnetic axis

6.6. Symmetries of the magnetic field

As the source of the magnetic field is the electric current, a symmetry of the
distribution of currents implies the same symmetry for the field B and the vector
potential A. To analyze B and A, it is practical to use coordinates that are convenient
to impose this symmetry. As in the case of the electric field (section 2.5), if the
configuration of currents has a translational symmetry in a direction D, it is
convenient to have one of the axes of coordinates, Oz for instance, parallel to D and
to use Cartesian or cylindrical coordinates about Oz. The components of B and A
will not depend on z. If the currents have a rotational symmetry about an axis, it is
convenient to use cylindrical or spherical coordinates about this axis taken as Oz.
The components By, By, and B, (or B,, By, and B,,) will not depend on the angle .

Consider now the reflections. The Lorentz force F = g(E + v X B) being a true
vector and ¢ a true scalar, the cross product v X B is a true vector. As v is a true
vector, B must be a pseudo-vector (see section 1.7b) and, as the vector operator V is
a true vector, the relation B =V x A shows that A is a true vector, like j. This means
that, in reflections, A transforms like r or j, while B transforms like r or j with an
additional change of sign. As A is defined up to a gauge transformation [6.11], the
gauge function f{r, f) must be a true scalar function.
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— If the configuration of currents is symmetric in the reflection with respect to
the plane Oxy for instance, it is convenient to use Cartesian or cylindrical
coordinates about Oz. Then, B and A transform according to:

B(x,y,2)==-B,(x,y,—2) and B,x, y, z) = B,(x, y, —2),
Ayx, y,2)=Ay(x,y,—2) and A, x, y, 2) =—A,x, y, —2). [6.34]

Particularly, at the points M, of Oxy, we find B/(x, y, 0) = 0 and 4,(x, y, 0) = 0.
More generally, if the distribution of currents is symmetric with respect to a
plane IT (Figure 6.7a), i.e. j, (M) = j, (M) and j,(M) = —j, (M) at points M and M~

symmetric with respect to I, the field B is antisymmetric and A is symmetric, hence

B/(M)=-B,M’), and B, (M)=B (M),
AM)=A M), and A (M)=-A M) [6.35]

Particularly, at the points M, of I1, we must have B,(M,) = —B(M,) and A | (M,) =
—AJ_(MO), thus B//(MO) =0and AJ_(MO) =0.

- B i B
@ MABL : M‘/——JBL

TBO By - B, B/
—

Mo - I1 IT

B[ 8 By

<Cpo M & v

@ By = B B,

j ]

() (b)

Figure 6.7. Field of a distribution of currents: a) symmetric with
respect to a plane I, and b) antisymmetric with respect to I1

— If the configuration of currents is antisymmetric in the reflection with respect
to the plane Oxy for instance, B and A transform according to:

B//(X, Y Z) = B// (x’ Y, _Z) and BZ(XJ Y Z) = _BZ(-X: ) _Z)s
Ayx, y, 2) =—Ay(x,y,—2) and  A,(x, y, 2) = A,(x, y, —2). [6.36]

We deduce that B,(x, y, 0) = 0 and we may take A//(x, y, z) = 0 in some gauges. More
generally, if the distribution of current is antisymmetric with respect to a plane
IT (Figure 6.7b), that is j, (M) = —j,(M’) and j; (M) = j,(M’) at points M and M~
symmetric with respect to I, the field B is symmetric and A is antisymmetric, hence
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B/(M)=B,(M’) and B,(M)=-B,(M'),
AM)=-A, M) and A M)=A (M) . [6.37]

Particularly, at the points M, of T1, we have B,(M,) = —B,(M,), hence B,(M,) =0
and A/(M,) = -A,(M,), and we may take A, (M,) = 0. At M,, the field B is in the
plane IT and A is perpendicular to IT.

In the case of currents such j(r) = — j(—r), we must have B(r) = B(-r) and A(r) =
—A(-1) and in the case of currents such that j(r) = j(-r), we must have B(r) =
—B(-r) and A(r) = A(-1).

6.7. Ampére’s law in the integral form

Contrary to the electric field, the magnetic field is not conservative. Consider a
circuit ¢ carrying a current / and a closed and oriented path 4, which we designate
as an Ampérian contour. Let S be a surface bounded by 4. The field B(r,) produced
by € at a running point r, of #is given by [6.19] and the circulation of B over #is

[edraB(ry) = (nol/4m)] 4 dr .l p dre x RIR? = (n /4] 4, (drp % dre).RIR?,  [6.38]

where rc is the position of the running point on ¢ and R = r,—rc. We may show that
the double integral over ¢ and 4 is zero if ¢ does not pass within # (Figure 6.8a) and
it is equal to + 47 if @ passes within 4 The sign is () according to the right-hand
rule (see section 6.9B). Thus, the right-hand side of [6.38] is = p /. In the case of
several current-carrying circuits ¢, the total field B is the superposition of the fields
of the various circuits taken individually. The circuits that do not pass within 4
produce fields whose circulations are equal to zero, and those that pass within #
produce fields whose circulations are +p/;. For instance, in the case of the contour
A of Figure 6.8a, we find [, dr.B = (-1, + I; — 2I,). Designating by /'™ the total
intensity that passes within # (i.e. crosses S), we may write Ampére’s law in the
integral form:

[ drB=p, 1™, where V=731, . [6.39]

It should be noted that /™ includes all types of electric current (conduction
currents, beams of charged particles, convection currents, etc.). On the other hand,
only the currents that contribute to the field B in the integral |, dr.B must be
included. For instance, if we analyze the field B produced by a circuit ¢; and acting
on a circuit ¢, the current of ¢&, should not be included in I(i“), because it does not
contribute to B;. It is to be noted that this expression of Ampere’s law holds only in
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time-independent phenomena. It does not hold if the current varies (as in the case of
alternating current) or if charged particles pass inside the Ampérian contour 4.

B

Figure 6.8. a) Ampére’s law, and b) evaluation of B and A of a cylinder

In some simple symmetrical configurations of currents, it is possible to use
Ampére’s law to calculate B at points M. If we can find an Ampérian contour /4,
passing by M and such that B has a uniform magnitude and is tangent to - the
circulation of B along A is simply LB, where L is the length of 4 hence B = p J/™/L.
The contour # may include a part, where B is equal to zero or normal to 4. This part
will not be included in evaluating L.

To illustrate this method, we consider a very long cylinder of radius R carrying a
volume current density j(p) =j(p) e, symmetric about the axis Oz (Figure 6.8b). We
analyze the symmetries of the distribution of current and their consequences first.

— The current density j(p) having a translational symmetry in the direction of Oz,
the cylindrical components B, By, B,, 4, Ay and 4, do not depend on z.

—j(p) having a rotational symmetry about Oz, the components B, By, B,, Ay, Ag
and A4, do not depend on @.

—j(p) has a reflection symmetry with respect to the azimuthal plane IT,
containing the point M, and Oz, i.e. j, (M) = j, (M) and j, (M") = —j (M) at M and M~
symmetric with respect to II;. The equation B,(M) = —B,(M’) and A (M) =
—A (M’) in [6.35] imply that B, =0, B, = 0 and 4,= 0. The current density also has
a reflection antisymmetry with respect to the plane I, containing M, and normal to
Oz, i.e. j (M) =—j, (M) and j,(M’) = j (M). The equation B,(x, y, z) = —B,(x, y, —2)
and A/(x, y, z2) = =A/ (x, y, —z) in [6.36] imply that B, = 0, 4, = 0 and 4, = 0. Thus,
B is tangent to the circle # of axis Oz and passing by M, and its magnitude is
uniform on this circle, while A has one component 4,(p). The circulation of B on #
is 2mpB and Ampeére’s law gives B = (u [™™/2mp) eo- If M, is inside the cylinder (p <
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R), the intensity that passes inside A4 is /'™ = ”s dsn.j=2n[ldp'p' j(p') but,if M, is
outside the cylinder (p > R), I'" =1 = 2n j(f dp'p' j(p') . Thus, the field may be

written as

B = (ul2mp) ey, B™=(uyp)eg [rdp p'j(p'). [6.40]
Particularly, if the current density is uniform, we find j = I/nR’, hence

B= (u,l2np) ey,  B=(u,Ip/2nR%) e, [6.41]

The vector potential A may be obtained by integrating the equation VXA = B, which
reduces in cylindrical coordinates to the differential equation d4,/dp = — B,,.

Note that the field is finite and continuous everywhere. It increases linearly from
0 on the axis to a maximum B = (u,//2nR) on the surface of the cylinder and then

decreases like 1/p. The field outside the cylinder is independent of its radius and it
remains valid in the case of a wire carrying the current /.

6.8. Field and potential of some simple circuits

A) Field and potential of a thin rectilinear conductor

Consider a thin and straight rod PP, of length 2L carrying a current / (Figure
6.9a). Taking Oz in the direction of the rod and O at its middle, the system has a
rotational symmetry about Oz. Using cylindrical coordinates, an element of length
dz’ situated at the point K(0, 0, z) produces at M(p, ¢, z) a field given by Biot-
Savart’s law dB(r) = (ul/4m) dz’ e, x R/R’, where R = p e, t(z-2)e,and R =

1/p2+(z - Z')2 . To integrate over P, P,, it is convenient to use instead of z” the angle

0" that R makes with Oz. We have cos 6 = (z —Z')/R and sin 0" = p/R,
R =p/sin ® and dz’ = p d®’/sin°®’. Thus, the field may be written as

B(r) = [ dB'=

1 0 . ol
Z;p € Jelz df' sin 0= ZLTp (cos 6;—cos 6,) e, [6.42]

where 0, and 6, are the extreme values of 8. Setting R, = [p*+ (z + L)*]”, we find

L+ L—-
B(r) = bl [t -

R —1ley [6.43]
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A similar analysis gives for the vector potential

_ bl podre _pul Lodz' _ .l z—L—-R_
AW =l = e L = TR [6.44]

If the circuit is very long or, equivalently, if the point M is very close to O
(z<<Land p<<L),0;— 0and 6, > &, we find

B(r) - (n/21p)e, and A(r) > - (pl2m)Inpe, [6.45]
Z G I""_"‘IH
z dB2 '_\” z J :"—P""IK
dB(z)* M M B,
I P 2z ..

(2) (b) (©

Figure 6.9. Evaluation of the magnetic field: a) in the case of a thin rod by using Biot-
Savart’s law, b) in the case of a sheet of width L carrying a current density js by using
Biot-Savart’s law, and c) in the case of a wide sheet by using Ampere’s law

B) Field and potential of a sheet carrying a current density j,

Consider a sheet lying in the plane Oxy between y = —L/2 and y = L/2, very long
in the direction of Ox and carrying a surface current density j, = j.e, (Figure 6.9b).
To calculate its field and vector potential at a point M of the normal axis Oz, we
consider a narrow strip of infinite length in the direction Ox and situated between y
and y + dy and the symmetric strip with respect to Oxz. They carry the intensities
dl = j; dy and they produce the fields dB, and dB, of magnitude u, dI/2mp at M,
where p = () + z%)" is the distance of M to the strips. These fields form the same
angle oo with Oy as MK with Oz; thus cos o = z/p. The resultant of these fields is

dB(z) = dB, + dB,=2 dB, cos 0. e, = — (s z dy/mp°) ey, [6.46]

The total field is obtained by integration on y from 0 to L/2:

B(2) = [, dB(2) = ~(nyjiz/m) e, ;> dy /07 + 2) = ~(ugjm) tan” (L122)ey. [6.47]
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Setting D as the length of the sheet, the vector potential is

AG@) = (no/Am)ls dS' jJR = (naidm) [0 dx' [2 dy ((x+ 2+ 22"
= (1oj/4m) [~ L In(L? + 42%) — 4z tan"'(L/22) + (], [6.48]

where C is a constant, which diverges like 2L In D as D —eo, but this is irrelevant
because A is defined up to an arbitrary Vf. At a point near the sheet (z << L), we find

B(z) — — Yapys sign(z) e, and A(z) = — "2l1,jz| + Constant. [6.49]

The magnetic field of the infinite sheet may be easily determined using
Ampére’s law (Figure 6.9c). The translational symmetry in any direction parallel to
the plane Oxy of the sheet implies that B and A depend only on z. The reflection
symmetry with respect to Oxz implies that B, = 0, B, = 0 and 4, = 0. The
antisymmetry of j in the reflection with respect to the plane Oyz implies that 4, = 4,
= 0. Thus, we have B = B, e, and A = 4, e,. The reflection symmetry with respect to
Oxy implies that B(=z) = —B(z) and A,(-z) = A(z). Consider the rectangular
contour GHKJ situated on one side of the sheet. As no current crosses it, Ampere’s
law gives IBgy — [Bg; = 0. Thus, By does not depend on z in each one of the regions
z> (0 and z < 0. Consider now the contour PORS whose side PQ is on the side z > 0
and the side RS is in the side z < 0. As the current that crosses it is j/, Ampére’s law
gives IBrs —IBpq = Wofsl- As Bpg = —Bgs, we find By (z) = —B,(—z) = V2pj;. Knowing
the field, the relation B = V x A reduces to the equation B, = d,4(z), hence A(z) =
—Yalyfdlz| + C. Thus, we find again the result [6.49].

C) Field and potential of a solenoid

Consider a solenoid of radius a and length L constituted by n turns per unit
length and carrying a current / (Figure 6.10a). We take the origin O at the center of
the solenoid and Oz along its axis. An element of the solenoid situated between 2’
and z’ + dz’ near the point P contains n dz’ turns; thus, it may be assimilated to a
circular loop carrying a current d/ = nl dz’. According to equation [6.21], its field at

a point M(z) on the axis is dB(z) = (u, nla*/2R’) dz’e,, where R = 4| a’+ (z —z')2 and

the total field is obtained by integrating over z’ from —L/2 to +L/2; we get

B(z) = Yaponld’ e, J-+L/2

2z IR = Vapgnl [(L12 — 2)/R_+ (LI2 + 2)/R.] e,, [6.50]

where the extreme values of R are R, = [a¢* + (z + L/2)*]". The integral may easily be

evaluated using the angle 6 that Oz forms with MP. We find sin 6 = a/R and
cos 0= (z' —z)/R, hence dz’ = —a dB/sin®0 and R = a/sin 0; thus,

B(z)=%pynle, j;z dO sin © =Y pynl (cos 6, —cos 6,) e,. [6.51]
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Note that 6; < w/2 and 0, > /2 for M situated inside the solenoid, while for M
situated outside the solenoid, 6; > n/2 and 6, > w/2 if z > L/2 and 6; < ®/2 and
0, <m/2 if z = £ L/2. The lines of the field B are illustrated in Figure 6.10b. The
field has its maximum value at the center (Figure 6.10c)

Biax = B(0) = Vs ponlL/ | 4a*+1* . [6.52]

B is almost uniform in a long solenoid and it decreases quickly at the ends (where
B = "B, for z < £ L/2). Particularly, if the solenoid is very long (L >> a and
L>>7z), setting j, = nl for the surface current density, the field is given by

B=npmnle,=pyjse,. [6.53]
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Figure 6.10. a) Field of a solenoid, b) field lines in the case of a solenoid
of finite length L, and c) variation of the field as a function of z

If the solenoid is ideally infinite, we may use Ampére’s law to determine the
field B. Let us first analyze the symmetries (see Figure 6.11a). Because of the
translational symmetry in the direction of Oz, the field B does not depend on z. In
the approximation of the solenoid made of circular current loops, the field B at point
M(p, @, z) does not depend on the azimuthal angle ¢ because of the rotational
symmetry about Oz. Thus, B is a function only of the distance p of M from the axis
Oz. By the same approximation, the current density is antisymmetric in the
reflection with respect to the azimuthal plane IT; containing M and the axis Oz. As
per equations [6.37], the field has no normal component B, The current density has
a reflection symmetry with respect to the plane IT, containing M and normal to the
axis Oz. As per equation [6.35], the field has no parallel components B, and B,
These combined symmetries imply that B = B(p)e, and we may assume that M is in
the plane Ozy and use Ampére’s law:
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— Consider a rectangular path CDPQ situated inside the solenoid with the sides
CD and PQ of length [ parallel to Oz. As the field is independent of z and oriented in
the direction Oz and no current passes inside this path, Ampére’s law gives /B™p, —
ZB(i“)PQ = (. This means that the field is uniform inside the solenoid.

— Consider a rectangular path C'D'P'Q’ completely situated outside the solenoid.
As no current passes inside it, Ampére’s law gives By = B(eX)P»Q/. Thus, the field
B is uniform outside the solenoid. As it is obviously equal to zero at large distance,
it must be equal to zero everywhere outside the solenoid.

— Finally, consider the rectangular path C"D"P"Q" such that C"D" is inside the
solenoid and P"Q" is outside it. The intensity that passes inside it is /g thus,

Ampére’s law may be written as [B™ — [B“ =y lj.. As B“Y=0, we deduce that

B™=pjo=ponl . [6.54]

(b)

Figure 6.11. a) Field of an infinitely long solenoid, and b) toroidal coil

Our analysis of the solenoid as formed by circular loops is approximately valid if
they are thin and almost in contact; then, the translational and rotational symmetries
about Oz are almost exact. In reality, the solenoid being almost helical carries a
current / in the direction of the axis. If we consider an Ampeérian circular path »# of
radius p < R and axis Oz, no current passes inside it and Ampére’s law gives
ZTch(i")q, = 0. Thus the field inside the solenoid has no component B(i")(p. On the
contrary, if 4 is external (p > R), a current / passes inside it and Ampere’s law gives
2an(ex)q, = ./, hence, B(ex)q, = p,I2mp. This is the same field as that of an infinite
thin conductor carrying a current / along the axis. It is possible to eliminate this
component of the field by coiling the solenoid an even number of layers, in such a
way that the current enters and leaves the solenoid at the same end; in that case, no
net current flows in the direction Oz.
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In the case of an infinitely long solenoid, the translational symmetry in the
direction of Oz and the rotational symmetry about this axis imply that A depends
only on p. The reflection symmetry about any sectional plane, implies that 4, = 0.

Thus, the vector potential has the form A = A(p) e,. Applying equation [6.13] to a
circular contour of radius p, we find np”B = 2mp4, thus A(p) = %pB(p) = % pon Ip.

We obtain also this result by writing B = VXA, which gives the differential equation
dp(pAy) = 1o #l p, whose solution is 4, = Yap.nlp + C/p, where C is an integration
constant. As 4, is regular on the axis, we must have C = 0.

To avoid the leakage of the field, the N turns of the solenoid may be uniformly
distributed round a closed circular ring (Figure 6.11b). The field in this toroidal coil
is not uniform but it has a rotational symmetry about the axis. Writing Ampére’s law
over a circle of radius », we find 2nrB = p,NI. We deduce that B = pu NI/2mr.

6.9. Equations of time-independent magnetism in vacuum, singularities of B

A) Basic equations of time-independent magnetism in vacuum
The time-independent magnetic field in vacuum obeys two basic laws:

1. The conservation of the magnetic flux: the flux of B through any closed
surface is equal to 0:

[lsds (n.B) =0. [6.55]

Using Gauss-Ostrogradsky’s theorem, we may transform the flux into the integral of
V.B over the enclosed volume, thus [[[, 7 V.B = 0 for any volume %, hence

V.B=0. [6.56]
This equation implies the existence of a vector potential such that

B=VxA, [6.57]
where A is determined up to the addition of the gradient of any function, A' = A+Vf.

2. Ampére’s law: the magnetic field is related to the electric current by Ampere’s
law in the integral form

[yarB=pJ™,  where =3I, =][.dsj.n. [6.58]



Magnetic Field in Vacuum 175

[ are the currents that pass through S. Using Stokes’ theorem, the circulation of B on
the closed path 4 may be transformed into the flux of VxB, thus [ dS n.(VxB) =
Ho Hs ds j.n for any S, hence Ampere’s law in the local form

VxB=p,j. [6.59]

Expressing B in terms of A, using the identity V x (V x A) = V(V.A) — AA and
imposing the condition V.A = 0 (by eventually making a suitable gauge
transformation A' = A + Vf), Ampére’s equation [6.59] becomes

AA=—p,j. [6.60]

All these equations are verified by the expressions of the field and vector potential
of charges in motion and current densities [6.17], [6.19] and [6.20].
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Figure 6.12. Scalar potential of B in a region, where j =0

B) Concept of scalar magnetic potential

In a region where there is no electric current density, Ampeére’s equation [6.59]
reduces to V x B = 0. This means that it is possible to define a scalar potential
such that B = —V V). Then, the circulation of B on any closed path in this region
vanishes. Let us consider a circuit ¢ carrying a current / and a surface S bounded by
¢. This surface is subtended from a point P(r) by a cone of solid angle:

Q=[[.ds W R/R’, where R=1r" -r. [6.61]

n’ is the unit vector normal to S at r” and oriented with respect to the circuit carrying
the current 7 according to the right-hand rule (Figure 6.12a). If the point P moves by
Or, the variation of the solid angle dQ = Q" — Q is the same as if P was fixed and the
circuit displaced by —0r (Figure 6.12b). As the solid angle, which subtends the
whole closed cylinder of bases S and S, is equal to zero, dQ is the opposite of the
solid angle 8Q of the strip 85 of width —dr along the circuit ¢, hence

dQ=-8Q=—[lssds’n.R/R* = [, (dL x 8r).R/R’ = - 8. , (dL x R)/R’.
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The field of ¢ at P being B(r) = (uol/4m)| , dLx(r—t")/[r—t'| = —(uol/4m)] , ALXR/R’,
we may write B.0r = (u,//4m) 8Q, thus B = -V V), where Vy = — (U 0/4m) Q..

The circulation of B along a path PQ, which does not cross S (Figure 6.12c¢), is
IPQ dr.B = (uol/4m)(Qp — ). It vanishes if the path is closed (P = Q), as Q is a
continuous function of the position. On the other hand, the circulation along a path
P’Q’ that crosses S is fpr' dr.B = (uJ/4m)(Qp — Qq) = tu,/, as, by crossing 5, Q
changes from 27 to —2m, or conversely, depending on whether P’Q’ crosses S in the
direction of n or in the opposite direction. This result is equivalent to Ampére’s law.

Contrary to the electric potential ¥, which is the potential energy of the unit
charge, the magnetic potential V', is not an energy. This is evident because B being a

pseudo vector, the function V) (such that B = =V V) is a pseudo-scalar, while the
energy is a true scalar quantity.

C) Singularities and discontinuities of the magnetic field

The examples of evaluation of the magnetic field that we have considered show
that B and A are not always regular and continuous:

a) Near a point M of a thin conductor carrying a current /, the dominant part of B
is the field of a small element of the conductor at M. Its field lines are circular
around the conductor (Figure 6.13a); thus, B has no well-defined direction. On the
other hand, Ampere’s law applied to a small circle of radius p around the conductor
shows that B is infinite like B = py//2mp. The vector potential also becomes very
large like —(po//21) In p in the direction of the current.

ds,

(@) (b) (©

Figure 6.13. a) Singularity of B on a line of current, b) discontinuity of B on a
sheet of current, and c) continuity of B in a volume distribution of current
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b) Consider a sheet of current S with a surface density j, (Figure 6.13b). Let us
apply the law of conservation of magnetic flux to a very short cylinder of bases ds;
and dS, situated on both sides of the sheet. We designate as n;, the unit vector that is
normal to S and oriented from side (1) toward side (2). The flux of B through the
very short lateral surface may be neglected and the outgoing flux from ds; and ds,
are dS n,.B, and —dS n;,.B;, respectively. The conservation of the flux of B
implies that n;,.B, = n;,.B;. In other words, the normal component of B is
continuous on the sheet of current. We take the axes of coordinates, such that Oz is
in the direction of nj, and j in the direction of Ox. Consider a rectangular path
PQOCD such that PO and CD have a length / and they are parallel to Oy, while PD
and QC are very short and parallel to Oz. The circulation of B on this contour is
l(Byy — By) and it is equal to pgjg/ according to Ampere’s law. Thus, the y
component of B has a discontinuity B, — Bjy = Wgjs. If the sides PQ and CD are
parallel to Ox, no current crosses the rectangle and we find B,, = Bj,. These two
relations may be written in a single vector equation

B —By=p,n;pXjs. [6.62]

Thus, on a sheet of current S, the tangential component of B, which is normal to j,
undergoes a discontinuity equal to ., while the component of B that is parallel to
js and the normal component to S are continuous.

¢) In the case of a volume distribution of current, the field B is finite and
continuous. Indeed, an eventual singularity at a point M may be produced by the
current density that is very close to M (making |r — r'| — 0 in the denominator of the
expression of the field). Let us surround M by a small sphere of radius R enclosing a
volume 7 (Figure 6.13c). According to the theorem of the mean, the integral of a
function f{r) over 7 is equal to the product 7 f(r,), where r, is a certain point of 7.
Thus the field of the sphere, evaluated by using [6.20], may be written as B(r) =
(u/ATY7 j(ro)*(r —r,)/|r —r,’. Designating by 0 the angle that j(r,) makes with
(r — r,), we find for the magnitude of B

B(r) < (no/4m) ,j(xo) sinb/|r—ro| < (uoRY/3) j(r)/R* = (1oR/3) j(ro).

Thus, the field of the sphere tends to 0 like R as R — 0. This shows that the field of a
volume current distribution is finite and continuous.

The singularities and the discontinuities of B are due to the zero limit of the
diameter of the line of current and the thickness of the sheet of current. In reality, the
macroscopic bodies always have finite dimensions. At the microscopic level, we
must distinguish between the microscopic field, which undergoes fluctuations and
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become infinite at the position of point charges, and the macroscopic field, which is
regular and continuous (see the section 2.8).

6.10. Magnetic energy of a circuit in a field B

We have seen that a uniform field B exerts @ moment of force Iy =7 X B on a
rigid circuit carrying a current /. Thus, |I'y| = 7% B sin 0, where 0 is the angle that 77

makes with B. If the circuit is free to rotate around a point O, it may rotate about an
axis whose unit vector u is parallel to I'y; (thus, orthogonal to 7 and B). The circuit
is in equilibrium if T'y; = 0, thus 6 = 0 (% pointing in the direction of B) or 6 =t (%
pointing in the opposite direction to B). We may verify that the position 6 = 0 is
stable, while the position 6 = w is not. The work of the magnetic forces in the
rotation of the circuit about u from its equilibrium position 6 = 0 to an arbitrary
position 0 is

Wooso= [ d0 Ty = 7B [)d8' sin 6 = 7B (cos 0 —1) = (W.B) ~B. [6.63]

Conversely, to rotate the circuit from its stable equilibrium position 6 = 0 to the
position 0, a moment of force I" = —T"y; must be exerted; the required work is

Wo=—W=7B— (MB). [6.64]

This work remains stored as magnetic potential energy of the circuit in the external
magnetic field.

B(x.,0)

Figure 6.14. Evaluation of the interaction energy of an electric circuit in a field B

Consider now the case of a non-uniform field B. Let us evaluate the work in
bringing a circuit from a position where B = 0 to a position where the field is B
while maintaining the current intensity / constant. Let us consider first the simple
case of a rectangular circuit PORS lying in the plane Oxy (Figure 6.14). We assume
that it is small enough to neglect all terms of the second order in its dimensions L
and /. We evaluate the magnetic force that acts on each side by taking the field at its



Magnetic Field in Vacuum 179

middle; this is a good approximation if the field is slowly varying over the circuit.
We have for instance B(M) = X, By(x, y — 2L, 0)ey, = Xy [By(x, y, 0) — /2L 0,B,] €.
Thus, the total force that acts on the circuit may be written as

Fy=ISPx B(M) + IPOX B(J) + IOR x B(N) + I RS x B(K)
= Il e X 2 [Bo(x, ¥, 0) — VsLOyBy] € + IL ey X Zq [Bo(x, v, 0) + 510, By] €

— 1l e, X 24 [By(x, v, 0) + YL 9,B,] €, — IL €, X T [B(x, v, 0) — Y4l 0,By] €,
=15 (-0,Bye,+ d,B, e, — 0By e, + 0,B, e,).

By using equation [6.9], which implies that d, By + dyBy, = —d,B,, we find:

Fy=1S (9B, e, +0yB,e,+d,B,¢,), ic, Fy o=0B). [6.65]

To displace the circuit from y, (where B, = 0) to the actual position y (where
B # 0) while [ is maintained constant, a force F = —Fy; and a work must be exerted

Woop = jyya dr.F'|=— jyyo dr.F,=- jyya dy IS(0,B;) = IS[B;(v,) —B3(y)] = — 7. B.

This is also the variation of the magnetic energy in the displacement of the circuit
from the region where B = 0 to the region where the field is B. It differs from the
expression [6.64] only by a constant term 7B, which has no physical importance.
Thus, the magnetic force exerted by a magnetic field on a circuit carrying a constant
current corresponds to a potential energy Uy = —7.B = — IS n.B. We may also write:

Uy = —I®, [6.66]

where @ is the magnetic flux. A circuit € of arbitrary shape may be considered as a
juxtaposition of small rectangular circuits ¢ (Figure 6.5b). As [ is the same for all
these circuits and the sum of the @; is the total flux @ through the circuit ¢, equation
[6.66] is valid for circuits of any shape ¢ immersed in a field B, even if the field is
non-uniform. We note that U, is only the interaction energy of the circuit with the
external field B. It is not the total magnetic energy of the circuit, which must include
its proper magnetic energy, that is the energy necessary to establish the current in
the circuit. Although the force exerted by the field B on a charge in motion or an
element of a length of circuit is not conservative, we have defined here the
interaction energy of the closed circuit in the field B and this energy depends only
on the position of the circuit. In other words, the force of interaction of a closed
circuit with a magnetic field is conservative.
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The interaction energy Uy, = — I® determines the motion or the deformation of
an electric circuit in a magnetic field if the intensity / is maintained constant. By
evolving from a state (1) to a state (2), the work of the magnetic forces is equal to
the decrease of the interaction energy, Uy | — Uy, 2 = {(®P, — @) and this work
cannot be negative. Thus, ®, must be higher than ®;: the circuit moves or deforms
in such a way that Uy decreases, i.e. @ increases. This is Maxwell’s maximum flux
rule. The equilibrium is reached if Uy, is minimum, i.e. if ® is maximum.

In the case of a rigid circuit, the ratio /I is constant. If B is uniform, the flux
O = #.B)/[ = (#/]) B cos 0 is maximum for © = 0. Thus, the circuit rotates until its
magnetic moment points in the direction of B. This position corresponds to a
maximum of ®, i.e. a minimum of Uy; thus, it is stable. The moment of force

vanishes also for 6 = . However, this position corresponds to a minimum of @, i.e.
a maximum of Uy thus, it is unstable. If a rigid circuit is free to move in a non-

uniform field, the maximum flux rule implies that it moves toward the region of
stronger field. Finally, if the circuit is deformable, it deforms until its magnetic
moment 77 is maximum (thus, its surface is maximum). In general, it may undergo

rotation, translation, and deformation.

6.11. Magnetic forces

A) Magnetic force on a circuit in terms of the flux

Let us consider a circuit ¢ carrying a constant current / (maintained by a
generator). The other systems act on ¢ only by the intermediary of the magnetic

field B. The magnetic force acting on the circuit may be evaluated by using
Laplace’s force dFy; = I dL x B. It may be calculated also by using the interaction

energy Uy = —I® of the circuit in the field B. Indeed, if the element dL undergoes a
translation dr (Figure 6.15a), the work of the magnetic force is

8dWyy = dFy.0r = I (dL X B). 8r = I B.(8r x dL) = I d8S (B.n) = I d5®,

where n is the unit vector orthogonal to the parallelogram of sides or and dL and
dds = |dr x dL| is the swept area; do® is then the magnetic flux through this area. In
the case of a finite part ¢ of an electric circuit (Figure 6.15b) or a closed circuit ¢
(Figure 6.15c¢), the work of the magnetic forces is obtained by integration over the
circuit; we find Wy, = I d®, where 0® is the flux that is swept by ¢ in the course of
its motion.
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(@) (b) (©)

Figure 6.15. a) Work of the magnetic forces exerted on an element dL of circuit, b) work
on a finite circuit ¢, and c) work on a closed circuit and moment of the magnetic forces

If a rigid circuit € undergoes a translation, we define its position by the position
r of one of its points. In a virtual translation dr of the circuit, the work of Fy; is equal
to the decrease of the interaction energy of the circuit in the field B, hence
Wy = Fy. Or = — dUy = I 8@, where @ is the flux through @. As Uy and @ are
functions of r, their variations are 8Uy; = 6r.VUy, and 6O = dr.V®. Thus, the force
may be written as

Fy=- VUy=1V®. [6.67]

A similar analysis may be undertaken to determine the moment of the magnetic
forces I'y; exerted by a field B on a circuit ¢ with respect to a point O. For this, let us

assume that the circuit undergoes a virtual rotation through an infinitesimal angle 30
about an axis at O of unit vector u. The work of the magnetic forces is
Wy = I'yu 00 = —8Uy = I d®. We deduce that the component of Iy in the

direction of u is
Tyu = — 0Up/00 = I (0D/06). [6.68]

The interaction energy of a circuit ¢ of magnetic moment Z with a magnetic
field B is Uy = — %.B = —Xg 73Bg. Thus, the components of the magnetic force
exerted on ¢ are F, = —0,Uy = 0(#.B) = Zg % (3,Bp). As B is produced by
permanent magnets or other circuits than ¢, Ampére’s law [6.59] implies that
V x B = 0 at the points on the circuit ¢, hence d,Bg = dgB,. Thus, we may write

Particularly, if the field is uniform, any translation does not modify the flux, and

equation [6.67] implies that the resultant of the magnetic forces on the circuit is
equal to zero and the equation Fy; = (7.V) B gives the same result. Similarly, if the
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magnetic moment of the circuit makes an angle 6 with B, the interaction energy is
Um=—7B cos 0; thus, I'\.u = — 7B sin 6 and this is equivalent to I'y; =7 x B.

(2) (b) (©)

Figure 6.16. Maxwell’s maximum flux rule: a) the magnetic force on € moves
it toward a stronger field (if © <m/2) or b) toward a weaker field (if © > 1/2).
¢) The moment of magnetic forces on @ rotates it toward smaller ©

Figure 6.16 illustrates the use of the maximum flux rule to determine the
direction of the magnetic force and the moment of force. In the case of Figure 6.16a,
7 forms an acute angle with B;. According to the right-hand rule, the flux @ is
positive. By moving the circuit in a direction such that B, > By, @ increases.
According to [6.67], the component of the magnetic force in this direction is
positive. On the contrary, in the case of Figure 6.16b, Z forms an obtuse angle with
B, and @ is negative. By moving the circuit in a direction such that B, > B;, ®
decreases (in algebraic values). According to [6.67], the component of Fy; in this
direction is negative. In the case of Figure 6.16¢, 7 forms an acute angle 6 with B
and @ is positive. If 0 is increased by rotating the circuit about u (according to the
right-hand rule), the flux ®@ decreases. According to [6.68], the component of Ty, in
the direction of u is negative, I'; is thus in the opposite direction to u, in agreement
with the relation I'y; =% x B.

If the circuit is rigid and it carries a constant current /, the forces exerted by its
own field are counterbalanced by the internal mechanical forces that keep it rigid.
Thus, if the circuit is subject to no external forces, it undergoes no translation,
rotation, or deformation. Thus, the equation W) = I d® holds with d® representing
o