
Electromagnetism 
  



Electromagnetism 
Maxwell Equations, Wave Propagation and Emission 

 
 
 
 
 
 
 
 
 

Tamer Bécherrawy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 



 
 
 
 
 
 
 

First published 2012 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc. 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as 
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, 
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, 
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the  
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the 
undermentioned address: 

ISTE Ltd  John Wiley & Sons, Inc.  
27-37 St George’s Road  111 River Street 
London SW19 4EU Hoboken, NJ 07030 
UK  USA  

www.iste.co.uk  www.wiley.com 

© ISTE Ltd 2012 
 
The rights of Tamer Bécherrawy to be identified as the author of this work have been asserted by him in 
accordance with the Copyright, Designs and Patents Act 1988. 
 
____________________________________________________________________________________ 

Library of Congress Cataloging-in-Publication Data 
 
Bécherrawy, Tamer. 
Electromagnetism : Maxwell equations, wave propagation, and emission / Tamer Bécherrawy. 
p. cm. 
Includes bibliographical references and index. 
  ISBN 978-1-84821-355-5 
 1.  Electromagnetism. 2.  Maxwell equations. 3.  Electromagnetic waves. 4.  Field emission.  I. Title.  
  QC670.B37 2012 
  537--dc23 

                                                            2012009826 
 

British Library Cataloguing-in-Publication Data 
A CIP record for this book is available from the British Library  
ISBN: 978-1-84821-355-5 

 
Printed and bound in Great Britain by CPI Group (UK) Ltd., Croydon, Surrey CR0 4YY 
 

 



Table of Contents 

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   xi 

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   xv 

Chapter 1. Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   1 

1.1. Scalars and vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2 
1.2. Effect of rotations on scalars and vectors . . . . . . . . . . . . . . . . . .   5 
1.3. Integrals involving vectors  . . . . . . . . . . . . . . . . . . . . . . . . . .   7 
1.4. Gradient and curl, conservative field and scalar potential. . . . . . . . .   8 
1.5. Divergence, conservative flux, and vector potential . . . . . . . . . . . .   10 
1.6. Other properties of the vector differential operator . . . . . . . . . . . .   10 
1.7. Invariance and physical laws . . . . . . . . . . . . . . . . . . . . . . . . .   11 
1.8. Electric charges in nature . . . . . . . . . . . . . . . . . . . . . . . . . . . .   14 
1.9. Interactions in nature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   18 
1.10. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   19 

Chapter 2. Electrostatics in Vacuum . . . . . . . . . . . . . . . . . . . . . . . .   23 

2.1. Electric forces and field . . . . . . . . . . . . . . . . . . . . . . . . . . . .   23 
2.2. Electric energy and potential . . . . . . . . . . . . . . . . . . . . . . . . . .   25 
2.3. The two fundamental laws of electrostatics . . . . . . . . . . . . . . . . .   26 
2.4. Poisson’s equation and its solutions . . . . . . . . . . . . . . . . . . . . .   29 
2.5. Symmetries of the electric field and potential . . . . . . . . . . . . . . . .   31 
2.6. Electric dipole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   34 
2.7. Electric field and potential of simple charge configurations . . . . . . .   38 
2.8. Some general properties of the electric field and potential . . . . . . . .   39 
2.9. Electrostatic energy of a system of charges . . . . . . . . . . . . . . . . .   42 
2.10. Electrostatic binding energy of ionic crystals and atomic nuclei . . . .   48 



vi     Electromagnetism 

2.11. Interaction-at-a-distance and local interaction* . . . . . . . . . . . . . .   50 
2.12. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   52 

Chapter 3. Conductors and Currents . . . . . . . . . . . . . . . . . . . . . . . .   61 

3.1. Conductors in equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . .   61 
3.2. Conductors with cavities, electric shielding . . . . . . . . . . . . . . . . .   64 
3.3. Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   66 
3.4. Mutual electric influence of conductors . . . . . . . . . . . . . . . . . . .   72 
3.5. Electric forces between conductors . . . . . . . . . . . . . . . . . . . . . .   73 
3.6. Currents and current densities . . . . . . . . . . . . . . . . . . . . . . . . .   76 
3.7. Classical model of conduction, Ohm’s law and the Joule effect . . . . .   79 
3.8. Resistance of conductors . . . . . . . . . . . . . . . . . . . . . . . . . . . .   81 
3.9. Variation of resistivity with temperature, superconductivity . . . . . . .   82 
3.10. Band theory of conduction, semiconductors* . . . . . . . . . . . . . . .   84 
3.11. Electric circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   90 
3.12. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   92 

Chapter 4. Dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   97 

4.1. Effects of dielectric on capacitors . . . . . . . . . . . . . . . . . . . . . . .   97 
4.2. Polarization of dielectrics . . . . . . . . . . . . . . . . . . . . . . . . . . .   99 
4.3. Microscopic interpretation of polarization . . . . . . . . . . . . . . . . . .   100 
4.4. Polarization charges in dielectric . . . . . . . . . . . . . . . . . . . . . . .   102 
4.5. Potential and field of polarized dielectrics . . . . . . . . . . . . . . . . . .   103 
4.6. Gauss’s law in the case of dielectrics, electric displacement . . . . . . .   105 
4.7. Electrostatic equations in dielectrics . . . . . . . . . . . . . . . . . . . . .   106 
4.8. Field and potential of permanent dielectrics . . . . . . . . . . . . . . . . .   109 
4.9. Polarization of a dielectric in an external field . . . . . . . . . . . . . . .   113 
4.10. Energy and force in dielectrics . . . . . . . . . . . . . . . . . . . . . . . .   115 
4.11. Action of an electric field on a polarized medium . . . . . . . . . . . .   116 
4.12. Electric susceptibility and permittivity . . . . . . . . . . . . . . . . . . .   118 
4.13. Variation of polarization with temperature . . . . . . . . . . . . . . . .   120 
4.14. Nonlinear dielectrics and non-isotropic dielectrics . . . . . . . . . . . .   122 
4.15. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   124 

Chapter 5. Special Techniques and Approximation Methods . . . . . . . . .   127 

5.1. Unicity of the solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   128 
5.2. Method of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   130 
5.3. Method of analytic functions . . . . . . . . . . . . . . . . . . . . . . . . .   134 
5.4. Method of separation of variables . . . . . . . . . . . . . . . . . . . . . .   135 
5.5. Laplace’s equation in Cartesian coordinates . . . . . . . . . . . . . . . .   136 
5.6. Laplace’s equation in spherical coordinates . . . . . . . . . . . . . . . . .   138 



Table of Contents vii

5.7. Laplace’s equation in cylindrical coordinates. . . . . . . . . . . . . . . . 143
5.8. Multipole expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
5.9. Other methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.10. Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Chapter 6. Magnetic Field in Vacuum . . . . . . . . . . . . . . . . . . . . . . . 153

6.1. Force exerted by a magnetic field on a moving charge . . . . . . . . . . 153
6.2. Force exerted by a magnetic field on a current, Laplace’s force . . . . . 155
6.3. Magnetic flux and vector potential . . . . . . . . . . . . . . . . . . . . . . 157
6.4. Magnetic field of particles and currents, Biot-Savart’s law. . . . . . . . 159
6.5. Magnetic moment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
6.6. Symmetries of the magnetic field . . . . . . . . . . . . . . . . . . . . . . . 165
6.7. Ampère’s law in the integral form . . . . . . . . . . . . . . . . . . . . . . 167
6.8. Field and potential of some simple circuits . . . . . . . . . . . . . . . . . 169
6.9. Equations of time-independent magnetism in vacuum,
singularities of B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.10. Magnetic energy of a circuit in a field B . . . . . . . . . . . . . . . . . . 178
6.11. Magnetic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.12. Question of magnetic monopoles* . . . . . . . . . . . . . . . . . . . . . 186
6.13. Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 7. Magnetism in Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.1. Types of magnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
7.2. Diamagnetism and paramagnetism . . . . . . . . . . . . . . . . . . . . . . 197
7.3. Magnetization current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
7.4. Magnetic field and vector potential in the presence of magnetic matter 203
7.5. Ampère’s law in the integral form in the presence of magnetic matter . 204
7.6. Equations of time-independent magnetism in the presence of matter . . 206
7.7. Discontinuities of the magnetic field . . . . . . . . . . . . . . . . . . . . . 209
7. 8. Examples of calculation of the field of permanent magnets . . . . . . . 211
7.9. Magnetization of a body in an external field . . . . . . . . . . . . . . . . 214
7.10. Magnetic susceptibility, nonlinear mediums and
non-isotropic mediums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
7.11. Action of a magnetic field on a magnetic body . . . . . . . . . . . . . . 218
7.12. Magnetic energy in matter . . . . . . . . . . . . . . . . . . . . . . . . . . 220
7.13. Variation of magnetization with temperature . . . . . . . . . . . . . . . 221
7.14. Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
7.15. Magnetic circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.16. Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229



viii     Electromagnetism 

Chapter 8. Induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   233 

8.1. Induction due to the variation of the flux, Faraday’s and Lenz’s laws .   233 
8.2. Neumann’s induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   235 
8.3. Lorentz induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   236 
8.4. Lorentz induction and the Galilean transformation of fields . . . . . . .   239 
8.5. Mutual inductance and self-inductance . . . . . . . . . . . . . . . . . . .   240 
8.6. LR circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   244 
8.7. Magnetic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   247 
8.8. Magnetic forces acting on circuits . . . . . . . . . . . . . . . . . . . . . .   249 
8.9. Some applications of induction . . . . . . . . . . . . . . . . . . . . . . . .   252 
8.10. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   256 

Chapter 9. Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . .   263 

9.1. Fundamental laws of electromagnetism . . . . . . . . . . . . . . . . . . .   263 
9.2. Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   267 
9.3. Electromagnetic potentials and gauge transformation . . . . . . . . . . .   270 
9.4. Quasi-permanent approximation . . . . . . . . . . . . . . . . . . . . . . .   272 
9.5. Discontinuities on the interface of two mediums . . . . . . . . . . . . . .   276 
9.6. Electromagnetic energy and Poynting vector . . . . . . . . . . . . . . . .   277 
9.7. Electromagnetic pressure, Maxwell’s tensor . . . . . . . . . . . . . . . .   278 
9.8. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   280 

Chapter 10. Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . .   283 

10.1. A short review on waves . . . . . . . . . . . . . . . . . . . . . . . . . . .   284 
10.2. Electromagnetic waves in infinite vacuum and dielectrics . . . . . . .   291 
10.3. Polarization of electromagnetic waves . . . . . . . . . . . . . . . . . . .   295 
10.4. Energy and intensity of plane electromagnetic waves . . . . . . . . . .   299 
10.5. Momentum and angular momentum densities, radiation pressure . . .   301 
10.6. A simple model of dispersion . . . . . . . . . . . . . . . . . . . . . . . .   304 
10.7. Electromagnetic waves in conductors . . . . . . . . . . . . . . . . . . .   308 
10.8. Electromagnetic waves in plasmas . . . . . . . . . . . . . . . . . . . . .   314 
10.9. Quantization of electromagnetic waves . . . . . . . . . . . . . . . . . .   320 
10.10. Electromagnetic spectrum . . . . . . . . . . . . . . . . . . . . . . . . . .   321 
10.11. Emission of electromagnetic radiations . . . . . . . . . . . . . . . . . .   323 
10.12. Spontaneous and stimulated emissions . . . . . . . . . . . . . . . . . .   325 
10.13. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   328 

Chapter 11. Reflection, Interference, Diffraction and Diffusion . . . . . . .   337 

11.1. General laws of reflection and refraction . . . . . . . . . . . . . . . . . .   337 
11.2. Reflection and refraction on the interface of two dielectrics . . . . . .   340 
11.3. Total reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   346 



Table of Contents   ix 

11.4. Reflection on a conductor . . . . . . . . . . . . . . . . . . . . . . . . . . .   349 
11.5. Reflection on a plasma . . . . . . . . . . . . . . . . . . . . . . . . . . . .   352 
11.6. Interference of two electromagnetic waves . . . . . . . . . . . . . . . .   353 
11.7. Superposition of several waves, conditions for observable interference  355 
11.8. Huygens-Fresnel’s principle and diffraction by an aperture . . . . . .   357 
11.9. Diffraction by an obstacle, Babinet’s theorem . . . . . . . . . . . . . .   363 
11.10. Diffraction by several randomly distributed identical apertures . . .   364 
11.11. Diffraction grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   365 
11.12. X-ray diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   368 
11.13. Diffusion of waves* . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   370 
11.14. Cross-section* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   375 
11.15. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   378 

Chapter 12. Guided Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   389 

12.1. Transmission lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   390 
12.2. Guided waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   394 
12.3. Waveguides formed by two plane and parallel plates . . . . . . . . . .   397 
12.4. Guided electromagnetic waves in a hollow conductor . . . . . . . . . .   400 
12.5. Energy propagation in waveguides . . . . . . . . . . . . . . . . . . . . .   404 
12.6. Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   406 
12.7. Applications of waveguides . . . . . . . . . . . . . . . . . . . . . . . . .   407 
12.8. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   409 

Chapter 13. Special Relativity and Electrodynamics . . . . . . . . . . . . . .   413 

13.1. Galilean relativity in mechanics . . . . . . . . . . . . . . . . . . . . . . .   414 
13.2. Galilean relativity and wave theory* . . . . . . . . . . . . . . . . . . . .   415 
13.3. The 19th Century experiments on the velocity of light . . . . . . . . .   420 
13.4. Special theory of relativity . . . . . . . . . . . . . . . . . . . . . . . . . .   421 
13.5. Four-dimensional formalism . . . . . . . . . . . . . . . . . . . . . . . . .   424 
13.6. Elements of relativistic mechanics . . . . . . . . . . . . . . . . . . . . .   427 
13.7. Special relativity and wave theory* . . . . . . . . . . . . . . . . . . . . .   430 
13.8. Elements of relativistic electrodynamics . . . . . . . . . . . . . . . . . .   434 
13.9. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   438 

Chapter 14. Motion of Charged Particles in an Electromagnetic Field . . .   443 

14.1. Motion of a charged particle in an electric field. . . . . . . . . . . . . .   443 
14.2. Bohr model for the hydrogen atom* . . . . . . . . . . . . . . . . . . . .   447 
14.3. Rutherford’s scattering * . . . . . . . . . . . . . . . . . . . . . . . . . . .   450 
14.4. Motion of a charged particle in a magnetic field . . . . . . . . . . . . .   451 
14.5. Motion in crossed electric and magnetic fields . . . . . . . . . . . . . .   457 
14.6. Magnetic moment in a magnetic field . . . . . . . . . . . . . . . . . . .   459 



x     Electromagnetism 

14.7. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   461 

Chapter 15. Emission of Radiation . . . . . . . . . . . . . . . . . . . . . . . . .   467 

15.1. Retarded potentials and fields . . . . . . . . . . . . . . . . . . . . . . . .   467 
15.2. Dipole radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   469 
15.3. Electric dipole radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . .   470 
15.4. Magnetic dipole radiation . . . . . . . . . . . . . . . . . . . . . . . . . . .   474 
15.5. Antennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   476 
15.6. Potentials and fields of a charged particle* . . . . . . . . . . . . . . . .   479 
15.7. Case of a charged particle with constant velocity * . . . . . . . . . . .   482 
15.8. Radiated energy by a moving charge . . . . . . . . . . . . . . . . . . . .   484 
15.9. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   486 

Answers to Some Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   491 

Appendix A. Mathematical Review . . . . . . . . . . . . . . . . . . . . . . . . .   511 

Appendix B. Units in Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   527 

Appendix C. Some Physical Constants . . . . . . . . . . . . . . . . . . . . . . .   533 

Further Reading  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   535 

Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   537 

 
 

 



Preface 

The scientific study of electric and magnetic forces started as two distinct 
sciences during the second half of the 18th Century. The concepts of electric and 
magnetic fields were introduced as independent constructs to facilitate the 
calculation of forces. However, after the discovery by Oersted in 1819 that an 
electric current produces a magnetic field, and the discovery by Faraday in 1831 that 
a variable magnetic field induces currents, it became clear that electric and magnetic 
fields are related and that they are very important physical concepts. In 1873, 
Maxwell unified electricity and magnetism in a single theory, called 
electromagnetism, based on four fundamental equations. An important prediction of 
this theory was the existence of electromagnetic waves that propagate with the speed 
of light. This prediction was confirmed experimentally by Hertz in 1887.  

Thanks to the discovery of induction, the large-scale production of electricity 
became possible, opening the door to a new technological era in the second half of 
the 19th Century. The discovery of electromagnetic waves and the development of 
electronics generated a real revolution in telecommunications in the 20th Century 
with considerable economical, social, cultural and political impact.  

The electromagnetic field, which is an association of the electric and magnetic 
fields, is a real physical object with energy, momentum, and angular momentum, 
which may be static or propagating as waves exactly like sound, elastic waves, or 
even particles. This is the first example of field theories in modern physics. It was 
followed by the discovery of the gravitational field in the framework of General 
Relativity and quantum fields in the framework of Quantum Electrodynamics and 
Quantum Chromodynamics. On the other hand, Maxwell’s theory solved the very 
long-standing problem of the nature of light; it is an electromagnetic wave of short 
wavelength. Thus, Maxwell’s work unified electricity, magnetism and optics in a 
single theory. Electromagnetic theory is in such complete agreement with 
experiments that any theory in conflict with it should be modified or abandoned.  



xii     Electromagnetism 

 The formulation of the electromagnetic theory was a major event in the history 
of physics in its incessant search to explain the maximum of phenomena with the 
minimum of basic principles. Furthermore, electromagnetism is the prototype of the 
so-called gauge theories in modern physics. They include the unification of 
electromagnetic and weak interactions by Glashow, Salam and Weinberg around 
1967, Quantum Chromodynamics around 1973 and the so-called Grand Unification 
Theories that try to unify all interactions in Nature. 

The electromagnetic theory posed two challenging problems, which produced 
real revolutions in physics and even in philosophy at the beginning of the 20th 
Century. The first was the disagreement of the propagation of light with the Galilean 
transformation, which is one of the basic principles of Classical Mechanics. This 
was shown by several experiments (namely Michelson’s historical experiment) and 
it is fundamental since Maxwell’s equations, which are obeyed by light as 
electromagnetic waves, are not covariant in the Galilean transformation. This 
contradiction was solved by the Special Theory of Relativity that modified the 
Galilean transformation, and had far-reaching consequences. The second problem 
was the understanding of the black body radiation and the discrete emission 
spectrum of atoms, which contradict both Classical Mechanics and the 
electromagnetic theory. Its solution led to the formulation of Quantum Theory. At 
present, the interaction of electromagnetic radiations with matter remains a very 
important subject both in theoretical physics and in various domains of applied 
physics. 

Electromagnetism plays an important part in almost all branches of physics: 
atomic physics, molecular physics, solid-state physics, astrophysics, atmospheric 
physics, etc., and it even intervenes in chemistry and biology. In fact, almost all 
properties of matter are fundamentally electromagnetic on both the macroscopic 
scale and the atomic and molecular microscopic scale. On the other hand, 
electromagnetic waves play a fundamental part in the transfer of energy and 
information. Thus, a good understanding of electromagnetism is essential in any 
scientific activity and in the training of future physicists and engineers.  

The purpose in writing this book is to study electromagnetism at the upper 
undergraduate level following teaching experience of several years. The goal is to 
understand the concept of electromagnetic fields, to obtain Maxwell’s equations and 
to analyze some of their consequences regarding the propagation and emission of 
radiation.  

Writing a book on electromagnetism is not an easy task for two reasons: the first 
is that the subject is so well established and so many excellent books already exist 
that one can expect originality only in didactical details: selection of topics, clear 
presentation of the material, choice of exercises, etc. The second is that 
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electromagnetism is very connected to other subjects, namely quantum theory, 
relativity, properties of matter, and it has countless applications. Thus, it is hard to 
set the limits of the text.  

Some authors prefer to start with Maxwell’s equations as basic equations and 
then study time-independent phenomena and time-dependent phenomena. This 
approach is similar to starting Classical Mechanics with Newton’s principles or, at a 
higher level, starting with Hamilton’s principle and Lagrange equations. I think that 
the traditional approach, starting with the time-independent phenomena, is more 
pedagogical because of the mathematical complexity of the fields as functions of 
space and time, and the complexity of Maxwell’s equations as partial differential 
equations for vector quantities. Thus, this text may be divided into four parts: 

− The first part of seven chapters studies the time-independent electric and 
magnetic phenomena. This study goes beyond introductory electricity and 
magnetism by the use of vector calculus, differential and partial differential 
equations, etc. In this part, the basic concepts of electric and magnetic fields, energy 
and symmetries are analyzed, as well as the properties of dielectrics and magnetic 
matter. Conduction in solids is introduced, but we do not develop circuit analysis. In 
Chapter 5, some useful mathematical techniques (Legendre polynomials, Bessel’s 
functions and multipole expansion) are introduced.  

− The second part studies the time-dependent phenomena. It includes a detailed 
study of induction with some of its applications in Chapter 8 and the formulation of 
Maxwell’s equations in Chapter 9.  

− The third part studies the propagation effects. It includes a detailed study of 
electromagnetic waves in Chapter 10 (including propagation in dielectrics, in 
conductors and in plasmas, the quantization of radiation and its emission),  
reflection, interference, diffraction and diffusion in Chapter 11, and guided waves in 
Chapter 12. 

− The fourth part includes Chapter 13 on the Special Theory of Relativity 
(including its applications to mechanics and electrodynamics), the motion of 
charged particles in electromagnetic fields (both non-relativistic and relativistic) in 
Chapter 14, and the emission of electromagnetic waves by antennas and particles in 
Chapter 15. The chapter on the Special Theory of Relativity is necessary as an 
introduction to the subject and for a better understanding of the electromagnetic 
theory.  

Electromagnetism if one of the first physics courses in which vector calculus and 
partial differential equations are extensively used. The electromagnetic theory in 
vacuum requires one electric field and one magnetic field, and the electromagnetic 
theory in matter requires two more fields. All of them are vector fields. They may be 
represented by their 12 components measured with respect to convenient Cartesian 
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axes. The four Maxwell’s equations couple these components to the charge and
current densities. It is unthinkable to handle these equations and analyze their
consequences without the use of vector calculus. Only this analysis allows us to
study electromagnetism independently of the used frame and to use curvilinear
coordinates, which are very often more convenient to solve the equations. Thus,
some knowledge of mathematical analysis (both real and complex) and vector
calculus are assumed. The required mathematical techniques are introduced as the
need arises. Appendix A summarizes the principal mathematical formulas, integrals
and vector analysis.

I have tried to use clear notations by assigning similar symbols for the various
physical quantities: a boldfaced symbol for a vector quantity, an italic symbol for a
scalar quantity or a component of a vector quantity, an underlined symbol for a
complex quantity, and script symbol for a curve, a surface, a volume and some
special quantities. Physical quantities of the same type are referred to by symbols
with different indexes: for instance, FE,FM , f(ex), etc., for the different types of force.
The charge densities, per unit volume, per unit surface and per unit length are
respectively qv, qs and qL. To avoid confusion with the components of the electric
field E, the energy is designated by U (UK for the kinetic energy, UE for the electric
energy, etc.). The frequency is represented by ν~ , instead of the usual Greek symbol
ν, to avoid confusing it with the velocity v.

A unit vector is often represented by e, while the unit vectors of the axes are ex,
ey and ex. In order to write summations in a condensed form, the Cartesian
coordinates x, y and z are sometimes designated by x1, x2 and x3 respectively, and the
components of a vector V by V1 ≡ Vx, V2 ≡ Vy and V3 ≡ Vz. The partial derivatives of
u(x, y, z, t) are represented by ∂xu for ∂u/∂x, ∂2xtu for ∂2u/∂x ∂t, etc. We also use the
notation ∂αu for ∂u/∂xα and ∂βVα for ∂Vα/∂xβ (α and β = 1, 2, 3) and
occasionally u for ∂u/∂t or du/dt and u for ∂2u/∂t2.

Some sections, indicated by an asterisk (*), have some difficulty and may be
omitted without loss of continuity. At the end of each chapter, I have included
numerous problems, which are ordered according to the sections of the chapter. The
answers to most of the problems are given in a special addendum entitled Answers to
Some Problems, which enables the student to check the results.

I hope that this text makes the subject more accessible for students, and that it is
utilized as a good teaching tool for professors.

T. Bécherrawy
May 2012
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Chapter 1 

Prologue 

Most physical phenomena are fundamentally electromagnetic. This makes 
electromagnetism a basic theory in many branches of physics (solid state physics, 
electronics, atomic and molecular physics, relativity, atmospheric physics, etc.) also 
in some other sciences and most technologies.  

Although physics is an experimental science, it uses mathematical language to 
formulate its theories and its laws and analyze their consequences. 
Electromagnetism is a typical theory that is impossible to formulate without 
extensive use of vector analysis, differential equations, complex analysis, etc. The 
use of mathematics can even lead to the prediction of new physical laws and new 
phenomena (the discovery of the electromagnetic waves by Maxwell is a typical 
example). However, only experiments can decide whether a particular solution or 
prediction and even the whole theory is acceptable. Until now, no experiment has 
contradicted electromagnetic theory, both on the macroscopic scale and the 
microscopic scale (nuclear, atomic or molecular). 

Although permanent magnets and electrification by rubbing were known in 
antiquity, scientific observations of magnetism began around 1270 with the French 
army engineer Pierre de Marincourt. The observation of electric effects began much 
later with the French botanist C. Dufay around 1734. Contrary to the gravitational 
interaction between masses, the large majority of objects around us are globally 
neutral and, if they become charged, they discharge rapidly in the surrounding air. 
The scientific study of electricity started with Franklin (1706-1790), Priestley (1733-
1804), Cavendish (1731-1810), Coulomb (1736-1806), Laplace (1749-1827), 
Ampère (1775-1836), Gauss (1777-1855), and Poisson (1781-1840) who formulated the 
laws of electricity and magnetism. Faraday (1791-1867) introduced the notions of 
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influence and fields and discovered electric induction, which allowed the large-scale 
production of electricity.  Electricity and magnetism were unified in a single  theory 
by Maxwell in 1864. This long itinerary led to the present technological era with the 
considerable influence of electromagnetism and its consequences on our industrial, 
economical and cultural environment.  

In this chapter, we introduce some basic mathematical methods and some 
general invariances and symmetries that we use in the formulation of any theory and 
especially electromagnetic theory.  

1.1. Scalars and vectors 

The basic elementary concepts in the formulation of physical theories are 
position and time. The position is specified by the coordinates with respect to a 
reference frame Oxyz, supported by a material body and represented by an origin O 
and three mutually orthogonal axes. Although these concepts seem to be simple, 
their analysis poses deep practical and philosophical questions even in classical 
mechanics. In modern physics, their analysis has been one of the corner-stones of 
the special theory of relativity (see Chapter 13), general relativity, and quantum 
theory. 

Some physical quantities are determined by a single algebraic quantity with no 
characteristic orientation. Mass, time, temperature, and electric charge are examples 
of such quantities; these are scalar quantities. They may be strictly positive (mass, 
pressure, etc.), positive or negative (position along an axis, potential energy, electric 
charge, etc.), or even complex (wave function, impedance, etc.). Other physical 
quantities A are specified, each one by a positive magnitude A and an orientation; 
these are said to be vector quantities. Displacement, velocity, acceleration, force, 
electric field, magnetic field, etc., are examples of vector quantities. A more precise 
definition of a vector quantity is given in section 1.2. 

A vector A is conveniently specified by its Cartesian components Ax, Ay and Az 
with respect to a frame Oxyz (Figure 1.1a). We may write A =  Axex + Ay ey + Az ez, 
where ex, ey and ez are the unit vectors of the axes Ox, Oy  and Oz; they are the basis 
vectors of the reference frame Oxyz. To simplify the writing of summations, we use 
the numbers 1, 2 and 3 instead of x, y and z to label the components and we write  

A = A1 e1+ A2
 e2 + A3 e3  = ∑α Aα

 eα               α = 1, 2, and 3   [1.1] 

The component A1, for instance, is the projection of A on the axis Ox. It is well 
known that the decomposition [1.1] is unique. 



Prologue     3 

The product kA of a scalar k and a vector A is the vector kA parallel to A and of 
magnitude k times the magnitude of A. The components of kA are simply those of A 
multiplied by k. The resultant (or sum) (A + B) of two vectors A and B is defined by 
the usual parallelogram rule (Figure 1.1b). The components of (A + B) is simply the 
sum of the corresponding components of A and B:  

kA = Σα kAα eα          and       A + B = Σα (Aα + Bα) eα .  [1.2] 

 

 (a)                       (b)                             (c)                           (d)    

Figure 1.1. a) Cartesian components of a vector. b) Sum of two vectors A and B.  
c) The cross product A × B. d) The triple scalar product (A×B).C 

Scalar product 

The scalar product (or dot product) of two vectors A and B, written as A.B, is 
the product of their magnitudes and the cosine of their angle θ. Thus, the scalar 
product of a vector A by itself, written as A2, is the square of its magnitude, A2 = A2. 
We note that the scalar product is linear in A and B. In the case of the basis vectors, 
we have eα

2 = 1 and eα.eβ = 0 if α ≠ β. Using the Kronecker symbols δαβ, we may 
write: 

eα.eβ  = δαβ ,        where   δαβ = 1  if  α = β   and  δαβ = 0   if   α ≠ β. [1.3] 

This allows us to write the scalar product of A and B in terms of their components:  

A.B = BA cos θ  = (∑α Aαeα).(∑βBβeβ) =  ∑αβ AαBβ
 (eα.eβ) = ∑αβ AαBβ

 δαβ  

           = ∑α AαBα.  [1.4] 

The unitary vector eB in the direction of a vector B is obtained by dividing B by 
its magnitude 

eB = B/B ,               i.e.        B = B eB. [1.5] 

If a vector A forms an angle θ with B, the projection of A on B is 
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AB = (A.eB ) = A cos θ = (A.B)/B. [1.6] 

A may be written as A = A|| + A⊥, where A||  is parallel to B and A⊥ is normal to B:  

A|| = AB eB  = (A.B) B/B2       and         A⊥ = A − A|| = A  −  (A.B) B/B2. [1.7] 

Cross product 

The cross product (or vector product), designated by A × B, is the vector 

V = A × B = AB sin θ  n, [1.8] 

where n is the unit vector that is normal to the plane containing the vectors A and B 
and oriented according to the right-hand rule: if the thumb and the forefinger are in 
the directions of A and B, respectively, the middle finger points in the direction of 
A×B (Figure 1.1c). Note that the area of the parallelogram of sides A and B is just 
the magnitude of  A × B. 

Contrary to the scalar product, the cross product A × B is not commutative: it is 
odd in the exchange of the vectors: (A × B) = − (B × A). The cross product of two 
parallel (or antiparallel) vectors is equal to zero because θ = 0 (or θ = π). It may be 
verified that  eα × eβ = eγ, where (α, β, γ) is a circular permutation of (1, 2, 3), that is 

e1× e2 = e3,      e2 × e3 = e1,       e3 × e1 = e2. [1.9] 

This allows us to write the components (A×B)α = Aβ Bγ − Aγ Bβ, that is, 

    (A×B)1 = A2B3  − A3B2,     (A×B)2 = A3B1  − A1B3,     (A×B)3 = A1B2  − A2B1.  [1.10] 

We may also write the cross product as a determinant 

(A × B)    =  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

321
321
321

BBB
AAA
eee

 [1.11] 

Triple scalar product 

The so-called triple scalar product of three vectors is defined by U = (A × B).C. 
It is invariant in a circular permutation of the vectors and odd in the exchange of any 
two vectors. It can be interpreted as the volume of the parallelepiped of sides A, B, 
and C with a positive sign if the trihedron A, B, C, taken in this order, is right-
handed and a negative sign otherwise (Figure 1.1d). It may be expressed as the 
determinant of the components 
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(A × B) . C =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

321
321
321

CCC
BBB
AAA

. [1.12]

Differentiation of vectors

The differentiation rules for sums and products of functions hold for vectors. To
simplify the notation, the derivatives ∂f/∂t, ∂2f/∂x∂t, etc., are written as ∂tf, ∂2xtf, etc.
If a vector A depends on time, the components Aα depend on time. Thus, if the basis
eα is time-independent, the differential of A and its derivative with respect to time
are

dA = Σα dAα eα = Σα ∂tAα dt eα and dA/dt = Σα ∂tAα eα. [1.13]

If the basis vectors depend on time, we must write

dA/dt = Σα (∂tAα) eα + Σα Aα ∂teα. [1.14]

1.2. Effect of rotations on scalars and vectors

The choice of the origin O and the orientation of the axes of reference are
completely arbitrary and observers in different places and different times often use
different reference frames, different origins of time and even moving frames,
relative to each other. Although these observers may find different coordinates and
different time for any given event, it is evident that they must find the same laws for
any physical phenomenon (otherwise, physics would not be a science at all). This is
known as the relativity principle. Thus, it is necessary to know how physical
quantities are related in different frames Oxyz and O′x′y′z′. A physical quantity that
depends on position OM ≡ r and time t in Oxyz is a field, which we write as f(r, t) or
f(xα, t), where xα is a shorthand notation for the coordinates x, y and z of r.

We consider two parallel frames Oxyz and O′x′y′z′, such that the origin O′ has a
fixed position 'OO ≡ ro (of coordinates xo, αwith respect to Oxyz), the position of an
event MO' ≡ r′ with respect to O′x′y′z′ is related to its position r with respect to
Oxyz by the equation

OM = 'OO + MO' , thus r = r′ + ro, (i.e. xα = x′α + xo,α) . [1.15]

This is a simple translation in space. Any field, whatever its nature, must be
specified by equal values f(r, t) and f ′(r′, t) in these frames, thus
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f ′(r′, t) = f(r, t),      i.e.  f ′(r′, t) = f(r′ + ro, t). [1.16] 

We consider now the more interesting case of reference frames related by 
rotations. The basis vectors e'β of the frame O′x′y′z′ are related to the basis eα of the 
frame Oxyz by a linear transformation 

eα = Σβ Rβα e'β ,       and        e'α  = Σβ R−1
βα eβ, [1.17] 

where R is a 3×3 matrix and R–1 is its inverse. Writing A = Σα Aα eα and expressing 
the eα in terms of the e'β by using [1.17], we find 

A = Σαβ Aα Rβα e'β. [1.18] 

Comparing with A = Σβ A'β e'β, we deduce that 

A'β  = Σα Rβα Aα ,            and         Aβ  = Σα R−1
βα

 A'α . [1.19] 

In particular, these transformations hold for the coordinates that are the components 
of the vector r. Using vector notation, we write 

r'  = R r,       A'  = RA,               and        r  = R−1
 r′,    A = R−1

 A′. [1.20]  

The transformation R conserves the scalar products (and in particular the magnitude 
of vectors) if it is orthogonal (that is, its transposed R~  is equal to its inverse). In 
other words, it verifies the condition 

RR RR I= = ,                 i.e.   Rβα Rβγ = δαγ, [1.21] 

where I is the unit matrix (that is, it has δαγ as matrix elements). 

A physical quantity f is a scalar if it is invariant in any rotation R. If it is a scalar 
field, it must verify the condition 

f (r) = f ′(r′),           where     r'  = R r. [1.22] 

This is the case of r2 or any scalar function of r2 (i.e. r = 2r ).  

The three quantities Aα are the components of a vector A if they transform 
according to [1.19], exactly as the coordinates xα in any rotation R. The functions  
Aα(r) are the components of a vector field A(r), if they transform according to 

A'α(r′)  = Rαβ Aβ(r) ,         where    r'  = R r.  [1.23] 
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1.3. Integrals involving vectors 

Circulation of a vector field 

The circulation of a vector field E in a displacement dr = dx ex + dy ey + dz ez is 
E.dr (Figure 1.2a). The work of a force is a typical example of circulation. The 
circulation of E along a curve C going from r to ro is the line integral 

C = ∫C dr.E = ∫ or
r r.Ed = ∫ or

r dr E// = ∫ ++o ][ 321
r
r EdzEdyEdx , [1.24] 

where dr is the infinitesimal displacement along the path C and E// is the tangential 
component of E. The circulation is a scalar quantity defined as the limit of the sum 
of the scalar products drn.En of the infinitesimal elements drn of C and the fields En 

at these elements. To calculate the integral in the general case, a parametric 
representation of the curve x = x(u), y = y(u) and  z = z(u) may be used, where u is 
any parameter with u and uo corresponding to the extreme positions r and ro. The 
components Eα become functions of u and the circulation becomes an integral over u 

C = ∫C dr.E = ∫ ou
u du [ (dx/du) E1(u) + (dy/du) E2(u) + (dz/du) E3(u) ].  [1.25] 

If the field has a uniform tangential component E// = E along the path C, its 
circulation is C = ELC, where LC  is the length of the path. On the other hand, if E =  
E ez is uniform in the direction Oz, its circulation is ∫C dr.E = ∫ oz

z dz E = (zo – z)E.  

 
            (a)                (b)            (c)          (d) 

Figure 1.2. a) Circulation of E along a path C going from r to ro. If E is conservative, this 
circulation is equal to V(r) – V(ro) for any C. b) Setting V(∞) = 0, V(r) is the circulation of  E 

along an arbitrary path going from r to infinity. c) The flux of E through an infinitesimal 
surface dS. d) The flux through an open surface S bounded by an oriented contour C  
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Flux of a vector field 

Consider the integral over a surface S       

Φ = ∫∫S dS n.E(r) = ∫∫S dS E(r) cos θ = ∫∫S dS E⊥(r),  [1.26] 

where E(r) is a vector field, n is the unit vector normal to the surface S at the 
running point r, θ is the angle of E with n and E⊥ is the component of E in the 
direction of n. This integral is the flux of E through S. The flux dΦ = dS n.E(r) 
through the infinitesimal area dS is a scalar quantity and so is the flux. Note that we 
may write dΦ = dS E⊥(r), where E⊥(r) is the normal component of E, or  
dΦ = dS⊥ E(r), where dS⊥ is the projection of dS on the normal plane to E (Figure 
1.2c). dΦ is positive or negative, depending on whether θ is acute or obtuse, and it 
vanishes if E is tangent to S. Note also that n has two possible orientations; by 
changing the direction of n, we change the sign of Φ. In the case of an open surface, 
which is bounded by an oriented closed curve C, we choose n according to the right-
hand rule (Figure 1.2d). In the case of a closed surface S, we choose n oriented 
outward; Φ is then the outgoing flux.   

The flux is additive both for the vector field and for the area. In the particular 
case of a field having a uniform component in the direction of n, its flux is Φ = B⊥S. 
Another physically interesting case is that of a radial field E = Kqr/r3 of a charge q. 
Its flux through a closed surface S is Φ = Kq ∫∫S dS n.r/r3 = KqΩ, where Ω is the 
solid angle of the cone, whose apex is at q and which is subtended by S: it is equal 
to 4π if q is inside S and equal to 0 if q is outside S .  

1.4. Gradient and curl, conservative field and scalar potential 

The work of a force F acting on a particle of mass m in a displacement dr is  
dW = F.dr. This work is transformed into kinetic energy if no other force acts on the 
particle. Conversely, to displace the particle without acquiring kinetic energy dUK, 
an external agent must exert a force F′ = −F and supply a work dW′ = −F.dr. If the 
force is conservative, this work is transformed into potential energy dUP of the 
particle in the field of force F. This analysis can be repeated for any vector field E. 
Its circulation along a path C going from r to ro depends in general on r and ro and 
also on the path C. Its circulation on a closed path is not necessarily equal to zero. 
The differential form dx E1 + dy E2 + dz E3 is a total differential if the components 
Eα are the partial derivatives of a scalar function –V where V is called the scalar 
potential corresponding to the field of force F. Then, we have E1 = −∂1V, E2 = −∂2V, 
and E3 = −∂3V, which we write in the vector form 
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E = − ∇∇V , where ∇∇ = e1 ∂1 + e2∂2 + e3∂3. [1.27]

The vector differential operator ∇∇ is called nabla or del and ∇∇V is the gradient of V.
It may be shown that the gradient of any scalar function V is a vector. In this case
the circulation [1.24] becomes

C = ∫C dr.E = ∫ or
r r.Ed = − ∫ ∇or

r r. Vd = − ∫ or
r dV = V(r) – V(ro). [1.28]

In this special case, the circulation between two points is equal to the drop of the
potential. It depends only on the points r and ro for any path C connecting these
points (Figure 1.2a). In the case of a closed path C (r ≡ ro), the circulation vanishes.
We say that the field E is conservative. For instance, in the case of a uniform field
E, the potential is V = −E.r + Vo and in the case E = Kqr/r3, V = Kq/r + Vo , where Vo
is an arbitrary constant. In the last case it is convenient to assume that V vanishes at
infinity, hence Vo = 0, and we may interpret V(r) as the circulation of E along an
arbitrary path going from r to infinity (Figure 1.2b). In the case where E is a
conservative field of force F, we may write F = −∇UP, where UP is the potential
energy. The work of F along a path C going from r to ro is ∫ or

r r.Fd = UP(r)− UP(ro)
and the work of F along a closed path vanishes.

To know whether a vector field E is conservative, we do not have to evaluate the
circulation on all imaginable paths. We may use the important property that the
partial derivatives of a function are independent of the order of differentiation. If E
is conservative (that is, E = −∇V), the equation ∂α∂β V = ∂β∂αV may be written as
∂αEβ − ∂βEα = 0. Using the differential vector operator ∇∇, we define the vector

curl E ≡ ∇∇×E =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∂∂∂
321
321
321

EEE

eee

= (∂2E3 − ∂3E2) e1 + (∂3E1 − ∂1E3) e2 + (∂1E2 − ∂2E1) e3. [1.29]

A vector field E is conservative if its curl is identically equal to 0, and it may be
shown that the converse is true: if ∇ × E = 0, E is conservative. In this case, we may
define a potential V at each point r (see section A.7 in Appendix A)

Even if a vector field A is non-conservative, Stokes’ theorem (see section A.8 of
Appendix A) allows the expression of the circulation of A along a closed path C as
the flux of ∇∇× A through any surface S bounded by C

∫C dr.A = ∫∫S dS n.(∇∇×A). [1.30]
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Note that the normal n is oriented according to the right-hand rule. We see from this 
theorem that, in the special case of a conservative field (∇ × A = 0), its circulation 
along any closed path C vanishes and this is the definition of a conservative field. 

1.5. Divergence, conservative flux, and vector potential 

In general, the flux of a vector field B through the surfaces S bounded by a given 
closed contour C depends on the special choice of S and the flux through a closed 
surface is not necessarily equal to zero. We define the divergence of B as 

∇.B = ∂1B1 + ∂2B2  +  ∂3B3. [1.31] 

It may be shown (see section A.7 of Appendix A) that, if B = ∇ × A, its divergence 
vanishes (∇.B = 0) and conversely, if ∇.B = 0, we may write  

B = ∇ × A. [1.32] 

A is the vector potential. In fact, there are an infinite number of vectors A that 
correspond to the same B. They differ by a gradient term 

A′ = A + ∇f [1.33] 

because ∇ × ∇f ≡ 0. The relation [1.33] is called gauge transformation.  

Gauss-Ostrogradsky’s theorem (see section A.9 of Appendix A) allows the 
expression of the flux of any vector field B through a closed surface S as the integral 
of ∇.B over the volume V enclosed by S 

∫∫S dS n.B = ∫∫∫V dV  ∇.B. [1.34] 

Note that to apply this theorem, the unit normal vector n must point outward S. We 
deduce that, if ∇.B = 0, the flux of B through any closed surface S vanishes. We say 
that B has a conservative flux. On the other hand, if ∇.B > 0 at a point M, the flux of 
B outgoing from any surface surrounding M is positive; thus, the field is divergent 
from M. On the contrary, if ∇.B < 0, this flux is negative and B is convergent at M.  

1.6. Other properties of the vector differential operator  

Here are some useful properties of the operator ∇ acting on scalar fields f(r) and 
g(r) and on vector fields A(r) and B(r): 
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∇ (f + g) = ∇f + ∇g, [1.35] 
∇ (fg) = g ∇f + f  ∇g, [1.36] 
∇ (A . B) = (A .∇) B + (B .∇) A + A × (∇ × B) + B × (∇ × A), [1.37] 
∇.(f A) = f (∇. A) + A .∇f, [1.38] 
∇.(A × B) = B.( ∇ × A ) − A .( ∇ × B), [1.39] 
∇ × (fA) = f (∇ × A) + (∇f) × A, [1.40] 
∇ × (A × B) = A (∇.B) −B (∇. A) + (B.∇) A − (A .∇) B, [1.41] 
Δ (f g) = f Δg + 2 (∇f).(∇g) + g Δf, [1.42] 

where (A.∇) = Σα Aα ∂α = A1 ∂1 + A2 ∂2 + A2 ∂3  is a scalar operator. 

The successive application of ∇ on scalar and vector fields is very useful in 
physics. In Cartesian coordinates, if we evaluate the divergence of the gradient of a 
scalar function, we find 

∇.(∇f) = Σα eα ∂α.[Σβ eβ ∂βf ] = Σαβ (eα.eβ)∂2
αβf  = ∑α ∂2

ααf  ≡ Δf, [1.43] 

where the operator Δ, called Laplacian, is defined by 

Δ ≡ ∇2  = ∂2
xx + ∂2

yy + ∂2
zz. [1.44] 

As ∇ is a vector operator, the Laplacian is a scalar operator. Acting on a scalar 
field, it gives a scalar field and, acting on a vector field, it gives the vector field 

ΔA = Σαβ ∇α ∇α (Aβ eβ) = Σβ (ΔAβ) eβ. [1.45] 

Thus, in Cartesian coordinates (and only in these coordinates), the components of  
ΔA are simply ΔAα. Other useful relationships may be obtained by successive 
applications of ∇: 

curl (grad f) =  ∇×(∇f) = 0, [1.46] 
div (curl A) = ∇.(∇×A) = 0, [1.47] 
curl (curl A) = ∇ (∇.A) − ΔA. [1.48] 

1.7. Invariance and physical laws 

By transformation, we mean a change of the coordinates or the variables of a 
system. A transformation is said to be continuous if it depends on parameters taking 
continuous values (as in the case of translations and rotations), otherwise it is said to 
be discrete (as in the case of reflections). A physical system is invariant in a 
transformation if it remains unchanged in the transformation (for instance, an 
infinite homogeneous medium is invariant in translations and a cone is invariant in 
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rotations about its axis). A physical theory is invariant if it remains valid in the 
transformation (for instance, classical mechanics is invariant in the translation of 
time) and a physical quantity is invariant if it is unchanged in the transformation. An 
equation is said to be covariant in a transformation if it remains valid in the 
transformation (although the value of its terms may change in the transformation). 

The invariance of a physical theory imposes some restrictions on the 
mathematical formulation of the laws and the allowed processes. A general 
principle, which was formulated by Noether, associates a conserved physical 
quantity with each invariance in a continuous transformation.  

a) Invariance in geometrical transformations 

Geometrical transformations are those of spatial coordinates and time, which 
conserve distances and intervals of time in classical physics. They include 
translations, rotations, and reflections. In a transformation (r, t) → (r′, t′), a physical 
quantity (or a field) f(r, t) becomes f′(r′, t′). 

It is evident that physical laws do not depend on the origin of coordinates. In 
other words, an isolated system evolves in the same way, whatever its position in 
space (we say that the space is homogeneous). Mathematically, any physical law 
should not be modified if the positions r(k) of all the particles (k) of the system are 
modified by the same translation r′(k) = r(k) + a. For instance, the interaction energy 
U12 of two particles located at r1 and r2 is invariant in the translations if U12 depends 
on R = r2 − r1 and not on r1 and r2 separately. Thus, we must have U12 = U(R). 
Consequently, the forces that act on the particles are F1→2 = −∇2UE = −∇RU and 
F2→1 = −∇1UE = ∇RU, where ∇R means the vector differential operator with respect 
to the components of R. Thus, the invariance in translations implies that F12 = −F21 
and, consequently, the conservation of the total momentum of a system of 
interacting particles such as electrically charged particles.  

On the other hand, the physical laws do not depend on the orientation of the axes 
of coordinates. In other words, the space is isotropic. Mathematically, any physical 
law should not be modified if the reference frame is rotated. This requires, for 
instance, that the interaction energy of two particles is U12 = U(R), i.e. a function of 
the magnitude of R and not its direction. Consequently, the force F1→2 may be 
written as F1→2 = −∇RU = −(∂U/∂R) R/R. Thus, it is oriented along the line that joins 
the two particles. This implies that the total angular momentum of an isolated 
system of particles L = Σi mi ri × vi is conserved.  

Physical laws obey another important invariance law: they do not depend on the 
choice of the origin of time. In other words, if an experiment is repeated in time, the 
result should be the same. Mathematically, any physical law should not be modified 
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in translations of time t′ = t + to. This invariance requires that the potential energy of 
two bodies does not depend explicitly on time. Thus, the total energy of an isolated 
system is conserved if there are no dissipative forces. 

To implement these invariance laws, the physical quantities must have well-
defined transformation laws: they must be scalars, vectors, or other types of 
mathematical objects. A typical vector is the position r. Quantities, such as the force 
F and the electric field E(x, y, z), that transform exactly like r in rotations are 
vectors. For instance, in a rotation through an angle ϕ about Oz, they transform 
according to: 

x′ = x cos ϕ + y sin ϕ,           y′ = −x sin ϕ + y cos ϕ,           z′ = z,          (for r) 
F′x = Fx cos ϕ + Fy sin ϕ,    F′y = − Fx sin ϕ + Fy cos ϕ,    F′x = Fz.      (for F) 
E′x = Ex cos ϕ + Ey sin ϕ,    E′y = − Ex sin ϕ + Ey cos ϕ,    E′x = Ez.      (for E) 

Here, the components of the field E are functions of the coordinates, E′x(x′, y′, z′) 
and Ex(x, y, z) ≡ Ex(x′ cos ϕ − y′ sin ϕ, x′ sin ϕ + y′ cos ϕ, z′). A scalar is a quantity 
that is invariant in rotations, such as the distance r2, the scalar product of two vectors 
A.B and the potential V(x, y, z). 

b) Invariance in reflections  

To formulate physical laws, only right-handed reference frames Oxyz are usually 
used. However, nothing forbids to use systematically left-handed frames Ox′y′z′. 
Typical transformations of a right-handed frame to a left-handed one are reflections 
such as the total reflection r′ = −r (i.e. x′ = −x, y′ = −y and z′ = −z) and the reflection 
with respect to the Oxy plane (i.e. x′ = x, y′ = y and z′ = −z as in a mirror). The 
invariance of physical laws in reflections (that are discrete transformations) is not as 
evident as in translations and rotations (that are continuous transformations). 
However, the experiment shows that this invariance holds in mechanics, in 
electromagnetism and in the case of strong (nuclear) interactions. It is violated in the 
case of weak interactions (see section 1.9d). 

Some vectors have components that transform in reflections exactly like the 
coordinates xα; these are said to be true vectors. Similarly, some scalars do not 
change in reflections; these are true scalars. This is the case for the distance  
d = 222 zyx ++ and the scalar product of two true vectors A.B. On the other hand, the 

cross product of two true vectors U = A × B transforms like r in rotations but, in 
reflections, the components Uα transform like xα with an additional change of sign. 
For instance, in the total reflection (xα → −xα), the components Uα remain 
unchanged (Uα → Uα) and, in the reflection with respect to the Oxy plane (x → x,  
y → y and z → −z), the Uα transform according to the relations Ux → −Ux,  



14     Electromagnetism 

Uy → −Uy and Uz → Uz. We say that U is a pseudo-vector. This is also the case for 
the cross product of two pseudo-vectors, while the cross product of a true vector and 
a pseudo-vector is a true vector. The scalar product of a true vector and a pseudo-
vector is a pseudo-scalar: it is invariant in rotations but it changes sign in reflections; 
this is the case of the triple scalar product of three true vectors A.(B × C). 

A physical law, written as a mathematical relationship between physical 
quantities, can be valid only if it is covariant in the preceding transformations. Thus, 
we may add, subtract or write equalities of quantities of the same type. It is not valid 
to add a vector to a pseudo-vector or write the equality of one component of two 
vectors without having the other components equal. For instance, the fundamental 
law of mechanics F = m d2r/dt2 requires that F be a true vector (like r) and the 
definition of the potential energy by the relation dUP = − F.dr requires that UP and 
the energy in general be true scalars.  

1.8. Electric charges in nature 

Although matter is neutral on the macroscopic scale, it is comprised of charged 
and neutral particles. The experiment shows that, on the microscopic scale, the 
electric charge takes only discrete values (0, ±e, ±2e, ± 3e, etc.) that are integer 
multiples of the elementary charge 

   e = 1.602 189 2 × 10−19 C.   [1.49] 

This quantization was established for the first time in 1913 by Millikan’s oil drop 
experiment (see Problem 14.3). The stable particles, which are the building blocks 
of matter, are the proton of charge +e, the electron of charge −e, and the neutron 
(which is neutral as its name indicates). The electrification by rubbing is simply a 
transfer of electrons from a body of low electronic affinity to another of higher 
affinity. 

The equality of the charge of the proton and the charge of the electron in 
absolute values, i.e. the neutrality of the hydrogen atom, is verified by the absence of 
any deviation of this atom by electric or magnetic fields with a precision of 1 to 1020. 
On the other hand, the electric charge of particles does not depend on their velocity 
or on physical conditions, such as temperature, pressure, etc., even in extreme 
conditions, as in the core of stars or in the early stage of the formation of the 
Universe. The electron and the proton are absolutely stable. It is not possible to 
eliminate one of them individually but an electron and a proton may interact and 
produce a neutron and a neutrino. Conversely, a neutron may decay into a proton, an 
electron and an antineutrino. More generally, physical, chemical or biological 
transformations may occur in an isolated system leading to the exchange of charged 
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particles between the constituents of the system, the creation or the annihilation of
pairs of oppositely charged particles, but the total charge of the system is conserved.

The quantization of electric charge and its numerical value as well as the equality
of proton and electron charges in absolute values are not understood even today. On
the macroscopic scale, the elementary charge is extremely small and often has no
observable effect. For instance, a negative charge of 1 µC corresponds to 6 × 1012
electrons and a current of 1 A carries 3.2 × 1018 electrons per second! When
speaking of a point charge, it may be an elementary particle or a macroscopic object
of small size compared to the dimensions of the system. It is often a very good
approximation to consider an extended macroscopic charge as a continuous charge
distribution.

a) Macroscopic bodies and molecules

Molecules and atoms are constituted by charged or neutral particles (electrons,
protons, and neutrons). Their electric interactions are responsible for the cohesion of
matter and most of its physical and chemical properties. Materials may be classified
as conductors if some of the electrons are more or less free to move, insulators if the
electrons are strongly bound to the atoms, and semiconductors whose conduction is
intermediary between conductors and insulators. In solids and liquids, the spacing
between atoms is of the order of the atoms’ diameter (i.e. a fraction of a nanometer =
10−9 m). In gases, the molecules are separated by much longer distances. They are
normally neutral at normal and low temperatures but some may become ionized by
collisions, which become more and more frequent and energetic at high temperature.
A gas may also become ionized if an energetic particle or radiation passes through
it. A gas that is totally or partially ionized is a plasma.

b) Atoms, electrons, protons, and neutrons

The late 19th Century experiments have shown that atoms contain negatively
charged electrons. To be globally neutral, the atoms must also contain positively
charged particles, protons. To explain the stability of atoms, Thomson assumed that
positive charges as well as the negative charges are distributed within a sphere of
radius of the order of 10−10m. However, Rutherford’s experiment in 1911 showed
that the positive charge is concentrated in a nucleus with a radius of the order of
10−15m (see section 14.3). To explain the stability of the atom, in 1913 Bohr
proposed a model in which the electrons maintain circular or elliptical orbits with a
radius of the order of 10−10m around the nucleus, bound by electric force. This
orbital motion is similar to that of the planets around the Sun via gravitational force.
Later, quantum theory abandoned this simple model in favor of a negatively charged
electronic cloud around a positively charged nucleus. The state of the electrons in
the atom is governed by the laws of quantum mechanics and, in principle, the
properties of macroscopic matter can be deduced, but this is a difficult procedure.
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The number of charged particles in matter is enormous. The number of 
molecules or atoms in a mole1 of substance is the Avogadro number NA ≈ 6 ×  
1023 mol−1 and each atom of a given chemical element contains Z electrons and Z 
protons. The hydrogen atom (Z = 1), for instance, is formed by one proton and one 
electron. The helium atom (Z = 2) contains two electrons and two protons. If it 
contains no other particles, its atomic mass would be approximately twice that of 
hydrogen; experimentally it is four-times heavier. Thus the atomic nuclei must 
contain neutral particles. These particles, called neutrons, were observed by Chadwick 
in 1938 with a mass that is slightly higher than the mass of protons (i.e. about 1840 
times the mass of the electron). The helium nucleus, called also alpha particle, is formed 
by two protons and two neutrons. The protons and neutrons, which constitute the 
atomic nuclei are referred to as nucleons. The atom is thus formed by Z electrons, Z 
protons, and N neutrons. Its mass is M ≅ Zme + Zmp + Nmn ≅ (Z + N) mH ≡ AmH, 
where we have neglected the mass difference between the proton and the neutron, 
the binding energy of the nucleons (responsible for the cohesion of the nucleus), and 
the binding energy of electrons to the nucleus (responsible for the cohesion of the 
atom). The chemical properties of elements are closely related to the atomic number 
Z, while the physical properties, in which mass plays an important part, are related 
to the mass number A.  

c) Elementary particles and quarks 

Particles are usually considered as elementary if they are the smallest part of 
matter that may be isolated. Besides electrons, protons and neutrons, which are the 
building blocks of ordinary matter, there are many additional particles, which are 
observed in cosmic rays or produced in collisions carried out in laboratories using 
accelerators. Particles are characterized by their mass, charge, spin (intrinsic angular 
momentum), magnetic moment, etc. A particle may be stable (the electron, the 
proton, the photon, and the neutrino) or unstable (the free neutron, for instance); in 
the latter case, they are characterized by their average lifetime ranging from 10−20 s 
to 898 s for the neutron. Some characteristics of stable particles are listed in 
Table 1.1. 

It is well established that each particle has a corresponding antiparticle of the 
same mass but opposite charge and some other characteristics. For instance, the 
positron (e+) is the antiparticle of the electron (e−), the antiproton ( p ) is the 
antiparticle of the proton (p), etc. The antiparticle and the particle may be identical 
as in the case of the photon; they are then necessarily neutral. However, the 
antiparticle of a neutral particle may be different from the particle. This is the case 
for the antineutron n  whose gyromagnetic ratio is opposite to that of the neutron. A 
                              
1 A mole is the amount of substance that contains the same number of particles (molecules, 
atoms, ions, electrons as specified) as there are atoms in 12 g of pure carbon nuclide 12C. 
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particle and its antiparticle may be produced simultaneously in a reaction. For
instance, a photon (γ) of sufficiently high energy may be transformed into a pair
(e++ e−) if it collides with a nucleus or another particle N according to the reaction
γ + N → N + e−+ e+. Conversely, if a positron encounters an electron, they may
annihilate into two photons at least, according to the reaction e− + e+ → 2γ. These
two reactions are examples of the conservation of the electric charge. No nuclear
reaction or particle reaction that violates this law of conservation has ever been
observed until now. Thus, it is considered to be a fundamental law of nature. In a
process, it is possible to have a transfer of charge, a creation or annihilation of
particles of opposite charges, but the total charge of any electrically isolated system
is conserved. The total charge of the Universe (which is an isolated system because
there is nothing else) is a constant (and probably zero).

Particle
and symbol

Mass (kg) Charge Spin
Magnetic
moment

Average
lifetime

Decay mode

Electron (e−) 9.10953×10−31 −e /2 −1.001145 µB Stable

Proton (p) 1.67265×10−27 +e /2 2.79275 µp Stable

Neutron (n) 1.67495×10−27 0 /2 −1.91315 µp 898 s n→p+e−+ ν e

Photon (γ) 0 0 0 Stable

Neutrinos (ν) Very small 0 /2 0 Stable

Table 1.1. Characteristic quantities of some particles. µB = e /2me = 9.274×10−24 A.m2

is Bohr’s magneton and µp = e /2mp = 5.051×10−27 A.m2 is the nuclear magneton.
= h/2π = 1.054 589 × 10−34 J.s is Planck’s reduced constant. me is the electron mass

and mp is the proton mass. The particles behave as small magnets with a magnetic moment
parallel to their spin. There are several species of neutrinos

Elementary particles are extremely small and the concept of size is ambiguous at
this scale. The electron has an extremely small radius to be measured with present
techniques; thus, for all purposes, it is considered to be a point particle. Protons and
neutrons have radii of the order of 10−15 m. However, although neutrons are neutral,
they have a magnetic moment. Protons are strictly stable, while neutrons may be
stable inside the nucleus but, if free, a neutron decay into a proton, an electron, and
an antineutrino (beta decay) with a mean lifetime of 898 s. A particle is considered
as “stable” if its mean lifetime is long enough to be observed in a bubble chamber,
for instance.

Besides the photon, fundamental particles can be classified into leptons and
hadrons. The leptons (including the electron, the muon, the neutrinos, etc.) have
electromagnetic and weak interactions but no strong interactions. They are actually
considered as strictly elementary. Hadrons (counting about 300 types of particles
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including nucleons) have all types of interactions. They have a complex structure, so 
they are not considered elementary, but are comprised of more fundamental entities 
of charge ±e/3 or ±2e/3, called quarks. However, until now, quarks have never been 
observed as a separate entity. Thus, the isolated charges are always integer multiples 
of the elementary charge e. Nucleons are formed by three quarks, but other hadrons 
are formed by two quarks.  

1.9. Interactions in nature 

Actually, we know four types of interactions. They can be distinguished by their 
strength and their range, i.e. the distance over which the forces are significant. They 
are also characterized by selection rules that we will not consider here. 

a) Gravitational interactions  

The interaction of two point masses m and M may be expressed by the law of 
universal attraction F = −GMmr/r3, where G = 6.67 × 10−11 m3/kg.s2. The 
corresponding interaction potential energy UG = GMm/r decreases slowly with the 
distance, like 1/r. We say that this is a long-range force. As all bodies that have 
mass have gravitational interaction, this is the dominant force on the cosmic scale. It 
is responsible for the cohesion of celestial bodies, the binding of satellites to planets, 
of planets to stars, the stars to galaxies and the galaxies within the Universe. 

b) Electromagnetic interactions 

These interactions include the Coulomb force between electric charges  
FE = Koq1q2/r2 (where Ko ≈ 9 × 109 N.m2/C2) and the magnetic forces between 
charges in motion, magnetic matter, and electric currents. These interactions are 
much more intense than gravitational forces. In the hydrogen atom, for instance, the 
electrons and the proton are separated by an average distance r = 0.53 × 10−10 m. 
Their electric attraction is FE = −Koe2/r2 = −8.2 × 10−8 N, while their gravitational 
attraction is only FG = −GmPme/r2 = −3.6 × 10−47 N, thus 1039 times weaker. 
However, the electric forces are rarely perceived on the macroscopic scale, as 
macroscopic bodies are usually neutral. The Coulomb interaction potential energy is 
UE = Koq1q2/r, and decreases with distance like 1/r; thus, electromagnetic 
interactions are long-range forces. The binding energy of particles by 
electromagnetic forces is of the order of the electron-volt (1 eV = 
1.602189 × 10−19 J) and particles that decay by electromagnetic interactions have a 
mean lifetime of the order of 10−18 to 10−20 s. 

c) Strong interactions 

These interactions are responsible for the binding of nucleons within nuclei and 
the binding of quarks within hadrons. They are about 103 times more intense than 
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electromagnetic forces. Their typical binding energy in nuclei is of the order of  
8 MeV per nucleon. The particles, which decay by strong interactions (called  
resonances), have a mean lifetime of the order of 10−22 to 10−23 s. The strong 
interactions cannot be formulated as a classical law of force. However, we know that 
they have a very short range (of the order of the size of the nucleus, i.e. ≈10−15 m). 
For this reason, they play no part in atomic and molecular physics (where particles 
are separated by distances of the order of 10−10 m) in macroscopic physics and in 
chemistry. 

d) Weak interactions 

These interactions are responsible for beta decay of the neutron and atomic 
nuclei and the decay of most of the elementary particles. They are about 1012 times 
weaker than electromagnetic interactions, but much more intense than gravitational 
forces. They have an extremely short range. The particles, which decay by weak 
interactions, have a mean lifetime of the order of 10−8 to 10−10 s and sometimes much 
longer if the decay energy is small (for instance, the neutron has a mean lifetime of 
898 s).  

1.10. Problems 

Scalar and vectors 

P1.1 Designating the derivatives by primed quantities, show that   

[A(t).B(t)]' = (A'.B) + (A.B')         and         |A(t)|' = (A.A')/|A|. 

P1.2  a) Consider the rotation through an angle ϕ about Oz. Express the new basis 
e′α  in terms of the basis eβ. Write the transformation equations for the components 
of a vector field A. Write this transformation in the matrix form A' = RA. What are 
the transposed matrix R~  and the inverse matrix R−1? Verify that R is orthogonal.  
b) Suppose that a magnetic field is given by B = (µoI/2πr2)(−y ex + x ey). Write its 
expression in the new frame. Considering this rotation, can the expression  
B′ = (µoI/2πr2)(y ex + x ey) be a vector field? 

P1.3 To handle complicated vector analysis, it is practical to introduce Levi-Civitta 
symbols of permutations Eαβγ . Any permutation (α, β, γ) of (1, 2, 3) may be 
obtained by successive exchange of indices. We define Eαβγ as equal to ±1 
depending on whether the number of exchanges is even or odd and Eαβγ = 0 if two 
indices are the same. Thus Eαβγ is odd in the exchange of any two indices (Eαβγ

 = 
−Eβαγ = Eβγα

 = Eγαβ). a) Verify that these symbols obey the relation ∑α Eαβγ
 Eαμν =  

δβμ δγν −  δβν δγμ and that the Kronecker symbols obey the contraction relations  
∑β δαβ δβγ = δαγ and Σαβ δαβδβα = 3. Deduce that the symbols Eαβγ verify the 
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contraction relations ∑αβ Eαβγ
 Eαβμ = 2δγμ and ∑αβγ Eαβγ

 Eαβγ
 = 6. The second 

relation expresses simply that the number of different permutations of (1, 2, 3) is 3! 
= 6. b) Verify that the determinant of a matrix Mαβ may be written as det(Mαβ) = 
∑αβγ Eαβγ

 A1α A2β A3γ and, more generally, Eαβγ
 det(Aμν) = ∑μνλ Eμνλ

 Aμα Aνβ Aλγ.  
c) Verify the following relations of the cross product and the triple scalar product 

eα × eβ =  Eαβγ eγ ,      A × B = Eαβγ Aα Bβ eγ,      (A × B).C =  Eαβγ Aα Bβ Cγ.  

d) Use these Levi-Civitta symbols to calculate the more complicated products: 

 (A × B)2 = A2 B2 – (A.B)2,   
A × (B × C) = (A.C) B − (A.B) C, 
∇×(f B) = f (∇×B) + ∇f ×B,   
(A×∇)×B + (B×∇)×A = ∇(A.B) − A(∇.B) − B(∇.A), 
A×(∇×A) = ½ ∇(A2) − (A.∇) A,         
∇ × (∇ × B ) = ∇ (∇. B) − ∇2 B, 
∇ × (A × B ) = A (∇.B) − B (∇.A) + (B.∇) A − (A.∇) B.    

Integrals involving vectors 

P1.4 Calculate the flux of the vector field E = f(r) er through the sphere of center O 
and radius R. Calculate the divergence of E and its integral over the enclosed 
volume and verify Gauss-Ostrogradsky’ theorem. 

Gradient and curl, conservative field and scalar potential 

P1.5 Verify that the differential operator ∇ is a vector operator. Deduce that the 
gradient ∇f is a vector, the divergence ∇.A is a scalar and the curl ∇×A is a vector. 

P1.6 a) Let V be a scalar potential. Show that dV(r) = ∇V.dr. Deduce that the 
component of ∇V in the direction of the unit vector e is ∂V/∂u, where du is the 
displacement in this direction. b) Show that E ≡ −∇V is orthogonal to the 
equipotential surface (V = constant) and it points in the direction of the higher rate of 
decrease of the potential. c) A scalar field f(r) depends only on the distance r to the 
origin O. Calculate its gradient. Consider the special case f = K/r. 

P1.7  Show that ∇ × r = 0 and that ∇ × (fB) = f (∇ × B) + ∇f × B. Deduce that the 
curl of the electrostatic field of a point charge E = Kqr/r3 is equal to zero. As any 
electrostatic field is produced by point charges, the curl of any electrostatic field is 
equal to zero.  

P1.8 a) The potential of an electric dipole moment p is V = K(p.r)/r3. Calculate the 
corresponding electric field E = −∇V. Suppose that p = pez. Calculate V and E at the 
point r(0, 3, 4). b) The vector potential of a magnetic dipole moment M is  
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A = k(MM × r)/r3. Calculate the corresponding magnetic field B = ∇∇ × A. Suppose
thatMM = M ez. Calculate A and B at the point r(0, 3, 4).

P1.9 In a given frame of reference, a vector field E has the components Ex =
6x −5z, Ey = −8y and Ez = −5x. Is this field the gradient of a scalar field f? If yes,
write the expression of f in this frame.

P1.10 Consider the uniform vector field B = Bez. Show that there is a vector A such
that B = ∇∇ × A. Write the expression of A. Show that A is not unique but it is always
possible to impose the condition ∇∇.A = 0.

P1.11 A surface S encloses a volume V. Let n be the unit vector normal to S. Show
that, for any scalar field f and vector field A, we have

∫∫∫V dV ∇∇f = ∫∫S dS n f , ∫∫∫V dV ∇∇ × A = ∫∫S dS (n × A).

Divergence, conservative flux and vector potential

P1.12 a) Calculate the divergence of the vector fields B = kr and B = rf(r).
b) Show that ∇∇(fB) = B.∇∇f + f (∇∇.B).

Other properties of the vector differential operator

P1.13 Let f be a function of r = |r|. Verify that Δf(r) = d2f /dr2 + (2/r) (df/dr). Verify
that 1/r is a solution of Laplace’s equation Δf = 0.

P1.14 Let f and g be arbitrary scalar fields while A and B are vector fields. Show the
following relations:

∇∇(fg) = f ∇∇g + g ∇∇f , ∇∇×∇∇f = 0, ∇∇× (f∇∇g) = 0, ∇∇. (∇∇× A ) = 0,
∇∇(fA) = ∇∇f.A + f (∇∇.A), ∇∇.(A×B) = B.(∇∇×A) − A.(∇∇×B).

P1.15 a) Let Ψ and Φ be two scalar functions defined on a surface S and in the
enclosed volume V and ∂n be the differential operator with respect to the outgoing
normal coordinate xn on the surface S. Show the following Green’s theorems

∫∫S dS (∂nΨ) = ∫∫∫V dV (Φ ΔΨ + ∇∇Φ .∇.∇Ψ),
∫∫S dS (Φ ∂nΨ − Ψ∂nΦ) = ∫∫∫V dV (Φ ΔΨ − Ψ ΔΦ).

b) Show that any function Φ verifies the relations

∫∫S dS n.(Φ ∇∇Φ) = ∫∫∫V dV [Φ ΔΦ − (ΔΦ)2], ∫∫S dS ∂nΦ = ∫∫∫V dV ΔΦ).

c) Let Ψ and Φ be solutions of Laplace’s equation (i.e. ΔΦ = ΔΨ = 0). Show that
they verify the relation ∫∫S dS Φ (∂nΨ) = ∫∫S dS Ψ (∂nΦ). e) If Ψ, ΔΨ and ΔΦ are
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defined on a closed surface S and in the enclosed volume V, show the Green
representation

∫∫S dS Φ (∂nΨ) = ∫∫∫V dV Ψ (Φ ΔΨ + ∇∇Φ .∇.∇Ψ).

Invariances of physical laws

P1.16 The interaction potential energy of two particles located at r1 and r2 is a
certain scalar function U(r1, r2) if this interaction does not depend on any other
physical quantity. a) Show that the homogeneity of space (i.e. the invariance under
arbitrary translations of the reference frame) implies that U does not depend on r1
and r2 separately but on the relative position r = r1− r2. The force that the particle
(1) exerts on particle (2) is F1→2 = − ∇∇2U(r), where ∇∇2 is the gradient with respect to
the coordinates of particle (2). Similarly, the force that particle (2) exerts on particle
(1) is F2→1 = − ∇∇1U(r). Verify that F1→2 = −F2→1 (principle of action and reaction).
b) If the particles have no structure enabling the specification of special directions in
space, show that space isotropy (i.e. the invariance in arbitrary rotations) implies
that U(r) does not depend on the direction of r but only on the distance r; thus we
have V = U(r). Calculate in this case F1→2 and F2→1 and verify that they are in the
direction of r (central forces).

P1.17 a) The basis vectors e'β and eα are related by the relation eα = Σβ Rβα e'β.
Show that the components of a vector A transform according to A'β = Σα Rβα Aα.
b) Show that the transformation Rβα conserves the orthonormality of the basis if it is
orthogonal, i.e. R R=R R = I. Show that, in this case, it conserves the scalar product
of any two vectors A and B, thus their angle. c) Show that these transformations
must have a determinant det(M) = ±1. Rotations are typical transformations such
that det(M) = +1 while reflections are typical transformations such that det(M) = −1.
Show that the cross product of two vectors V = A × B transforms according to
V'α = det(M) Σβ MαβVβ. Thus V transforms as a vector in rotations while, in
reflections it acquires a supplementary change of sign. Verify that the triple scalar
product S = A.(B × C) transforms according to S' = det(M) S; thus it is a pseudo-
scalar.

Electric charges and interactions in nature

P1.18 What is the number of electrons, protons, and neutrons in a piece of copper of
mass 5 g (Z = 29, N = 35, and atomic mass 63.5)? How long it takes for a current of
10 A to carry the charge of these electrons? Assume that 1/109 of these atoms lose
one electron and that these electrons are transferred on an identical piece situated at
10 cm. What is the attraction force of these pieces? Compare this electric force to
their gravitational attraction.



Chapter 2                                                                              

Electrostatics in Vacuum 

The interaction of electric charges, as expressed by Coulomb force, is formulated 
according to the Newtonian concept of action-at-a-distance: if a charge q′ is 
produced at r′ at a time t′, a charge q located at r feels the action of q′  
instantaneously, whatever the distance |r − r′| and the medium that separates the 
charges. The concept of field was developed by Faraday, Maxwell, Lorentz, 
Einstein, and many others. In modern physics, all interactions are conceived as 
local, i.e. involving quantities defined at the same point r and at the same time t. 
Fields are physical entities that are endowed with energy, momentum, etc., and they 
may propagate with some finite speed as waves. Furthermore, in quantum theory, 
the same objects (electrons for instance) have both particle and wave properties. 

In this chapter, we introduce the concepts of electric field and potential, we 
derive the fundamental equations of electrostatics in vacuum, and we discuss some 
of their properties and the concept of electrostatic energy. 

2.1. Electric forces and field 

In a famous experiment, Coulomb used a torsion balance to measure the force of 
interaction of electric charges. He verified that a small charge q1 acts on a small 
charge q2 situated at a distance r with a force FE = Koq1q2/r2 oriented along the line 
joining the charges. This force is repulsive between like charges and attractive 
between unlike charges. It has a similar mathematical form to Newton’s law of 
universal gravitation Fg = −Gm1m2/r2. To specify both the direction and the 
magnitude, we write 

F1→2 = Koq1q2 R12/R12
3,        where     R12 = r2 − r1. [2.1] 

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
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Coulomb’s force obeys the principle of action and reaction. Ko is a constant that 
depends on the adopted unit of charge. Using the coulomb (C) as the unit of charge 
and the Heaviside or rationalized system, we write 

Ko = 1/4πεo = 8.987 551 79 × 109 N.m2/C2,  
where   εo = 8.854 187 82 × 10−12 C2/N.m2. [2.2] 

εo is the permittivity of vacuum. The factor 4π is introduced to simplify the writing 
of equations. The electric force is much more intense than the gravitational force and 
the coulomb is an enormous charge on the human scale: electric sparks are produced 
by less than one microcoulomb (1 µC = 10−6 C) and rubbing produces a charge of the 
order of the nanocoulomb per square centimeter (1 nC = 10−9 C). 

In accordance with the superposition principle, the total force that several 
charges qi located at the points ri exert on a charge q placed at r is the vector sum of 
the forces exerted by each charge qi if it acts individually 

F = Σi Koqqi Ri/Ri
3,                    where  Ri = r − ri. [2.3] 

In the following, the charge q on which the force acts is considered as a test charge, 
while the charges qi that produce the force are considered as the source charges. If 
the source charges are continuously distributed in a volume V, on a surface S or a 
curve C, the source charge qi must be replaced by qv(r′) dV, qs(r′) dS or qL(r′) dL, 
where qv, qs, and qL are the charge densities, respectively, per unit volume, per unit 
area, and per unit length, and then integrate on the source charge distribution. 

By analogy to the gravitational field represented by the acceleration g and the 
magnetic field near magnetized bodies, which exist independently of the test bodies, 
we define the electric field E such that the force acting on a test charge q is  

F = q E(r) [2.4] 

without reference to the charges, which produce E. The test charge q must be small 
in order that its action on the source charges and, consequently, on the field E itself 
be negligible. 

From expression [2.3] of the force exerted by the point charges qi at ri on q at r, 
we deduce the electric field produced by these charges E = F/q and we may 
generalize it to continuous charge distributions; we get 

E(r) =  Σi KoqiRi/Ri
3,                                where  Ri = r − ri    or  R = r − r'.  

E(r) = Ko ∫∫∫V dV ′ qv(r') R/R3,     Ko ∫∫S dS ′ qs(r') R/R3,    or  Ko∫C dL′ qL(r') R/R3.  [2.5] 
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We note that a distribution of point charges qi at points ri may be considered as a 
volume charge distribution of density qv(r') = Σi qi δ3(r' − ri) where δ3(r' − ri) is the 
three-dimensional Dirac function centered at ri (see section A.11 of Appendix A). 
Similarly, a surface charge density qs(r') corresponds to qv(r') = qs(r') δ(z' − zn), 
where zn is a coordinate that is normal to the charged surface, and a linear charge 
density qL(r') corresponds to qv(r') = qL(r') δ(x' − xn) δ(y' − yn), where xn and yn are 
the coordinates that are normal to the charged line. 

2.2. Electric energy and potential 

The concept of energy is very important, especially in modern physics, because 
of its conservation in the case of isolated systems. Energy may have several forms. 
We are concerned here with the electric potential energy of the charges. The test 
charge q being subject to the conservative electric force F, the analysis of section 1.4 
allows us to define an electric potential energy UE such that F = −∇UE. It may be 
shown that the electrostatic interaction of two charges q and qi corresponds to a 
potential energy UE = Koqqi/Ri, where Ri = |r − ri|. In the case of a test charge  
q = 1 C, F becomes the electric field and the potential energy of the unit charge is 
the electrostatic potential V such that 

Ex = − ∂xV,          Ey = − ∂yV,         Ez = − ∂zV. [2.6] 

The potentials produced by discrete or continuous charge distributions are given by 

V(r) = Ko Σi qi/Ri,  
V(r) = Ko∫∫∫V dV ′ qv(r')/R,    Ko∫∫S dS ′ qs(r')/R, or   Ko∫C dL′ qL(r')/R. [2.7] 

The SI (Système International, the international system of units) unit of potential 
is the joule per coulomb (J/C) called the volt (V), and the unit of electric field is the 
(N/C), which may also be called volt per meter (V/m). In atomic, nuclear, and 
particle physics, the elementary charge e is frequently used. For this, it is convenient 
to use the electron-volt (eV) as the unit of energy; this is the energy that is gained or 
lost by an electron as it moves between two points with a difference of potential of  
1 V; thus, 1 eV = 1.602 189 2 × 10−19 J. The keV = 103 eV, the MeV = 106 eV, the 
GeV = 109 eV, and the TeV = 1012 eV are also used.  

The drop in potential is the work of the electric force on the positive unit charge. 
We may also interpret the increase of V as the work of an external agent in 
displacing the positive unit charge without varying its kinetic energy. This work is 
independent of the path because E is conservative. Particularly, if the potential is 
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taken to be zero at infinity, as in the expressions [2.7], the potential V(r) is the work
that is required to bring the unit charge from infinity to the point r along any path.

(a) (b)

Figure 2.1. a) Cylindrical coordinates, and b) spherical coordinates

2.3. The two fundamental laws of electrostatics

a) Evaluation of the field from the potential and the potential from the field

In the case of time-independent phenomena, the electric field is conservative and
we may introduce the electrostatic potential such that

E = −∇∇V. [2.8]

Considering a displacement δr = δl e along an arbitrary axis D of unit vector e, the
variation of the potential is δV = δr.∇∇V = − δl E.e ≡ − δl ED, where ED is the
component of E along D. We deduce that

ED = − δV/δl |D. [2.9]

This relation holds even if we know V only on the line D and it may be generalized
to curvilinear coordinates. We obtain in the case of cylindrical coordinates and
spherical coordinates (see Figure 2.1):

Eρ = − δρ
δV = – ∂ρV, Eϕ = – δϕρ

δV = – ρ
∂ϕV , and Ez = – z

V
δ
δ = − ∂zV , [2.10]

Er = – r
V

δ
δ = –∂rV, Eθ = – δθ

δ
r
V = − r

Vθ∂ , and Eϕ = − δϕθ
δ

sinr
V = − θ

∂ϕ
sinr
V

. [2.11]

The relation E = −∇∇V shows that, if V is constant, E = 0 and conversely, if E = 0,
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equipotential surface (see Figure 2.2). As the potential has a unique value at each 
point r, two equipotential surfaces cannot intersect. The field E is orthogonal to the 
equipotential surface and it points toward the decreasing potential. 

Conversely, the potential may be evaluated if the expression of the field E is 
known by using the equation  

dV = dx ∂xV + dy ∂yV + dz ∂zV = ∇V.dr = −E.dr. [2.12] 

Sometimes, this equation may be directly integrated. For instance, the field of a 
charge q′ is E(r) = Koq′(r – r′)/|r − r′|3. Setting R = r − r′ and noting that  
dR2 = 2R.dR = dR2 = 2R dR, equation [2.12] may be written as 

dV = −Ko q′ 3
'

'

rr

rr

−

−
.dr = − Ko q′ 3R

RR.d
= − Ko q′ 3R

dRR
 = − Ko q′ 2R

dR . 

Integrating this equation, we find V(r) = Ko q′/R + C = Ko q′/|r − r′| + C. 

Generally, integrating equation [2.12] between ro and r, as E is conservative, we 
obtain the potential difference between ro and r over any path 

∫ o )'(r
r r.Er'd = ∫

r
ro

dV =  V(r) – V(ro) [2.13] 

This equation determines the potential V(r) up to an arbitrary additive constant. We 
may add to V(r) the same constant everywhere without modifying the field or any 
physical law. It is possible to fix this constant by assigning a value Vo at a particular 
point ro. This is possible if there is no electric charge or linear charge distribution at 
this point (as the potential is then infinite). A practical choice is to take V = 0 at 
infinity as in the expressions [2.7]. In this case, if V(∞) = 0, we have 

V(r) = ∫
∞
r r'.d E(r') . [2.14] 

The addition of an arbitrary constant Vo to the potential (V′ = V + Vo) is a 
dynamic transformation. According to Noether’s theorem, the invariance of the laws 
of electrostatics in this continuous transformation is associated with a conservation 
law, which is the conservation of electric charge. To show this, let us consider a 
reaction A + B → C + D + …, where A, B, … are bodies of charges qA, qB, … If this 
reaction occurs in a region where the electric potential is V, the conservation law of 
the total energy may be written as Ei + qAV + qBV = Ef + qCV + qDV + …, where Ei 
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and Ef are the non-electric initial energy and final energy, respectively. As this 
relation remains valid in the transformation V′ = V + Vo for any Vo, we must have 
qAVo + qBVo = qCVo + qDVo + … and, consequently, the conservation law of electric 
charge qA + qB = qC + qD + …  

b) The first fundamental equation of electrostatics: E is conservative 

As the second derivatives do not depend on the order of differentiation, for 
instance ∂x∂yV = ∂y∂xV, we deduce from equations [2.6] that 

∂yEz − ∂zEy = 0,          ∂zEx − ∂xEz = 0,          ∂xEy − ∂yEx = 0. [2.15] 

The left-hand sides of these equations are the components of ∇×E. Thus, the fact 
that the electrostatic field E is conservative is equivalent to the equation 

∇ × E = 0. [2.16] 

We may show this result in a different way: applying equation [2.13] to a closed 
path C (r ≡ ro), we find 

∫C r.Ed = 0. [2.17] 

Using Stokes’ theorem (see section A.8 of Appendix A), we may transform the 
integral into the flux of ∇×E through the surface S bounded by C:  

∫C dr.E = ∫∫S dS n.(∇ × E) = 0. [2.18] 

It vanishes for any S if ∇×E = 0. This is the first fundamental equation of 
electrostatics. 

 

Figure 2.2. Equipotential surfaces                                Figure 2.3. Gauss’s law 
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c) The second fundamental equation of electrostatics: Gauss’s law 

Consider first the flux of the field of a point charge q taken at the origin O 
(Figure 2.3). Its field at M on the surface S is E(r) = qr/4πεor3, where r ≡OM . 
According to the analysis of section 1.3, the flux of E outgoing from a closed 
surface S is qΩ/4πεo, where Ω is the solid angle of the cone whose apex is at O and 
which is subtended by the surface S. If q is inside S, the total solid angle Ω is 4π 
and the flux is Φ = q/εo and if q is outside S, Ω = 0 and so is Φ. Any field E is the 
resultant of the fields Ek produced by all the charges qk. The flux of E through any 
closed surface S is the sum of the fluxes Φk of the fields Ek, i.e. Φk = qk/εo if qk is 
inside S and Φk = 0 if qk is outside S. Thus, the total flux of E is given by Gauss’s 
law  

εο ΦE = Q(in), [2.19] 

where Q(in)
 = Σj q(in)

j  is the total charge inside S. In the case of a volume charge 
distribution density qv(r) in the volume V enclosed by S, we find Gauss’s law in the 
integrated form 

εο ∫∫S dS n.E = ∫∫∫V dV qv(r). [2.20] 

Using Gauss-Ostrogradsky’s theorem (see section A.9 of Appendix A), we may 
transform the outgoing flux of E through S into the volume integral of the 
divergence of E over the enclosed volume V. Thus, equation [2.20] takes the form 
εο ∫∫∫V dV ∇.E = ∫∫∫V dV qv(r) for any volume V. Thus, we must have  

∇.E(r) = qv(r)/εo . [2.21] 

This is the local form of Gauss’s law. It is the second fundamental law of 
electrostatics. In the case of electrostatic phenomena, it is equivalent to Coulomb’s 
law but, contrary to Coulomb’s law in its simple form [2.5], we shall see that 
Gauss’s law is valid even in the case of time-dependent phenomena. 

2.4. Poisson’s equation and its solutions 

Substituting the expression E = −∇V in Gauss’s equation ∇.E(r) = qv(r)/εo, we 
find that the potential obeys Poisson’s equation 

ΔV(r) = − qv(r)/εo.  [2.22]  

Particularly if there is no charge (qv = 0), this equation reduces to Laplace’s equation 
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ΔV(r) = 0. [2.23] 

The partial differential equations have many solutions that depend on arbitrary 
functions. It may be verified that Poisson’s equation [2.22] has a solution  

V(r) = Ko ∫∫∫ dV ′ qv(r′)/|r − r′|  [2.24] 

with terms of the forms [2.7] in the case of surface, line and point charge 
distributions. These expressions are such V ~ 1/r as r →∞. We may add to [2.24] 
any solution Vo of Laplace’s equation [2.23] and obtain another solution  

V(r) = Vo(r) + Ko ∫∫∫ dV′ qv(r′)/|r − r′|. [2.25] 

To determine the solution, we must know, besides qv at each point r', the 
boundary conditions at infinity in the case of an infinite space or on the surfaces of 
the system if it is bounded. It is always possible to find Vo, such that V verifies these 
boundary conditions. Thus, there is always a solution V and this solution is unique. 
Once V is known, the equation E = −∇V allows us to determine the field E. It should 
be noted that only charges that contribute to E and V should appear on the right-
hand side of equation [2.22] and its solution. For instance, if we study the action of a 
field E(ex) on a body carrying charge qi, the qi should not appear in [2.22] and its 
solution even if the body is extended, as they do not contribute to the potential V(ex). 

In some cases, some mathematical conditions have to be imposed (for instance, 
V has a unique determination and it is finite at points where there is no point charge 
or lines of charge). On the other hand, if the space is formed by different regions, 
Poisson’s equation must be solved in each region and appropriate boundary 
conditions must be imposed on their interface. The problem may be further 
complicated if the charges are mobile and their positions depend on the field to be 
calculated (as in a conductor) or if the electric properties of the material depend on 
the field (as in the case of a dielectrics). On the other hand, often the solution is too 
complicated to be written in terms of known or simple functions. Approximation or 
numerical methods must be used in such cases. 

To illustrate the use of Laplace and Poisson’s equations, let us consider a ball of 
radius R and uniform charge density qv. The potential V verifies Poisson’s equation 
inside the ball and Laplace’s equation outside the ball. Using the expression of the 
Laplacian in spherical coordinates and noting that V does not depend on θ and ϕ 
because of the spherical symmetry, we get the equations  

2
1
r dr

d [r2 
dr
dV ] = − 

o
v

ε
q  (for r < R )     and   2

1
r dr

d [r2 
dr
dV ] = 0  (for r > R ). 
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These differential equations have solutions that depend on two arbitrary constants: 

V(in) = − qvr2/6εo + B/r + C  (for r < R)     and    V(ex)= B′/r + C′  (for r > R). 

The condition that V is finite at the center of the ball (as there is no point charge or 
linear charge) imposes that B = 0 and, having no charge at infinity, we may take 
V(ex)(∞) = 0, thus C′ = 0. Using equation [2.11] of the gradient, we obtain the field 
E(in) = (qvr/3εo + B/r2) er (for r < R) and E(ex) = (B′/r2) er (for r > R). As the surface of 
the ball carries no point charge or linear and surface charge densities, the continuity 
of V and E at r = R imposes the conditions −qvR2/6εo + C = B′/R and qvR/3εo = 
B′/R2; thus, we find 

V(in) = Ko 32R
Q (3R2 − r2) ,   E(in) = Ko 3R

Qr er ,   V(ex) = Ko r
Q ,  and E(ex) = Ko 2r

Q er. 

2.5. Symmetries of the electric field and potential 

The electric charge being the source of the electrostatic field E and potential V, 
the symmetries of the sources are reflected on the field and the potential. Although 
the vector analysis is simpler in the Cartesian coordinates, the determination of the 
field and the potential is greatly simplified if we use curvilinear coordinates that 
have some of the symmetries of the charge. The most commonly used are the 
cylindrical coordinates (ρ, ϕ and z) and spherical coordinates (r, θ and ϕ) illustrated 
in Figure 2.1. The basis vectors, the relations of the curvilinear components to the 
Cartesian components as well as the expressions of the vector differential operator 
are given in the section A.10 of Appendix A. 

a) If the charge configuration has a translational symmetry in a direction D 
(Figure 2.4a), it is convenient to take one axis of coordinates, Oz for instance, in the 
direction of D and use the Cartesian coordinates or cylindrical coordinates around D. 
Then, V and the components of E do not depend on z and we may write: 

V = V(x, y)    and   E = −∇V = −∂xV ex −∂yV ey, [2.26] 
V = V(ρ, ϕ)   and   E = −∇V =  − [∂ρV eρ + ρ−1 ∂ϕ V eϕ]. [2.27] 

In this case, the field is orthogonal to the direction of translation D. 

b) If the charge configuration has rotational symmetry about an axis Oz (Figure 
2.4b), it is convenient to use cylindrical coordinates (or spherical coordinates) about 
Oz. Then, V and the cylindrical components Eρ, Eϕ, and Ez (or the spherical 
components Er, Eθ, and Eϕ) do not depend on the azimuthal angle ϕ about Oz: 

V = V(ρ, z)        and        E(ρ, z) = −∇V = − [∂ρV eρ + ∂zV ez], [2.28] 
V = V(r, θ)        and        E(r, θ) = −∇V = −[∂rV er + r−1 ∂θf eθ]. [2.29] 
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As Eϕ = 0, E is everywhere in the azimuthal plane Π1 containing Oz and the point M. 
On Oz itself, if E is finite and it has a unique determination as a function of 
ρ (near ρ = 0), it must be collinear with Oz, thus Eρ(0, z) = − ∂ρV|ρ=0 = 0. If V is 
finite, it must have a maximum or a minimum in ρ on Oz (ρ = 0).  

 
 
 
 
 
 
 
 

 
(a)           (b)           (c)            (d) 

Figure 2.4. Effects of charge symmetries on the electric field: a) translation in the direction  
of Oz, b) rotation about Oz, c) combined rotation about Oz and translation in the  

direction of Oz, and d) rotation around O 

c) In the case of a configuration of charge, which has both rotational symmetry 
about Oz and translational symmetry in the direction of Oz (Figure 2.4c), it is 
convenient to use cylindrical coordinates; then, V and E depend only on ρ: 

V = V(ρ)          and          E(ρ) = −∇V = − ∂ρV eρ.   [2.30] 

In this case, E points in the radial direction eρ. On Oz itself, if E is finite and it has a 
unique determination, it must vanish and, if V is finite, it verifies the condition  
∂ρV |ρ=0 = 0. Thus, V(ρ) must have a maximum or a minimum for ρ = 0. 

d) If the charge configuration has a rotational symmetry around a point O (Figure 
2.4d), it is convenient to use spherical coordinates r, θ and ϕ around O. Then, V and 
the components Er, Eθ and Eϕ do not depend on the angles θ and ϕ:  

V = V(r)            and       E(r) = −∇V = − ∂rV er. [2.31] 

Thus E is radial in this case. This is also required by the rotational symmetry about 
the radial direction OM or the reflection symmetries with respect to the planes Π1 

and Π3. At the center O itself, if E is finite and it has a unique determination, it must 
vanish and, if the potential V is finite, it must have a maximum or a minimum in r.  

e) From the definition of the electric field, F = qE, and the definition of the 
potential by the relation dV = − E.dr, as q is a true scalar while r and F are true 

E(ρ)

x
 y

ρ

Π1

Π2

Ez(ρ,z)z 

M
z 

x 
 y

Π1

D 

E(ρ,z)

Eρ(ρ,z)
ρ 

 y 

z 

E

O 

E

E

D 

x 

z

x

y 

z

ϕ 

θ
Π3 

Π1 
eϕ 

E(r) 

M r

O



Electrostatics in Vacuum     33 
 

vectors, E must be a true vector and V a true scalar. In a reflection with respect to 
Oxy, for instance, the components of E transform like r, while V is unchanged: 

Ex(x, y, z) = E′x(x, y, −z),  Ey(x, y, z) = E′y(x, y, −z),  Ez(x, y, z) = −E'z(x, y, −z) 
V(x, y, z) = V′ (x, y, −z).  [2.32] 

−  If the charge configuration is symmetric with respect to Oxy, we find 

     V(x,y,−z) = V(x,y,z),   E//(x,y,z) = E//(x,y,−z),    and    Ez(x,y,z) = −Ez(x,y,−z). [2.33] 

From the third relation, we deduce that Ez(x, y, 0) = 0. The same symmetry or 
antisymmetry in z hold in cylindrical coordinates while, in spherical coordinates  the 
symmetric points with respect to Oxy are M(r, θ, ϕ) and M′(r, π−θ, ϕ). 

In the case of a charge distribution that is symmetric with respect to an arbitrary 
plane Π (Figure 2.5a), i.e. qv(M) = qv(M′) at any point M and M′ symmetric with 
respect to Π, the potential and the field verify the symmetry conditions 

V(M) = V(M′) ,  E//(M) = E//(M′),       and       E⊥(M) = −E⊥( M′ ).       [2.34] 

Particularly, at the point Mo of Π, we must have E⊥(Mo) = −E⊥(Mo). If E is finite at 
Mo, we must have E⊥(Mo) = 0. Thus the field at Mo lies in the plane Π.  

 
(a)                         (b) 

Figure 2.5. a) Symmetry with respect to a plane Π, and b) antisymmetry with respect to Π 

− If the charge configuration is antisymmetric in the reflection with respect to 
Oxy, that is,  qv(x, y, −z) = −qv(x, y, z), E must verify the antisymmetry relations: 

E//(x, y, z) = −E//(x, y, −z)         and         Ez(x, y, z) = Ez(x, y, −z). [2.35] 

From the first relation, we deduce that E//(x, y, 0) = 0. In the more general case of a 
charge distribution that is antisymmetric with respect to a plane Π  (Figure 2.5b), 
that is, qv(M) = −qv(M′ ) at any points M and M′ symmetric with respect to Π, E 
verifies the antisymmetry relations: 

E//(M) = − E//(M′)                and         E⊥(M) = E⊥(M′).  [2.36] 
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Particularly, at points Mo of Π, we must have E//(Mo) = −E//(Mo), thus  
E//(Mo) = 0, that is,  E is normal to Π. The potential being defined up to a constant, it 
verifies the condition V(M) = −V(M′) + C, where C is a constant. Particularly, at 
points Mo of Π, V(Mo) = C/2. The symmetry plane Π is thus equipotential.  

 
                                       (a)                                      (b) 

Figure 2.6. a) Field of an electric dipole, and b) its lines of field (solid lines)  
and equipotential surfaces (dotted lines) 

2.6. Electric dipole 

An electric dipole is a charge distribution that may be modeled as two charges 
−q and +q that we take at A− and A+ of coordinates –d/2 and +d/2 on the z axis 
(Figure 2.6a). The system having rotational symmetry about Oz, E and V do not 
depend on the azimuthal angle ϕ. Thus, we may evaluate E and V in the Oyz plane 
for instance. On the other hand, as the charge is symmetric in the reflection with 
respect to the Oyz plane, we have Ey(0, y, z) = 0 (see [2.34]) and, as the charge is 
antisymmetric in the reflection with respect to the Oxy plane, we have  
Ez(x, y, z) = Ez(x, y, −z) (see [2.35]). Thus it is sufficient to calculate E and V at M 
with  z > 0:  

E(r) = Ko [q 3MA
MA

+

+
− q 3MA

MA
−

−
]       and    V(r) = Ko [ MA

q
+

 −
MA

q
− ].   [2.37] 

As MA± = r ∓ d/2, we find at large distances, to the first order in d/r,  

E(r) ≅ Ko [3(p.r) 5r
r − 3r

p ]     and     V(r) = Ko 3r
p.r ,    where p = qd. [2.38] 

p is the dipole moment. Its field and potential decrease at large distances like 1/r3 
and 1/r2, respectively, while those of a charge decrease like 1/r2 and 1/r. Figure 2.6b 
illustrates the lines of field and the equipotential surfaces of a dipole. 

z 

E1 

M1

A+ 

p 

A− 

+q 

E
E2 

−q 

d 
M2

E1 E2E

 y
θ

E2
M

E
E1

θ



Electrostatics in Vacuum     35 
 

More generally, consider the electric charges qk occupying the positions rk near 
the origin O. Their potential at a point r is V(r) = KoΣk qk/|r – rk|. At large distances  
(r >> rk), expanding in a power series in 1/r, we obtain to the first order in rk/r  

|r – rk|−1 = [r2 – 2r.rk + rk
2]−½ ≅ r−1[1 − 2(r.rk)/r2 ] ≅ 1/r + (r.rk)/r3. [2.39] 

The potential at large distances may be written as 

V(r) ≅ Koq/r + Ko(p.r)/r3, [2.40] 

where we have set 

q = Σk qk,          p = Σk qk rk. [2.41]  

q is the total charge and p is the electric dipole moment of the charge distribution. If 
q = 0, p does not depend on the origin O in spite of the appearance of rk in its 
expression. In the case of a continuous distribution of charge in a volume V, the sums 
must be replaced by integrals and we obtain 

q = ∫∫∫V dV ' qv(r'),          p = ∫∫∫V dV 'qv(r') r'. [2.42] 

At large distances, the potential is the sum of the potential of a charge q (which 
decreases like 1/r) and that of an electric dipole moment p (which decreases like 
1/r2). If q = 0 (as in the case of non-ionized atoms and molecules) the dominant term 
is that of the dipole. Some molecules (of water, for instance) are globally neutral but 
the barycenter A+ of positive charges Q (the nuclei) is at a distance d from the 
barycenter A− of negative charges –Q (the electrons). Thus, the molecule has a 
permanent electric dipole moment p = Qd.  

Let us consider now the action of an external electric field E on the electric 

dipole moment p = qd = q +− AA  modeled by the charges −q at A− and +q at A+. The 
forces exerted by E on the charges –q and +q are F−

 = −qE(A−) and F+
 = qE(A+) 

(Figure 2.7a). If the field is uniform [E(A−) = E(A+)], the resultant of these forces is 
zero: the dipole undergoes no translational motion. However, the moment of these 
forces is 

Γ = −OA × F− + +OA × F+ = q ( +OA − −OA ) × E = q d × E = p × E.  [2.43] 

We take Ox in the direction of E and p in the Oxy plane and making an angle θ with 
E. Then, E = Eex, p = p (cos θ ex + sin θ ey) and 

Γ = − pE sin θ ez = p × E. [2.44]  
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If θ > 0, Γ is oriented in the opposite direction to Oz. Thus, the dipole rotates to 
align itself with E in a stable equilibrium position. Conversely, to maintain p at an 
angle θ′ with E, a moment Γ′ = −Γ = pE sin θ′ ez must be exerted to counterbalance 
the electric moment of force. To rotate the dipole through an angle dθ′, a work  
dW′ = Γ′ dθ′ = pE sin θ′ dθ′ is required. The total work required to rotate the dipole 
from the equilibrium position θ = 0 to the position θ is 

W′0→θ = ∫
θ
0 'dW  = ∫

θ θ0 'd  pE sin θ′ = − pE cos θ + pE. [2.45] 

This is the electric potential energy of the dipole p if it makes an angle θ with E. 
Dropping the constant term pE, we may write 

UE = −pE cos θ = −(p.E) = (p.∇V). [2.46]  

In this expression, we do not take into account the binding energy of the dipole, 
since it is an internal and constant energy. Thus, UE is the interaction energy of the 
dipole with the field E. 

  
(a)                        (b) 

Figure 2.7. a) Forces exerted by a uniform electric field on a dipole, and  
b) forces exerted by a non-uniform field on a dipole 

Consider now the case of a non-uniform electric field and the charges −q and +q 
located at r+

 = r − ½d and r−
 = r + ½d/2 (Figure 2.7b). If E varies slowly over the 

distance d, we may write its components as power series of d up to the first order 

Eα(r ± ½d) = Eα(x ± ½dx, y ± ½dy, z ± ½dz)  
          = Eα(x, y, z) ± ½dx(∂xEα) ± ½dy(∂yEα) ± ½dz(∂zEα) = qEα(r) ± ½(d.∇)Eα .  

The resultant of the electric forces acting on the dipole has the components 

Fα = q[Eα(r+d/2) − Eα(r−d/2)] = q(d.∇) Eα(r) = (p.∇) Eα(r). [2.47] 
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Using the expression of E in terms of the potential V and the expression of the 
potential energy of the dipole UE = −∑β pβEβ, we may write 

Fα = Σβ pβ (∂βEα) = −Σ β pβ (∂2
βαV) = − ∂α (Σβ pβ ∂βV) = ∂αΣβ (pβ Eβ)  

     = − ∂α(−p.E + pE) = − ∂αUE. [2.48] 

Thus we find the general expression  

F = − ∇UE. [2.49] 

Here UE is a function of the coordinates r(x, y, z) of the center O of the dipole and ∇ 
is the vector differential operator with respect to these coordinates. 

For instance, if E points in the direction of Ox (E = Eex), it acts on the dipole p 
to orient it in the direction Ox (thus, px > 0 and py = pz = 0). If E is non-uniform, the 
relation [2.48] gives the components of the resultant force Fα = px ∂αE. For instance, 
if E is an increasing function of z (∂xE = ∂yE = 0 and ∂zE > 0), the resultant force has 
one component Fz = px ∂zE > 0. Thus the force F points toward the increasing field.  

We have shown that the field and the potential, which are produced at large 
distances by the distribution of charges qk located at points rk are the superposition 
of those of a single charge q = Σk qk and an electric dipole p = Σk qkrk. Let us now 
consider the action of an external field E = −∇V on these charges. If the distances rk 
of the charges from the origin O are small and V varies slowly in the region that is 
occupied by these charges, we may make a power series expansion of V in the 
coordinates up to the first order  

V(xα) = V(0) + ∑α ∂αV |o xα + … ≅ V(0) − ∑α Eα(0) xα = V(0) − r.E(0), [2.50] 

where the derivatives ∂αV are evaluated at xα = 0. The potential energy of the 
charges qk in the field is 

UE = ∑k qkV(rk) ≈ ∑k qk[V(0) − r.E(0)]  ≈ q V(0) − p.E(0). [2.51] 

The first term is the potential energy of the total charge q = Σk qk and the second 
term is the potential energy of the electric dipole moment p = Σk qk rk, both located 
at O. Knowing UE, we may show that the resultant force exerted by E on the charges 
is the force exerted on the total charge q and the resultant moment of the electric 
force is the moment Γ = p × E exerted on p. Particularly, if the total charge is zero 
(as in the case of a non-ionized atoms and molecules), the action of E on the charge 
distribution reduces to its action on the dipole moment p. 
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2.7. Electric field and potential of simple charge configurations  

The potential and the field of any charge distribution may be evaluated by using 
the integrals [2.5] and [2.7]. If the charge has some symmetry, it is sometimes 
possible to find a closed surface S, on which E is normal with a uniform magnitude. 
The electric flux through this surface is ΦE = ES. On a part of S, the flux of E may 
be zero either because E is zero or E is tangent to S. If Q(in)

 is the charge within S, 
Gauss’s law gives E = Q(in)/εoS. In this section we give the expressions of the field 
and the potential of some simple charge configurations. 

− Field and potential on the axis of a uniformly charged ring of radius R and 
charge q at a distance z from its center: 

E(z) = 2/322 )( zR
qzKo

+
ez,        V(z) = 

22 zR

qKo

+
. [2.52] 

 − Field and potential on the axis of a disk of radius R and uniform charge 
density qs at a distance z from its center: 

E(z) = 
o

s

2ε
zq [

z
1 −

22

1
zR +

]ez,           V(z) =
o

s

2ε
q [ 22 zR + − |z|]. [2.53] 

− Field and potential of a plane of uniform charge density qs: 

E(z) = ± (qs/2εo) ez ,          V(z) = ∓ (qs z/2εo) + (qsR/2εo). [2.54] 

− Field and potential of an infinite thin rod of uniform charge density qL at a 
distance ρ from the rod (ρo is a reference distance where the potential is taken equal 
to zero): 

E(ρ) = (2KoqL/ρ)eρ,       V(ρ) → (2KoqL/ρ) ln(ρo/ρ). [2.55] 

− Field and potential of a uniformly charged infinite cylinder of radius R and 
charge density qL per unit length at a distance ρ from its axis:  

E(in) = (2KoqLρ/R2)eρ,         V(in) = KoqL[1 − ρ2/R2 + 2 ln(ρo/R)], [2.56] 
E(ex) = (2KoqL/ρ) eρ,             V(ex) = 2KoqL ln(ρo/ρ). [2.57] 

− Field and potential at a distance r from the center of a spherical shell of radius 
R and uniform charge Q: 

E(in)(r) = 0,                     V(in)
 = KoQ /R, 

E(ex)(r) = (KoQ/r2) ez,         V(ex) = KoQ/r. [2.58] 
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− Field and potential at a distance r from the center of a ball of radius R and 
uniform charge Q:  

E(in)(r) = KoQr/R3
 = (qv/3εo)r,    V(in) = (KoQ/2R)(3 – r2/R2) = (qv/6εo)(3R2 – r2), 

E(ex)(r) = (KoQ/r3) r = (qvR3/3εor3)r,       V(ex)  = KoQ/r = (qvR3/3εor). [2.59] 

2.8. Some general properties of the electric field and potential  

If the potential V is constant in a region, the field E = −∇V is zero and Gauss’s 
law ∇.E = qv/εo implies that there is no charge density in this region. The reciprocal 
is not always true: if the charge density is zero in a region, the field E is not 
necessarily zero but Gauss’s law implies that ∇.E = 0. The flux of E through any 
closed surface S entirely in this region is zero. The electric field lines that enter S on 
one side leave it on the other. For instance, this is the case of a uniform field (the 
field lines are then parallel as in Figure 2.8a) and in the case of the field lines of a 
ball (the field lines are then radial as in Figure 2.8b).  

 
(a)            (b)           (c)           (d) 

Figure 2.8. Electric field lines in a region depending on the charge density 

If the potential has a maximum at M, as the field points toward the decreasing 
potential, it must diverge from M (Figure 2.8c). The outgoing flux from a surface S 
surrounding M is positive and Gauss’s law implies that S contains a positive charge. 
As S may be taken arbitrarily small, we deduce that a positive charge must exist at 
M. By a similar argument, we show that, if the potential has a minimum at M, the 
field must converge toward M and a negative charge must exist at this point (Figure 
2.8d). It is not necessary that the charge at M be a point charge. For instance, in the 
case of a charged sphere, the center is a maximum or a minimum of the potential 
without having a point charge. 

Singularities and discontinuities of the field and the potential 

The expressions of the field and the potential given in section 2.7 show that E 
and V are not always regular and continuous functions: 
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a) Near a point charge q, the field and the potential of this charge are much more 
important than those of the other charges. The field lines diverge in all directions 
from the position O of q (if q is positive) and converge toward O (if q is negative). 
Thus, the direction of E is not defined at O (Figure 2.9a). Furthermore, E and V are 
infinite like E ≈ (Koq/r2)er and V ≈ Koq/r as r →∞ (Figure 2.9b). 

 
(a)         (b)             (c)           (d) 

Figure 2.9. a) At the position of a point charge, the direction of E is not defined, and b) E 
behaves like Koq/r2 and V like Koq/r. c) At some point on a charged line, the direction of E is 

not defined, and c) E behaves like 2Koql/ρ and V like – 2Koql ln ρ 

b) Near a point M of a line of charge density ql, the most important contribution 
to E and V are those of a small element of the line on both sides of M. The field lines 
diverge from M in all directions normally to the charged line (if ql is positive) and 
converge toward M (if ql is negative). Thus, the direction of E is not defined  
(Figure 2.9c). By considering a small Gaussian cylinder around an element of the 
charged line, we find that the dominant terms of E and V are E ≈ (2Koql/ρ)eρ and  
V ≈ −2Koql ln ρ. Thus E and V are infinite on the charged line (Figure 2.9d).  

c) In the case of a surface S of charge density qs, we consider a small cylindrical 
Gaussian surface, with a lateral surface that is very short and normal to S and its 
bases are situated on both sides of S (Figure 2.10a). Assuming that there is no point 
charge or line charge on S, the total charge situated inside the cylinder is qs dS. Let 
n12 be the unit vector normal to S and oriented toward the medium (2). Gauss’s law 
for the cylinder may be written as dS E2.n12 − dS E1.n12 = dS qs/εo. We deduce that 
the normal component of the field undergoes a discontinuity on the surface  

E2.n12 − E1.n12 = qs/εo,        i.e.   E2⊥ − E1⊥ = qs/εo. [2.60] 
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                                       (a)                                                                            (b) 

Figure 2.10. a) On a surface carrying a charge density qs, the normal component of E is 
finite but it has a discontinuity qs/εo, while the tangential component is finite and continuous. 

b) In the case of a volume charge distribution, E and V are finite and continuous 

Consider now a rectangular path ABCD of sides AB and CD parallel to S and 
situated on one side S and the other, while BD and AC are very short. As E is 
conservative, its circulation on this path is equal to zero, thus, E2. AB + E1. CD = 0, 
i.e. E2// AB − E1// CD = 0. As AB = CD, we deduce that 

E2// = E1//. [2.61] 

This relation holds for any direction of AB and CD parallel to S. Thus the tangential 
component of E is continuous on the charged surface. In order to understand this 
result, we consider a point M near the charged surface and surround it by a small 
sphere that contains a small zone So of the charged surface (Figure 2.10a). Let S′o be 
the remaining part of S that lies outside the sphere. The field and the potential at M 
may be written as 

V(r) =Ko ∫∫
oS S'd qs(r′)/| r − r′| + Ko ∫∫

oS' S'd  qs(r′)/| r − r′| , 

E(r) =Ko ∫∫
oS S'd qs(r′)(r − r′)/| r − r′|3 + Ko ∫∫

oS' S'd  qs(r′)(r − r′)/| r − r′|3. [2.62] 

If M is close to S, the integrals over S′o are continuous and finite as |r − r′| does not 
vanish. The integrals over So are approximately the potential and the field of a disk 
of radius (R2 – z2)½ ≈ R and charge density qs. According to [2.54], these are  
Vdisk ≈ qsR/2εo and Edisk ≈ ±(qs/2εo)ez. Thus, the potential of the disk vanishes in the 
limit R→0 and z→0 but Edisk, which is normal to the disk, remains finite and has a 
discontinuity qs/εo. We deduce that, on a charged surface, V and the tangential 
component of E are finite and continuous while the normal component of E is finite 
but it has a discontinuity qs/εo. 
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d) In the case of a volume charge distribution, let us consider a small sphere Vo of
centerM and radius R (Figure 2.10b). According to [2.59], the field and the potential
produced by the sphere at its center M are Eo = 0 and Vo = qvR2/2εo. Thus they
vanish in the limit R → 0 while E(ex) and V(ex) that are produced by the charges
outside the sphere Vo are finite and continuous, as the distance |r −− r′| in [2.5] and
[2.7] does not vanish. We deduce that the field and the potential produced by any
volume charge distribution are continuous and finite both inside and outside the
charged volume if it contains no point charges, linear charge, or surface charge.

By comparing the linear charge to a cylinder and the point charge to a ball, we
find that the singularities of E and V are due to the zero radius limit of the cylinder
and the ball. Also, the discontinuity of E⊥ on a charged surface is due to the zero
thickness of the charge distribution (see Problem 2.21). In fact, the point charge, the
linear charge and the surface charge are mathematical idealizations. On the
macroscopic scale, all bodies have always non-zero dimensions. On the microscopic
scale, the elementary particles (such as electrons or protons) are considered as a
point, but the concepts of position and radius lose their classical significations.

Because of the quantization of electricity as point-like particles, the
superposition of their individual fields Ei and potentials Vi gives the microscopic
field and potential, which undergo large fluctuations and they even become infinite
at the positions of the particles. A macroscopic element of volume, area or length are
assumed to be sufficiently large to contain a very large number of particles. The
field E and the potential V, evaluated by using continuous charge densities, are said
to be macroscopic. These are the averaged values of the microscopic field and
potential over finite space element and time intervals.

Consider a small sphere S surrounding a particle (i) and containing no other
charge (Figure 2.10b). The total average field <E> in S is the vector sum <Ei> +
<E′> where Ei is the field of the particle (i) and E′ is the field of the other particles
located outside S. As Ei is radial and it has a spherical symmetry, its average value
in S is zero, while E' is regular inside S. Thus the macroscopic field is regular. In
the same way, we may show the regularity of the potential in the case of volume
charge distribution and surface charge distribution.

2.9. Electrostatic energy of a system of charges

The energy U of a system of particles without intrinsic structure is the sum of
their kinetic energies UK,i = ½mivi2 and their interaction potential energy. The
electrostatic interaction potential energy UE is the work required to bring the initially
far away particles to their actual positions ri without acquiring kinetic energy. As the
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electrostatic forces are conservative, UE is a function of the relative positions |ri – rj| 
of all the pairs of charged particles.  

 
                                            (a)                      (b) 

Figure 2.11. Interaction potential energy: a) for a system of discrete charges,  
and b) for a continuous charge distribution  

Consider, for instance three charged particles qi (i = 1, 2, and 3) (Figure 2.11a). 
To bring q1 from infinity to its position r1 in the absence of the other charges, no 
work is necessary. Then, to bring q2 from infinity to its position r2 in the presence of 
q1, a force −F12 must be exerted and a work U12 ≡ Koq1q2/r12 is required. Finally, to 
bring q3 from infinity to its position r3, a force – (F13 + F23) must be exerted and 
work U13 + U23 is required. Thus, the total work necessary to assemble the three 
charges is 

UE = U12 + U13 + U23 = Ko (q1q2/r12 + q1q3/r13 + q2q3 /r23). [2.63] 

This result may be easily generalized to systems of several charges qi (i = 1, 2, N). 
Each pair of charges contributes a term Uij to the total potential energy. Thus, we 
may write UE as 

UE = ∑pairs Uij = ½ ∑ 
i≠j Uij,      where     Uij = Koqiqj/rij. [2.64] 

In the expression UE = ∑pairs Uij, the summation is carried over all the ½N(N−1) 
pairs of particles and, in the expression UE = ½ ∑ 

i≠j Uij, the summation is carried 
over all distinct particles (the factor ½ takes into account the fact that each pair is 
counted twice). Explicitly, we find  

UE = ½ ∑ =
=

Ni
1i iq [ Ko∑ ≠ij ijj / rq ] = ½∑ =

=
Ni
1i iq V'(ri), [2.65] 

where V′(ri) ≡ KoΣj≠i qj/rij is the potential produced at ri by all the charges except qi. 
Note that V′ is finite and different from the potential V produced by all the particles 
(which is infinite at the positions ri of the point charges qi). 
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As the potential energy is defined up to the addition of a constant, we choose this 
constant such that Uij → 0 in the limit rij →∞. The potential energy UE may be 
positive or negative. If UE > 0, a positive work must be done against the repulsive 
forces in order to assemble the charges in their actual positions. If the system is then 
left to itself, these repulsive forces disperse the charged bodies; the potential energy 
UE is then transformed into kinetic energy. But, if UE < 0, the particles are attracted 
toward each other and a negative work must be done against the attractive forces in 
order to prevent the particles from acquiring kinetic energy. If the system is then left 
to itself, these attractive forces maintain the particles bound together, as the negative 
potential energy UE cannot be transformed into kinetic energy (which is always 
positive). A work W = −UE is required to completely separate the charges; W is the 
binding energy of the system of bound charges.  

In the case of a continuous charge distribution with a density qv(r) (Figure 
2.11b), an infinitesimal volume dVi near ri contains the charge dqi = qv(ri) dVi. The 
interaction energy of dVi and dVj is Uij = ½KodVi dVj qv(ri)qv(rj)/|ri−rj| and the total 
interaction energy is 

UE = ½Ko∫∫∫V dV′ ∫∫∫V dV qv(r′)qv(r)/|r−r′| = ½ ∫∫∫V dV qv(r) V(r). [2.66] 

In the second expression, V(r) = Ko∫∫∫V dV′ qv(r′)/|r−r′| is the potential produced at r 
by all the charge of V. As in [2.65], in principle, we should consider different 
elements of volume dVi and dVj and use the potential V'(r) of the whole volume V 
except dV. However, the potential of dV tends to zero with the dimensions of dV (see, 
for instance, equation [2.59] in the case of a small sphere of radius R). Thus, we may 
use the total potential V instead of V'. Similar relations to [2.66] may be written in 
the case of a surface charge but not in the case of a linear charge as the potential of 
an element of length dL does not go to zero with dL (see section 2.7 and Problem 
2.18).  

Using Gauss’s law, we may write the electrostatic energy [2.66] in a form that 
uses only the potential and the field:  

UE = ½εo ∫∫∫V dV (∇.E) V(r) = ½εo ∫∫∫V dV ∇.(VE) + ½εo ∫∫∫V dV E2, [2.67] 

where we have used the relation 

(∇.E)V = ∑α∇αEα.V = ∑α[∇α(EαV) −Eα.∇αV] = ∑αVα(EαV) + EαEα = ∇.(VE) + E2.  

If we are only interested in the total electrostatic energy of a charge distribution that 
occupies a finite V, the first term of equation [2.67] is the integral of the divergence 
of (VE) over this volume. It may be transformed into the outgoing flux of (VE) from 
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a large surface S enclosing the system on which V and E go to zero rapidly enough 
for the flux to be zero1. Thus we may write  

UE = ½εo ∫∫∫V dV E2. [2.68] 

This expression is equivalent to an electric energy of volume density 

UE,v = ½ εoE2 [2.69] 

at each point in an electric field E. For instance, in the case of a parallel plate 
capacitor, the field has a magnitude E = qs/εo = Q/Sεo and it is localized between the 
plates. Thus, the electric energy is stored with a density UE,v = ½εo(Q/Sεo)2 in this 
region and the total energy is UE = VUE,v = Q2/2εo.  

This result is not a simple mathematical equivalence. The electric energy is 
effectively localized where there is an electric field, exactly as calorific energy is 
localized at hot places in a medium. Equation [2.68] gives not only the interaction 
energy of the whole system, but the energy in each volume V of the system. Contrary 
to equation [2.69], equation [2.66] does not interpret ½qv(r)V(r) as the electric 
energy density, since it incorrectly implies that the energy density vanishes at points 
where qv(r) = 0. On the other hand, the expression ½qv(r)V(r) is inadequate for the 
energy density, as it may be arbitrarily modified by adding a constant to V.  

The practical relevance of the localization of energy is that the conservation of 
energy is not only global in the Universe but local in each element of volume. In 
each volume V, there is a certain stored energy, a certain dissipated energy, and a 
certain energy being exchanged with the exterior through the surface S that encloses 
the volume V. The dissipation of energy and its propagation are important in 
theoretical physics and in the applications of physics. 

If two systems interact (two atoms within a molecule for instance), the total 
interaction energy may be split into internal interaction energies UE,1 and UE,2 
(between the pairs of each systems considered separately) and the interaction energy 
UE,(1,2) of the particles of one system with the particles of the other: 

UE = UE,1 + UE,2 + UE,(1,2). [2.70] 

                              
1 On a sphere of large radius r, for instance, the element of area dS increases like r2. If V 
decreases like r−n, E decreases like r−n−1 and the product VE decreases like r−2n−1. The flux of 
VE through this sphere goes to zero if −2n−1+2 is negative, i.e. if n > ½. 
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Adding the kinetic energies and the other forms of energy for each system, the total 
energy may be written as: 

U = U1 + U2 + UE,(1,2),      where U1 = UK,1 + UE,1  and  U2 = UK,2 + UE,2. [2.71] 

The interaction energy UE,(1,2) may be expressed in terms of the potential V1 or V2 
produced by the particles of one of the systems at the positions of the charges of the 
other system 

UE(1,2) = )(
11 1 i2i i rVq∑  = ∑

2 22i i1i )(rVq , [2.72] 

where the summations are carried over the charges of one of the systems. The 
knowledge of the interaction energy UE(1,2) allows the force exerted by one system 
on the other to be determined. For instance, if system (2) is rigid and its position is 
specified by a coordinate x, the x component of the force acting on it is  
Fx = −∂xUE,(12)(x). Similarly, if its orientation is specified by an angle θ about the 
axis Oz, the moment of the electric forces has a component Γz = −∂θUE,(12) about Oz.  

If system (2) consists of a single particle of charge q and position r, its 
interaction energy with system (1) is, according to [2.72], UE(1,2) = q V1(r) where V1 
is the potential produced by system (1). The force exerted on this particle is  

F = −∇UE(1,2) = − q ∇V1(r) = − q [∂xV1ex + ∂yV1ey + ∂zV1ez ] = qE1. [2.73] 

More generally, if the interaction energy UE of system (1) with a set of particles is 
expressed as a function of their coordinates, the force exerted on the particle (i) is 

Fi = − ∇iUE (r1, r2,... rN), [2.74]  

where ∇i is the vector differential operator with respect to the coordinates xi, yi, zi of 
the particle (i). 

In the case of time-dependent phenomena, this analysis must undergo two 
important modifications: the appearance of magnetic forces that are non-
conservative (as they depend on velocities) and the non-validity of the action-at-a-  
distance. Then, it is imperative to use the interaction through the fields, which 
propagate and carry their proper energy, momentum, and angular momentum.  

A system is in a state of equilibrium if it remains indefinitely in this state without 
any modification. The equilibrium is stable if it corresponds to the minimum 
potential energy UE. Indeed, to move spontaneously away from this position, the 
potential energy of the system must increase (from the minimum), thus its kinetic 
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energy UK must decrease and this is impossible as UK cannot be negative. If the 
system is slightly displaced away from this position and left without initial velocity, 
it may only come back and oscillate near this position. The potential energy of a 
charge q in a potential V being UE = qV, a minimum of V is a stable equilibrium 
position for a positive charge q and a maximum of V is a stable equilibrium position 
for a negative charge q. For instance, the point situated halfway between two 
charges +q in Figure 2.12a is unstable for a charge −q'  in longitudinal motion and 
for a charge +q' in transversal motion. Thus, whatever the charge, it will not be in a 
stable equilibrium position for the motion in at least some directions.  

 

                                    (a)                                  (b) 

Figure 2.12. a) A system of charges cannot be stable under the effect of electric forces alone. 
b) A body carrying bound charges qi cannot be stable in an external field 

Consider now an extended, non-conducting, rigid body carrying bound charges 
qi at points Mi (Figure 2.12b). Assume that this body is in equilibrium under the 
effect of mechanical forces and internal forces (including the electric interactions of 
the charges). If an external electric field acts on this body, new forces qjE(rj) appear. 
Let rC be the position of the center of mass of this body. The positions of the charges 
from the origin are rj = rC + jCM . The translational motion of the body is that of the 
center of mass, i.e. a point mass m equal to the total mass of the body and subject to 
the resultant of the electric forces FE = Σi qjE(rj). If ∇C is the vector differential 
operator with respect to the coordinates of the center of mass and ∇j is the vector 
differential operator with respect to the components of rj, the force FE verifies the 
equation 

∇C.FE = Σj qj ∇C.E(rj) = Σj qj ∇j.E(rj). [2.75] 

If there are no source charges of E at point rj, Poisson’s equation may be written as  
∇j.E(rj) = 0. Thus, we have ∇C.FE = 0. This means that FE cannot converge toward a 
given point. Thus, this point cannot be a stable equilibrium position for the motion 
of the center of mass. It may be that the body is in an indifferent equilibrium. For 
instance, an electric dipole placed in a uniform field E is in an indifferent 
equilibrium for translational motion as the resultant electric force is zero for any 

M1

C q3 

F1
F3 

F2 
q1

q2

M3

M2

+q+q′+q −q′ +q +q 



48     Electromagnetism 

position of the dipole. It may also be shown that there is no stable configuration of 
charges on a rigid conductor placed in a non-uniform external field E, but an 
indifferent equilibrium is possible (in a uniform field E for instance). 

2.10. Electrostatic binding energy of ionic crystals and atomic nuclei 

In an ionic crystal, the ions are arranged in a periodic array. For instance, in the 
table salt (NaCl) crystal, the Cl− and Na+ ions form a face-centered cubic unit cell of 
sides d (Figure 2.13). The number of ions per mole N is of the order of Avogadro’s 
number NA = 6.022 × 1023. The cohesion of the crystal is due to the attractive 
electric forces. However, the binding energy is easier to analyze and to measure as it 
is related to several physical quantities. The relative configuration of the ions with 
respect to each other is the same everywhere in the crystal except at its surface. If 
the crystal is large, this surface effect may be neglected. The electrostatic energy of 
the crystal is then N times the interaction energy of one of the ions (the central ion in 
Figure 2.13, for instance) with the others. It is given by 

UE = ½NKo∑ =
N
n rqq2 1jj1 / . [2.76] 

It is obviously unthinkable to carry out this summation, even by using the most 
powerful computer. The most important terms correspond to the shortest distances 
r1j. If the ion (1) is Na+, the closest neighbors are the six Cl− ions situated at the 
centers of the faces of the cubic unit cell at a distance r1j = ½d; their contribution is  
−12Koe2/d. The next neighbors are the 12 Na+ situated at the middle of the 12 edges 
at a distance r1j = d/2½; their contribution is (12×2½)Koe2/d. Then come the eight Cl− 
ions at the vertexes at a distance 3½d/2; their contribution is −(16/3½)Koe2/d and so 
on. Thus, the total energy is  

UE = (NKoe2/2d) (−12 + 12 2  − 16/ 3 + ...) = −1.748 (NKoe2/d). [2.77] 

The final result is obtained using a computer. The negative value of UE shows the 
dominance of the interaction with the closest neighbors and it explains the stability 
of the crystal. The energy that is required to extract one of the ions is 

UE(N) − UE(N−1) = 1.748 (Koe2/d). [2.78] 

As it is positive, the crystal is stable against spontaneous disintegration.       

Equation [2.77] shows that the energy of the crystal decreases (in algebraic 
value) if d decreases. You may think that the most stable configuration would be 
that with pairs of oppositely charged ions at the same point. This is not true because, 
at short distance, quantum effects become important and they are equivalent to a 
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repulsive force between positive and negative ions. d is just the distance at which the 
repulsive quantum force counterbalances Coulomb attraction. 

X-ray diffraction experiments give d = 0.564 nm for the NaCl crystal. Thus, 
Koe2/d = 4.09 × 10−19 J. A mole contains 6.022 × 1023 molecules, thus, N = 1.204 × 
1024 ions, and the molar binding energy is UE = −8.61 × 105 J/mol. This is the energy 
required to completely disperse the ions. It may be compared to the evaporation 
energy of 7.64 × 105 J/mol. The agreement with experiment is of the order of 90%. 
To improve it, we must take into account other forms of energy such as the vibration 
energy of ions, surface effects, etc.  

  

      Figure 2.13. Unit cell of NaCl                    Figure 2.14. Energy levels of  11B  and 11C 

The dominant force in atomic nuclei is the nuclear force that binds the nucleons 
despite Coulomb repulsion between protons. It has a very short range (i.e. it is 
completely negligible at distances larger than about 10−15 m). This force also depends 
on the relative velocity and the orientation of the nucleons spins, but it does not 
depend on the electric charge of the nucleons (the nuclear p-p, n-n and n-p 
interactions are the same). The charge independence of nuclear forces is evident if 
we compare the spectrums of nuclei having the same mass number A (i.e. the same 
number of nucleons), but different atomic numbers Z (i.e. the same number of 
protons) such as 11B (Z = 5) and the 11C (Z = 6). The energy levels of these nuclei are 
shown in Figure 2.14. The levels of 11B are at 2.14, 4.46, 5.03 MeV, etc., above the 
ground state, while those of 11C  are at 2,00, 4.32, 4.81 MeV, etc. If the interaction 
between the nucleons was only nuclear, the levels would be identical. In fact, those 
of 11C  seem to be 1.982 MeV higher. This difference may be explained by Coulomb 
repulsion, which is more important in the case of 11C as it contains more protons. 
Taking into account the rest energy of the nucleons, the energy levels may be 
written as  

  E(B) = 5mpc2 + 6mnc2 + UN + UE(11B),   E(C) = 6mpc2 + 5mnc2 + UN + UE(11C) , 
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where we have assumed the same nuclear energy UN for both nuclei and UE is the
electrostatic energy. Thus, we find the difference of levels:

E(C) − E(B) = mpc2− mnc2+ UE(11C) − UE(11B) = UE(11C) − UE(11B) −1.2935 MeV.

To evaluate the electrostatic energy UE, let us assume that the nuclei are
spherical of radius R = RoA1/3 with Ro = 1.2 × 10−15 m (which means that all nuclei
have the same nuclear density). The radius of 11Band 11C is then R = 2.67 × 10−15 m.
Using the expression (3/5)KoQ2/R for the energy of a charge distribution in a ball
(see Problem 2.31), we find UE = (3/5)(KoZ2e2/R). It is a better approximation to
replace Z2 by Z(Z−1), which is twice the number of protons pairs, hence

UE(Z) = (3/5)Z(Z−1)Koe2/R = 5.172×10−14 Z(Z −1) J = 0.3232 Z(Z −1) MeV. [2.79]

We deduce that UE(11C) − UE(11B) = 3.232 MeV, thus

E(C) − E(B) = −1.2935 MeV + 3.232 MeV = 1.939 MeV.

This result is in good agreement with the experimental values.

2.11. Interaction-at-a-distance and local interaction*

We have seen that it is possible to have two formulations of the electric
interactions: the Coulombian formulation [2.1] in accordance with the Newtonian
concept of the instantaneous action-at-a-distance, even if the charges are very far
away, and the local interaction formulation [2.4] of a field emitted by a source
charge q' and acting on a test charge q (Figure 2.15a). You may think that the two
formulations are equivalent and that the concept of field is nothing but a convenient
mathematical tool. This is true only in the case of static phenomena. If the system
undergoes any modification (as in the case of moving particles, production or
disappearance of charges), the instantaneous action-at-a-distance is no longer valid.

After the formulation of special relativity by Einstein in 1905, it became evident
that the velocity of light in vacuum c is the upper limit of velocity for particles and
the transfer of any physical quantity, interaction, or information. The existence of a
higher speed would violate causality, as an observer moving at this speed may find
that an effect precedes its cause. Thus, all interactions must be local, i.e. expressed
in terms of quantities defined at the same space point r and time t.

The source charge q' emits a radiation (i.e. a field), which propagates in space
with a certain speed v and modifies the space structure around q'. For instance, if q′
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is created at time to, its field is not established instantaneously everywhere but it 
reaches at time t the points of the sphere of radius R = v(t − to). At this time, no field 
exists outside this sphere (Figure 2.15a). An eventual test charge q at r will not 
detect the influence of q′ before t = to + |r – r′|/v. The case of a charge source q' 
which moves on a curve C is much more complicated (Figure 2.15b). To evaluate 
the force that it exerts at time t on the test charge q located at r, the position of q' 
must be taken at an earlier time t' = t − |r − r'(t')|/v. The determination of t' as the 
root of this equation and, consequently, the position r'(t') and the electric force may 
be a very complicated mathematical problem. It is possible that this equation has no 
roots (in that case E = 0) or more than one root. It is even possible that the field 
exists while its source has already disappeared. Even in the static case, the charge q' 
may not act on a test charge q if they are separated by an obstacle in which the field 
does not propagate (a metallic plate, for instance). 

   
         

                 (a)                                 (b)                           (c) 

Figure 2.15. a) The field produced by q′ > 0 at t = to propagates with a speed v and at time t 
reaches a sphere of radius r = v(t − to). Then, it acts on the test charge q > 0. b) The field 

produced at r by a moving charge q'. c) Interaction by exchange of particles 

In the 19th Century, the Universe was considered to be composed of matter and 
radiation, two distinct entities but interacting. Both entities are characterized by 
measurable physical quantities (energy, momentum, etc.). In classical physics, a 
particle occupies a very small region of space, while radiation occupies an extended 
region. Particles obey second-order differential equations of motion, while radiation 
obeys partial differential equations of propagation. Initially, the concept of field was 
considered as a convenient representation (by lines of force) or a mathematical tool 
to study interactions. However, after the formulation of electromagnetism by 
Maxwell, it became clear that electromagnetic radiation (including light) are fields 
that propagate and carry energy and momentum. The interaction of two systems 
occurs via the exchange of radiation.  

After the formulation of the special theory of relativity by Einstein, it became 
clear that the velocity of propagation never exceeds the velocity of light in vacuum 
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and the interaction must be local (i.e. it involves quantities defined at the same space 
point and time). Thus, the concept of fields  is necessary to formulate the interaction 
instead of the action-at-a-distance. 

On the other hand, after the formulation of quantum theory, light waves and 
photons became two aspects of the same physical entity. This concept of particle-
wave duality was extended by de Broglie to massive particles. The interaction 
between particles may be conceived as a process of emission and absorption of 
radiation or a process of exchange of particles. This exchange allows the transfer of 
energy, momentum, angular momentum, etc., which is the manifestation of forces. 
Figure 2.15c is a representation of the interaction between an electron and a proton 
by the exchange of a photon. It is called a Feynman diagram. 

2.12. Problems 

Electric forces and field 

P2.1 a) A charge Q is distributed uniformly on a sphere of radius R. We use 
spherical coordinates around a diameter Oz. What is the force that the spherical band 
situated between the parallels θ and θ + dθ exerts on a point charge q situated at the 
point of coordinate z on the z axis? What is the force exerted by the entire sphere?  
b) A charge Q is distributed uniformly in a ball of radius R. Decomposing this ball 
into successive spherical shells, calculate the force that the ball exerts on the charge 
q. What is the limit of this force if q is at the center of the ball? Interpret this result. 

P2.2 Two charges equal to q are located at positions −a and +a on the x axis. What 
is the total force that they exert on a charge q′ of coordinate y on the y axis? Deduce 
the work that is necessary to bring this charge from infinity to the origin along the 
axis Oy. Does this work depend on the path?  

Electric energy and potential 

P2.3 Consider a first set of charges qi at the points ri. Calculate their potentials 
V(r′k) at the points r′k. Consider a second set of charges q'k at the points r'k 
producing the potentials V′(ri) at ri. Show Gauss identity ∑i qi V'(ri) = ∑k q'k V(r′k).  

P2.4 Two charges q1 = +10 nC and q2 = −20 nC are placed at x = 0 and x = +5 cm, 
respectively, on the x axis. a) Calculate the potential V(x) at an arbitrary point of the 
x axis and plot V versus x. Deduce the expression of E(x) on the x axis. Using the 
expression of E(x) find V(x). b) Calculate V(x, y) at an arbitrary point of the Oxy 
plane. Deduce the expression of E. Verify the expressions of question (a).  
c) What are the limits of V and E at large distance? Do you expect this result?  
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The two fundamental laws of electrostatics  

P2.5 a) Show that the angle whose apex is at O and which is subtended by an 
element of length dL is dθ = dL (n.R)/R2 where R is the position of the middle of dL 
from O. Verify that the total angle for a closed plane curve C is 2π if O is inside C 
and 0 if O is outside C. b) Show that the solid angle of the cone whose apex is at O 
and which is subtended by an element of area dS is dΩ = dS (n.R)/R3 where R is the 
position of the center of dS from O. Verify that the solid angle for a closed surface S 
is 4π if O is inside S and 0 if O is outside S. c) Deduce Gauss law εοΦE = Σ q(in).  

P2.6 Consider a uniform field E pointing in the direction Ox. Let M(x, y) be a point 
of the Oxy plane and P its projection on Ox. Calculate the potential V(x, y) by 
integrating the equation E = −∇V and taking V = Vo at the origin. Calculate V(x, y) 
by integrating along the straight line OM, on the path OP + PM formed by two 
rectilinear segments and on the half-circle OPM. What is the work required to 
displace an electron from O to M(2 cm, 1 cm) if E = 2 × 103 V/m? Does this work 
depend on the path?  

Poisson’s equation and its solutions 
P2.7 a) What are the charge densities that produce the potentials V1 = a(x2 − y2) and 
V2 = b(x2 + y2)? Calculate the corresponding electrostatic fields and verify the local 
Gauss equation. b) Which one of the fields E1 = (3x − y)ex + (3y + x) ey and  
E2 = (3x − y)ex + (3y − x)ey may be effectively an electrostatic field? Calculate the 
corresponding potential and charge density. Verify the local Poisson’s equation. 

P2.8 A plate of thickness d has plane faces of very large dimensions, parallel to the 
Oyz plane at x = −d/2 and x = +d/2 respectively. It carries a uniform volume charge 
density qv. a) Using the symmetries and Gauss law, determine the electric field E 
and deduce the potential V everywhere. Is it possible to take V = 0 at infinity in this 
case? b) Using Poisson’s equation and the continuity conditions of V and E, 
determine V and deduce E. c) A particle of charge q, mass m, and velocity v is fired 
from far away perpendicularly to this plate. Depending on the sign of the charges, 
discuss whether the particle may reach the plate and cross it. The particle is assumed 
to have only electric interaction with the plate. It may help to plot the potential 
energy of the particle versus x by taking V = 0 at O. d) Assume now that the plate 
has surface charge densities −qs on the face x = −d/2 and +qs on the face  x = d/2. 
Calculate the potential and the electric field inside and outside the plate and plot V 
and E versus x. Verify Laplace and Poisson’s equations and the discontinuity of the 
electric field on the faces. 

P2.9 Consider a model of the atom as a point-like nucleus of charge Ze surrounded 
by an electronic cloud of charge density qv = −qo(1 – r2/R2). a) Interpret R and 
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determine qo if the total electronic charge is –Ze. b) What is the electronic charge 
that is enclosed inside the sphere of radius r? c) Using Gauss law, determine the 
field and deduce the potential. d) Using Poisson’s equation, the symmetries and the 
boundary conditions, determine directly the potential V(r) of the electronic cloud. 
What is the potential of the system nucleus+electronic cloud? Deduce the field.  

P2.10 Using the relation Δ(1/|r − r′|) = −4π δ3(r − r′) where δ3(r − r′) is the three-
dimensional Dirac function (see section A11 of Appendix A), show that  
V(r) = Ko∫∫∫ dV qv(r′)/|r − r′| is a solution of Poisson’s equation and that ∇.E = qv/εo.  

Electric dipole 

P2.11 An electric dipole is modeled as two charges −q and +q situated at A− and A+ 
of coordinates –d/2 and +d/2 on the z axis. a) Analyze the symmetries of this system 
and their consequences on V and E. b) Evaluate directly V and E at points of Oz and 
Ox. c) Show that, at large distance, E and V are given by equation [2.38] and that, in 
spherical coordinates, Er ≅ 2Kop cos θ/r3 and Eθ ≅ Kop sin θ/r3. d) Using the 
expression V = Ko(p.r)/r3, show that E(r) ≅ Ko [3(p.r)r/r5 − p/r3]. Using the 
expression V = Ko p cos θ/r2, show the expressions of Er and Eθ. 

P2.12 a) Show that the electric dipole moment p of a charge distribution given by 
equation [2.42] does not depend on the choice of the origin if the total charge is 
equal to 0. b) Calculate p in the case of a single charge q, in the case of the charges 
± q of Figure 2.16a and in the case of two opposite dipole moments separated by a 
distance 2b (Figure 2.16b). c) A charge q is located at r. What is the mean value of 
its field in the sphere of center O and radius a? Generalize to the case of several 
charges. 

 

 
       (a)                       (b)                                                 (a)                            (b) 

       Figure 2.16. Problem 2.12                                    Figure 2.17. Problem 2.13 

P2.13 In a water molecule, the protons of the hydrogen atoms are at a distance  
r = 9 nm from the oxygen nucleus O in directions making an angle θ = 104° (Figure 
2.17). Assuming that the electron of each hydrogen atom has equal probability to be 
around its proton as around O, estimate the electric dipole moment of the molecule. 
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P2.14 a) Calculate the interaction energy of a dipole p at r and a charge q at r′. 
Deduce the force and the moment of force acting on the dipole. b) A dipole p′ is 
modeled as a charge −q′ at O and a charge +q′ at A such that OA = d′. Using the 
result of question (a), calculate the force and the moment of force exerted by p′ on p. 

P2.15 Assume that a potential V(r) is established in a region of space. Calculate the 
work required to successively bring charges −q and +q to points r1 ≡ r − d/2 and  
r2 ≡ r + d/2. Deduce the work required to bring a dipole p from infinity to a position 
making an angle θ with E by using a model of the dipole as two charges −q and +q 
separated by a distance d.  

Electric field and potential of simple charge configurations  

P2.16 Evaluate the field and the potential of the simple charge configurations of 
section 2.7. 

P2.17 a) A charge q is uniformly distributed on a circular ring of radius R. Analyze 
the symmetries of the field and the potential. Calculate the potential at M(0, 0, z). 
Deduce the expression of E on the Oz axis. Analyze the variation of V and E as 
functions of z. Determine the points where the field is minimum and where it is 
maximum. b) An electron may move on Oz. What is the force that acts on this 
electron? What is the asymptotic limit of this force for large values of z? Justify this 
result. Is there any equilibrium position for the electron? Is it stable? What is the 
frequency of oscillations of the electron near this position? c) Would this analysis be 
different if the charge density was not uniform? 

P2.18 A thin rod of length L and uniformly distributed charge Q lies on the z axis 
between A and B of coordinates –L/2 and +L/2. a) Discuss the symmetries and their 
consequences on V and E at a point M(ρ, ϕ, z) in cylindrical coordinates. b) Let P be 
a running point of the rod and θ the angle that Oz forms with PM. Show that  

E = Ko(ql/ρ)[(cos θ1 − cos θ2) eρ + (sin θ2 − sin θ1) ez ]    and    V = Koql ln (D−/D+)  

where D± = [4ρ2 + (L ± 2z)2]½ ∓ L − 2z, while θ1 and θ2  are the angles that Oz forms 
with AM and BM, respectively. Verify that V and E tend toward the potential and the 
field of a point charge Q at large distance. Verify that, in the limit of an infinite 
length L (with ρ finite) or in the limit ρ → 0 (with L finite), we find E = 2Ko (ql/ρ) eρ 
and V = 2Koql ln(L/ρ).  As V → ∞ if L → ∞, we may take the potential to have the 
value Vo at ρ = ρo, thus V(ρ, ϕ, z) = 2Koql ln(ρo/ρ) + Vo . 

P2.19 A disk has a uniform charge density qs. Considering the element of area  
dS = ρ dρ dϕ in polar coordinates, calculate the field E and the potential V at points 
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M on its axis Oz. Using the expression of V, deduce the expression of E. Verify that, 
near the disk, V and E are the same as those of an infinite plane. 

P2.20 Two parallel planes P and P′ are separated by a distance d and carry the 
uniform charge densities qs and qs'. We take Oxy parallel to the planes and situated 
at equal distance from them. a) Using the expressions of the potential and the field 
of a uniformly charged plane, write the expressions of the potential and the field 
everywhere. b) Discuss the symmetries and deduce that V depends only on z. 
Deduce that E is parallel to Oz and uniform in the planes z = constant. c) Using the 
symmetries, establish directly these properties of E. Using Gauss’s law, show that E 
is uniform in the three regions of this system and deduce the expressions of the field. 
Discuss the special cases qs = q's and qs = −q's. 

P2.21 Let the surface charge density qs of a plane surface S be, in reality, a thin 
layer of thickness d and volume charge qv. Show that qv = qs/d. Analyze the 
variation of V and E on both sides of this layer and inside it. Verify that the average 
field in the layer is ½(E1 + E2) where E1 and E2 are the fields outside the layer. 
Verify that, in the limit d → 0, one finds the field and the potential of a plane 
surface. 

P2.22 a) A long cylindrical shell of radius R carries a uniform surface charge 
density qs. Use Gauss’s law to calculate the electric field inside and outside this 
shell. b) Find this result by using Coulomb law and decomposing the shell into 
infinitesimal elements of area in cylindrical coordinates. c) Use this result to 
calculate the field inside and outside a cylinder of infinite length and uniform 
volume charge density qv. d) Using the relation E = −∇V in cylindrical coordinates, 
deduce the potential everywhere. 

P2.23 a) Use Coulomb’s law to calculate the field and the potential of a spherical 
ball of radius R and uniformly distributed charge Q in its volume. For this, 
decompose the ball into infinitesimal volume elements dV = r'2 sin θ' dr' dθ' dϕ' of 
charge dq' = qv dV’ and integrate over the ball. b) Let us assume that there is an 
additional point charge q at the center of the charged ball. Determine the potential 
and the field of this charge configuration. Application: determine the potential and 
the field of an atom whose nucleus has a charge Ze and the Z electrons are uniformly 
distributed in a sphere of radius R. Plot V(r) and E(r).  

P2.24 A ball of radius R1 has a concentric cavity of radius R2 and it carries a uniform 
volume charge density qv between R1 and R2. a) Using Gauss’s law, calculate the 
field everywhere. Deduce the potential. b) Assuming that the center of the cavity is 
on the z axis at a distance d from the center of the ball, calculate the potential at a 
point M of spherical coordinates r, θ and ϕ. Deduce the electric field. 
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Some general properties of the electric field and potential  

P2.25 a) Consider a charge q at point r and a sphere S of center O and radius R. Let 
<V>S be the average value of the potential of q on S. Show that, if q is inside S, 
<V>S is equal to the potential produced at r by the sphere S carrying a uniformly 
distributed charge q. Show that, if q is outside S, <V>S is equal to the potential 
produced by q at the center of S. Consider an arbitrary volume charge distribution. 
Show that <V>S = V(ex)(O) + Koq(in)/R where V(ex)(O) is the potential produced at O 
by all the charges that are outside S and q(in) is the total charge situated inside S. 
Deduce that V is regular. b) Applying Gauss’s law to a small sphere, show that E is 
regular and continuous even on the bounding surface of the charge distribution. 

Electrostatic energy of a system of charge 

P2.26 What is the SI unit of εo? Three charges q1 = +5 µC, q2 = −10 µC and q3 = 
+2 µC are placed at points x1 = −4 cm, x2 = 6 cm and x, respectively, on the x axis 
(Figure 2.18). Calculate the interaction energy of this system as a function of x. 
Deduce the resultant force exerted by the charges q1 and q2 on q3 if x = 12 cm.  

 
 
 
 

Figure 2.18. Problem 2.26                           Figure 2.19. Problem 2.27 

P2.27 A rod of length L and uniformly distributed charge q lies on the Ox axis with 
its middle at O (Figure 2.19). a) Calculate the force that it exerts on a point charge q′ 
located at the point M' of coordinate x' on Ox. b) What is the force exerted by this 
rod on another rod of total charge q′ uniformly distributed, of length L′ and lying on 
the x axis with its middle at a distance D from O? Assume that the rods do not 
overlap. What is the value of this force for large D?  

P2.28 Calculate the potential, which corresponds to the field of components  
Ex = −3y, Ey = −3x + 10y − z and Ez = −y. Calculate directly the circulation of E over 
the line OM joining the origin O to the point M(1, 2, 0) and verify that is equal to 
V(M) − V(O). 

P2.29 Consider a chain of 2N charges q, −q, q, −q, etc. Two consecutive charges are 
separated by a distance d. Calculate the electrostatic energy of this chain if N is very 
large. It helps to use the expansion of ln(1+x) as a power series. 

P2.30 We consider a configuration of charges qi at points ri and we assume that the 
potential V'(rk) produced at rk by all the charges except qk is finite. V'(rk) is related 
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to the charges by a linear relation V'(rk) = Σi≠k Aki qi, where the coefficients Aki 
depend on the relative positions of the charges. a) To calculate the electrostatic 
energy, we may assume that the charges are gradually increased from 0 to their final 
values qi. Assume that, at a certain time, the charges are equal to αqk, where α is 
increased from 0 to 1. Calculate the required energy to increase α  to α + d α  
(by bringing the charges dqk = qk dα from infinity to rk). Deduce that the energy of 
the charges may be written as UE = ½ΣkV'(rk)qk = ½ Σk Σi≠k Aki qk qi. b) Use this 
result to calculate the energy of a ball of radius R and uniform charge Q. c) To 
calculate the energy of the ball, let us assume that successive shells are brought from 
infinity. At a certain time, the radius is r. Calculate the work required to bring the 
charge of the shell of thickness dr and deduce the electrostatic energy of the ball. 

P2.31 a) Using the expression UE = ½Ko∫∫S dS′ ∫∫S dS qS(r)qS(r′)/|r − r′|, show that 
the electrostatic energy of a sphere of radius R and charge Q that is uniformly 
distributed on the surface is UE = ½KoQ/R. Find the same result by using the energy 
density UE,v = ½εoE2. b) Using the expression of the energy of a volume charge 
distribution UE = ½Ko∫∫∫V dV′ ∫∫∫V dV qV(r)qV(r′)/|r − r′|, show that the electrostatic 
energy of a ball of radius R and charge Q, which is uniformly distributed in the 
volume, is UE = (3/5)KoQ/R. Find the same result by using the energy density  
UE,v = ½εoE2. c) In special relativity, a particle of mass m at rest has an energy mc2, 
where c is the speed of light in vacuum. Deduce the radius of the electron if it is 
modeled as a ball of radius R. 

P2.32 Two balls of radius R1 and R2 have their centers at points of coordinates −a 
and +a on the z axis and they have no common parts. Their charges Q1 and Q2 are 
uniformly distributed in their volumes. a) Calculate the potential and the electric 
field inside and outside these balls. b) Calculate the energy density. Deduce the 
proper energy of the balls, their interaction energy and their force of interaction. 
What is the work necessary to bring these balls from infinity to their actual 
positions? c) Calculate the force of interaction of these balls by using Coulomb 
interaction of their volume elements. d) Let us consider the particular case Q1 = −Q2, 
R1 = R2 and a << R1. Show that the global field at large distance is the same as that 
of a sphere with a surface charge density proportional to cos θ where θ is the angle 
with Oz as polar axis. 

P2.33 Two electrons are separated by a distance d. The total field at any point is  
E = E1 + E2 where E1 and E2 are their individual fields. The total energy density is 
UE,v = ½εo[E1

2 + E2
2 + 2E1.E2]. The integrals of the first two terms over the whole 

space are the proper energies of the electrons (infinite in the limit of point particles). 
Show that the integral of the third term gives UE = e2/4πεod as expected. 
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P2.34 a) Calculate the electrostatic energy that is necessary to assemble the 92 
protons of the uranium nucleus in a sphere of radius 7.4 × 10−15 m. Express your 
result in joules and in MeV. b) Using the nuclear radius R = RoA1/3, estimate the 
variation of the electrostatic energy of the uranium nucleus (Z = 92, A = 236), if it 
undergoes fission into two identical nuclei. 



Chapter 3

Conductors and Currents

We have seen that materials may be classified as insulators or conductors,
although the distinction is not clear cut, as semiconductors have a conductivity that
is intermediary between conductors and insulators. Similar to heat conduction, some
materials are better conductors than others. The historic Hall experiment has shown,
even before the discovery of the electron, that conduction of metals is due to the
motion of negative charges (see section 6.1). Actually, we know that the external
electrons in some atoms are weakly bound; this makes them free to move from one
atom to the other; these are the free electrons (or conduction electrons). In
electrolytic solutions, the molecules are dissociated into two ions of opposite charge
and both are free to move and contribute to electric conduction. In this chapter, we
analyze the properties of solid conductors in equilibrium and study their conduction
properties.

3.1. Conductors in equilibrium

In a body, each charge is subject to the electric field of the other bodies and that of
the other charges of the body itself. If the body is a conductor, the free charges move
very rapidly under the influence of these fields until they reach a stable electrostatic
equilibrium configuration. Besides this orderly motion in a given direction, the
particles have a random motion, called thermal agitation, which increases with
temperature and which is equally probable in all directions if the temperature of the
body is uniform. It does not correspond to a mean displacement of the particles and
it persists even in the state of electrostatic equilibrium. In the following, we assume
that the only forces that act on the charges are electric (thus, neglecting the weight,
magnetic forces, etc.). We also assume that the external electric field is time-
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independent, as a variable electric field induces a magnetic field that exerts magnetic 
forces. Finally, we assume that the field inside the conductors obeys the same 
equations as in vacuum. This last assumption is justified by the agreement of its 
consequences with experiment.  

A conductor may be either disconnected from other bodies (its total charge Q is 
then constant) or maintained at constant potential V (by generators). The analysis of 
its electrostatic equilibrium determines its voltage (or its charge), the distribution of 
the charge, and the electric field. These quantities depend on the electric influence of 
the nearby bodies. It may be shown that this electrostatic problem has a unique 
solution. The superposition principle is obviously valid and it may help to find this 
solution.  

 
            (a)          (b)                   (c)                                     (d) 

Figure 3.1. Conductors in electrostatic equilibrium: a) the charges are distributed on the 
surface in such a way that E(in) = 0 and E(ex)

// = 0. b) Conductor placed in an external field. 
 c) Inside the conductor, qv = 0, on its external surface, E(ex)

// = 0 and E(ex)
⊥ = qs/εo. The 

conductor is equipotential and d) conductor with cavity  

Here are some properties of ideal conductors in electrostatic equilibrium:  

a) Inside a conductor in equilibrium, there is no electric field1  

E(in) = 0. [3.1] 

Indeed, if there was a field E(in), the free charges would move under the electric 
force and the conductor would not be in electrostatic equilibrium. If non-electric 
forces act on the conduction charges, these charges move to equilibrium positions 
and create in the conductor an electric field E(in) such that the electric force F = qE(in) 

                              
1 In this case the macroscopic field and charge density are averaged on volumes that are large 
enough to contain a large number of atoms. Because of the thermal agitation, the microscopic 
field and charge density undergo large variation in space and time and they may even be 
infinite at the positions of the charged particles. 
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counterbalances the non-electric forces. This is the case inside electric generators 
and a conductor that is immersed in a magnetic field (see Hall’s experiment in 
section 6.1). 

b) Inside a conductor in electrostatic equilibrium, there is no net electric charge 
density (Figure 3.1). Indeed, the electric field inside the conductor being zero, the 
local form of Gauss’s law ∇.E(in) = qv/εo gives 

qv = 0. [3.2] 

The absence of net charge inside the conductor may be easily explained by the 
mobility of the conduction electrons. If the net charge density was negative in a part 
of the conductor, due to an excess of electrons, these would repulse each other and 
would settle in equilibrium on the external surface of the conductor. Similarly, if 
there was a positive charge density in a part of the conductor, due to a lack of 
electrons, this positive charge would attract the free electrons to become neutralized 
and leave the surface of the conductor positively charged.  

 c) A conductor in electrostatic equilibrium can carry charges only on its 
external surface. Outside a conductor, just near its surface, the electric field is 
normal to the surface. As we have seen in section 2.8(b), the tangential component 
of E is continuous on boundary surfaces (since the circulation of E vanishes on any 
closed path), while the normal component is finite but it has a discontinuity  
E2.n12 − E1.n12 = qs/εo (given by Gauss law). Taking the conductor as medium (1) 
and the exterior as medium (2), n12 is the normal unit vector outgoing from the 
conductor. The field being zero inside the conductor, we must have 

E//2 = 0           and           E2.n12 ≡ E2⊥= qs/εo. [3.3] 

Any charge of the conductor, whether it is due to the displacement of the 
conduction electrons, deposed on it or induced by the presence of other charged 
bodies nearby, can only be on its external surface. The surface charge density may 
be positive on certain parts of the surface and negative on others in a distribution 
such that the total field E in the conductor is zero (Figure 3.1b). In the usual 
conductors, the depth of the charged layer on the surface is of the order of the 
nanometer (i.e. atomic size).  

d) All points inside and on the surface of a conductor in electrostatic equilibrium 
are at the same potential: indeed, as E = 0 inside the conductor, its circulation inside 
the conductor along any path between any two points M and N is zero (Figure 3.1c). 
Using equation [2.13], we deduce that V(M) = V(N). Thus, the surface of the 
conductor and its interior are equipotential and this agrees with the orthogonality of 
the field on this surface. This property may be established directly. Indeed, if V(M) 
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was different from V(N), the conduction electron would move toward the higher 
potential to reduce the total potential energy and the equilibrium would be lost. To 
set a conductor at a positive potential Vo, it may be connected to the positive 
terminal of a generator of electromotive force Vo, and to set it to a negative potential 
−Vo, it may be connected to the negative terminal, the other terminal being 
grounded. In order to maintain a conductor to zero potential, it may be grounded. 

3.2. Conductors with cavities, electric shielding 
In the case of a conductor with cavities, the preceding results concerning E and V 

inside the conductor and on its external surface remain valid (Figure 3.1d). Let us 
consider a Gaussian surface S' entirely situated within the conductor and containing 
a cavity. The field in the conductor being zero, the flux of E through S' is zero and 
Gauss’s law implies that the total charge inside S' is zero. Thus, the total charge 
carried by the surface of the cavity Sc is the opposite of the total charge that it 
contains.  

If the cavity contains no charge, the total charge on Sc is zero. So, if it has some 
positive surface charge density at A and a negative charge density at B, the field 
points from the positive charge toward the negative charges. The circulation of E 
along a path going from A to B would be .Er∫

B
A d = VA − VB > 0 and this is 

impossible as the conductor is equipotential. Thus, if the cavity contains no charge, 
its surface charge density must be zero. We may reverse the argument and say that, 
points A and B of a conductor being equipotential and the cavity containing no 
charge, V has between A and B no maximum or minimum; it must be constant and 
the field E = −∇V must vanish in the cavity as well as in the conductor. Consider 
now a Gaussian surface S" having a part in the cavity and the other in the conductor. 
The flux through S" being zero, the total charge that it contains is zero. This is 
possible for any S" only if the cavity surface carries no charge. 

It should be noted that, if we admit the property that E(in) = 0 in a conductor, all 
the other properties result from Gauss’s law, which is itself a consequence of the 1/r2 
dependence of Coulomb force. The vanishing of the internal charge was verified 
experimentally by Cavendish in 1772. He introduced a charged metallic ball into a 
metallic box and let the ball touch the box; the ball became neutral. Thus, if the 
force law was 1/r2+η, he verified that η < 0.02. A modern version of this experiment 
was realized by Plimpton and Lawton. They used two metallic concentric enclosures 
and set the external one to a high alternating potential (of the order of 104 V) and 
low frequency (of the order of 2 Hz). Using an amplifier able of detect a difference 
of potential as low as 10−6 V, they did not find any difference of potential between 
the enclosures and deduced that η ≤ 2 × 10−9. 
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More generally, the electrostatic phenomena in the cavity do not depend on the
exterior. For instance, if the charge density in the cavity is qv, the potential in the
cavity is a solution of Poisson’s equation ΔV = − qv/εo and the field is E = −∇V.
Among these solutions, we must choose the one that verifies the conditions V = Vo
and E.n = qs/εo on the surface Sc of the cavity. Vo is the potential of the enclosure,
which is an unimportant constant, n is the unit vector normal to Sc and pointing
toward the interior of the cavity and qs is the charge density of Sc. V must also be
finite in the cavity if it contains no point charges or linear charges. It may be shown
that this mathematical problem has a unique solution. We note that we consider here
only static phenomena, as time-dependent electric fields induce magnetic fields.
This constitutes an electromagnetic wave, which may propagate through the
enclosure (if it is thin) and produce an electric and a magnetic field in the cavity.
This property of the cavity results in electric shielding. Delicate electric devices or
circuits are enclosed within a metallic, grounded, conducting casing to protect them
against external electric disturbances. It is not necessary that the enclosure be
hermetic. It may have small holes or it may be a simple grid allowing the evacuation
of heat.

The enclosure does not protect the exterior against electrostatic phenomena in
the cavity. For instance, if a charge is introduced in the cavity, an equal charge
appears on the external surface of the enclosure, this modifies its potential and
produces an electric field outside it. The shielding acts in both directions if the
enclosure is grounded (Figure 3.2a) or maintained at a fixed potential Vo (Figure
3.2b). The electric potentials V(in) in the cavity and V(ex) outside the enclosure are
solutions of Poisson’s equation in their respective regions with the boundary
condition V(r) = Vo on the enclosure. The solution is unique in each region
independently of the others.

Let us consider two distant conducting spheres of radii R and r, connected by a
conducting wire (Figure 3.3a). They form a single conductor at a potential V. Their

V = 0 qs= 0

+q

V = Vo> 0
qs> 0

Vo

+q

(a) (b)

Figure 3.2. a) Grounded conductor with cavity,
b) the same conductor set to a potential Vo

R

r

R

r

(a) (b)

Figure 3.3. Sharp point effect: E is
intense at sharp points and edges
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charges are QR = 4πεoRV and Qr = 4πεorV and the field near their surface is ER = V/R 
and Er = V/r; thus, Er /ER = qs,r/qs,R = R/r. This example shows that the field and the 
charge density are very large at the sharp points or edges of a conducting body, as 
their radius of curvature is very small (Figure 3.3b). Lightning conductors are an 
application of this effect: a metallic rod ending by several needle-like conductors is 
placed on the top of buildings and connected to the ground. The Earth is not 
completely neutral but it has a charge density of about −10−9 C/m2. Its field at 
ground level is about 100 V/m and it may be very intense near lightning conductors. 
This favors atmospheric discharge through the conductor. 

The sharp point effect explains the so-called corona discharge brought on by the 
ionization of a fluid surrounding a sharp conductor at high potential. Air, for 
instance, is a poor conductor of electricity but it contains always some charged 
particles and ions that are produced by cosmic rays. The high electric field near the 
sharp points acts on these charged particles and ions and accelerates them strongly. 
In their displacement, they collide with the air atoms, producing other ions and 
emitting intense light. The motion of the charges also produces so-called electric 
wind, which may be detected by a flame placed near the sharp point. 

3.3. Capacitors 

a) Mutual influence of conductors, capacitance 

If two conductors are close to each other, the field of each one acts on the free 
charges of the other and modifies the charge distribution and total charge if they are 
not isolated. We say that the conductors are in mutual electric influence. The field 
lines always start from the positive charges on one of them (or at infinity) and end at 
the negative charges on the other (or at infinity). As the Earth is a conductor, it must 
be considered as a part of the system.  

We consider in this section the case of two conductors in mutual electric 
influence and in electrostatic equilibrium (Figure 3.4a). Let S' be a Gaussian surface 
formed by a thin tube of field lines and closed at the ends by two surfaces inside the 
conductors. The field being tangent to the lateral surface of the tube and equal to zero 
inside the conductors, its flux through S' is equal to zero. The surface elements of 
the conductors that it contains must have opposite charges dq1 and dq2. If all the 
field lines start on one of the conductors and end on the other, we say that the two 
conductors are in total mutual influence. Then, they carry opposite charges Q and 
−Q. This is the case, for instance, if one of the conductors is in a cavity within the other 
and also the case of two ideally isolated conductors carrying opposite charges. Two 
large plane parallel plates carrying opposite charge densities are almost in total 
mutual influence if edge effects are neglected (Figure 3.5a).  
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(a) (b) (c) (d)

Figure 3.4. a) Two conductors in total influence.
The superposition of the states b) and c) is the state d)

To derive the relation of the charges to the potentials, we consider a first
configuration such that the first conductor is at potential V1 and the second at zero
potential (Figure 3.4b). The relation of the charges to the potentials being linear, the
charges of the conductors are proportional to V1, of the form Q′1 = C11V1 and
Q′2 = C21V1. In a second configuration with the first conductor at zero potential and
the second at potential V2 (Figure 3.4c), the charges are proportional to V2, of the
form Q"1 = C12V2 and Q"2 = C22V2. It is evident that the configuration of the
conductors at potentials V1 and V2 is a superposition of the preceding configurations
(Figure 3.4d). We deduce that the charges Qi are then the sums of the charges Q′i and
Q"i:

Q1 = C11 V1 + C12V2, and Q2 = C21 V1 + C22V2. [3.4]

The Cik are the coefficients of electric influence. They depend on the geometrical
form of the bodies, their relative position, and also the non-conducting medium
separating them. If the influence is total, we have Q2= −Q1 for any potentials. This is
possible if C11 = −C21 and C22 = −C12. We will show in section 3.4 the symmetry
relation Cik = Cki. On the other hand, if, for instance, V2 = 0 and V1 is positive, Q1

must be positive. Thus we have C11 = C22 = −C12 = −C21 > 0. This set-up of the
conductors is then called a capacitor and the conductors are its plates (or electrodes).
Designating the charge of the positive plate as Q and the common value of the mutual
coefficients as C, called capacitance, we obtain the relation

Q = CV, where V = V1 − V2. [3.5]

The SI unit of capacitance is the coulomb per volt (C/V), called farad (F). Usual
capacitances are of the order of the microfarad (µF = 10−6 F) and picofarads (pF =
10−12 F). A single isolated conductor may be considered to be in total influence with
the Earth. If it has a potential V, its charge is Q = CV. The coefficient C is also called
capacitance of the body. For instance, the capacitance of a sphere is C = 4πεoR. We

S′

(1)

dq1 dq2

(2) (1) (2)
Q′1 Q′2V1

(1) (2)
Q″1 V2 Q″2

⊕ (1)
Q1
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consider in this chapter only empty capacitors or, to a good approximation, air-filled 
capacitors. 

b) Calculation of the capacitance 

The simplest capacitor to analyze is the parallel plate capacitor, formed by two 
metallic plates of large area S and separated by a distance d (Figure 3.5a). The edge 
effects are negligible if the distance d is much smaller than the dimensions of the 
plates. For the calculation of V and E, this assumes that the plates are infinite planes. 
The electric field is then the superposition of the fields ±qs/2εo of two planes of 
uniform charge densities ±qs (see section 2.7). The total field is zero outside the 
plates (where the fields of the plates are +qs/2εo and −qs/2εo) and equal to qs/εo 
between them (where both fields are equal to qs/2εo). The difference of potential 
between the plates is then 

V ≡ V(A) − V(B) = ∫BA dr. E = Ed. [3.6] 

The charge of the positive plate is 

Q = Sqs = εoES. [3.7] 

Thus, the capacitance is 

C = Q/V = εoS/d. [3.8] 

For instance, if S = 2 m2 and d = 1 mm, we find C = 17.7 × 10−9 F = 17.7 nF. This 
example shows that the farad is an enormous capacitance. 

A cylindrical capacitor consists of a cylindrical conductor of radius R1 and 
length L surrounded by a coaxial cylindrical shell of internal radius R2 (Figure 3.5b). 
Let Q be the charge of the cylinder and −Q that of the shell. Applying Gauss’s law 
to a coaxial cylindrical surface of radius r, we get E = Q/2πεoLr (see section 2.7). 
Thus, the difference of potential between the cylinder and the shell is  

V ≡ V(A) − V(B) = ∫BA dr. E = 2Ko(Q/L) ∫ 2

1
/R

R rdr  = 2Ko(Q/L) ln(R2/R1).  [3.9] 

The capacitance of this capacitor is  

C = 
V
Q  =

)(ln
πε2

12

o

RR
L

/
. [3.10] 



Conductors and Currents 69

A Geiger counter uses ionization to detect particles. It is essentially a capacitor
formed by a metallic cylinder surrounding a conducting wire whose potential is
about 1 kV higher than the cylinder. This tube is filled with a gas at low pressure. If
a particle enters though a small opening at its end, some gas atoms are ionized. The
produced electrons are strongly attracted toward the wire and they ionize other
atoms, producing an avalanche and a signal, which may be amplified and detected.
This instrument may count particles but it cannot measure their energy.

(a) (b) (c)

Figure 3.5. a) Parallel plate capacitor, b) cylindrical capacitor, and c) spherical capacitor

A spherical capacitor is a sphere of radius R1 surrounded by a concentric
spherical shell of internal radius R2 (Figure 3.5c). Let Q be the charge of the sphere
and −Q that of the shell. Applying Gauss’s law to a concentric spherical surface of
radius r, we get E = KoQ/r2 (see section 2.7). Thus, the difference of potential
between the sphere and the shell is

V ≡ V(A) − V(B) = ∫
B
A dr.E = KoQ ∫ 2

1

2/R
R rdr = KoQ [1/R1− 1/R2]. [3.11]

The capacitance of the capacitor is

C = Q/V = 4πεoR1R2/d, where d = R2 − R1. [3.12]

If d << R1, the capacitance becomes C = 4πεoR2/d = εoS/d, i.e. the same as for a
capacitor of thickness d and surface S of the sphere. On the other hand, if R1 is finite
and R2 is infinite, we find Cs = 4πεoR1. This is the capacitance of a sphere of radius
R1. The capacitance of Earth for instance is 710 µF.

c) Energy of capacitors

A capacitor stores electric energy. To evaluate it, assume that, at a certain time,
the charges of the plates are Q′1 = uQ and Q′2 = –uQ, where u is increased from 0 to
1. By linearity, the potentials of the plates are V′1 = uV1 and V′2 = uV2. To increase u

E
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r r
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by du, a charge dQ′1 = du Q must be brought from infinity to the positive plate and
dQ′2 = − du Q to the negative plate. This requires work

dW = dQ′1V′1 + dQ′2V′2 = du Q uV1 − du Q uV2 = du u QV.

The energy of the capacitor is the total work required to increase u from 0 to 1, i.e.

UE = ∫ dW = QV ∫
1
0 udu = ½QV = ½ CV2= ½ Q2/C. [3.13]

This is also the energy stored in the volume V = Sd with a uniform volume density
UE,v = ½εoE2 , where E = V/d = Q /εoS.

d) Use of capacitors

Capacitors may be connected in an electric circuit in two ways with specific
advantages and disadvantages for each one:

a) By connecting one of the terminals of all the capacitors to a point A and the
other to a point B, we obtain capacitors in parallel (Figure 3.6a). If a voltage V is
applied between A and B, the capacitors acquire the charge Qi = CiV. The total
charge of the combination is Q = ∑iQi = V ∑iCi. Thus, it is equivalent to a single
capacitance

C = Q/V = ∑iCi. [3.14]

The stored energy is evidently the sum of the energies of the capacitors:

UE = ∑i UEi = ½ ∑i Ci V2 = ½CV2. [3.15]

It is the same as the energy of the equivalent capacitor.

This combination of capacitors increases the charge without increasing V. This is
convenient if the individual capacitors cannot support high voltage. A practical way
to achieve this is to pile metallic foils separated by insulating sheets and to connect
the odd numbered foils to A and the even numbered foils to B. The number of
capacitors in parallel is that of the insulating sheets.

(a) (b)

Figure 3.6. a) Three capacitors in parallel and b) three capacitors in series
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b) By connecting the output plate of one capacitor to the input plate of another, we
obtain capacitors in series (Figure 3.6b). The potential V is applied between the
input A of the first capacitor and the output B of the last capacitor. If the capacitors
were not initially charged, the charge inside the Gaussian surface S, for instance,
remains zero. Thus, the plates that it contains carry opposite charges −Q and +Q and
the difference of potential between A and B may be written as

V =V(A)−V(B) = [V(A) −V(C)] + [V(C) −V(D)] + [V(D) −V(B)]

= Q/C1 + Q/C2+ Q/C3 = Q(1/C1 + 1/C2 + 1/C3).

Thus, this combination of capacitors has an equivalent capacitance C given by

1/C = V/Q = ∑i 1/Ci. [3.16]

The energy stored in this set-up is

UE = ∑i UEi = ½ ∑iQ2/Ci = ½ Q2 ∑i 1/Ci = ½ Q2/C. [3.17]

It is the same as the energy of the equivalent capacitor.

The advantage of this combination of capacitors is to have a high voltage
between the terminals, while the individual capacitors are at low voltage. A practical
way to achieve this is to pile metallic foils separated by insulating sheets. The
tension V is applied between the extreme metallic foils. The number of capacitors in
series is that of the insulating sheets.

Capacitors are currently used as components in electronic circuits. They serve to
regularize electric currents, to produce time delays, and transmit and detect
electromagnetic signals in electronic equipment. Capacitors come in different forms.
Small capacitors of the type used in electronic circuits are formed by two metallic
foils (usually aluminum), separated by a sheet of dielectric (waxed paper, Mylar,
etc.) and rolled up in a small cylinder. Large capacitors are obtained by immersing
large metallic plates in insulating oil, and variable capacitors are obtained by rotating
movable plates between a set of stationary plates. The effective surfaces of the
capacitors are then only the parts facing each other. Capacitors of large capacitance,
called electrolytic capacitors, are composed of a metallic foil (often in a spiral
form), which acts as an electrode, immersed in an electrolytic solution in a metallic
container, which acts as the second electrode. If a voltage is applied between the foil
and the container, a layer of metal oxide is formed close to the foil. This acts as a
very thin insulator while the solution remains conducting. This kind of capacitor has
a specific polarity that must be maintained.
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Capacitors may store a large amount of charge in a relatively small voltage and 
deliver them in a very short interval of time, avoiding the use of high voltages, which 
may cause electric breakdown. This discharge cannot be obtained by using batteries. 
It may be used to produce light flashes, accelerate particles, study nuclear fusion, 
etc. If the plates of a high-capacitance capacitor are short-circuited, its fast discharge 
may produce sparks and if one accidently touches both plates, the discharge current 
across the body may have grave consequences (especially if it passes the heart). 
Conversely, in the case of heart attack, a fast discharge of electrical energy through 
the heart may stop cardiac fibrillation (rapid and irregular heart beating).  

3.4. Mutual electric influence of conductors  

The results that we have established for two conductors may be generalized to 
several conductors in mutual influence (Figure 3.7). By the same argument using 
tubes of field, there is a correspondence between opposite charges on conductors in 
electric influence. Considering states of only one conductor (i) at the potential Vi and 
the others at zero potential and then making the superposition of these states, we get 
the relations: 

Q1 = C11 V1 + C12V2 + C13V3 + … = Σk C1k Vk,  
Q2 = C21 V1 + C22V2 + C23V3 +… = Σk C2k Vk, 

etc.,          i.e.   Qi = Σk Cik Vk. [3.18] 

 

Figure 3.7. Conductors in mutual influence 

Let us recall Gauss identity Σi qi V′(ri) = Σk q'k V(r′k) for two configurations of 
charges qi at ri and q′k at r'k different from the ri (see problem 2.3). The first 
produces the potential V(rk) = KoΣi qi/rki at point rk and the second produces the 
potential V′(ri) = KoΣk≠i q′k/rki at the point ri. Applying this identity to the 
configurations of the conductors (i) at potentials Vi and charges Qi and the same 
conductors at potentials V'k and charges Q'k, we get the relation Σi Qi V'i = Σk Q'k Vk. 
Using [3.18], this relation may be written also as Σi,k CikVkV'i = Σi,k CkiV'iVk. 

S′

(3)(2)(1) 
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Considering the configurations such that all the potentials are zero except two of 
them, V′i and Vk, we deduce the exchange symmetry relation 

Cik = Cki. [3.19] 

Consider now a configuration of conductors i = 1, 2, etc., in total influence and at 
zero potential except the conductor (i) at potential Vi = V > 0. The field points from 
the conductor (i) toward the others. Thus, the charge of the conductor (i) is positive, 
while all the other conductors (k) have negative charge, hence 

Qi = Σk Cik Vk = Cii V > 0       and       Qk≠i = Σm Ckm Vm = Cki V < 0  (k ≠ j) .  

Thus, all the Cii are positive and the Cik (with i ≠ k) are negative 

Cii > 0     and     Cij < 0  (i ≠ j). [3.20] 

On the other hand, the potential is defined up to an additive constant and the 
charges are not modified if one adds the same quantity Vo to all the potentials. Thus, 
we must have Qi = Σk Cik Vk = Σk Cik (Vk + Vo) for any Vo, hence 

Σk Cik = Cii + Σk≠i Cik = 0,    i.e.   Cii = − Σk≠i Cik. [3.21] 

This means that Σk Qk = 0, which is valid if the conductors are in total influence. If 
the influence is partial, we find the inequality Cii > − Σk≠i Cik. 

To deduce the energy, we may generalize the method of the preceding section. 
We may also directly use the expression of the interaction energy of the charges qs,i 
dSi, thus 

UE = ½ Σi ∫∫
i

iS Sd qs,iVi = ½Σi Vi ∫∫
i

iS Sd qs,i = ½ Σi ViQi = ½Σij Cij ViVj,  [3.22] 

where we have used the expression [3.18] for the charge. 

3.5. Electric forces between conductors 

Let us consider the simple case of a parallel plate capacitor (Figure 3.5a). To 
calculate the force acting on one of the plates, we must consider it as a test body in 
the field of the other (not the field E of both plates). Taking the origin O on the 
positive plate and the axis Oz normal to the plates and oriented toward the negative 
plate, the field of the positive plate is E1 = (qs/2εo)ez. An element of area dS of the 
negative plate has a charge −qs dS; thus, it is subject to a force exerted by the 
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positive plate dF = −qs dS E1 = − (qs
2/2εo) dS ez. The total force exerted on the 

negative plate is  

F = ∫∫S dF = −
o

2
s

2ε
q ez ∫∫S dS = −

o

2
s
2ε

Sq  ez = − So

2

2ε
Q ez = − 2

2
o

2d
VSε ez.  [3.23] 

More generally, knowing the expression of the energy of a system of conductors 
UE, we may use the method of virtual displacements to calculate the force F that is 
exerted on one of them; conductor (1), for instance. For this we may assume either 
that the conductors are disconnected from any other body or maintained at a 
constant potential. 

a) If the conductors are disconnected from other bodies, their charges Qi are 
fixed. If conductor (1), for instance, is subject to a force F, to displace it by δx, an 
external agent must exert a force F' = −F and a work δW = −Fx δx. This work is 
transformed into stored electric energy δUE = −Fx δx, hence (at constant charge) 

 Fx = − δUE/δx = − ∂xUE |Q. [3.24] 

b) If the conductors are maintained at constant potentials by using batteries, to 
displace conductor (1) by δx, the external agent must exert a force F' = −F and a 
work δW = −Fxδx. However, the charges of the conductors vary by δQi and the 
generators must supply an electric energy δUg = Σi Vi δQi. Thus the variation of the 
stored energy is δUE = −Fxδx + Σi Vi δQi, hence (at constant potentials Vi) 

Fx = Σi Vi δQi/δx − ∂xUE |V. [3.25] 

In the case of the conductors being the plates of a parallel plate capacitor, using 
the virtual displacement at constant charge and writing UE = ½Q2/C = Q2x/2εoS, 
equation [3.24] gives the force on the negative plate 

Fx = ½(Q2/C2) ∂xC = − Q2/2εoS. [3.26] 

Using the virtual displacement at constant potential and the expressions UE =  
½CV2 = εoSV2/2x and Q2 = −Q1 = CV, we find Σi Vi δQi/δx = V2 ∂xC = −εoSV2/x2. 
Thus, equation [3.25] gives  

Fx = −εoSV2/x2 + εoSV2/2x2 = −εoSV2/2x2. [3.27]  

A similar method may be used to calculate the moment Γ of the electric forces 
exerted on a conductor. To calculate the component Γx, we have only to consider a 
virtual rotation through an angle δθ  about the axis Ox, thus 

Γx = − δUE/δθ = − ∂θUE|Q          (at constant charges Qi),     
Γx = Σi Vi δQi/δθ − ∂θUE |V          (at constant potentials Vi). [3.28] 
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For instance, if the plane plates of a capacitor form an angle θ, the capacitance
depends on θ. The moment of the electric force on the negative plate is

Γx = −∂θUE ⏐Q = (Q2/2C2)(∂θC), Γx = V2(∂θC) − (∂θUE)⏐V = ½V2(∂θC). [3.29]

In the case of several conductors, we may use the expression UE = ½ ∑ij Cij ViVj
or UE = ½ ∑ij C−1

ijQiQj. We find the relations

Fx = − ½ ∑ij ∂xC−1
ijQiQj or Fx = ½ ∑ij ∂xCij ViVj, [3.30]

Γx = − ½ ∑ij ∂θC−1
ijQiQj or Γx = ½ ∑ij ∂θCij ViVj. [3.31]

Application: Kelvin absolute electrometer

The Kelvin absolute electrometer, illustrated in Figure 3.8, uses the attraction
force of the plates of a parallel plate capacitor to measure the potential difference of
the plates. This force is balanced by a weight mg by using a precision balance. To
eliminate edge effects, one of the capacitor plates is a circular disk of area S
surrounded by a circular ring. The mechanical equilibrium is established if
mg = εoSV2/2d2, where we have used the relation [3.23], hence V = d So/2 εmg .

Figure 3.8. Kelvin electrometer Figure 3.9. Electrostatic pressure

Electrostatic pressure

Consider a charged conductor and an element dS of its surface assimilated to a
small disk (Figure 3.9). The electrostatic field E(ex) = (qs/εo) n12 at point P just
outside the conductor is the superposition of the field Edisk = (qs/2εo)n12 of the disk
and the field E′ of the other charges of the conductor and the other bodies. Inside the
conductor, the total field is zero and it is the superposition of E′ and the field of the
disk −(qs/2εo)n12. We deduce that E′ = (qs/2εo)n12. The element of surface dS,
considered as a test charge, is subject to the field E', thus to a force dF = qs dS E' =

E′

Edis

E(in)= 0

dS
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dS (qs
2/2εo) n12. This force is orthogonal to the surface of the conductor and it 

always points outward. It is equivalent to an electrostatic pressure 

PE = dF/dS = (qs
2/2εo) = ½ εoE2. [3.32] 

This pressure tends to increase the volume of the conductor. It is numerically equal 
to the density of electrostatic energy just outside the surface. 

3.6. Currents and current densities 

An electric current is an ordered flow of charged particles. It may be of three 
types: a beam of charged particles moving in vacuum (electrons, protons, alpha 
particles, etc.), a conduction current in solid conductors and solutions, and a 
convection current produced by moving bodies carrying charges. In this chapter we 
consider mostly the conduction currents in solids. Electric currents have some 
physical and chemical effects and they transport energy and signals. The motion of 
charged particles is always impeded by friction forces, which dissipate energy and 
ultimately end the motion. Thus a sustained current can be established only if a 
generator acts on the charges and supplies them with energy. 

If an average electric charge δQ traverses a surface S in the time interval δt 
(Figure 3.10a), we say that the current intensity (in amperes) through S is 

I = δQ/δt. [3.33] 

If a charge δq moves from a point A to a point B with a potential drop VAB ≡ VA −VB, 
the charge loses electric potential energy δq VAB. This energy is supplied to the 
circuit between A and B. It may be stored as electric energy in a capacitor or as 
magnetic energy in a coil, dissipated as heat in a resistor, transformed to mechanical 
energy or chemical energy, etc. If no generator exists between these points and the 
electric current flows from higher to lower potential, it supplies energy. The total 
energy in a circuit is obviously supplied by the generators. In the case of a 
continuous current I, the charge passing during δt is δq = I δt and the energy 
supplied by the charge dq between A and B is dWAB = dq VAB = I VAB dt. Thus the 
supplied power by the electric current is 

PAB = I VAB. [3.34] 

The motion of charged particles may be more significant at some places than at 
others. Thus, we define at each point r a current density j(r), such that the current 
intensity that traverses an element of area dS placed at r is 

dI = (j.n) dS = j cos θ dS. [3.35] 
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Thus dI is the flux of j(r) through the element of area dS. It is evident that dI
vanishes if j is tangent to dS and dI is maximum if j is normal to dS. The intensity
that traverses a finite surface S is the flux of j through S

I = ∫∫S dI = ∫∫S dS (j.n). [3.36]

(a) (b) (c)

Figure 3.10. a) Lines of current and volume current density, b) surface
current density, and c) conservation of electric charge

It is possible to relate the current density to the charge density qv(r) per unit
volume and the mean velocity v(r) of the charge carriers. Indeed, the charge that
traverses dS in the time interval δt is contained in the cylinder whose base is dS and
length v δt (Figure 3.10a). The height of this cylinder is δh = (n.v δt), its volume is
dS δh = (n.v) δt dS and the charge that it contains is dδq = qv(r) (n.v) δt dS. Thus,
the current intensity that traverses dS is dI = dδq/δt = qv(r) (n.v) dS. Comparing
with the expression [3.35], we deduce that the current density may be written as

j(r) = qv(r) v(r). [3.37]

Thus, j(r) points in the direction of the mean velocity of charge carriers if the charge
carriers are positive and in the opposite direction if the charge carriers are negative.
The lines of current are tangent to j at each point r.

In a conductor at electrostatic equilibrium, we have qv = 0. As we shall see in
section 9.4, this property holds approximately in the quasi-static approximation (i.e.
slowly varying phenomena). Thus, in metallic conductors, the negative charge
density of the conduction electrons is counterbalanced by the positive charge density
of the positively ionized atoms. As the ions are heavy, they do not move and do not
contribute to the current. If the number of conduction electrons per unit volume is
ne(r) and their average velocity is ve(r), the current density may be written as

j(r) = −e ne(r) ve(r). [3.38]
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If the current is due to the motion of several types (k) of particles of charges q(k),
numbers n(k)(r) per unit volume and average velocity v(k)(r), the current density may
be written as j(r) = ∑(k) q(k) n(k)(r) v(k)(r). In ionic solutions, for instance, we have
q(k) n(k)+(r) + q(k)− n(k)−(r) = 0 and both positive and negative ions move, hence

j(r) = ∑(k) q(k)+ n(k)+(r) v(k)+(r) + ∑(k) q(k)− n(k)−(r) v(k)−(r). [3.39]

The conventional direction of the current is that of the positive charges or,
equivalently, the opposite direction of the motion of negative charges.

In some cases, the conduction charges move in a thin layer, forming a surface
current. If the surface S contains a charge density qsmoving with a mean velocity v,
the surface S carries a surface current density js (Figure 3.10b). js is related to the
intensity dI that traverses an infinitesimal segment dL by the relation dI = dL.js. The
charge that traverses dL in the time interval δt is contained in the parallelogram of
sides dL and v δt. We deduce that

js(r) = qs(r) v(r). [3.40]

Usual current intensities in electric circuit vary from a fraction of milliampere to
few amperes. In electronic components, it varies from a picoampere (10−12A) to a
fraction of the ampere. It may attain hundreds of thousands of amperes in
electrolysis solutions.

Consider a region of space in which the charge and current distributions are
continuous and time-dependent (Figure 3.10c). The electric charge that leaves a
closed surface S in the time interval δt is

δqout = δt ∫∫S dS (j.n) = δt ∫∫∫V dV (∇∇.j ), [3.41]

where n is the unit vector normal to S and pointing outward S. To write the last
form, we have used Gauss-Ostrogradsky’s theorem to transform the flux of j into the
integral of ∇∇.j over the volume V enclosed by S. The total charge contained in V is
q(in) = ∫∫∫V dV qv(r) and its decrease in the time interval δt is −δq(in) = −δt (∂tq(in)) =
− δt ∫∫∫V dV (∂tqv). The conservation of charge requires that this decrease be equal to
the charge [3.41] that leaves surface S. Thus, we have

∫∫∫V dV (∇∇.j) = − ∫∫∫V dV (∂tqv), [3.42]

which must be valid for any volume V, hence the continuity equation

∇∇.j + ∂tqv = 0. [3.43]
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This is the local expression of the conservation of electric charge. Particularly, if the 
phenomena are time-independent (∂tqv = 0), the continuity equation reduces to 

∇.j = 0. [3.44] 

In this case, the charge [3.41] that flows out of a closed surface S vanishes. Thus, 
the total current intensity leaving S is equal to zero. This result holds in the case of 
stationary currents and approximately in the case of quasi-static currents. In the case 
of an electric circuit, if S contains no nodes but only one branch of current entering 
it and one branch leaving it, these branches carry the same current. If S encloses a 
node, the sum of the entering intensities is equal to the sum of the leaving intensities 
(Kirchhoff node rule). 

3.7. Classical model of conduction, Ohm’s law and the Joule effect 

It is well known that in metals the current is carried by the conduction electrons 
(that is, the electrons that are weakly bound to atoms). Under the action of the 
electric field FE = qE a conduction electron is accelerated but, because of its 
collisions with other electrons and the immobile ions, it follows a zigzag path and its 
average velocity v is in the direction of FE. The effect of the collisions is equivalent 
to a resistance force Ff = −bv. Its velocity quickly attains a drift velocity vd such that 
FE + Ff = 0, that is, qE −bvd = 0, thus vd = (q/b)E. This velocity is always very small 
(of the order of the millimeter per second). The relation [3.37] may be written in the 
form, known as Ohm’s law, 

j = σE   or   E = ρ j. [3.45] 

σ  = neq2/b is the conductivity of the material and ρ  = 1/σ  = b/neq2 is its resistivity. 
If the medium is isotropic, σ is independent of the direction of the field, but if the 
medium is anisotropic, σ is a second rank tensor σαβ and Ohm’s law becomes 

jα = Σ β σαβ Eβ. [3.46] 

In this case, the current density is not necessarily in the direction of the field E. 

The friction constant b is a phenomenological parameter. In classical theory, b 
may be related to the collision time τ. For this, assume that between two collisions 
the electron experiences an electric force FE = qE, thus an acceleration a = qE/m. Its 
velocity varies according to v = vo + (qE/m)t, where vo is its velocity just after the 
last collision. vo is randomly oriented in all directions for the conduction electrons. 
If we take the mean value for all the electrons, the average of vo is zero and the 
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equation reduces to v = (qE/m)t. In the average, the electrons drift with a velocity
vd = (1/τ) ∫

τ
0dt v = (qτ/2m) E, where τ is the collision time, i.e. the average time

between two collisions. Thus, the relation [3.38] gives j = (q2neτ/2m)E and we
deduce Drude’s formula

j = σ E, with σ = q2neτ/2m. [3.47]

The drift velocity vd is not to be mistaken for the average speed v of the
electrons in the conductor, which may be as high as 106m/s. Also, vd should not be
mistaken for the velocity of transmission of electric signals along the conductors
used as a transmission line (telephone, electric current, etc.), which propagate with
the speed of light as an electromagnetic wave in the medium outside the conductors.
As the collision time is τ = l/ v where l is the mean free path, i.e. the average
distance traveled by the electron between two collisions, the conductivity may be
written as σ = q2nel/2m v . The mean free path is of the order of the spacing between
atoms (≈ 10−10m). The average speed v may be related to the thermal agitation by
the statistical physics relation KU = (3/2)kBT = ½ 2vm , thus v = (3kBT/m)½, where
kB ≅ 1.38 × 10−23 is Boltzmann’s constant and T is the absolute temperature. This
classical model predicts a value of l about 10 times smaller than the real value and a
resistivity ρ proportional to T instead of the experimental proportionality to T.
This discrepancy is removed by quantum mechanical models.

Table 3.1. Resistivity ρ and temperature coefficient α0 of some common materials.
Constantan is ~ 60 % Cu and ~ 40 % Ni, manganin is ~ 84 % Cu, ~ 12 % Mn,

and ~ 4 % Ni, and nichrome is ~ 59 % Ni, ~ 23 % Cu, and ~ 16 % Cr.
The quoted values correspond to 20°C

Material ρ (in Ω.m) αo (in K−1)
Aluminum 2.82 × 10−8 3.9×10−3

Constantan ≈ 44 × 10−8 2×10−6

Copper 1.7 × 10−8 3.9×10−3

Iron ≈ 10 × 10−8 5×10−3

Manganin ≈ 44 × 10−8 ~ 10-7

Mercury 96 × 10−8 8.9×10−4

Nichrome 1 × 10−6 4×10−4

Platinum 11 × 10−8 3.927×10−3

Gold 2.44 × 10−8 3.4×10−3

Silver 1.59 × 10−8 3.8×10−3

Tungsten 5.6 × 10−8 4,5×10−3

Carbon 3.5 × 10−5 −5×10−4

Lead 22 × 10−8 3.9×10−3

Material ρ (Ω.m) αo (K−1)
Germanium 0.46 −0.048
Silicon 100-1000 −0.075
Glass 1010-1014

Hard rubber 1013

Sulfur 1015

Fused quartz 75 × 1016

Polyethylene 108 - 109

Polystyrene 107 - 1011

Porcelain 1010× 1012

Teflon 1014

Sodium chloride 0.044 −0.005
Blood 1.5
Fat 25
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The electric power supplied by the electric field to each electron is
Pe = FE.vd = qE.vd = bvd.vd = −Ff.vd Thus, the supplied power is dissipated by the
friction force as Joule heat with a density given by the local form of Joule’s law

PJ, v = nePe = E.j = σ E2 = ρ j2. [3.48]

As we have seen, there is no sharp distinction between conductors and insulators.
Substances (such as metals) with a resistivity less than about 10−5 Ω.m are
considered as conductors, while materials (such as glass, rubber, air, pure water,
etc.) with a resistivity higher than about 105 Ω.m are considered as insulators (see
Table 3.1). Materials whose resistivity lies between 10−5 and 105 Ω.m are called
semiconductors (silicon, germanium, tellurium, etc.). Their resistivity depends
strongly on the impurities they contain (small amounts of foreign atoms that are
introduced into the semiconductor).

3.8. Resistance of conductors

Experimental studies starting with Ohm in 1826 showed that each segment of a
conductor has a characteristic quantity, known as the resistance R, such that the drop
in the potential between its ends is related to the current by Ohm’s law

V = RI. [3.49]

The SI unit of R is the volt/ampere, called ohm (Ω). R depends on the material and
the geometrical form of the conductor, on the impurities that it contains, and its
temperature. Ohm’s law applies to a variety of conductors said to be Ohmic. A plot
of V versus I (called characteristic) for an Ohmic conductor is a straight line passing
through the origin with a slope R (Figure 3.11a). In other words, for such materials,
R (defined as V/I) is independent of I (or V) and, if the potential difference is
reversed, the current through the conductor is reversed without change of intensity.
Metals are almost Ohmic, but there are many conductors that are not (see Figure
3.11b and 3.11c). An ionized gas, a diode, etc., are non-Ohmic. Connection wires of
reasonable length have usually a very small resistance and a conductor that serves to
introduce a resistance in the circuit is called resistor. The dissipated power in the
conductor of resistance R is

PAB = IVAB =RABI2= VAB2/RAB. [3.50]

To see how the resistance depends on the shape of a conductor, let us consider a
cylindrical wire of uniform cross section S and length L with the potential V applied
between its ends. The conservation of electric charge implies that the current
intensity is the same at any point of the wire and, if the section is uniform and the
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current density is uniform over the cross section, the current density j = I/S is the 
same everywhere in the conductor. On the other hand, the translational symmetry 
implies that the electric field E has the same magnitude along the wire; thus, using 
the local form of Ohm’s law E = ρj, we find V = EL = ρjL = (ρL/S)I. This 
corresponds to a resistance R = ρL/S. In more complicated shapes, the current 
density and the field are not uniform and the calculation is more complicated. 

 
 
 
 
 
 

            (a)                                 (b)                                   (c) 

Figure 3.11. a) The characteristic of an Ohmic conductor is a line of slope equal to R.  
b) The characteristic of a junction diode is not linear and the current does not take opposite 

values if V is reversed. c) Discharge current in a gas as a function of V 

3.9. Variation of resistivity with temperature, superconductivity  

The experiment shows that the resistivity of a conductor increases with 
temperature. This can be explained by the increase of the thermal agitation and the 
scatterings of electrons with atoms and ions. Consequently, the electric resistance 
increases. For small variations of temperature, the variation of ρ is almost linear in 
T, of the form  

ρ ≈ ρo(1 + αo ΔT), [3.51] 

where ρo is the resistivity at some reference temperature To and ΔT = T − To is the 
difference in temperature from To. αo is the temperature coefficient of resistivity. In 
fact, the relation [3.51] constitutes the first two terms of the power series of ρ(T) 
about To. For large ΔT, higher terms may be important. For most pure metals in the 
temperature range 0 to 100°C, αo varies between 3.2 × 10−3 and 6.2 × 10−3 K−1  
(i.e. ≈ 1/273 K−1). This means that, if the reistivity is extrapolated to very low 
temperatures it vanishes at absolute zero. In other words σ is proportional to T 
(Figure 3.12).  
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In 1911 Kamerlingh Onnes discovered that, at very low temperature, most metals 
depart radically from equation [3.51]. Their resistance falls to zero (Figure. 3.12); 
they become superconductors. Kamerlingh Onnes used liquid helium as a 
refrigerant down to about 1 K and found that the resistance of mercury slowly 
decreases with T, but at a critical temperature Tc = 4.154 K, it drops to an extremely 
small value. Kamerlingh Onnes concluded that mercury undergoes a phase transition 
to a superconducting state. The transition interval δT is of the order of only 10−3 K. 
Only 27 elements become superconducting under ordinary pressure, at critical 
temperatures below 4.2 K. They include aluminum (Tc = 1.175 K), lead  
(Tc = 7.23 K), niobium (Tc = 9.25 K), tin (Tc = 3.721 K), and tungsten (Tc = 0.0154 
K). Good conductors, such as platinum, gold, silver, and copper do not become 
superconductors but thousands of alloys and compounds undergo this remarkable 
transition. The critical temperature depends on the presence of impurities and the 
internal stress in the sample. It depends also on the atomic weight of the isotope of 
the superconductor like 1/ A .  
 

 

Figure 3.12. Variation of resistivity as a function of temperature 

Contrary to substances in normal state, a superconductor has no resistivity (it is 
less than 4 × 10−25 Ω.m). An electric current, once established in the superconducting 
body, continues to circulate, perhaps indefinitely, without an applied electromotive 
force (emf) or an electric field. The so-called BCS theory (proposed in 1957 by 
Bardeen, Cooper and Schrieffer) explains the superconducting behavior as a 
quantum mechanical effect of pairing of electrons (because of a long range quantum 
mechanical attraction) unlike conductors in the normal state where electrons behave 
independently. The densely packed electrons are all linked together and act as a 
coherent unit and no single electron can be scattered to produce resistance. 

In 1986, Berdnoz and Müller (1987 Nobel Prize) discovered that a ceramic 
compound (an oxide of barium, lanthanum, and copper) has a high critical 
temperature of 35 K. In 1987 another ceramic was found with Tc = 98 K and by 1988 
another compound (Tl-Ba-Ca-Cu-O) was found with Tc = 125 K, and recently, a 
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compound (HgBa2Ca2Cu308) was found with Tc = 134 K). Relatively high-
temperature superconductors will certainly have very important technological 
applications. 

3.10. Band theory of conduction, semiconductors*  

The classical model of section 3.7 cannot explain some aspects of conduction, 
such as the free path in copper, which is ≈ 6 nm while the spacing of the atoms is  
≈ 0.1 nm, and the variation of conductivity with temperature. On the other hand, 
classical physics cannot explain why some materials are insulators while others are 
conductors or semiconductors. Only quantum theory can answer these questions. As 
this theory is outside the scope of this book, the analysis in this section is only 
qualitative.  

The basic idea of quantum mechanics is wave-particle duality. The electrons of 
momentum p also behave as a wave of wavelength given by the de Broglie formula 

λ = h/p , [3.52] 

where h = 6.626 176 × 10−34 J.s is Planck’s constant. The square of the modulus of 
the wave function Ψ(r,t) is interpreted as the probability of finding the particle at 
point r at time t. Ψ verifies Schrodinger’s wave equation, which involves the 
potential energy of the electron in the medium. The electronic wave in the conductor 
being extended, the classical concepts of mean free path and of relaxation time 
become vague. In the case of the diffraction of a light wave by a diffraction grating, 
the wave is not diffracted by a particular slit of the grating but by all of them. 
Similarly, if the electronic wavelength is comparable to the distance between the 
atoms of the medium, we cannot say that the electron collides with a particular atom. 
The exact periodicity of the optical diffraction grating is essential: if a single slit is 
absent or displaced, the diffraction pattern is completely modified or even destroyed. 
The analogy is more striking with the diffraction of X-rays by a crystal (see section 
11.12). If Bragg condition 2d sin θ = nλ, which expresses that the waves reflected by 
the atomic planes are in phase, is satisfied, the wave is reflected with a high 
intensity, as if it traverses the crystal without collision with the atoms. In classical 
terms, the mean free path is then very large. This property is invalidated by 
impurities in the crystal: absence of atoms, the presence of different atoms, or 
simply a displacement of some atoms.  

The wave behavior of electrons also explains the variation of conductivity with 
temperature. At lower temperature, there is less thermal agitation of the atoms and 
the crystal is more regular. Thus it is more transparent to the electronic wave and 
this results in higher conductivity. Similarly, if the crystal contains some impurities, 
its regularity is reduced as is its conductivity. 
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a) The free electrons model 

To simplify, we consider a metallic parallelepiped of sides a, b, and c in the 
directions Ox, Oy, and Oz, respectively (Figure 3.13a). We treat the electrons as free 
particles in this box. Their wave function has the form Ψ = A )i( k.r−ωte , where A is a 
constant, k is the wave vector, and ω is the angular frequency (see section 10.1), 
related to the momentum p and the energy E of the particle by the relations 

k = 2π/λ = 2πp/h,           ω = 2π v  = 2πE/h. [3.53] 

The confinement of the electrons in the box means that Ψ = 0 on the faces x = 0,  
x = a, y = 0, y = b, z = 0, and z = c. Thus, the possible modes have the forms 

Ψ = A sin(xkx) sin(yky) sin(zkz) te ωi ,    kx = πnx/a,    ky = πny/b,    kz = πnz/c. [3.54] 

As only |Ψ|2 has a direct physical meaning as a probability density, changing the 
signs of nx, ny, and nz does not change the state. Thus we may take nx, ny, and nz 
positive integers. The corresponding momentum p and energy of the electrons are 
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Figure 3.13b illustrates E as a function of one component of the momentum. The 
representative points are on the parabola E = p2/2m. The modes are represented by 
well-separated points.  

On the other hand, electrons have a spin (i.e. an intrinsic angular momentum) 
with two possible spin states and Pauli exclusion principle forbids that two electrons 
occupy the same quantum state (determined by the numbers nx, ny, and nz and the 
polarization state). Thus each state [3.54] may contain, at most, two electrons (one 
in each polarization state). At absolute zero, the electrons occupy the lowest energy 
levels up to the energy Ef, called Fermi energy; but, at finite temperature T, some 
electrons may be excited to occupy higher levels, leaving some unoccupied lower 
states, especially near Ef, as they are easier to excite.  

 

             (a)                                  (b)                             (c) 

Figure 3.13. Free electrons in a box: a) the box, b) possible states in the plane (p, E), and  
c) the distribution of electrons as a function of their energy at a given temperature 
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If the medium contains n electrons per unit volume, quantum statistical physics 
gives the mean number of electrons that occupy a level Ei, called Fermi-Dirac 
distribution function, <ni> = 1/[C 1Bi / +TkEe ], where C is determined by the 
condition that the total number of electrons is n. Figure 3.13c illustrates this 
distribution function at T = 0 (the rectangle up to the energy Ef) and at finite 
temperature. In the latter case the width of the transition band near Ef is about kT.  

Taking the electric potential outside the conductor to be zero, the Fermi energy 
Ef is just the energy needed to extract an electron occupying this level from the 
conductor; it is called work function, usually written as eV where V is in volts. This 
quantum property of the metal is at the origin of the so-called junction effect: if two 
metals are in contact, a difference of potential V1 − V2 appears between them; it 
depends only on their chemical composition and their temperature.  

If the metal is exposed to an external field, the electrons may be excited to higher 
levels; this gives them a momentum in the direction of the electric field. However, 
this free electron model cannot explain some properties of solids, particularly why 
certain materials are conductors, insulators, or semiconductors. Some of these 
properties are related to the interaction of the electrons with the individual atoms. 

b) Bands theory of solids 

Until now, we assumed that the electrons are free. In fact, they interact with the 
immobile ionized atoms. The fundamental property of a crystal is its periodicity in 
all directions. By analogy to the diffraction of X-rays by a crystal, whose atomic 
planes have a spacing d, let us assume that, if the electronic wave satisfies Bragg 
condition for θ = π/2   

2d = nλ = p
nh ,            where  E = m

p
2

2
= 2

22

8md
hn ,   [3.56] 

it is almost entirely reflected by the atomic planes back and forth like a standing 
wave. Then, the wave cannot propagate in the metal and the electron cannot be at all 
considered as free. This means that the presence of ions forbids levels with a 
momentum near p = nh/2d. The same result is obtained if one solves Schrödinger’s 
equation for electrons in a three-dimensional periodic potential. The states in the 
plane (p, E) are illustrated in Figure 3.14: the levels are grouped in allowed bands, 
each one containing a certain number of energy levels. The allowed bands are 
separated by forbidden zones. Let i = 1, 2, etc., label the allowed bands. For higher i, 
the forbidden zones become narrower and, at very large i, the spectrum become 
continuous.  
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       (a)            (b)           (c)         (d) 

Figure 3.14. a) Band structure of solids. b) Case of an insulator with a filled first band and 
the second band empty. c) Case of a conductor whose first band is filled and the second band 
is partially filled. d) Case of a semiconductor whose first band is filled and the second band is 

empty, but with a very narrow forbidden zone 

Several electric properties of materials may be explained by their band structure. 
If the applied electric field is not very high, it cannot produce significant 
modifications of the energy of the electrons, because it acts only in a very short time 
interval, between two collisions. Thus, an electron cannot be excited from an 
allowed band to a higher one. However, if the last occupied allowed band contains 
non-occupied states, the electrons of this band may be excited by the electric field to 
a higher energy level in the same band; the material is then a conductor. Its last 
incomplete band is called conduction band, while the preceding filled band is the 
valence band. Conversely, if the last occupied allowed band is filled and the 
forbidden zone is large, the electrons cannot be excited from this last occupied band 
to a higher energy level in the next allowed band unless the electric field is very 
high. In this case the material is non-conductor. A narrowing of the forbidden zone 
or an overlap of allowed bands considerably increases the conductivity.  

In a good conductor, such as copper, the atoms are singly ionized; this releases 
about one electron per atom. Its band structure is similar to that of Figure 3.14b with 
one allowed band having two unoccupied energy levels below the first forbidden 
zone. Even a weak electric field, may excite conduction electrons to one of these 
unoccupied levels; this makes copper a good conductor. The band structure of 
aluminum is similar to that of Figure 3.14c. Its first band is completely filled; thus it 
does not contribute to conduction. The electrons occupy some levels of the second 
allowed band and sometimes the third allowed band. The electrons of these partially 
occupied bands contribute to the electric conduction. The band structure of diamond 
is formed by a completely filled allowed band and a completely empty second 
allowed band and they are separated by a wide forbidden zone of 5 eV. As the 
thermic energy of electrons at normal temperatures is approximately 0.02 eV, the 
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electrons of the first band cannot be excited to the second band. This makes 
diamond an almost perfect insulator.  

If some impurities are added to the material, the periodicity of its crystalline 
structure is altered; this increases its resistivity. Thus, by using various alloys (iron-
nickel, iron-nickel-chrome, etc.), it is possible to have materials to realize resistors 
of any resistance, for use in electronic circuits, rheostats, heaters, etc. It is also 
possible to have alloys with a temperature coefficient as small as 10−5. The 
resistivity of some metals varies if they are exposed to a magnetic field. For 
instance, the resistivity of bismuth increases in a magnetic field perpendicular to the 
current; this enables the measurement of magnetic fields. Also, the resistance of 
certain alloys varies if they are under high pressure (because of the modification of 
their band structure) and the resistivity of some semiconductors, such as silicon, 
varies if they are exposed to radiation (because of the photoelectric effect).  

c) Semiconductors  

Figure 3.14d shows the band structure of a semiconductor, such as silicon or 
germanium. It is formed by a completely filled first band, but the forbidden zone is 
only 1.08 eV for silicon and 0.8 eV for germanium. Thus, the electrons may be 
easily excited from the first band to the second band, which becomes a conduction 
band. By doing so, the electrons leave the first band with vacancies, called holes. 
The conductivity is contributed to by the electrons of the formed conduction band 
and also from the electrons of the first band, which may move to occupy the holes. 
The latter are equivalent to positive charge carriers. This gives these materials 
conduction properties that are intermediate between insulators and conductors; they 
are called intrinsic semiconductors. The number of holes per unit volume is 
obviously equal to the number of free electrons ne but the holes move with a velocity 
vh in the direction of E, while the free electrons move with a velocity ve in the 
opposite direction. If the field E is not very high, ve and vh are proportional to E. 
Thus, the global current density in the direction of E is 

j = ne(−e)(−ve) + ne(e)(ve) = ene(ve + vh) = σ E. [3.57] 

σ increases rapidly with temperature, as the thermal energy of electrons (3/2)kT 
increases, but it remains much lower than the conductivity of good metallic 
conductors. σ also increases if the body is exposed to a radiation, as the absorbed 
energy may excite an electron toward the conduction band and create a hole in the 
valence band. This formation of an electron-hole pair is called photoconduction.  
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               (a)                               (b)                                          (c) 

Figure 3.15. a) Crystalline structure of silicon, b) impurity produced  
by a donor, and c) impurity produced by an acceptor 

The conductivity of a semiconductor is strongly affected by the presence of 
impurities, i.e. atoms of a different type replacing a small proportion (of the order of 
1/106) of the atoms of the crystalline lattice. Consider, for instance, silicon or 
germanium. These elements belong to the group 4 of the periodic table. They have 
the same crystalline structure as diamond; thus, each atom shares its four valence 
electrons with the neighboring atoms; two neighboring atoms share two valence 
electrons, one from each atom (Figure 3.15a). If an atom of silicon is replaced by an 
atom of the group 5 elements (As or Sb), which has five valence electrons, the 
additional valence electron remains in the vicinity of this atom in order to maintain 
its neutrality, but it is weakly bound to the atom. This atom is said to be a donor. 
This electron occupies an energy level situated in the forbidden zone (Figure 3.15b) 
and it may be easily excited to the conduction band. In this case, the semiconductor 
is said to be of the type-n (for negative). Conversely, if the impurity belongs to the 
group 3 elements (Al, Ga or In), one of the covalence electrons is missing; an 
electron of the neighboring atoms from the valence band may come to occupy this 
state. In this case, the impurity atom is said to be an acceptor. The energy level of 
this hole is in the forbidden zone (Figure 3.15c) and a valence electron may be 
excited to occupy it. Thus, the atoms become positive, one after the other; this is 
equivalent to the displacement of a positive charge (a hole), similar to the 
displacement of an air bubble in a liquid. In this case the semiconductor is said to be 
of the type-p (for positive).  

In general, a semiconductor with P donor atoms, N acceptor atoms, n conduction 
electrons, and p conduction holes per unit volume has a total charge density  

qv = e ( P − N + p − n ). [3.58] 

The electric field is E = − ∇V where the potential obeys Poisson’s equation 

 ΔV = − (e/ε) (P − N + p − n ). [3.59] 
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3.11. Electric circuits  

The purpose of circuit analysis is to determine the electric current in branches of 
a circuit. Once the currents are determined, it is easy to determine the potentials. The 
currents are supplied by generators. A generator transforms a non-electric energy 
into electric energy to be supplied to the circuit. An ideal generator maintains a 
constant voltage E between its terminals A and B called the emf. The supplied 
current IAB depends on the circuit. The total supplied power to the circuit is then 
EIAB. A real generator has some internal resistance r, which dissipates a power 
rIAB

2. Thus, the supplied power to the external circuit is EIAB – rIAB
2. If VAB is the 

potential difference between the terminals, this power is also VABIAB. Thus we must 
have VAB = E – rIAB; this means that the generator is equivalent to an ideal generator 
of emf E and a resistance r in series. 

To analyze an electric circuit, we may use Kirchhoff’s rules, which are 
statements of the law of conservation of electric charge and the law of conservation 
of energy:  

– the algebraic sum of the currents that meet at a node is zero; 

– the algebraic sum of the potential drops and the emf around a closed path is 
zero. 

These rules apply in the case of time-independent regimes and time-dependent 
regimes in quasi-permanent approximation, low-frequency alternating currents and 
slow transients, for instance (see section 9.4). In applying these rules, all voltages 
(including induced emf) and currents of various types must be taken into account.  

These rules allow us to deduce the required equations. If the electric elements of 
the circuit are linear, the obtained equations are linear. Thus, it is possible to analyze 
the circuit with each generator separately and make the superposition of the 
solutions for all the generators. In the case of a sinusoidal emf E = Em cos(Ωt + φ), 
the superposition principle allows us to consider the circuit with the exponential emf 
E = Em 

)i( φ+Ωte = Em 
te Ωi , to determine its solution and take its real part at the end of 

the calculation.  

In the permanent regime and the quasi-permanent regime, the relations of the 
difference of potential at the terminals of any electric element to the current are valid 
for complex currents and potentials in the forms VR = RI , VC = CQ/  = ∫ dt I /C and 
VL = L dI/dt at the terminals of a resistor, a capacitor and a self-inductance 
respectively. In the case of a sinusoidal current I = Im 

te Ωi , these relations become  

 V = ZI ,         where   ZR = R,       ZC = 1/iCΩ       and ZL = iΩL. [3.60] 
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Z is the complex impedance of the circuit element; this is a generalization of the 
concept of resistance. It is useful because complex impedances in series are 
equivalent to a single impedance Z = Σi Zi and impedances in parallel are equivalent 
to a single impedance given by 1/Z = Σi 1/Zi. 

As a simple example, consider a single loop circuit containing a resistance R, a 
capacitance C, and a self-inductance L connected in series to the terminals of a 
generator of emf E = Em

te Ωi  (Figure 3.16a). The impedance of these elements in 

series is Z = R + i(ΩL – 1/CΩ) ≡ Z Ziφe , where Z = 22 )/1( Ω−Ω+ CLR is the real 
impedance and φz = arctan (LΩ − 1/ΩC)/R with −π/2 < φz < π/2. The Kirchhoff loop 
rule gives I Z = E, hence 

I = E/Z
 
= (Em/Z) zi( )Ω −φte ,      I = Im cos(Ωt − φz)  where Im = Em/Z. [3.61] 

 
           (a)                               (b)                                 (c) 

Figure 3.16. a) Sustained LCR circuit, b) amplitude of the  
current versus Ω, and c) dissipated power versus Ω 

The variation of the amplitude of the current Im as a function of Ω is illustrated in 
Figure 3.16b. It has a maximum equal to Em/R for Ω = ωo = 1/ LC . The 
instantaneous power supplied by the generator of the emf is 

P(ex) = IE = ImEm cos(Ωt) cos(Ωt − φz) [3.62] 

and its average value over a period is 

< P(ex) > = ½ ImEm cos φz = ½ (RIm/Z) ImEm = ½ (R/Z2) Em
2 = ½RIm

2.  [3.63] 

This is also the power that is dissipated in the resistor as Joule heat. The quantity  
cos φz = R/Z is the power factor. We note that the instantaneous power is not a linear 
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quantity in E; thus, it must be calculated from real quantities. However, if we are 
only interested in averaged values, we may write < P(ex) > = Re (½I*E ). The relation 
< P(ex) > = ½RIm

2 shows that the average supplied power by an alternating current  
I = Im cos(ωt − φz) in the circuit is the same as the power that is supplied by a direct 
current of intensity Ieff = Im/ 2  in the resistance R.  Ieff is the effective intensity of the 
alternating current and Veff = Vm / 2  is the effective voltage. The fact that Im and 
<P(ex)> have sharp maximums for Ω = ωo is qualified as resonance and the 
frequency interval, which corresponds to <P(ex) > larger than half its maximum is the 
resonance bandwidth Γ = R/2L. Figure 3.16c illustrates the variation of <P(ex)> 
versus Ω. 

3.12. Problems 

Conductors in electrostatic equilibrium 

P3.1 a) Assume that the charge on the surface of a conductor forms in fact a layer of 
thickness d and uniform volume charge density qv. Express qs in terms of d and qv. 
Determine the electric field inside the conductor, in the layer, and just outside the 
conductor. b) Make the same analysis if the charge density varies with the depth x 
according to the relation qv = A exp(−δx) where A and δ are two constants. Express 
qs in terms of A and δ. c) Air may support a maximum electric field of 4 × 106 V/m 
without a risk of discharge. What should the maximum charge of a sphere of radius 
R be? What is the corresponding potential for spheres of radii 5 cm and 1 m? 
Assume that the charge in a silver sphere is due to one electron per atom. Calculate 
the thickness of charge on the surface of the sphere. 

P3.2 A metallic ball of radius R1 = 10 cm is surrounded by a concentric spherical 
shell of internal radius R2 = 25 cm and external radius R3 = 30 cm (see Figure 3.5c). 
These bodies were initially neutral. a) A charge q = 5 nC is placed on the ball. 
Determine the charge distributions, the field, and the potential everywhere. Does the 
ball act on a charge q′ placed outside the shell? Does q' act on the ball? What can 
you say about the principle of action and reaction? b) Assume that the potential of 
the ball is V1 = 100 V and that of the shell is V2 = 200 V. Determine the charge 
distributions, the field and the potential everywhere. Can you say that there is an 
electric shielding of each region against the other? 

Capacitors  

P3.3 The Earth has a surface charge density qs = − 0.9 nC/m2. a) What is its field E 
near the ground? What is the difference of potential between the ground and a point 
at a height 1.8 m (the top of your head)? Does this difference of potential produce 
any current in your body? b) A metallic plate of area 1 m2 is initially neutral and 
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placed horizontally at a height h = 2 m. Does it get any surface charge density? One 
connects this plate to the ground through a ballistic galvanometer. What charge does 
it indicate?  

P3.4 A Geiger counter is formed by a conducting wire of radius 0.1 mm surrounded 
by a coaxial metallic cylindrical shell of internal radius 1 cm. The difference of 
potential between the wire and the shell being 1 kV, calculate the field E near the 
wire and near the cylinder. What is the charge of these conductors per unit length of 
the wire and the cylinder? What is the capacitance per unit length? The air may be 
ionized by a field E > 106 V/m. Up to which distance from the wire, this instrument 
may detect particles?  

P3.5 Two capacitors of 5 and 10 µF are charged under 100 V. Calculate their 
charges and their energies. One disconnects them from the batteries and connects 
their plates of the same polarity. Calculate the new voltage and the new charges. Is there 
any loss of energy? Do the same if one connects plates of opposite polarities. 

P3.6 a) Three metallic plates (1), (2) and (3) of area 3 m2 are parallel. Plates (1) and 
(2) are 3 cm apart while (2) and (3) are 2 cm apart. Plate (2) is connected to the 
terminal A while (1) and (3) are connected to the terminal B. What is the capacitance 
of this set up between A and B? b) Assuming that plate (2) had a charge Q = 50 µC 
before placing the other plates. Determine the charge of the three plates. 

Energy of capacitors 

P3.7 a) Assume that the charge of a capacitor is increased gradually from 0 to Q. 
Show that the total required energy is ½Q2/C. b) Use the density of electrostatic 
energy to show this result in the cases of a parallel plate capacitor and a cylindrical 
capacitor. c) Consider the case of the cylindrical capacitor. What is the radius of a 
cylindrical surface that divides the energy into two equal parts? 

P3.8 Two metallic spheres of radii R1 and R2 are at large distance from each other. 
The first has a charge Q, while the second is neutral. One connects them by a 
conducting wire. At a given moment, the charge of the first is q and that of the 
second is Q − q. What is the electric energy UE of the system? Verify that UE 
decreases to a minimum. Calculate the corresponding value of q and verify that the 
two sphere are then at the same potential. Is energy conserved in this process? 
Assuming that R1 = 1 cm, R2 = 1 m, and Q = 5 µC, calculate the charges, the 
potential of the spheres, the initial and the final energies. 
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Electric forces between conductors 

P3.9 A parallel plate capacitor of thickness x and area S is charged under a potential 
Vo. a) The battery is disconnected and the thickness is varied by δx. What are the 
variations of the capacitance and the energy? Deduce the force of interaction of the 
plates. b) Assume now that the battery remains connected and the thickness is varied 
by δx. What is the corresponding variation of the energy? What is the energy 
supplied by the battery? Deduce the expression of the force. 

P3.10 The discharge field in air is 4 ×106 V/m. This is the electric field strength that 
produces discharge. a) Two metallic plates have a difference of potential of 500 V. 
Up to which distance apart, they can be approached without a risk of discharge? 
What is then their force of attraction per unit area? b) A cloud of area 4 km2 is at an 
altitude of 1 km and it carries a charge q. Neglecting edge effects, what is the 
capacitance of the capacitor that it forms with the ground? What is the field between 
the cloud and the ground? What should the charge q be to produce electric 
discharge? What then is the difference of potential between the Earth and the cloud? 
Assuming that the discharge is total, what is the liberated energy? c) A typical 
cardiac stimulator is essentially a capacitor of 100 µF. It is charged under 4.5 kV. 
What are the stored charge and energy? Assuming that the discharge is produced in 
5 ms, what is the power of the instrument?  

P3.11 a) How is the capacitance of a parallel plate capacitor of thickness d modified 
if a metallic sheet of thickness d' is introduced between the plates? Does the result 
depend on whether the sheet is parallel to the plates or not? b) Assuming that the 
plates and the sheet are squares of sides L and the sheet is introduced a distance x in 
the capacitor. Neglecting edge effects, write the capacitance as a function of x. What 
then is the energy of the capacitor if it has a charge Q or a potential V? Deduce the 
expression of the force exerted on the sheet. 

P3.12 The plates of a capacitor are squares of sides L but they form a small angle θ. 
Show that the capacitance is C ≅ (εoL2/q)(1− a θ/2d). Calculate the moment of the 
forces Γ acting on one of the plates. To evaluate C, decompose it into thin bands.  

Conduction and Joule effect 

P3.13 Estimate vd in copper, assuming one conduction electron per atom, a current 
of 2 A and a cross-sectional area of 1 mm2. 

P3.14 a) Calculate the resistance of a hollow cylindrical conductor between its 
internal and external cylindrical surfaces. b) Calculate the resistance of a hollow 
spherical conductor between its internal and external spherical surfaces. c) Assume 
that a difference of potential V is maintained between the end surfaces S1 and S2 of a 
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conductor of arbitrary shape. Show that its resistance R and the capacitance of a 
capacitor having the same shape with S1 and S2 as electrodes are related by the 
relation RC = ρε. 

P3.15 The electric energy of 1 MW produced by a power plant must be transported a 
distance of 100 km by using a line with a resistance of 0.20 Ω/km. Compare the lost 
energy by the Joule effect if the energy is transmitted at a voltage of 220 V, 22 kV, 
and at 220 kV? 

P3.16 We consider the following model for a diode: electrons are emitted by 
thermionic effect by a cathode and collected by an anode. The electrodes are plane 
and parallel of area S and have a difference of potential Vo. Let N be the number of 
emitted electrons per second, n(x) the electronic density at the distance x from the 
cathode and v(x) their speed. a) Show that N = S n(x)v(x) and that the current 
intensity is I = Ne. b) Show that n(x) = −(εo/e) ∂xE(x). c) Assuming that the electrons 
are emitted without velocity, show that I = (e/2m)½ (8εoS/9d2) Vo

3/2. 

P3.17 Consider an anisotropic parallelepiped of sides a, b and c in the directions Ox, 
Oy and Oz and of conductance σpq. a) A field E is applied in the Oz direction. 
Determine the current density? b) A current density j flows in the Oz direction. 
Determine the field E and the difference of potential between the opposite faces.  

 

Figure 3.17. Wheatstone bridge 

P3.18 A Wheatstone bridge, illustrated in Figure 3.17, allows the comparison of 
impedances. G is usually a sensitive galvanometer of impedance z or any detector of 
current. Calculate the current in the galvanometer. To measure Z1, for instance, one 
maintains two other impedances constant and varies the third until the galvanometer 
indicates no current. Show that this is the case if Z2 Z4 = Z1Z3.  
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Chapter 4 

Dielectrics 

Insulators or dielectrics are mediums that contain no free charges. If a dielectric 
is placed in an electric field, it becomes polarized. We may consider the electronic 
polarization as due to the displacement of the electrons within the atoms and 
molecules and the orientational polarization due to the alignment of the polar 
molecules more or less in the direction of the electric field. The polarization of 
dielectrics explains some of their properties, particularly the propagation properties 
of electromagnetic waves (reflection, refraction, dispersion, etc.). Usually, the 
polarization disappears if the external field is removed, but some materials, called 
electrets, retain their polarization. These materials, (generally organic polymers, 
waxes, etc.) are the electrical analogs of permanent magnets. They are currently used 
in electrostatic microphones for modern phones. The purpose of this chapter is to 
study the polarization of dielectrics, the effects of dielectrics on the electric field, the 
field equations, and the energy. 

4.1. Effects of dielectric on capacitors 

In 1837, Faraday observed that, if a capacitor is maintained under a constant 
potential (by keeping it connected to a battery) and is filled with a dielectric, its 
charge is multiplied by a factor εr, which is a characteristic quantity of the dielectric 
called relative electric permittivity. Thus, the capacitance is multiplied by εr. On the 
other hand, if an empty capacitor is charged under a potential Vo (Figure 4.1a), the 
plates acquire charge densities ±qs and Gauss’s law gives the field Eo = qs/εo 
between the plates. If one disconnects the battery and fills the capacitor with the 
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dielectric (Figure 4.1b), the charges of the isolated plates remains evidently the 
same, but the potential difference and hence the field are divided by εr to become  

V = Vo/εr      and     E = V/d = Vo/εrd = Eo/εr = qs/ε,     where   ε = εrεo.  [4.1] 

ε is the absolute permittivity (or the dielectric constant) of the dielectric. The 
capacitance becomes C = Sqs/V = εr Co where Co is the capacitance of the empty 
capacitor.  

To increase the capacitance without increasing the area, it is possible to reduce 
the thickness d. However, d cannot be less than a certain limit determined by the 
electric discharge if the electric field attains the electric strength (or breakdown 
field) Eb. Thus, the breakdown voltage of a capacitor of thickness d is Vb = Ebd. The 
solution is to fill the capacitor with a dielectric of high permittivity. This allows the 
charge and stored energy to be increased without increasing the voltage. The values 
of εr and Eb for some common dielectrics are given in the Table 4.1. 

 
(a)                (b)              (c) 

Figure 4.1. a) Empty capacitor, b) capacitor filled with a dielectric, and c) polarization  

Material εr Eb (MV/m) Material εr Eb (MV/m) 

Vacuum 1 − Pyrex glass 4.5 13 

Air 1.000537 0.3 Paraffin 2.1 0.5 – 2 

Water (20°) 80.36 − Neoprene 6.9 12 

Steam  1.0126 − Mica 5.6 6 − 7 

Paper          3.5 24 Glass 4 − 9 1 – 3 

Porcelain       6.5 4 Strontium titanate 233 8 

Quartz        3.8 13 Barium titanate ≈1500 8 

Table 4.1. Relative permittivity and dielectric strength Eb of some dielectrics under normal 
conditions (20°C and 1 atm). Those of steam correspond to 110° and 1 atm 
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4.2. Polarization of dielectrics 

The reduction in the electric field from Eo to E = Eo/εr if a dielectric is introduced 
into a capacitor may be interpreted as due to uniform densities of bound charges 
∓ qs′ on the dielectric faces, of opposite signs to the free charges ±qs of the plates 
(Figure 4.1b). Thus, the surface charge densities of the plates become ± (qs − qs′). 
The electric field is then E = (qs − q′s)/εο. As E = Eo/εr = qs/εoεr, we deduce that 

qs′ = qs (1 − 1/εr ).   [4.2] 

The densities of bound charges ∓ qs′ on the faces of a dielectric body do not 
depend on its dimensions. According to [4.2], they depend only on the relative 
permittivity εr and the densities of free charges ± qs on the plates, i.e. the external 
electric field acting on the dielectric. We may always consider the dielectric body as 
a juxtaposition of small cubes of sides d (Figure 4.1c). If an electric field acts on the 
dielectric, bound charges of surface densities ± qs′ appear on the faces of the cubes, 
which are normal to E. The signs ‘±’ correspond to a field leaving the cube or 
entering the cube, respectively. Thus, each cube has an electric dipole moment in the 
direction of E. We say that the dielectric becomes polarized and the bound charges 
of densities ± qs′ are also called polarization charges. If the dielectric is uniform (i.e. 
εr is the same at all points of the dielectric) and the field E is uniform, the faces of 
two cubes, which are in contact, have opposite polarization charge densities +qs′ and 
−qs′, which neutralize each other. Only the polarization charge densities ± qs′ on the 
external faces of the dielectric remain. The electric dipole moment of each cube in 
the direction of E is p = (q′sS)d = qs′V, where S = d2 is the surface of the cube faces 
and V = d3 is its volume. The electric dipole moment being proportional to the 
volume V, we may consider infinitesimal volume elements dV and define the 
polarization density (also called polarization vector or simply polarization) as the 
electric dipole moment per unit volume 

P = dp/dV = qs′ E/E = (ε − εo) E.           [4.3] 

Thus, P is proportional to the field E within the dielectric. We write  

P = εoχEE ,           where χE = εr − 1.              [4.4] 

χE is the electric susceptibility of the dielectric. In the case of an electret, we may 
define the polarization P and the polarization charge, but the proportionality of E 
and P does not hold (as the permanent polarization P is independent of E).  
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4.3. Microscopic interpretation of polarization  

In conductors at electrostatic equilibrium, the free electrons are distributed in 
such a way that the field E vanishes. In dielectrics, the electrons may move only 
within the molecules, this reduces the field E without making it equal to zero. The 
molecule is globally neutral and, in most cases, if no external electric field acts on it, 
the barycenter of the nuclei and that of the electrons coincide (Figure 4.2a). Thus, 
the molecule has no permanent electric dipole moment. If an external electric field 
acts on the molecule, it pushes the positive nuclei in its direction and it pulls the 
negative electrons in the opposite direction. The barycenter of the total negative 
charge −q and that of the positive charge +q are then separated by a distance d 
(Figure 4.2b) and the molecule gets an electric dipole moment pe = qd. This 
polarization is called electronic polarization as it is essentially due to the 
deformation of the electronic cloud in the molecule. 

 
(a)          (b)           (c)           (d) 

Figure 4.2. a) Molecule non-submitted to an electric field, b) molecule submitted  
to a local field El, c) polar dielectric non-submitted to an external field,  

and d) the same dielectric submitted to a macroscopic field E 

To study the polarization of a dielectric body (A), we should distinguish various 
electric fields. What we call external electric field E(ex) is the field that exists before 
we place the body (A). The so-called macroscopic electric field E is the resultant of 
the field E(ex) and the field Ep produced by the polarized body (A). Ep is the 
macroscopic field (that is, the averaged field) produced by all the molecules of (A). 
The so-called local field El that acts on a given molecule to polarize it, does not 
include the field of that molecule. Thus, we have El = E(ex) + E′p where E′p is the 
averaged field of all the molecules of (A) except the considered molecule. The 
electric dipole moment of the molecule pe is proportional to El; it may be written as 

pe = αe El .         [4.5] 

αe is the polarizability of the molecule, which depends on the nature of the molecule 
not on the physical conditions of the medium. 

El

E 
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Some molecules are non-symmetric. The barycenter of positive charges and that 
of the negative charges do not coincide. Thus, the molecule has a permanent electric 
dipole moment pm and it is said to be a polar molecule. This is the case of the 
molecules H2O, SO2, and NH3. If no electric field acts on the body (Figure 4.2c), the 
molecules are randomly oriented in all directions because of thermal agitation and 
the frequent collisions of molecules if the medium is a gas. A macroscopic element 
of volume δV contains a large number of molecules. Thus, the total electric dipole 
moment of δV, which is equal to the vector sum of the dipole moments of all its 
molecules, is equal to zero. If an external field acts on the body, the local field El 
acts on the molecules with a moment of force Γm = pm × El to orient them in the 
direction of El. However, the alignment cannot be complete because of the thermal 
agitation (Figure 4.2d). The mean electric dipole moment of the molecule is 
proportional to El. It is called the orientation dipole moment and it may be written as 

< p > = αo El.                [4.6] 

The constant αo, called orientation polarizability, depends on the physical 
conditions, especially temperature (see section 4.13). The orientation polarization is 
always accompanied by the electronic polarization, but the latter is often less 
important. The total average electric dipole moment is then p = pe + <p> and the 
total polarizability is α = αe + αo. 

A macroscopic element of volume δV of the dielectric contains δN = Nv δV 
molecules, where Nv is the number of molecules per unit volume. Thus, it has an 
electric dipole moment δP = p Nv δV . In other words, the polarization P = δP/ δV is 

P = Nv p = Nv α El.        [4.7] 

To have an estimate of the order of magnitudes, let us consider the hydrogen 
atom. To simplify, we assume that the electronic cloud of radius ro ≈ 10−10 m is not 
put out of shape but simply displaced with respect to the nucleus by a distance d in 
the opposite direction to El. The nucleus is then subject to the electric field of this 
cloud Ee = −Koed/ro

3 and to the local field El. It is in equilibrium if eEe + eEl = 0, i.e. 
Koed/ro

3 = El. The electric dipole moment of the atom is then p = ed = (ro
3/Ko)El. It 

has the form p = αeEl with αe = ro
3/Ko ≈ 10−40 Cm2/V. In some cases, αe may be 

much higher (3 × 10−39 Cm2/V for sodium, for instance). Even if an electric field of 
106 V/m acts on the hydrogen atom, the induced dipole moment is only 10−34 C.m. It 
is much smaller than the permanent electric dipole moments (6.10 × 10−30 C.m for a 
water molecule, for instance). Obviously, if the medium has a permanent 
polarization, it does not depend on the electric field and it must be added to the 
induced polarization. 
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4.4. Polarization charges in dielectric 

To simplify, we model the dipole moment p of the molecule as two charges −q 
and +q separated by a distance d such that p = qd. In the absence of an external 
electric field, the polar molecules are randomly oriented (Figure 4.2c). On the 
surface of a dielectric, there is equal probability to find bound charges −q as bound 
charges +q. Thus, the surface charge density due to polarization is zero for any 
orientation of the dielectric surface. This is also true in the case of non-polar 
molecules since the charges −q and +q coincide. Now, if an electric field acts on a 
parallelepiped of dielectric ABED normally to the faces AB and CD (Figure 4.3a), 
the molecules acquire an average dipole moment p in the direction of E. Everything 
is the same as if all the charges +q of the molecules are displaced by d/2 in the 
direction of E and all the charges −q displaced by −d/2 in the opposite direction. If S 
is the area of the face of the parallelepiped, the displaced positive charge near CD is 
q′ = NvqSd; it corresponds to a surface charge density q′s = Nvqd = Nvp = P. 
Similarly, the negative charge near AB is −q′ and this corresponds to a surface 
polarization charge density q′s = −P. The faces AD and BC, which are parallel to the 
electric field, acquire no surface polarization charge density.  

  
 

(a)                        (b)               (c) 

Figure 4.3. Polarization charges in a dielectric: a) surface charge on a face normal to E,  
b) surface charge on an oblique face, and c) volume charge 

If P makes an angle θ with the outward normal n to the face CD, for instance, 
(Figure 4.3b), the positively charged layer at this face has a thickness d cos θ and it 
contains a charge NvSqd cos θ. This corresponds to a surface polarization charge 

qs′ = Nqd cos θ = Np cos θ = P cos θ = P.n.           [4.8] 
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This relation holds for any form of the face with n always pointing outward from the 
dielectric. On the faces BC and DC, P and n form acute angles (P leaving the 
dielectric); thus, qs′ is positive. On the contrary, on the faces AB and AD, P and n 
form obtuse angles (P entering to the dielectric); thus, qs′ is negative. Within the 
dielectric, the volume polarization charge density is equal to zero if the polarization 
P is uniform. 

Consider now the case of a non-uniform polarization and two parallelepipeds 
centered at points r(x, y, z) and r′(x+dx, y, z) with a common face AB of area S 
parallel to the Oyz plane (Figure 4.3c). Inside each one of these parallelepipeds, P 
has approximately the uniform values P(x, y, z) and P(x+dx, y, z). The normal to the 
face AB outgoing from the first parallelepiped is ex; thus, it has a surface charge 
density qs′ = P(x, y, z).ex. The normal to the face AB outgoing from the second 
parallelepiped is −ex; thus, it has a surface charge density qs′ = −P(x+dx, y, z).ex. The 
total polarization charge density on the face AB is S[Px(x, y, z) − Px(x+dx, y, z)] = 
−S dx (∂Px/∂x). It is equivalent to a volume polarization  charge density q′v = −∂xPx. 
If the parallelepipeds are centered at the points r(x, y, z) and r′(x+dx, y+dy, z+dz), 
we find  

qv′ = −∂xPx − ∂yPy − ∂zPz = −∇.P. [4.9]   

We conclude that in a dielectric there are polarization charges of surface density  
q's = P.n on the faces of the dielectric and a volume density q'v = −∇.P within the 
dielectric. On the contrary to the conduction charges, the polarization charges are 
completely bound to the molecules of the dielectric. 

4.5. Potential and field of polarized dielectrics 

Let us consider a dielectric occupying a volume V and bounded by a surface S. 
An element of volume dV' of dielectric near the point r′ is equivalent to an electric 
dipole moment dp′ = P(r′) dV' where P(r′) is the polarization. Using the results of 
section 2.6, the potential produced by this element of volume at a point r outside the 
dielectric (thus at large distance from the dipoles) is  

dVp(r) = Ko dV′ R.P(r′)/R3 ,             where R = r − r′.   [4.10] 

The total potential due to the polarization is obtained by integration over V, hence 

Vp(r) = Ko ∫∫∫V dV′ P(r′).R/R3 = Ko ∫∫∫V dV′ P(r′).∇′(1/R),   [4.11] 
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where we have used the relation R/R3 = ∇′(1/R) with ∇′ designating the vector 
differential operator with respect to the coordinates (x′, y′, z′). Then, using the 
relation ∇′[P(r′)/R ] = (1/R) ∇′.P(r′) + P(r′).∇′(1/R), we may write 

Vp(r) = Ko ∫∫∫V dV′ ∇′[P(r′)/R] − Ko ∫∫∫V dV′ (1/R)∇′.P(r′). [4.12] 

Using Gauss-Ostrogradsky’s theorem, we may transform the first integral into the 
flux of P(r′)/R over the surface S of the dielectric, hence 

Vp(r) = Ko ∫∫S dS′ n′.P(r′)/R − Ko ∫∫∫V dV′ (1/R) ∇′.P(r′),  [4.13] 

where n′ is the outward unit vector normal to the surface S. This is the same 
potential as that of a polarization charge of surface density qs′(r′) = n′.P(r′) and 
volume density qv′(r′) = −∇′.P(r′). Thus, we may write the potential and the electric 
fields by using these polarization charge densities: 

Vp(r) = Ko ∫∫S dS′ q′s(r′)/R + Ko ∫∫∫V dV′ q′v(r′)/R ,  [4.14] 
Ep(r) = Ko∫∫S dS′ qs′(r′) R/R3 + Ko ∫∫∫V dV′ qv′(r′) R/R3 .    [4.15] 

It is not obvious that these expressions hold for the potential and the electric field 
at points M inside the dielectric, as the expression [4.10] used to derive them is not 
valid for the potential near the dipole moment and it becomes infinite if R → 0. Let 
us surround the point M by a small sphere of radius R1 (Figure 4.4a). It may be 
verified that, for some geometrical configurations of molecules, the potential of this 
sphere of dielectric at its center M vanishes in the limit R1 → 0. To evaluate the 
potential of the dielectric occupying the volume V2 outside the sphere, we may use 
the expression [4.14] as M is outside V2. However, for this calculation, we must 
include the potential of the polarization charges on the surface S1 of the sphere as on 
the external surfaces S of the dielectric. The normal unit vector outgoing from S1 is  
−n1 = − R/R pointing toward M, hence 

Vp(r) = Ko ∫∫∫ 2V
V'd q′v(r′)/R + Ko∫∫S dS′ q′s(r′)/R + Ko ∫∫ 1S S'd  q′s(r′)/R.  [4.16] 

We may extend the integral on V2 to the whole volume V of the dielectric. Indeed, by 
doing so, we add the integral over V1, i.e. a term 

δ1Vp(r) = Ko ∫∫∫ 1V
V'd q′v(r′)/R ≈ Ko q′v ∫ 1

0
R dR R2 ∫ θπ

0 'd sin θ′ ∫ ϕπ2
0 'd /R ≈ 2πKo q′vR1

2,  

which vanishes in the limit R1 → 0. Also, the third term in [4.16] may be written as 

δ2Vp(r) = Ko ∫∫ 1S S'd  q′s(r′)/R = − Ko ∫∫ 1S S'd  P(r′).n1/R 

         ≈ − KoR1P ∫ θπ
0 'd sin θ′ cos θ′ ∫ ϕπ2

0 'd  = − πKoR1P sin2θ′| π=θ
=θ

'
' 0  = 0.  
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We deduce that the expression [4.14] for the potential and hence the expression 
[4.15] for the field are valid both inside and outside of the dielectric.  

In the particular case of a uniform polarization (∇.P = 0), the effect of the 
polarization reduces to that of the surface charge density qs′ = n.P. This is 
effectively the case if a plate of dielectric is introduced in a parallel plate capacitor 
(Figure 4.1b). P is then oriented from the positive plate to the negative plate. On the 
dielectric face that is close to the positive plate, P points toward the dielectric and qs′ 
= P.n is negative. On the contrary, on the dielectric face that is close to the negative 
plate, P points outward the dielectric and qs′ = P.n is positive. Thus, the field of the 
polarization Ep is in the opposite direction to that of the capacitor plates. We say the 
Ep is a depolarizing field. 

 
            (a)                  (b)                 (c) 

Figure 4.4. a) Evaluation of E in a dielectric. b) Gauss’s law ΦE = (Q(in)+Q '(in))/εo  
uses both free charges Q(in) and bound charges Q '(in) inside S.  

c) It may be written also as ΦD = Q(in)/εo 

4.6. Gauss’s law in the case of dielectrics, electric displacement 

To write Gauss’s law for E, we must use both the polarization charges and the 
free charges (Figure 4.4b). Thus, the integral form of Gauss’s law may be written as 

ΦE ≡ ∫∫S Sd  n.E = (Q(in) + Q′(in))/εo
 ,   

where Q(in) = ∫∫∫V Vd qv    and  Q′(in) = − ∫∫∫V Vd ∇.P.             [4.17] 

S is a Gaussian surface assumed not to have point charges, linear charge, or surface 
charge and V is the enclosed volume by S. Using Gauss-Ostrogradsky’s theorem, we 
may transform the integral of ∇.P into the flux of P outgoing from S and write  

∫∫S Sd  n. (E + P/εo) = Q(in)/εo,            i.e.,        ΦD ≡ ∫∫S Sd  n.D = Q(in).    [4.18] 
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D is the electric displacement field (or electric induction) 

D = εoE + P.           [4.19] 

Gauss’s law, written in the form [4.18], expresses that the flux of D outgoing 
from a closed surface S is equal to the free charge that it contains (Figure 4.4c).  
If the dielectric is linear and isotropic, we have seen that the polarization is  
P = (ε − εo)E (see equation [4.3]). Thus, the electric displacement may be written as 

D = εE. [4.20] 

For instance, let us consider a plate of linear and isotropic dielectric introduced 
in a parallel plate capacitor. Let S be a cylindrical Gaussian surface having a base of 
area A in the dielectric and the other within the positive plate (Figure 4.1b). Because 
of the symmetries, E and D are uniform and perpendicular to the plates. Their fluxes 
outgoing from S are EA and DA. The free charge inside S is Q(in) = qsA and the 
polarization charge is Q′(in) = −qs′A = qsA(εo/ε −1), where we have used [4.2]. 
Gauss’s law in the form [4.17] gives EA = qsA/ε and, in the form [4.18], it gives  
DA = qsA. We deduce that E = qs/ε and D = qs = εE.  

4.7. Electrostatic equations in dielectrics 

The electrostatic phenomena in the presence of dielectrics are specified by two 
fields: the electric field E and the electric displacement D (or E and the polarization 
P). Two fundamental laws govern these phenomena: 

a) The electric field E is conservative: its circulation between any two points A 
and B depends on these points but not on the path 

∫
B
A dr. E = VA − VB.         [4.21] 

Particularly, the circulation of E over a closed path C ( A ≡ B) is zero: 

∫C r.Ed  = 0.             [4.22] 

As we have seen in section 2.3b, this is equivalent to the local equation 

∇ × E = 0,               [4.23] 

which is obviously satisfied if 

E = − ∇V.               [4.24] 
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b) The electric field verifies Gauss’s law: this law may be written in the integral 
form [4.17] that uses E and P. Transforming the flux into a volume integral of the 
divergence by using Gauss-Ostrogradsky’s theorem, we find 

∫∫∫V dV ∇.[εoE(r) + P(r)] = ∫∫∫V dV qv(r) .   [4.25] 

As this equation is valid for any volume V, we must have 

εo ∇.E(r) − ∇.P(r) = qv(r),           i.e.,   εo∇.E(r) = qv(r) + q′v(r) .       [4.26] 

If, instead of P, we use the electric displacement D = εoE + P, the integral form 
of Gauss’s law may be written as 

∫∫S dS (n.D) = ∫∫∫V dV qv(r),           [4.27] 

while equation [4.26] becomes 

∇.D(r) = qv(r).          [4.28] 

Although the solution of the electrostatic problem exists and is unique, the field 
equations ∇ × E = 0 and εo∇.E = qv + q′v are not sufficient to determine E. Even in 
the absence of dielectrics (q′v = 0), the solution of these equations is not unique. On 
the other hand, in the presence of dielectrics, the polarization charge density q′v = 
−∇.P depends on P hence on E that we have to determine. The problem is even 
more complicated if the exact position of the free charges is not completely known 
as in the case of charges on conductors and if the region in which the field has to be 
calculated is confined by surfaces. 

The analysis is slightly simplified if the dielectric is linear and isotropic. Then, 
the polarization P and D are proportional to E 

P = εo χE E ,            and        D = εE ,         with  ε = εo( 1 + χE )     [4.29] 

and the two fundamental equations [4.23] and [4.28] take the form 

∇ × E = 0,           and          ∇. E = qv/ε .      [4.30] 

Knowing E, we may determine the potential V and the fields D and P by using the 
relation [4.29] and the polarization charge density q′v = (εo/ε −1) qv.  

It is often more convenient to determine the potential first and then deduce the 
field E. Indeed, substituting the expression E = − ∇V in Gauss’s equation  
∇.E = qv/ε, we find the Poisson equation in the dielectric 

ΔV = − qv/ε. [4.31] 
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Assume that we look for a solution in a region V, which contains a dielectric of 
permittivity ε (which may be non-uniform). The region V may be infinite or bounded 
by some surfaces iŜ (of conductors or any other material) with known boundary 
conditions. If we know the free charges at each point of V (excluding the charges on 
the surfaces iŜ , which are taken into account by the boundary conditions), the 
Poisson equation [4.31] has the general solution 

V(r) = Vo(r) + (1/4π) ∫∫∫V dV′ qv(r′)/εR + (1/4π)∫∫S dS′ qs(r′)/εR  
            + (1/4π) ∫C dl′ ql(r′)/εR + (1/4π) Σk qk/εRk .     [4.32] 

Vo(r) is any solution of Laplace equation (ΔV = 0) and the four other terms 
correspond to volume charges, surface charges, linear charges and point charges 
with R = r − r′ and Rk = r − rk. In these terms, the permittivity ε may depend on the 
position r′ or rk of the source charges. The corresponding field E is 

E(r) = Eo(r) + (1/4π) ∫∫∫V dV′ qv(r′)R/εR3 + (1/4π)∫∫S dS′ qs(r′)R/εR3  
         + (1/4π) ∫C dl′ ql(r′)R/εR3 + (1/4π) Σk qk Rk /εRk

3      [4.33] 

where Eo = −∇Vo. It may be shown that it is always possible to choose Vo(r) in order 
to respect the boundary conditions on the surfaces iŜ . Thus, the physical problem 
has a unique solution. In the particular case of a uniform and isotropic dielectric 
filling all the volume V, the solution is the same as without dielectric but divided by 
the relative permittivity εr. 

 
(a)                      (b) 

Figure 4.5. a) The field at the interface of a conductor and  
a dielectric. b) The field at the interface of two dielectrics 
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Let S be the interface of a dielectric (1) and a medium (2) (which may be a 
dielectric or a conductor) and qs  the surface density of free charge on S (Figure 4.5). 
Because of the discontinuity on S, the fields E and D may have discontinuities and 
we cannot use the two fundamental laws of electrostatics in the local forms ∇×E = 0 
and ∇.D = qv, but in the integral forms [4.22] and [4.27]. Repeating the analysis of 
section 2.8 by considering a narrow rectangular path ABCD and a cylindrical thin 
Gaussian surface on both sides of S, we find that the tangential component of E is 
continuous, while the normal component of D has a discontinuity equal to qs 

E1// = E2//    and     n21.D1 − n21.D2 = qs. [4.34] 

− If the medium (1) is a linear and isotropic dielectric of permittivity ε1 and the 
medium (2) is a conductor (Figure 4.5a), we have E2 = 0 and D2 = 0. Equations 
[4.34] and the relation D1 = ε1E1 give E1// = 0 and n21.E1 = qs/ε. We deduce that 

E1 = (qs/ε1)n21,    D1 = ε1E1= qsn21,     and   P1 = D1 −εoE1 = qs(1−εo/ε1)n21.  [4.35] 

The polarization charge density on S is  

qs′ = P1.n12 = − (1 − εo/ε1) qs. [4.36] 

− If S separates two dielectrics (1) and (2) and carries no free charge  
(Figure 4.5b), equations [4.34] and the relations D1 = ε1E1 and D2 = ε2E2 give 

E1// = E2//,     n21.(ε1E1 − ε2E2) = 0,      
P1 = (ε1 − εo)E1       and     P2 = (ε2 − εo)E2.  [4.37] 

The polarization charge density on S is  

qs′ = P1.n12 + P2.n21 = εo n21.(E1 − E2) .         [4.38] 

Using the relation [4.21] of the potential to the field E, we deduce that V cannot 
have a discontinuity on the interface of a dielectric and a conductor or another 
dielectric. However, V is infinite at points where there are point charges or linear 
charges. 

4.8. Field and potential of permanent dielectrics 

We consider in this section a dielectric of given permanent uniform polarization 
P and we neglect the induced polarization. In this case, the relations D = εoE + P,  
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∇ × E = 0 and ∇.D = qv are valid but the proportionality relations of P, D, and E are 
not. The field is the same as that of a surface polarization charge density q′s = P.n.   

a) Field of a uniformly polarized cylinder in the direction of its axis 

The field of a cylinder, which is polarized in the direction of its axis, is the same 
as that of two disks, which carry the surface charge densities ±q's = ±P and coincide 
with the bases of the cylinder (Figure 4.6). The field at points, which are off the axis, 
cannot be expressed in terms of simple functions.  

If the cylinder is very thin (polarized plate as in Figure 4.6a), the field is uniform 
like that of a parallel plate capacitor. Applying Gauss’s law to the surfaces S1 and 
S2, we get 

D(ex) = 0,        D(in) = 0,         thus      E(ex)
 = 0,    E(in)= − P/εo     [4.39] 

where we have used the relation D = εoE + P. The field E may also be evaluated 
directly by using the polarization charge densities ±q's = ±P of the bases assimilated 
to infinite planes.  

 
(a)              (b)                     (c) 

Figure 4.6. Field of a cylinder that is uniformly polarized in the direction of its axis  
in the cases a) of a thin cylinder, b) of a thick cylinder, and c) of a long rod 

If the length of the cylinder 2h is not very small, compared to R (Figure 4.6b), 
using the expression [2.53] for the field of a disk, we may write the expressions of 
the field on the axis of the cylinder outside and inside the cylinder 

E(ex)(z) = (P/2εo)[(z+ h)/ 22 )( hzR ++ − (z− h)/ 22 )( hzR −+ ],  

E(in)(z) = − (P/2εo)[2 − (z+ h)/ 22 )( hzR ++ + (z− h)/ 22 )( hzR −+ ].   [4.40] 
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Particularly, the field at the center is E(in)(0) = −(P/εo)[1 − h/ 22 hR + ]. If the length 

of the cylinder 2h is much larger than R (a polarized rod, Figure 4.6c), the field at 
the center is E(in)(0) ≅ −(R2/2εoh2)P. Outside the dielectric, the lines of the fields D 
and E coincide, as D = εoE, but they are distinct within the dielectric.  

b) Field of a uniformly polarized ball 

We use spherical coordinates with the origin O at the center of the ball and Oz 
pointing in the direction of P (Figure 4.7a). The surface polarization charge density 
is qs′ = P.n = P cos θ. The potential at a point M(r, θ, ϕ) is independent of ϕ, 
because of the symmetry about Oz; thus, we may calculate it for ϕ = 0. An element 
of area dS′ = R2 sin θ′ dθ′ dϕ′ at the point P(R, θ′, ϕ′) on the surface of the ball, has 
the charge dQ′ = q's dS'; the potential that it produces at M is  

dV(r) = Ko
'

S'

rr−
dq s = KoP 

''

''''

ϕθ−θθ−+

ϕθθθ

cos  'sinsinθ2coscos2

sincos
22

2

RrRrrR

ddR
. 

Instead of making a complicated integration, we use an approximation method 
based on a simple physical idea. Let us assume that the polarization of each 
molecule is due to the displacement of a positive charge q by d/2 in the direction of 
P and a displacement of a negative charge –q by –d/2. The electric dipole moment 
of a molecule is then p = qd and the polarization of the medium is P = Nv qd where 
Nv is the number of molecules per unit volume. The polarized ball is thus equivalent 
to two balls of charge densities Nvq and −Nvq and of centers O1 and O2 separated by 
a distance 21OO = d (Figure 4.7b). The total charges of these balls are  
±Q = ±(4/3)πR3Nvq and the total potential that they produce at a point M outside 
them is the same as that of two point charges ±Q located at their centers O1 and O2, 
i.e. 

V(ex)(r) = KoQ(1/r1 − 1/r2) = KoQ[1/|r−d/2| −1/|r+d/2|] ≈ KoQ (r.d)/r3.   [4.41] 

As Qd = (4/3)πR3Nvqd = PV, where V = (4/3) πR3 is the volume of the ball, we may 
express the electric potential and field outside the ball in terms of P as  

V(ex)(r) = KoV (r.P)/r3 = (R3/3εor3) (r.P),  [4.42] 

E(ex)(r) = − ∇V(ex)(r) = KoV [3(r.P) 5r
r − 3r

P ] = 
o

3

ε3
R [3(r.P) 5r

r  − 3r
P ].  [4.43] 

Particularly, on the surface of the ball 

V(ex)(r) = R.P /3εo,          E(ex)(r) = (1/3εoR2) [3(R.P) R − R2 P] . [4.44] 
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Using the expression [2.59] for the potential inside a charged ball, we may write 
the total potential inside the dielectric ball and hence the electric field 

V(in)(r) = Ko 3R
Q [(3R2 − r1

2) − (3R2 − r2
2)] = Ko 3R

Q (d.r) = 
oε3

P.R =
oε3

Pz .  [4.45] 

E(in)(r) = − ∇V(in)(r) = − P/3εo .           [4.46] 

The electric field inside the ball is uniform and oriented in the opposite direction to 
P. The electric displacement D = P + εoE is then given by the expressions 

D(ex)(r) = εo E(ex)(r) = (R3/3) [3(r.P) r/r5 − P/r3],       D(in)(r) = (2/3) P.  [4.47] 

The fields D and E verify the conditions [4.34] on the surface of the dielectric. The 
lines of E and D are represented in Figures 4.7c and 4.7d, respectively.  

 
(a)            (b)             (c)          (d) 

Figure 4.7. Polarized ball: a) the surface polarization charge density, b) its equivalence  
to two balls of opposite charges, c) lines of the field E, and d) lines of the field D 

The expressions [4.39], [4.40] and [4.46] show that the electric field due to the 
polarized dielectric is in the opposite direction to the polarization P. This is a 
general property for any form of the dielectric body. We say that E is a depolarizing 
field. 

c) Field in a cavity within a dielectric  

Consider a dielectric body (B) of polarization P containing a cavity with no free 
charges in it. Let E(C) be the field at a point M in the cavity (Figure 4.8) and Ê  the 
field that is produced at the same point M by a dielectric body that may fill the 
cavity exactly. It is evident that, if the dielectric body had no cavity, the field at M 
would be E = E(C) + Ê . This relation holds even if there are free charges and other 
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dielectric bodies than the body (B) by including their fields in E and E(C). Thus, we 
have 

E(C) = E − Ê .                                   [4.48] 

− If the cavity is spherical (Figure 4.8a), Ê = −P/3εo, thus E(C) = E + P/3εo. 

− If the cavity is cylindrical and thin in the direction of P (Figure 4.8b), we have 
Ê  = −P/εo, thus E(C) = E + P/εo. We also get this result by applying Gauss law to the 
cylinder S. 

− If the cavity is cylindrical and long in the direction of P (Figure 4.8c), we have  
Ê  = 0, thus E(C)

 = E. We get also this result by writing that the circulation of E over 
the closed path C is equal to zero.  

 
(a)                (b)               (c) 

Figure 4.8. Field in a cavity within a dielectric: a) spherical cavity, b) cylindrical cavity that 
is thin in the direction of P, and c) cylindrical cavity that is long in the direction of P 

4.9. Polarization of a dielectric in an external field 

If a dielectric is placed in an external electric field Eo, it becomes polarized and 
it produces its own field Ep, which superposes to the external field Eo so that the 
total field is E = Eo + Ep. We assume that Eo is uniform and it is produced by a 
system, which is not influenced by the dielectric. At large distances from the 
dielectric, the total field E approaches Eo asymptotically but, at small distances and 
inside the dielectric, E depends on the shape of the dielectric body and its 
polarization P, which is unknown (as it depends on E that we have to calculate). In 
the general case, the problem is complicated and it may be solved only by 
approximations or numerically. In this section we consider two cases, where the 
simple geometry facilitates the solution. 

P 

E 
E 

E(C) 
M 

P

E

E 

C 

E(C)

M

P

E
SM

E(C)



114 Electromagnetism

a) Dielectric plate in a uniform and normal field

Consider an infinite plate of dielectric of thickness d placed normally to a
uniform field Eo. We take Oz in the direction of Eo; thus, Eo = Eo ez (Figure 4.9a).
Because of the obvious symmetries, the polarization P is in the direction of Oz and,
if the plate is thin, we may admit that P is uniform. The polarization P produces
polarization charge densities ±P on the faces of the plate similar to those of a
parallel plate capacitor. Their field is equal to q′s/εo, i.e. Ep

(in) = −(q′s/εo)ez = − P/εo
inside the plate and Ep

(ex) = 0 outside the plate. Thus, the total field is

E(ex) = Eo+ Ep
(ex) = Eo , E(in) = Eo + Ep

(in)= Eo −− P/εo. [4.49]

(a) (b)

Figure 4.9. a) Polarization of an infinite plate and b) polarization of a ball

To determine P, we must use the properties of the dielectric. If the medium is
linear, isotropic with a susceptibility χE, we find P = εoχE E(in) = εoχE (Eo − P/εo),
hence

P =
E

Eo
1 χ+

χε Eo, E(in) =
E

o

1 χ+
E

=
r
o

ε
E . [4.50]

The electric displacement is

D(ex) = εo E(ex)= εoEo , D(in) = εoE(in) + P = εoEo . [4.51]

We may use Gauss’s law in the integral form to show that E is uniform outside the
plate and that D(in) = D(ex) = εoEo.

b) Dielectric ball in a uniform field

Let us assume also in this case that the polarization P of the ball is uniform
(Figure 4.9b). According to the section 4.8b, the field of the ball inside it is −P/3εo.
Thus, the total field inside the ball is

E(in) = Eo − P/3εo . [4.52]

P E(in)= Eo – P/εo

E(ex)= Eo

P E(in)
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If the dielectric is linear and isotropic with a susceptibility χE, the polarization is  
P = εoχE E(in)

 = εoχE (Eo − P/3εo), hence  

P = 
E

Eo
3
3

χ+
χε

 Eo,         E(in)
 = 

E

3
3 χ+

 Eo . [4.53] 

Two facts concerning these examples are to be noted: first, the field Ep due to the 
polarization has the opposite sign to P, thus to Eo. The effect of the polarization is 
thus to reduce the electric field inside the dielectric (Ep is a depolarizing field)1. The 
second is that our starting assumption of a uniform polarization without justification 
leads to a uniform field E and, consequently, to a uniform polarization. The analysis 
is thus coherent. The solution, that we have found, verifies all the required 
conditions. As the solution is unique, we are sure that it is the solution and that there 
is no other one. 

4.10. Energy and force in dielectrics 

We have seen in section 2.9 that the electrostatic energy of a system of particles 
of charges qi is UE = ½ Σi qi V'(ri), where V'(ri) is the potential produced at the point 
ri by all the charges except qi itself (whose potential at ri is infinite). The 
interpretation of UE as the work required to assemble the charges in their actual 
configuration allows us to admit this expression in the case of dielectrics provided 
that the qi include only the free charges (as the bound charges may not be displaced 
on the macroscopic scale), while the potential is obviously produced by all the 
charges (free and bound). In the case of a continuous distribution of free charges 
with a density qv(r), we have shown that V' may be replaced by the total potential V; 
thus, UE may be written as 

UE = ½ ∫∫∫ dV′ qv(r′) V(r′).  [4.54] 

Using Gauss’s law in the local form ∇.D = qv, we may also write  

UE = ½ ∫∫∫ dV′ [∇′.D(r′)] V(r′) = ½ ∫∫∫ dV′ ∇′.[D(r′) V(r′)] − ½ ∫∫∫ dV′ D(r′).[∇′.V(r′)]. 

The first term may be transformed into the flux of the vector VD through a surface 
S, which contains the system. S may be a sphere of large radius on which V(r′) and 
D(r′) tend to 0. Thus, the first term gives no contribution to UE. Using the relation  
E = −∇V in the second term, we may write 

UE = ½ ∫∫∫ dV′ D(r′).E(r′).  [4.55] 

                              
1  The field of the dielectric Ep cannot be in the direction of E as this would lead to 
spontaneous polarization of the dielectric if it is subject to any small electric disturbance. 
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This relation allows us to express the energy in terms of the fields E and D without
reference to their sources. This means that the energy is localized in the region of the
fields with a volume density

UE,v = ½ D.E. [4.56]

Particularly, if the medium is linear, homogeneous and isotropic with a permittivity
ε, the energy density may be written as

UE, v = ½ ε E2. [4.57]

For instance, in the case of a capacitor, the energy is localized in the dielectric (or
the vacuum) which fills it. We note that, contrary to [4.56], ½qvV in [4.54] cannot be
interpreted as the electric energy density, as it vanishes in a region where there is no
electric charge and V is defined only up to an additive constant. However, if the
potential is taken equal to zero at infinity, the total energy of the whole system has
the same value if we use either expression [4.54] or [4.55].

The electric forces may be calculated by using Coulomb’s law or the fields.
Sometimes, it is practical to use the energy and the method of virtual displacements,
as we have done in the case of the conductors in vacuum. We have seen in section
4.7 that the potential and the field of charges in a dielectric are εr times less intense
than in vacuum. This is true also for the energy of point charges or charged
conductors. Equation [4.57] may also be written in the form UE, v = D2/2ε. As D
depends only on the free charges, if particles or conductors with given charges are
immersed in a dielectric, the energy and the forces are reduced by the factor εr. On
the other hand, if conductors with given potentials are immersed in a dielectric, the
energy and the forces are multiplied by εr.

4.11. Action of an electric field on a polarized medium

We have shown in section 2.6 that a uniform electric field E acts on an electric
dipole p with a moment of force ΓΓ = p × E and that a non-uniform field acts on the
dipole with a force F = (p.∇∇) E. If the dielectric contains Nv dipoles per unit volume
(producing its polarization P = Nvp), it is subject to a moment of force per unit
volume

ΓΓv = Nv p × E = P × E [4.58]

and a force per unit volume

Fv = Nv (p.∇∇) E = (P.∇∇) E. [4.59]



Dielectrics     117 
 

If E is uniform, Fv vanishes, but if E is non-uniform, its component (k) is given 
by 

 (Fv)α = Σβ Pβ ∂βEα = Σ ∂β(PβEα) − Σβ (∂βPβ)Eα. 

The total force that acts on the dielectric is obtained by integrating Fv over the 
volume V of the dielectric. The integral of the first term, which is the divergence of 
the vector (EαP), may be transformed into the flux of this vector outgoing from the 
surface S of the dielectric and the force that acts on the dielectric may be written as 

Fα = ∫∫∫V dV (Fv)α = ∫∫S dS Σβ nβ (Pβ Eα) + ∫∫∫V dV (−Σβ ∂βPβ) Eα  

       = ∫∫S dS (n.P)Eα + ∫∫∫V dV (−∇.P)Eα. 

Using the polarization charge densities q's = (n.P) and q'v = −(∇.P ), we may write 
the force in the vector form 

F = ∫∫S dS q's E + ∫∫∫V dV q'v E.   [4.60] 

This expression means that the force exerted by the field E on a dielectric body is 
the resultant of the forces that it exerts on the surface and volume polarization 
charges. 

 If the dielectric is linear and isotropic, the force density Fv may be related to the 
electrostatic energy density. Indeed, if ε is the permittivity, the force density [4.59] 
may be written as 

Fv = (ε − εo) (E.∇) E. [4.61] 

Writing explicitly the x component, we find 

(Fv )x = (ε − εo)(Ex ∂x + Ey ∂y + Ez ∂z) Ex = (ε−εo)(Ex ∂xEx + Ey ∂xEy + Ez ∂xEz) 
                     = ½ (ε − εo) ∂x E2 

where, to write the second form, we have used the field equation ∇×E = 0, which 
gives ∂xEy = ∂yEx and ∂xEz = ∂zEx. Similar relations may be written for the other 
components of Fv. Thus, we may write the vector relation 

Fv = ½ (ε − εo) ∇(E2) = (1 − εo/ε) ∇UE,v ,   [4.62] 

where we have used equation [4.57] for the energy density. This expression shows 
that the force is independent of the direction of E; it points in the direction of 
increasing E2, i.e. of the increasing energy density. The force that acts on an element 
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of volume dV is dF = Fv dV. To displace it by δr, a force dF′ = −dF must be exerted; 
its work is 

δ dW′ = δr.dF′ = − δr.dF = −δr. Fv dV = −(1 − εo/ε) δr.∇ UE,v dV  
          = −(1 − εo/ε) δUE,v dV  [4.63] 

where δUE,v = δr.∇UE,v is the variation of the energy density in the displacement δr. 

4.12. Electric susceptibility and permittivity 

The polarization P is related to the mean electric dipole moment p of the 
molecules, which is itself proportional to the local field El according to the relation  
p = αEl. Thus, to derive the relation of P to the macroscopic field E, we need the 
relations between E, P, and El. The difference between E and El comes from the 
field of the molecule, whose polarization is analyzed. As the polarized molecule has 
a field in the opposite direction to El, we expect that El is less than E.  

Consider a dielectric of susceptibility χE. By definition, its polarization density is 
related to the macroscopic field E by the relation 

P = εoχEE.                         [4.64] 

The local field El, which acts on a molecule at M, is produced by all bodies except 
the considered molecule. To determine El, we surround this molecule by a small 
sphere that contains no free charge but a large number of polarized molecules 
(Figure 4.8a). We may write El = E(ex)

 + E′(sph), where E(ex) is the field of other 
bodies except the dielectric situated inside the sphere and E′(sph) is the field of the 
molecules of the sphere except the molecule at M. The molecules inside the sphere, 
being at short distance from M, the field E′(sph) cannot be evaluated as the field of 
dipoles (thus, the same as the field of the polarization charges q'v and q's). Its value 
depends on the configuration of the molecules within the sphere. The calculation 
shows that it vanishes for a cubic crystal lattice. We admit that it is equal to zero for 
any crystal and for amorphous dielectrics. On the other hand, E(ex) is equal to the 
field E(cav)(0) at the center of the sphere if it is empty. According to [4.48], it is given 
by E(cav)(0) = E + P/3εo, hence 

El = E + P/3εo.                     [4.65] 

If the medium contains Nv molecules per unit volume with an average dipole 
moment p = αEl, the polarization density may be written as 

P = Nvp = NvαEl = Nvα[E + P/3εo],     hence  P = NvαE/(1 − Nvα/3εo). [4.66] 



Dielectrics     119 
 

As P = εoχEE, the electric susceptibility and the relative permittivity are given by  

χE = 
ov

ov

31 εα−
εα
/

/
N

N
,       and       εr = 1 + χE = 

ov

ov

31
3/21
εα−
εα+

/N
N

. [4.67] 

Conversely, these equations allow the microscopic coefficient α to be determined 
in terms of the macroscopic quantity χE or εr. The index of refraction of a non-
magnetic dielectric is related to εr by the relation n2 = εr. Thus, we find the so-called 
Clausius-Mossotti equation for non-polar substances 
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The polarizability α depends only on the nature of the molecule, not on the physical 
conditions (temperature, pressure, etc.) but the number of molecules Nv per unit 
volume depends on them according to the relation Nv = mvNA/mM, where mv is the 
mass density, mM is the molar mass, and NA is Avogadro’s number. Thus, the 
relation [4.68] may be written as 
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. [4.69] 

αmolar is called molar polarization (although it is not really a polarization). For a 
given substance, αmolar does not depend on physical conditions. Thus, the ratio  
(n2 − 1)/(n2 + 2) is proportional to the mass density.  

The expression [4.69] may be easily compared to experimental values. Consider 
oxygen O2, for instance. As a gas under standard conditions, its mass density is  
mv = 32 × 10−3/2.241 × 10−2 = 1.428 kg/m3. The experiment shows that its 
susceptibility is 5.23 × 10−4. We deduce that αmolar = 3.91 × 10−6 m3/mole. In the 
liquid state, its mass density is 1190 kg/m3. Equation [4.69] gives χE = 0.509 
compared with the experimental value of 0.507.  

If the molecules are well separated, the term Nvα/εo is much smaller than 1 and 
the electric susceptibility becomes χE = αNv/εo. This approximation is equivalent to 
neglecting the interaction of the molecules. It is a good approximation in the case of 
a gas but certainly poor in the case of solids and liquids, particularly if the substance 
is polar. The large interaction between molecules increases the electric 
susceptibility. On the other hand, if the polarizability and Nv are high enough to 
make Nvα/3εo comparable to 1, the electric susceptibility is large and so is the 
polarization, even if the field E is weak. We shall see that this is effectively the case 
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if the temperature is close to a critical value Tc. Under these conditions, the linear 
approximation P = εoχEE is not valid and the preceding analysis does not hold. 

4.13. Variation of polarization with temperature 

Statistical physics enables the analysis of the variation of the polarization of a 
polar substance with temperature. The dielectric body being formed by a large 
number of molecules, the probability for the energy of a molecule to have a value u 
is proportional to Tkue B/− , where kB = 1.380 658 × 10−23 J/K is Boltzmann’s constant 
and T is the absolute temperature. We take the Oz axis in the direction of the local 
field El and specify the orientation of the electric dipole moment po by its angles θ 
and ϕ of spherical coordinates around Oz (Figure 4.10a). The energy of the dipole po 
in the local electric field El is u = poEl − po.El = poEl(1− cos θ). Thus, the probability 
that po points within the solid angle dΩ close to the direction (θ, ϕ) is dΠ = 
η Ω− de Tku B/ , where η is a constant to be determined by the normalization of the 
probability to 1: 

 ∫ Πd  = η ∫
π θ0 d  sin θ ∫

π ϕ2
0 d Tkue B/− = 1. [4.70] 

Using the expression of u, we find 

η = (1/4π) x xe /sh(x),        where   x = poEl/kBT.                     [4.71]  

Because of the rotational symmetry about Oz, the average value of p points 
necessarily in the direction of Oz. Thus we have to calculate only the average value 
of pz = po cos θ; we find 

< pz > = ∫ Πd po cos θ = ηpo∫ dΩ cosθ Tkue B/− = 4πη po( xe− /x2)[x ch(x) – sh(x)].  

Using the expression [4.71] of η, we may write 

< pz > = po L(x),           where L(x) = coth x − 1/x.  [4.72] 

L(x) is called Langevin’s function. Thus, the polarization density is  

P = N < pz > = Npo L(x).      [4.73] 

Its variation as a function of x is illustrated in Figures 4.10b and 4.10c.  



Dielectrics     121 
 

 
(a)              (b)                 (c) 

Figure 4.10. Polarization of a polar substance: a) orientation of the dipole moment po, 
b) polarization for T > Tc, and c) polarization for T < Tc 

− If x is very large (x >> 1), i.e. in the case of a strong field or very low 
temperature, L(x) increases asymptotically to 1 and the polarization density tends 
toward a saturation value Nvpo. At this limit, all the dipoles point in the direction of 
the local field El = E + P/3εo = (E + Nvpo/3εo)ez. Under standard conditions,  
kBT ≈ 4 × 10−21J. Noting that po is of the order of 10−30 C.m for polar molecules and 
Nv is of the order of 1025 molecules/m3, the condition x >> 1 corresponds to an 
exceptional field E >> 4 × 109 V/m. Thus, to have x >> 1, the temperature must be 
very low. 

− If x is very small (x << 1), i.e. in the case of a weak field or high temperature, 
L(x) ≈ x/3, the curve L(x) may be replaced by the tangent Do at the origin. Using 
[4.73], we may write 

P ≈ Nvpox/3 = Nvpo
2El/3kBT = (3εoTc/T)El.                  [4.74] 

Tc = Nvpo
2/9εokB is the critical temperature of the dielectric. Then, the polarizability 

α, the susceptibility and the local field El are given by 
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, [4.75] 

where we have used the equations  [4.67] and [4.65]. If T approaches Tc, the 
polarizability tends toward 3εo/Nv and the electric susceptibility becomes very high 
(it may be as high as 105). In the case of a gas (Nv ≈ 1025 molecules/m3), Tc is of the 
order of 10−2 K, but, in the case of liquids and solids (Nv ≈ 1027 molecules/m3), Tc 
lies between nearly 1 to 100 K. If the temperature is much higher than Tc, the 
susceptibility is given by Debye-Langevin equation 
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           (T >> Tc).                        [4.76] 
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In order to verify the 1/T dependence experimentally, the number Nv of 
molecules per unit volume must be kept constant by varying the pressure 
simultaneously with the temperature. Otherwise, if the pressure is maintained 
constant, the variation of temperature leads to a variation of Nv like 1/T and the 
susceptibility varies effectively like 1/T2 with temperature. 

For intermediary values of x, it is not possible to write the expression of the 
polarization P as a function of E. The relation El = kBTx/po = E + P/3εo (see [4.65]) 
allows the expression of P in terms of x and E. Thus, we have the two equations 

P = Nv poL(x) ,             P = 3εokBTx/po − 3εoE ,    [4.77] 

which may be solved numerically. The two expressions of P versus x may also be 
plotted on the same graph. The first is the Langevin curve (C) and the second is a 
straight line (D) that intercepts the P axis at the point A(0, −3εoE). The coordinates 
of the intersection M of (C) and (D) determine P and x (thus E) at the temperature T. 
If the macroscopic field E is reduced, the line D moves parallel to itself toward the 
origin. If its slope 3εokT/po is larger than the slope Npo/3 of the curve (C) at the 
origin, the points M and A tend toward the origin (Figure 4.10b) and this 
corresponds to P = 0 and E = 0. This occurs effectively if T is higher than the critical 
temperature Tc = Nvpo

2/9εokB. On the other hand, if T < Tc (Figure 4.10c) the point A 
approaches O but M approaches a point Mo. This case corresponds to E = 0 but a 
non-zero polarization. Thus, we obtain a permanent polarization (electret).  

4.14. Nonlinear dielectrics and non-isotropic dielectrics 

Similar to the deformation of a rigid body caused by mechanical forces, the 
polarization P is a response of a dielectric body to electric excitation E. We may 
write the components of P in terms of the components of E as Pα = fα(E1, E2, E3). If 
the field E is not strong, we may expand the Pα as power series of the components of 
the Eβ in the form 

Pα(E) = Pα(0) + Σβ (∂Pα/∂Eβ)|o Eβ + ½ Σ β, γ (∂2Pα/∂Eβ ∂Eγ)|o EβEγ + ...  [4.78] 

In the case on a non-permanent dielectric, the polarization vanishes if E = 0; thus, 
we must have Pα(0) = 0. If the quadratic terms in Eα are negligible and Pα(0) = 0, 
the dielectric is said to be linear. In this case, the components Pα may be written as  

Px = εo [χxx Ex + χxy Ey + χxz Ez ],   
Py = εo [χyx Ex + χyy Ey + χyz Ez ],   
Pz = εo [χzx Ex + χzy Ey + χzz Ez ]. [4.79] 
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The nine constants χαβ are the components of the electric susceptibility tensor of the 
dielectric medium. In general, P and E are not parallel and the polarization P is more 
important if the field E is applied in some directions rather than others. The 
dielectric is then non-isotropic. It is isotropic if the tensor χαβ is diagonal and the 
diagonal elements are equal 

χαβ = 0    if    α ≠ β         and     χ11 = χ22 = χ33 ≡ χ.   [4.80] 

Then, we may write the vector relation 

P = εo χ E.        [4.81] 

In this case, the medium is said to be linear and isotropic. The non-isotropy of some 
crystalline materials underlies some electric and optical properties. 

If a dielectric medium is isotropic but the second order terms (or higher order 
terms) in [4.78] are important, the medium is said to be nonlinear. In this case, D 
points in the direction of E but its magnitude has the form 

D = ε E + γE2 +…  [4.82] 

If a wave of frequency ν~ is incident on this medium, the analysis of the 
propagation shows that waves of frequencies ν~2 , ν~3 , etc., are generated in the 
medium. Effectively a crystal of barium niobate or sodium niobate, for instance, 
transforms an infrared laser beam of wavelength 1060 nm into visible green light of 
wavelength 530 nm. Nonlinear optics is used in modern communication systems.  

In the case of a field E that varies rapidly in time, the dielectric is not polarized 
instantaneously in response to the electric excitation and the polarization does not 
disappear instantaneously if E is turned off. In this case, the polarization at time t 
depends on the field at earlier moments t ′. Mathematically, this is expressed by a 
relation of the form 

P(t) =  εo ∫ ∞−
t dt'  χE(t − t ′) E(t ′). [4.83] 

It is more appropriate in this case to analyze the field E and the response P in terms 
of their Fourier transforms. Then, it may be shown that, if the field has a 
frequency ν~ , the polarization has the same frequency with a relation of the form 

)(ν~P  = εo )(E νχ ~ )(ν~E , [4.84] 
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where the susceptibility )(E νχ ~  is the Fourier transform of χE(t − t ′). The variation 
of χE as a function of ν~  is at the origin of the dispersion of electromagnetic waves 
(particularly light) in dielectrics. 

4.15. Problems 

Effects of dielectrics in capacitors  

P4.1 a) The plane and parallel plates of a capacitor of area S are maintained with a 
difference of potential V and they are separated by a distance d. A dielectric plate of 
thickness b (b < d) and permittivity ε is introduced in the capacitor. Calculate the 
electric field outside and inside the plate, the polarization charge density, and the 
capacitance. b) An empty capacitor with S = 0.1 m2, d = 1 mm is charged at a 
potential V = 350 V. Calculate its capacitance Co and its charge Qo. If this capacitor 
is disconnected and filled with a dielectric, it is found that the potential becomes  
280 V. Calculate the new capacitance C, the relative dielectric constant εr and the 
polarization charge density on the faces of the plates. 

Polarization of dielectrics 

P4.2 Applying Gauss-Ostrogradsky’s theorem, show that the total polarization 
charge induced on the surface and the volume of a dielectric is equal to zero. 
Explain this result by considering the polarization as due to the displacement of 
charges in the molecules. 

Potential and field in dielectrics, electric displacement 

P4.3 A capacitor is formed by a metallic cylinder of radius R1 and length L 
surrounded by a coaxial cylindrical shell of internal radius R2. A dielectric of 
relative permittivity εr fills the cylindrical region between R3 and R4 (such that  
R1 < R3 < R4 < R2). Assuming a potential V, calculate the vectors E, D, and P as well 
as the surface polarization charge densities and volume polarization charge density. 

Equations of the field in dielectrics 

P4.4 A charge q is placed at the center of a ball of radius R of a dielectric of 
permittivity ε. Calculate E and D inside and outside the ball. Determine the vector 
polarization and the polarization charge densities. Discuss the conservation of 
charge. 

Field of permanent dielectrics 

P4.5 A sphere of radius R is polarized with a uniform polarization density P.  
a) Calculate the polarization charge density on its surface. What is the total positive 
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polarization charge +q'? Where is its barycenter? What is the total negative 
polarization charge −q'? Where is its barycenter? What is the electric dipole moment 
of the sphere calculated by using the charges ±q' at their respective barycenters? 
Compare with the electric dipole moment calculated by using P and the volume of 
the sphere. b) Using the polarization density, calculate the potential inside and 
outside the sphere. Deduce the field E and the electric displacement D. Verify the 
continuity of the tangential component of E and the normal component of D. 

P4.6 A cylinder of radius R and length h has a polarization P in the direction of its 
axis. Calculate the fields E and D at a point of its axis inside and outside the 
cylinder. Find the limits of these fields outside the cylinder if h << R and |z| >> R 
and inside it if h << R. Verify that, at large distance (|z| >> R and |z| >> h), the field 
is the same as that of an electric dipole moment p = VP, where V is the volume of the 
cylinder.  

Polarization of a dielectric in an external field 

P4.7 Assume that a sphere of a linear dielectric is placed in an initially uniform field 
Eo. If the susceptibility is low, we may write the polarization and the field as the 
power series: P = po + p1 χE + p2 χE

2 +… and E = eo + e1χE + e2χE
2 +… Determine 

the pi and the ei by using the polarization field Ep = − P/3εo of a polarized sphere. 

P4.8 Show that the field of a sphere of a crystal of cubic lattice is equal to zero at its 
center. 

Energy and force in dielectrics 

P4.9 After charging a capacitor at a potential Vo, it is disconnected and a dielectric 
plate of permittivity ε and nearly the same thickness as the capacitor is introduced. 
Calculate the stored energy before and after the introduction of the plate. Interpret 
the variation of the energy in terms of the work required to introduce the plate 
without variation of its kinetic energy. 

P4.10 A parallel plate capacitor is formed by two square plates of sides L and 
spacing d. It is maintained at a voltage V. A dielectric plate of permittivity ε, width L 
and thickness d’ parallel to the plates is introduced in the capacitor. Let x be the 
length of the plate already introduced in the capacitor. What is the electric energy in 
this position? What is the force F of attraction of the dielectric plate by the capacitor 
plates?  



Chapter 5  

Special Techniques and  
Approximation Methods 

A fundamental problem in the application of electrostatics is to determine the 
potential V, knowing the charge distribution and the dielectric properties of the 
medium. V obeys Poisson’s equation ΔV = − qv/ε, whose solution [2.25] contains an 
arbitrary term Vo(r) that verifies Laplace’s equation ΔVo = 0. In fact, the expression 
[2.25] is not always useful, because we do not know the positions of all the charges 
of the Universe and, even if we know some of them, the solution is often too 
complicated. On the other hand, the positions of charges on the surface of 
conductors and the polarization of dielectrics depend on the electric field that we 
have to determine. Finally, the region, in which we have to determine the potential, 
is often bounded by surfaces whose potential is given or whose total charge is given. 
This imposes boundary conditions on the field and the potential. The linearity of 
electrostatic equations (relating the sources, the field, and the potential) may bring 
some helpful simplifications to the problem. If a first configuration of charges q(1)

i 
produces the field E(1)

 and the potential V(1)
 and a second configuration q(2)

j produces 
the field E(2)

 and the potential V(2), the configuration formed by the superposition of 
charges αq(1)

i + βq(2)
i produces the field αE(1)

 + βE(2)
 and the potential αV(1)

 + βV(2). 

In this chapter, we analyze some mathematical techniques and approximation 
methods that are frequently used in the study of these problems. They include the 
method of images, the solution of Laplace’s equation in Cartesian, spherical and 
cylindrical coordinates and the multipole expansion.  

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
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5.1. Unicity of the solution 

The potential V that we have to determine is a solution of Poisson’s equation 

ΔV(r) = − qv(r)/εo               where   r ∈ V . [5.1] 

This is a partial differential equation. It has an infinity of solutions that depend on 
arbitrary functions. We show in this section that, if the boundary conditions are 
imposed, the solution V is completely determined ant it is unique. Knowing the 
potential, the field and the other physical quantities may be determined. In general, it 
is only possible to write an exact analytic solution for some simple geometrical 
configurations. Approximation methods must be used in the other situations. 

 
 
 
 
 
 
 
 
 
 

  (a)                      (b)                         (c) 

Figure 5.1. a) A set of conductors of given potentials (Dirichlet boundary conditions),  
b) a set of conductors of given total charges (Neumann boundary conditions), and  
c) mixed boundary conditions. The whole set is surrounded by a metallic enclosure  

So whose potential is Vo. If So does not really exist, it may be considered  
as a sphere of infinite radius and potential Vo = 0 

Often, the region V, in which we have to determine the potential and the field, is 
bounded by conductors with unknown charge distributions, but known total charge 
or potential. Thus, we have two types of boundary conditions.   

a) If a boundary conductor (i) is maintained at a given potential, V must verify on 
its surface the Dirichlet condition  

V(r) → Vi                 if  r ∈ Si .  [5.2] 

In particular, the whole system may be bounded by a metallic enclosure So at a 
given potential Vo. An unbounded space is equivalent to a system in a spherical 
enclosure of infinite radius at zero potential. 

V3 V2 Vo V1 

So 

S1 V1

S3 V3 
S2 V2

Vo 

S1 Q1

S2 Q2

S3 Q3

So 

V2 V3 Vo 

S2 V2
S1 Q1 

S3 V3
S4 Q4 

So 
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b) If a boundary conductor (i) was charged previously and then disconnected 
from the battery, the potential on its surface Si is unknown but its total charge Qi is 
known. The field just near Si is normal to the surface with a component  
En = −∂V/∂xn, where dxn is the displacement normal to Si. The surface charge density 
is εoEn and we must have the Neuman boundary condition  

Qi = ∫∫ iS S'd εoEn = −εo ∫∫ iS S'd  ∂V/∂xn = −εo ∫∫ iS S'd  n.∇V(r') . [5.3] 

In general, we may have Dirichlet conditions on all the surfaces (Figure 5.1a), 
Neumann conditions on all the surfaces (Figure 5.1b), or mixed boundary conditions 
(Figure 5.1c). If we have to determine V in different regions separated by interfaces 
S', we determine the solution of Poisson’s equation in each region with the 
appropriate boundary conditions on S'.  

To show the unicity of the solution, let us assume that two solutions V and V' 
exist with the same boundary conditions. The function δV = V − V' is obviously a 
solution of Poisson’s equation with qv = 0 (i.e. Laplace’s equation ΔδV = 0) with the 
boundary conditions δVi = 0 on the Dirichlet-type surfaces and δQi = 0 on the 
Neumann-type surfaces. Thus, δV is the potential in a space that is empty of charges 
and bounded by conductors of zero potential or zero charge. However, in the 
absence of charges, δV can have neither a maximum nor a minimum; thus, δV must 
be constant and the value of this constant is irrelevant. As for the existence of this 
solution, we shall not study this problem from the mathematical point of view; but 
we know that the physical problem always has a solution. In principle, these 
considerations hold for both free and bound charges. Thus, the electrostatic problem 
always has a unique solution even in the presence of dielectrics (see problem 5.1). 

As an application, consider an enclosure at the potential Vo containing no charge. 
The problem consists of finding the solution to Laplace’s equation ΔV = 0 with the 
boundary condition V → Vo on the internal face of the enclosure. It is evident that 
the constant potential V = Vo is a solution to this problem and there is no other 
solution. It corresponds to a field E = 0 in the cavity and a surface charge density on 
the internal face of the enclosure qs = En/ε = 0. Similarly, the potential in the region 
situated outside an enclosure is a solution of Poisson’s equation involving only the 
external charges with the boundary condition V = Vo on the external face of the 
enclosure. The existence and the unicity of the solution imply that V and E outside 
the enclosure are completely independent of the charges inside the enclosure. Thus, 
the enclosure at the potential Vo completely separates the interior from the exterior.  
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5.2. Method of images 

Consider the problem of determining V and E in a region of space V containing 
some charge distribution and bounded by a surface S with some boundary 
conditions on it. The unicity of the solution implies that this problem has exactly the 
same solution in V as any other problem having the same charge in V and the same 
boundary conditions on S. In some cases, it is possible to replace the system that is 
behind S by some fictive charges (called image charges) whose values and positions 
are chosen in such a way that they produce the same boundary conditions on S. The 
total potential produced by the real charges in V and these image charges is the 
solution to our problem in V. The image charges are always outside V (thus, they do 
not produce infinite V or E in V) and they are chosen by analogy to other known 
problems. In this section we study three examples. 

 
       (a)                                     (b)                                                  (c) 

Figure 5.2. Method of images: a) a charge q near the plane face of a conductor at V = 0,  
b) charge q near a metallic sphere, and c) charge q near the interface of two dielectrics 

A) Point charge near the plane face of a conductor at zero potential 

Consider a point charge q placed on the axis Oz at a distance a from the face Oxy 
of a conductor maintained at zero potential (Figure 5.2a). To study this problem we 
recall that two charges +q and −q produce a potential V = 0 on their median plane. 
Thus, the solution of both problems is the same in front of the conductor. The charge 
−q is the image of the real charge q. The potential at M(x, y, z) is  

V(r) = Koq( r
1 − 'r

1 ) = Koq{
222 )(

1
azyx −++

−
222 )(

1
azyx +++

}. [5.4] 

This potential verifies the boundary condition V(x, y, 0) = 0 on the surface of the 
conductor; thus, it is the solution of our problem. The corresponding electric field is 

E(r) = −∇V = Koq{ [ 3r
x − 3'r

x ] ex + [ 3r
y − 3'r

y ] ey +[ 3r
az − − 3'r

az + ] ez }.  [5.5] 

M 

q r 

z 

r' 
 x 

y 

a 

a 
(2) O

−q 

(1) 

y

Q2 

r

x 

(2)
M2 

r1 

M1
(1)

r r2

−d
d2 

OO
−d1 

Q1q

 M(r,θ) 

 r

z
q(a)

O
R

q'(a')
θ



Special Techniques and Approximation Methods     131 

Particularly, on the surface of the conductor, z = 0 and r = r', thus 

E(x, y, 0) = −2Ko 3r
qa ez = − 2Ko 23222 )( /ayx

qa
++

 ez.    [5.6] 

This field is normal to the surface of the conductor, as it should be. It corresponds to 
a surface charge density  

qs = εo(E.n)|z = 0 = εo(E.ey)| z = 0 = − 23222 )(2 /ayx
qa

++π
.  [5.7] 

Integrating this charge density over the plane Oxy, we find −q. The electric field Ec 
produced by the charged conductor is the same as that of the image charge −q. In 
particular, the force exerted by the conductor on the charge q is the same as the force 
exerted by the image charge −q, i.e. F = −(Koq2/4a2) ez. We note that the potential 
and the field in the region (2) inside the conductor (which are equal to zero) are not 
the same as those of the charge q and the charge −q. 

B) Point charge near a metallic sphere 

Consider a point charge q placed on the axis Oz at a distance a from the center O 
of a metallic sphere of radius R and zero potential (Figure 5.2b). To determine the 
potential V at any point M outside the sphere, we try to replace the sphere by a 
charge q', such that the potential of the sphere is zero. By symmetry, q' must be on 
the axis Oz. Let a' be the unknown coordinate of q'. Using spherical coordinates, the 
potential of the charges q and q' is  

V(r) = Ko{ 
θ−+ cos222 arar

q  + 
θ−+ cos222 raar

q

''

'  }.   

V = 0 on the sphere for any θ if q(R2
 + a'2 − 2a'R cos θ)½ = −q'(R2 + a2 − 2aR cos θ)½.   

This equation shows that q' must have an opposite sign to q. Squaring this equation 
and identifying the constant term and the term proportional to cos θ, we obtain the 
equations q2a' = q'2a  and q2(R2 + a'2) = q'2(R2 + a2). This gives q' = − qR/a and  
a' = R2/a. Thus, the potential and the electric field may be written as  

V(r,θ) = Koq {
θ−+ cos2

1
22 arar

− 
θ−+ cos2 2422 arRRar

R }, [5.8] 
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E(r) = −∇V = −
r
V

∂
∂  er − r

1
∂θ
∂V  eθ − ∂ϕ

∂V eϕ  

           = Koq { 2/322 )cos2(
cos

θ−+
θ−

arar
ar

 − Ra 2/32422

2

)cos2(
cos

θ−+
θ−

arRRar
Rar } er  

           + Koqa sin θ{ 2/322 )cos2(
1

θ−+ arar
− 2/32422

3

)cos2( θ−+ arRRar
R }eθ. [5.9] 

In particular, we find on the surface of the sphere (r = R) 

E(R) = Ko R
q  2/322

22

)cos2( θ−+
−
aRaR
aR er.   [5.10] 

E(R) is normal to the sphere, as it should be. The charge density on the sphere is  

qs = εo(E.n) = εo(E.er) = R
q
π4 2/322

22

)cos2( θ−+
−
aRaR
aR .  [5.11] 

The total charge that is induced on the sphere is obtained by integration  

Q = ∫∫S dS qs = R
q
π4 (R2−a2) ∫

π θ0 d R2sin θ
2/322 )cos2(

1
θ−+ aRaR

∫
π φ2

0 d  = −q a
R = q′. 

The force exerted by the sphere on the charge q is the same as the force exerted 
by the image charge, that is 

F = Ko 2)( '
'

aa
qq
−

ez = − Ko )( 22

2

Ra
Raq

−
 ez .   [5.12] 

We note that the potential and the field inside the sphere are not the same as those of 
the charges q and the charge image q'. 

If the sphere is at a potential Vo, we may use the principle of superposition. 
Consider a first state with the sphere at the potential Vo in the absence of the charge 
q. The charge of the sphere is then Q1 = 4πεoRVo, uniformly distributed. The 
potential that it produces at M outside the sphere is V1(r) = Q1/4πεor = VoR/r. 
Consider also a second state with the sphere at zero potential in the presence of the 
charge q; the corresponding potential V2 is [5.8]. The superposition of these two 
states corresponds to a sphere at the potential Vo in the presence of the charge q. 
Thus, the potential at point M(r,θ,φ) is 

V = r
R Vo + Koq{

θ−+ cos2
1

22 arar
− 

θ−+ cos2 2422 arRRar
R }. [5.13] 
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This is the same as the potential produced by the charge q, the fictive charge  
q' = − Rq/a at the distance a' = R2/a and the fictive charge q" = Q1 = 4πεoRVo placed 
at the center of the sphere.  

Let us assume that a charge q is brought near an isolated sphere initially carrying 
a charge Qo. Consider the state (1) of the charge q near the sphere at zero potential. 
The corresponding solution V1 is [5.8] and the sphere has the total charge  
q' = −Rq/a. Consider also the state (2) with the sphere carrying the charge Qo − q' in 
the absence of the charge q. The superposition of these two states corresponds to the 
sphere carrying a charge Qo in the presence of the charge q. The potential is then 

V = r
Ko (Qo+q a

R ) + Koq{
θ−+ cos2

1
22 arar

−
θ−+ cos2 2422 arRRar

R }.  [5.14] 

C) Point charge near the plane interface of two dielectrics 

Let us consider two dielectrics separated by a plane surface Oyz and a charge q at 
x = – d in the medium (1) (Figure 5.2c). The dielectrics become polarized, each 
under the influence of the field of the charge q and also the field of the other 
polarized dielectric. To calculate the field in the medium (2) let us try to replace the 
effect of the dielectric (1) by a point charge Q1 at x = − d1. Similarly, to calculate the 
field in the medium (1), we try to replace the effect of the dielectric (2) by a point 
charge Q2 at x = d2. The system being symmetric about Ox, the charges Q1 and Q2 
should be on this axis and they should not be in the region in which we calculate 
their field in order not to have singular fields. We calculate the fields at the point M 
of the Oxy plane. The fields E1 in medium (1) and E2 in medium (2) are then 

E1(r) = Koq 3r
r  + KoQ2 3

2

2

r
r ,           E2(r) = Koq 3r

r  + KoQ1 3
1

1
r
r   

and the corresponding electric displacements are D1 = ε1E1 and D2 = ε2E2. We now 
impose the boundary conditions on the interface: the tangential component of E (i.e. 
Ey and Ez) and the normal component of D (i.e. Dx) are continuous for x = 0. We 
find the equations 

Q2 (y2 + d2
2)−3/2 = Q1 (y2 + d1

2)−3/2 

ε1 qd (y2 + d2)−3/2 −ε1Q2 d2(y2 + d2
2)−3/2 = ε2 qd (y2 + d2)−3/2 + ε2 Q1d1(y2 + d1

2)−3/2 .  

These equations are satisfied at any point of the interface (i.e. for any y and z) if  
d1 = d2 = d and Q1 = Q2 = q(ε1 − ε2)/(ε1 + ε2). Thus, the electric fields are given by 

E1(r) = Koq{ 3r
r + 3

2

2

r
r

21
21

ε+ε
ε−ε },        E2(r) = Koq

21
12
ε+ε

ε
3r

r .  [5.15] 
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The corresponding electric displacements are D1 = ε1E1 and D2 = ε2E2, while the 
polarizations are P1 = D1 − εoE1 = (ε2 − εo)E1 and P2 = D2 − εoE2 = (ε2 − εo) E2. The 
polarization charge densities on the interface is 

q's = P1x − P2x = (ε1 − εo)E1x − (ε2 − εo) E2x = π2
q

21
21

ε+ε
ε−ε

2/322 )( dy
d

+
.  [5.16] 

The volume polarization charge density is q'v = − ∇.P = (ε − εo) ∇.E = 0 in both 
mediums.  

5.3. Method of analytic functions 

Let f(z) be a function of the complex variable z = x + iy. We may consider f as a 
function of the variables x and y. Separating its real part from its imaginary part, we 
may write 

f(z) ≡ f(x,y) = U(x,y) + iV(x,y).  [5.17] 

If f is a differentiable function of z and if x varies by dx, the variation of f is  

df = ∂xU dx + i ∂xV dx = (df/dz) (∂z/∂x) dx = (df/dz) dx. 

Similarly, if y varies by dy, the variation of f is  

df = ∂yU dy + i ∂yV dy = (df/dz) (∂z/∂y) dy = i (df/dz) dy. 

Comparing the two expressions, we deduce that ∂xU + i ∂xV = −i ∂yU + ∂yV, hence 

∂xU = ∂yV             and               ∂yU = − ∂xV.  [5.18] 

Thus, U and V satisfy the partial differential equations 

∂2
xxU + ∂2

yyU = 0          and            ∂2
xxV + ∂2

yyV = 0.  [5.19] 

Let us consider an electrostatic problem with translational symmetry in the 
direction Oz. This is the case, for instance, for cylindrical conductors parallel to Oz. 
Thus, the potential V does not depend on z and Laplace’s equation reduces to [5.19]. 
Considering V(x, y) as the real part or the imaginary part of an analytic function f(z), 
the normal to the equipotential surface V(x, y) = Constant is in the direction of  

E = − ∇V = −∂xV ex − ∂yV ey = ∂yU ex − ∂xU ey.      [5.20] 
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The last expression shows that E is normal to the vector ∇∇U = ∂xU ex + ∂yU ey,
which is itself normal to the lines U = Constant. Thus, U = Constant represents the
lines of field and V = Constant represents the equipotentials (Figure 5.3a).

Let us consider, for instance, the analytic function f = z2, whose real part and
imaginary part are U = x2 − y2 and V = 2xy. The lines x2 − y2 = Ci (where Ci are
constants), which asymptotically approach the bisectors of the axes, may represent
the equipotential lines, while the hyperbolas 2xy = C'j may represent the lines of
field and vice versa (Figure 5.3b). The components of the electric field are in this
case Ex = −2x and Ey = −2y. The field is weaker near the Ox and Oy axes. This
system, called a quadrupole lens, is used to focalize a beam of charged particles.

(a) (b)

Figure 5.3. Method of analytic functions: a) interpretation of the curves U = Constant and
V = Constant as lines of field and equipotential lines, and b) the example f = z2.

5.4. Method of separation of variables

The electrostatic problem in linear and isotropic mediums consists in finding the
solution of Poisson’s equation ΔV = −qv/ε. We have seen that the solution is

V(r) = Vo(r) + π4
1 ∫∫∫ dV'

'
'
rr
r
−ε
)(vq , [5.21]

where Vo is a solution of Laplace’s equation ΔVo = 0. It may always be chosen to
have V satisfy the imposed boundary conditions.

Contrarily to ordinary differential equations that always have a finite number of
independent solutions, Laplace’s equation, which is a second-order partial
differential equation, has an infinity of independent solutions. Let fn(r) be a set of

V = C'i

U = Cj

O x

yU = Constant

V = Constant

xO

y

E
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solutions. We say that these functions are complete if any function V(r) may be
written as a linear superposition of these functions:

V(r) = Σn an fn(r), [5.22]

where the an are constant coefficients. The functions fn(r) are orthogonal; they may
be normalized to verify the orthonormalization relations

∫∫∫D dV p(r) fm(r) fn(r) = δm n. [5.23]

D is an appropriate domain of integration, p(r) is a characteristic weight function and
δm n are Kronecker symbols such that δm n = 1 if m = n and δm n = 0 if m ≠ n.

Using the orthonormalization relation, we may determine the coefficients am for
any given function V(r). For this, we multiply both sides of [5.22] by p(r) fm(r) and
integrate over the domain D; we find

∫∫∫D dV p(r) fm(r) V(r) = Σn an ∫∫∫D dV p(r) fm(r) f n(r) = Σn an δm n = am. [5.24]

The functions fn(r) play in the “function space” a part similar to that of the
orthonormalized basis in a vector space. The choice of the functions fn(r) is not
unique. In particular, each system of space coordinates corresponds to an adapted set
of functions fn(r).

To determine the function Vo(r), which allows the boundary conditions to be
imposed, we write Vo(r) in the form [5.22] and we determine the coefficients an. The
functions fm(r) that are adapted to a given problem are those that have the same
geometrical symmetries as the studied system (or most of them). In some cases, the
series [5.22] may contain a finite number of terms. In others, the coefficients an
become negligible for high values of n. In some other cases, the series is very slowly
convergent; the method is then inappropriate.

5.5. Laplace’s equation in Cartesian coordinates

In Cartesian coordinates, Laplace’s equation takes the form

∂2xxV + ∂2yyV + ∂2zzV = 0. [5.25]

If we try solutions of the form V = X(x) Y(y) Z(z), equation [5.25] takes the form
X"YZ + XY"Z + XYZ" = 0. Dividing by XYZ, we obtain

X″/X + Y″/Y + Z″/Z = 0. [5.26]
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The terms of this equation are functions of x, y, and z, respectively. The equation 
may be identically satisfied only if each one of these terms is constant:  

X″/X = C1,       Y″/Y = C2,       Z″/Z = C3          with C1 + C2 + C3 = 0.  [5.27] 

Consider one of these equations, X" = C1X, for instance. The form of its solution 
depends on the sign of C1: 

− if C1 > 0, we set C1 = κ2. The general solution has the exponential form  

X = A1
xe κ−  + B1

xeκ ;    [5.28] 

− if C1 < 0, we set C1 = −k2. The general solution is simple harmonic of the form  

X = A1
kxe i− + B1 

kxei ,       or  A1 cos (kx) + B1 sin(kx);   [5.29] 

− if C1 = 0, the general solution is algebraic of the form  

X = A1
 + B1 x.  [5.30] 

The values of the constants Ci, Ai, and Bi are determined by the boundary conditions.  

 
 
 
 
 
 

 

Figure 5.4. A grid parallel to a conducting plate 

As an application, let us consider a grid formed by thin metallic wires lying in 
the Oxy plane, parallel to the x-axis, and separated by a distance d. A plane metallic 
plate P is parallel to the grid at a distance D and it has a potential Vo, while the grid 
has zero potential (Figure 5.4). We assume that the grid and the plate are infinite and 
we determine the potential V(r) everywhere. The potential is independent of x 
(because of the translational symmetry in the direction Ox) and it is a periodic 
function of y with a period d. Thus, it may be written as a linear combination of  
cos(nπy/d) and sin(nπy/d) with coefficients that may depend on z. If the origin is 
taken on one of the wires, the system has a reflection symmetry (y → −y); thus, the 
potential is an even function of y. This excludes the terms sin(nπy/d) and we write 

O

x

 y

z

d

V = Vo

D 
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V(x, y, z) = Σn≥0 Fn(z) cos (nπy/d). This expression verifies Laplace’s equation
ΔV = 0 if Fn" − (nπ/d)2Fn = 0, whose general solution is

Fo = Ao + Bo z , and Fn = An exp(nπz/d) + Bn exp(−nπz/d) for n ≠ 0

The coefficients An and Bn are determined from the boundary conditions:

− on the plate (z = D), we have

V(x,y,D) = Ao + BoD + Σn>0 [An exp(nπD/d) + Bn exp(−nπ D/d)] cos (nπy/d) = Vo.

This condition is satisfied for any y if

Vo = Ao + BoD , and An exp(nπD/d) + Bn exp(−nπD/d) = 0.

− The potential of the wires (z = 0 and y = md) is zero if

0 = Ao + Σn>0 (An + Bn ) cos (nmπ) = Ao +Σn>1 (−1)nm (An + Bn).

This condition is satisfied for any m if Σn>0 (An + Bn) = Σn>0 (−1)n (An + Bn) = – Ao. All
these conditions are satisfied if Ao = 0, Bo = Vo/D and An = Bn = 0 for n ≠ 0. Thus, the
potential is V = Voz/D; it is the same as if the grid was replaced by a continuous
plate.

5.6. Laplace’s equation in spherical coordinates

In spherical coordinates, Laplace’s equation may be written as

ΔV ≡ 2
1
r

[ r∂
∂ (r2 r

V
∂
∂ ) + θsin

1 ( ∂θ
∂ )(sin θ ∂θ

∂V ) +
θ2sin

1
2

2

∂ϕ
∂ V ] = 0. [5.31]

Let us find solutions of the form V(r, θ, ϕ) = F(r) G(θ) H(ϕ). Substituting this
expression into the equation, and multiplying by r2 sin2θ /FGH, we obtain

F
θ2sin
dr
d (r2 dr

dF ) + G
θsin

θd
d (sin θ G') = − H

H ′′ . [5.32]

The left-hand side of this equation is a function of r and θ, while its right-hand side
is a function of ϕ. It is identically satisfied only if both sides are equal to a constant:

F
θ2sin
dr
d (r2 dr

dF ) + G
θsin

θd
d (sin θ G') = C, H

H ′′ = −C. [5.33]
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As ϕ is defined up to 2π, the function H(ϕ) has a single determination only if it is a 
periodic function with period 2π. This requires that C be positive (as, if C were 
negative, H would be exponential). Setting C = m2, the general solution for H is  

Hm(ϕ) = A ϕmei  + B ϕ− me i .   [5.34] 

Effectively, it has a period 2π if m is an integer that we may take as positive or zero 
(a negative value of m is equivalent to exchange the constants A and B). In 
particular, the solution with m = 0 is symmetric about Oz. Replacing C by m2, the 
equation of F and G may be written as  

(1/F)∂r(r2 ∂rF) = − (1/G sin θ) ∂θ(sin θ ∂θG) + m2/ sin2θ.  [5.35] 

The left-hand side of this equation being a function of r and the right-hand side a 
function of θ, the equation is identically satisfied if both sides are equal to a constant 
k. Thus, we find the equations 

(1/G sin θ) ∂θ(sin θ ∂θG) − m2/ sin2θ + k = 0,    (1/F)∂r(r2 ∂rF) = k. [5.36] 

Setting u = cos θ, the equation of G becomes 

(1 − u2) ∂2
uuG(u) − 2u ∂uG(u) + [k − 2

2

1 u
m
−

]G(u) = 0.   [5.37] 

In particular, for m = 0, we find the simpler equation 

(1−u2) ∂2
uuG(u) − 2u ∂uG(u) + k G(u) = 0,   [5.38] 

called the Legendre equation, while [5.37] is the associate Legendre equation. The 
solution of the Legendre equation is singular at the points u = ±1 (and this is 
unacceptable as these points are the limits of the physical domain), unless 

k = l( l +1)          with   l = 0, 1, 2, 3, ...     [5.39] 

For each l, the solution is a polynomial of degree l, called the Legendre polynomial, 
given by Rodrigues’ formula 

Pl(u) = 
!2

1
ll  l

l

du
d  (u2 − 1)l,  [5.40] 

where the normalization factor 1/2ll! is chosen so that Pl(1) = 1 by convention. On 
the other hand, the Legendre polynomials verify the orthogonality relation 

∫−
1
1 du  Pl(u) Pk(u) = 2δl,k/(2l + 1),   [5.41] 
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where the δl,k are Kronecker symbols. The first Legendre polynomials are 

Po = 1,        P1 = u,        P2 = ½(3u2 − 1),        P3 = ½(5u3 − 3u).  [5.42] 

These polynomials are even or odd according to whether l is even or odd 

Pl(−u) = (−1)l Pl(u).      [5.43] 

The Legendre polynomials form a complete set for the functions of u. Thus, any 
function of u may be written as a linear combination of these polynomials: 

f(u) = Σn an Pn(u).    [5.44] 

In the general case m ≠ 0, the associate Legendre equation has the solutions 

)(m uPl  = (−1)m (1 − u2)|m|/2
m

m

du
d  Pl(u),    [5.45] 

called associate Legendre functions. They vanish if m > l. The first functions are 

1
1P  = − (1−u2)½ = − sin θ,                     2

2P  = 3(1− u2) = 3 sin2θ,    
1
2P  = −3u(1−u2)½ = −3 sin θ cos θ,      3

3P = −15(1−u2) (1−u2)½ = −15 sin3θ,  
2

3P =15(1−u2)u =15 sin2θ cos θ,  
1
3P = − (3/2)(5u2−1)(1−u2)½ = − (3/2) sin θ (5 cos2θ −1).   [5.46] 

They verify the relations of symmetry, orthogonality, and differentiation 

)(m uPl −  = (−1)l+m )(m uPl ,  [5.47] 

∫−
1
1 du  )(m uPl )(m uPk  = 12

2
+l )!(

)!(
ml
ml

+
−  δl,k ,   [5.48] 

(1 − u2) ∂u )(m uPl = (l + m) )(m
1 uPl −  − lu )(m uPl .           [5.49] 

We consider now the radial equation in [5.36] with k = l(l + 1); it takes the form  

r2 ∂2
rr F(r) + 2r ∂rF(r) − l(l+1) F = 0.    [5.50] 

This equation has solutions of the form F = rp  if  p(p + 1) = l(l + 1), i.e. p = l or  
p = − l − 1. Thus, the general solution of [5.50] is 

F(r) = Arl + B 1−−lr ,       [5.51] 

where A and B are arbitrary constants.  
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We conclude that any solution of Laplace’s equation in spherical coordinates is a 
superposition of the solutions of the form 

V(r, θ, ϕ) = Σl≥0 Σ0≤m≤l [Al,m
ϕime + Bl,m

ϕ−ime ][Al,mrl
 + Bl,m

1−−lr ] )(cosm θlP .  [5.52] 

We note that we may also write  

V(r, θ, ϕ) = Σl≥0 Σ−l≤m≤l [ Al,m rl
 + Bl,m 1−−lr ] ϕime )(cosm θlP .  [5.53] 

In particular, if the system is symmetric about Oz, V is independent of ϕ; thus, only 
the m = 0 terms contribute to V, hence 

V(r, θ) = Σl≥0 [Alrl
 + Bl

1−−lr ]Pl(cos θ).  [5.54] 

Sometimes, it helps to use the spherical harmonics 

)(m ϕθ,lY  = )!(
)!(

4
12

ml
mll

+
−

π
+  ϕime )(cosm θlP ,     where –l < m < l.  [5.55] 

They verify the relations of complex conjugation, symmetry, and orthogonality 

*)(m ϕθ,lY = (−1)m )(m ϕ−θ− ,lY = )(m ϕ−θ,lY ,   [5.56] 

)2(m π+ϕπ+θ ,lY  = (−1)l )(m ϕθ,lY ,   [5.57] 

∫ ϕπ2
0 d ∫ θπ

0 d  sin θ )(m ϕθ,lY * )(m' ϕθ,'lY  = δl, l’ δm,m' .     [5.58] 

They form a complete set of functions of θ and ϕ: any function of θ and ϕ may be 
written as f(θ, ϕ) = Σl≥0 Σ−l≤m≤l al

m )(m ϕθ,lY . Thus, the general solution of Laplace’s 
equation in spherical coordinates may be written as 

V(r, θ, ϕ) = Σl≥0 Σ−l≤m≤l (Al,mrl
 + Bl,m 1−−lr ) )(m ϕθ,lY .   [5.59] 

The coefficients Al,m and Bl,m may be chosen so that the potential verifies the 
boundary conditions of any electrostatic problem. If V is symmetric about Oz, only 
the m = 0 terms contribute to the series.  

As an application, we consider a metallic sphere of radius R maintained at zero 
potential and placed in an initially uniform field Eo. We determine the potential, the 
field, and the surface charge density on the sphere (Figure 5.5). We take the origin at 
the center of the sphere and Oz in the direction of the field. Oz is an axis of 
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symmetry for the system. Writing the solution in the form [5.54], the condition V = 0 
on the sphere (r = R) is satisfied if V(R, θ) = Σl≥0 [Al Rl + Bl R−l−1] Pl(cos θ) = 0, 
which must be verified for any θ. The Legendre polynomials being linearly 
independent, we must have Al Rl + Bl

1−−lR = 0. This allows us to write the potential 
only with the coefficients Al: V(r, θ) = Σl≥0 Al [rl − R2l+1 1−−lr ] Pl(cos θ). At large 
distance r from O, the field reduces to the uniform field Eo, whose potential is  
V = −Eoz = − Eor cos θ. Thus, we must have in the limit r >> R 

V(r, θ) = Σl≥0 Al [rl − R2l+1 1−−lr ] Pl (cos θ) → −Er cos θ.  

Pl(cos θ) being a polynomial of degree l in cos θ, only the polynomials Po and P1 
contribute to V, as the polynomials P2, P3, etc. give an asymptotic form which 
depends on cos2θ, cos3θ, etc. Thus, using the expressions [5.42], we find 

V = Ao[1 − R/r]Po(cos θ) + A1[r − R3/r2]P1(cos θ) = Ao[1−R/r] + A1[r − R3/r2] cos θ,  

whose limit at large distance is Ao + A1r cos θ. Comparing with the asymptotic form 
−Eor cos θ, we deduce that Ao = 0 and A1 = −Eo. Thus, the potential is given by 

V(r, θ, ϕ) = − Eo[r − R3/r2] cos θ.    [5.60] 

 

 
 
 
 
 

Figure 5.5. Metallic sphere placed in an electric field  

Using the expression of the gradient in spherical coordinates [2.11], we may write  

 E(r) = −∇V = Eo [1 + 2R3/r3] cos θ er + Eo [R3/r3 − 1] sin θ eθ.   [5.61] 

In particular, we find on the sphere E(r) = 3Eo cos θ er, which is normal to the 
sphere. The surface charge density on the sphere is  

qs = εo(E.n) = εo(E.er) = 3εo Eo cos θ.    [5.62] 

Eo 
O z

M

θ
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5.7. Laplace’s equation in cylindrical coordinates  

In cylindrical coordinates, Laplace’s equation takes the form 

∂2
ρρV + ρ

1 ∂ρV + 2
1

ρ
∂2

ϕϕV + ∂2
zzV = 0.  [5.63] 

Let us try solutions of the form V(ρ, ϕ, z) = F(ρ) H(ϕ) Z(z). Substituting this 
expression in the equation and dividing by FHZ, we find the equation 

F″/F + F′/ρF + H″/ρ2H = −Z″/Z.   

The left-hand side is a function of ρ and ϕ, while the right-hand side is a function of 
z. The equation may be identically satisfied only if both sides are equal to a constant 
D. Thus, we have 

Z″/Z = D,           F″/F + F′/ρF + H″/ρ2H = −D. 

Depending on the physical situation, the solution of the equation Z″/Z = D is simple 
harmonic if D is negative, exponential if D is positive or algebraic if D = 0.  

Separating the variables in the equation of F and H, we find 

ρ2F″/F + ρF′/F + Dρ2 = − H″/H. 

The left-hand side is a function of ρ, while the right-hand side is a function of ϕ. The 
equation is identically satisfied if both sides are equal to a constant C. Thus, we have 

H″/H = −C ,        ρ2F″/F + ρF′/F + Dρ2 = C.  

By the same argument that we used in the previous section, we must have C = m2 

where m is an integer and the solution for H is of the form  

Hm(ϕ) = A ϕmei  + B ϕ− me i . 

Replacing C by m2, we find that F(ρ) is a solution of Bessel equation 

F" + ρ
1 F' + (D − 2

2

ρ
m )F = 0.  [5.64]  

a) The case D > 0: 

If D is positive, setting k = D  and u = kρ, equation [5.64] takes the form  

u2 F" + u F' + (u2 − m2) F = 0.   [5.65] 
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It has a solution, called Bessel function of the first kind, which is regular at the origin
and may be expressed as a power series about u = 0

Jm(u) = Σp≥0 )!+(!
)1(
pmp
p− ( 2

u )m + 2p. [5.66]

If m is not equal to an integer, a second solution is obtained by changing m into –m.
The general solution of [5.65] is then F(u) = A Jm(u) + B J−m(u). But, if m is an
integer, J−m(u) is not independent of Jm(u), as J−m(u) = (−1)m Jm(u) for m = 0, 1, 2…
However, equation [5.65] also has a solution called the Bessel function of the second
kind (or Neumann function), which is singular at the origin and given by

Nm(u) =
m

lim
→μ )sin(

)()cos()(
μπ

−μπ μ−μ uJuJ
. [5.67]

Thus, the general solution of [5.65] is

F(u) = Am Jm(u) + Bm Nm(u). [5.68]

Figure 5.6a illustrates the first three Bessel and Neumann functions.

(a) (b)

Figure 5.6. Bessel functions

Here are some useful properties of Bessel functions (Xm stands for Jm or Nm):

– Xm−1(u) + Xm+1(u) = (2m/u) Xm(u), [5.69]
– dXm/du = ½ Xm−1(u) − ½ Xm+1(u) = Xm−1(u) − (m/u) Xm(u), [5.70]
– (d/du)[umXm(u)] = umXm−1(u) = − m−u Xm+1(u), [5.71]

– Jm(u) = ( mi− /2π) ∫
π
π− φd )cosi( φ+φ mue = (−1)m/2π ∫

π φ2
0 d )sini( φ+φ mue . [5.72]
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The asymptotic expressions of functions Jm and Nm are

Jm(u)
0→

→
u !

1
m ( 2

u )m , Jm(u)
∞→

→
u uπ

2 cos(u − mπ/2 − π/4),

Nm≠0 (u)
0→

→
u

− π
− )!1(m ( u

2 )m , Nm≠0 (u)
∞→

→
u uπ

2 sin(u − mπ/2− π/4),

N0(u)
0→

→
u π

2 [ln( 2
u ) + 0.5772...], N0(u)

∞→
→
u uπ

2 sin(u − π/4). [5.73]

The general solution of equation [5.64] is then

F(ρ) = Am Jm (kρ) + BmNm(kρ). [5.74]

We note that, if V is regular at the origin, the functions of the second kind Nm are
excluded. The solution for the function Z(z) is then Z(z) = M kze + N kze− and the
general solution of Poisson’s equation in cylindrical coordinates is a superposition
of the modes specified by the integer m and the constant k:

V(ρ, ϕ, z) = Σm Σk Jm(kρ)[Mm
kze + Nm

kze− ] [Am ϕmei +Bm ϕ− me i ]. [5.75]

The electric field is given by

E = − ∇∇V = − ρ∂
∂V eρ − ρ

1
ϕ∂

∂V eϕ − z
V

∂
∂ ez . [5.76]

To evaluate it, we use equation [5.70] for the derivative of the Bessel functions.

b) The case D < 0:

If D is negative, setting κ = D− and u = κρ, equation [5.64] takes the form

u2F" + u F' − (u2+ n2) F = 0. [5.77]

This is the so-called modified Bessel equation. It has the independent solutions

Im(u) = Σp≥0 )!+(!
1
pmp ( 2

u )m + 2p, Km(u) =
m

lim
→μ 2

π
)sin(

)()(
μπ
− μμ− uJuI

.

[5.78]

Figure 5.6b illustrates the first three functions In and Kn. The asymptotic expressions
of the functions In and Kn at small and large values of u are:
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Im(u) 
0→

→
u

 !
1
m  ( 2

u )m
,                        Im(u) 

∞→
→

u uπ2
1 ue , 

Ko(u) 
0→

→
u

 − ln(u) +...,                    Ko(u) 
∞→

→
u

 u2
π ue− ,  

Km (u) 
0→

→
u

 2
1 (m−1)! ( u

2 )m
 ,          Km(u) 

∞→
→

u
 u2

π ue−   (m ≠ 0).    [5.79]  

Thus, the general solution of equation [5.64] is  

F(ρ) = Am Im(κρ) + Bm Km(κρ).  [5.80] 

If V is regular at the origin, the functions Km are excluded. The solution for the 
function Z(z) is then Z(z) = M cos(κz) + N sin(κz) and the general solution of 
Poisson’s equation is a superposition of the modes specified by the integer m and the 
constant κ: 

V(ρ,ϕ,z) = ΣmΣκ AmIm(κρ)[M cos(κz) + N sin(κz)] [Am
ϕnei +Bm ϕ− ne i ].  [5.81] 

The electric field is evaluated by using equation [5.76] and the derivative of the 
function Im given by 

du
udI )(m  = Im−1(u) − u

m  Im(u) = Im+1(u) + u
m  Im(u).  [5.82]  

5.8. Multipole expansion 

Let us consider the expression [5.21] of the potential of a charge distribution 
qv(r). We write |r − r'| = (r2 + r'2 – 2rr' cos θ)½ where θ is the angle of r and r'. As 
the Legendre polynomials form a complete set for the functions of θ, we may write  

1/|r − r′| = (r′2 − 2rr′u + r2)−½ = Σl≥0 (r′l/rl+1) Pl(u)    (if r′ < r).    [5.83] 

If the charge distribution is localized in a volume V, its potential at large distance 
may be written as  

V(r) = Ko∫∫∫V dV′ qv(r′)/|r − r′| = Ko∫∫∫V dV′ qv(r′)Σl≥0 (r′l/rl+1) Pl(u) 
        = Ko ∫∫∫V dV′ qv(r′){(1/r)Po(u) + (r′/r2) P1(u) + (r′2/r3) P2(u) +…} 
        = Ko ∫∫∫V dV′ qv(r′){1/r  + (r′/r2) u + (r′2/2r3)(3u2 −1) + …}.    [5.84] 
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We may replace u = cos θ par (r.r′)/rr′ and obtain

V(r) = Ko ∫∫∫ dV′ qv(r′){ r
1 + 3r

'r.r + 52
1
r

Σαβ(3x′α x′β − r′2 δαβ) rαrβ} + …}, [5.85]

where α, β = 1, 2 and 3. We may also write

V(r) = Koq/r + Kor.p/r3 + (Ko/2r5) Σαβ Qαβ rα rβ + …, [5.86]

where we have introduced the total charge q, the electric dipole moment p, and the
electric quadrupole moment defined by

q = ∫∫∫ dV′ qv(r′), p = ∫∫∫ dV′ qv(r′)r′ and Qαβ = ∫∫∫V dV′ qv(r')[3x'αx'β −r'2δαβ]. [5.87]

The electric field is then

E = −∇−∇V = KoΣl≥0 (1/rl+3)∫∫∫ dV′ qv(r′) r′l-1{(l+1)Pl(u)r′r + P′l(u)[−rr′ + r(r.r′)/r] },

Eβ = 3
o

r
qK xβ + 5

o

r
K [3 xβ(r.p) − r2pβ] + 7

o

r
K [(5/2)r Qαβ xα xβ − r2 Qαβ xα]. [5.88]

5.9. Other methods

To determine the potential obeying given boundary conditions, some other
methods may be used. We mention the variational method, which is used in several
branches of physics. It is based on the property that the distribution of charge in
electrostatic equilibrium is the one that makes the electrostatic energy

Ue = ½ ∫∫∫ dV ε E2= ½ ∫∫∫ dV (E.D) [5.89]

minimal. Indeed, if it is not, a certain amount of energy is available to displace the
charge and supply them with kinetic energy. Thus, we may look for the solution of
Poisson or Laplace’s equations, which makes the energy minimal. For instance, we
may choose a superposition of the modes with the coefficients as variational
parameters. We calculate the total energy as a function of these parameters and we
determine their values in order to have the minimum energy.

At present, it is possible to use computers to numerically solve physical
problems by using easily programmable methods. The procedure consists in making
all of the physical quantities discrete. In particular, a continuous domain of the
variation of a coordinate x is divided into intervals of width δx. A continuous volume
V is divided into discrete cells of sides δx, δy, and δz in the directions Ox, Oy, and Oz
and the continuous points M(x, y, z) of V are replaced by the discrete nodes Mi,j,k of a
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lattice. To integrate a function f(x) over the interval a < x < b, we divide this interval 
into N parts by the points xo ≡ a, x1, x2,…, xN−1, xN ≡ b and we replace the continuous 
integral by a discrete sum  

∫
b
a dx  f(x) = N

ab −  [½ f(a) + ∑ −=
=

1
1 n )(Nn

n xf + ½f(b)].    [5.90] 

Very often, the problems encountered in the applications of electromagnetism 
have no simple analytic solution. Numerical methods can be used to solve the 
electrostatic problems, that is, to determine the potential obeying Poisson’s equation 
ΔV = − qv/ε and verifying some boundary conditions. The numerical method 
replaces the partial differential equation by a set of algebraic equations relating the 
discrete potentials Vi,j,k to the nodes of the lattice.  

The method of finite differences allows the expression of the derivative in terms 
of the difference of the function at the nodes. Let us consider a function of a single 
variable f(x) taking the discrete values fi ≡ f(xi) and a function of two variables  
V(x, y) taking the discrete values Vi,j ≡ V(xi, yj). We define the successive derivatives 
by the symmetric expressions 

∂f/∂x |i = (fi+1 – fi−1)/2δx,                                       ∂2f/∂x2 |i = (fi+1 – 2fi + fi−1)/δx
2, 

∂V/∂x |i,j = (Vi+1,j – Vi−1,j)/2δx,                           ∂V/∂y |i,j = (Vi,j+1 – Vi,j−1)/2δy, 
∂2V/∂x2 |i,j = (Vi+1,j – 2Vi,j + Vi−1,j)/δx

2,      ∂2V/∂y2 |i,j = (Vi,j+1 – 2Vi,j + Vi,j−1)/δy
2, 

∂2V/∂x∂y |i,j = (Vi+1,j+1 + Vi−1,j−1 − Vi+1,j−1 − Vi−1,j+1)/4δy
 δy, etc.    [5.91] 

The two-dimensional Poisson’s equation ∂2
xxV + ∂2

yyV = η ≡ −qv/ε becomes 

(Vi+1,j – 2Vi,j + Vi−1,j)/δx
2 + (Vi,j+1 – 2Vi,j + Vi,j−1)/δy

2 = ηij.  [5.92] 

In particular, if δx = δy ≡ δ, we find a set of linear algebraic equations 

Vi+1,j  + Vi−1,j + Vi,j+1 + Vi,j−1 – 4Vi,j
 = ηij δ2.       [5.93] 

If a node Mi,j,k is situated on the boundary surface So whose potential is Vo, the 
Dirichlet boundary condition is imposed simply by setting Vi,j,k = Vo. The 
Neumann’s condition E⊥ = −∂V/∂x⊥ = qs/ε on So is more complicated. To simplify, 
we consider the one-dimensional case with a node x1 on So. To calculate the 
derivative of V at x1 by using equations [5.91], we must assume that a fictive node x' 
exists on the other side of So with a potential V' given by (V' − V2) = (qs/ε)1  
(Figure 5.7). Knowing V', we may calculate the second derivative at x1 and write the 
discrete Poisson’s equation at the points situated on the boundaries.  
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Figure 5.7. Making V discrete on a segment and on a surface

The linear equations [5.92] enable the determination of the potential Vi,j,k at all
the nodes. We may solve them by using appropriate computer programs. It is also
possible to use the so-called relaxation method. It consists in writing equation [5.93]
as

Vi,j = ijV – ¼ηij δ2, where ijV = ¼(Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1). [5.94]

We start by taking some reasonable values Vi,j(1) (that we call first approximation),
use [5.94] to calculate the second approximation Vi,j(2) = ijV (1) – ¼ηij δ2, then use
these values and equation [5.94] to calculate the third approximation and so on,
obtaining, by iteration, Vi,j(k+1) = ijV (k) – ¼ηij until the relative difference between
successive iterations [Vi, j(k+1) − ijV (k)]/Vi,j(k) becomes less than a certain value, for
instance, 10−3.

5.10. Problems

P5.1 Consider a volume V containing free charges and dielectrics (assumed linear
and isotropic for simplicity) and bounded by surfaces Si and an enclosure So
(eventually at infinity). To show the unicity of the solution, assume that there are
two solutions V and V'. We set δV = V − V', δE = E − E' and δD = D − D' the
corresponding electric field and displacement. a) What are the boundary conditions
of δV on the conductors whose potential is given and on the conductors whose total
charge is given? b) Consider the vector identity ∇∇(δV δD) = δV (∇∇.δD) + (δD.∇∇δV).
Show Gauss’s equation ∇∇.δD = 0, thus ∇∇(δV δD) = (δD.∇∇δV). Consider the integral
of both sides of the identity on V. Using Gauss-Ostrogradsky’s theorem, show that

∫∫∫V Vd ∇∇(δV δD) = ∫∫ iS
S'd n.δD(r') δV(r') = 0,

where the Si stands for all boundary surfaces including the enclosure. Deduce that

∫∫∫V Vd (δD.∇∇δV) = − ∫∫∫V Vd ε δE2 = 0,

which is impossible unless δE = 0, thus E = E', D = D' and V = V′.

V' V1 V2 V3 VN Vo δ
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Method of images 

P5.2 A horizontal line is formed by a long cylindrical conductor of radius R and it 
lies at height h from the ground (h >> R). Calculate the difference in potential 
between the ground and this conductor. Deduce the capacitance per unit length of 
this line. What is the capacitance of a line formed par two conductors separated by a 
distance d if they lie in a horizontal plane and if they lie in a vertical plane? 

Method of analytic functions 

P5.3 Consider the logarithmic function f(z) = a ln z + b. Using the exponential 
representation z = ρ ϕie , show that f(z) = V + iU = (a ln ρ + b) + iϕ. If the lines  
V = Ci are the equipotential lines, the curves ϕ = C'j are the lines of field (where Ci 
and  C'j are constants). This is the case of a symmetric field about Oz. Consider a 
cylindrical conductor of radius r and zero potential surrounded by a cylindrical shell 
of radius R and potential Vo. Calculate the potential and the field. 

Laplace’s equation in Cartesian coordinates 

P5.4 Use Laplace’s equation and the method of separation of variables to analyze 
the potential and the field of a parallel plate capacitor if one of its plates has zero 
potential and the other a potential Vo. 

 

 
 
 
 

Figure 5.8. Problem 5.5 

P5.5 Determine the potential and the field in a region V bounded by two plane plates 
parallel to Oxy and an electrode in the Oxz plane (Figure 5.8). The plates have large 
dimensions and are separated by a distance d. They have zero potential and the 
electrode has a potential Vo. Is this set up possible?      

Laplace’s equation in spherical coordinates 

P5.6 Consider a linear charge of uniform density qL between the points of 
coordinates −a and +a of the z axis. Using Legendre polynomials, show that the 
potential at large distance may be written in the form 

 V = KoqL(2a/r) [Po(cos θ) + (a2/3r2) P2(cos θ ) + (a4/5r4) P4(cos θ) +...  

O
 x 

  y

z 

V = 0
d 

V = 0

 Vo 
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P5.7 A dielectric ball of radius R and permittivity ε is placed in an initially uniform 
field Eo = Eoez. Using the method of separation of variables, write the general 
solution of Laplace’s equation. Impose the continuity conditions on the ball and 
deduce that the external and the internal potentials are given by 

V(ex) = Ao − Eoz[1 − (ε− εo)R3/(ε + 2εo)r3 ]      and   V(in) = Ao − Eoz[3εo/(ε + 2εo]. 

Deduce that the field is uniform inside the ball and that the polarization is  
P = [3εo(ε − εo)/(ε + 2εo)]Eo, while the external field is the superposition of the field 
Eo and that of an electric dipole PV where V is the volume of the sphere. 



Chapter 6  

Magnetic Field in Vacuum 

The Earth’s magnetic field and the magnetism of some natural ores or iron rods 
that have been stroked by a magnet, have been known in the Middle East and China 
since antiquity. In 1821 Oersted discovered that an electric current produces a 
magnetic field. This effect was studied by Ampère, Biot, Savart, and others. Ampère 
assumed that permanent magnetism is due to microscopic currents in matter; this 
idea is retained in modern physics. Conversely, Faraday discovered in 1831 that a 
variable magnetic field induces an electric current in circuits. In 1888, Maxwell unified 
electricity and magnetism in a single theory, called electromagnetism. Currently, 
magnetism has many technological applications: magnets and electromagnets are 
used in generators and motors, instruments, computers, telecommunications, etc.  

In this chapter, we introduce the concept of magnetic field and we study its 
action on magnetic currents. Then we study the creation of magnetic fields by 
moving charges and currents, magnetic energy and the interactions of circuits. 

6.1. Force exerted by a magnetic field on a moving charge 

The magnetic field is defined by its action on a charged particle in motion 
(Figure 6.1a in the case of positive charge). The experiment shows that this force is 
given by: 

FM = q v × B.    [6.1]  

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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B is the magnetic field or, more precisely, the magnetic induction field. The 
magnetic force FM vanishes if the particle is at rest or if its velocity is oriented in the 
direction of the field B. The SI unit of magnetic field is the kg/s2. A called tesla (T). 

The magnetic force always being orthogonal to the charged particle velocity, the 
work of this force dW = FM.dr = FM.v dt is equal to zero. If the particle is subject to 
no other forces, its kinetic energy remains constant. Thus, its speed remains constant 
but the direction of its velocity changes. Conversely, to displace a charged particle 
in a field B without modification of its kinetic energy, an external agent must exert a 
force F′ = −FM = −q(v × B), but no work is required for this displacement. Thus, it is 
not possible to define a potential energy of the particle in the field B. In other words, 
this force is not conservative, contrarily to the electric force.  

 
            (a)                                   (b)                                                     (c) 

Figure 6.1. a) Action of a magnetic field on a positive charge. b) Thomson experiment.  
c) Hall effect in the case of negative charge carrier 

If a particle of charge q moves with a velocity v in both an electric field E and a 
magnetic field B, it is subject to the Lorentz force, 

F = q (E + v × B).   [6.2] 

In a famous experiment in 1897, Thomson observed the action of a known magnetic 
field B and an adjustable orthogonal electric field E on a focalized cathode ray 
(Figure 6.1b). As the beam was deviated by either field acting separately, it is 
formed by charged particles. Turning on both fields, the beam suffers no deviation if 
E + v × B = 0, thus v = E/B = meV /2 , where V is the accelerating potential of the 

particles. This experiment allowed Thomson to determine the ratio e/m for electrons.  

The Lorentz force manifests itself in the Hall effect. In a famous experiment in 
1879, Hall showed (before the discovery of the electron) that the charge carriers in 
metallic conductors are negatively charged particles. Figure 6.1c illustrates the 
motion of charges in a conducting strip of width d and thickness b, carrying a 
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current I and placed in a magnetic field B orthogonal to the strip. If the charges are
negative, the magnetic force pushes the charges and makes them accumulate on the
lateral face S1 of the strip, leaving the other face S2 positively charged. These
surface charges produce a Hall electric field EH and the flow of charge becomes
stationary if EH + v × B = 0. The surface S2 is then at a higher potential than S1.
This is what Hall observed. In the case of positive charge carriers, the directions of
FE, FB and EH would be reversed and S2 would be at a lower potential than S1.
Actually, we know that the charge carriers in metals are the free electrons of charge
−e. The Hall field EH = −v × B produces a measurable Hall potential VH = d|v×B| =
vBd. The current density is j = I/bd = eNvv, where Nv is the number of free electrons
per unit volume. A measurement of VH enables us to determine v, and hence, the
number of conduction electrons per unit volume Nv = IB/beVH. For instance, in the
case of a strip of silver with d = 1 cm, b = 0.1 mm, carrying an intensity I = 10 A in
a field B = 1 T, the Hall potential is of the order of 10 µV. This corresponds to Nv =
6 × 1022 electrons/cm3 (about 1 free electron per atom). In the case of polyvalent
metals and magnetic metals (iron, nickel, etc.) and in the case of semiconductors, it
is not possible to give a simple interpretation of the Hall effect by using a simple
classical model with electrons as charge carriers. Quantum models are required to
give reasonable agreement with experiment.

The Hall effect is an important means of investigation of the properties of solid
conductors and semiconductors. In the case of semiconductors, we have a
superposition of the Hall effect of electrons and that of positive holes. The number
of charge carriers is much smaller than in metals; thus, the Hall effect is more
important (although it is somehow attenuated by the weakness of the current
density). The Hall potential VH being proportional to the field B, the Hall effect in a
strip of semiconductor may be used to measure the magnetic field.

6.2. Force exerted by a magnetic field on a current, Laplace’s force

The force that a field B exerts on the conduction charges FM = Σi qi(vi × B) is
transmitted to the conductor if it is rigid. To simplify, we assume that the current is
due to the displacement of Nv particles per unit volume, of charge q and average
velocity v. An element of volume dV of the conductor contains NvdV particles. Thus,
it is subject to a force dFM = q NvdV v × B = (j ×B) dV , where j = qNvv is the current
density (see section 3.6). The force that acts on the unit volume of the conductor is

FM,v = j × B. [6.3]

Consider an element dL of a thin conductor of section S and volume dV = S dL
(Figure 6.2a). The force exerted by the field B on dL is dFM = dV FM,v = dLS(j × B).
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As j is oriented in the direction of dL, we may write dL j = j dL. The intensity being 
I = Sj, the force may be written as 

dFM = I dL × B.               [6.4] 

This is Laplace’s law for the force on dL. This force is orthogonal to dL and B. 

 
            (a)                          (b)                                    (c)                                          (d) 

Figure 6.2. Force exerted by a field B: a) on an element dL of a circuit, and b) on a finite 
circuit. c) Absolute measurement of B using a Cotton’s balance. d) Electromagnetic pump  

The resultant force exerted by a field B on a finite circuit C is the integral of 
Laplace’s force over all the elements dr of the circuit, we find: 

FM = ∫C dFM = I ∫C dr × B,     [6.5] 

where B is the field acting on dr at each point of C. If B is uniform, we may write  

FM = I {∫C dr} × B = I (L × B),     [6.6] 

where L = ∫C dr = lim Σi dri is the space vector that joins the origin P of C to its end 
Q (Figure 6.2b). This relation shows that FM does not depend on the shape of the 
circuit between P and Q; it is the same as the force acting on a rectilinear circuit joining 
P to Q. If a circuit C is closed and placed in a uniform field, ∫C dr = lim Σi dri = 0 and 
FM = 0. Thus, a uniform B field exerts no resultant force on a closed circuit.  

Cotton’s balance (Figure 6.2c) provides an absolute measurement of a magnetic 
field B by measuring the force that it exerts on a circuit MNPQ of n turns 
transporting a known current I. This force is measured by using a balance. The 
forces exerted on the vertical parts MN and PQ cancel and the force acting on the 
part NP, equal to nLIB, is counterbalanced by the weight mg. We deduce that  
B = mg/nLI.  
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The electromagnetic pump (Figure 6.2d) is another application of the magnetic 
force on currents. Consider a conducting liquid flowing in a rectangular pipe whose 
lateral faces are two electrodes, between them an electric current is established in the 
liquid in the direction Oy over a distance d. A magnetic field B pointing in the 
direction Oz acts on the liquid with a force IBd. This system may be used in a 
nuclear reactor to pump liquid sodium that is used to transfer the heat generated in 
the core of the reactor.  

6.3. Magnetic flux and vector potential 

The flux of B through a surface S is  

Φ = ∫∫S dS n.B.   [6.7] 

The magnetic flux plays an important part in the analysis of magnetic forces and 
energy and in the phenomena of induction. One of the important properties of the 
magnetic flux is that it is conservative, i.e. the flux through a closed surface is zero 

∫∫S dS n.B = 0.  [6.8] 

  
 
 
 
 
 
 

                   (a)                                                       (b)                                               (c) 

Figure 6.3. Conservation of the flux of B: a) through a closed surface S, b) through a tube of 
field, and c) the flux of B is the circulation of A on C 

The magnetic flux may be visualized as proportional to the number of the lines 
of field, which pass through the surface. The conservation of flux means that any 
closed surface S may be divided into two parts (Figure 6.3a): S1, where B is ingoing 
(thus Φ1 < 0) and S2, where B is outgoing (thus Φ2 > 0). We must have Φ1 + Φ2 = 0. 
In other words, each field line entering S, leaves it. Contrary to the electric field, the 
magnetic field cannot diverge from “positive magnetic charges” or converge toward 
“negative magnetic charges”. In other words, there are no magnetic charges. If we 
consider a field tube, i.e. having its lateral surface tangent to the field, and ending by 
two sections S1 and S2 normal to B (Figure 6.3b). The magnetic fluxes Φ1 and Φ2 

BB

B

n

n
n

B

S2

S1

S3

n

B 

B 

B 

n 
n 

n n 

n 

S1 
C 

S2 

A
B 

B 

C

n1 

n2 

S1 
S2 

A 

B



158     Electromagnetism 

through these sections are positive and the flux through the lateral surface is equal to 
zero. As Φ1 is inward while Φ2 is outward, the total outward flux through the tube is 
Φ = Φ2 − Φ1 and this must be zero. We deduce that B1S1 = B2S; thus, if S2 < S1, we 
must have B2 > B1. 

Using Gauss-Ostrogradsky’s theorem, we may transform the flux through a 
closed surface into the integral of the divergence of B over the enclosed volume V, 
thus ∫∫∫V dV ∇.B = 0 for any V and we have the equation: 

∇.B = 0.  [6.9] 

Similar to Gauss’s law, this is a fundamental equation of electromagnetism, which 
remains valid even in the case of time-dependent phenomena. The analogy with 
Gauss’s law indicates that there are no magnetic charges. This fact is confirmed 
experimentally.  

The SI unit of magnetic flux is the kg.m2/s2.A or N.m/A called weber (Wb) and 
the SI unit of magnetic field is the Wb/m2, called also tesla. The gauss  
(1 G = 10−4 T) is another unit of magnetic field that is frequently used. The Earth’s 
field is about 0.5 G, the fields produced by electric circuits are of the order of the 
gauss and it may reach 10 to 20 kG near the poles of an iron-filled electromagnet 
and 100 kG for a superconducting magnet. 

Equation ∇.B = 0 implies that B(r) may be written as the curl of a vector 
potential A(r) (see section A.7 of the appendix A) 

B = ∇ × A,   [6.10] 

It should be noted that the gradient of an arbitrary function f may be added to A 

A(r) → A′(r) = A(r) + ∇ f(r)    [6.11] 

without changing the field B, because of the identity ∇×(∇f) = 0. The transformation 
[6.11] is called a gauge transformation. It is always possible to find a gauge function 
f such that A has zero divergence in the case of static phenomena 

∇.A = 0.   [6.12] 

Using Stokes’ theorem, it is possible to express the flux of the field B through an 
open surface S as the circulation of A on the contour C bounding S (Figure 6.3c) 

Φ = ∫∫S dS (n.B) = ∫∫S dS n.(∇ × A) = ∫C dr.A.   [6.13] 

This result explains why the flux of B depends only on C and not on the surface S. 
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6.4. Magnetic field of particles and currents, Biot-Savart’s law 

A particle of charge q, position r′, and velocity v (Figure 6.4a) produces at each 
point r a magnetic field 

B(r) = 
π

μ
4

o
3

)(
R

q Rv × ,               where R = r − r′.  [6.14] 

R is the relative position of the point, where B is evaluated, measured from the 
position of the particle. It may be shown that the corresponding vector potential is 

A(r) = 
π

μ
4

o  R
qv .              [6.15] 

 
          (a)                              (b)                                (c)                                      (d) 

Figure 6.4. Magnetic field and vector potential a) of a charged particle of velocity v, b) of a 
circuit element dL (Biot-Savart’s law), c) of a finite thin circuit, and d) of a circular loop 

The expression [6.14], which is assumed here without proof, is verified by all its 
consequences. We note that it is postulated for a particle of constant velocity. This is 
the case for charge carriers in a conductor if the current is constant but not for a free 
particle (as it emits radiation and hence energy, momentum, etc.). The constant µo is 
the magnetic permeability of vacuum. Its numerical SI value is: 

µo = 4π × 10−7 kg.m.A−2.s−2.  [6.16] 

As we shall see later, electromagnetic theory predicts that the permittivity of 
vacuum εo and its magnetic permeability µo are related to the speed of light in 
vacuum c by the relation εoµo = 1/c2. The SI unit of intensity (the ampere) is defined 
in relation to the magnetic interaction of two conductors (see section 6.11C), which 
is proportional to µo and the ampere is chosen so that µo is given by [6.16]. As the 
meter is actually defined so that c is exactly 299 792 458 m/s, the result is that  
εo = 1/c2µo

 = 8.854 187 82 × 10−12 A2.s4 /m3 kg. 
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The magnetic field obeys the superposition principle: the field and the vector 
potential produced by several systems (1), (2) … are the vector sums ΣiBi and ΣiAi 
of the fields and the vector potentials of the individual systems. For instance, the 
field and vector potential produced at r by the particles of charges qi at points ri are 

B(r) = 
π

μ
4

o Σi 3
i

iii )(
R

q Rv × ,       A(r) =
π

μ
4

o Σi 3
i

ii
R
q v ,  where Ri = r − ri.   [6.17] 

Consider now an element of a thin circuit of length dL and section S carrying a 
current I (Figure 6.4b). To simplify, we assume that the charge carriers have equal 
charge q and velocity v. The volume of the element being dV = S dL, the number of 
conduction charges that it contains is dN = Nv S dL, where Nv is the number of 
charges per unit volume. If dL is small compared to the distance R to the point r, 
where the field is evaluated, the distances Ri from the charges to the point r and 
hence their fields Bi(r) are equal. Thus, the field produced by the element dL at r is 
dB(r) = (µo/4π) qNvS dL (v × R)/R3. Noting that the current density is j = Nvqv, the 
current intensity is I = jS and j dL = j dL (as j is the direction of dL), we get 

dB(r) = π
μ
4

o I 3R
d RL × ,         R ≡ r − r′.    [6.18] 

This result is known as Biot-Savart’s law. It expresses the field produced at r by the 
element dL in terms of macroscopic quantities (making no reference to the 
conduction particles). This elementary field decreases as 1/R2. It may be used to 
evaluate the field of a finite circuit C by integration. As I is the same at any point of 
the circuit, we find the field and the vector potential (Figure 6.4c).  

B(r) = ∫C dB = 
π

μ
4

o I ∫C 3R
d Rr ×'

,      A(r) =
π

μ
4

o I ∫C R
d 'r

    R ≡ r − r′ .  [6.19] 

In the case of currents distributed in a volume V with a volume current density 
j(r′) or on a surface S with a current density js(r′), we decompose V and S into 
elements of volume dV′ or of area dS′ and we get by integration 

B(r) = 
π

μ
4

o  ∫∫∫V dV′ 3

)(
R

Rrj ×'
,      A(r) =

π
μ
4

o ∫∫∫V dV'
R

)( 'rj ,  

B(r) = 
π

μ
4

o  ∫∫S dS ′ 3
s )(

R
Rrj ×'

,      A(r) =
π

μ
4

o ∫∫S dS R
)(s 'rj

.   [6.20] 

We note that a surface current density js(r') may be considered as a volume 
current density j(r') = js(r') δ(z' − zn), where zn is the normal coordinate to the 
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surface, and a line current I parallel to Oz corresponds to jv(r') = I δ(x'−xn)δ(y'−yn)ez, 
where xn and yn are the x and y coordinates to the current carrying line. 

As an application, consider a circular loop C of radius a and current I, which we 
take in the plane Oxy with its center at O (Figure 6.4d). We evaluate the field B at a 
point M on the axis Oz at a distance OM = z. Using Biot-Savart’s law [6.18], an 
element dL at P produces at M a field dB that is orthogonal to dL and R ≡ PM . 
Thus dB is in the azimuthal plane OMP and its magnitude is dB = (µoI/4π)(dL/R2). 
The elements dL of the loop being at the same distance R = (a2 + z2)½ to M, two 
elements dL1

 and dL2 symmetric with respect to O produce two fields dB1 and dB2 
that are symmetric with respect to Oz. Their components perpendicular to Oz cancel 
out. Adding their components along Oz, we get 

B = ez ∫C dBz = ez ∫C dB cos θ = ez ∫C dB R
a = 3

o

4 R
Ia

π
μ ez ∫C dL = 3

2
o

2R
Iaμ ez.  [6.21] 

6.5. Magnetic moment  

A) Moment of the magnetic forces on a circuit 

A magnetic field B may exert a moment of force on a closed circuit carrying a 
current I. This moment may provoke a rotation of the circuit. Consider for instance a 
rectangular circuit MNPQ free to rotate about the axis Oz that joins the mid points of 
MP and NQ (Figure 6.5a). The forces F1 and F2 that a uniform field B parallel to Ox 
exerts on the sides MQ and PN are opposite and oriented in the direction of Oz. 
Thus, they produce no moment with respect to O. The sides MN and PQ of length L 
are orthogonal to B. They are subject to opposite forces F3 = −ILB ey and F4 =  
ILB ey. Let n be the unit vector normal to the circuit and oriented according to the 
right-hand rule and let θ be the angle that n forms with B measured algebraically 
about Oz. The total moment of the magnetic forces with respect to O is the vector 
sum of the moments of F3 and F4:  

ΓM = − LL′IB sin θ ez  = − SIB sin θ ez ,                      (uniform field)   [6.22] 

where S = LL′ is the area of the circuit. We define the magnetic moment of the 
circuit as the vector 

M = IS n.      [6.23] 
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It has a magnitude IS and it is normal to the circuit and oriented according to the 
right-hand rule with the circuit oriented in the direction of the current. Thus, the 
moment of the magnetic forces may be written as  

ΓM = M × B                 (uniform field).   [6.24] 

This expression is similar to the moment of the electric forces ΓE = p × E exerted by 
an electric field on an electric dipole moment p. It is valid if the dimensions of the 
circuit are small enough for the field B to be considered as constant.  

 

                (a)                                             (b)                                               (c) 

Figure 6.5. a) Moment of the magnetic forces exerted by a uniform field B on a rectangular 
circuit, and b) magnetic moment of a circuit, and c) field lines of a magnetic dipole  

A large circuit C may be considered as a juxtaposition of infinitesimal small 
circuits Ci as in Figure 6.5b. The coinciding sides carry opposite currents and the 
magnetic force on them cancel; thus, we are left with the magnetic force on the 
circuit C. Also, the magnetic moment ΓM on C is the vector sum of the magnetic 
moments Σi I dSi ni×Bi on these infinitesimal circuits and, in the limit of 
infinitesimal dSi, it may be written as the integral 

ΓM = I ∫∫S dS′ n(r′) × B(r′).  [6.25] 

S is a surface bounded by the circuit C, n(r′) is the unit vector normal to S and B(r′) 
is the field at the running point r′ of S.    

It is only in the case of a uniform magnetic field B over the surface S that the 
expression [6.25] may be written as 

ΓM = M × B,         where  M = I ∫∫S dS′ n(r′)     (uniform field).  [6.26] 
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M is the magnetic moment of the circuit C. We note that the integral may be 
evaluated over any surface S bounded by C. Particularly, if the circuit is planar, we 
may take for S the plane surface; then, n is the same at all the points of S and  

M = SI n.    [6.27] 

We note also that, if the circuit is formed by N turns, M must be multiplied by N. 
The expressions [6.26] may be generalized to a distribution of current with density j 
in a volume V; its magnetic moment is 

M = ½ ∫∫∫V dV′ r′ × j(r′).       [6.28] 

Electric motors use the moment of the magnetic forces acting on a coil but in a 
radial magnetic field. Galvanometers also use the moment of the magnetic forces 
acting on a coil, which is proportional to the current intensity. The magnetic moment 
is M = NSI n and the torque exerted by a radial field B is NSIB. If, in addition, the 
coil is subject to the restoring torque Γ′ = −Cθ of a spiral spring, the equilibrium 
condition is NSIB = Cθ. Thus, the current intensity is proportional to the rotation 
angle of the coil.  

B) Field of a small circuit at large distance 

The field of the circular loop of Figure 6.4d at a large distance z is 

B = (µoM /2πz3),        where  M = IS ez= πa2I ez .                  [6.29] 

To calculate the field off the axis Oz, as the system has rotation symmetry about Oz, 
we evaluate B at points M in the plane Oyz for instance. We specify M by its 
spherical coordinates (r, θ, π/2) and the point P of the loop by its polar coordinates 
(a, ϕ) in the Oxy plane. The element dL corresponds to a variation dϕ, hence  

OP  = a cos ϕ ex + a sin ϕ ey,   OM  = r sin θ ey + r cos θ ez, 
R = PM  = − a cos ϕ ex + (r sin θ −a sin ϕ) ey + r cos θ ez,   
R = PM = [ a2 + r2 − 2 ar sin θ sin ϕ]½ ,    dL = a(− sin ϕ ex + cos ϕ ey) dϕ. 

Thus, using Biot-Savart’s law, the field at M may be written as 

B =
π

μ
4

o I
∫C 3R

d RL×
 =

π
μ
4

o Ia ∫
π ϕ2

0 3R
d [r cosθ (cosϕ ex + sinϕ ey) + (a − r sinθ sinϕ) ez]. 

This integral cannot be expressed with simple functions. If we are interested only in 
the field at large distance (r >> a), we may write to first order in a/R  

R ≅ r [ 1 − (a/r) sin θ sin ϕ ],            1/R3 = (1/r3) [1 + 3 (a/r) sin θ sin ϕ ], 
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B ≅ (µoIa2/4r3) [ (3 sin θ cos θ ) ey + (2 − 3 sin2θ) ez ] .    [6.30] 

We may also write B in the vector form  

B ≅ 5
o

4 rπ
μ [3(M.r) r − r2 M ],       where  M = IS ez.   [6.31] 

At the same approximation, the expression [6.19] gives the vector potential at r  

A(r) = (µoI /4π)∫C dr'/R  

  = (µoIa/4πr) ∫
π ϕ2

0 'd [−sinϕ′ ex + cos ϕ′ ey][1 + (a/r) cosϕ cosϕ′ + (a/r) sinϕ sinϕ′] 

  = (µoIa2/4r2) eϕ = (µoM/4πr2) eϕ = (µo/4π) (M × r)/r3. [6.32] 

The expression [6.31] is similar to the expression [2.38] of the electric field E of an 
electric dipole p. We say that, at large distances, the loop is equivalent to a magnetic 
moment M. This result is valid for any circuit C: its field B and vector potential A at 
large distances are given by [6.31] and [6.32] with a magnetic moment 

M = I ∫∫S dS n.                                          [6.33] 

The field lines of a magnetic dipole at large distances are illustrated in Figure 6.5c. 

C) Earth’s magnetic field 

Like many celestial bodies, the Earth has its own magnetic field. The field 
outside the Earth is almost the same as that of a large magnet NS placed at the center 
of the Earth. The south pole of this magnet is in the northern hemisphere while its 
north pole is in the southern hemisphere. The geographic poles are the points where 
the rotation axis of the Earth intercepts its surface. The magnetic axis makes an 
angle of approximately 11.5° with the rotation axis (Figure 6.6). For this reason, a 
compass will not align itself exactly due north but toward a point situated at about 
1600 km from the geographic North Pole and, in fact, this is the magnetic south pole 
of the Earth. Aside from extremely small daily and annual variations, this angle 
undergoes important variations with a period of 960 years and has even reversed 
many times in the Earth’s geological history. It is widely assumed that the Earth’s 
magnetic field is generated by the motion of the liquid metallic core of the Earth. 

The Earth’s magnetic field is not horizontal except at the equator; it makes an 
angle, α, called inclination, with the horizontal plane. This angle and the magnitude 
of the field depend on the geographic location. At a latitude of 45° north,  
B ≅ 5.8 × 10−5 T and α ≅ 73°. Thus, the vertical component is 5.5 × 10−5 T downward 
and the horizontal component is 1.7 × 10−5 T, and it makes an angle called 
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declination, which is approximately 15° to the west, with the geographical meridian.
The Earth’s magnetic field extends thousands of kilometers in altitude. Charged
cosmic rays (mostly from the Sun) are trapped by this magnetic field (see section
14.4), they spiral around the field and form Van Allen radiation belts surrounding
the planet. When these particles collide with air molecules, the latter emit light in a
wonderful display of colors called the aurora borealis and aurora australis at more
than 60° latitude north and south.

Figure 6.6. Earth’s magnetic field and the equivalent magnet. The magnetic south pole and
north pole are close to the geographic North and South Poles respectively.

The field extends to thousands of kilometers in altitude and is
almost symmetrical about the Earth’s magnetic axis

6.6. Symmetries of the magnetic field

As the source of the magnetic field is the electric current, a symmetry of the
distribution of currents implies the same symmetry for the field B and the vector
potential A. To analyze B and A, it is practical to use coordinates that are convenient
to impose this symmetry. As in the case of the electric field (section 2.5), if the
configuration of currents has a translational symmetry in a direction D, it is
convenient to have one of the axes of coordinates, Oz for instance, parallel to D and
to use Cartesian or cylindrical coordinates about Oz. The components of B and A
will not depend on z. If the currents have a rotational symmetry about an axis, it is
convenient to use cylindrical or spherical coordinates about this axis taken as Oz.
The components Bρ, Bϕ, and Bz (or Br, Bθ, and Bϕ) will not depend on the angle ϕ.

Consider now the reflections. The Lorentz force F = q(E + v × B) being a true
vector and q a true scalar, the cross product v × B is a true vector. As v is a true
vector, B must be a pseudo-vector (see section 1.7b) and, as the vector operator ∇∇ is
a true vector, the relation B = ∇∇ × A shows that A is a true vector, like j. This means
that, in reflections, A transforms like r or j, while B transforms like r or j with an
additional change of sign. As A is defined up to a gauge transformation [6.11], the
gauge function f(r, t) must be a true scalar function.

Earth’s rotation axis
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Magnetic north pole NM

Geographic north pole NG
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− If the configuration of currents is symmetric in the reflection with respect to 
the plane Oxy for instance, it is convenient to use Cartesian or cylindrical 
coordinates about Oz. Then, B and A transform according to: 

B//(x, y, z) = −B// (x, y, −z)    and     Bz(x, y, z) = Bz(x, y, −z), 
A//(x, y, z) = A// (x, y, −z)      and     Az(x, y, z) = −Az(x, y, −z).    [6.34] 

Particularly, at the points Mo of Oxy, we find B//(x, y, 0) = 0 and Az(x, y, 0) = 0. 

More generally, if the distribution of currents is symmetric with respect to a 
plane Π (Figure 6.7a), i.e. j//(M) = j//(M′) and j⊥(M) = −j⊥(M′) at points M and M′ 
symmetric with respect to Π, the field B is antisymmetric and A is symmetric, hence 

B//(M) = −B//(M ′) ,    and     B⊥(M) = B⊥(M ′), 
A//(M) = A//(M ′) ,      and     A⊥(M) = −A⊥(M ′).            [6.35] 

Particularly, at the points Mo of Π, we must have B//(Mo) = −B//(Mo) and A⊥(Mo) = 
−A⊥(M o), thus B//(Mo) = 0 and A⊥(Mo) = 0.  

 
(a)                                                                    (b) 

Figure 6.7. Field of a distribution of currents: a) symmetric with  
respect to a plane Π,  and b) antisymmetric with respect to Π 

− If the configuration of currents is antisymmetric in the reflection with respect 
to the plane Oxy for instance, B and A transform according to: 

B//(x, y, z) = B// (x, y, −z)      and     Bz(x, y, z) = −Bz(x, y, −z),  
A//(x, y, z) = −A// (x, y, −z)   and     Az(x, y, z) = Az(x, y, −z).        [6.36] 

We deduce that Bz(x, y, 0) = 0 and we may take A//(x, y, z) = 0 in some gauges. More 
generally, if the distribution of current is antisymmetric with respect to a plane 
Π (Figure 6.7b), that is j//(M) = −j//(M′) and j⊥(M) = j⊥(M′) at points M and M′ 
symmetric with respect to Π, the field B is symmetric and A is antisymmetric, hence  
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B//(M) = B//(M ′) and B⊥(M) = − B⊥(M ′) ,
A//(M) = −A//(M ′) and A⊥(M) = A⊥(M ′) . [6.37]

Particularly, at the points Mo of Π, we have B⊥(Mo) = −B⊥(Mo), hence B⊥(Mo) = 0
and A//(Mo) = −A//(M o), and we may take A//(Mo) = 0. At Mo, the field B is in the
plane Π and A is perpendicular to Π.

In the case of currents such j(r) = − j(−r), we must have B(r) = B(−r) and A(r) =
−A(−r) and in the case of currents such that j(r) = j(−r), we must have B(r) =
−B(−r) and A(r) = A(−r).

6.7. Ampère’s law in the integral form

Contrary to the electric field, the magnetic field is not conservative. Consider a
circuit C carrying a current I and a closed and oriented path A, which we designate
as an Ampérian contour. Let S be a surface bounded by A. The field B(rA) produced
by C at a running point rA of A is given by [6.19] and the circulation of B over A is

∫A drA.B(rA) = (µoI/4π)∫A drA.∫C drC × R/R3 = (µoI/4π)∫A ∫C (drA × drC).R/R3, [6.38]

where rC is the position of the running point on C and R ≡≡ rA−rC. We may show that
the double integral over C and A is zero if C does not pass within A (Figure 6.8a) and
it is equal to ± 4π if C passes within A. The sign is (±) according to the right-hand
rule (see section 6.9B). Thus, the right-hand side of [6.38] is ± µoI. In the case of
several current-carrying circuits Ci, the total field B is the superposition of the fields
of the various circuits taken individually. The circuits that do not pass within A
produce fields whose circulations are equal to zero, and those that pass within A
produce fields whose circulations are ±µoIi. For instance, in the case of the contour
A of Figure 6.8a, we find ∫A dr.B = µo(−I2 + I3 – 2I4). Designating by I(in) the total
intensity that passes within A (i.e. crosses S), we may write Ampère’s law in the
integral form:

∫A dr.B = µo I(in), where I(in) = Σi Ii . [6.39]

It should be noted that I(in) includes all types of electric current (conduction
currents, beams of charged particles, convection currents, etc.). On the other hand,
only the currents that contribute to the field B in the integral ∫A dr.B must be
included. For instance, if we analyze the field B1 produced by a circuit C1 and acting
on a circuit C2, the current of C2 should not be included in I(in), because it does not
contribute to B1. It is to be noted that this expression of Ampère’s law holds only in
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time-independent phenomena. It does not hold if the current varies (as in the case of 
alternating current) or if charged particles pass inside the Ampèrian contour A.  

 
                                  (a)                                                               (b)    

Figure 6.8. a) Ampère’s law, and b) evaluation of B and A of a cylinder 

In some simple symmetrical configurations of currents, it is possible to use 
Ampère’s law to calculate B at points M. If we can find an Ampèrian contour A, 
passing by M and such that B has a uniform magnitude and is tangent to A, the 
circulation of B along A is simply LB, where L is the length of A, hence B = µoI(in)/L. 
The contour A may include a part, where B is equal to zero or normal to A. This part 
will not be included in evaluating L. 

To illustrate this method, we consider a very long cylinder of radius R carrying a 
volume current density j(ρ) = j(ρ) ez symmetric about the axis Oz (Figure 6.8b). We 
analyze the symmetries of the distribution of current and their consequences first.  

− The current density j(ρ) having a translational symmetry in the direction of Oz, 
the cylindrical components Bρ, Bϕ, Bz, Aρ, Aϕ and Az  do not depend on z.  

− j(ρ) having a rotational symmetry about Oz, the components Bρ, Bϕ, Bz, Aρ, Aϕ 
and Az do not depend on ϕ.  

− j(ρ) has a reflection symmetry with respect to the azimuthal plane Π1 
containing the point Mo and Oz, i.e. j//(M ′) = j//(M) and j⊥(M ′) = −j⊥(M) at M and M′ 
symmetric with respect to Π1. The equation B//(M) = −B//(M ′) and A⊥(M) = 
−A⊥(M ′) in [6.35] imply that Bρ = 0, Bz = 0 and Aϕ = 0. The current density also has 
a reflection antisymmetry with respect to the plane Π2 containing Mo and normal to 
Oz, i.e. j//(M ′) = −j//(M) and j⊥(M ′) = j⊥(M). The equation Bz(x, y, z) = −Bz(x, y, −z) 
and A//(x, y, z) = −A// (x, y, −z) in [6.36] imply that Bz = 0, Aρ = 0 and Aϕ = 0. Thus, 
B is tangent to the circle A of axis Oz and passing by Mo and its magnitude is 
uniform on this circle, while A has one component Az(ρ). The circulation of B on A 
is 2πρB and Ampère’s law gives B = (µoI(in)/2πρ) eϕ. If Mo is inside the cylinder (ρ < 
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R), the intensity that passes inside A is I(in) = ∫∫S dS n.j = 2π ∫ ρρρρ
0 )( ''' jd but, if Mo is

outside the cylinder (ρ > R), I(in) = I = 2π ∫ ρρρR jd0 )( ''' . Thus, the field may be
written as

B(ex)= (µoI/2πρ) eϕ , B(in)= (µo/ρ) eϕ ∫
ρ ρρρ0 )( ''' jd . [6.40]

Particularly, if the current density is uniform, we find j = I/πR2, hence

B(ex)= (µoI/2πρ) eϕ, B(in)= (µoIρ/2πR2) eϕ [6.41]

The vector potential A may be obtained by integrating the equation ∇∇×A = B, which
reduces in cylindrical coordinates to the differential equation dAz/dρ = − Bϕ.

Note that the field is finite and continuous everywhere. It increases linearly from
0 on the axis to a maximum B = (µoI/2πR) on the surface of the cylinder and then
decreases like 1/ρ. The field outside the cylinder is independent of its radius and it
remains valid in the case of a wire carrying the current I.

6.8. Field and potential of some simple circuits

A) Field and potential of a thin rectilinear conductor

Consider a thin and straight rod P1P2 of length 2L carrying a current I (Figure
6.9a). Taking Oz in the direction of the rod and O at its middle, the system has a
rotational symmetry about Oz. Using cylindrical coordinates, an element of length
dz′ situated at the point K(0, 0, z′) produces at M(ρ, ϕ, z) a field given by Biot-
Savart’s law dB(r) = (µoI/4π) dz′ ez × R/R3, where R = ρ eρ + (z − z′) ez and R =

22 )( 'zz −+ρ . To integrate over P1P2, it is convenient to use instead of z′ the angle

θ′ that R makes with Oz. We have cos θ′ = (z − z′)/R and sin θ′ = ρ/R,
R = ρ/sin θ′ and dz′ = ρ dθ′/sin2θ′. Thus, the field may be written as

B(r) = ∫
B
Ad 'B =

πρ
μ
4
o I eϕ ∫

θ
θ θ2

1
'd sin θ′=

πρ
μ
4
o I (cos θ1 − cos θ2) eϕ , [6.42]

where θ1 and θ2 are the extreme values of θ′. Setting R± = [ρ2+ (z ± L)2]½, we find

B(r) =
πρ

μ
4
o I [

+

+
R
zL
+

−

−
R
zL
] eϕ. [6.43]
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A similar analysis gives for the vector potential 

A(r) = π
μ
4

o I ∫C R
d 'r = π

μ
4

o I ez ∫−
L

L R
dz'  = π

μ
4

o I ln 
+

−
−+
−−

RLz
RLz  ez.  [6.44] 

If the circuit is very long or, equivalently, if the point M is very close to O  
(z << L and ρ << L ), θ1 → 0 and θ2 → π, we find 

B(r) → (µoI/2πρ) eϕ      and    A(r) → − (µoI/2π) ln ρ ez.            [6.45] 

 
(a)                                            (b)                                              (c) 

Figure 6.9. Evaluation of the magnetic field: a) in the case of a thin rod by using Biot-
Savart’s law, b) in the case of a sheet of width L carrying a current density js by using  

Biot-Savart’s law, and c) in the case of a wide sheet by using Ampère’s law 

B) Field and potential of a sheet carrying a current density js 

Consider a sheet lying in the plane Oxy between y = −L/2 and y = L/2, very long 
in the direction of Ox and carrying a surface current density js = jsex (Figure 6.9b). 
To calculate its field and vector potential at a point M of the normal axis Oz, we 
consider a narrow strip of infinite length in the direction Ox and situated between y 
and y + dy and the symmetric strip with respect to Oxz. They carry the intensities  
dI = js dy and they produce the fields dB1 and dB2 of magnitude µo dI/2πρ at M, 
where ρ = (y2 + z2)½ is the distance of M to the strips. These fields form the same 
angle α with Oy as MK with Oz; thus cos α = z/ρ. The resultant of these fields is 

dB(z) = dB1 + dB2 = 2 dB1 cos α ey = − (µojs z dy/πρ2) ey.  [6.46] 

The total field is obtained by integration on y from 0 to L/2: 

B(z) = ∫
2/

0 )(L zdB = −(µojsz/π) ey ∫
2/

0
L dy /(y2 + z2) = −(µojs/π) tan−1(L/2z)ey. [6.47] 
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Setting D as the length of the sheet, the vector potential is

A(z) = (µo/4π)∫∫S dS' js/R = (µojs/4π) ''∫ ∫− −
2/
2/

2/
2/

D
D

L
L dydx /(x'2+ y'2+ z2)½

= (µojs/4π) [− L ln(L2 + 4z2) – 4z tan−1(L/2z) + C], [6.48]

where C is a constant, which diverges like 2L ln D as D →∞, but this is irrelevant
because A is defined up to an arbitrary ∇f. At a point near the sheet (z << L), we find

B(z) → − ½µojs sign(z) ey and A(z) = −− ½µojs|z| + Constant. [6.49]

The magnetic field of the infinite sheet may be easily determined using
Ampère’s law (Figure 6.9c). The translational symmetry in any direction parallel to
the plane Oxy of the sheet implies that B and A depend only on z. The reflection
symmetry with respect to Oxz implies that Bx = 0, Bz = 0 and Ay = 0. The
antisymmetry of j in the reflection with respect to the plane Oyz implies that Ay = Az
= 0. Thus, we have B = By ey and A = Ax ex. The reflection symmetry with respect to
Oxy implies that By(−z) = −By(z) and Ax(−z) = Ax(z). Consider the rectangular
contour GHKJ situated on one side of the sheet. As no current crosses it, Ampère’s
law gives lBGH – lBKJ = 0. Thus, By does not depend on z in each one of the regions
z > 0 and z < 0. Consider now the contour PQRS whose side PQ is on the side z > 0
and the side RS is in the side z < 0. As the current that crosses it is jsl, Ampère’s law
gives lBRS −lBPQ = µojsl. As BPQ = −BRS, we find By (z) = −By(−z) = ½µojs. Knowing
the field, the relation B = ∇ × A reduces to the equation By = ∂zA(z), hence A(z) =
−½µojs|z| + C. Thus, we find again the result [6.49].

C) Field and potential of a solenoid

Consider a solenoid of radius a and length L constituted by n turns per unit
length and carrying a current I (Figure 6.10a). We take the origin O at the center of
the solenoid and Oz along its axis. An element of the solenoid situated between z′
and z′ + dz′ near the point P contains n dz′ turns; thus, it may be assimilated to a
circular loop carrying a current dI = nI dz′. According to equation [6.21], its field at

a point M(z) on the axis is dB(z) = (µo nIa2/2R3) dz′ez, where R = 22 )'( zza −+ and

the total field is obtained by integrating over z′ from −L/2 to +L/2; we get

B(z) = ½µonIa2 ez ∫
+
−

2/
2/

3/L
L Rdz' = ½µonI [(L/2 – z)/R− + (L/2 + z)/R+] ez, [6.50]

where the extreme values of R are R± = [a2 + (z ± L/2)2]½. The integral may easily be
evaluated using the angle θ that Oz forms with MP. We find sin θ = a/R and
cos θ = (z′ – z)/R, hence dz′ = −a dθ/sin2θ and R = a/sin θ; thus,

B(z) = ½ µonI ez ∫
θ
θ θ2

1
d sin θ = ½ µonI (cos θ1 − cos θ2 ) ez . [6.51]
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Note that θ1 < π/2 and θ2 > π/2 for M situated inside the solenoid, while for M 
situated outside the solenoid, θ1 > π/2 and θ2 > π/2 if z > L/2 and θ1 < π/2 and  
θ2 < π/2 if z ≅ ± L/2. The lines of the field B are illustrated in Figure 6.10b. The 
field has its maximum value at the center (Figure 6.10c) 

Bmax = B(0) = ½ µonIL/ 224 La + .   [6.52] 

B is almost uniform in a long solenoid and it decreases quickly at the ends (where  
B ≈ ½Bmax for z < ± L/2). Particularly, if the solenoid is very long (L >> a and  
L >> z), setting js = nI for the surface current density, the field is given by 

B = µonI ez = µojs ez.  [6.53] 

            
   (a)                                           (b)                                               (c) 

Figure 6.10. a) Field of a solenoid, b) field lines in the case of a solenoid  
of finite length L, and c) variation of the field as a function of z 

If the solenoid is ideally infinite, we may use Ampère’s law to determine the 
field B. Let us first analyze the symmetries (see Figure 6.11a). Because of the 
translational symmetry in the direction of Oz, the field B does not depend on z. In 
the approximation of the solenoid made of circular current loops, the field B at point 
M(ρ, ϕ, z) does not depend on the azimuthal angle ϕ because of the rotational 
symmetry about Oz. Thus, B is a function only of the distance ρ of M from the axis 
Oz. By the same approximation, the current density is antisymmetric in the 
reflection with respect to the azimuthal plane Π1 containing M and the axis Oz. As 
per equations [6.37], the field has no normal component Bϕ. Τhe current density has 
a reflection symmetry with respect to the plane Π2 containing M and normal to the 
axis Oz. As per equation [6.35], the field has no parallel components Bρ and Bϕ. 
These combined symmetries imply that B = B(ρ)ez and we may assume that M is in 
the plane Ozy and use Ampère’s law:  
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− Consider a rectangular path CDPQ situated inside the solenoid with the sides 
CD and PQ of length l parallel to Oz. As the field is independent of z and oriented in 
the direction Oz and no current passes inside this path, Ampère’s law gives lB(in)

CD − 
lB(in)

PQ = 0. This means that the field is uniform inside the solenoid. 

− Consider a rectangular path C'D'P'Q' completely situated outside the solenoid. 
As no current passes inside it, Ampère’s law gives B(ex)

C′D′ = B(ex)
P′Q′. Thus, the field 

B is uniform outside the solenoid. As it is obviously equal to zero at large distance, 
it must be equal to zero everywhere outside the solenoid. 

− Finally, consider the rectangular path C"D"P"Q" such that C"D" is inside the 
solenoid and P"Q" is outside it. The intensity that passes inside it is ljs; thus, 
Ampère’s law may be written as lB(in)

 − lB(ex)
 = µoljs. As B(ex)

 = 0, we deduce that 

B(in)
 = µojs = µo nI .   [6.54] 

              
      (a)                                                                               (b) 

Figure 6.11. a) Field of an infinitely long solenoid, and b) toroidal coil 

Our analysis of the solenoid as formed by circular loops is approximately valid if 
they are thin and almost in contact; then, the translational and rotational symmetries 
about Oz are almost exact. In reality, the solenoid being almost helical carries a 
current I in the direction of the axis. If we consider an Ampèrian circular path A of 
radius ρ < R and axis Oz, no current passes inside it and Ampère’s law gives 
2πρB(in)

ϕ = 0. Thus the field inside the solenoid has no component B(in)
ϕ. On the 

contrary, if A is external (ρ > R), a current I passes inside it and Ampère’s law gives 
2πρB(ex)

ϕ = µoI, hence, B(ex)
ϕ = µoI/2πρ. This is the same field as that of an infinite 

thin conductor carrying a current I along the axis. It is possible to eliminate this 
component of the field by coiling the solenoid an even number of layers, in such a 
way that the current enters and leaves the solenoid at the same end; in that case, no 
net current flows in the direction Oz. 
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In the case of an infinitely long solenoid, the translational symmetry in the 
direction of Oz and the rotational symmetry about this axis imply that A depends 
only on ρ. The reflection symmetry about any sectional plane, implies that Az = 0. 
Thus, the vector potential has the form A = A(ρ) eϕ. Applying equation [6.13] to a 
circular contour of radius ρ, we find πρ2B = 2πρA, thus A(ρ) = ½ρB(ρ) = ½ µon Iρ. 
We obtain also this result by writing B = ∇×A, which gives the differential equation 
∂ρ(ρAϕ) = µo nI ρ, whose solution is Aϕ = ½µonIρ  + C/ρ, where C is an integration 
constant. As Aϕ is regular on the axis, we must have C = 0. 

To avoid the leakage of the field, the N turns of the solenoid may be uniformly 
distributed round a closed circular ring (Figure 6.11b). The field in this toroidal coil 
is not uniform but it has a rotational symmetry about the axis. Writing Ampère’s law 
over a circle of radius r, we find 2πrB = µoNI. We deduce that B = µoNI/2πr.  

6.9. Equations of time-independent magnetism in vacuum, singularities of B 

A) Basic equations of time-independent magnetism in vacuum 

The time-independent magnetic field in vacuum obeys two basic laws:  

1. The conservation of the magnetic flux: the flux of B through any closed 
surface is equal to 0:  

∫∫S dS (n.B) = 0.   [6.55] 

Using Gauss-Ostrogradsky’s theorem, we may transform the flux into the integral of 
∇.B over the enclosed volume, thus ∫∫∫V dV ∇.B = 0 for any volume V, hence 

∇.B = 0.   [6.56] 

This equation implies the existence of a vector potential such that 

B = ∇ × A,   [6.57] 

where A is determined up to the addition of the gradient of any function, A' = A+∇f.  

2. Ampère’s law: the magnetic field is related to the electric current by Ampère’s 
law in the integral form 

 ∫A dr.B = µoI(in),        where  I(in)
 = Σi Ii = ∫∫S dS j.n.  [6.58] 
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Ii are the currents that pass through S. Using Stokes’ theorem, the circulation of B on 
the closed path A may be transformed into the flux of ∇×B, thus ∫∫S dS n.(∇×B) = 
µo ∫∫S dS j.n for any S, hence Ampère’s law in the local form 

∇ × B = µo j.    [6.59] 

Expressing B in terms of A, using the identity ∇ × (∇ × A) = ∇(∇.A) − ΔA and 
imposing the condition ∇.A = 0 (by eventually making a suitable gauge 
transformation A' = A + ∇f), Ampère’s equation [6.59] becomes  

ΔA = − µo j.  [6.60] 

All these equations are verified by the expressions of the field and vector potential 
of charges in motion and current densities [6.17], [6.19] and [6.20].  

 

(a)                                             (b)                                                  (c) 

Figure 6.12. Scalar potential of B in a region, where j = 0 

B) Concept of scalar magnetic potential 

In a region where there is no electric current density, Ampère’s equation [6.59] 
reduces to ∇ × B = 0. This means that it is possible to define a scalar potential VM 
such that B = −∇VM. Then, the circulation of B on any closed path in this region 
vanishes. Let us consider a circuit C carrying a current I and a surface S bounded by 
C. This surface is subtended from a point P(r) by a cone of solid angle: 

Ω = ∫∫S dS′ n′.R/R3,         where R = r′ −r.                [6.61] 

n′ is the unit vector normal to S at r′ and oriented with respect to the circuit carrying 
the current I according to the right-hand rule (Figure 6.12a). If the point P moves by 
δr, the variation of the solid angle dΩ = Ω′ − Ω is the same as if P was fixed and the 
circuit displaced by −δr (Figure 6.12b). As the solid angle, which subtends the 
whole closed cylinder of bases S and S′, is equal to zero, dΩ is the opposite of the 
solid angle δΩ of the strip δS of width −δr along the circuit C, hence 

dΩ = −δΩ = − ∫∫δS dS′ n′.R/R3 = ∫C (dL × δr).R/R3 = − δr.∫C (dL × R)/R3. 
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The field of C at P being B(r) = (µoI/4π)∫C dL×(r−r′)/|r−r′|3 = −(µoI/4π)∫C dL×R/R3, 
we may write B.δr = (µoI/4π) δΩ, thus B = −∇VM, where VM = − (µoI/4π) Ω .  

The circulation of B along a path PQ, which does not cross S (Figure 6.12c), is 
∫PQ dr.B = (µoI/4π)(ΩP − ΩQ). It vanishes if the path is closed (P ≡ Q), as Ω is a 
continuous function of the position. On the other hand, the circulation along a path 
P′Q′ that crosses S is ∫P′Q′ dr.B = (µoI/4π)(ΩP − ΩQ) = ±µoI, as, by crossing S, Ω 
changes from 2π to −2π, or conversely, depending on whether P′Q′ crosses S in the 
direction of n or in the opposite direction. This result is equivalent to Ampère’s law. 

Contrary to the electric potential V, which is the potential energy of the unit 
charge, the magnetic potential VM is not an energy. This is evident because B being a 
pseudo vector, the function VM (such that B = −∇VM) is a pseudo-scalar, while the 
energy is a true scalar quantity.  

C) Singularities and discontinuities of the magnetic field 

The examples of evaluation of the magnetic field that we have considered show 
that B and A are not always regular and continuous: 

a) Near a point M of a thin conductor carrying a current I, the dominant part of B 
is the field of a small element of the conductor at M. Its field lines are circular 
around the conductor (Figure 6.13a); thus, B has no well-defined direction. On the 
other hand, Ampère’s law applied to a small circle of radius ρ around the conductor 
shows that B is infinite like B = µoI/2πρ. The vector potential also becomes very 
large like −(µoI/2π) ln ρ in the direction of the current. 

 

(a)                                            (b)                                                 (c) 

Figure 6.13. a) Singularity of B on a line of current, b) discontinuity of B on a  
sheet of current, and c) continuity of B in a volume distribution of current 
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b) Consider a sheet of current S with a surface density js (Figure 6.13b). Let us 
apply the law of conservation of magnetic flux to a very short cylinder of bases dS1 
and dS2 situated on both sides of the sheet. We designate as n12 the unit vector that is 
normal to S and oriented from side (1) toward side (2). The flux of B through the 
very short lateral surface may be neglected and the outgoing flux from dS1 and dS2 
are dS n12.B2 and −dS n12.B1, respectively. The conservation of the flux of B 
implies that n12.B2 = n12.B1. In other words, the normal component of B is 
continuous on the sheet of current. We take the axes of coordinates, such that Oz is 
in the direction of n12 and js in the direction of Ox. Consider a rectangular path 
PQCD such that PQ and CD have a length l and they are parallel to Oy, while PD 
and QC are very short and parallel to Oz. The circulation of B on this contour is  
l(B2y − B1y) and it is equal to µojsl according to Ampère’s law. Thus, the y 
component of B has a discontinuity B2y − B1y = µojs. If the sides PQ and CD are 
parallel to Ox, no current crosses the rectangle and we find B2x = B1x. These two 
relations may be written in a single vector equation  

B1 − B2 = µo n12 × js.   [6.62] 

Thus, on a sheet of current S, the tangential component of B, which is normal to js, 
undergoes a discontinuity equal to µojs, while the component of B that is parallel to 
js and the normal component to S are continuous. 

c) In the case of a volume distribution of current, the field B is finite and 
continuous. Indeed, an eventual singularity at a point M may be produced by the 
current density that is very close to M (making |r − r′| → 0 in the denominator of the 
expression of the field). Let us surround M  by a small sphere of radius R enclosing a 
volume V (Figure 6.13c). According to the theorem of the mean, the integral of a 
function f(r) over V is equal to the product V f(ro), where ro is a certain point of V. 
Thus the field of the sphere, evaluated by using [6.20], may be written as B(r) = 
(µo/4π)V j(ro)×(r − ro)/|r − ro|3. Designating by θ the angle that j(ro) makes with  
(r − ro), we find for the magnitude of B 

B(r) < (µo/4π) V j(ro) sinθ/|r−ro|2 < (µoR3/3) j(ro)/R2 = (µoR/3) j(ro). 

Thus, the field of the sphere tends to 0 like R as R → 0. This shows that the field of a 
volume current distribution is finite and continuous. 

The singularities and the discontinuities of B are due to the zero limit of the 
diameter of the line of current and the thickness of the sheet of current. In reality, the 
macroscopic bodies always have finite dimensions. At the microscopic level, we 
must distinguish between the microscopic field, which undergoes fluctuations and 
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become infinite at the position of point charges, and the macroscopic field, which is 
regular and continuous (see the section 2.8).  

6.10. Magnetic energy of a circuit in a field B  

We have seen that a uniform field B exerts a moment of force ΓM = M × B on a 
rigid circuit carrying a current I. Thus, |ΓM| = M B sin θ, where θ is the angle that M 
makes with B. If the circuit is free to rotate around a point O, it may rotate about an 
axis whose unit vector u is parallel to ΓM (thus, orthogonal to M and B). The circuit 
is in equilibrium if ΓM = 0, thus θ = 0 (M pointing in the direction of B) or θ = π (M 
pointing in the opposite direction to B). We may verify that the position θ = 0 is 
stable, while the position θ = π is not. The work of the magnetic forces in the 
rotation of the circuit about u from its equilibrium position θ = 0 to an arbitrary 
position θ is  

W0→θ = ∫
θ θ0 'd ΓM.u = −MB ∫

θ θ0 'd sin θ′ = MB (cos θ −1) = (M.B) − MB. [6.63] 

Conversely, to rotate the circuit from its stable equilibrium position θ = 0 to the 
position θ, a moment of force Γ′ = −ΓM must be exerted; the required work is  

W′0→θ = −W = MB − (M.B).    [6.64] 

This work remains stored as magnetic potential energy of the circuit in the external 
magnetic field.  

 

Figure 6.14. Evaluation of the interaction energy of an electric circuit in a field B 

Consider now the case of a non-uniform field B. Let us evaluate the work in 
bringing a circuit from a position where B = 0 to a position where the field is B 
while maintaining the current intensity I constant. Let us consider first the simple 
case of a rectangular circuit PQRS lying in the plane Oxy (Figure 6.14). We assume 
that it is small enough to neglect all terms of the second order in its dimensions L 
and l. We evaluate the magnetic force that acts on each side by taking the field at its 
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middle; this is a good approximation if the field is slowly varying over the circuit.
We have for instance B(M) = Σα Bα(x, y − ½L, 0)eα ≅ Σα [Bα(x, y, 0) – ½L ∂yBα] eα.
Thus, the total force that acts on the circuit may be written as

FM = I SP × B(M) + I PQ × B(J) + IQR × B(N) + I RS × B(K)
= Il ex × Σα [Bα(x, y, 0) – ½L∂yBα] eα + IL ey × Σα [Bα(x, y, 0) + ½l∂xBα] eα

– Il ex × Σα [Bα(x, y, 0) + ½L ∂yBα] eα − IL ey × Σα [Bα(x, y, 0) – ½l ∂xBα] eα

= IS (−∂yBy ez + ∂yBz ey − ∂xBx ez + ∂xBz ex).

By using equation [6.9], which implies that ∂xBx + ∂yBy = −−∂zBz, we find:

FM = IS (∂xBz ex + ∂yBz ey + ∂zBz ez), i.e., FM, α = ∂α(MM.B). [6.65]

To displace the circuit from yo (where Bo = 0) to the actual position y (where
B ≠ 0) while I is maintained constant, a force F′ = −FM and a work must be exerted

W′0→B = ∫ yy do .r F′1 = − ∫
y
y do .r F1 = − ∫

y
y dyo

IS(∂yB3) = IS[B3(yo) −B3(y)] = − M.M.B.

This is also the variation of the magnetic energy in the displacement of the circuit
from the region where B = 0 to the region where the field is B. It differs from the
expression [6.64] only by a constant term MB, which has no physical importance.
Thus, the magnetic force exerted by a magnetic field on a circuit carrying a constant
current corresponds to a potential energy UM= −MM.B = − IS n.B. We may also write:

UM = −IΦ, [6.66]

where Φ is the magnetic flux. A circuit C of arbitrary shape may be considered as a
juxtaposition of small rectangular circuits Ci (Figure 6.5b). As I is the same for all
these circuits and the sum of the Φi is the total flux Φ through the circuit C, equation
[6.66] is valid for circuits of any shape C immersed in a field B, even if the field is
non-uniform. We note that UM is only the interaction energy of the circuit with the
external field B. It is not the total magnetic energy of the circuit, which must include
its proper magnetic energy, that is the energy necessary to establish the current in
the circuit. Although the force exerted by the field B on a charge in motion or an
element of a length of circuit is not conservative, we have defined here the
interaction energy of the closed circuit in the field B and this energy depends only
on the position of the circuit. In other words, the force of interaction of a closed
circuit with a magnetic field is conservative.
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The interaction energy UM = − IΦ determines the motion or the deformation of 
an electric circuit in a magnetic field if the intensity I is maintained constant. By 
evolving from a state (1) to a state (2), the work of the magnetic forces is equal to 
the decrease of the interaction energy, UM, 1 – UM, 2 = I(Φ2 − Φ1) and this work 
cannot be negative. Thus, Φ2 must be higher than Φ1: the circuit moves or deforms 
in such a way that UM decreases, i.e. Φ increases. This is Maxwell’s maximum flux 
rule. The equilibrium is reached if UM is minimum, i.e. if Φ is maximum.  

In the case of a rigid circuit, the ratio M/I is constant. If B is uniform, the flux  
Φ = (M.B)/I = (M/I) B cos θ is maximum for θ = 0. Thus, the circuit rotates until its 
magnetic moment points in the direction of B. This position corresponds to a 
maximum of Φ, i.e. a minimum of UM; thus, it is stable. The moment of force 
vanishes also for θ = π. However, this position corresponds to a minimum of Φ, i.e. 
a maximum of UM; thus, it is unstable. If a rigid circuit is free to move in a non-
uniform field, the maximum flux rule implies that it moves toward the region of 
stronger field. Finally, if the circuit is deformable, it deforms until its magnetic 
moment M is maximum (thus, its surface is maximum). In general, it may undergo 
rotation, translation, and deformation.  

6.11. Magnetic forces  

A) Magnetic force on a circuit in terms of the flux  

Let us consider a circuit C carrying a constant current I (maintained by a 
generator). The other systems act on C only by the intermediary of the magnetic 
field B. The magnetic force acting on the circuit may be evaluated by using 
Laplace’s force dFM = I dL × B. It may be calculated also by using the interaction 
energy UM = −IΦ of the circuit in the field B. Indeed, if the element dL undergoes a 
translation δr (Figure 6.15a), the work of the magnetic force is   

δdWM = dFM.δr = I (dL × B). δr = I B.(δr × dL) = I dδS (B.n) = I dδΦ,  

where n is the unit vector orthogonal to the parallelogram of sides δr and dL and 
dδS = |δr × dL| is the swept area; dδΦ is then the magnetic flux through this area. In 
the case of a finite part C of an electric circuit (Figure 6.15b) or a closed circuit C 
(Figure 6.15c), the work of the magnetic forces is obtained by integration over the 
circuit; we find δWM = I δΦ, where δΦ is the flux that is swept by C in the course of 
its motion. 
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         (a)                                           (b)                                                     (c) 

Figure 6.15. a) Work of the magnetic forces exerted on an element dL of circuit, b) work  
on a finite circuit C, and c) work on a closed circuit and moment of the magnetic forces 

If a rigid circuit C undergoes a translation, we define its position by the position 
r of one of its points. In a virtual translation δr of the circuit, the work of FM is equal 
to the decrease of the interaction energy of the circuit in the field B, hence  
δWM = FM. δr = − δUM = I δΦ, where Φ is the flux through C. As UM and Φ are 
functions of r, their variations are δUM = δr.∇UM and δΦ = δr.∇Φ. Thus, the force 
may be written as 

FM = − ∇UM = I ∇Φ.    [6.67] 

A similar analysis may be undertaken to determine the moment of the magnetic 
forces ΓM exerted by a field B on a circuit C with respect to a point O. For this, let us 
assume that the circuit undergoes a virtual rotation through an infinitesimal angle δθ 
about an axis at O of unit vector u. The work of the magnetic forces is  
δWM = ΓM.u δθ = −δUM = I δΦ. We deduce that the component of ΓM in the 
direction of u is 

ΓM.u = − ∂UM/∂θ = I (∂Φ/∂θ).                              [6.68] 

The interaction energy of a circuit C of magnetic moment M with a magnetic 
field B is UM = − M.B = −Σβ MβBβ. Thus, the components of the magnetic force 
exerted on C are Fα = −∂αUM = ∂α(M.B) = Σβ Mβ (∂αBβ). As B is produced by 
permanent magnets or other circuits than C, Ampère’s law [6.59] implies that  
∇ × B = 0 at the points on the circuit C, hence ∂αBβ = ∂βBα. Thus, we may write  

F M , α = Σβ Mβ (∂βBα),           i.e.  F M = (M.∇) B.    [6.69] 

Particularly, if the field is uniform, any translation does not modify the flux, and 
equation [6.67] implies that the resultant of the magnetic forces on the circuit is 
equal to zero and the equation FM = (M.∇) B gives the same result. Similarly, if the 
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magnetic moment of the circuit makes an angle θ with B, the interaction energy is 
UM = −MB cos θ; thus, ΓM.u = − MB sin θ and this is equivalent to ΓM = M × B.  

 
(a)                                             (b)                                                (c) 

Figure 6.16. Maxwell’s maximum flux rule: a) the magnetic force on C moves  
it toward a stronger field (if θ < π/2) or b) toward a weaker field (if θ > π/2).  

c) The moment of magnetic forces on C rotates it toward smaller θ 

Figure 6.16 illustrates the use of the maximum flux rule to determine the 
direction of the magnetic force and the moment of force. In the case of Figure 6.16a, 
M forms an acute angle with B1. According to the right-hand rule, the flux Φ is 
positive. By moving the circuit in a direction such that B2 > B1, Φ increases. 
According to [6.67], the component of the magnetic force in this direction is 
positive. On the contrary, in the case of Figure 6.16b, M forms an obtuse angle with 
B1 and Φ is negative. By moving the circuit in a direction such that B2 > B1, Φ 
decreases (in algebraic values). According to [6.67], the component of FM in this 
direction is negative. In the case of Figure 6.16c, M forms an acute angle θ with B 
and Φ is positive. If θ is increased by rotating the circuit about u (according to the 
right-hand rule), the flux Φ decreases. According to [6.68], the component of ΓM in 
the direction of u is negative, ΓM is thus in the opposite direction to u, in agreement 
with the relation ΓM = M × B.   

If the circuit is rigid and it carries a constant current I, the forces exerted by its 
own field are counterbalanced by the internal mechanical forces that keep it rigid. 
Thus, if the circuit is subject to no external forces, it undergoes no translation, 
rotation, or deformation. Thus, the equation  δWM = I δΦ holds with δΦ representing 
only the flux of the external field B that is swept by the circuit. In the case of a 
closed circuit (Figure 6.16c), δΦ is the flux of B through the lateral surface. As the 
flux of B leaving any closed surface is equal to zero, δΦ may be written as  
(Φ2 − Φ1), where Φ1 and Φ2 are the fluxes of B through the circuit in the initial and 
the final positions, respectively. Thus, we may write δW = I (Φ2 − Φ1).  
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B) Magnetic interactions of charges and circuits 

Besides the electric interaction, two charges q at r and q′ at r′ have a magnetic 
interaction if they are in motion. Indeed, the charge q′ of velocity v′ produces a 
magnetic field B′(r) = (µo/4π) q′(v′ × R)/R3 at r where R = r − r′. This field acts on 
the charge q of velocity v with a force 

Fq′→q = q(v×B′) = 3
o

4
'

R
qq

π
μ [v × (v′ × R)] = 3

o

4
'

R
qq

π
μ [ v′(v.R) − R (v.v′)].  [6.70] 

Conversely, charge q produces a field B(r′) at r′, which acts on q′ with a force  

Fq→q′ = q′(v′×B) = 3
o

4
'

R
qq

π
μ {v′ × [v×(−R)} = 3

o

4
'

R
qq

π
μ [−v(v′.R) + R(v.v′)]. [6.71] 

We find that the forces Fq′→q and Fq→q′ are not opposite and they are not along the 
axis of R, which joins the two charges (Figure 6.17a). Thus, the magnetic interaction 
of charges does not obey the principle of action and reaction of classical mechanics 
and it does not conserve angular momentum. On the other hand, it is not 
conservative; thus, it is not possible to associate a potential energy with it. 

 
 

        (a)                                              (b)                                        (c) 

Figure 6.17. Magnetic interaction: a) of two charges, b) of two elements  
of circuits, and c) of two parallel thin rods carrying currents I and I′ 

C) Magnetic interaction of two circuits 

The field B(r′) produced by C at a point r′ of C′ is 

B(r′) = (µoI/4π) ∫C dr × R/ R3,           where  R = r′= − r.  [6.72] 
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This field acts on an element dr′ of C′ with a force dF′ = I′ dr′ × B(r′) (Figure
6.17b). The force FC→C′ exerted by C on C′ is obtained by integration over C′, hence

FC→C′ = ∫C′ dF′ = I′ ∫C′ dr′ × B(r′) = (µoII′/4π) ∫C′ dr′ × ∫C dr × R /R3

= (µoII′/4π)∫C ∫C′ [dr(dr′.R) − R(dr.dr′)]/R3. [6.73]

Let us consider two linear, thin and parallel conductors of length L carrying
currents I and I′ (Figure 6.17c). Taking C along Oz and C′ in the Oyz plane at a
distance d from Oz, we find

FC→C’ = (µoII′ /4π) ∫−
2/
2/

L
L dz ∫−

2/
2/

L
L dz' [ez(z − z) − R]/R3

= −
π

μ
4
o II′ ey ∫−

2/
2/

L
L dz ∫

−+−
2/
2/ 2/322 ])'([

'L
L zzd

dz =
π

μ
2
o II′[1− 1/ 22 +dL ]ey. [6.74]

Particularly, if L >> d, we find

FC→C’ = −
π

μ
2
o

d
LII ' ey. [6.75]

This force lies in the plane of the conductors, it is attractive if the currents are in the
same direction and repulsive if they are in opposite directions. It is proportional to
the length of the conductors and inversely proportional to their spacing d. This force
is used to define the unit intensity with the choice µo = 4π × 10−7T.m.A−1.

In the case of closed circuits C and C′, the first term of [6.73] provides no
contribution. Indeed, by making the change of variable r′ = R + r, we get

∫ C dr ∫C’ (dr′.R)/R
3 = ∫C dr ∫C’ (dR.R)/R

3= ½∫C dr∫C’ dR
2/R3= ∫C dr∫C’ dR/R

2= ∫C dr (1/R) |C’,

where R is the distance from a running point r of C to the running points r' of C'.
The integral over C′ is (1/R) |C’, i.e. the variation of 1/R over the closed path C′ and
this variation is equal to zero. Thus, the force exerted by C on C′ may be written as

FC→C′ = − (µoII′/4π)∫C ∫C’ (dr.dr′) R/R3. [6.76]

The force that C′ exerts on C is obtained simply by exchanging C and C' (thus R
to –R). Contrarily to the magnetic interaction of two charged particles or two
elements of circuits dr and dr′, we find that FC’→C is the opposite of FC→C’ in the
case of two closed circuits or two open but rectilinear and parallel circuits, as
indicated by equation [6.74]. The reason for this apparent violation of the principle
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of action and reaction is that the used fields are instantaneous (i.e. evaluated at the
same time t as the positions and velocities of the particles or the currents). The right
formulation of the interaction must take into account the propagation of the field
with a finite speed. On the other hand, the radiated electric and magnetic fields carry
energy, momentum, and angular momentum, which we have to take into account to
write the conservation laws of these quantities. These effects appear in the case of
non-stationary phenomena, as in the case of moving particles or open circuits (which
cannot carry permanent currents).

Magnetic forces exist also between different parts of the same circuit. An
infinitesimal element dr of the circuit is subject to a force dF = I dr × B′, where B′ is
the field produced by all the parts of the circuit except dr. This internal magnetic
force has no effect on the circuit if it is rigid, as it is counterbalanced by the internal
mechanical forces. However, if the circuit is deformable, the effect of the internal
magnetic forces increases its area so that the flux of the proper magnetic field B
increases, in agreement with Maxwell’s maximal flux rule.

Two points should be noted. The first is that the magnetic interaction is different
from Coulomb’s interaction. Indeed, the magnetic force vanishes if the charges are
at rest, contrarily to Coulomb’s force. On the other hand, the elements of the circuits
have no net charge; thus, they have a magnetic interaction but no Coulomb
interaction. However, as we shall see in section 8.4 and Chapter 13, the electric and
magnetic forces are not completely independent, especially if we consider
electromagnetic phenomena in different referential frames. The second point is that,
in all our analysis of the fields of electric circuits and their interactions, we have
assumed that the electric current is permanent; thus, it is the same at all points of the
circuit. This holds approximately in the case of quasi-permanent phenomena (i.e.
slowly variable in time) but not in the case of high-frequency currents, for instance.

D) Magnetic interaction of two volume distributions of current

Let us consider two distributions of current in two distinct volumes V and V′. The
field B(r′) produced by V at a point r′ of V′ is

B(r′) = (µo/4π) ∫∫∫V dV j(r) × R / R3, where R = r′=− r. [6.77]

This field acts on an element of volume dV′ with a force dF′ = dV′ j′(r′) × B(r′). The
force FV→V′ exerted by V on V′ is obtained by integration over V′

FV→V′ = ∫∫∫V′ dF′ = (µo/4π) ∫∫∫V′ dV′ j′(r′) × ∫∫∫V dV j(r) × R/ R3 where R = r′ − r
= (µo/4π) ∫∫∫V′ dV′ ∫∫∫V dV { j(r)[R.j′(r′)] – R [j(r).j′(r′)]}/ R3.



186     Electromagnetism 

Here too, it may be shown that the first term offers no contribution. Indeed, it may 
be written as 

      −(µo/4π) ∫∫∫V  dV j(r) ∫∫∫V′ dV′ j′(r′). ∇′(1/R)  
       = −(µo/4π) ∫∫∫V dV j(r)∫∫∫V′ dV′ ∇′.[j′(r′)/R] + (µo/4π) ∫∫∫V dV j(r) ∫∫∫V′ dV′ ∇′.j′(r′)/R.  

The integral over V′ in the first term is that of a divergence; it may be transformed 
into the flux of j′/R through a surface S′ ,which contains V′ , and we may chose it 
such that j′ = 0 at each point. The second term is equal to zero, as ∇′.j′ = 0 because 
of the conservation of charge in the case of time-independent phenomena. Thus, the 
force may be written as: 

FV→ V′ = 
π

μ
4

o ∫∫∫V  dV ∫∫∫V′ dV′ [j(r). j′(r′)] 3'
'

rr
rr

−
− .                       [6.78] 

This force verifies the principle of action and reaction. On the other hand, FV→ V′ 
reduces to [6.76] if the current densities j(r) and j′(r′) are restricted to the thin 
volumes of the closed circuits C and C′. We note that [6.78] does not hold if V or V′ is 
a part of current distribution (i.e. if the current density does not vanish on its 
boundaries). This is the case of a finite circuit as in [6.73], for instance, as the 
relation ∇′.j′ = 0, which we used to derive [6.78], does not hold at the ends of the 
circuit.  

6.12. Question of magnetic monopoles* 

We have seen that the conservation of the magnetic flux and the equation  
∇.B = 0, compared to Gauss’a law in electrostatics (∇.E = qv/εo), indicate the 
absence of magnetic charges. Indeed, all experiments up to now have failed to detect 
magnetic monopoles, although their existence is required by some modern theories. 
In 1931, Dirac showed that the existence of magnetic monopoles explains the 
quantization of electric charge. By analogy to electric dipole moments, we may 
consider electric circuits and magnets (which have dipole moments) as two opposite 
monopoles. A solenoid is thus equivalent to two monopoles of opposite signs 
located at its ends. Dirac conceived a monopole as the end of a very long and very 
thin solenoid if no experiment can detect the solenoid (Figure 6.18a).  

In quantum theory, a particle is represented by a complex wave function. As in 
the case of a light wave, we can imagine that the solenoid can be detected by 
producing an interference or diffraction pattern with a beam of electrons or other 
charged particles. If a particle of charge q moves along a path PQ, its wave function 
is multiplied by a phase factor exp(iαPQ) where the phase shift αPQ is related to the 

circulation of the vector potential A on the path PQ by the relation αPQ = iq ∫
Q
P dr.A . 



Magnetic Field in Vacuum     187 

In particular, if the phase shift αC on any closed contour C around the solenoid is an 
integer multiple of 2π, no experiment is able to detect this phase shift, exactly as if 
the solenoid does not exist. 

                                                             
 (a)                                                            (b) 

Figure 6.18. a) Dirac monopole and b) vector potential of a magnetic monopole 

By analogy to the electric field of a charged particle, let us assume that a 
magnetic monopole produces a magnetic field B(r) = κr/r3. We may show that the 
vector potential of this field in spherical coordinates is  

A(r) = r
κ [ θ

θ−
sin

cos1
 eϕ + ∇U(r, θ, ϕ)],    [6.79] 

where U is an arbitrary scalar function (as A is specified up to a gradient). The phase 
shift αC associated with this closed contour C is equal to 2nπ if 

q = n/2κ,             where   n = integer.       [6.80] 

This relation explains the quantization of the electric charge q. Considering the 
elementary charge e of the electron, the quantity κ =1/2e plays the part of an 
elementary magnetic charge (Dirac monopole). 

For θ = π, the expression [6.79] shows that A is infinite. The existence of this  
singularity of A is not physically acceptable and, although the solenoid is not 
observable, it is preferable to formulate the theory of magnetic monopoles without 
the concept of solenoid. To study the vector potential on the sphere, we divide it into 
two hemispheres (Figure 6.18b). The solutions on the upper and the lower 
hemispheres are, respectively, 

AU = r
κ

θ
θ−

sin
cos1

 eϕ         (for 0 < θ < π/2),   

AL = − r
κ

θ
θ+

sin
cos1

 eϕ     (for π/2 < θ < π).     [6.81] 
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Together, AU and AL constitute a non-singular solution in their respective regions 
and both correspond to B = κr/r3. On the common equator (θ = π/2), AU and AL do 
not coincide, but AU − AL = (2κ/r)eϕ. However, both expressions represent the same 
physical situation, as they are related by a gauge transformation AU − AL = ∇f, with  
f = 2κϕ. The phase shift received by the wave function is the same for both solutions 
if Dirac condition is satisfied.  

We note that, if the magnetic monopoles exist, they show up by their radial 
magnetic field, which decreases like 1/r2 instead of 1/r3 for magnetic dipole 
moments, by a magnetic force exerted by a uniform field B in the direction of B, and 
finally, by a violation of the conservation of the magnetic flux. 

More recently, in the so-called Grand Unification Theory (which attempts to 
unify all the interactions of Nature), magnetic monopoles are assumed to have been 
produced during the “Big Bang”, which formed the Universe. They must be very 
heavy (probably 1016 times the mass of the proton) and probably with a lifetime so 
short that very few of them still survive. 

6.13. Problems 

Force exerted by a magnetic field on moving charges and currents, Laplace’s force 

P6.1 A strip of copper of width 10 cm and thickness 4 mm carries a current of 100 A 
and is immersed in an orthogonal magnetic field B = 2 T. Assuming 1 conduction 
electron per atom, calculate the drift velocity of the electrons and the magnetic force 
exerted on these electrons. What is the electric field whose force counterbalances 
this magnetic force? What is then the Hall voltage? Calculate the charge density on 
the narrow faces of the strip. Verify that the ratio of the Hall field to the electric field 
that produces the current is EH/E = B/ρNve. What would be the Hall voltage if the 
conductor has the same number of positive and negative charge carriers? The copper 
density is 8920 kg/m3 and its atomic mass is 63.6.  

P6.2 Using Laplace’s law, calculate the force exerted by a magnetic field B on a 
wire having the shape of a half-circle and carrying a current I. Assume that B is 
orthogonal to the plane of the wire. Calculate also the force exerted on a wire 
carrying the current I along the diameter.  

P6.3 Barlow wheel is a simple electric motor (Figure 6.19). This is a metallic disk of 
radius R that may rotate about its axis O in a magnetic field B parallel to the axis. 
An electric current arrives by the axis and leaves from a point A of the periphery in 
contact with mercury. Let js(r, ϕ) be the surface current density in polar coordinates 
in the disk. Calculate the force that acts on the element of area dS = r dr dϕ of the 
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disk and show that its moment with respect to O is dΓs = – dS B (r.js). Show that 

∫
π ϕ0 d (r.js) does not depend on r and it is equal to the current intensity. Deduce that 

the moment of force is ΓM = −½IR2B, as if the current was rectilinear along OA. 

 

         Figure 6.19. Problem 6.3                                      Figure 6.20. Problem 6.3 

Magnetic fields of particles and currents, Biot-Savart’s law 

P6.4 a) Show the identity ∇×(f V) = ∇f ×V + f ∇×V). Show that A = µoqv/4πR  

corresponds to the field B = µoq (v × R)/4πR3 and that A(r) = (µo/4π)∫∫∫V dV' j(r')/R 
corresponds to B(r) = (µo/4π)∫∫∫V dV' j(r')×R/R3. Verify that ∇.B = 0. b) Determine 
the vector potential of the uniform field B = B ez. Verify that the flux of B through a 
circle of axis Oz is equal to the circulation of A along this circle. 

P6.5 a) A narrow coil of N turns and radius a is supplied with a current I. Analyze 
its field B on its axis. What is the limit expression of B if z >> R? Compare it with 
the field of a magnetic moment. At which distance do these fields differ by less than  
1 %? Calculate the circulation of B along the axis and show that Ampère’s law is 
verified although the path is not closed. Explain why. b) Two narrow coils (called 
Helmholtz coils) of radius a and N turns are put parallel to one another a distance D 
apart. They are supplied with the same current I. Study the variation of B on their 
common axis Oz. Verify that B is almost constant near the point O situated at equal 
distance from the coils. Show that, if D = a, both the first and the second derivatives 
of B are equal to 0 at O. Thus, the field B is almost uniform near O.  

Magnetic moment  

P6.6 A d’Arsonval galvanometer consists of a narrow rectangular coil of N turns 
placed in a radial magnetic field B of a permanent magnet (Figure 6.20). a) Show 
that it is subject to a magnetic torque NISB, where I is the current and S is the area 
of one rectangular run. b) The coil is subject also to the restoring moment Γ′ = 
−Cθ of a spring. Show that the intensity is related to the deviation angle θ by the 
relation I = Cθ/NBS.  
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P6.7 a) Show that the magnetic moment M = I ∫∫S dS′ n(r′) of a circuit C is 
independent of the surface S bounded by C and used to calculate M. b) This circuit 
is free to rotate about a point O in a uniform external magnetic field B. Show that 
the moment of the magnetic forces is independent of O. 

P6.8 The current due to the motion of charges that are carried by a moving body is 
called convection current to distinguish it from the conduction current in a 
conductor at rest. Rowland’s experiment in 1876 has shown that the convection 
current produces a magnetic field exactly as conduction currents. a) A charge q is 
uniformly distributed on a non-conducting disk of radius a. The disk is rotated about 
its axis at N turns per second. By analyzing the symmetries, determine the direction 
of B at a point of the axis situated at a distance z from the center O of the disk. 
Calculate B and show that, at large distance (z >> a), the disk is equivalent to a 
magnetic moment M = ½πqNa2. b) Make a similar analysis in the case of a charge q 
uniformly distributed on a sphere of radius R. c) Verify that we may write in both 
cases M = qL/2m where L is the angular momentum of the body. This result holds 
for a body of any shape if the charge and the mass were uniformly distributed. 

Field and potential of some simple circuits 

P6.9 A long cylindrical conductor of radius R and axis Oz has a cylindrical cavity of 
radius a with its axis displaced a distance b from Oz and it carries a current I 
uniformly distributed on its section. Show that the field B inside the cavity is 
uniform with a magnitude B = µobI/2π(R2 − a2). 

P6.10 a) A thin rod of length 2L carries a current I. Calculate the field and the vector 
potential at a distance ρ in its median plane. Use this result to calculate the field and 
the vector potential of a square circuit of sides 2L at a distance z from its center on 
its normal axis. What are the limit expressions of B and A if z >> L? b) A very long 
rod and radius a carries a current I uniformly distributed on the section. Determine B 
and A at a distance ρ from the axis both inside and outside the rod. What are the 
limit expressions of B and A if a → 0? c) A plate of very large dimensions but a 
small thickness d carries a uniform current density j. Calculate B and A outside and 
inside this plate. What are the limits of B and A if d → 0. 

P6.11 A coaxial cable is formed by a cylinder of radius r1 surrounded by a 
cylindrical shell of internal radius r2 and external radius r3. It carries in one direction 
and the other a current I uniformly distributed on the section of the conductors. 
Calculate B as a function of the distance r to the axis. 

P6.12 A long copper cylindrical conductor of radius a = 1 cm carries a current  
I = 20 A uniformly distributed on the section. a) Calculate B inside the conductor at 
a distance ρ from the axis. Compare B on the surface of the conductor to the Earth’s 
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magnetic field of 0.4 G. b) Assuming that copper has 1 conduction electron per 
atom, calculate the drift velocity of the electrons. c) Calculate the magnetic force 
exerted on a conduction electron situated at a distance ρ from the axis. What is the 
direction of this force? d) Calculate the radial electric field, which counterbalances 
this force. What is the charge density, which produces this electric field? What is the 
number of electrons in excess that are able to produce this charge density? Is it 
reasonable to assume that the current density is uniform? 

P6.13 a) Consider a cylindrical beam of particles of charge q, density Nv particles 
per unit volume, and moving with the velocity v. The Coulomb repulsion tends to 
increase the beam radius, while the magnetic force tends to decrease it. Calculate the 
electric and the magnetic fields produced by this beam at a distance ρ from its axis 
and compare the electric force and the magnetic force. Show that a charge at the 
periphery is submitted to a total force F = CI/ρ, where I is the intensity of the beam 
and C = (q/2πεov)(1−v2/c2). b) Show that the divergence of the beam is  
dρ/dt = = 2(CI/m) ln(ρ/ρo)1/2, where ρo is the distance to the axis of the points, where 
the radial velocity is equal to zero.  

P6.14 a) Use the symmetries to show that the field of a very long solenoid is 
independent of z and ϕ in cylindrical coordinates. b) Use the equation  
∇.B = 0 with the condition of regularity on the axis (or that the flux of B through an 
appropriate closed surface is equal to zero) to show that Bρ = 0 everywhere. c) Use 
Ampère’s law ∇ × B = 0 to show that, outside the conductor, Bz does not depend on 
the distance ρ from the axis. d) Let n be the number of turns per unit length. Show 
that, outside the solenoid, Bz = 0 and Bϕ = µoI/2πρ and that, inside the solenoid,  
Bϕ = 0 and Bz= µonI, e) Using a simple argument in the case of a solenoid of finite 
length, show that the field Bz just at the end of the solenoid is ½ µonI. 

P6.15 a) Using the symmetries, show that the vector potential inside a solenoid is 
oriented in the direction of eϕ with a magnitude that depends only on ρ. b) Express 
the circulation of A along an arbitrary closed path C in terms of the flux of B. 
Choosing appropriate paths, establish the expression of the curl in cylindrical 
coordinates. c) Using the expression B(in) = µonI ez of the field inside a solenoid 
(where n is the number of turns per unit length) and B(ex)

 = (µoI/2πr)eϕ outside it, 
determine the vector potential A inside and outside the solenoid. 

P6.16 A toroidal coil of N turns carries a current I. Use the symmetry and Ampère’s 
law to show that Bϕ = µoNI/2πρ inside the coil and Bϕ = 0 outside it. Using an 
Ampèrien contour A around the coil, show that the field B outside the coil has a 
magnitude comparable to the field of a single loop carrying an intensity I. 
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Equations of time-independent magnetism in vacuum, singularities of B and A 

P6.17 a) Show that A(r) = (µo/4π)∫∫∫ dV′ j(r′)/R, where R = r − r′, is a solution of the 
equation ΔA = −µoj. For this, use the identity Δ(1/|r − r′|) = −4π δ(r − r′), where  
δ(r − r′) is the three-dimensional Dirac function (see section A.11 of the appendix 
A). Show that A verifies the condition ∇.A = 0. b) Deduce that the field may be 
written as B(r) = (µo/4π)∫∫∫V dV′ [∇′× j(r′)]/R, where ∇′ is the vector differential 
operator with respect to the coordinates (x′, y′, z′). Using the equation B = ∇×A, 
show that ∇×B = µoj and ∇.B = 0. Show that the above expression of B verifies 
these equations. c) A particle of charge q, which is at the position ro with a velocity 
v, is equivalent to a current density j(r) = qv δ(r − ro). Show that its vector potential 
at the point r is A(r) = (µoq/4π) v/R and that its field is B(r) = (µoq/4π) v × R/R3, 
where R = r − ro 

P6.18 a) Let us assume that the field B is symmetric about Oz. Using the cylindrical 
components of the field, show that the conservation of the magnetic flux through a 
small cylinder of axis Oz implies that Bρ = −½ρ ∂zBz near the axis. b) Consider the 
field of a charged particle situated at the origin with a velocity v in the direction of 
Oz. Verify that the flux of its magnetic field through a sphere centered at O is zero. 
Calculate the cylindrical components of B and verify that Bρ = −½ρ ∂zBz. 

P6.19 A very long cylinder of radius R carries a current I uniformly distributed on 
its section. Using cylindrical coordinates, integrate the equation ΔA = −µoj inside 
and outside the cylinder. Use the continuity conditions of A and B and that B is 
finite everywhere to write the expressions of A and B inside and outside the 
cylinder.  

P6.20 A long solenoid of n turns per unit length carries a current I. The winding 
forms a cylindrical shell of internal radius a and external radius b. Using the 
symmetries, show that the equation ∇×A = −µoj reduces in cylindrical coordinates to 
the equation (d/dρ)[(1/ρ)(d/dρ)(ρAϕ)] = −µojϕ. Determine Aϕ as a function of ρ. 
Impose the continuity of the solutions on the surfaces ρ = a and ρ = b and verify that 
B(in) − B(ex) = µojs ez. 

P6.21 a) To analyze the field and the vector potential near a point O of a thin wire C, 
we consider a segment C1 situated between –L and +L and the remaining C2. 
Obviously, the contribution of C2 is regular. Show that, in the limit L → 0, the 
contribution of C1 to the field is (µoIL/2πρ)eϕ and its contribution to the vector 
potential is (µoI/2π) ln (2L/ρ)ez. Thus, the field and the vector potential are infinite 
on the wire. b) To show that the field is regular at points M of a surface S carrying a 
current density js, we consider a small disk S1 of radius r1 around M and the 
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remaining of the surface S2. The contribution of S2 is regular. Show that, in the limit 
r1→ 0, the contribution of S1 to the field is ±½µojs × ez near the surface and its 
contribution to the vector potential tends to 0 proportionally to r1. c) To show that 
the field and the vector potential are regular at points M of a volume V carrying a 
current density j, we consider a small sphere V1 of radius r1 and center M and the 
remaining V2. The contribution of V2 is regular. Show that, in the limit r1 → 0, the 
contribution of V1 tends to zero.  

Magnetic energy and forces  

P6.22 Show that the resultant of the forces exerted by a field B on the sides of a 
small rectangular circuit may be written as dF = (dM. ∇) B. 

P6.23 a) A circular loop of radius R is parallel to the Oxy plane and its center is at  
z = h on the z axis. It is immersed in a field B1 = Bo(1 + px)ez where Bo and p are 
constant. Calculate the resultant of the magnetic forces exerted on this loop by using 
Laplace’s law and by using the potential energy of the circuit in the magnetic field. 
b) Do the same if the field was B2 = Bo(1 + px)ex. Verify that, in this case, the two 
methods do not give the same result. Show that the expression B2 cannot be really 
that of a magnetic field.  

P6.24. A very long rectilinear and thin conducting wire carries a current of 5 A. 
What is the force that it exerts on an electron situated at a distance d = 10 cm from 
the wire and moving with a velocity v = 3 × 105 m/s parallel to the wire? What is the 
field B produced by the electron at points of the wire? What is the force that the 
electron exerts on the wire? Is the principle of action and reaction verified? 

P6.25 Two conducting rectilinear wires are parallel and separated by a distance  
d = 10 cm. They carry the intensities I1 = 20 A and I2 = 30 A in the same direction. 
Calculate the magnetic field at a distance D = 30 cm from both wires. Calculate the 
field of the first wire on the second. What is the force exerted per unit length on the 
second wire? 

P6.26 a) A magnetic dipole M is placed at the origin O and oriented in the direction 
of Oz. Calculate its field at a point M of the axis Oz such that OM = z. Another 
dipole M is placed at M and it makes an angle θ with Oz. Calculate the moment of 
force exerted on the second dipole. What is its equilibrium position? b) Calculate the 
interaction energy of these dipoles. What is the required energy to reverse the 
direction of the second dipole from its equilibrium position if M = 2 × 10−23 A/m2 
and z = 10−10 m ? Using the expression of this energy, derive the expression of the 
moment of force and the expression of the force of interaction of these dipoles if 
they point in the direction of Oz. c) According to the Bohr model for the hydrogen 
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atom, the electron may move on a circular or elliptical orbit around the proton. We 
consider the case of a circular orbit of radius r. Calculate the period of this orbit, the 
equivalent current intensity and the magnetic moment. What is its field B at the 
center? The proton has an intrinsic magnetic moment Mp. What is the magnetic 
interaction energy of the electron with the proton? 

P6.27 Assume that a surface carries a surface current density js and that the 
magnetic field is zero on the side (1) of this surface. What is the field on the other 
side? An element of area dS of this surface is subject to a magnetic force exerted by 
the field B′ of the other parts of the surface. Show that B′ is continuous on the 
surface and it is equal to ½B. Deduce that the element of area dS is subject to a 
force dfM = ½ dS |js × B|. 



Chapter 7 

Magnetism in Matter 

Before the discovery of the magnetic effects of electric current and charges, the 
understanding of magnetism pertained to permanent magnets. Even today, some of 
the magnetic properties of matter remain little understood and other properties 
remain to be explored. This does not prevent magnetism from underlying many 
applications, ranging from the magnetic compass to measurement instruments, 
electric generators and motors, magnetic tapes for sound and video recording and for 
computer data storage, magnetic levitation, etc. The purpose of this chapter is to 
introduce some basic elements of magnetism in matter. 

7.1. Types of magnetism 

Some materials, said to be ferromagnetic, become magnetized if they are 
exposed to a magnetic field and they remain permanently magnetized if the 
magnetic field is removed. A magnetized body is equivalent to a magnetic moment 
M in a characteristic direction SN. An external magnetic field acts on this body and 
orients it in such a way that the field B enters the body at S and leaves it at N (Figure 
7.1a). Particularly, in the Earth’s magnetic field, N points approximately toward the 
geographic North and S toward the South (Figure 7.1b). However, contrary to the 
electric charges, which constitute an electric dipole, the “magnetic poles” cannot be 
separated and the concept of magnetic pole is simply an analogy with electric 
charges. Similar to dielectrics, which polarize if they are placed in an electric field, 
all materials become magnetized to some extent if they are submitted to the 
magnetic field B of an electric current or another magnetized body. Some materials 
(such as aluminum, chrome, platinum, etc.) acquire a magnetic moment in the 
direction of B, they are said to be paramagnetic. Other materials (such as silver, 
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gold, copper, mercury, lead, etc.) acquire a magnetic moment in the opposite 
direction to B, they are said to be diamagnetic. A magnetized body produces its own 
magnetic field, which leaves the body near N and enters the body near S (Figure 
7.1c). It acts on nearby magnets in such a way that like poles repulse each other 
while unlike poles attract each other. 

 
 
 
 
 
 
 
 

(a)                                       (b)                                                    (c) 

Figure 7.1. a) Magnetization of a rod in an external field B, b) a bar magnet aligns itself in 
the direction of the Earth’s magnetic field in such a way that the pole N of the magnet points 
approximately toward the geographic North (S magnetic pole of the Earth), and c) field lines  

of a bar magnet. A nearby magnet orients itself such that unlike poles attract each other  

The macroscopic magnetic properties of materials have their origin in their 
atomic structure. An electron in orbital motion in the atom is equivalent to a 
microscopic electric circuit, which is subject to the magnetic field of other systems 
and which produces a magnetic field exactly like a magnetic moment  
Mo = −eLe/2me, where Le is the orbital angular momentum of the electron. The 
magnetic moments of the various electrons of the atom add up vectorially to form 
the magnetic moment of the atom Ma = −eLa/2me, where La is the total angular 
momentum of the atom. We must add also the intrinsic magnetic moments of the 
electrons and the nuclear magnetic moment. The magnetic properties of materials 
may be explained only by using quantum mechanics. In this theory, the three 
components of angular momentum L̂  cannot be determined simultaneously. It is 
possible to determine only the squared magnitude and one component of L̂ , in the z 
direction, for instance. 2L̂  takes the values 2l(l+1), where  = h/2π is the reduced 
Planck’s constant and the quantum number l takes the values 0, 1, 2, etc. For a given 
l, Lz takes the values ml, where ml may take one of the values −l, −l + 1, …  

l −1, l. It is convenient to express the angular momentum in unit of  and write the 

orbital magnetic moment of the electron as Mo = − µB eL̂ , where µB = (e /2me) is 
Bohr magneton. On the other hand, the electron also has an intrinsic angular 
momentum or spin s = ½, thus two states of polarization ms = −½ and ms = +½. The 
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spin corresponds to an intrinsic magnetic moment Ms = gµB eŝ  where g is the 
gyromagnetic ratio of the electron that is very approximately equal to −2. Similarly, 
the proton has an orbital magnetic moment Mo = µN pL̂  and an intrinsic magnetic 

moment Ms = gpµN pŝ , where gp = 2.793 and µN = e /2mp (about 1839 times smaller 
than µB). Although the neutron is neutral, it has an intrinsic magnetic moment  
Ms = gnµN nŝ , where gn = −1.913. 

Although electrons have individual magnetic moments, they are often paired in 
such a way that the magnetic moment of the atom is zero. On the other hand, in 
solids, the magnetic moment of the tightly packed atoms is not the same as that of 
the free atoms. The most important contribution to magnetism comes from the 
electron spin.  

7.2. Diamagnetism and paramagnetism 

Diamagnetism may be explained by the action of an external magnetic field on 
the electron orbits in the atom. To simplify, let us consider an electron in a circular 
orbit of radius ro about the nucleus under the effect of Coulomb’s force. Thus, we 
have mvo

2/ro = e2/4πεoro
2. This rotation of period 2πro/vo is equivalent to a current  

Io = −evo/2πro. The corresponding orbital magnetic moment is Mo = πro
2Ion = 

−½erovon = −eLe/2me, where n is the unit vector normal to the orbit and oriented in 
such a way that the electron circulates according to the right-hand rule (Figure 7.2a). 

 
 (a)                                         (b)                                  (c)                          (d) 

Figure 7.2. Action of a field Bl: a) on an electronic orbit perpendicular to Bl,  
and b) on an oblique orbit, c) random orientation of the magnetic moments  

in the absence of Bl, and d) their orientation in an external field B(ex) 

If a sample is placed in an external field B(ex), each atom is subject to a local 
magnetic field Bl, which results from the superposition of B(ex) and the fields of the 
other atoms of the sample, excluding the field of the considered atom. Consider first 
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the case of a field Bl that is weak and parallel to Le (Figure 7.2a), let us assume that 
the radius of the orbit changes slightly to become r = ro + δr and the speed of the 
electron changes to becomes v = vo + δv. The electron is now subject to an additional 
force – e(v×Bl) = ∓ evBl er depending on whether it circulates in the right-hand or 
the left-hand directions about Bl. The new condition of stationary motion is mev2/r = 
e2/4πεor2 ± evBl. Then, the magnetic energy of the atom in the magnetic field is  
–IΦM = (±ev/2πr)πr2Bl = ± ½evrBl. The law of conservation of energy implies that 
½mev2 − e2/4πεor = ½mevo

2 − e2/4πεoro
 ± ½evrBl . These equations give δr = 0 and  

δv = ±(e/2me)roBl to the first order in Bl. The angular momentum of the electron 
varies by δLe = ±mer δv n = ½ero

2Bl and its magnetic moment varies by 

δMo = − (e2/4me) ro
2Bl.                                        [7.1] 

This additional magnetic moment points in the opposite direction to Bl. 

If Bl is not perpendicular to the orbit (Figure 7.2b), it acts on the magnetic 
moment with a moment of force ΓM = Mo × Bl = −(e/2me) Le × Bl. Thus, the angular 
momentum of the electron Le varies according to the equation dLe/dt = ΓM, i.e. 
dLe/dt = −(e/2me)(Le×Bl ). Taking Oz parallel to Bl, this equation is equivalent to the 
three equations: 

dLx/dt = − ωLLy,     dLy/dt = ωLLx,       dLz/dt = 0      where ωL = eBl /2m.  [7.2] 

From these equations, we deduce that dLe
2/dt = 2Le.dLe/dt = 0. Thus, the magnitude 

of Le is not modified by the magnetic field Bl. On the other hand, the equation  
dLz/dt = 0 implies that the component of Le in the direction of the field remains 
constant. Thus, the tip of the vector Le moves on a circle about Bl. Explicitly, we 
may solve the equations [7.2] and obtain 

Lx = A cos(ωLt + ϕ),     Ly = A sin(ωLt + ϕ)       and  Lz = Constant.  [7.3] 

The vector Le undergoes a precession about Bl with an angular frequency  
ωL = eBl/2me, called the Larmor frequency. This precession may be generally shown 
by using Larmor’s theorem: the motion of a charged particle in a weak magnetic 
field Bl is the superposition of its motion in the absence of Bl and a rotation ωL 
about Bl. This precession gives the electron an additional velocity δv = ωL × r and 
an additional angular momentum 

δLe = me r × δv = ½ er × (Bl × r) = ½ e [Bl r2 − r (Bl. r)].      [7.4] 
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The corresponding additional magnetic moment is 

δMe = −(e/2m)δLe = −(e2/4me)[Blr2 − r(Bl.r)] = ½ωL[xz ex
 + yz ey − (x2 + y2)ez]. 

Because of the rotational symmetry about Oz, the average values over a period are 
<xz> = <yz> = 0 and <x2> = <y2> = <z2> = <r2>/3 where <r2> is the average value of 
the distance squared of the electron from the nucleus. Thus, the mean value of the 
additional magnetic moment is < δMe > =  −(e2/6me)<r2>Bl and the additional 
magnetic moment of the atom is  

< δMa > = Σk δMk = αMBl ,         where  αM = − (e2/6me) Σk <rk
2> .     [7.5] 

αM is the magnetic polarizability. This is a characteristic constant of the atom. It 
does not depend on physical conditions such as temperature and pressure. It is 
amazing that quantum theory does not modify the expression [7.5], although it 
abandons the concept of the electron orbit. Thus, magnetization allows us to have 
some information about Σk<rk

2>, i.e. the atomic structure of the material. For an 
estimate of the order of magnitude, let us take rk as the radius of the atom  
0.5 × 10−10 m, hence Σk <rk

2> ≈ 0.25 × 10−20 Z, where Z is the atomic number. We 
find a polarizability αM ≈ −1.17 × 10−29 Z. All materials are diamagnetic and, among 
materials of high diamagnetism, we find metallic bismuth and some organic 
substances such as benzene.  

The atoms of some substances have permanent magnetic moments with a weak 
interaction between these moments. These substances are said to be paramagnetic. 
This may occur if the number of atomic electrons is odd; thus, they cannot form 
pairs of zero magnetic moment. For instance, this is the case for the NO molecule, 
which has 15 electrons. Even if the number of electrons is even, it may happen that 
the total magnetic moment is non-zero because of some particular electronic 
structure. This is effectively the case of the O2 molecule, the transition elements 
(chromium, manganese, iron, cobalt, nickel, and copper), and the rare earth 
elements, i.e. the lanthanides going from Z = 58 (cerium) to 71 (thecerium) and the 
actinides going from Z = 90 (thorium) to Z = 103 (lawrencium). We note also that 
the conduction electrons in metals may contribute to paramagnetism. The atoms or 
the molecules may become paramagnetic or lose their paramagnetism if they are 
ionized.  

If a paramagnetic body is not exposed to an external field, because of the thermal 
agitation, the magnetic moments are randomly oriented in all directions with the 
same probability. The mean magnetic moment is thus equal to zero (Figure 7.2c). If 
the body is exposed to an external field B(ex), the magnetic moment Ma of an atom or 
molecule is subject to a moment of force ΓM = Ma × Bl, where Bl is the local field. 
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ΓM tends to orient Ma in the direction of Bl. However, the alignment cannot be 
complete because of the thermal agitation (Figure 7.2d). If the medium is isotropic, 
the transverse component of Ma (i.e. perpendicular to Bl), has the same probability to 
point in opposite directions; thus, the average magnetic moment < Ma > is parallel to 
Bl. We have seen that the induced mean magnetic moment in diamagnetic materials 
is also in the direction of Bl. Thus, if the medium is linear and isotropic and the 
external field is not very strong, we may assume that the mean magnetic moment is 
proportional to Bl (the terms of the order Bl

2 or higher being negligible):  

<Ma> = αM Bl.     [7.6] 

The atoms of all substances may acquire a small diamagnetic magnetization. The 
corresponding polarizability αM is negative and independent of the physical 
conditions. On the other hand, in the case of paramagnetic and ferromagnetic 
substances, the polarizability αM is positive, much higher than the diamagnetic 
polarizability, and it depends on physical conditions (especially temperature). Thus, 
diamagnetism is a general property of matter, while paramagnetism and 
ferromagnetism are properties of some specific materials that hide diamagnetism. 

If the correlation of the magnetic moments is weak, an element of volume dV 
acquires a magnetic moment dV Nv<Ma> where Nv is the number of atoms or 
molecules per unit volume. Thus, the medium becomes magnetized with an intensity 
of magnetization (or simply a magnetization) 

M = Nv <Ma> = Nv αM Bl.  [7.7] 

We expect that, in the case of paramagnetism, M increases with Bl and increases if 
the temperature decreases (as the thermal agitation decreases). However, M reaches 
a saturation value Mmax = NvMa if all the magnetic moments point in the same 
direction; this occurs if Bl is very strong or if the temperature is very low.  

The magnetization of a sample is studied by placing it in the uniform field of a 
solenoid carrying a current I (Figure 7.3a). In order to have the field almost uniform, 
the conducting wire is wound around a torus of the substance. This set-up is called 
Rowland’s ring (Figure 7.3b). If the radius of the section is small, compared to the 
radius of the ring, the field is almost uniform in the sample. The conducting wire, 
wound in many turns and carrying the current I, is the primary circuit. The field 
outside matter may be measured from its action on an electric current or by using the 
Hall effect. Inside a substance, it is measured indirectly from the induction that it 
produces in a secondary circuit (a coil of few turns wound around the ring and 
connected to a ballistic galvanometer). If the magnetic flux Φ through a circuit 
varies, an electromagnetic force E = −dΦ/dt is induced. It produces a current I = E/R 
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in a secondary of resistance R (see section 8.1). The induced charge is Q = ∫|I| dt = 
(1/R)∫dt |dΦ/dt| = Φ/R. As the current is set up in the primary, the field increases 
from zero to B. The flux through the Ns turns of the secondary increases from 0 to  
Φ = NsSB and induces a charge Q = Φ/R = Ns SB/R. A measurement of Q using the 
ballistic galvanometer enables the average field B within the substance to be 
determined. For this reason, B is called magnetic induction field. 

 
(a)                                                          (b) 

Figure 7.3. Magnetization of a sample placed a) in a solenoid, and b) in a Rowland ring 

7.3. Magnetization current  

Let us consider a long solenoid of n turns per unit length carrying a current I 
(Figure 7.4a). If the solenoid is empty, the field inside it is uniform and given by  
Bo = µojs, where js = nI is the surface conduction current density. If it is filled with a 
magnetic substance, experiment shows that the magnetic induction field is 
multiplied by a factor µr, called the relative magnetic permeability, to become 

B = µ js,               where  µ = µr µo.      [7.8] 

µ is the magnetic permeability of the substance. In the case of a paramagnetic 
substance, µ depends on the physical conditions (temperature and pressure in the 
case of a gas and temperature in the case of a dense medium). As µ does not depend 
on the size of the sample, we may interpret the modification of the value of B as due 
to a magnetization current of density j's on the surface of the magnetic substance. j's 
is superposed to the conduction current density js, such that 

B = µo( js + j's).         [7.9] 

Comparing with the expression [7.8], we deduce that  

j's = (µr − 1) js = (µr − 1) (B/µ).       [7.10] 

j's does not depend on the dimensions of the sample but on B and the permeability µ. 
A cylinder of the substance of radius r and infinitesimal length dz in the direction of 
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B carries a magnetization current of intensity dI' = dz j's on its lateral surface (Figure 
7.4b). The magnetic moment of this cylinder is dM = πr2 dI' = πr2 dz j's = dV j's, 
where dV is the volume of the cylinder. Thus, we may define the intensity of 
magnetization 

M = dM /dV = j's = (µr − 1) B/µ.   [7.11] 

 
 
 
 
 
 

 

            (a)                           (b)                                                     (c) 

Figure 7.4. a) Surface conduction current in the case of an empty solenoid. b) Magnetization 
current in a solenoid filled with a magnetic substance. c) Volume magnetization current  

In fact, the intensity of magnetization is a vector. If we define a surface 
magnetization current density j′s, the magnetization M is normal to j′s and oriented 
in a direction such that j′s circulates about M according to the right-hand rule, hence 

j′s = M × n,          [7.12] 

where n is the unit vector normal to the surface of the magnetized body and pointing 
outward. Thus, if a body has a uniform magnetization M, it produces a magnetic 
field exactly as if the surface of the body carries a surface current density j′s = M×n.  

If the local field Bl is non-uniform, it will be so for the magnetization M. For 
instance, let us consider a medium whose magnetization is parallel to Oz and 
depends only on y (Figure 7.4c). We may consider the medium as a juxtaposition of 
rectangular parallelepipeds of sides dx, dy, and dz, which are small enough for the 
magnetization to be approximately uniform in each one of them. The magnetic field 
produced by the parallelepiped centered at P(x, y, z) is the same as that of the surface 
current density j's = Mz(y) on the faces that are parallel to Oz and in the illustrated 
direction. This holds also for the parallelepiped centered at Q(x, y + dy, z), but with a 
surface current density j's(y+dy) = Mz(y+dy). The surface current density on the 
common face is Mz(x, y+dy, z) − Mz(x, y, z) = dy (∂yMz) and the current intensity 
carried by this face is I'x = (∂yMz) dx dy dz = (∂yMz) dV where dV is the volume of the 
parallelepiped. This is equivalent to a volume magnetization current density  
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j′ = ∂yMz ex. If Mz depends on x, y and z, the volume magnetization current density
is j′ = (∂yMz) ex − (∂xMz ) ey. In the general case of M non-uniform and pointing in
an arbitrary direction, it may be shown that the volume magnetization current
density is

j′ = ∇∇ × M. [7.13]

Similar to the polarization charges in dielectrics, the magnetization current of
surface density j′s =M × n and volume density j′ = ∇∇ × M are bound in the medium.
They are not only a mathematical trick to calculate the magnetic field of the
magnetized body; they can be interpreted as currents due to the motion of charges
within the atoms and the molecules. Contrary to conduction currents, once
established, the magnetization currents produce no energy dissipation by Joule or
ether effects, as they correspond to the motion of charged particles in vacuum.

7.4. Magnetic field and vector potential in the presence of magnetic matter

If a medium is magnetized, an element of volume dV′ near a point r′ has a
magnetic moment dMM =M(r′)dV′. It produces at point r a vector potential

dA(r) = 3
o

4 Rπ
μ dV′ [M(r′) × R ], where R ≡ r − r′. [7.14]

The total vector potential produced at r by the magnetized body is obtained by
integration on the volume V of the body

Am(r) = (µo/4π)∫∫∫V dV′ M(r′) × R /R3 = (µo/4π) ∫∫∫V dV′ M(r′) × ∇∇′ (R−1), [7.15]

where ∇∇′ is the vector differential operator with respect to the coordinates (x′, y′, z′).
Using the identity ∇∇′[f(r′) M(r′)] = ∇∇′f(r′)×M(r′) + f(r′) ∇∇′×M(r′), where f is any
scalar function, we may write:

Am(r) = (µo/4π)∫∫∫V dV′ [∇∇′ × M(r′)]/R − (µo/4π) ∫∫∫V dV′ ∇∇′ × [M(r′)/R]. [7.16]

The second integral may be transformed into a surface integral by using the identity
∫∫∫V dV ∇∇×V = ∫∫S dS n×V (see problem 7.2). Thus, we may write

Am(r) = (µo/4π)∫∫∫V dV′ [∇∇′ × M(r′)]/R + (µo/4π)∫∫S dS′ [M(r′) × n]/R, [7.17]

where n is the normal unit vector outgoing from the surface S. Comparing with the
expressions [6.20] of the vector potential produced by a volume current density j(r′)
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and a surface current density js(r′), the expression [7.17] means that a magnetized
body produces the same vector potential as the volume current density j′ = ∇∇×M and
the surface current density j′s =M×n. These are the magnetization current densities.

The magnetic field produced at r by the element of volume dV′ at the point r′ is

dBm(r) = 5
o

4 Rπ
μ dV′ {3[M(r′).R]R – R2M(r′)}, where R ≡ r − r′. [7.18]

The field Bm of the magnetized body is obtained by integration over V. We may also
obtain it by using the relation Bm = ∇∇×Am and the expression [7.17], hence

Bm(r) = (µo/4π)∫∫∫V dV′ [j′(r′) × R]/R3+ (µo/4π)∫∫S dS′ [j′s(r′) × R]/R3. [7.19]

To have the total vector potential and the total magnetic field, we must add to Am
and Bm the vector potential and field produced by the free currents.

It is not evident that the expressions [7.17] and [7.19] hold for the vector
potential Am and the field Bm evaluated inside the magnetized body or outside it
near its surface, because they are consequences of the expression [7.14] of the vector
potential of a magnetic moment at large distance. As in the case of the potential Vp
and the field Ep of a polarized dielectric, it may be shown that the expressions of Am
and Bm are valid everywhere. We note that Am and Bm are the macroscopic vector
potential and field, i.e. the average values of the microscopic vector potential and
field produced by the magnetic moments of atoms. Contrary to microscopic
quantities, which undergo important variations in space and time and even become
infinite at the position of atoms, macroscopic quantities are slowly varying in space
and time and are time-independent in the case of stationary phenomena.

7.5. Ampère’s law in the integral form in the presence of magnetic matter

The experiment shows that the field in a paramagnetic or diamagnetic cylinder
placed in a very long solenoid is B = µrBo, where µr is the relative permeability and
Bo is the field in the empty solenoid (Figure 7.5). If js is the conduction current
surface charge density in the winding, the circulation of B over the path C is

∫C dr.B = Bl = µrBol = µr µo jsl = µ I(in), [7.20]

where we have used the relation Bo = µojs, and µ = µrµo is the permeability. I(in) is the
conduction current, which passes inside C. Using [7.10], we may also write

∫C dr.B = Bl = µol (js + j′s) = µo(I(in) + I' (in)). [7.21]
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I' (in) is the total intensity of the magnetization currents, which pass inside C.
Equations [7.20] and [7.21], which were derived in a particular case, hold in all
cases. Thus, we may formulate Ampère’s law in two ways: by using only the
conduction currents

∫C dr .(B/µ) = I(in), [7.22]

or by using both the conduction currents and the magnetization currents,

∫C dr.B = µo(I(in) + I' (in)). [7.23]

It should be noted that, if the magnetic medium is non-homogeneous, the
permeability µ in [7.22] varies along the path C.

Figure 7.5. Using Ampère’s law to determine the field
of a solenoid containing a magnetic material

Using the expression j′ = ∇∇×M for the magnetization current density, equation
[7.23] may be written as

∫C dr′.B(r′)/µo = I(in) + ∫∫S dS′ ∇ × M(r′) = I(in) + ∫C dr′.M(r′).

We may also write this equation in the form

∫C dr′.H(r′) = I(in) , where H = B/µo −M. [7.24]

H is the magnetic field (sometimes it is called magnetic excitation).
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7.6. Equations of time-independent magnetism in the presence of matter 

In the presence of matter, magnetic phenomena are specified by the magnetic 
induction field B and the intensity of magnetization M. We may also use the fields B 
and H. Time-independent magnetic phenomena obey two fundamental laws: the 
conservation of the flux of B and Ampère’s law. 

 

A) Law of conservation of magnetic flux 

The expression of the conservation of the flux of B and its consequences are the 
same as in vacuum. The absence of magnetic charges implies that the flux of the 
magnetic induction field B through any closed surface is equal to zero 

∫∫S dS n.B = 0.          [7.25] 

Transforming the flux of B through S into the volume integral of ∇.B by using 
Gauss-Ostrogradsky’s theorem, this law may be written in the local form 

∇.B = 0,            [7.26] 

which is identically satisfied if B is the curl of a vector potential A: 

B = ∇ × A.         [7.27] 

Using Stokes’ theorem, the flux of B through any open surface S bounded by a 
closed curve C may be written as the circulation of A over C:  

∫∫S dS n.B = ∫C dr.A.        [7.28] 

Thus, the flux through all surfaces S bounded by the same curve C is the same.  

B) Ampère’s law in the local form 

Let us write Ampère’s law in the form [7.23], transform the circulation of B over 
C into the flux of ∇ × B through S, and express the conduction and the 
magnetization currents as the fluxes of j and j' through S. We obtain the equation  

∫∫S dS n.(∇ × B) = µo ∫∫S dS n.(j + j′).      [7.29] 

This equation must be satisfied for any surface S, hence  

∇ × B = µo j + µo ∇ × M,  [7.30] 
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where we have used the equation j′ = ∇ × M. This is the local form of Ampère’s 
law. Instead of M, we may use the magnetic field H defined by 

H = B/µo − M       or    B = µo(H + M ).  [7.31] 

The local form of Ampère’s law [7.30], becomes  

∇ × H = j.          [7.32] 

If the magnetic medium is linear and isotropic (thus, excluding ferromagnetic 
mediums), fields B, M, and H are proportional to each other: 

M = χM H,    B = µH,          where χM = µr − 1 = µ/µo − 1.        [7.33] 

χM is the magnetic susceptibility of the medium. In this case, Ampère’s law takes the 
integral form [7.22] or the local form 

∇ × (B/µ) = j.         [7.34] 

The magnetic susceptibility of some materials is given in the Table 7.1.  

In the case of permanent magnetic materials of known M, knowing the 
conduction current density j, equation [7.32] and the boundary conditions, we may 
determine H. Then, equation [7.31] determines B. Also, knowing j and M, we may 
use equation [7.30] and the boundary conditions to determine directly B and, then, 
use [7.31] to determine H. In the case of a paramagnetic or diamagnetic material of 
known µ, B is sufficient to specify the magnetostatic field.  

Diamagnetic 
material 

bismuth  
(solid) 

Carbon 
(diamond) Sodium Copper Water Nitrogen 

106 χM SI −166 −22 −2.4 −9.2 −9.0 −0.005 
 

Paramagnetic 
material Tungsten Cesium Aluminum Magnesium Oxygen 

106 χM SI 68 0.505 23 12 1.9 

Table 7.1. Magnetic susceptibility of some materials at 20°C 

C) Vector potential 

In the following, we consider the case of a linear and isotropic medium of 
permeability µ. As B = µH, the field B is sufficient to specify the magnetic field. 
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The fundamental equation ∇.B = 0 is identically satisfied if B = ∇ × A. Then, we 
may write Ampère’s equation ∇ × B = µj in the form  

ΔA − ∇(∇.A) = −µj.        [7.35] 

This equation enables A to be determined if j is known everywhere. Knowing A, we 
may calculate B = ∇ × A, then H = B/µ and M = B/µo − H.  

We note that the vector potential A is not unique. A gauge transformation,  
A → A′ = A + ∇f does not change the field B. We may always choose the function f 
to make A verify the condition 

∇.A = 0.            [7.36] 

This enables equation [7.35] to be written in a simpler form  

ΔA = −µ j.          [7.37] 

Taking the Cartesian components, this vector equation is equivalent to three 
equations (for the three components of A) similar to Poisson’s equation in 
electrostatics. Thus, it has the solution 

A(r) = Ao(r) + (µ/4π) ∫∫∫V dV′ j(r′)/R,  [7.38] 

where Ao(r) is a solution of the homogeneous equation ΔAo = 0. We may always 
choose Ao(r) to make A satisfy any imposed boundary conditions.  

In the case of a point charge qi of velocity vi and located at the point ri, the 
current density at a point r′ is equal to zero if r′ is different from ri and infinite if  
r′ = ri. This is a three-dimensional Dirac function qivi δ(r′ − ri) (see section A.11 of 
Appendix A). In the case of several charges, the current density is Σi qivi δ(r′ − ri). 
Substituting this expression in [7.38] and integrating by using the δ-function, we get 
the expression of the vector potential and the field produced by a system of charges: 

A(r) = Ao(r) + (µ/4π) qi vi/Ri,      where Ri = r − ri,      [7.39] 
B(r) = ∇ × Ao(r) + (µ/4π)Σi qivi ×Ri /Ri

3.              [7.40] 

Similarly, the vector potential and the magnetic field produced at r by a magnetic 
moment M at r′ are 

A(r) = (µ/4πR3) (M × R),            where R = r − r′,                 [7.41] 
B(r) = (µ/4πR5) [3 (M.R) R − R2 M].   [7.42] 
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D) Comparison of the laws of electrostatics and time-independent magnetism

− The field B may be compared to the field E, while the field H may be
compared to the electric displacement D. Indeed, D and H are calculated by using
the free electric charges and free currents, while E and B are calculated by using
both free and bound electric charges and currents. Thus, E and B depend on the
properties of matter.

− The equation ∇∇×E = 0, which expresses that E is conservative (thus E = −∇∇V)
is similar to the equation ∇∇.B = 0, which expresses that the flux of B is conservative
(thus B = ∇×A). On the other hand, Gauss equation ∇∇.D = qv is similar to Ampère’s
equation ∇∇×H = j. In the general case, D is not conservative and H does not have a
conservative flux.

− In the case of time-dependent phenomena, the equations ∇∇.D = qv and ∇∇.B = 0
remain valid, while ∇∇ × E = 0 and ∇∇ × H = j must be modified.

− As for the invariance properties, the fields E and D, the polarization P, the
dipole moment p, the current density j, and the vector potential A are true vectors,
the potential V and the charge are true scalars. The magnetic fields B and H, the
intensity of magnetizationM, and the magnetic momentMM are pseudovectors.

7.7. Discontinuities of the magnetic field

As we have seen in section 6.9C, the magnetic field has singularities at points
where there are charges and linear currents and discontinuities at a surface carrying
a current or the interface S of two mediums. Thus, the two fundamental laws of
time-independent magnetism cannot be used on S in the local forms ∇∇×H = j and
∇∇.B = 0 but in the integral forms [7.24] and [7.25].

Let S be the interface of two mediums (1) and (2), in which the magnetization
are M1 and M2, respectively (Figure 7.6a). If (at least) one of the mediums is a
conductor, S may carry a conduction surface current density js and the conductor
may have a conduction volume current density. We use coordinates such that the
plane Oxy is tangent to S, Ox parallel to js and Oz oriented in the direction of the
normal unit vector n12 (pointing from medium 1 toward medium 2). Let EFGH be a
rectangular path whose sides EF and GH are parallel to js and situated on one side of
S and the other, while the sides GH and HF are very short. The flux of the volume
currents j1 and j2 through this path is negligible and no conduction surface current
density passes through it. Thus, Ampère’s law may be written as

EF .H2 + GH .H1 = 0, hence H1x − H2x = 0. [7.43]
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Next, consider the rectangular path MNPQ oriented according to the right-hand rule 
about js and whose sides MN and PQ of length l are parallel to Oy. The conduction 
current intensity that passes through it is ljs. Thus, Ampère’s law gives  

MN .H2 + PQ .H1 = l js,         hence   −H1y + H2y = js.     [7.44] 

Designating by H1// and H2// the components of H, which are parallel to S, equations 
[7.43] and [7.44] may be written in a single vector relation 

H1// − H2// = n12 × js.         [7.45] 

Thus, if the interface S carries a conduction surface current density js, the component of 
H, which is parallel to js is continuous, while the component, which is parallel to S 
but normal to js, has a discontinuity equal to js according to [7.45].  

 
 
 
 
 
 
 

(a)                                                                              (b) 

Figure 7.6. a) Discontinuities of H and B at the interface of two magnetic mediums,  
and b) the field lines B are broken at the interface of two linear mediums 

Let us now apply the conservation law of the flux of B through a very short 
cylinder of section dS, and situated on both sides of S (Figure 7.6a). We find 

dS B2. n12 − dS B1.n12 = 0,         hence B⊥1 = B⊥2.    [7.46] 

This relation expresses the continuity of the normal component of B. Using the 
intensity of magnetization M instead H and equation [7.31], equation [7.45] gives 
the discontinuity of the component of B parallel to the interface: 

B1// − B2// = µo n12 × js + µo (M1// − M2//).    [7.47] 

If the mediums are linear and isotropic, and S carries no surface conduction 
current, the component H// parallel to S and the component B⊥ normal to S are 
continuous. As B1 = µ1H1 and B2 = µ2H2, we find: 

B1// /µ1 = B2// /µ2,          B1⊥ = B2⊥.  [7.48] 
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The lines of the field B are broken on S. If θ1 and θ2 are the angles of B1 and B2 with 
the normal n12 (Figure 7.6b), we find: 

 1

2

tan
tan

θ
θ  

 = 
2 //2

1//1

⊥

⊥

BB
BB

/
/  = 

2

1
μ
μ .                  [7.49] 

The angle of B with n12 is larger in the medium with the higher permeability µ.  

7.8. Examples of calculation of the field of permanent magnets 

In this section we analyze the magnetic field produced by a permanent magnet, 
of given intensity of magnetization M in the absence of any conduction current 
density and external field. The fields B and H obey the relations ∇ × H = 0, ∇.B = 0 
and B = εo(H + M), without having the ratio B/H necessarily constant. We assume 
that the magnetization is uniform, the volume magnetization current density  
j' = ∇ × M is then equal to zero and the field and vector potential are the same as 
those of a surface current density j′s = M × n. Sometimes we may determine A as a 
solution of the equation ΔA = 0 with the boundary conditions and deduce B. 

A) Field of a magnetized cylinder in the direction of its axis 

Consider a cylinder of axis Oz, length 2h, radius R and density of magnetization 
M, which is uniform and parallel to Oz (Figure 7.7a). The surface magnetization 
current density is j′s = M × n = M eϕ only on the lateral surface. The magnetized 
cylinder is thus equivalent to a solenoid of finite length 2h and radius R (see section 
6.8C). Its field at a point P of coordinate z on the axis is  

B = ½ µo(cos θ1 − cos θ2) M,  [7.50] 

where θ1 and θ2 are the half-angles of the cone whose vertex is at P and which 
subtends the bases at z = ± h. They are given by 

cos θ1 = 
22 )( zhR

zh
−+

− ,            cos θ2 = 22 )( hzR
zh
++

−− .  [7.51] 

Using equation [7.31], H inside and outside the cylinder may be written as 

H(in) = ½[cosθ1 − cosθ2 − 2]M,        H(ex) = ½[cos θ1 − cos θ2] M.    [7.52] 

In the case of a thin disk (h << R), we find inside it 

B(in) = µo (h/R) M          and         H(in) = − [1 − h/R] M.   [7.53] 
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In the case of a thin rod, we find at its middle-point  

B(in)(0) ≈ µoM,          H(in)(0) ≈ 0.   [7.54] 

Figure 7.7a illustrates the lines of the fields B and H in the case of a magnetized 
cylinder.  

B) Field of a uniformly magnetized ball 

Consider a sphere of radius R and uniform intensity of magnetization M in the 
direction of Oz (Figure 7.7b). Outside the sphere, where M = 0 and j = 0, the field 
B(ex) obeys the equations ∇.B(ex) = 0 and ∇×B(ex) = 0. Thus, it is conservative and we 
may use a scalar magnetic potential B(ex) = −∇VM. The scalar potential of a magnetic 
moment M has the same expression as the electric potential of an electric dipole p 
with the replacement of p/εo by µoM. Thus, the scalar magnetic potential of a sphere 
of magnetization M has the same expression as the electric potential of a sphere of 
dielectric of polarization P, but with P/εo replaced by µoM (see section 4.8B), hence  

VM
(ex)(r) = µo (R3/3r3)(M.r),   

B(ex)(r) = − ∇VM = µo(R3/3r5)[3(M.r)r − r2M]      and  H(ex) = B(ex)/µo. [7.55] 

This is the field of a magnetic moment M = (4/3)(πR3)M placed at the sphere center.  

 

(a)                       (b)                                   (c)                                             (d) 

Figure 7.7. a) Field of a magnetized cylinder. b) Uniformly magnetized sphere and the 
corresponding surface magnetization  current. c) Lines of B and d) lines of H 

We note that the field H also verifies the equations ∇.H = 0 and ∇×H = 0 
outside the sphere. Thus, it is conservative and we may write H = −∇V'M with  
V'M = VM/µo. Particularly, on the surface of the sphere (r = R), we find 

VM
(ex)(R) = µo V'M = (µo/3) (M.R) = (µo/3) M z,  

B(ex)(R) = µoH(ex) = (µo/3)M [cos θ er − ez].   [7.56] 
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Inside the magnetized sphere, the field H(in) = B(in)/µo − M verifies Ampère’s law 
∇ × H(in) = 0 since j = 0. We deduce that H(in) = −∇V'M(in). It also verifies the 
equation ∇.H(in) = 0 as ∇.B(in) = 0 and ∇.M = 0 (in the case of uniform M). On the 
other hand, H is determined only by the conduction currents (which are equal to 
zero in this case). Thus, there is no reason for V'M(in) to be discontinuous on the 
surface of the sphere. We may guess that V'M(in) = (1/3)Mz is a solution of Ampère’s 
equation with the right boundary conditions [7.56]. As the solution of the field 
equations (which verifies the boundary conditions) is unique, we deduce that this is 
the solution of our problem, hence  

V'M(in) = (1/3) Mz;           H(in) = − ∇V M
(in) = − (1/3)M, 

B(in) = µo(H(in) + M ) = (2/3) µoM.  [7.57] 

We note that B(in) = µoH + M verifies the equation ∇×B(in) = 0. Thus, we may write 
B(in) = −∇VM

(in), where VM
(in) = − (2/3)µoMz + C. This potential does not match VM

(ex) 
given by [7.56] for any value of the constant C. Thus, VM is not continuous.  

The fields B(ex) and B(in) correspond to the vector potentials 

A(ex)(r) = (µo/4πr3) (M × r) = (µoR3/3r2) M eϕ, 
A(in)(r) = ½ Br eϕ = (µo/3)Mr eϕ.  [7.58] 

A(ex) is the vector potential of a magnetic moment M = (4/3)πR3M. The expressions 
of A(in) and A(ex) coincide on the sphere; this shows the continuity of A.  

Inside a magnetized cylinder, sphere, or a body of any shape, the field B is 
parallel to M and in the same direction, while the field H points in the opposite 
direction to M. We say that H(in) is a demagnetizing field. The calculated fields 
verify the continuity conditions of the normal component of B and the tangential 
component of H on the surface of a body if it carries no conduction current.  

C) Magnetic field in cavities 

Using the superposition principle and the preceding results, we may calculate the 
field in a cavity excavated in a medium in which the magnetization M and the field 
B are uniform. Let us assume that the fields are B(cav)(r) and H(cav)(r) at the points r 
in the cavity and that the fields are B(in)(r) and H(in)(r) = B(in)/µo − M at the same 
point r inside a body, which has the same magnetization M and may fill the cavity. 
If the medium had no cavity, the fields would be obviously B and H = B/µo − M. 
The superposition principle enables us to write   

B(cav)(r) = B − B(in)(r)       and      H(cav)(r) = H − H(in)(r) = B/µo − B(in)/µo. [7.59] 
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                     (a)                                               (b)                                             (c) 

Figure 7.8. Magnetic field: a) in a thin cylindrical cavity, whose axis is in the direction of M,  
b) a long cylindrical cavity in the direction of M, and c) in a spherical cavity 

− In the case of a cylindrical cavity that is very thin in the direction of M (Figure 
7.8a), we find B(in)(0) = µo(h/R) M and H(in) = − (1 − h/R) M at its center; hence  

B(cav)(0) = µoH(cav)(0) = B − µo(h/R) M.  [7.60] 

− In the case of a cylindrical cavity that is very long in the direction of M (Figure 
7.8b), we find B(in)(0) ≈ µoM and H(in)(0) ≈ 0 at its center; hence  

B(cav)(0) = µoH(cav)(0) = B − µoM.   [7.61] 

− In the case of a spherical cavity (Figure 7.8c), B(in)(r) = (2/3) µoM, hence  

B(cav)(r) = µoH(cav)(r) = B − (2/3) µoM.  [7.62] 

7.9. Magnetization of a body in an external field 

In the absence of magnetic matter, the field B is sufficient to analyze magnetic 
phenomena as B = µoH. The field B may be calculated using Biot-Savart’s law or 
Ampère’s law. In the presence of magnetic matter, the problem is more complicated 
because B is the superposition of the field BI produced by the conduction currents 
and the field Bm produced by the magnetic matter. We may first calculate H, which 
depends only on the conduction currents and deduce the field B = µo(H + M). 
However, M is not known as it depends on B, which we have to calculate. Thus, the 
problem is complicated and generally, it may not be solved analytically. In this 
section, we consider some simple cases and we assume that the medium is linear and 
isotropic with a known relative permeability µr and that it is exposed to a uniform 
field Bo (in the absence of the sample). 

M S M
C M
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A) Magnetization and field of a thin rod parallel to a uniform field 

Consider a thin rod that we place parallel to the field Bo (Figure 7.9a). By 
symmetry, the intensity of magnetization is parallel to the axis of the rod. The 
conservation of the flux of B through the sections of the rod implies that B is 
uniform and so is M. Thus the field due to the magnetization is the same as that of a 
solenoid carrying a surface current of density js = M. Its field is Bm

(in) = µoM inside 
the rod. Thus, the total field in the central region of the rod is  

B(in) = Bo + Bm
(in) = Bo + µoM,     B(ex) = Bo,  

H(in) = H(ex) = B(in)/µo − M = Bo/µo.   [7.63] 

The permeability being µr, we must have B(in) = µrµoH(in), hence: 

M = (µr −1)Bo/µo ,              and    B(in) = µrBo.   [7.64] 

 
(a)                                                (b)                                     (c) 

Figure 7.9. a) Magnetization of a rod, b) of a thin plate, and c) of a sphere 

B) Magnetization and field of a plate perpendicular to a uniform field 

If a thin plate is placed perpendicular to a field Bo, because of the symmetries, the 
magnetization M and the field B are perpendicular to the plate and uniform in any 
plane parallel to the faces. The conservation of the flux of B through these planes 
implies that B is uniform in the plate and so is M (Figure 7.9b). The volume 
magnetization current density is j′ = ∇ × M = 0 and the surface magnetization current 
density on the faces of the plate j′s = M × n is equal to zero. On the other hand, if the 
plate is large, its thin lateral faces are far away, their surface magnetization current 
produces a negligible field in the central region. Thus, the field B is not modified by 
the plate, hence B(in) = B(ex) = Bo and the magnetization is  

M = (µr − 1)H(in) = (µr − 1) Bo/µoµr.   [7.65] 

C) Magnetization and field of a ball in a uniform field 

If a ball of radius R is placed in an initially uniform field Bo, it becomes 
magnetized and it produces its own field (Figure 7.9c). Let us assume that it acquires 
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a uniform magnetization M. Adding the field of the magnetized sphere to the 
external field, we get the total field outside and inside the ball: 

B(ex) = Bo + (µoR3/3r5)[3(M.r)r − r2M],      B(in) = Bo + (2/3)µoM. 
H(ex) = Bo/µo + (R3/3r5)[3(M.r)r − r2M],      H(in) = Bo/µo − M/3.   [7.66] 

If the sphere is diamagnetic or paramagnetic of relative permeability µr, we must 
have B(in) = µrµoH(in), hence 

M = 
)+(2

1)(3
ro

r

μμ
−μ Bo,      B(in) = 

r

r
+2
3

μ
μ Bo        and    H(in) = )+(2

3
ro μμ Bo,  

B(ex) = µo H(ex) = Bo + 
r

r
+2

1
μ
−μ

5

3

r
R [3(Bo.r)r − r2Bo].  [7.67] 

This solution verifies the equations of the field ∇.B = 0, ∇×H = 0 inside and outside 
the ball, the relation B(in) = µo[H(in) + M] inside the ball, the continuity relations 
B(ex).n = B(in).n (with n = r/r) and H(ex)

// = H(in)
// on the ball and the limit B(ex) → Bo at 

large distances. The solution being unique, we may assert that this is the solution to 
our problem. This justifies our starting assumption that M is uniform in the ball.  

7.10. Magnetic susceptibility, nonlinear mediums and non-isotropic mediums 

Diamagnetism and paramagnetism are due to the mean magnetic moment 
acquired by the atoms under the influence of a magnetic field acting on the sample. 
To analyze magnetization, we must distinguish between the external field Bo 
(produced by all currents and magnetic bodies except the studied sample)  and the 
macroscopic field B, which is the superposition of Bo and the field Bm produced by 
the magnetized sample. The field, which acts on the atom to magnetize it, is the 
local field Bl, which excludes the field of the considered atom. The mean magnetic 
moment acquired by the atom is thus M = αMBl. To evaluate Bl, let us imagine that 
the atom is at the center O of a sphere of radius R1 and volume V1. The total field at 
O is obviously B = Bo + B1 + B2, where B1 is the field produced by the atoms of V1 
and B2 is that of the atoms of the sample situated outside the sphere. On the other 
hand, the local field is Bl = Bo + B′1 + B2 where B′1 is the field of the atoms of V1 
except the atom at O. As in our study of polarization, B′1 vanishes in the case of a 
cubic lattice. Thus, we have Bl = Bo + B2 and this is the field at the center O of a 
spherical cavity, which is B(cav) = B − (2/3) µoM according to [7.62]. We assume the 
validity of this expression for any magnetized medium. Thus, we have 

Bl = B − (2/3) µoM.     [7.68] 
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Using equation [7.7], the intensity of magnetization may be written as  

M = NvαMBl = NvαM[B −
3
2 µoM] ,     where   M =

Mvo

Mv
23
3

αμ+
α
N

N
B.  [7.69] 

The magnetic susceptibility is defined by the relation M = χMH = χM(B/µo − M), 
hence M = χM B/µo(1+χΜ). On comparison with [7.69], we deduce that the magnetic 
susceptibility and the relative magnetic permeability are given by 

χM = 
oMv

oMv
3
3

μα−
μα

N
N

,          µr = 
oμ

μ  = 1 + χM = 
oMv

oMv
3

23
μα−
μα+

N
N

.   [7.70] 

Particularly, if the magnetization is weak (NvαMµo << 1), we find µoM << B and 

χM ≈ NvαM µo,           µr ≈ 1 + NvαMµo   and  Bl ≈ <B>.  [7.71] 

This is a good approximation in the case of a diamagnetic medium. If the 
substance has a mass density mv and molar mass mM, the number of molecules per 
unit volume is Nv = (mv/mM)NA, where NA is Avogadro’s number. Thus, the 
magnetic susceptibility may be written as  

χM ≈ µo αM(mv/mM)NA = (mv/mM) χmol,           [7.72] 

where χmol = µoαMNA is the molar susceptibility, i.e. the susceptibility of a sample 
which counts 1 mole per unit volume (thus mv = mM). The analysis of section 7.2 
gives αM ≈ −1.17 × 10−29 Z. We deduce that the magnetic susceptibility is of the 
order of χM ≈ −8.85 × 10−9 mvZ/A, where A is the mass number. The molar 
susceptibility of diamagnetic solids and liquids is of the order of −10−10 to −10−9 and 
that of paramagnetic substances is of the order of +10−10.  

The magnetization M is a response of the medium to the magnetic excitation H. 
If H is not very strong, we may write the components of M as power series of the 
components of H in the form 

Mα(H) = Mα(0) + Σβ (∂Mα/∂Hβ)⏐o Hβ + ½Σ β,γ (∂2Mα/∂Hβ ∂Hγ)⏐o Hβ Hγ + ... [7.73] 

If the medium has no permanent magnetization (M = 0 if H = 0), the term M α(0) is 
equal to zero and if, in addition, the quadratic term is negligible, we say that the 
medium is linear. In this case, we may write M α = Σβ χαβ Hβ or explicitly  
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M1= χ11H1 + χ12H2 + χ13H3, 
M2 = χ21H1 + χ22H2 + χ23H3,  
M3 = χ31H1 + χ32H2 + χ33H3.  [7.74] 

The nine coefficients χαβ are the components of the magnetic susceptibility tensor, 
which is characteristic of the magnetic medium. In the general case, M and H are 
not parallel. In order to be parallel, the tensor χαβ must be diagonal with equal 
diagonal elements: χαβ = 0 if α ≠ β and χ11 = χ22 = χ33 ≡ χM. In this case, the 
medium is isotropic and we may write the vector relation 

M = χMH.       [7.75] 

Even if a magnetic medium is isotropic, the terms of the second order in [7.73] may 
become important in the case of a strong magnetic field. The approximation M = 
χMH is no longer valid. There may be a quadratic or higher-order terms in H. In this 
case, the medium is said to be nonlinear. This is effectively the case of 
ferromagnetic substances. If the susceptibility χM is the same at all the points of the 
medium, we say that it is homogeneous. A magnetic medium is said to be perfect if 
it is isotropic and homogeneous. 

7.11. Action of a magnetic field on a magnetic body 

If a sample of magnetic material is placed in an external magnetic field Bo(r), its 
field Bm(r) superposes to Bo to produce the total field B(r) = Bo(r) + Bm(r). The 
field that acts on an element of volume dV at the point r of the sample is B′ =  
B − BdV where BdV is the field of the element of volume dV. This element of volume 
has a magnetic moment dM = dV M(r), where the intensity of magnetization M is 
the vector sum of an eventual permanent magnetization and the induced 
magnetization NvαMB′. According to [6.69], the magnetic force acting on dV has the 
components 

dFM, α = Σβ dMβ ∂αB′β = dV Σβ Mβ ∂αB′β.            [7.76] 

In the general case, the different parts of the sample are subject to different force 
densities and the body is under stress forces; thus, it may be deformed.  

A) Case of a diamagnetic or a paramagnetic linear and isotropic medium 

The field BdV of the element of volume dV is proportional to the magnetization  
M = χMB/µ (see section 7.6B). In the case of a diamagnetic or a paramagnetic 
medium, χM is small and BdV << B. Thus, we may replace B′ by B in [7.76], hence 
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dFM, α ≅ dV Σβ Mβ ∂αBβ = (χM/2µ) dV ∂αB2.                [7.77] 

The field Bm of a paramagnetic or diamagnetic sample usually being weak, we may 
replace B by the external field Bo acting on the sample. Thus, the sample is subject 
to the total magnetic force 

FM = ∫∫∫V dFM ≅ ∫∫∫V dV (χM/2µ) ∇(Bo
2).        [7.78]  

If Bo is uniform, dFM ≅ (χM/2µ) ∇(Bo
2) dV = 0 and the sample is not subject to a total 

magnetic force or a magnetic stress. On the contrary, if Bo is non-uniform but the 
dimensions of the sample are small, so that Bo and its derivatives vary very little 
over the sample, we may write  

FM, α ≅ Σk ∂αBo β∫∫∫V dV Mβ  = Mβ ∂αBo β = (χM/µ)VBoβ∂αBo β = (χM/2µ)V ∂αBo
2 , [7.79] 

where M = ∫∫∫V dV M is the magnetic moment of the sample. Thus, the force acting on 
the sample is proportional to its volume, to its magnetic susceptibility, to the field 
Bo, and to its gradient. For instance, if Bo depends only on z and it points in the 
direction Oz, the force may be written as FM = (χM/2µ)V(∂zBoz

2)ez. For instance, if a 
small paramagnetic sample (χM > 0) is placed near the N pole of a permanent 
magnet, it becomes weakly magnetized in the direction of the field, as in  
Figure 7.1c. In this case, Boz

2 decreases if z increases, thus FM is attractive. It is of 
the order of a few newtons per kilogram and of the order of 102 N/kg in the 
exceptional case of liquid oxygen. Conversely, in the case of a diamagnetic sample, 
χM is negative and FM is repulsive but very small. 

B) Case of a permanent magnet 

In the case of a permanent magnet, the magnetization M is usually much higher 
than the induced magnetization and the field BdV in [7.76], which is proportional to 
µoM, is large. The problem may be simplified if the magnetization is saturated, so 
that B′ differs from B by a constant term. The gradient of this term is then equal to 
zero and we may replace B′ by B in [7.76] to become dFM, α ≅ dV Σβ Mβ ∂αBβ. If the 
sample is small, so that the gradient of B varies very little over the sample, the total 
force acting on the sample may be written as 

FM, α ≅ Σβ Mβ ∂αBβ = ∂α(M.B),        i.e.  FM, ≅ ∇(M.B),    [7.80] 

where M = ∫∫∫V dV M is the magnetic moment of the sample. Thus, in the case of a 
saturated permanent magnet, the force depends only on the gradient of B.  

The magnetic field also exerts on the element of volume dV a moment of force  
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dΓ = dM × B = dV (M × B ).        [7.81] 

The total moment of force acting on the permanent magnet is 

Γ = ∫∫∫V dV (M × B).           [7.82] 

Particularly, if B varies little over the sample, we find: 

Γ = M × B.         [7.83] 

7.12. Magnetic energy in matter 

Consider a long solenoid of length l and n turns per unit length (Figure 7.4b). 
The field H inside the solenoid is given by Ampère’s law, H = nI. Let us assume that 
the solenoid is filled with a magnetic material. As the current and the field B are 
established, an induced electromotive E = −dΦ/dt appears in the solenoid (see 
Chapter 8). It is equivalent to a back-electromotive force dΦ/dt, storing in the 
interval of time dt a magnetic energy 

dUM = E′I dt = (dΦ/dt) I dt = dΦ I.     [7.84] 

The total number of turns being nl, the total flux is Φ = nlSB = nVB, hence  
dUM = nV.dB.H/n = VH.dB, where V = lS is the volume of the solenoid. Thus, the 
variation of the magnetic energy density is 

dUM,v = H dB.                         [7.85] 

This expression, shown here for a solenoid, may be generalized to any medium in a 
solenoid or not, even if it is nonlinear and anisotropic, in the form 

dUM,v = H.dB.   [7.86] 

The magnetic energy per unit volume that is necessary to set up the field, by 
increasing it from 0 to the final value B is  

UM,v =  ∫
B B0 d .H.     [7.87] 

To evaluate this integral, we need the relation of H to B. In the case of a linear and 
isotropic medium of permeability µ, B = µH, hence 

UM,v = (1/µ) ∫
B B0 d .B = (1/2µ) ∫

B B0
2d = B2/2µ.    [7.88] 



Magnetism in Matter      221 

In the case of a permanent magnet of magnetization M, we have H = B/µo − M. 
Thus, the magnetic energy density may be written as 

UM,v = ∫
B B0 d .(B/µo − M) = B2/2µo – M.B.    [7.89] 

Very often, we have M.B >> B2/2µo, hence UM,v ≅ –M.B. If B is uniform, the energy 
of a permanent magnetic moment M = VM is then UM = – M.B.    

In the case of a linear medium, using the vector potential, the magnetic energy 
may be written also in the form 

UM = ∫∫∫V dV UM, v = ½∫∫∫V dV H.(∇×A) = ½ ∫∫∫V dV [ ∇.(A×H) + A.(∇×H)]. [7.90] 

The first term is the volume integral of the divergence of (A × H); it may be 
transformed into the flux of this vector through a surface S, which contains the 
system; it may be taken eventually at infinity so that this flux is equal to zero. Using 
the local form of Ampère’s law, the second term may be written as  

UM = ½ ∫∫∫V dV (A.j),        [7.91] 

where j is the conduction current density. We note that ½(j.A) cannot be interpreted 
as the energy density, as it vanishes in a region, where there is no current density 
and A is defined only up to an arbitrary gradient contrarily to B2/2µ. However, the 
total energy of the whole system has the same value if we use either [7.90] or [7.91]. 
We also note the similarity of the expressions [7.88] and [7.91] for the magnetic 
energy with the expressions UE,v = ½εE2 and UE = ½∫∫∫V dV qvV, respectively, for the 
electrostatic energy. 

The magnetic energy is often very small, compared to the electric energy. Thus, 
magnetic phenomena require a small amount of energy and they often have very 
little influence on physical, chemical and biological processes. 

7.13. Variation of magnetization with temperature 

Contrarily to diamagnetism, paramagnetism and ferromagnetism depend on 
temperature. As in the case of the polarization of dielectrics, we use statistical 
physics to analyze this dependence (see section 4.13). Let Bl be the local field that 
acts on the atom. We take Oz in the direction of Bl and specify the orientation of the 
atom magnetic moment Ma by its angles θ and ϕ about Oz (Figure 7.10a). The 
probability that Ma is oriented in the solid angle dΩ is dΠ = η TkUe Bm /− dΩ, where 
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UM = MaBl(1 − cos θ) is the magnetic energy of the atom in the magnetic field Bl and 
kB = 1.381×10−23 J/K is Boltzmann’s constant. 

 
 
 
 
 
 
 

 (a)                                               (b)                                                  (c) 

Figure 7.10. a) Orientation of the magnetic moment,  
b) magnetization if T > TW, and c) magnetization if T < TW 

Because of the rotational symmetry about Oz, the mean value of Ma is parallel to 
Bl. Thus, we have only to calculate the mean value of Mz = Ma cos θ. We find 

<Mz > = ∫ Πd Ma cos θ = ηMa∫ dΩ cos θ TkUe Bm /− = 4πη Ma( xe− /x2)[x ch(x) – sh(x)]. 

where x = MaBl /kBT. Using the relation η = (1/4π) x xe /sh(x), we may write: 

< Mz > = Ma L(x),            L(x) = coth x − 1/x. [7.92] 

L(x) is the Langevin function. Thus, the intensity of magnetization is  

M = N Ma L(x).    [7.93] 

The variation of the magnetization as a function of x is illustrated in Figure 
7.10b. If x is very small (x << 1, i.e. Bl weak or T high), we may write L(x) ≈ x/3. 
This replaces the curve L(x) by the tangent Do at the origin. Thus, we find  

αM = NMa
2/3kBT        and     M = N Ma

2Bl/3kBT.     [7.94] 

Instead of [7.68], Weiss proposed a more general form Bl = B + bµoM (called 
the molecular field). Using the expression [7.94] for M, we deduce that 

M = CB/(T − TW)        where       C = Nv Ma
2/3kB  and  TW = Cbµo.    [7.95]  
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TW is called the Weiss temperature. As M = χMH = χMB/µo(1+χM), we obtain the
Curie-Weiss law

χM =
c

o

TT
C

−
μ and µ = µo(1+χM) = µo

c

w
TT
TT

−
−

, where Tc = Tw(1+ b
1 ). [7.96]

C is the Curie constant and Tc is the Curie temperature (or critical temperature). At
temperatures higher than Tc, the body loses its ferromagnetic properties; it becomes
simply paramagnetic. These relations are effectively verified by several substances.
If T is close to Tc, the magnetic susceptibility and the magnetic permeability become
very high. We say that the sample undergoes a phase transition at Tc. If T is much
higher than Tc, we find

χM → Tw/bT and µ → µo. [7.97]

The term bµoM in the expression Bl = B + bµoM takes into account the influence
of the nearby magnetic moments. If the magnetization is weak, we may neglect it. In
this case, equation [7.95] reduces to the Curie law

M ≈ CB/T and χM ≈ Cµo/T, [7.98]

which was derived experimentally by Pierre Curie in 1895; it holds for
B/T ≈ 0.1 T/K.

If x is very large (x >> 1, i.e. Bl very strong or T very low), L(x) tends
asymptotically to 1 and the magnetization tends to the saturation value NMa. In this
limit, all the atoms have their magnetic moment pointing in the direction of Bl.

To write the expression of M as a function of B for intermediary values of x, we
have to eliminate Bl between the equations Bl = B + bµoM and x =MaBl/kBT, that is,

M = NMa L(x) and M = (kBT/Mabμo) x − Β/bμo. [7.99]

This can be done by using numerical methods. We may also use a graphical method
by plotting these two expressions of M as functions of x on the same graph. The first
equation is the curve C representing NMa L(x) and the second is a straight line D,
which meets the M-axis at the point A(0, −B/bµo). The coordinates of the crossing
point P of the curves [7.99] determine M and x (hence, B) at temperature T. If the
macroscopic field B is reduced, the line D moves parallel to itself toward the origin.
If its slope kBT/Mabμo is larger than the slope NMa/3 of the curve C at the origin, that
is T > TW, where TW = bμoNMa

2/3kB, the points A and P approach the origin (Figure
7.10b); this corresponds to M = 0 and B = 0 (i.e. no permanent magnetization). On



224     Electromagnetism 

the contrary, if T < TW, the point A tends toward O but the crossing point tends 
toward a point Po, which corresponds to a field B equal to 0 but a non-zero 
magnetization (Figure 7.10c). In this case, we have a permanent magnetization Mo, 
which is a solution of the equation 

Mo = NMa L(bµoMaMo/kBT).  [7.100] 

This classical theory of paramagnetism was proposed by Langevin in 1905. The 
quantum formulation was derived by Brillouin and Debye in 1927, the only 
difference being that the direction of the atomic magnetic moment M = −(ge/2me)L 
is quantized. The energy of M in the field Bl is  

UM = MBl − M.Bl = −(ge/2me)Bl(L − Lz),   [7.101] 

where Lz may take only the values −L, −L + 1, ... L − 1, L. This changes  
M2 = (ge/2me)2L2 into M2 = (ge/2me)2L(L + 1). We find the same 1/T Curie law, but 
with a different coefficient. The two theories neglect the interaction of the magnetic 
moments. The energy of the system is then the sum of the energies of the magnetic 
moments in the field. This is effectively the case of gases and the rare earth salts.  

Under normal conditions, the permeability µ of paramagnetic substances exceeds 
µo by less than 1% but these magnetic effects may be measured with a very high 
precision.  

We have seen that many materials become superconductors at very low 
temperature, below a superconductivity critical temperature Tsc. Such substances 
have remarkable magnetic properties. If a magnetic field B is applied to the sample, 
the critical temperature is lowered to a value TB ≈Tsc(1− B/Bsc)½, where Bsc is a 
characteristic critical field. If B is weaker than the critical field, it does not enter into 
the superconductor. It decreases with the depth x proportionally to δ− /xe , where δ is 
the penetration depth. Thus, the superconductor behaves as an ideal diamagnetic 
material with a magnetic susceptibility χM = −1. The applied magnetic field induces 
electric currents that can be damped by no resistance in the sample. The magnetic 
field of these currents exactly counterbalances the external magnetic field. This 
property of superconductors may be used for magnetic levitation. 

7.14. Ferromagnetism 

Some materials, such as iron, nickel, cobalt, gadolinium, and dysprosium, and 
some of their alloys and chemical compounds are not normally magnetized but, if 
they are exposed to a magnetic field, they become strongly magnetized and they 



Magnetism in Matter      225 

remain magnetized after the removal of the field; they are said to be ferromagnetic. 
The analysis of the preceding section shows that this is possible if the temperature is 
less than a critical temperature Tc characteristic of the material. Tc is proportional to 
Weiss parameter b, which increases with the interaction of nearby magnetic 
moments. Thus, if a ferromagnetic substance is heated, its permanent magnetization 
decreases and disappears completely at Tc; the substance becomes paramagnetic. 
The Curie temperature is about 1043 K for iron and 631 K for nickel. 

The susceptibility of ferromagnetic substances is of the order of 103 for steel and 
it may be as high as 105 for some iron-nickel alloys. The force that a magnetic field 
exerts on a ferromagnetic substance may be as intense as thousands of newtons per 
kilogram. Contrary to the force exerted on a paramagnetic or diamagnetic body, 
which depends on B and its gradient, the force exerted on a ferromagnetic body 
depends only on the gradient of B and this may be explained by the saturation of the 
magnetization (which is then independent of B; see section 7.11b).  

In 1907, Weiss introduced the concept of molecular field and ferromagnetic 
domains, which were understood only after the formulation of quantum theory and 
the works of Heisenberg in 1928. According to this theory, ferromagnetism is due to 
the intrinsic magnetic moment of electrons. A quantum effect, called exchange 
interaction, strongly couples the spins of the electrons of nearby atoms and favors 
their alignment in the same direction, as they then have less potential energy. Thus, 
the magnetic moments of a large number of atoms become held up in a given 
direction over small regions of the sample, called Weiss domains, which are strongly 
magnetized in this direction (Figure 7.11a). This exchange interaction is about 103 
times stronger than the ordinary magnetic interaction between magnetic moments. 
The Weiss domains have dimensions that vary between 1 µm and 1 mm and each 
one contains billions of atoms. Two nearby domains are separated by a transition 
region, called a Bloch wall, having a thickness about 100 times the inter-atomic 
distance. In these walls, the magnetic moment varies continuously from one domain 
to another. Despite thermal agitation, each domain has a certain magnetic moment. 
Naturally, in the absence of an external field, the sample is formed by a very large 
number of domains, whose magnetic moments are randomly oriented in all 
directions. The macroscopic magnetization of the sample is then zero. 

The spins on both sides of a Weiss wall do not align themselves in the same 
direction to form a single domain for the whole sample because a single domain has 
a very strong magnetic field, thus a large energy density B2/2µo. The equilibrium 
configuration is that of the minimum of the total energy of the system, and this 
corresponds effectively to a sample formed by domains of dimensions of the order 
of 1 µm. 
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(a)                                       (b)                                               (c) 

Figure 7.11. a) Magnetic domains in the absence of an external field, b) deformation  
of the domains under the influence of a field B, and c) hysteresis loop 

If the sample is immersed in an external field Bo, the domains with 
magnetization in the direction of Bo are favored energetically (Figure 7.11b). They 
expand by acting on the magnetic moments of the neighboring domains. This 
produces a global magnetization parallel to Bo. This magnetization increases with 
the intensity of the field Bo and remains after the removal of Bo. Then, the sample 
becomes a permanent magnet. If the external field is very high and the temperature 
is very low, the sample becomes a single domain and the magnetization becomes 
saturated. In addition, the magnetization of a sample (i.e. its magnetic susceptibility) 
depends on its previous history; this is the hysteresis phenomenon.  

The magnetization of a substance is studied using a Rowland’s ring (see section 
7.2). If the ferromagnetic sample had never been magnetized, M increases with H 
along the dotted curve OP of Figure 7.11c (called curve of first magnetization). For 
an intense field H, the magnetization tends to a constant value corresponding to 
saturation. If, from a point P, H is reduced to 0, the magnetization follows the curve 
PQ. The point Q corresponds to H = 0 and a magnetization Mr, called remanent 
magnetization, which is of the order of 106 A/m and corresponds to a remanent field 
Br of the order of 1 T. The sample becomes a permanent magnet. If the field H is 
exerted in the opposite direction, M vanishes at point C corresponding to a certain 
value −Hc, called the coercive field. Afterwards, M becomes negative, increases in 
absolute value and tends to saturation in the opposite direction. If, at the point R that 
is symmetrical to P, the intensity of H is decreased, the magnetization decreases 
and, as H reaches 0, there will be remanent magnetization –Mr. If the direction of H 
is reversed again and gradually increased, the magnetization follows the curve SDP, 
describing an hysteresis loop. Thus, the magnetic properties of a ferromagnetic 
substance depend on its previous treatment. This enables these substances to store 
information as magnetic tapes and disks.  
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The evolution of a magnetic sample is accompanied by a variation H dB of its 
energy. Thus, to accomplish the hysteresis loop, the variation of energy is 
proportional to the area under the curve H(B), therefore to the area of the cycle. This 
can only be an energy loss as heat. If the remanent magnetization is weak, the area 
of the loop is small and the material is said to be soft ferromagnetic. This is the case 
of iron; it becomes easily magnetized and loses its magnetization quickly with little 
loss of energy. It is used for devices using alternating currents (e.g. electromagnets, 
motors, transformers, etc.). On the contrary, if the remanent magnetization is 
intense, the area of the loop is large and the material is said to be hard 
ferromagnetic. This is the case for cobalt and nickel, which are difficult to 
magnetize but they keep their magnetization for a long time. They are used as 
permanent magnets.  

Some substances, said to be antiferromagnetic, have antiparallel instead of 
parallel neighboring spins. In this case, the very small distance between the electrons 
makes the exchange interaction favor their antiparallel coupling. Their domains may 
be considered as two superposed lattices with opposite magnetic moments; their 
resultant magnetization is then equal to zero. However, above the Neil temperature, 
the substance becomes paramagnetic. Some other substances, said to be 
ferrimagnetic, also have antiparallel neighboring spins, but unlike antiferromagnetic 
substances, the lattices have different magnetic moments. Thus, the superposition of 
their magnetizations produces a global magnetization of the sample. Contrary to 
ferromagnetic materials, the ferrimagnetic materials are electric insulators; so they 
have some interesting applications.  

7.15. Magnetic circuits 

A) Magnetic circuits without permanent magnets 

The field lines of a coil carrying a current I are illustrated in Figure 7.12a. They 
are almost parallel inside the coil and they disperse outside it. If pieces of soft iron 
are juxtaposed to form a closed circuit as in Figure 7.12b and N turns carry a current 
I around a part of this circuit, the magnetic field is very intense in the iron and it 
almost vanishes outside the circuit as if the field lines are canalized in the circuit. 
The intense field in iron may be explained by its magnetization, which increases the 
field B considerably. This set-up is called a magnetic circuit with the same magnetic 
flux at all its sections. It is analogous to an electric circuit with the same electric 
current at all its points. It is not necessary for the magnetic circuit to be closed as the 
field may exist in vacuum as well as in matter (Figure 7.12c).  

Consider a magnetic circuit formed by pieces (i) of length li, section Si and 
permeability µi. The field is produced by a coil of N turns carrying a current I 



228     Electromagnetism 

(Figure 7.12b). Let Hi be the magnetic field in the piece (i). The conservation of 
magnetic flux implies that Φ = Si Bi = µi Si Hi, hence Hi = Φ/µiSi. On the other hand, 
applying Ampère’s law to a path in the magnetic circuit, we get 

NI = ∫C dr.H = Σi li Hi = Φ Σi li /µi Si.                                      [7.102] 

This equation is similar to the relation E = I Σi Ri for electric circuits. By analogy to 
the electromotive force, EM = NI is called magnetomotive force; it supplies the 
magnetic flux Φ.  Similarly, Ri = li /µi Si is the reluctance of the piece of iron. The 
expression of reluctance is similar to that of resistance R = l/σS with conductivity σ 
replaced by permeability µ. Similar to resistances, reluctances in series add up; thus, 
the total reluctance of the circuit is R = Σi Ri. The reciprocal of the reluctance is the 
permeance 1/R . The law of magnetic circuits may be written as  

 EM = RΦ,          where   R = Σi Ri    and  Ri = li/µi Si.                [7.103] 

The practical utility of magnetic circuits is to have an air-gap, i.e. a region in 
which an intense field may be used (Figure 7.12c). Its permeability is usually µo. It 
is possible to cut the poles in such a way to have a concentrated field. An air gap of 
section Sa and length la has a reluctance Ra = la/µoSa. The flux is Φ = EM/(R iron+Ra), 
where R iron is the reluctance of the iron part. Thus, the field in the air-gap is 

Ba = Φ/Sa = EM/Sa(Riron + Ra)   and   Ha = Ba/µo = EM/µoSa(Riron + Ra).  [7.104] 

Very often, Riron is much smaller than Ra, hence  

Ba ≅ EM/SaRa = µoEM/la         and         Ha ≅ EM/la.    [7.105] 

 
   (a)                                    (b)                                     (c)                               (d) 

Figure 7.12. a) Field  lines of a coil, b) canalization of the field lines in a magnetic circuit,  
c) magnetic circuit with an air-gap, and d) magnetic circuit with a permanent magnet  

B) Magnetic circuits including permanent magnets 

A magnetic circuit may be formed of a permanent magnet and pieces of soft iron 
instead of a coil (Figure 7.12d). In this case, B and H have the same direction in iron 

B H
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(and in the air-gap), but opposite directions in the permanent magnets. Let Hper be 
the field in the permanent magnet and lper its length. Ampère’s law gives 

∫C dr.H = Σi li Hi + la Ha − lper Hper = 0.   [7.106] 

The Ri are usually negligible, compared to Ra, the terms liHi are negligible, 
compared to laHa, and we may write 

la Ha = lper Hper.  [7.107] 

In this case, the calculation is complicated because of the nonlinearity of the relation 
between B and H in the permanent magnet. The magnetic energy in the air-gap, 
whose volume is Sala, is  

UM = ½ BaHa(Sala) = ½ Hper lper SperBper.   [7.108] 

The product Sper lper is the volume of the permanent magnet. The field is intense in 
the air-gap if the magnetic energy UM is large. Thus, the permanent magnet must 
operate at a point of the hysteresis loop such that the product HperBper is maximal. 
This condition determines Hper and Bper and equation [7.105] allows Ha and, 
consequently, Ba to be determined.  

7.16. Problems 

Magnetic moment of the electron 

P7.1 a) Assume that the charge of the electron –e is uniformly distributed on its 
spherical surface of radius R and that it spins with an angular velocity ω. Show that 
its magnetic moment is Me = −eR2ω/3. b) Assume now that the charge is uniformly 
distributed in a ball of radius R. Show that the magnetic moment is Me = −eR2ω/5. 
Verify that, in both models, Me = − (e/2me)S where S is the intrinsic angular 
momentum. The experiment shows that the spin is 0.53 × 10−34 J.s and the magnetic 
moment is 9.3 × 10−24 A.m2. Do these models agree with experiment? 

Equations of the time-independent magnetism  

P7.2  Consider a volume V enclosed in a surface S. Let n be the outgoing unit vector 
normal to S. a) Show the identity ∫∫∫V dV ∂zf = ∫∫S dS nz f and similarly for the x and y 
components, hence ∫∫∫V dV ∂if = ∫∫S dS ni f, i.e. ∫∫∫V dV ∇f = ∫∫S dS nf. b) Deduce from 
this relation Gauss-Ostragradsky’s theorem ∫∫∫V dV ∇V = ∫∫S dS n.V and the identity  
∫∫∫V dV ∇×V = ∫∫S dS n ×V.  
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P7.3 Consider a region in which j = 0 and assume that the field B is time-
independent, parallel to the plane Oxy and independent of z. Thus, it obeys the 
equations ∇.B = 0 and ∇ × B = 0 similar to the equations ∇.E = 0 and ∇×E = 0 of 
the electrostatic field in vacuum. a) Show that it is possible to choose the vector 
potential A parallel to Oz. Then, we have Bx = ∂A/∂y and By = ∂A/∂y, where A is the 
magnitude of A. b) Show that the lines A = Constant are the lines of the field B.  
c) Show that B = −∇UM and that the lines UM = Constant are perpendicular to the 
lines A = Constant. Show that ΔUM = 0.  

P7.4 Show that, on the interface of two mediums (1) and (2), the vector potential 
obeys the boundary conditions  

n12.[∇ × (A1 − A2)] = 0         and        n12 × [∇ × (A1/µ1) − ∇ × (A2/µ2)] = js ,  

where n12 is the unit vector normal to the interface and oriented from the medium (1) 
toward the medium (2). Show that the magnetization current density on the interface 
of two materials of magnetizations M1 and M2 is (M2 − M1) × n12.  

Examples of the calculation of the field of a magnetized body  

P7.5 A long cylindrical shell of internal radius R1 and external radius R2 is uniformly 
magnetized parallel to its axis. Calculate B on the axis but far away from its ends.  

P7.6 A sphere of radius R has a uniform magnetization M parallel to Oz.  
a) Calculate the field B at a point P of Oz by using the magnetization currents.  
b) Discuss the symmetries and deduce that the vector potential has a single 
component Aϕ that obeys the partial differential equation 

2r sin2θ ∂rAϕ + r2 sin2θ ∂2
rr Aϕ − Aϕ + sin θ cos θ ∂θAϕ + sin2θ ∂2

θθ Aϕ = 0. 

Try to solve this equation by setting Aϕ = g(r) + f(r) sin θ. Verify that we must have 
g = 0 and f = ar + b/r2. Imposing the regularity of the solution at r = 0 and r → ∞, 
verify that b(in)

 = 0 and a(ex)
 = 0. Express B and H in terms of a(in)

 and b(ex). Imposing 
the continuity conditions on the sphere and setting M = (4/3) πR3M, deduce that  

A(in)
 = (1/3) µoM r sin θ eϕ,          B(in) = (2/3) µoM,  

A(ex)
 = (µo/4πr3) M × r       and    B(ex) = (µo/4π r5) [3(M.r)r – r2M]. 

P7.7 An atom of magnetic moment Ma is located at a point r′ outside a sphere of 
radius ρ. Show that the average of its field in the sphere is equal to its field at the 
center O. Show that, if the atom is inside the sphere, its average field in the sphere is 
<B>(in) = (µo/4πρ3r′2)[3(r′.M)r′ − r′2 M]. Assuming that many atoms are distributed 
at random in the sphere, show that the average value of their field is equal to 0.  
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Magnetization of a sample placed in an external field 

P7.8 A non-magnetic long wire of radius R1 carries a current I. It is surrounded by a 
cylindrical shell of a medium of permeability µ, internal radius R2 and external 
radius R3. a) Calculate the fields H and B everywhere. b) Determine the 
magnetization current density in the shell and on its faces.  

P7.9 Estimate the magnetic susceptibility of helium and air under normal conditions.  

Action of a magnetic field on a magnetized medium 

P7.10 An iron disk of density 7800 kg/m3, thickness e = 2 mm and radius R = 5 cm 
has a magnetization M = 2 × 105 A.m−2 parallel to its axis. a) Calculate H and B at 
its center O and at the point P of coordinate z = 3 cm on the axis. At what distance z, 
the field differs from that of a magnetic moment M = MV by less than 5%? b) At 
what distance an identical disk must be placed above the first one in order to remain 
in equilibrium? Treat the disks as magnetic moments. 

P7.11 a) A bar magnet of length l and section S has a magnetization M. What is its 
magnetic moment? Two small bar magnets of magnetic moments M1 and M2 have 
their centers at O and r. Calculate their force of interaction. b) By analogy to an 
electric dipole, suppose that the magnetic moment is modeled as two “magnetic 
charges” ±qM placed at the ends of the bar magnet and that the interaction of two 
“magnetic charges” is F1→2 = KqM1qM2R12/R12

3 where R12 = r2 – r1. Calculate the 
force that a bar magnet at O exerts on another one at r. Verify that it is the same as 
the interaction of two magnetic moments if K = µo/4π, M1= = qM1l1 and M2= = qM2 l2. 

Variation of the magnetization with temperature 

P7.12 To see how quantum mechanics modifies Langevin’s theory of 
paramagnetism, we consider atoms of spin s = ½. Contrarily to the classical theory, 
the projection Sz of the spin on Oz takes only discrete values. Thus, in the case of a 
particle of spin ½, Sz takes only the values −½  and ½ . To the spin S, corresponds 
an intrinsic magnetic moment M = −(ge/2me)S, where g is the gyromagnetic ratio. 
The energy of the atom placed in a magnetic field B is UM = − M.B. According to 
statistical mechanics, the probability of a state of energy UM is proportional to 
exp(−UM/kBT). Deduce that the number of atoms per unit volume whose spin points 
in the direction of B and in the opposite direction are, respectively, N+ = η xe and  
N− = η xe− , where x = geB/4mekBT and η is given by the condition of normalization  
N+ + N− = Nv, hence η = Nv/2 ch(x). Show that the magnetization density is  
M = MN+ − MN− = Nv M tgh(x). Deduce that the saturation magnetization is  
Ms = NvM while, at low temperature, M ≈ NvBM 2/kT. Note the absence of the classical 
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factor 1/3. On the other hand, according to quantum mechanics, M 2 = (ge /2me)2S2 = 

(ge /2me)2s(s+1). Thus, the density of magnetization is M = Nvg2 s(s+1) µB
2B/3kT 

with µB = e /2me. 

Ferromagnetism and magnetic circuits 

P7.13 The iron mass density is 7860 kg/m3 and the magnetic moment of its atom is 
1.8 × 10−23 A.m2. a) What should its magnetic susceptibility at 300 K be if iron was 
paramagnetic and the field is weak? What should be the magnetic moment of a rod 
of iron of cross-sectional area 1 cm2 and length 5 cm be if it is placed in a field of  
0.5 T? b) In fact, because of the spin coupling, iron is ferromagnetic. To simplify, 
assume that the rod is a single domain with all the atomic magnetic moments 
pointing in the direction of B. What then is the magnetic moment of the rod? What 
is the moment of the magnetic forces acting on this rod if it is placed in a field  
B = 0.01 T perpendicular to the axis of the rod? 

P7.14 a) Iron has a mass density mv = 7.8 × 103 kg/m3, a mass number A = 56 and an 
atomic number Z = 26. Determine the number of atoms and the number of electrons 
per m3 of iron. The magnetic moment of the electron is M = 0.93 × 10−23 J/T. What 
should the magnetization of iron be if all the electrons have their spins pointing in 
the same direction? In fact, the saturation magnetization of iron is Ms = 2 × 106 A/m. 
Deduce the number of electrons whose spins point in the same direction and the 
number of paired electrons per atom. b) What is the magnetic moment of 1 kg of 
iron and what is the force that acts on 1 kg of iron if the gradient of B is 20 T/m? 

P7.15 a) Consider a coil of N = 500 turns around a torus of iron whose relative 
permeability is µr = 103, its average radius is R = 40 cm and its cross-sectional area 
is S = 10 cm2. Calculate the flux of B through a section of this torus if I = 1 A in the 
coil. b) Let us assume that the torus is not complete but it has an air-gap of length 
4 cm. Calculate the field Bir in the iron and Ba in the air-gap. 



Chapter 8  

Induction  

After the discovery in 1819 by Oersted that an electric current produces a 
magnetic field, scientists turned their attention to search for the inverse effect, that 
is, the production of an electric current by a magnetic field. In 1831, Faraday in 
England and Henry in the United States showed that a varying magnetic field or 
more generally a varying magnetic flux in a circuit induces an electric current. 
Faraday was the first to publish his results and the discovery of this induction law 
was attributed to him. Henry later discovered self-induction, i.e. the induction of an 
electromotive force (emf) in a circuit if its own magnetic flux varies. The discovery 
of induction had many important applications. One of them was the large-scale 
production of electricity, which led to a new technological era.  

The induction phenomenon is quite complicated, because there are really two kinds: 
Neumann’s induction, which appears even in vacuum if the magnetic field varies in 
time, and Lorentz induction, which appears in moving conductors in a constant 
magnetic field. In this chapter we will study induction and some of its applications. 

8.1. Induction due to the variation of the flux, Faraday’s and Lenz’s laws 

Faraday’s historic experiment showed that a current is induced in a circuit 
(without generators) if the magnetic flux through this circuit varies. The flux may be 
varied by displacing a magnet or by varying the field of a nearby electromagnet by 
varying its current. The induced current lasts as long as the magnetic flux varies. 
Faraday formulated his results by stating that the induced emf in a circuit is equal to 
the rate of variation of the magnetic flux through this circuit. In 1834, Lenz 
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formulated the law that the direction of the induced current is such that it opposes 
the cause that produces it. These results may be expressed by the relation 

E = − Φ ,        where      Φ = ∫∫S dS n.B.  [8.1] 

The variation of Φ may be due either to a variation of B in a circuit C at rest 
(Neumann’s induction), to the deformation or the displacement of C in a time-
independent field (Lorentz induction) or to both causes.  

If the circuit has a resistance R, the induced emf produces a current of intensity  
I = E/R = − Φ /R. The total induced charge between the times t1 and t2 may be 
written as Q = ∫ 2

1

t
t dt I = (Φ1 − Φ2)/R. This induced charge is thus proportional to the 

variation of the magnetic flux in the interval of time. It may be measured with a 
ballistic galvanometer, for instance, and this allows measuring the flux variation.  

The induced emf E, which produces a current I in a circuit C, supplies a power  
P = EI, which may be used or dissipated as Joule heat. It is evidently supplied by the 
external agent, which produces the variation of the flux or due to the variation of the 
stored electromagnetic energy in nearby circuits C′ or in the circuit C itself.  

To interpret the induced emf, we recall that, in a battery for instance, the emf is 
equivalent to a non-electric generating force fg pushing the positive charges toward 
the positive terminal P and the negative charges toward the negative terminal N. 
Thus, fg is equivalent to a non-electric generating field Eg = fg/q. If no current is 
drawn, the accumulated charges produce between the terminals a potential  
VPN ≡ Vp − VN equal to the emf E. Then, the generating field counterbalances the 
electric field inside the battery (Eg = −Ein). If the battery is connected to a circuit C, 
it acts like a pump, exerting a force fg = qEg on the conduction charges and 
supplying an energy qE. A part qVPN of this energy is consumed in the external 
circuit and the remaining qrI is dissipated as Joule heat in the battery itself.  

In the case of induction in a circuit without generators, the emf is not localized in 
a particular element of the circuit but along all the circuit C. The generating force, 
which sets the charges in motion, can only be the Lorentz force fg = q(E + v×B) due 
to an “induced electric field” E and the magnetic field B produced by set-ups that 
are external to the circuit C (magnets and other circuits) and by the circuit itself. 
Here, v is the total velocity of the conduction charges, that is the vector sum of their 
drift velocity vd with respect to the conductor (vd produces the electric current in 
conductors at rest) and an eventual drag velocity vo if the conductor is moving. We 
may say also that there is an induced generating field Eg = E + v × B. The induced 
emf is the circulation of Eg along the circuit C in the chosen direction, i.e. 
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E = ∫C dr. (E + v × B) = ∫C dr.E + ∫C dr.(vo × B) + ∫C dr.(vd × B).   [8.2] 

As we shall see in the next section, the first term on the right-hand side is 
Neumann’s induction (due to the variation of B in time). The second term is Lorentz 
induction (due to the displacement of the conductor). In the third term, if the circuit 
is thin, the drift velocity vd points in the direction of the element dr of the circuit, the 
triple product dr.(vd × B) is then equal to zero. In the case of a conductor of any 
shape, vd is often very small and we may neglect this term.  

8.2. Neumann’s induction 

If the circuit C is at rest (vo = 0), the induced emf reduces to the first term of 
[8.2] called Neumann’s induction, for which we have to specify the field E. It is well 
known that the field E produced by static charges is conservative. Thus, its 
circulation along the closed circuit C is equal to zero. On the contrary, moving 
electric charges, magnets, or circuits and variable electric currents produce a time-
dependent field B. According to Faraday’s law [8.1], this variable B induces an emf  

EN =  − Φ= − ∫∫S dS n.∂tB       (Neumann’s induction).   [8.3] 

Here S is any surface bounded by C. Identifying EN to the first term of [8.2] written 
in the form ∫C dr. E = ∫∫S dS n.∇ × E (by using Stokes’ theorem), we deduce that 

∇ × E = − ∂tB.    [8.4] 

This is the local form of Faraday’s law in the case of Neumann’s induction. B is the 
total magnetic field (including that of the circuit itself) and E is the induced electric 
field (due to the variation of B produced by magnets, moving charges, and variable 
currents). The electric field of static electric charges being conservative, its 
circulation along any closed path C vanishes and its curl vanishes. Thus, it may be 
added to the induced field without modifying equations [8.3] and [8.4], and we may 
consider, in these equations, E and B as the total fields. 

The magnetic field, even if it is time-dependent has a conservative flux, hence  

∫∫S dS (n.B) = 0         and         ∇.B = 0,       [8.5] 

where S is any closed surface and n is the outgoing normal unit vector. We deduce 
that there is a vector potential A, such that 

B = ∇ × A.    [8.6] 
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Using this expression of B, equation [8.4] may be written as ∇×(E + ∂tA) = 0. So, 
the vector (E + ∂tA) is conservative; it may be written as −∇V, hence 

E = −∇V − ∂tA.    [8.7] 

Evaluating the circulation of both sides of this relation along the circuit C, the 
circulation of ∇V vanishes. Thus, the Neumann’s induced emf may be written as 

EN = ∫C dr.E = − ∫C dr.∂tA.  [8.8] 

This result allows EN to be considered as the circulation of −∂tA along the circuit C 
in accordance with the concept of local interaction. To clarify this point, consider a 
circuit C that encircles a thin cylindrical region of a variable magnetic field, a thin 
solenoid carrying a variable current, for instance. The magnetic flux through C is 
SB, the same as through a section S of the solenoid and the induced emf is EN =  
− ∫∫S dS (n. ∂tB). Although this relation is correct, it is hard to understand what force 
acts on the conduction charges of C to set them in motion (as there is no significant 
fields acting on them) and how the field B(t), which is restricted inside the solenoid, 
can induce instantaneously an emf in a circuit C that is totally outside the solenoid 
even if it is at large distance. Equation [8.8], considers this effect as the result of the 
local action of −∂tA on each point of the circuit. This equation shows that the 
potentials are not only a convenient mathematical trick to calculate the fields. In 
some cases, they are more fundamental than the fields. Some other effects (such as 
the quantum mechanical Aharonov-Bohm effects) confirm this conclusion. 

8.3. Lorentz induction  

If a body moves with a velocity vo in a field B, the second term of [8.2] suggests 
that an emf E = ∫C dr. (vo × B) is induced in this body. This is true for any field B, 
uniform or not and time-dependent or not and for any C, closed or open. This 
phenomenon is called Lorentz induction. 

To analyze this induction, let us assume that a uniform field B is established in a 
region of space, where there is no electric field (Figure 8.1a). We take Oz in the 
direction of B and assume that a metallic rod of length D parallel to Oy is moved 
with a velocity vo = voex in the direction Ox. The magnetic field exerts on the 
conduction electrons of the rod a generating force fg = −evo × B = evoB ey. It pushes 
them toward end N, making it negatively charged and leaving end M positively 
charged. These charges produce an electric field E′ pointing toward the positive y. 
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The displacement of the electrons stops when the generating force fg 
counterbalances the electric forces −eE′, hence 

E′ = −vo × B = voB ey.    [8.9] 

This field, being produced by stationary charges, is conservative in the proper frame 
of the rod. The induced emf is the corresponding difference of potential 

E ≡ VM − VN = ∫
N
M dr .E′ = voBD.    [8.10] 

If the rod slides on two metallic rails connected by a resistance R, an intensity  

I = E/R = vo R
DB   [8.11] 

is induced in the direction NM. The magnetic force that the field B exerts on the rod 
carrying this current is  

FM = I ( NM × B) = − IDB ex = − R
BDv 22

o ex.   [8.12] 

It points in the opposite direction to the motion (in agreement with Lenz’s law) and 
it is proportional to the velocity. To displace the rod, it must be pulled with a force 
Fop = −FM. The work of Fop in the interval of time dt is Fop.vo dt = −FM.vo dt = 
(vo

2D2B2/R) dt. It is equal to the dissipated energy as Joule heat, dUJ = I2R dt. We 
note that our analysis neglects the magnetic field produced by the induced current 
(i.e. self-induction). 

 

     (a)                              (b)                                 (c)                              (d) 

Figure 8.1. Lorentz induction: a) in a moving rod, and b) in a  
circuit in motion, c) and d) induction without variation of flux 
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The induced emf [8.10] agrees with Faraday’s law [8.1] with the variation of the 
flux due to the variation of the circuit area. Indeed, let us orient the circuit C formed 
by the rod and rails in the direction OMNP (according to the right-hand rule about 
Oz). The unit normal vector n is then oriented in the direction of Oz and the 
magnetic flux through the circuit in the direction of n is positive and equal to BDx, 
where x is the coordinate of M. Its rate of variation is Φ= BD ∂tx = BDvo. Thus, we 
have an induced emf E = − Φ= − BDvo and an induced current −BDvo/R. The 
negative sign means that it is effectively in the opposite direction (i.e. in the 
direction OPNM). Another way to apply Lenz’s law is to say that if vo is positive, 
the flux in the direction of n increases. In order to oppose this increase, the induced 
current must produce a flux in the opposite direction. Thus, the current must be in 
the direction OPNM.  

This result (E = − Φ ) holds for any open or closed circuit C moving or deformed 
in a field B (Figure 8.1b). Indeed, let us assume that C has an infinitesimal 
translational motion vodt from the position C1 to the position C2 generating a 
cylindrical surface. We orient C and we consider an elements dr, over which B is 
approximately uniform. The induced emf over dr is dE = dr.(vo × B) = B.(dr × vo). 
We may write dr × vo dt = dS n, where dS is the lateral surface that is swept by the 
element dr in the interval of time dt and n is the normal unit vector outgoing from 
the lateral surface. We deduce that B.(dr × vo) = (dS/dt)(n.B) = dΦl/dt, where dΦl is 
the lateral magnetic flux that is cut by dr. Thus the induced emf in C is 

E = ∫C dr.(vo × B) = ∫C dΦl/dt = ΔΦl/dt.   [8.13] 

ΔΦl is the total flux outgoing from the lateral surface. The conservation of magnetic 
flux implies that ΔΦl + Φ2 − Φ1 = 0. Thus, the induced emf in the circuit may be 
written as E = (Φ1 − Φ2)/dt = − Φ in accordance with Faraday’s law [8.1]. 

However, it should be noted that it is not necessary that the flux through the 
circuit C varies to have a Lorentz-induced emf. Figure 8.1c illustrates the case of a 
rectangular circuit MNPQ rotating about MN with an angular velocity ω in a 
magnetic field B. This field acts only on the upper part, i.e. NP and a part of PQ and 
MN. In this case, B has no flux through the circuit but it acts on the electrons of MN. 
These electrons move with a velocity ωr and they are pushed toward N. This induces 
an emf E = ½ωBl2. Figure 8.1d shows a metallic disk, which rotates in a field B. Its 
center O and a point A of the periphery are connected to a galvanometer G. An emf 
is induced in the circuit, even though B is not variable and its flux through the 
circuit OAG does not vary. The explanation of this induction is that, during the 
rotation of the disk, the conduction electrons along the radius OA move with respect 
to the observer with a speed ωr in the field B; thus, they are subject to a generating 
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force −evo × B that pushes them toward O or A depending on the direction of 
rotation and the direction of B. This induces an emf between O and A (see problem 
8.5). A correct analysis of the Lorentz induction in a circuit must always be based on 
the generating field Eg that acts on the conduction charges in the various parts of the 
conductor. 

8.4. Lorentz induction and the Galilean transformation of fields 

Although the arguments that we have used in the preceding sections use the 
conduction electrons, the expression of the emf does not depend on the properties of 
the conductor. This means that induction is not due to a direct action of the magnetic 
field on the charges of a conductor. It does not require that the body be a conductor 
or even that there is a body at all! We show in this section that Lorentz induction 
may be understood as the result of the transformation law of the fields E and B from 
one frame of reference to another. This may be shown also for Neumann’s induction 
but in the framework of special relativity (see Chapter 13). 

Consider a particle of charge q moving with a velocity v in an electric field E 
and a magnetic field B measured with respect to a Galilean frame (S). Thus, the 
particle is subject to a Lorentz force  

F = q(E + v × B).    [8.14] 

In another Galilean frame (S ′), which moves with a velocity vo with respect to (S), 
the velocity of the charged particle is v′ = v − vo. Let us assume that the fields 
measured in (S ′) are E′ and B′. Thus, the force that acts on the particle in (S ′) is  

F′ = q (E′ + v′ × B′).   [8.15] 

In the framework of classical mechanics, the forces do not depend on the Galilean 
frame (F′ = F). Substituting the expression v′ = v − vo in [8.15] and comparing with 
[8.14], we find the relation E + v×B = E′ − vo×B′ + v×B′. The law of transformation 
of the fields is obviously independent of the eventual existence of a charged test 
particle. Thus, the relation E + v×B = E′ − vo×B′ + v×B′ must be identically verified 
for any v. This gives the Galilean law of transformation of the fields  

E = E′ − vo × B′,         B = B′.  [8.16] 

The inverse relation is obviously obtained by changing vo into −vo, i.e. 

E′ = E + vo × B,          B′ = B.    [8.17] 
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These equations show that E and B cannot be considered as two distinct physical 
objects. If the field is pure magnetic for an observer in (S) it may be both magnetic 
and electric for another observer in (S').  

The emf is defined as the circulation of the generating force Fg acting on the unit 
charge along the circuit. As both Fg and the circuit element are invariant in the 
Galilean transformation, we deduce that the induced emf is invariant in the 
transformation from (S) to (S') (i.e. E = E ′). For instance, in the case of the rod 
moving normally to a field B, we have in the frame of the observer (S) only a 
magnetic field. According to [8.17], we have in the proper frame of the rod (S ′) both 
a magnetic field B′ = B and an electric field E′ = vo × B = −voBey. The velocity of 
the rod v′ in (S ′) being equal to zero, the induced emf is identical to [8.10]: 

E = E ′ = )( '''' BvE.r ×∫ +N
M d = ∫NM d ''.Er  = ∫

D dy0 voB = voBD,  

8.5. Mutual inductance and self-inductance 

Consider two circuits C1 and C2 orientated and near one another (Figure 8.2a). A 
current I1 in C1 produces a field B1, whose flux through C2 is Φ12. As the field B1 is 
proportional to the current I1 that produces it, Φ12 is proportional to I1 in the form  

Φ12 = M12 I1.    [8.18] 

M12 is the mutual inductance of C1 in C2. It depends only on the geometrical 
configuration of the two circuits. If I1 varies, the field B1 and its flux Φ12 vary. In the 
following, we assume that this variation is sufficiently slow to calculate the fields as 
in the case of time-independent intensities. As we shall see in section 9.4, this so-
called quasi-permanent approximation is valid if the characteristic time τ of the 
current in C1 is much longer than the time of propagation D/c, where D is the 
distance separating the points of the circuits. If the circuits are rigid and stationary 
with respect to each other, M12 is time-independent and the variation of I1 in C1 leads 
to a variation of Φ12 and, consequently, the induction of an emf in C2 given by 

E2 = − 12Φ = − M12 1I .        [8.19] 

If R2 is the resistance of the circuit C2, the induced intensity in C2 is  

I2 = E2/R2 = − M12 1I /R2.     [8.20] 
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Conversely, a current I2 in C2 produces through C1 a flux 

Φ21 = M21 I2,      [8.21] 

where M21 is the mutual inductance of C2 in C1. If I2 varies, it induces in C1 an emf  

E1 = − 21Φ = −M21 2I .     [8.22] 

If R1 is the resistance of C1, the induced intensity in C1 is  

I1 = E1/R1 = − M21 2I /R1.       [8.23] 

 
                 (a)                                                (b)                                                     (c) 

Figure 8.2. Circuits in mutual influence: a) three arbitrary circuits, b) two concentric 
circular loops making an angle θ, and c) two coaxial and concentric solenoids 

We note that M12 and M21 are positive or negative depending on the orientation 
of the circuits and their relative position. The intensities are positive or negative 
depending on whether or not the current circulates effectively in the chosen 
direction. The orientation of the circuit determines also the direction of the unit 
vector normal to any surface bounded by the circuit and the sign of the flux. To 
calculate the mutual inductance, we write the expression of the magnetic flux 
through C2 as 

Φ12 = ∫∫ 2 2S S'd [n′2.B1(r′2)] = ∫ 2 2C 'rd .A1(r′2),   [8.24] 

where A1(r′2) is the vector potential produced by C1 at the points of C2 and given by 

A1(r′2) = π
μ
4 I1 ∫ −1 21

1
C ''

'
rr

rd .    [8.25] 

Thus we can write 

Φ12 = π
μ
4 I1 ∫ ∫ −1 2
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As Φ12 =M12 I1, we get Neumann’s formula:

M12 = π
μ
4 ∫ ∫ −1 2 21

21
C C ''

''
rr
r.r dd . [8.27]

This symmetric relation in the exchange of C1 and C2 implies the reciprocity relation

M12 = M21, [8.28]

which may also be derived by energy considerations.

The use of [8.27] is often too complicated; a direct use of the definition
Φ12 = M12 I1 with an approximate evaluation of the flux may be more simple.
Consider for instance two loops of radii R1 and R2 (with R2 << R1), having the same
center O and lying in two planes making an angle θ (Figure 8.2b). As the field of the
large loop C1, B1 = (µI1/2R1)n1, varies little over the small loop, it is easier to
calculate the flux of C1 through C2. It is Φ12 ≅ B1.n2 S2 ≅ πµI1(R22/2R1) cos θ. As, by
definition Φ12 ≡ M12 I1, we deduce that M12 ≅ πµ (R22/2R1) cos θ. As a second
example, consider two coaxial solenoids (S) and (S') of lengths h and h' (h > h'),
radii R and R' (R > R') and formed by n and n' turns, respectively, per unit length
(Figure 8.2c). To reduce the effect of the finite length, we calculate the flux of the
longer solenoid S through the second S'. The field of S is almost uniform near the
center and given by B = µnIh/(4R2 + h2)½. Its flux through the n' turns of S' is Φ =
πµR '2n'nIh/(4R2+ h2)½.We deduce thatM = µπR '2n'nh/(4R2+ h2)½.

A) Concept of inductance

The experiment shows that an emf is induced in a circuit C if it’s current varies.
This self-induction is due to the variation of the flux of its own magnetic field
through the circuit itself. This effect is important in the case of an alternating current
and in the case of a direct current that is turned on or turned off.

The field B produced by a circuit C at each point r is proportional to its current
and so is the flux Φ of this field through the circuit itself, hence

Φ = LI. [8.29]

It may be easily verified that L is a positive quantity called self-inductance of the
circuit (or just inductance, for short). It depends only on the geometrical form of the
circuit. If the intensity I of the circuit varies, Φ varies, and this induces an e.m.f.

E = − Φ = − L I . [8.30]
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This induced emf is superposed to the other emf Eo and, according to Lenz’s law, 
it opposes the variation of  Φ (thus, of I): if I increases ( I > 0), E is negative; thus, it 
produces a current in the opposite direction. On the contrary, if I decreases ( I < 0), 
E is positive; thus, it produces a current in the same direction. For instance, if a 
direct current is switched on, the self-induction opposes its instantaneous set up; so, 
I increases gradually from 0 to its final value. Similarly, if the current is turned off, 
the self-induction opposes its instantaneous vanishing; so I decreases gradually to 0 
(see section 8.6).  

B) Calculation of the inductance  

We may consider the inductance L as the mutual inductance of two circuits that 
coincide (Figure 8.3a). The expression [8.27] becomes 

L = π
μ
4 ∫ ∫ −C C ''

''  
21

21
rr
r.r dd .   [8.31] 

However, this expression is not easy to use and it may diverge in the case of a thin 
circuit, as the denominator |r'1 − r'2| vanishes. This is due to the singularity of the 
field and the vector potential at the points of linear current.  

 
(a)                                          (b)                                                 (c) 

Figure 8.3. a) Inductance of a thin circuit, b) of a solenoid, and c) of a torioidal coil 

− Inductance of a long solenoid: the field inside a long solenoid of radius a and 
length h is uniform and equal to B = µNI/h, where N is the number of turns (Figure 
8.3b). The flux through a single turn is πa2B. Neglecting edge effects, the flux 
through the N turns of the solenoid is Φ = πa2BN and the inductance of the solenoid 
is approximately 

L = Φ/I ≅ πµN2a2/h.    [8.32] 

For instance, the inductance of a solenoid of length h = 25 cm, radius a = 5 cm and 
1,000 turns is L = 0.04 H. If it is filled with a magnetic material of relative 
permeability µr, the field and the flux are multiplied by µr and so is L. 
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− Inductance of a narrow coil: the inductance of a circular narrow coil of N turns
is difficult to evaluate. If we approximate the field of a circular loop by its value at
the center B(O) = ½µ(I/a)ez, the field of the coil is NB(O) and the flux of this field
through the N loops is Φ ≅ πa2N2B(O) ≅ ½πµaN2I. Thus, the inductance is
approximately L ≅ ½ πµN2a.

− Inductance of a toroidal coil: Let us consider a toroidal coil formed by N
rectangular turns of height h, whose parallel sides to the axis Oz are situated at the
distances a and b, respectively, from Oz (Figure 8.3c). Applying Ampère’s law to a
circle of radius r about Oz, we find a field B = µNI/2πr. The flux through a
rectangular turn is

Φ1 = ∫
b
a dr hB = π

μ
2 NIh ∫

b
a r
dr = π

μ
2 NIh ln a

b .

Thus, the flux through the N turns is Φ = NΦ1 and the inductance is approximately

L = I
Φ ≅ π

μ
2 N2h ln a

b . [8.33]

The mutual inductance M and the self-inductance L have the dimensions of Φ/I.
In the SI, they are expressed in units of weber per ampere, also called henry (H).
Every circuit has a more or less important self-inductance. If all the dimensions of a
circuit are multiplied by a factor k, the quantities dr1, dr2, |r1 – r2| and, consequently,
L are multiplied by k. In practice, instead of increasing the dimensions of the circuit
to increase L, electronic components, called inductors, are connected in series in the
circuit. An inductor consists of a coil of wire wound on a hollow cylinder that may
contain air or a ferromagnetic core.

8.6. LR circuit

A) Case of a single LR circuit

A self-inductance L connected between two points A and B of a circuit and
carrying a current IAB is equivalent to an induction emf E(in) = −L ∂tIAB or a receiver
of back-emf E′(in) = L ∂tIAB. Here IAB is algebraic, that is, positive if the current
circulates effectively from A to B. Let us consider a circuit formed by a self-
inductance L, a total resistance R, and a generator of emf E connected in series
(Figure 8.4a). The potential drops along the circuit are VAC = L ∂tI, VCB = IR and
VBA = −E, hence the equation of the circuit

L ∂tI + RI = E. [8.34]
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This equation has a particular solution Io = E/R. Setting I = Io + f(t), we find that f(t) 
verifies the equation L ∂tf + Rf = 0, that is, the equation of the circuit without emf 
This equation may be written as df/f = −dt/τ, where we have introduced the 
characteristic time τ = L/R, called also relaxation time of the circuit. Integrating this 
equation, we find f = B τ− /te . Thus, the general solution of [8.34] is 

I(t) =  E/R
 
+ B τ− /te .     [8.35] 

The arbitrary constant B is determined from the initial conditions. 

a) Switching on the current: let us assume that the circuit is closed at t = 0. The 
initial condition I(0) = 0 implies that B = −E/R, hence 

I(t) = R
E [1 − τ− /te ].  [8.36] 

Thus, the intensity increases exponentially from 0 to its final value E/R, that it 
attains, in principle, after an infinite time. Practically after t ≈ 10τ, I differs from its 
limit value by a few millionths, and for usual electronic circuits, τ is very short. For 
instance, for L = 1 mH and R = 1 kΩ, we find τ = 1 µs. Figure 8.4b illustrates the 
variation of I versus t. 

 
 (a)                                              (b)                                                   (c) 

Figure 8.4. a) LR circuit, b) switching on the current, and c) turning off the current 

b) Turning off the current: let us assume that, after having the generator turned 
on for a certain time, the generator is disconnected but the circuit is maintained 
closed. Then, we have an LR circuit without a generator. Its equation is  

L∂tI + RI = 0.  [8.37] 

Its general solution is I(t) = B τ− /te . The initial condition I = Io at t = 0 is satisfied if 
B = Io. Thus, the solution is 

I(t) = Io
τ− /te .    [8.38] 
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The intensity decreases exponentially from its initial value to 0 with the 
characteristic time τ. Figure 8.4c illustrates the variation of I versus t. 

B) Case of several circuits in magnetic influence 

In the case of n circuits Ck of resistances Rk, self-inductances Lk and mutual 
inductances Mkj, the flux through the circuit Ck is  

Φk = LkIk+ ∑j≠kMkjIj.      [8.39] 

If the circuits are stationary and rigid, the Lk and Mkj are time-independent. The 
induced emf in the circuit (k) is then E ′k = Lk kI + ∑j≠k Mkj jI . If the circuits contain 
generators of emf Ek, their equations take the form 

Lk kI + ∑j≠k Mkj jI + RkIk = Ek,           where k = 1, 2, … n.  [8.40] 

This is a system of n coupled differential equations. They allow the n intensities Ik to 
be determined. They have particular solutions I(o)

k = Ek/Rk if the Ek are constant. 
Setting Ik = I(o)

k + fk(t) and substituting in equations [8.40], we find that the fk must 
verify the system of homogeneous equations  

Lk kf + ∑ j≠k Mkj jf + Rkfk = 0,        where k = 1, 2, … n.  [8.41] 

To solve this system of differential equations, we try the solutions fk = Ak
te kα− , 

where Ak and αk are constants. These functions are solutions if the αk are all equal to 
a certain value α. Then, the system [8.41] reduces to a system of linear and 
homogeneous algebraic equations to determine the coefficients Ak 

(αLk − Rk) Ak + α ∑j≠k Mkj Aj = 0,          where k = 1, 2, … n.  [8.42] 

This system of equations has a non-trivial solution (i.e. not all the Aj equal to zero) if 
the determinant of the coefficients is equal to zero. This gives an algebraic equation 
of degree n in α. It has, in general, n roots α(i). For each root, the system [8.42] 
allows (n−1) coefficients Ak to be determined in terms of the nth. Thus, we have a 
solution, called mode, which depends of an arbitrary parameter. The general solution 
of [8.40] is a superposition of these n modes and the particular solution I(o)

k. It 
depends on n integration constants, which may be determined from the initial 
conditions. 
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8.7. Magnetic energy

A) Proper magnetic energy of a single circuit

Let us assume that an LR circuit is connected to a generator of constant emf E. In
the interval of time dt during the build-up of the current, the generator supplies an
energy dUg = dq E = IE dt. A part of it, dUJ = I2R dt, is dissipated as Joule heat and
the remaining dUM is stored as magnetic energy in the inductor. Taking into account
the circuit equation [8.34], we may write

dUM = dUg − dUJ = I(E − IR) dt = LI (dI/dt) dt = LI dI. [8.43]

By increasing the intensity from 0 to I, the inductor accumulates a magnetic energy

UM = ∫
I dU0 M = ∫

I dI0 LI = ½LI2 = ½ ΦI, [8.44]

where Φ is the magnetic flux through the circuit.

To show that this energy is effectively stored, let us look to what happens if the
generator is disconnected at t = 0, but the circuit is kept closed. The intensity
decreases gradually from I at t = 0 to the final value I = 0 at t = ∞. In the interval of
time dt, the magnetic energy decreases by dUM = d(½LI2) = LI (dI/dt) dt = −RI2 dt
where we have used the equation of the circuit [8.37]. Thus, the decrease of the
magnetic energy ½LI2 is just the dissipated energy as Joule heat in the resistor.

Figure 8.5. Circuits in mutual influence

B) Magnetic energy of circuits in mutual influence

Let us consider two circuits in mutual influence (Figure 8.5). The generalization
to several circuits is straightforward. Let Rk, Lk, and Ek (k = 1, 2) be the resistances,
the inductances and the emf of the generators and M = M12 = M21 the mutual
inductance of these circuits. Their equations may be written as

L1 1I + M 2I + R1I1 = E1, L2 2I + M 1I + R2I2 = E2. [8.45]

I1 E1 E2

L1 R1
M

I2
L2
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The energy that the generators supply in the interval of time dt is dUE = E1I1dt + 
E2I2dt and the total energy dissipated as Joule heat is dUJ = R1 (I1)2 dt + R2 (I2)2 dt. 
Thus, the variation of the magnetic energy that is stored in the circuits is  

dUM = dUΕ − dUJ = I1 dt (E1 − I1R1) + I2 dt (E2 − I2R2) 

       = L1I1 dI1 + L2I2 dI2 + M(I1 dI2+I2 dI1),   [8.46] 

where we have used equations [8.45]. Integrating between the initial state with the 
intensities equal to zero (consequently, the energy is equal to zero by definition) and 
the final state with the intensities equal to I1 and I2, we find  

UM = ∫ i
0 M
I dU = ½L1I1

2 + ½L2I2
2 + M I1I2 ≡ U1 + U2 + U12.  [8.47] 

The terms Ui = ½LiIi
2 represent the magnetic energies of the individual circuits 

carrying the currents Ii and isolated. The term U12 = MI1I2 represents the magnetic 
interaction energy. This last quantity is the energy that is required to bring first the 
circuit C1 then the circuit C2 from infinity to their actual position while their 
intensities are maintained constant. We note that the magnetic interaction energy 
may be positive negative, or zero depending on the values of M and the intensities. 
As Φ21 = MI2 and Φ12 = MI2, the magnetic interaction energy may also be written as 
the product of the current of one of the circuit by the magnetic flux of the other 
through it  

U12 = I1 Φ21 = I2 Φ12.     [8.48] 

The generalization to the case of several circuits is  

UM = ∑j Uj + ∑j<k Ujk,        Uj = ½LjIj
2,      Ujk = Mjk Ij Ik = Ij Φkj = Ik Φjk .  [8.49] 

In order to have the total magnetic interaction energy, we must sum the Uij for all 
the pairs (or all i and j such that i < j or j < i so that each pair is counted once). 

The magnetic energy of two circuits UM = ½L1I1
2 + ½L2I2

2 + MI1I2 cannot be 
negative for any values of the intensities; otherwise currents would be established in 
the circuits without generators! This implies that the quadratic form UM has a 
negative discriminant, i.e.: 

M2 ≤ L1L2.  [8.50] 

This relation holds for any geometrical configuration of the circuits. The ratio  
κ = |M|/ 21LL < 1 is the coupling coefficient of the circuits. The coupling is said to 
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be perfect if κ = 1. In this case, all the lines of the field of one of the circuit pass 
within the other. This is the case of two coinciding circuits; then, we have  
M = L1 = L2.  

Consider, for instance, a long solenoid of length h and N turns carrying a current 
I. According to [8.32], its self-inductance is L = πµN2R2/h. The field inside it is  
B = µNI/h and it is equal to zero outside it. The magnetic energy stored in this 
solenoid is UM = ½LI2 = πµN2R2I2/2h = ½(B2/µ) V, where V = πR2h is the volume of 
the solenoid. Thus, we may consider that the density of magnetic energy is 

UM,v = B2/2µ.   [8.51]  

This result, derived in a particular case, holds for any configuration of currents: 
In a region of space where there is a magnetic field, there is magnetic energy with a 
volume density B2/2µ (see section 7.12). The energy stored in a finite volume V is  

UM = ∫∫∫V dV UM,v = (1/2µ) ∫∫∫V dV B2.     [8.52] 

We may express the total magnetic energy in terms of the current density j and 
the vector potential A as 

UM = ½ ∫∫∫V dV (A.j),        [8.53] 

However ½(A.j) cannot be interpreted as the magnetic energy density as we have 
seen in section 7.12. 

8.8. Magnetic forces acting on circuits 

If a circuit carries an electric current, its magnetic field acts on the circuit itself 
and on the neighboring circuits. The circuits may undergo a deformation or a 
displacement. The forces and the moments of force may be evaluated by using 
Laplace’s law in the quasi-permanent approximation. However, it is often easier to 
evaluate them by using the magnetic energy and the method of virtual work. 

A) Force exerted by a deformable circuit on itself 

If a circuit of inductance L carries a current I, its magnetic energy is UM = ½LI2  

= Φ2/2L. If it undergoes a virtual deformation, its inductance varies by δL. To 
calculate the magnetic force, which produces this deformation, we may assume that 
it occurs while maintaining constant either the intensity I or the magnetic flux Φ. 
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a) If the intensity is kept constant, the magnetic flux varies by δΦ = I δL, 
inducing an emf E ′  = − Φ . To maintain I constant, we must assume that the emf of 
the generator in the circuit undergoes an opposite variation E" = Φ , thus supplying 
an additional energy  

δUg|I = constant = E" I δt = I Φδt = I δΦ = I2 δL.     [8.54] 

A part of it, δUM = ½I2δL, is stored as magnetic energy and the remaining is used as 
a mechanical work δW of the force F, which produces the deformation, hence 

δW = δUg|I = constant − δUM|I = constant = ½I2 δL.     [8.55] 

For instance, if the circuit has a part that may move in the x direction, we have  
δW = Fx δx, thus 

Fx = δW/δx = ½ I2 (δL/δx) = ½ I2 ∂xL.        [8.56] 

b) Let us assume now that the flux is kept constant. Using the expression  
UM = ½Φ2/L, we find δUM|Φ = constant = − ½(Φ2/L2) δL. In this case, no emf is induced 
in the circuit and the generator needs to supply no energy, hence 

δW = − δUM|Φ = constant = ½ (Φ2/L2) δL = ½ I2 δL.   [8.57]  

We find the same result as [8.56]. 

B) Interaction of two circuits 

Let us consider two rigid circuits C1 and C2 in mutual influence (Figure 8.5). We 
define the positions of C1 and C2 as those of two particular points r1 and r2 of them. 
The mutual inductance M is then a function of their relative position r2 − r1 and their 
relative orientation. To evaluate the force F12 exerted by C1 on C2, we assume that C1 
is fixed and C2 undergoes a virtual translational motion δr2. We may also assume in 
this case that either the intensities or the fluxes are maintained constant. 

a) Let us assume that the intensities are kept constant. The circuits being rigid, 
the self-inductances Li do not change while the mutual inductance M varies. The 
fluxes through the circuits vary by δΦ1 = I2 δM and δΦ2 = I1 δM. This induces the 
emf E ′1 = − 1Φ  and E ′2 = − 2Φ . To maintain constant intensities, the emf of the 
generators must vary by E"1= −E ′1 and E"2 = −E ′2 and supply the energy  

δUg|I = constant = E"1 I1 δt + E"2 I2 δt = 2 I1 I2 δM.    [8.58] 
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The variation of the magnetic energy [8.47] is then δUM = I1I2 δM. The difference 
between the energy that is supplied by the generators and the variation of the stored 
energy is the mechanical work 

δW = F12 .δr2 = δUG|I = constant − δUM|I = constant = I1 I2 δM = I1 I2 ∇2M.δr2.    [8.59] 

We deduce that 

F12 = ∇2UM = I1 I2 ∇2M = ∇2UM.     [8.60] 

This expression shows that the magnetic force F12 is conservative.  

A similar analysis may be performed to evaluate the moment of force Γ12 exerted 
by C1 on C2 with respect to a point O. Let us consider an axis of rotation of unit 
vector u passing by O. The projection of Γ12 on u is related to the mechanical work 
in a rotation through an angle δθ about u by the relation δW = Γ12.u δθ. The 
variation of UM in this rotation is δUM = I1I2 ∂θM δθ, hence the relation 

Γ12.u = I1I2 ∂θM = ∂θUM.    [8.61] 

b) If we assume that the fluxes are kept constant in the displacement, there will 
be no induction of emf in the circuits and the generators supply no additional 
energy. Expressing UM in terms of the fluxes, we may write 

UM = [½(L1L2 −M2)][L2Φ1
2 + L1Φ2

2 − 2M Φ1Φ2].   [8.62] 

In this virtual displacement, L1, L2, Φ1 and Φ2 remain constant. Calculating  
δUM|Φ = constant, which corresponds to δM, and then expressing it in terms of the 
intensities, we find δUM|Φ = constant = −I1I2 δM. The conservation of energy implies 
that δW|Φ = constant = −δUM. Thus, we find again the expressions [8.60] in the case of 
a translational motion and [8.61] in the case of a rotation about the unit vector u. 

In the case of several circuits in interaction, the superposition principle allows us 
to write the force and the moment of force acting on one of them, Ci, as the vector 
sums of the forces and the moments of force exerted on it by the other circuits acting 
individually. We may also write the expression of the total magnetic energy UM and 
use the generalizations of [8.60] and [8.61]: 

Fi = ∇iUM           and         Γi.u = ∂θUM.    [8.63] 
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8.9. Some applications of induction 

The induction due to the displacement of a conductor in a magnetic field enables 
electromechanical coupling to transform mechanical energy into electric energy.  

A) Simple devices using induction 

− Circuit breaker. This is a simple application of induction, which protects 
people and electrical equipment in the case of a short-circuit. The current, which 
supplies the equipment, passes within a soft iron ring (Figure 8.6a). A coil encircles 
the ring and is connected to the circuit breaker. The current, which circulates in both 
directions, produces two opposite magnetic fields and no current is normally induced 
in the coil. If a short-circuit is provoked in the equipment, there will be no return of 
the current and only one of the alternating magnetic fields remains. It induces a 
current in the coil, which releases the circuit breaker.  

− Microphones. Microphones transform sounds into electric signals. There are 
many types. The moving coil microphone consists of a membrane that vibrates with 
an amplitude proportional to that of the sound wave and with the same frequency 
(Figure 8.6b). The membrane acts on a small coil, which moves in a magnetic field. 
The induced current in the coil may be recorded or amplified to feed a loudspeaker, 
for instance. In an electric guitar, a magnetized string vibrates in front of a soft iron 
rod with a coil encircling it. The vibration of the string produces a variation of the 
magnetic flux in the coil. The induced current is amplified to feed a loudspeaker. 

          
(a)                                                 (b)                                            (c) 

Figure 8.6. a) Circuit breaker, b) microphone, and c) tape recording of sound 

− Sound tape recording. To record a sound, a microphone is usually used to 
transform the sound into an electric signal that feeds the coil of a recording head. A 
magnetic tape moves past this head at constant velocity. The tape is a plastic ribbon 
coated with iron oxide or chromium oxide (Figure 8.6c). The electric signals 
produce a magnetic field near the recording head and a permanent magnetization of 
small parts of the tape in patterns that reproduce the amplitude and the frequency of 
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the signal. To reproduce the sound, the tape is passed at the same speed in front of 
the head operating in playback mode. The magnetized tape induces electric signals 
in the head coil. These signals are amplified and sent to a speaker. 

B) Electric generators 

The production of electricity is the most important application of induction. 
Electric generators convert mechanical energy to electric energy. The mechanical 
energy is supplied by a hydraulic turbine or a steam turbine (the steam comes either 
from burning fossil fuels or from nuclear reactors). The rod of Figure 8.1a, sliding in 
a magnetic field B on two rails connected by a resistance R, is an example of a 
simple generator. The disk of Figure 8.1d that is rotated in a field B is another 
example of a generator. The dynamo is a generator that produces electric energy 
more efficiently. It comprises a coil rotated in a magnetic field B (Figure 8.7a). If it 
is rotated with an angular velocity ω, the axis of the coil makes an angle θ = ωt with 
B. The magnetic flux through the coil is Φ = NSB cos(ωt), where N is the number of 
turns of area S. Thus, the induced emf is 

E = − Φ  = NBSω sin(ωt).  [8.64] 

To derive this result, we have neglected the self-induction of the coil. To estimate 
this effect, let us assume that the coil is connected to a circuit of total resistance R. 
The induced intensity is I = (NBSω/R) sin(ωt) and the self-induced emf (due to the 
variation of the current I) is E ′ = −L(dI/dt) = −LNBSω2 cos(ωt). The ratio of its 
amplitude to that of E is E ′m/E m = Lω ≈ ½πµωN2R. It is often very small.  

 
                    (a)                                    (b)                                               (c) 

Figure 8.7. Generators: a) rotating coil producing an alternating induced emf,  
b) commutator used to rectify the current, and c) the rectified emf versus t 

It is possible to obtain a unidirectional induced voltage from an alternating 
supply by suppressing the parts of the wave that have the opposite polarity or by 
reversing the polarity of those parts (by using diodes for instance). Rectification can 
also be achieved using a split-ring commutator: the terminals of the rotating coil 
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change from one slit to the other, once in each rotation (Figure 8.7b). Figure 8.7c 
illustrates the rectified output emf as a function of t. 

C) Measurement of B by using a ballistic galvanometer 

A ballistic galvanometer is essentially a rectangular coil having N turns of area 
S, which may rotate in a radial field B (Figure 8.8). It has a small damping and a 
large moment of inertia J, and it is submitted to a restoring moment of force  
Γ′ = −Kϕ, where ϕ is the rotation angle. If a current I passes through the coil, it is 
subject to a moment of force ΓM = NSBI. Let us assume that the current passes 
between t = 0 and t = τ. Integrating the equation of motion J ϕ = NSBI with respect 
to time between 0 and τ, we find J ϕ = NSBq where q is the total charge that has 
passed through the coil. If the time τ is sufficiently short, as the coil has a large 
moment of inertia, it does not move noticeably during this time. The effect of this 
charge is to provoke an initial angular velocity oϕ = NSBq/J. This corresponds to an 
initial kinetic energy ½J(NSBq)2, which makes the coil oscillate with an amplitude  
ϕm = NSBq(K/J)½ (reached when the initial kinetic energy changes totally to 
potential energy ½Kϕm

2). Thus, ϕm is proportional to the charge q to be measured.  

 

Figure 8.8. Galvanometer and measurement of B               Figure 8.9. Eddy current  

The ballistic galvanometer may be used to measure the magnetic flux and, 
consequently, the magnetic field. For this, we use a coil of N ′ turns and area S ′ 
connected to the terminals of the ballistic galvanometer. If this coil is placed normal 
to a field B′, the magnetic flux through it is Φ' = N ′S ′B′. By withdrawing it quickly 
from the field, a charge q = Φ'/R is induced. A measurement of q using the ballistic 
galvanometer determines Φ', thus B′.  

D) Eddy currents 

Eddy currents (also known as Foucault currents) are those that are induced in 
the mass of a conductor if it is moving in a magnetic field or exposed to a variable 
magnetic field. If the extended body moves in a non-uniform field or if different 
parts of the body have different velocities (as in the case of rotation), the induced 
electric currents circulate in closed swirls (Figure 8.9). According to Lenz’s law, 
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these currents circulate in directions such that they oppose the variation of B or such 
that the Laplace’s force exerted by B on them opposes the motion. This effect may 
be observed by letting a copper disk oscillate near a magnet. The induced Eddy 
currents strongly slow down the disk by dissipating its mechanical energy as Joule 
heat; hence, the use of this effect in the conception of electromagnetic brakes and for 
induction heating with high-frequency alternating magnetic fields. Another 
illustration of this effect is magnetic levitation: if a magnet is placed above a 
superconducting plate, it may stay in equilibrium, as if it starts to fall, Eddy currents 
oppose its fall. To reduce the undesirable large-scale circulation of Eddy current 
effects in motors, transformers, etc., the metallic pieces are made of insulated sheets.  

In some cases, if a metallic body subject to a force field moves in a magnetic 
field, as its velocity increases, the Eddy force increases and may counterbalance the 
force field. Thus, the body attains a limit velocity that is proportional to the force 
field. This effect is used in some instruments, such as wattmeters. These are 
essentially an aluminum disk rotated by a small motor exerting a torque proportional 
to the current intensity (thus, proportional to the consumed power under a given 
voltage). The rotation velocity increases until the Eddy torque counterbalances the 
exerted torque; thus, it is proportional to power consumed, and the number of turns 
is proportional to the consumed energy. 

 
 
 
 
 
 

Figure 8.10. The betatron 

E) The betatron 

The betatron (invented by Kerst in 1941) is an electron accelerator that uses 
induction. Electrons travel on circular orbits of radius about 1 m in a toroidal tube of 
elliptical section between the poles of a powerful electromagnet (Figure 8.10). The 
alternating current in the electromagnets produces a magnetic field oscillating at the 
same frequency. The electrons are emitted and pre-accelerated by a voltage of about 
50 kV. They are injected tangentially into the tube and they circulate under the 
influence of the magnetic field of value Borb along the orbit. The orbit is effectively 
circular of radius r if the magnitude of the magnetic force is equal to the centripetal 
inertial force (evBorb = mv2/r), thus erBorb = mv. The magnetic flux through the orbit 
is Φ = πr2Bm, where Bm is the average field within the orbit. If the field of the 
electromagnet is increased, an electric field E is induced such that 2πrE = Φ . We 
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deduce that E = ½r mB . This electric field acts on the electrons with a force of 
magnitude eE. Thus, the velocity of the electrons increases at a rate v = eE/m = 
(er/2m) mB . The orbit is stable if the equation erBorb = mv remains verified in spite 
of the variation of the velocity. This is possible if the geometry of the electromagnet 
is such that Borb = ½Bm. In this case, the magnetic field guides the electrons in their 
motion and the variation of B accelerates them. In this way, it is possible to attain 
energies of several hundred mega-electronvolts for electrons. This higher limit is 
hindered by the difficulty of creating an intense magnetic field over a large area (this 
sets an upper limit on the radius r of the orbit). On the other hand, at high energy, 
the equations of classical mechanics that we have used should be replaced by 
relativistic equations. These factors limit the possibilities of the betatron. 

8.10. Problems 

Faraday’s law and Lenz’s law 

P8.1 A circuit of surface S and resistance R is placed normal to a uniform magnetic 
field B, whose magnitude depends on time according to the relation B = Bo + kt. 
Calculate the induced emf, the intensity and the total charge in the circuit between  
t = 0 and t. Calculate the dissipated energy as Joule heat. Discuss the direction of the 
current depending on the values of the constants Bo and k.  

Neumann’s induction and Lorentz induction  

P8.2 A long solenoid of radius a and n turns per unit length carries a current I. It is 
surrounded by a circular circuit of radius a′ coaxial with the solenoid. Calculate the 
vector potential A everywhere. Assuming that I depends on time, calculate the 
induced electric field everywhere. Calculate the circulation of E over the circuit. 
Find this result again using Farasay’s law. 

P8.3 A solenoid of length h, radius r, and n turns per unit length carries a current 
I(t). a) Using Farasay’s equation, calculate the induced electric field in this solenoid. 
What is the induced emf? b) Calculate the corresponding vector potential A. 

Lorentz induction  

P8.4 A rod of mass m is placed normally on two horizontal rails separated by a 
distance D in a vertical field B (Figure 8.1a). The rails are connected by a wire of 
resistance R. a) What is the induced emf in the rod if it is displaced with a constant 
velocity voex? What is the induced intensity? Determine the exerted force and the 
power needed to displace this rod. Numerical applications: D = 0.5 m, B = 0.2 T,  
vo = 2 m/s and R = 4 Ω. b) Assume that a generator G, that is connected in series 
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with the resistance R, produces a constant current I. Determine the position x(t) of 
the rod if it was initially at rest. What should the emf of the generator be in order to 
maintain I constant? Discuss the conservation of energy. c) G is replaced by a 
battery of constant emf E. Determine x(t) and show that the velocity of the rod 
attains a limit value. What then is the intensity I? Discuss the conservation of 
energy. d) The generator is removed, but the resistance R is maintained and the rod 
is launched on the rails with an initial velocity vo. Study its motion and discuss the 
conservation of energy.  

P8.5 A uniform magnetic field B points in the direction Oz. a) A rod of length L has 
one end at the origin O and it rotates in the Oxy plane with an angular velocity ω 
about Oz. Calculate the induced emf between its ends. Determine the polarity of this 
emf. b) A copper disk of radius R rotates at N revolutions per second about its axis 
Oz. Calculate the induced difference of potential between its center and its 
periphery. Numerical application: B = 3 T, R = 10 cm and N = 10 rev/s. 

P8.6 A rectangular circuit MQPN, of sides a and b parallel to Ox and Oy 
respectively, moves with a constant velocity v parallel to Oy in a field B = Bez 
(Figure 8.11). a) Assuming that B is uniform and using the proper frame of the 
circuit, verify that QP becomes positively charged, while MN becomes negatively 
charged. Show that the induced emf is equal to zero. b) Assuming that B is non- 
uniform (field of an electromagnet, for instance) and that the circuit is small, 
calculate the force f that acts on a conduction electron and show that the circulation 
of f over the circuit is −eva(BPN − BMQ), where BPN and BMQ are the average fields 
on the sides PN and MQ, respectively. Deduce that the induced emf is  
va(BMQ − BPN). c) Considering two positions of the circuit separated by an interval 
of time dt, show that the variation of the flux is dΦ = (BMQ − BPN)va dt. Deduce that 
the induced emf is −∂tΦ. d) Let us consider a circuit C, of any shape, which moves 
in a field B. Show that the variation of the flux during dt is 

Φ(t+dt) − Φ(t) = ∫∫S dS (B.n) = ∫C B.(v dt × dr).  

Deduce that the induced emf is E′ = ∫C (v × B).dr.   

 
 

 

                                                             

Figure 8.11. Problem 8.6                         
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Mutual inductance and self-inductance 

P8.7 Two circular loops of radii R and r are coaxial and their centers are on the axis 
Oz at a distance h apart (Figure 8.12). a) Determine the direction of the induced 
current in the small loop if the intensity I in the large loop increases and if it 
decreases. b) I is maintained constant and the small loop is displaced. Determine the 
direction of the induced current if it is moved toward the large loop. c) Calculate the 
mutual inductance M in the cases r << R and r = R. 

                                                           

Figure 8.12. Problem 8.7 

P8.8 a) Calculate the inductance L of a finite solenoid of n turns per unit length, of 
radius a and length 2h by taking, for each loop, the value of B at the center of that 
loop. Calculate L if h = 1 m, a = 10 cm and n = 500 turns/m. Compare L with that of 
a solenoid of the same characteristics but treated as very long. b) A toroidal coil of 
average radius R has a transversal circular section of radius a and it is formed by N 
turns. Show that its inductance is L = µoN2[R − (R2 − a2)1/2]. Compare L with the 
inductance of a very long solenoid with the same characteristics. 

LR and LCR circuits 

P8.9 The intensity in an electromagnet of inductance 5 H and resistance 10 Ω 
decreases linearly from 10 A to 2 A in 0.05 s. Determine the induced emf, the 
variation of the magnetic energy and the energy that is dissipated as Joule heat. 
Calculate the energy supplied by the generator in the same interval of time. 

P8.10 A capacitor of capacitance C = 10 µF is charged under 100 V and then 
connected at time t = 0 to the terminals of an inductance L = 20 H in series with a 
resistance R = 2 kΩ. a) Write the differential equation for the charge Q. What is the 
solution that corresponds to the given initial conditions? b) Write the expressions of 
the current intensity, the electric energy, the magnetic energy, and the total energy.  
c) Calculate the energy lost as Joule heat between t = 0 and t and compare it with the 
decrease in the stored energy. d) What is the relaxation time of this circuit and what 
is its quality factor? How long does it take for the amplitude of the charge to be 
reduced to 1% of its initial value?  
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Magnetic energy 

P8.11 A coil has 100 turns, a section S = 25 cm2 and a resistance R = 5 Ω. It is 
placed normal to a magnetic field B = 0.5 T and pulled out of the field in 0.2 s. 
Determine the average induced emf, the total induced charge, the average induced 
intensity, the variation of the magnetic energy and the work required to pull it. 

P8.12 a) Consider the coaxial cylindrical cable of Figure 8.13. The internal cylinder 
of radius r1 has a charge density +ql per unit length and the cylindrical shell of 
internal radius r2 has a density –ql. Applying Gauss’s law to a cylindrical surface of 
radius r, show that the electric field between the conductors is E = ql/2πεor. Deduce 
that the difference of potential between them is V = (ql/2πεo) ln(r2/r1) and that the 
capacitance per unit length is Cl = 2πεo/ln(r2/r1). Using the expression of the electric 
field, calculate the energy density UE,v and the stored energy per unit length of the 
cable. Using the expression UE,l = ½ClV2, again find the expression of Cl. b) To calculate 
the inductance, assume that a current I is carried by the internal cylinder in a direction 
and by the cylindrical shell in the opposite direction. Applying Ampère’s law to a 
circle C of radius r (such that r1< r < r2), show that the magnetic field between the 
conductors is B = µoI/2πr. Show that the magnetic energy stored in the cable of length l 
is UM = (µo/4π)I2l ln(r2/r1). Using the fact that the magnetic energy is ½LI2, verify that 
the inductance per unit length is Ll = (µo/2π) ln(r2/r1). 

 
                                    (a)                                                                             (b) 

Figure 8.13. Coaxial cable of problem 8.12 

P8.13 a) Show that the stored magnetic energy in a magnetic circuit is UM = ½RΦ2, 
where R is its reluctance and Φ is the flux. b) Show that the inductance is L = N2/R 
and again find the expression UM = ½RΦ2 for the energy. 

P8.14 A torus of permeability µ is generated by the rotation of a square of sides 2a 
about the axis Oz parallel to two sides of the square, the center of the square 
describing a circle of radius R. Two coils are wound around this torus: a primary of 
N1 turns and a secondary of N2 turns. a) Calculate the inductances L1 and L2 and the 
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mutual inductance M of these coils. b) Assume that the secondary is connected to a 
resistance R2 and that the primary of resistance R1 is supplied by a generator of emf 
E1(t). Write the equations of these circuits. Verify that the generator supplies a 
power P = R1I1

2
 + R2I2

2
 + ∂t(½L1I1

2 + ½L2I2
2) + ∂t(M I1I2). Interpret this expression. 

c) Assuming that the emf is E1 = Em cos(ωt), determine the intensities I1 and I2. 

P8.15 A coil of Nc = 30 turns encircles a solenoid of radius a = 5 cm, length h = 50 
cm and total number of turns Ns = 1 000. The coil is connected to a resistance R = 40 
Ω. Assume that the solenoid is very long, and the self-induction of the coil is 
negligible. a) Calculate the stored energy in the solenoid if it carries a current of 10 
A. How long does it take to supply this energy by a generator of 400 W?  
b) What is the induced charge in R if the intensity of the solenoid varies from I1 = 1 
to I2 = 5 A? Does the charge depend on the radius of the coil and the required time 
for this variation of the intensity? Determine the direction of the induced current.  
c) Assume that the intensity in the solenoid varies according to the equation  
Is = Im sin(ωt) where Im = 5 A and ω = 120π rad/s. Neglecting the self-inductance of 
the coil and its influence on the solenoid, calculate the field B inside the solenoid. 
What is the induced intensity in the coil?  

Magnetic forces on circuits 

P8.16 a) Determine the magnetic energy of a solenoid of N turns, radius R and 
length h by assuming that it is very long (R << h). b) Two coaxial solenoids S1 and 
S2 have radii R1 and R2. Neglecting end effects, calculate their mutual inductance if 
S2 is introduced a distance x inside S1. Deduce their force of interaction. 

P8.17 A solenoid of radius R and length h >> R is formed by using a conducting 
elastic wire. Calculate the magnetic force exerted by the field B on an element of 
area of the solenoid. Deduce that the solenoid is subject to a magnetic pressure  
pM = UM,v, which tends to increase its radius in agreement with the maximum flux 
rule. Assume that the intensity I is kept constant and R increases by δR. Show that 
the work of the pressure forces is equal to the variation of the magnetic energy.  

Applications of the induction 

P8.18 A coil of 200 turns and radius r = 10 cm is placed in a uniform field Bo = 2 T. 
It is connected to a circuit of resistance 50 Ω. a) What is the moment of the 
magnetic forces exerted on this coil if it carries a current I and its axis makes an 
angle θ with Bo? b) Neglecting the self-induction, determine the moment of force 
that has to be exerted on the coil in order to rotate it with an angular velocity ω. 
What then is the induced intensity? Verify the conservation of energy. Make the 
same analysis, but by taking into account the self-induction.  
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P8.19 A metallic disk of thickness h, radius R and conductivity σ is placed in a 
magnetic field B = Bm sin(ωt) parallel to its axis. Determine the induced current 
density at a point situated at a distance r to the axis. Calculate the average power 
that is dissipated as Joule heat in the disk. Numerical application: consider the case 
of a disk of radius 7 cm, thickness 2 mm, conductivity 107 Ω−1.m−1, a magnetic field 
of amplitude Bm = 0.2 T and frequency 50 Hz. 

P8.20 In a betatron, the electron moves on a circular orbit of axis Oz and radius ρo in 
a magnetic field oriented in the direction Oz. The magnitude of B depends on time 
and the distance ρ to Oz. Let <B> be the average field within the orbit and B the 
field that acts on the electron along the orbit. a) Show that the induced electric field 
is E = −½ρ ∂t<B> eϕ . Write the equation of motion and deduce that the electron 
moves effectively on a circular orbit of radius ρo if the electromagnet is conceived in 
such a way that ∂t<B> = 2B. The acceleration of the electron is then ∂tv = eροB/m.  
b) Show that in a complete revolution, the kinetic energy varies by δUK = 2πeρο

2B. 



Chapter 9 

Maxwell’s Equations 

In 1865, Maxwell unified electricity and magnetism in a single theory, called 
electromagnetism. The fields E and B cannot be considered as independent, as the 
variation of one in time requires the presence of the other. Thus, they constitute a 
single physical entity, called the electromagnetic field. This theory is verified by all 
its consequences, particularly the existence of electromagnetic waves that propagate 
in vacuum with the speed c = 1/ ooεμ  equal to the speed of light. The existence of 
these waves with the same properties of polarization and propagation as light waves 
was verified experimentally by Hertz in 1884. Electromagnetic theory also solved 
the old problem of the nature of light: it is an electromagnetic wave of a very short 
wavelength. The formulation of electromagnetism was a very important event in the 
history of science. 

In this chapter, we write Maxwell’s equations and the equations of propagation 
for the fields and the potentials. We discuss the questions of energy and its transfer 
and the radiation pressure. 

9.1. Fundamental laws of electromagnetism 

If electric and magnetic phenomena vary in time, all the relevant quantities 
(fields, free charge density qv, conduction current density j, polarization P, 
magnetization M, etc.) may depend on time, and we expect that some of the basic 
equations that we have derived in previous chapters will be modified. 

a) We have seen in section 3.6 that the conservation of electric charge implies 
that the charge flowing out of a closed surface S per unit time (i.e. the total 
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intensity) is equal to the rate of decrease of the total charge Q in the enclosed 
volume V (Figure 9.1a)  

∫∫S dS (j.n) = −∫∫∫V dV ∂tqv.  [9.1] 

Using Gauss-Ostrogradsky’s theorem to transform the flux of j into the volume integral 
of ∇.j, this equation being valid for any volume V, we obtain the local form of the 
law of conservation of charge, called the continuity equation, 

∇.j + ∂tqv = 0.   [9.2] 

In the case of stationary phenomena, ∂tqv = 0, equation [9.2] reduces to ∇.j = 0 and 
[9.1] reduces to ∫∫S dS j.n = 0. This implies that the intensity is the same at all points 
of the same branch of the circuit and Kirchhoff’s nodes rule (Figure 9.1b). In the 
case of a surface S, which contains the positive plate of a capacitor (Figure 9.1c), 
the outgoing flux ∫∫S dS j.n receives only a contribution –I from the part of S that is 
outside the capacitor. Thus, during charging or discharging the capacitor, this flux is 
not equal to zero but to –I = – dQ/dt.  

 

(a)                                        (b)                                                       (c) 

Figure 9.1. Conservation of charge: a) in the case of time-dependent phenomena, b) in a 
stationary circuit, and c) displacement current and energy flux in a capacitor 

b) If the magnetic field B is time-dependent, there is necessarily an induced 
electric field E. The circulation of E over a closed path C is not equal to zero but to 
the induced e.m.f. according to the equation 

E = ∫C dr.E = –
dt
d ∫∫S dS (n.B).  [9.3] 

Using Stokes’s theorem to transform the circulation over C into the flux of ∇ × E 
over S, the relation being valid for any surface S, we obtain Faraday’s law in the 
local form 

∇ × E + ∂tB = 0.         [9.4] 

Thus, the electric field E is not conservative in the case of variable phenomena. 
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c) Gauss’s law and the law of conservation of magnetic flux (which is the 
expression of the absence of magnetic charge) remain valid in the case of time-
dependent phenomena. These laws may be written in the integral or local forms  

∫∫S dS (n.D) = ∫∫∫V dV qv        and              ∇.D = qv,    [9.5]  

∫∫S dS (n.B) = 0                    and              ∇.B = 0.     [9.6]  

d) Let us consider now Ampère’s law. It is obvious that equation ∇ × H = j 
cannot hold in the case of time-dependent phenomena, as the divergence of the left-
hand side is identically zero, while the divergence of the right-hand side is −∂tqv 
according to [9.2]. Noting that qv = ∇.D according to Gauss’s law, the continuity 
equation [9.2] may be written as 

∇.(j + ∂tD) = 0.      [9.7] 

This equation states that the vector field (j + ∂tD) has a conservative flux. A possible 
form of the modified Ampère’s law is thus 

∇ × H = j + ∂tD.         [9.8]  

This equation is physically valid if all its consequences are verified by the 
experiments. Particularly, if the electric field is variable (∂tD ≠ 0), this equation 
shows that there must be necessarily a magnetic field H, even if j = 0. This is the 
induction of a magnetic field if the electric field varies. Maxwell called ∂tD the 
displacement current. To write Ampère’s law in an integral form, we take the flux of 
both sides of [9.8] through a surface S bounded by a closed curve C and we 
transform the flux of ∇×H into the circulation of H using Stokes’s theorem. We find 

∫C dr.H = ∫∫S dS n.j + dt
d  ∫∫S dS n.D.     [9.9] 

It should be noted that qv is the free charge density, and j is the free current 
density, which includes the conduction currents in conductors at rest, the convection 
currents (i.e. produced by charges that are dragged by moving bodies) and the 
currents that are produced by beams of charged particles. We may consider Gauss’s 
law ∇.D = qv and the modified Ampère’s law ∇ × H = j + ∂tD as two coupled 
equations for D and H but, very often, they do not completely determine D and H. 
Similarly, equations ∇.B = 0 and ∇×E + ∂tB = 0 do not completely determine E and 
B. The determination of all four fields necessitates the use of the relations of D to E 
and B to H, which involve the properties of the medium. In the general case, E is the 
sum of the field produced by the free charges, the field due to the polarization of 
dielectrics, and the induction field due to the variation of B. Similarly, B is the sum 
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of the field produced by the free current density, the field produced by the magnetic 
bodies and the induced field due to the variation of D. 

The electromagnetic properties of matter are determined by the polarization P, 
equivalent to a volume charge density q′v = −∇.P, and the magnetization M, 
equivalent to a volume current density j′v = ∇ × M (besides the polarization surface 
charge density q′s = n.P and the magnetization surface current density j′s = M × n). 
Thus, Gauss’s law and Ampère’s law may be written as 

∇.E = (qv − ∇.P)/εo       and       ∇ × B = µo(j + ∇ × M + ∂tD).  [9.10]  

The displacement current density ∂tD is the vector sum of a term εo∂tE, which exists 
in vacuum as well as in matter, and a polarization current density j′p = ∂tP due to the 
dielectric1. Thus, equations [9.10] have the same form as in vacuum, but by 
including the polarization charge density q′v = −∇.P, the magnetization current 
density j′M = ∇×M and the polarization current density j′p = ∂tP. 

To interpret the displacement current, let us consider, for instance, the charging of a 
capacitor, whose plates are disks of radius R (Figure 9.1c). The electric displacement 
D exists only between the plates, where it is uniform and given by Gauss’s law D =  
qs ez. Equation [9.7] means that the outgoing flux of the vector j + ∂tD from the 
surface S is equal to zero. On the part of S that is outside the capacitor, D = 0, and 
the outgoing flux reduces to that of j, i.e. −I. On the part of S that is inside the 
capacitor, j = 0, and the outgoing flux reduces to that of ∂tD, i.e. πR2 ∂tqs. Thus, the 
conservation of the flux of j + ∂tD is equivalent to the evident relation I = πR2 ∂tqs = 
∂tQ. The appearance of the displacement current in Ampère’s law [9.8] means that it 
produces a magnetic field exactly like the conduction current. Indeed, applying 
Ampère’s law [9.9] to a circular path C2 of radius ρ < R, we get 2πρH = πρ2 ∂tD = 
πρ2 ∂tqs, hence H = (ρ/2πR2) I. If we use Ampère’s law without the term ∂tD, we 
obtain no field H, and this is not the case, as in the limit of a thickness of the 

                                    
1 The polarization current density ∂tP may be considered to be due to the displacement of 
bound charges within the atom or molecule. Indeed, P is the electric dipole moment of the 
unit volume; thus, P = Σk qk rk and ∂tP = Σk qk vk, where the sum is over the bound charges in 
the unit volume and this is a current density jp. As for the term εo∂tE, Maxwell interpreted it 
as due to the “polarization of ether”. It was widely believed at the end of the 19th Century that 
vacuum and matter were actually filled with a very rarefied substance called ether having a 
permittivity εo and permeability µo. It served only as a propagation medium for light and 
electromagnetic waves. However, no experiment has detected ether, and the hypothesis of its 
existence was completely abandoned at the beginning of the 20th Century, after Michelson’s 
experiment and the formulation of the special theory of relativity (see Chapter 13). 
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capacitor equal to zero, the field must be H = I/2πρ, identical to its expression 
outside the capacitor. 

9.2. Maxwell’s equations 

A) Maxwell’s equations in any medium 

The electric field E and the magnetic induction field B are defined by their 
action on a particle of charge q and velocity v, called Lorentz force: 

F = q( E + v × B ).        [9.11] 

In the presence of matter, we have to introduce the polarization density P and the 
magnetization density M or, equivalently, the electric displacement D = εoE + P and 
the magnetic field H = B/µo – M. The fields E, D, B, and H obey Maxwell’s 
equations in the local form: 

∇ . D = qv                                  (Gauss’s law)      [9.12] 

∇ × E + ∂tB = 0                         (Faraday’s law)      [9.13] 

∇ . B = 0                                    (absence of magnetic charges)  [9.14] 

∇ × H = j + ∂tD                         (Ampère’s law).      [9.15] 

These are the basic equations of electromagnetic phenomena in vacuum and in 
matter. They are valid in insulators (j = 0) and in conductors. In the particular case 
of an Ohmic conductor, j = σE, where σ is the conductivity. The first three 
equations were established from experimental observations. The fourth equation is a 
generalization of Ampère’s law. qv is the charge density of free charges and j is the 
free current density (i.e. conduction, convection, and beam currents). The 
displacement current ∂tD was introduced by Maxwell in order to preserve the 
equation of conservation of charge ∂tqv + ∇.j = 0. We may inverse the argument and 
derive this equation of conservation of charge as a consequence of equations [9.12] 
and [9.15]. 

If we know the free sources qv and j and the dielectric and magnetic properties of 
the medium (i.e. the relations of D to E and B to H) at each point of space, 
Maxwell’s equations have a solution but it is not unique. Indeed, we may add to it 
any solution (Eo, Do, Bo and Ho) which corresponds to qv = 0 and j = 0 and obtain 
another solution. We may use this property to impose initial conditions and 
boundary conditions at the surfaces Si, which limit the region V of the fields. If V is 
infinite but the sources qv and j occupy a finite region of space, the fields (E, B, D, 
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and H) vanish at infinity. It is always possible to find Eo, Do, Bo, and Ho to satisfy 
these initial and boundary conditions. Thus, Mawxell’s equations with the initial 
conditions and boundary conditions always have a solution and this solution is 
unique. Obviously, this does not mean that it may be written in terms of simple 
functions. Some approximation methods or numerical methods are often necessary. 

Maxwell’s equations form a system of partial differential equations. They are 
linear if the dielectric and magnetic medium are linear. Thus, the solutions obey the 
superposition principle: if the sources (qv and j) are multiplied by a constant k, the 
fields are multiplied by the same constant. Also, if a configuration of sources (qv and 
j) produces the fields E, B, D and H, and another configuration (q′v and j′) produces 
the fields E′, B′, D′, and H′, the superposition of sources (qv+q′v and j+j′) produces 
the superposition of fields (E + E′, B + B′, D + D′ and H + H′).  

Sometimes, it is useful to write Maxwell’s equations in an integral form instead 
of the local differential form. For this, we integrate both sides of [9.12] and [9.14] 
over a volume V and we use Gauss-Ostrogradsky’s theorem to transform the volume 
integral of the divergence into the outgoing flux through the surface S, which limits V. 
As for equations [9.13] and [9.15], we calculate the flux of both sides through a 
surface S and we use Stokes’s theorem to transform the flux of the curl into a 
circulation over the curve C, which limits S. Thus, we get the four equations 

∫∫S dS n.D = Q(in),                               where     Q(in) = ∫∫∫V dV qv     (Gauss’s law)   [9.16] 

∫C dr.E + ∂t ∫∫S dS n.B = 0            (Faraday’s law)   [9.17] 

∫∫S dS n.B = 0                                      (absence of magnetic charges)  [9.18] 

∫C dr.H − ∂t ∫∫S dS n.D = I(in),    where I(in) = ∫∫S dS n.j    (Ampère’s law). [9.19] 

These equations hold even if the fields have discontinuities. On the other hand, 
the derivatives with respect to time of the fluxes receive contributions both from the 
variation of the fields in time and the displacement of the surfaces. For these 
reasons, Maxwell’s equations in the integral form have a more general validity than 
the differential form. In these integral forms, the fields, charges and currents are 
taken at the same time. For instance, if a charge enters a closed surface S, the flux of 
its outgoing electric field from S is non-zero only when it is inside S. However, 
some effects (such as propagation) depend on the local properties of the fields; they 
are better analyzed by using the local form of Maxwell’s equations. 
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B) Maxwell’s equations in a homogeneous, isotropic, and linear medium 

If the medium is homogeneous, linear, and isotropic, D is proportional to E and 
B is proportional to H: 

D = ε E      and        B = µ H,     [9.20] 

where ε and µ are characteristic of the medium. We may then only use fields E and 
B, and Maxwell’s equations may be written as 

∇. E = qv/ε                                (Gauss’s law)       [9.21] 

∇ × E + ∂tB = 0                        (Faraday’s law)      [9.22] 

∇. B = 0                                    (absence of magnetic charges)  [9.23]  
∇ × B = µj + εµ ∂tE                  (Ampère’s law).      [9.24] 

Particularly, in vacuum ε becomes εo and µ becomes µo. 

To write the integral forms of the equations in a linear but inhomogeneous 
medium, we must assign the corresponding constant ε and µ to each element of area 
dS or element of volume dV; we find: 

∫∫S dS ε n.E = Q(in)                              (Gauss’s law)    [9.25] 

∫C dr.E + ∂t∫∫S dS n.B = 0                              (Faraday’s law)    [9.26] 

∫∫S dS n.B = 0                                                      (absence of magnetic charges)      [9.27] 

∫C dr.B/µ = I(in) + (d/dt) ∫∫S dS ε n.D      (Ampère’s law).   [9.28] 

C) Equation of propagation of the fields  

Maxwell’s equations form a system of coupled partial differential equations of 
the first order. It is possible to write uncoupled equations for each one of the fields; 
but they are second-order partial differential equations. Indeed, let us evaluate the 
curl of Faraday’s equation [9.22], we find ∇×(∇×E) + ∂t(∇×B) = 0. Using the 
identity ∇×(∇×E) = ∇(∇.E) − ΔE, Gauss’s law [9.21] and Ampère’s law [9.24], we 
find 

ΔE − (1/v2) ∂2
ttE = µ ∂tj + ∇qv/ε ,         where v = 1/ με .     [9.29] 

Similarly, let us calculate the curl of both sides of [9.24] and use equations [9.22] 
and [9.23], we find the equation 

ΔB − (1/v2) ∂2
ttB = − µ∇ × j.        [9.30] 
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The uncoupled equations, [9.29] and [9.30], for E and B determine some
properties of the fields E and B if we know the charge density and the current
density at each point of space. Particularly, if these densities are equal to zero
everywhere, these equations become

ΔE − (1/v2) ∂2ttE = 0, ΔB − (1/v2) ∂2ttB = 0. [9.31]

These are the propagation equations (or wave equations) called d’Alembert’s
equations. The speed of propagation is

1/v = με. [9.32]

In vacuum, this speed is identical to the speed of light in vacuum

c = oo/1 εμ = 2.997 924 58 × 108 m/s. [9.33]

9.3. Electromagnetic potentials and gauge transformation

Maxwell’s equation ∇∇.B = 0 is identically verified, if B is the curl of a vector
potential A

B = ∇∇ × A. [9.34]

Substituting this expression of B in Faraday’s equation [9.22], we get

∇∇ × (E + ∂tA) = 0. [9.35]

This equation expresses that the vector (E + ∂tA) is conservative. Thus, we may
define a scalar potential V such that

E = − ∇∇V − ∂tA. [9.36]

Note that A and V are not uniquely determined if the fields E and B are given.
Indeed, a gauge transformation

A → A′ = A + ∇∇f, V → V' = V − ∂tf, [9.37]

where f is an arbitrary scalar function of r and t, does not modify the fields E and B.

Substituting the expressions [9.34] and [9.36] in Maxwell’s inhomogeneous
equations, [9.21] and [9.24], and noting that ∇∇×(∇×A) = ∇∇(∇∇.A) − ΔA, we find

ΔV + ∂t (∇∇.A) = −qv/ε and ΔA − εµ ∂2ttA −− ∇∇(∇∇.A + εµ ∂tV) = − µj. [9.38]
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These are two coupled equations for V and A. It is always possible to make a gauge 
transformation [9.37] in order to have V and A verify the Lorentz condition 

∇. A + εµ ∂tV = 0.      [9.39] 

Then, equations [9.38] take the uncoupled form 

ΔV − (1/v2) ∂2
ttV = −qv/ε         and       ΔA − (1/v2) ∂2

ttA = − µj.   [9.40] 

If the Lorentz condition [9.39] is not imposed, the propagation equations are 
uncoupled, hence more difficult to analyze, but the fields are evidently the same.  

If the charge and current densities are known at each point of space and at any 
time, the propagation equations [9.40] have the particular solutions 

VR(r, t) = (1/4πε) ∫∫∫ dV ′ qv(r′, t − R/v)/R, [9.41] 

AR(r, t) = (µ/4π) ∫∫∫ dV ′ j(r′, t − R/v)/R,       where  R = r − r′,   [9.42] 

These are called retarded potentials, because they are produced at any point r and 
time t by the sources at each space point r′ not at the same time t but an earlier time  
t − R/v, where v is the speed of propagation. We note that there is another solution, 
called advanced solution, which is produced by the sources at the later time t + R/v. 
This solution is not acceptable as it violates the causality principle. The time delay 
R/v is just the time that the wave, which is emitted by the sources (qv and j) at r′, 
takes to arrives at r. It may be shown that these potentials verify Lorentz condition 
[9.39]. At the limit of an infinite speed v, we find the instantaneous potentials of the 
permanent regime  

VP(r, t) = (1/4πε) ∫∫∫ dV ′ qv(r′, t)/R        and     AP(r, t) = (µ/4π)∫∫∫ dV ′j(r′, t)/R. [9.43] 

The expressions [9.41] and [9.42] are not the unique solutions of the equations of 
propagation [9.40]. We may add to them any solution of the homogeneous equations 
of propagation ΔVo − (1/v2) ∂2

ttVo = 0 and ΔAo − (1/v2)∂2
ttAo = 0 and obtain other 

solutions of the equations [9.40]. If the medium is infinite and the fields must vanish 
at large distances, the expressions [9.41] and [9.42] are the solutions that verify this 
requirement. In the case of a medium bounded by surfaces Si, whose charges or 
potentials are given, the Vo and Ao terms must be added and they can be chosen to 
satisfy the boundary conditions on the surfaces Si. 

The equations of propagation of the fields [9.29] and [9.30] may be derived from 
the equations of propagation of the potentials. Indeed, taking the curl of both sides 
of the propagation equation of A [9.40], we find the propagation equation of B 
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[9.30] and taking the gradient of both sides of the propagation equation of V and the 
time derivative of the propagation equation of A and adding them, we find the 
propagation equation of E [9.29]. 

It should be noted that the Lorentz condition does not completely fix the 
potentials. Indeed, it is still possible to make a gauge transformation [9.37] without 
affecting the Lorentz condition if the gauge function f is a solution of the equation  
Δf − (1/v2) ∂2

ttf = 0. Particularly, it is possible to choose f to impose the additional 
condition ∇.A = 0. Then, the Lorentz condition gives ∂tV = 0. This special choice is 
called the Coulomb gauge (or the transversal gauge). Then the two equations, 
[9.38], may be written as  

ΔV = −qv/ε        and         ΔA − (1/v2) ∂2
ttA = − µj.   [9.44] 

V obeys Poisson’s equation and its solution is the instantaneous potential of the 
stationary state, but the expression of A should be retarded.  

If we use V and A to analyze electromagnetic phenomena, any choice of the 
gauge function, f, has no effect on any physical quantities. This is referred to as 
gauge invariance. Thus, we may use any convenient gauge. This is not a drawback 
of the theory; on the contrary, it is of great physical importance2.   

9.4. Quasi-permanent approximation 

In the general case of time-dependent qv and j, the system is said to be in a 
variable regime. It obeys Maxwell’s coupled equations [9.12] to [9.15]. E and B 
constitute the electromagnetic field. They are related to the potentials V and A by the 
relations B = ∇ × A and E = −∇V − ∂tA. The potentials are given by the retarded 
expressions [9.41] and [9.42], the evaluation of which is often difficult; hence, it is 
necessary to use approximation methods.  

a) If we completely neglect the variation of qv in time and the motion of electric 
charges (thus j = 0), the system is in the static regime governed by the equations of 

                                    
2 Some authors consider that the potentials are simply a convenient mathematical tool to 
calculate the fields. Although the potentials are defined up to a gauge transformation, all the 
physical quantities are invariant in this transformation. It may be shown using Noether’s 
theorem (see section 1.7) that this invariance is related to the conservation law of electric 
charge [9.2]. In 1959, Aharonov and Bohm showed that the vector potential has quantum 
mechanical observable effects. More recently, the theory of gauge fields allowed the 
unification of electromagnetic and weak interactions and possibly strong interactions. Thus, it 
seems to be the most fundamental theory of physics (the so-called theory of everything). 
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electrostatics and magnetostatics of permanent magnets, which are Maxwell’s time-
independent equations 

∇.DS = qv,     ∇×ES ≅ 0,      ∇.BS = 0      and   ∇×HS ≅ 0  (stationary regime).  [9.45] 

This is obviously a poor approximation with qv, ES, DS, BS and HS time-independent 
and magnetism completely uncoupled from electrostatics.  

b) A better approximation (called permanent regime approximation) consists of 
keeping the free current density j but neglecting Faraday’s induction and the 
displacement current. Maxwell’s equations reduce to  

∇.DP = qv,    ∇×EP ≅ 0,     ∇.BP = 0      and    ∇×HP ≅ j     (permanent regime). [9.46] 

In the case of a linear medium, the potentials and fields may be written as 

VP(r, t) ≅ (1/4πε)∫∫∫ dV ′ qv(r′, t)/R     and   AP(r, t) ≅ (µ/4π)∫∫∫ dV ′ j(r', t)/R, [9.47] 

EP(r, t) ≅ −∇VP(r, t) ≅  (1/4πε)∫∫∫dV ′qv(r′, t) R/R3, 

BP(r, t) ≅ ∇×AP(r, t) ≅  (µ/4π)∫∫∫ dV  j(r', t) × R/R3,                    [9.48] 

where the sources are taken at the same time t as the potentials and the fields. Thus, 
all propagation effects are ignored. The potentials and the fields are completely 
uncoupled and they verify the equations 

ΔVP ≅ − qv/ε,         ΔAP ≅ − µj,        ΔEP ≅ ∇(qv/ε),       and      ΔHP ≅ − ∇×j.  [9.49] 

Taking the divergence of both sides of the approximate equation ∇ × HP ≅ j, we find 
∇.j ≅ 0, which implies the continuity of the current in the branches of a circuit and 
Kirchhoff’s rule for nodes. In this case, we also have ∇.AP ≅ 0. 

c) The coupling of the fields E and B is due to the terms ∂tB in the Maxwell-
Faraday equation and the displacement current ∂tD in the Maxwell-Ampère 
equation. If one of these terms is negligible, we expect this coupling to be weak and 
the solution of the problem to be easier. This is the so-called quasi-permanent 
approximation. We may consider two cases depending on whether ∂tD or ∂tB is 
small.  

1) If ∂tD is negligible, compared to j, but ∂tB is not small, we have the 
magnetic quasi-permanent approximation (MQ-P). Maxwell’s equations reduce to 

∇.EMQ-P = qv/ε,    ∇×EMQ-P + ∂tBMQ-P = 0,   ∇.BMQ-P = 0,   and ∇×BMQ-P ≅ µj.  [9.50] 

The homogeneous equations ∇×EMQ-P+∂tBMQ-P = 0 and ∇.BMQ-P = 0 are verified if 

EMQ-P = −∇VMQ-P − ∂tAMQ-P    and    BMQ-P = ∇ × AMQP.   [9.51] 
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Making a gauge transformation [9.37], we may impose the Lorentz condition
∇∇.AMQ-P + µε ∂tVMQ-P = 0. Then, the fields and the potentials verify the equations

ΔEMQ-P ≅ ∂t(µj) + ∇∇(qv/ε), ΔBMQ-P ≅ −∇∇×(µj), [9.52]

ΔVMQ-P ≅ − qv/εo, ΔAMQ-P ≅ − µj. [9.53]

Equations [9.53] are the same as in the permanent approximation. Their solutions
have the form [9.47] with the sources taken at the same time t as the potentials

VMQ-P(r, t) ≅ (1/4πε)∫∫∫ dV ′ qv(r′, t)/R, AMQ-P(r, t) ≅ (µ/4π)∫∫∫ dV ′ j(r′, t)/R. [9.54]

Knowing the potentials, we may evaluate the fields by using equations [9.51]:

EMQ-P(r, t) = −∇∇VMQ-P − ∂tAMQ-P ≅ (1/4πε)∫∫∫ dV ′ qv(r′, t)R/R
3 − (µ/4π)∫∫∫ dV′ ∂t j(r′, t)/R

BMQ-P(r, t) = ∇∇ × AMQ-P(r, t) ≅ (µ/4π)∫∫∫ dV ′ j(r′, t)×R/R3. [9.55]

Thus VMQ-P, AMQ-P and BMQ-P are evaluated as in the permanent approximation,
while EMQ-P is given by the relation EMQ-P(r, t) = −∇∇VMQ-P(r, t) − ∂tAMQ-P(r, t).

2) In some situations, ∂tB may be neglected but the displacement current ∂tD
cannot be neglected compared to j (as in the case j = 0, for instance). This is the
so-called electrostatic quasi-permanent approximation (EQ-P). In this case,
Maxwell’s equations reduce to

∇∇.EEQ-P = qv/ε, ∇∇×EEQ-P ≅ 0, ∇∇.BEQ-P = 0, and ∇∇×BEQ-P = µj + µε∂tEEQ-P. [9.56]

Taking the divergence of both sides of the last equation and taking into account the
first equation, we find the continuity equation ∇∇.j + ∂tqv = 0. Thus, the continuity of
the intensity in the branches of a circuit and Kirchhoff’s rule for nodes are not
respected. On the other hand, the approximate equation ∇∇×EEQ-P ≅ 0 means that
EEA-P is approximately conservative. Thus, we have the relations

EEQ-P ≅ −∇∇VEQ-P and BEQ-P = ∇∇×AEQ-P. [9.57]

Restricting the gauge transformation to time-independent gauge functions f, i.e.
V′EQ-P = VEQ-P and A′EQ-P = AEQ-P + ∇∇f(r), we may impose the condition ∇∇.AEQ-P = 0.
Then, the fields and the potentials verify the equations

ΔVEQ-P ≅ − qv/εo and ΔAEQ-P ≅ − µjT where jT = j + ε ∂tEEQ-P, [9.58]

ΔEEQ-P ≅ ∇∇(qv/ε) and ΔBEQ-P ≅ − ∇∇ × (µj) ≅ − ∇∇ × (µjT). [9.59]
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The potential VEQ-P and the electric field EEQ-P verify the same equations as in the 
permanent approximation. Thus, they have the same expressions in terms of qv(r, t):  

VEQ-P (r, t) ≅ (µ/4πε) ∫∫∫ dV ′ qv(r′, t)/R, 
EEQ-P (r, t) ≅ −∇VEQ-P (r, t) ≅ (1/4πε) ∫∫∫ dV ′ qv(r′, t) R/R3.  [9.60] 

Knowing EEQ-P, we may evaluate jT, then AEQ-P and BEQ-P by using the same 
expressions as in the permanent approximation, but with the current density  
jT = j + ε∂tEEQ-P: 

AEQ-P(r, t) ≅ (µ/4π) ∫∫∫ dV ′ jT(r′, t)/R, 
BEQ-P(r, t) = ∇ × AEQ-P(r, t) ≅ (µ/4π) ∫∫∫ dV ′ jT(r′, t)×R/R3.   [9.61] 

To know under which conditions these approximations can be used, let us first 
explain what we mean by “slow variation”. If a quantity G varies, we may define the 
characteristic time of its variation by τ ∼ |G/∂tG|. In the case of the sources qv and j, 
τ may be the time required to set them up or to eliminate them. It may be also their 
period T if they are periodic. The MQ-P approximation is valid if |∂tD| << j. Thus, it 
may be used in the case of a conducting medium if the displacement current is small 
compared to the conduction current (see problem 9.7 and section 10.7). In this case, 
a time scale of the conductor is its relaxation time τc = ε/σ. It is of the order of  
10−18 s for metals. Thus, the characteristic time of variation of charges and currents 
must be much longer than τc. This is the case for electromagnetic waves of 
wavelength as short as X-rays. It should be noted that, to apply the MQ-P 
approximation, it is not necessary that |∂tD| be everywhere negligible, compared to 
the conduction current j. It is sufficient that its global effect be small. This is the 
case for electromagnetic set-ups (a solenoid for instance) where there is no 
accumulation of charge. The EQ-P approximation is valid if |∂tB| << |∇×E|. It is not 
easy to know a priori if this condition is satisfied. If τ is the characteristic time of B and 
d is a typical distance of the system, this condition may be written as d/τ << E/B.  

Comparing the approximate quasi-permanent solutions [9.55] or [9.60] with the 
exact retarded solution [9.41] and [9.42], we find that the quasi-permanent 
approximations neglect the time delay R/v. Let d be the largest distance of the 
system (i.e. the distance between the positions of the sources qv and j and the 
distance of these positions to the points, where the fields are evaluated). The 
variations of the sources in time are considered to be slow if their characteristic time 
τsource is much longer than the propagation time τ = d/c. This defines another scale of 
time, which gives a restriction on the validity of the approximations. For instance, if 
a circuit has a length d = 3 m, the propagation time is τ ≈ 10 ns. It is much shorter 
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than the period of an alternating current of frequency 1 MHz (T = 1 µs) but certainly 
not 1 GHz (T = 1 ns).  

9.5. Discontinuities on the interface of two mediums  

The interface S of two mediums may have a charge density qs and, if at least one 
of the mediums is a conductor, the interface may carry a surface current density js. 
We assume that there is no point charge or linear current on the interface S and its 
close vicinity. Because of the discontinuity of the electric and magnetic properties of 
the mediums, the fields may have discontinuities; thus, their partial derivatives with 
respect to space coordinates are not well defined on S. In this case, only the integral 
forms of Maxwell’s equations may be written for the fields on the interface.  

 
 (a)                                 (b)                                  (c)                                (d) 

Figure 9.2. Electromagnetic fields on the interface of two mediums 

Let us apply Gauss’s law [9.25] to a thin cylinder of base dS parallel to the 
interface (Figure 9.2a). The flux of D outgoing from the bases situated on both sides 
of S is (D1 – D2).n12 dS, while the flux through the lateral surface tends to zero with 
the length of the cylinder and so is the volume charge that it contains. If qs is the 
surface charge density, the internal charge is qs dS. Thus, the normal component of 
D has a discontinuity on the interface  

D2.n12 – D1.n12 = qs.  [9.62] 

The same argument may be used for equation [9.27] and the cylinder of Figure 9.2b. 
It shows that the normal component of B is continuous at the interface 

B2.n12 = B1.n12.  [9.63] 

Let us apply Faraday’s induction law [9.26] to the rectangular path ABCD of 
Figure 9.2c. As the width dl of the rectangle tends to 0, the circulation of E over BC 
and DA tends to 0 and its circulation over AB and CD is the same as that of the 
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tangential component of E in the direction of AB, i.e. (E//1 – E//2).dL, for any dL. 
The flux of B through the rectangle tends to 0 with dl. We deduce that the tangential 
component of E is continuous on the interface 

E//1 = E//2.  [9.64] 

Similarly, let us apply Ampère’s law [9.28] to the rectangular path ABCD of Figure 
9.2d. The circulation of H is (H//1 – H//2) dL. On the right-hand side, the flux of D 
tends to 0, while the flux of js is js dL if dL is perpendicular to js and equal to zero if 
dL is parallel to js. For any direction of dL, it may be verified that the discontinuity 
of the tangential component of H may be written as 

(H1 – H2) × n12 = js,  [9.65] 

where n12 is the unit vector normal to the interface and pointing from medium (1) 
toward medium (2). 

As for the scalar potential V and the vector potential A, it may be shown that 
they are continuous unless the interface has point charges or a linear charge density 
and linear current densities. 

9.6. Electromagnetic energy and Poynting vector 

To set up an electromagnetic field, some energy must be supplied. This energy is 
distributed in space in electric form with a density ½(E.D) and in magnetic form with 
a density ½(H.B). Thus, the total electromagnetic energy density is 

UEM,v = ½ E.D + ½ H.B.   [9.66] 

If the fields are time-independent, this energy density remains constant in the course 
of time. The stored energy in space is initially supplied by the generators, which 
have emitted the fields. Once these fields are set up, the generators need to supply 
no more energy if the energy loss as Joule heat or others is negligible. On the 
contrary, if the fields depend on time, the energy density varies. The conservation of 
energy means that it is transmitted from one place to another. This transfer of energy 
is characteristic of the propagation of a wave. We define the Poynting vector as 

S = (E × H).          [9.67] 

To interpret this vector, using Maxwell’s equations we can write  

∇.S = H.(∇×E) − E.(∇×H) = − H.∂tB − E. ∂tD − (j.E).    [9.68] 
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If the medium is homogeneous, linear and isotropic, we have 

∂tUEM,v = ∂t(½εE2 + ½μE2 ) = εE.∂tE + μH.∂tH = E.∂tD + H.∂tB. [9.69] 

Thus, we may write [9.68] in the form 

∂tUEM,v + j.E = −∇.S.   [9.70] 

Let us integrate this equation over a volume V enclosed in a surface S and transform 
the volume integral of ∇.S into the flux of S through S; we find the equation 

∂t ∫∫∫V dV UEM,v + ∫∫∫V dV j.E = −∫∫S dS n.S.   [9.71] 

The first term is the rate of increase of the stored electromagnetic energy in the 
volume V. In the second term, we have j.E = qvv.E = fv.v where fv = qvE is the 
density of electric force acting on the charges of density qv and velocity v. Thus, the 
quantity j.E represents the work of the electric field on the charges per unit volume 
and per unit time. If the charges are free, they are accelerated, and this work is 
transformed into kinetic energy. If the medium is a conductor and the velocity of the 
charges remains constant, this work is dissipated as Joule heat. Thus, the second 
term represents the total energy supplied to the charges in the volume V. From the 
principle of conservation of energy, the right-hand side must represent the energy 
flux inward through the surface S. Considering an element of area dS normal to the 
unit vector n, the flux of electromagnetic energy through dS in the direction of n in 
the time interval dt is  

dUEM = (S.n) dt dS.         [9.72] 

Thus, the flux of the Poynting vector S through a surface is the rate of flow of the 
radiation energy. 

9.7. Electromagnetic pressure, Maxwell’s tensor 

Consider a volume V enclosed in a surface S and containing charges of density qv 
moving with a velocity v. The current density is j = qvv and the Lorentz force per 
unit volume of this medium is  

fv = qv( E + v × B) = qvE + j × B.       [9.73] 

Using Maxwell’s equations [9.12] and [9.15] to express qv and j in terms of the 
fields, we may write 

fv = E(∇.D) + (∇ × H) × B − D × B + [(D.B) H + (∇ × E)×D + B × D], 
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where the expression in the square brackets is equal to zero, as it may be shown by
using Maxwell’s equations; it was added to obtain a symmetric expression. Thus, we
may write in the case of a linear medium

fv = −ε ∂t(E×B) + ε[(∇∇.E)E + (∇∇×E)×E] + (1/µ)[( ∇∇.B) B + (∇∇×B)×B]. [9.74]

We may write the components of fv in the form

fv α = − εµ ∂tS α + Σβ ∂βτ αβ, [9.75]

where the Sα are the components of the Poynting vector and ταβ is Maxwell’s tensor,
whose components are

ταβ = εEαEβ + (1/µ) Bα Bβ − δαβUEM,v. [9.76]

To interpret equation [9.75], we integrate it over a volume V enclosed in a surface
S and convert the volume integral of the divergence of τ αβ into a flux; we find

∫∫∫V dV fv α + εµ (d/dt) ∫∫∫V dV Sα = ∫∫S dS Σβ ταβ nβ. [9.77]

The first term of this equation is the total force acting on the charges in the volume
V. According to the fundamental principle of dynamics, it is equal to the rate of
variation of the total momentum of matter dPmat/dt in this volume. The second term
may be interpreted as dPrad/dt where Prad is the momentum of the radiation contained
in this volume. The radiation momentum density is

Prad,v = εµ S = S/v2. [9.78]

The right-hand side of [9.77] must be interpreted as a radiation pressure on the
surface S. Thus, Maxwell’s tensor τ αβ is the electromagnetic radiation pressure
tensor similar to the mechanical pressure tensor in fluids. The pressure exerted by
radiation on an element of area dS normal to the unit vector n is

df pressure, α = dS Σβ nβ ταβ. [9.79]

This allows us to write equation [9.77] in the form

(d/dt) (Pmat + Prad) = fpressure, where fpressure, α = ∫∫S dS Σβ nβ ταβ. [9.80]

The electromagnetic field is similar to a fluid with an energy density, a momentum
density (and, consequently, a density of angular momentum) and a pressure tensor,
which are defined at each point in the field. When we write the laws of variation of
these physical quantities, we must take into account the corresponding quantities of
the field exactly as for matter.
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9.8. Problems  

Maxwell’s equations 

P9.1 a) A dielectric of polarization P occupies a volume V. Admitting that the 
polarization charge density is q′v, = −∇.P, show that the total polarization charge 
inside a surface S may be written as Q′ = − ∫∫S dS n.P. If P is time-dependent, show 
that the continuity equation of the polarization charge requires the existence of a 
polarization current density jp = ∂tP. b) Admitting that the magnetic field of matter is 
the same as that of a magnetization current jm = ∇×M, show that the “magnetic 
charge” must be equal to zero. c) Show that the density of total charge is  
qv,T = qv – ∇.P and that the total current density is jT = j + ∂tP + ∇×M. Verify the 
continuity equation ∇.jT + ∂tqv,T = 0 and that the Maxwell’s equations may be 
written as  

∇.E = qv,T /εo,   ∇.B = 0,   ∇×E + ∂B/∂t = 0,    ∇×B – (1/c2)(∂E/∂t) = µojT. 

P9.2 a) Is it possible to have the electric field E = 103[(3x + y) ex + x ey + z ez] in a 
region that is empty of matter, electric charge, electric current, and magnetic field? 
If not, determine qv, j, and B. b) A magnetic field B = (Bo + bt) ez, where Bo and b 
are constants, is set up in a cylindrical region about Oz. This region is empty of 
charges and currents. Is it possible to determine E? 

P9.3 Using Maxwell-Faraday’s equation, show that ∇.B does not depend on time 
everywhere. Deduce that, if the magnetic field is set up starting with a state of zero 
fields, the equation ∇.B = 0 remains valid everywhere in space. Similarly, using the 
Maxwell-Ampère equation, ∇×H – (1/c2)∂tE = µoj, show that ∇.E = qv/εo. 

P9.4 a) A ball of radius a has a charge q uniformly distributed and independent of 
time. Write Maxwell’s equations. Use the symmetries and determine the fields 
outside the ball. b) A cylinder of radius a carries a time-dependent current I(t) 
uniformly distributed on the sections. Write Maxwell’s equations. Discuss the 
directions of E, B, and A. Write the expressions of the retarded potentials and 
evaluate them in the limit of a very narrow cylinder (a rectilinear thin wire) by taking 
j(r′, t′) = [I(t′)/πa2] δ(x′) δ(y′) ez, where δ(x′) and δ(y′) are the Dirac delta functions.  
c) Consider the case of a constant current and the case of a constant current starting at  
t = 0. 

P9.5 Consider a beam of section S and containing Nv particles per unit volume 
moving with a velocity v. a) Calculate the fields E and B outside this beam.  
b) Consider the Galilean transformation r = r′ + vot of velocity vo in the direction of 
the beam. Verify that Maxwell’s equations are not covariant in the  
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transformation B′(r′) = B(r) and E′(r′) = E(r) + vo × B(r), that is required to have 
the invariance of the Lorentz force (see section 8.4). To simplify, consider the case 
vo = v.  

Electromagnetic potentials  

P9.6 a) The potential of a stationary charge distribution of volume density qv(r) is  

V(r) = (1/4πεo) ∫∫∫dV ′qv(r′)/|r − r′|.  

Admitting the relation Δ(1/|r − r′|) = −4π δ(r − r′) where δ(r − r′) is the three-
dimensional Dirac delta function (see section A.11 of the appendix A), show that 
V(r) is a solution of Poisson’s equation ΔV = −qv/ε. b) Verify that the retarded 
potentials [9.41] and [9.42] are solutions of the propagation equations [9.40]. 

Quasi-permanent approximations 

P9.7 a) Using the MQ-P approximation, calculate the fields and the potentials in a 
solenoid carrying a variable current I(t). b) Using the EQ-P, evaluate the fields and 
the potentials in a capacitor whose plates are disks of radius R, separated by a 
distance d << R if the charge q(t) depends on time. c) A metallic cylinder of 
conductivity σ carries a current of uniform density j(t). Show that an eventual 
charge density in this cylinder decreases according to qv = qvo 

c/τ−te where τc = ε/σ is 
a characteristic time of the metal and that the current density must verify the 
condition that j + τc ∂tj is independent of time. Write the expressions of the fields 
and the potentials in this case. 

P9.8 Calculate the electromagnetic fields of a particle of charge q oscillating on the 
z axis with an angular frequency ω in the MQ-P approximation. 

P9.9 An almost point-like nucleus isotropically emits electrons of velocity ve. 
Assume that the nucleus starts to emit with an initial charge Qo at t = 0. Let Q(t) be 
the charge of the nucleus at time t. a) Determine the charge density qv and the 
current density j everywhere and at an arbitrary time t. b) Determine the potentials 
of this charge and current distributions in the MQ-P approximation.  

Electromagnetic energy and radiation pressure 

P9.10 Verify that the equation of conservation of energy [9.70] is approximately 
verified by the MQ-P approximate solutions for the solenoid and the capacitor of 
problem 9.7 and exactly verified by the solution for the conducting cylinder.  
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P9.11 A cylindrical conductor of length L, radius a, and conductivity σ carries a 
current of variable density j(t). Calculate the Poynting vector inside the cylinder at a 
distance r from the axis; what is its direction? How does the energy propagate inside 
the cylinder? Calculate the power that enters into this cylinder, the dissipated power 
as Joule heat and the stored energy. Verify the conservation of energy.  

P9.12 Using Maxwell’s tensor, derive the expression of the electrostatic pressure on 
the surface of a conductor having a constant surface charge density qs and the 
expression of the magnetic pressure on the surface of a cylinder carrying a constant 
current density j. 



Chapter 10 

Electromagnetic Waves 

Maxwell’s equations couple the electric field E and the magnetic field B in a 
single physical entity, called the electromagnetic field. If one of the fields varies, 
necessarily, the other field is induced. Similar to the relation between displacement 
and pressure, which are responsible for the propagation of sound waves, the 
coupling between E and B is responsible for the propagation of electromagnetic 
waves in vacuum and in matter at the speed of light. It was not possible to foresee 
this remarkable effect before the formulation of Maxwell’s equations and 
electromagnetic theory. In 1884, Hertz confirmed the existence of these waves 
experimentally. He produced them by discharging two spheres at high potential 
mounted as an electric dipole. He verified that these waves propagate, interfere, 
diffract, and are polarized, exactly as light waves are. Today, we can produce 
electromagnetic waves of almost all frequencies from 10−2 Hz to 1032 Hz. They play a 
fundamental part in telecommunications (radio, television, radar, etc.), in medicine 
(X-rays, gamma rays, laser), in industry, etc. 

Electromagnetic waves are emitted by variable currents in the emitters and they 
are detected by receivers, in which they induce currents. They are specified by the 
fields E, D, B and H. They may be polarized and they carry energy, momentum, and 
other physical quantities. Their propagation properties depend on the medium.  

In this chapter, after a brief mathematical review of waves, we analyze the 
propagation of electromagnetic waves in vacuum, dielectrics, conductors, and 
plasmas, and briefly study their quantization and emission. 

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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10.1. A short review on waves 

A) One-dimensional wave equation, progressive waves 

In classical physics, a wave is a mechanical or electromagnetic disturbance that 
propagates in a medium without transfer of matter. In modern physics, it may be any 
particle in motion (photons, phonons, electrons, protons, neutrinos, etc.). In general, 
a wave is specified by a scalar or a vector wave function u, which depends on space 
coordinates and time. Let us consider first a wave u(x, t), which depends on one 
space dimension and time. This is the case of the displacement wave on a string for 
instance. In the ideal case of propagation without deformation, the disturbance at the 
origin uO = f(t) generates, at the point of coordinate x, the same disturbance but with 
a time delay x/v, that is, u = f(t − x/v). The wave function u verifies the equation of 
propagation, called d’Alembert’s equation 

∂2
xxu(x, t) − 2

1
v

∂2
ttu(x, t) = 0.    [10.1] 

This linear, second-order partial differential equation describes the propagation of 
many types of wave in an ideal medium that does not dissipate energy and deform 
the wave. The velocity, v, which appears in this equation, is the speed of 
propagation. It is easy to verify that the d’Alembert’s equation admits the solutions 

 u(+) = f(t − v
x )        and       u(−) = g(t + v

x ).          [10.2] 

u(+)(x, t) propagates toward the positive x while u(−)(x, t) propagates toward the 
negative x with the speed v. The waves, whose physical quantities propagate from 
one place to another in an infinite medium, are said to be progressive. As the wave 
equation [10.1] is linear, it obeys the superposition principle. Particularly, the 
solutions u(+) and u(−) may be superposed to have solutions of the form 

u(x, t) = f(t − v
x ) + g(t + v

x ).   [10.3]  

B) Simple harmonic progressive waves 

A particular wave, which plays an important part in wave analysis, is the simple 
harmonic (or sinusoidal) wave, which is generated by a simple harmonic vibration 
of the origin f(t) = A cos(ωt + φ). This is obviously a mathematical concept, similar 
to the concept of point particle or point charge. If the wave propagates toward the 
positive x, for instance, the vibration at x is  

u(+)(x, t) = A cos[ω(t − v
x ) + φ].       [10.4] 
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ω is the angular frequency of the wave, A is its amplitude, and φ is its phase. It is 
always possible to choose φ (–π < φ ≤ π) such that the amplitude A be positive 
(unless the phase varies). u(+) may also be written in one of the equivalent forms 

u(+)(x, t) = A cos[ )(2 v
xt −νπ~ + φ] = A cos(ωt−kx+φ) = A cos[2π( λ− x

T
t )+φ],  [10.5] 

ν~  is the frequency, T is the period, k is the wave number, and λ is the wavelength. 
These quantities are related by the equations 

ν~  = ω/2π,     T = 1/ ν~  = 2π/ω,    k = ω/v,      λ = 2π/k = vT = v/ ν~ .  [10.6]  

The expressions [10.5] show that the wave at x is the same as at the origin but with a 
time delay Δt = x/v. Considering (φ − ωx/v) as the phase of the wave at x, we may 
also say that a travel of a distance x corresponds to a phase lag 

Δφ = ωx/v = kx = 2πx/λ.         [10.7] 

The wave is the same at points, where the phase differs by 2pπ with p equal to an 
integer. These points are separated by a distance equal to pλ, where p is an integer. 
The wavelength λ is the distance that the wave travels in a period T. 

It is often convenient to use the complex representation 

u(+) = A )i( α+−ω kxte = A )i( kxte −ω ,        u(−) = B )i( β++ω kxte = B )i( kxte +ω , [10.8] 

where A = A αie and B = B βie are the complex amplitudes. The real parts are taken at 
the end of the calculation if necessary.  

C) Three-dimensional waves  

The preceding considerations may easily be generalized to three-dimensional 
waves. Their d’Alembert’s wave equation may be written as 

 Δu(x, y, z, t) − (1/v2) ∂2
ttu(x, y, z, t) = 0.     [10.9] 

This equation has a solution of the form 

u(r, t) = f(t − e.r/v) ≡ f[t − (αx + βy + γz)/v],        [10.10]  

where e is a unit vector of components α, β and γ. The points r such that (r.e) = d, 
where d is a constant, correspond to the same value of the wave function. These 
points form a plane (P) normal to e and situated at a distance d from the origin 
(Figure 10.1a). Particularly, the wave function at the points of the plane (Po) 
perpendicular to e and containing the origin O is u(0, t) = f(t). The wave at the points 
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of (P) is thus the same as at the points of (Po) but with a time delay d/v. The plane
(P) is a wave front and [10.10] is a plane wave, which propagates in the direction e
with a phase velocity v. A simple harmonic wave may be written in the real or
complex forms:

u(r, t) = A cos[ω(t − e.r/v) + φ] = A cos(ωt − k.r + φ), [10.11]
u(r, t) = A )/(i vte e.r−ω = A )i( k.r−ωte . [10.12]

k is the wave vector; it points in the direction of propagation e. Its magnitude is
equal to the wave number k = 2π/λ. The complex amplitude A = A φie allows the
combination of the real amplitude A of the wave and its phase φ in a single symbol.
The period and the wavelength are defined by the same relations [10.6] as for the
one-dimensional wave. We note, in particular, that the phase velocity is

v(p) = ω/k. [10.13]

The expressions [10.11] and [10.12] are solutions of the propagation equation [10.9]
if the phase velocity v(p) is equal to v. This is true in the case of an infinite medium
that we consider in this chapter. In the case of a bounded medium (as in the case of a
waveguide), the wave must obey some conditions on the boundary surfaces and this
modifies the propagation properties. Particularly, the phase velocity v(p) is no longer
equal to the speed of propagation v and it may depend on the frequency of the wave.
On the other hand, the properties of propagation depend on the interaction of the wave
with the atoms of the medium and this interaction depends on the frequency. Thus,
the phase velocity v(p) depends on the frequency, even if the medium is infinite. We
say then that the medium is dispersive and the relation between k and ω, called
dispersion relation

ω = ω(k) [10.14]

is nonlinear. In spherical coordinates, ω is a function of the magnitude of k and the
angles θk and φk. The phase velocity is then v(p)(k, θk, φk) = ω(k, θk, φk)/k. This
relation expresses the phase velocity as a function of the wave number (k = 2π/λ)
and the direction of propagation. If the medium is isotropic, the function ω(k)
depends on the magnitude of k and not its direction. The phase velocity is then

v(p) = ω(k)/k. [10.15]

It does not depend on the direction of propagation. As ω = 2π ν~and k = 2π/λ, the
phase velocity may be written as a function of the frequency or as a function of the
wavelength (as is common in optics).
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                                (a)                                                              (b) 

Figure 10.1. a) Three-dimensional plane wave and b) spherical wave 

D) Spherical waves 

The d’Alembert’s wave equation admits spherical wave solutions. These are the 
waves that are emitted by a point-like source or the waves that converge at a point 
called a focus. It is convenient in this case to use spherical coordinates about the 
source or the focus. If the wave function is isotropic, it depends only on r and t. 
Using the expression of the Laplacian in spherical coordinates and the fact that u 
does not depend on θ and ϕ, the equation of propagation may be written as 

∂2
rru + (2/r) ∂ru − (1/v2) ∂2

ttu = 0,      [10.16] 

which admits progressive solutions of the form 

u(+) = (1/r) f(t − r/v),              u(−) = (1/r) g(t + r/v).  [10.17] 

u(+) represents a wave that is emitted from the origin (Figure 10.1b); it propagates 
with the speed v and it decreases like 1/r with the travelled distance. u(−) represents a 
wave that converges at O and increases like 1/r as it approaches O. We may also 
have a superposition of the two waves u(+) and u(−).  

The study of spherical electromagnetic waves, which are transverse vector 
waves, began with Hansen in 1935 by analyzing antenna emission. It is quite 
complicated and it will not be considered further in this book. 

E) Superposition of harmonic waves, Fourier analysis 

As the equation of propagation is linear, it allows the superposition of solutions. 
The concept of simple harmonic waves is important in physics as, according to 
Fourier theorem, any function or wave may be written as a superposition of simple 
harmonic functions or waves. If a wave u, which propagates in the x direction, has a 
period T, it may be written as a superposition of simple harmonic waves of periods 
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T, T/2, T/3, ..., (i.e. angular frequencies ω, 2ω, 3ω, etc.) and wave numbers k, 2k, 
3k,… where ω = 2π/T and k = ω/v  

u(x, t) = ½ ao + Σ n≥1 An cos(nωt – nkx + φn)  
  or    ½ ao + Σ n≥1 [an cos(nωt – nkx) + bn sin(nωt – nkx)].   [10.18] 

This is the Fourier series for the wave u. Its terms are, respectively, the constant 
term, the first harmonic, the second harmonic, etc. of angular frequencies 0, ω, 2ω, 
etc. The Fourier coefficients an are given by 

an = (2/T) ∫T dt u(r, t) cos(nωt– nkx),      bn = (2/T)∫T dt u(r, t) cos(nωt– nkx).   [10.19] 

In the case of an aperiodic wave (a signal, for instance), which propagates in the 
x direction, the Fourier series must be replaced by a Fourier integral  

u(r, t) = ∫Δω ωd [a(ω) cos(ωt – kx) + b(ω) sin(ωt – kx)],  [10.20]  

where k = ω/v. The function a(ω) is the cosine part of the spectral function and b(ω) 
is its sine part. The integration is over a domain of angular frequency Δω ≡ [ω1, ω2] 
that may be formally extended to all frequencies [0, ∞] by taking a(ω) and b(ω) 
equal to zero outside Δω. We may also extend them to negative angular frequencies 
and use k instead of ω, then 

u(x, t)  = ∫∞∞− dk [A(k) cos(ωt – kx) + B(k) sin(ωt – kx) 

                      = (2π)−½ ∫
∞
∞− dk U(k) )i( krte −ω .  [10.21] 

Thus, a wave u that is aperiodic in time (i.e. a signal) may be considered as a 
superposition of simple harmonic waves, whose frequency takes continuous values 
in a certain band Δω. It may be shown that, at each point x, u has a duration in time 
Δt such that Δω.Δt ≈ 2π and, at a given time t, it takes non-negligible values in a 
space interval given by Δx = v Δt ≈ 2πv/Δω = 2π/Δk. We deduce that Δx.Δk ≈ 2π.  

These considerations may be generalized to three-dimensional waves. They may 
be considered as superpositions of waves in the various directions. Thus, it is 
convenient to use the wave vector k instead of k or ω as integration variable and 
write for complex waves 

u(r, t) = (2π)−3/2∫∫∫d3k U(k) )i( k.r−ωte ,      U(k) = (2π)−3/2∫∫∫d3r u(r, t) ) i( k.r−ω− te .  [10.22] 

Particularly, a real wave may be written as 

u(r, t) = (2π)−3/2 ∫∫∫ d3k k.ri−e [U(k) te ωi + U*(−k) tie ω− ].  [10.23] 
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If a signal u has an extension in space Δx, Δy, and Δz, the wave vector k varies in a 
domain Δkx, Δky, and Δkz near a certain vector ko, the angular frequency varies in a 
band Δω and the signal has a time duration Δt with the uncertainty relations 

Δx.Δkx ≈ 2π,      Δy.Δky ≈ 2π,        Δz.Δkz ≈ 2π,      and     Δω.Δt ≈ 2π.  [10.24] 

F) Dispersion 

If the medium of propagation is dispersive or if the wave is guided, each spectral 
component of angular frequency ω propagates with the corresponding phase 
velocity. Thus, the signal is deformed as it propagates (it spreads in space and time; 
see problem 10.2).  

Equations [10.24] show that an exactly monochromatic wave (i.e. Δω = 0) 
cannot be emitted during a finite interval of time Δt and occupy a finite region of 
space. As the energy density is proportional to |u|2 the emission of such a 
monochromatic wave requires an infinite amount of energy; thus, it is impossible. A 
wave of finite duration, and which occupies a finite region of space, is a wave packet 
of band width Δω. In the case of light emitted by an atom undergoing a transition 
from an excited state to the ground state, the excited state is characterized by a mean 
lifetime τ. Thus, the emitted light has a minimum band width Δω ≈ 2π/τ and it is 
widened by the Doppler effect due to the thermal agitation of atoms and the fact that 
light is emitted by a multitude of atoms that emit spontaneously in an uncoordinated 
way. The duration of a wave packet Δt = 2π/Δω is called coherence time and the 
space extension of the wave packet Δx = v Δt is called coherence length. In the case 
of laser light, the atoms are stimulated by the wave itself; thus, they emit in a 
coordinated way and the wave is quite coherent. The analysis of the superposition of 
waves is important, especially in studying interference and diffraction. 

Some mediums, such as crystals, are anisotropic. Then, the phase velocity (i.e. 
the velocity of the wave front of a simple harmonic wave) depends on the frequency 
and the direction of propagation. The dispersion relation of these mediums may be 
written as ω = ω(k) and the phase velocity is v(p)(k) = ω(k)/k in the direction of k. 
The center of a wave packet moves in this medium with a velocity, called group 
velocity v(g). In the case of a one-dimensional wave, it may be shown that the group 
velocity is given by 

v(g) = dω/dk.   [10.25] 

In the case of a three-dimensional wave, writing the wave function as a Fourier 
integral [10.22], u(r, t) has significant values if the phase ϕ = ωt − k.r varies very 
little near ko. Otherwise, the real part and the imaginary part of the exponential 
oscillate rapidly between −1 and +1 and the integral is negligible. Thus, at a given 
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time t, the wave is concentrated near a point r which verifies the condition ∂ϕ/∂kx ≈ 
0, ∂ϕ/∂ky ≈ 0 and ∂ϕ/∂kz ≈ 0, i.e. x ≈ (∂ω/∂kx)t , y ≈ (∂ω/∂ky)t and z ≈ (∂ω/∂kz)t. This 
shows that the center of the packet moves with a velocity equal to the group velocity  

v(g) = ∇kω ≡ (dω/dkx) ex + (dω/dky) ey + (dω/dkz) ez.     [10.26] 

If the propagation medium is infinite and non-dispersive, the speed of propagation, 
the phase velocity and the group velocity are equal (v(p) = v(g) = v). On the contrary, 
if the medium is bounded or dispersive, the three velocities may not be equal. The 
group velocity is effectively the velocity of signals and of all the physical quantities 
attached to the signal, such as energy, momentum, etc. 

To transmit information (sound, image, etc.), a simple harmonic wave is not very 
useful; it must be modulated by varying its amplitude, frequency, or phase according 
to the information to be transmitted. The emitted wave is then a superposition of 
simple harmonic waves in a certain band. Each of these spectral components 
propagates with its proper velocity. This causes a deformation of the signal, while 
propagating with the group velocity. 

G) Standing waves 

Let us consider the one-dimensional equation of propagation [10.1]. Using the 
method of separation of variables, we look to solutions of the form 

u(x, t) = f(x) g(t).         [10.27] 

Substituting this expression in equation [10.1] and dividing by f(x) g(t), we obtain 

(v2/f) ∂2
xxf = (1/g) ∂2

ttg.   [10.28] 

The left-hand side is a function of x and the right-hand side is a function of t. The 
equation may be identically verified (i.e. for any x and t) only if both sides are equal 
to a constant C, hence 

∂2
ttg − Cg = 0,            ∂2

xxf − Cf /v2 = 0.             [10.29] 

The mathematical form of the solution depends on the sign of the constant C. 

– If C is negative, we set C = −ω2 and k = ω/v. The solutions of [10.29] may be 
written as g = A cos(ωt + α) and f = B cos(kx + β), hence 

u = A cos(ωt + α) cos(kx + β).   [10.30] 

This is a standing wave, which may exist notably in a bounded medium. The 
integration constants A, α and β, as well as the frequency ω, are determined by the 
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vibration of the source and the boundary conditions of the medium of propagation. 
Then, the wave number k is determined by the dispersion relation of the medium. 

– If C is positive, we set C = δ2v2. The solution of equations [10.29] may be 
written as g = A vteδ + B vte δ− and f = P xeδ + Q xe δ− , hence 

u = (P
xeδ
+ Q

xe δ−
)(A

vteδ
+ B

vte δ−
).   [10.31] 

This is an exponential wave. The constants A, B, P and Q, as well as δ, are 
determined by the source and the boundary conditions of the medium. The 
exponential waves cannot be stationary and will not be considered in this book. 

10.2. Electromagnetic waves in infinite vacuum and dielectrics  

A) Equation of propagation of the fields and the potentials  

We consider the electromagnetic fields in infinite vacuum or in an infinite linear, 
isotropic and homogeneous dielectric of permittivity ε and permeability µ. In the 
absence of charge and currents, Maxwell’s equations are 

∇.E = 0,                ∇ × E + ∂tB = 0,             [10.32] 
∇.B = 0,                ∇ × B − εµ ∂tE = 0.  [10.33] 

We have shown in section 9.2c the equations of propagation of the fields  

ΔE − µε ∂2
ttE = 0,          ΔB − µε ∂2

ttB = 0.  [10.34] 

The speed of propagation is v = 1/ με  in the medium and c =1/ ooεμ in vacuum. 

It is evident that equations [10.34] do not contain all the information of the four 
Maxwell’s equations. Indeed, equations [10.34] express no relation between E and 
B. Thus, to [10.34] we must add one of the Maxwell-Faraday or Maxwell-Ampère 
equations and one of the equations ∇.E = 0 and ∇.B = 0. On the other hand, the 
wave equations [10.34] are partial differential equations with an infinite number of 
solutions. To determine the solution corresponding to a given physical situation, we 
need the initial conditions and eventually the boundary conditions on the surfaces of 
the medium. 

It is possible to specify the wave by the potentials V and A (see section 9.3) such 
that 

E = − ∇V − ∂tA,        B = ∇ × A,       and  ∇.A + εµ ∂tV  = 0.   [10.35] 
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The potentials obey d’Alembert’s equation of propagation similar to [10.34]

ΔV − µε ∂2ttV = 0, ΔA − µε ∂2ttA = 0. [10.36]

B) Simple harmonic plane waves in dielectrics

Consider a simple harmonic plane wave propagating in the direction of e = k/k
(Figure 10.2a), and which is specified by the complex electric field

E = Em
)i( φ+−ω k.rte . [10.37]

This expression is a solution of the propagation equation ΔE − µε ∂2ttE = 0 if ω and
k are related by the dispersion relation

ω = vk. [10.38]

Thus, the field [10.37] propagates with the phase velocity v(p) = ω/k = v = 1/ με .
Particularly, the phase velocity is c in vacuum. We define the index of refraction of
the medium by

n = c/v = rrεμ , [10.39]

where εr and µr are the relative electric permittivity of the medium and its relative
magnetic permeability, respectively. Often, the medium is not magnetic, then µr = 1.
Particularly, the vacuum is non-dispersive for electromagnetic waves. Its index is
n = 1 by definition. As for matter, the constants µ and ε depend on the interaction of
matter with the wave (which depends on ω in general); thus, matter is always
dispersive.

(a) (b)

Figure 10.2. a) Plane electromagnetic wave that is polarized linearly in the direction Ox,
propagating in the direction Oz if it is represented by the fields E and B. b) The

same wave represented by the vector potential A in the Coulomb gauge
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We note that differentiating the plane wave [10.37] with respect to time is
equivalent to multiplying it by iω, and acting with the operator ∇∇ is equivalent to
multiplying it by −ik. Thus, substituting the expression [10.37] in equations [10.32],
we get

k.Em = 0, and B = (1/ω) (k × Em) )i( φ+−ω k.rte . [10.40]

The first equation expresses the orthogonality of E to k and the second equation
determines B in terms of E. As for the equations [10.33], they may be written as

k.Bm = 0, and k × Bm + εµ ω Em = 0. [10.41]

They are verified by the expression of B [10.40] if we take into account the
dispersion relation [10.38]. The equation k.Bm = 0 means that B is orthogonal to k.

We may also consider the real part of the fields

E = Em cos(ωt – k.r + φ), B = Bm cos(ωt – k.r + φ),
Bm = (1/v) (e × Em), Em = –v (e × Bm). [10.42]

Some properties of the fields of a plane electromagnetic wave in dielectrics may be
deduced from equations [10.40] and [10.41] or equations [10.42]:

– The fields E and B are orthogonal to each other and both are orthogonal to the
direction of propagation e = k/k. We say that the electromagnetic wave is transverse.
The trihedron of vectors e, E, and B is right-handed.

– The fields E and B are in phase.

– The amplitudes of the fields E and B are related by the equation

Em = v Bm. [10.43]

We note that these properties hold for waves that propagate in an isotropic,
linear, homogeneous, and infinite dielectric. In the case of a guided wave, the phase
velocity depends on the geometry of the waveguide and the frequency of the wave,
even if the medium is not dispersive. Then, the phase velocity v(p) = ω/k and the
group velocity v(g) = ∂ω/∂k are both different from v = 1/ με . On the other hand,
the fields are not always transverse.

If we use the potentials to specify the plane electromagnetic wave, they may be
written in the complex forms

A = iAm
)i( φ+−ω k.rte , and V = iVm )i( φ+−ω k.rte , [10.44]
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where iAm and iVm are the complex amplitudes and the factor i is explicitly written 
in order to make the amplitudes of E and B real. Thus, we find  

∇V = −ikV,         ∇.A = −ik.A,     ∇×A = −ik×A,   ΔV = −k2V,     and ΔA = −k2A.  

If we impose the Lorentz condition ∇.A + µε ∂tV = 0, we must have the relation 

Vm =  (k.Am)/εµω = v (e.Am).  [10.45] 

Then, the fields are given by 

B = ∇ × A = (k × Am) 
)i( φ+−ω k.rte  ≡ Bm )i( φ+−ω k.rte ,  

E = −∇V − ∂tA  = ω [Am − e (e.Am)] )i( φ+−ω k.rte  ≡ Em 
)i( φ+−ω k.rte . [10.46] 

We note that the Lorentz condition does not completely fix the choice of the 
potentials. Indeed, if we make a new gauge transformation 

A → A′ = A + ∇f          and      V→ V′ = V − ∂t f,    [10.47] 

The potentials V′ and A′ still verify the Lorentz condition if the gauge function f is a 
solution of the equation  

Δf − µε ∂2
tt f = 0.    [10.48] 

Particularly, taking f = −ifm )i( φ+−ω k.rte  with ω = kv, the new potentials V′ and A′ are 
also plane waves with the same angular frequency ω and the same wave vector k as 
V and A, but their amplitudes are 

A′m = Am − k fm ,            V′m = Vm − ωfm.    [10.49] 

Thus we subtract from the amplitude Am a longitudinal vector k fm (i.e. parallel to 
the direction of propagation e) and we subtract ωfm from the amplitude Vm. This 
does not modify the expressions [10.46] of the fields. Particularly, if we take 
fm = Vm/ω, we find V′m = 0 and A′m= Am − e(e.Am), i.e. V' = 0 and A′ transverse. As 
we have seen, this particular choice of the Lorentz gauge is called Coulomb’s gauge. 
This allows the plane wave to be represented by the vector potential A  
(Figure 10.2b): 

V = 0,       A = iA′m )i( φ+−ω k.rte      with  k.A′m = 0, 
E = –∂tA = ωA′m )i( φ+−ω k.rte         and    B = ∇×A = k×A′ )i( φ+−ω k.rte . [10.50] 
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We may also use the real potentials and fields. Taking Am real, we find 

V = 0,          A = −Am sin(ωt – k.r + φ),           with  k.Am = 0, 
E = ωAm cos(ωt – k.r + φ),       and        B = k × Am cos(ωt – k.r + φ).   [10.51] 

10.3. Polarization of electromagnetic waves 

Most of the physical and chemical actions of electromagnetic waves are exerted 
by the electric field. Indeed, the magnitude of B is of the order of E/c where c is the 
speed of light in vacuum and the speed of the charged particles in the medium is 
often much less than c. Thus, the electric force qE is much more important than the 
magnetic force qvq × B. Furthermore, only the electric force exerts work and 
contributes to the energy transfer. For these reasons, the electromagnetic wave is 
often specified by the field E. Then, the Maxwell-Faraday equation determines ∂tB 
and the integration with respect to time gives B. However, in the case of a nonlinear, 
anisotropic or bounded medium, the analysis is much more complicated.  

In the case of an infinite, homogeneous, linear and isotropic medium, E and B 
are perpendicular to the direction of propagation e. The direction of E specifies the 
polarization of the wave. Figure 10.2a represents a plane electromagnetic wave, 
which propagates in the direction Oz and such that E is everywhere parallel to Ox. 
The field B is then oriented in the direction Oy. We say that the wave is polarized in 
the plane Oxz (or linearly polarized in the direction Ox). If the wave is specified by 
the vector potential A, the wave is polarized in the plane of k and A, while B is 
perpendicular to this plane. If we use Coulomb’s gauge, A points in the same 
direction as E and the polarization may be also specified by the direction of A. 

Let us consider a simple harmonic wave of angular frequency ω propagating in 
the direction e = k/k. As the field E is transverse, it lies in the plane perpendicular to 
e. We choose, as basis vectors in this plane, two orthogonal unit vectors e1 and e2 
such that the trihedron (e1, e2, e) is right-handed. The superposition of two waves E1 
and E2 of angular frequency ω, polarized linearly in the directions e1 and e2 
respectively and such that E2 has a phase lead1 φ over E1, is 

E = E1 + E2 = A1 cos(ωt − k.r) e1 + A2 cos(ωt − k.r + φ) e2.    [10.52] 

The polarization of the resultant wave E depends on the amplitudes A1 and A2 and φ. 

                                
1 The amplitudes A1 and A2 are positive. The waves may have the phases φ1 and φ2, then  
φ = φ2 − φ1. Taking φ1 = 0 is equivalent to changing the origin of time. 
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a) If the waves E1 and E2 are in phase (φ = 2nπ where n is an integer), the 
resultant wave may be written as 

E' = Em cos(ωt – k.r) ep,   where Em = 2
2

2
1 AA +  and ep = (A1e1+A2e2)/Em    [10.53] 

E' has an amplitude Em and it is polarized linearly in the direction e′p of the first 
diagonal of the rectangle of sides 2A1 and 2A2 in the directions e1 and e2, 
respectively, thus making an angle θ = Arctan(A2/A1) with e1 (Figure 10.3). 

 
                         (a)                                                                        (b) 

Figure 10.3. a) The superposition of two waves, which are in phase and polarized linearly in 
the directions e1 and e2, is a linearly polarized wave in the direction e′p, b) the field E in the 
three-dimensional space. If the waves are in phase opposition, the resultant wave is linearly 

polarized in the direction of the second diagonal e″p of the rectangle 

b) If the waves E1 and E2 are in phase opposition (φ = ± π + 2nπ), the resultant 
wave may be written as 

E″ = Em cos(ωt–k.r) e″p,     where Em = 2
2

2
1 AA +  and e″p = (A1e1−A2e2)/Em.[10.54] 

E″ has an amplitude Em and it is polarized linearly in the direction e″p of the second 
diagonal of the rectangle of sides 2A1 and 2A2 in the directions e1 and e2, 
respectively, thus making an angle θ = −Arctan(A2/A1) with e1. 

c) If the waves E1 and E2 have the same amplitude (A1 = A2 ≡ Eo) and a phase 
shift φ = −π/2 +2nπ, the resultant wave is  

E(−) = Eo [cos(ωt − k.r + α) e1 + sin(ωt − k.r + α) e2] ≡ Eo e(−) .  [10.55] 

This is a vector of magnitude Eo and making an angle θ = (ωt − k.r + α) with e1 
(taken in the direction ex in Figure 10.4a). An observer who receives this wave, sees 
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the field E(−) pointing in the direction of e(−). At a given point, e(−) rotates clockwise 
with the angular velocity ω about e taken in the direction Oz. At the various points 
of Oz, the tip of E(−) moves on a helix about Oz rolled in the direction of the fingers 
of the left-hand if the thumb points in the direction of propagation (Figure 10.4b). 
We say that the wave is left-handed circularly polarized 2.  

 
              (a)                                                                             (b) 

 
                (c)                                                                              (d) 

Figure 10.4. Left-handed circularly polarized wave E(−): a) if the wave propagates in the 
direction Oz, the observer sees the field at a given space point z move clockwise on a circle of 

radius Eo parallel to the (e1, e2) plane, and b) at a given time, the tip of E(–) at the various 
points z are located on a helix of radius Eo in the direction of the left hand fingers if the 

thumb points in the direction of propagation. c) and d) correspond to a right-handed 
circularly polarized wave E(+): the field E(+) rotates in the opposite direction to that of E(−) 

d) If the waves E1 and E2 have the same amplitude (A1 = A2 ≡ Eo) and a phase 
shift φ = π/2 +2nπ, the resultant wave may be written as 

E(+) = Eo [cos(ωt − k.r + α) e1 − sin(ωt − k.r + α) e2] ≡ Eo e(+).     [10.56] 

This is a vector of magnitude Eo and making with e1 an angle θ = (−ωt + k.r − α) 
(Figure 10.4c). The field E(+) points in the direction of e(+) and rotates in the opposite 
direction to E(−). At a given space point z, it rotates anticlockwise with the angular 
                                
2 In some domains of physics, reversed conventions are used for right-handed or left-handed 
polarization. 
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velocity ω and, at the various points z, its tip is located on a helix rolled like the 
fingers of the right-hand (Figure 10.4d). E(+)  is a right-handed circularly polarized 

wave.  

We may also use the complex representation and introduce a complex basis  
e(±) = (e1 ± ie2)/ 2 and conversely, e1 = (e(+) + e(−))/ 2 and e2 = (e(+) − e(−))/ 2 i. 
Setting Eo = Eo

αie , the right-handed and left-handed circularly polarized waves may 
be written as 

E(±) = Eo 
)i( k.r−ωte e1 + Eo 

)2/i( π±−ω k.rte e2 = Eo 
)i( k.r−ωte (e1 ± ie2) ≡ E(±)e(±). [10.57] 

A wave that is linearly polarized in the direction ep = cos θ e1 + sin θ e2 may be 
written as  

E = Eo )i( k.r−ωte ep = Eo )i( k.r−ωte ( cos θ e1 + sin θ e2) 

   = (Eo/ 2 )[ )i( θ−−ω k.rte e(+)+ )i( θ+−ω k.rte e(−) ] ≡ E(+) e(+) + E(−) e(−) .  [10.58] 

Thus, any linearly polarized wave in the direction making an angle θ with e1 may be 
considered as a superposition of a right-handed circularly polarized wave and a left-
handed circularly polarized wave with opposite phases ±θ.  

e) In a more general case, if the phase shift of the waves E1 and E2 is φ and they 
have any amplitude, the resultant wave may be written as 

E = A1 cos(ωt − k.r) e1 + A2 cos(ωt − k.r + φ) e2.   [10.59] 

At a given space point r, the tip of E moves on an ellipse that is inscribed in a 
rectangle of sides 2A1 and 2A2. The elliptical motion is anticlockwise if −π < φ < 0 
(the wave is then left-handed elliptically polarized) or clockwise if 0 < φ < π (the 
wave is then right-handed elliptically polarized). 

f) A wave may be unpolarized if φ changes arbitrarily (then, the direction of E 
varies arbitrarily in time) or if it is a superposition of non-coherent waves having 
various polarizations. This is the case of light waves that are emitted by thermal 
sources (incandescence lamps, flames, etc.). The wave may be partially polarized if 
it is the superposition of a polarized wave and an unpolarized wave. On the contrary, 
lasers emit coherent and polarized light. A polarizer is a device that produces 
polarized waves from an unpolarized wave. This is the case of a Polaroid sheet, 
which transmits light that is polarized in a specific direction Ox and absorbs light 
that is polarized in the perpendicular direction Oy. If a wave of amplitude Eo and 
polarized linearly in a direction making an angle θ with Ox is incident on the 
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Polaroid, the amplitude of the transmitted wave is Eo cos θ. There also exist 
polarizers that produce circularly polarized waves. 

10.4. Energy and intensity of plane electromagnetic waves 

Consider a progressive electromagnetic wave that propagates in the direction  
e = k/k, whose fields are  

E = Em cos(ωt − k.r),           B = Bm cos(ωt − k.r),     [10.60] 

where Em= vBm = Bm/ με . We define the impedance Z of the medium per unit area 
and the impedance of vacuum Zo per unit area as 

 Z = E/H = µE/B = µv = εμ/       and     Zo = µo c = 376.73 Ω/m2. [10.61] 

At each point of space, the densities of electric and magnetic energies are 

UE,v = ½εE2 = ½ε Em
2 cos2(ωt−k.r),    UM,v = B2/2µ = (Bm

2/2µ) cos2(ωt−k.r). [10.62] 

Thus, the two densities of energy are equal and we may write the total density of 
electromagnetic energy 

UEM,v = UE,v + UM,v = ε Em
2 cos2(ωt − k.r).  [10.63] 

The average value of the energy density taken in time over a period T = 2π/ω or 
taken in space over a wavelength is  

< UEM,v > = ½εEm
2.  [10.64] 

The Poynting vector of this wave is 

S = (E × B)/µ = (Em
2/Z) cos2(ωt − k.r) e.  [10.65] 

It points in the direction of propagation e. Thus, the energy is localized in the region 
of the fields and it propagates from one place to another in the direction of 
propagation, starting from the emitter. To sustain this permanent flux of radiation 
energy, the emitter must continuously supply energy.  

The energy that is received during an interval of time Δt by an element of area 
δS perpendicular to the Poynting vector S (Figure 10.5a) is (S.n) δS Δt = S δS Δt. 
This is the energy contained in a cylinder of base δS and length v Δt parallel to the 
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direction of propagation e. Its volume is v Δt δS and the energy that it contains is 
UEM,v v Δt δS. Comparing the two expressions, we get 

S(r, t) = v UEM,v(r, t),    i.e. S(r, t) = vUEM,v(r, t) e    (progressive waves). [10.66] 

This relation holds only in the case of progressive waves of any profile. It is verified 
by the expressions [10.63] and [10.65] for simple harmonic waves.  

The power, which is received by dS, is the flux of the Poynting vector over dS 

dP = n.S dS.          [10.67] 

The average power that is received by the unit area placed perpendicularly to the 
direction of propagation is the intensity of the wave 

I = < dP/dS > = < S > = Em
2/2µv = Em

2/2Z.   [10.68] 

If we use the potentials to specify the electromagnetic wave, the average energy 
density and the intensity of the wave may be written as 

<UEM,v> = ½εω2 [Am
2 –(e.Am)2]      and    I = ½

 
vεω2[Am

2 –(e.Am)2].   [10.69] 

Particularly, if we use Lorentz’s gauge, we find 

<UEM,v> = ½εω2 Am
2         and       I = ½

 
vεω2Am

2 .   [10.70] 

If we use the complex representation, we cannot calculate the energy density and 
the Poynting vector by using directly the complex fields. The superposition 
principle, which justifies the use of the complex fields, does not hold if the 
quantities are nonlinear. Thus, the real part of the fields must be taken before 
calculating the energy density and the Poynting vector. If the fields are  
E = Em

)i( k.r−ωte and B = Bm
)i( k.r−ωte , it is possible to write the average values 

directly 

<UE,v> = (ε/4)(E.E*),       <UM,v> = (1/4µ)(B.B*),     I = <S> = (1/2Z)(E.E*). [10.71] 

As the relation of the energy and the Poynting vector to the fields is quadratic, if 
the wave E is the superposition of two waves E1 and E2, the energy density and the 
Poynting vector of E are not always the sum of those of E1 and E2. For instance, if 
E1 and E2 propagate in the same direction e, their superposition E = E1 + E2 
propagates in the same direction. Thus, we have B = e × E/v and B2 = E2/v2 and, 
consequently, E2 = E1

2
 + E2

2 + 2E1.E2. The total energy density is UEM,v = εE2 = 
UEM,v1 + UEM,v2 + 2εE1.E2. Only if E1.E2 = 0, we find UEM,v = UEM,v1 + UEM,v2, 
S = S1 + S2 and I = I1 + I2. This is the case if E1 and E2 are polarized linearly in 
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orthogonal directions. If the waves are unpolarized (the angle of E1 and E2 varies 
rapidly or at random) or if they have different frequencies, the relations hold only in 
average values. We define the degree of polarization of the wave in the direction e1 
as the ratio 

P1 = .  [10.72] 

If the wave is totally polarized in the direction e1 (then, E2 = 0 and I2 = 0), we find 
P1 = 1. On the contrary, if the wave is totally polarized in the direction e2 
perpendicular to e1 (then, E1 = 0 and I1 = 0), we find P1 = –1. If the wave is 
polarized circularly, E1 and E2 have the same amplitude but a phase shift ± π/2, then 
P1 = 0. If the wave is unpolarized, it is a superposition of waves E1 and E2 of 
randomly varying amplitudes or phase shift φ or a superposition of right-handed and 
left-handed circularly polarized waves with a randomly varying phase shift φ, we 
find P1 = 0. 

 
 (a)                               (b)                                     (c)                               (d) 

Figure 10.5. a) Interpretation of the relation S = vUEMv e. Radiation pressure of a wave that 
is b) incident normally on a totally absorbing plate, c) incident obliquely on a totally 

absorbing body, and d) incident obliquely on a totally reflecting body 

10.5. Momentum and angular momentum densities, radiation pressure 

Besides energy and momentum, a body may have orbital angular momentum  
L = r×P and an intrinsic angular momentum or spin s. The total angular momentum 
J = Σi(Li + si) of all the bodies of an isolated system is conserved. A continuous 
medium (a fluid, for instance) has a density of momentum Pv, a density of orbital 
angular momentum Lv = r × Pv and a density of intrinsic angular momentum sv. We 
expect the electromagnetic field to have similar densities. The surface of a body that 
intercepts the electromagnetic wave, receives a certain amount of energy, 
momentum, and angular momentum. The received momentum is equivalent to a 
radiation pressure on the body and the received angular momentum may set the 
body in rotation. 
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Let us consider an electromagnetic wave that propagates in the direction Oz and
which is linearly polarized in the direction Ox. We assume that this wave is incident
normally upon a metallic plate, which lies in the Oxy plane and absorbs all the
radiation (Figure 10.5b). The fields of the wave act on the conduction electrons with
a Lorentz force F = –e(E + ve × B) and set them in motion. E points in the direction
Ox and B in the direction Oy. If the plate is thin, the velocity ve cannot have a
significant component in the direction Oz normal to the plate. In the interval of time
dt, an electron receives an energy

dW = F.ve dt = – e(E.ve) dt = – e veE cos α dt, [10.73]

where α is the angle of ve with Ox. The electron receives also a momentum
dP = F dt = – e dt (E + ve × B). The first term, proportional to E, is a sinusoidal
function of time; its average value over a period is equal to zero. Thus the effective
received momentum is

dPz = – e (ve × B) dt = – e veB cos α dt ez. [10.74]

The expressions [10.73] and [10.74] show that dW/dP = E/B = v. Thus, the
electromagnetic wave carries momentum oriented in the direction of propagation. Its
energy density UEM,v and momentum density PEM,v are related by the equation

PEM,v = (UEM,v/v) e = S/v2. [10.75]

This is the same relation, [9.78], that we have deduced from Maxwell’s tensor.

If the wave is incident on a body in a direction making an angle θ with the
normal to the body, an element of area S of its surface receives during dt the energy
dUEM = UEM,vSv cos θ dt and the momentum dPEM = PEM,vS v cos θ dt contained in
the cylinder of base area S and length v dt in the direction of propagation. If the
body is totally absorbing (Figure 10.5c), this transfer of momentum is equivalent to a
force per unit area FEM,s = vPEM,v cos θ pointing in the direction of propagation.
Particularly, if the wave is incident normally (θ = 0), the absorbing surface is under
a radiation pressure

pr = vPEM,v = UEM,v (totally absorbing surface). [10.76]

If the surface is totally reflecting (Figure 10.5d), there is no transfer of energy to
the body but it receives momentum 2Sv PEM,v cos θ per unit time, which is normal to
its surface. This transfer of momentum is equivalent to a radiation pressure

pr = 2vPEM,v cos θ = 2UEM,v cos θ (totally reflecting surface). [10.77]
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Although the radiation pressure is small, it may have significant effects if it acts 
on small particles (such as electrons or dust) or if it acts for a long interval of time. It 
may become very important in the case of intense sources such as lasers. In 
astrophysics, mediums at very high temperature (as the core of stars) may produce 
radiation whose pressure may counterbalance gravity pressure. It may even exceed it, 
provoking the explosion of a star. 

An electromagnetic wave also carries angular momentum. Let us consider again 
a wave that is incident on a metallic plate (Figure 10.5b). As E and B are orthogonal 
to Oz, the Lorentz force –e(E + v × B) acting on an electron has a component –eE in 
the plane of the plate. If the wave is polarized linearly in a direction eP, the electron 
moves only in this direction and its mean angular momentum remains equal to zero. 
Thus, a linearly polarized electromagnetic wave carries no angular momentum. A 
circularly polarized wave may be written as  

E(±) = Eo [cos(ωt – kz) ex + cos(ωt – kz ± π/2) ey], 

B(±) = – (Eo/v) [cos(ωt – kz ± π/2) ex − cos(ωt – kz) ey].  [10.78] 

Neglecting the magnetic force, the electron is subject to an electric force 

F(±)
// = –eE(±) = –eEo [cos(ωt – kz) ex + cos(ωt – kz ± π/2) ey]   [10.79] 

lying in the plane Oxy of the plate. The equation of motion of the electron is m //
)(±r

 = F(±)
// and we find by integration 

r(±)
// =

 
(eEo/mω2) [cos(ωt – kz) ex + cos(ωt – kz ± π/2) ey].       [10.80] 

The electron moves on a circle of radius eE/mω2 in the direction of rotation of E(±). 
Neglecting the variation of the electron spin, the received angular momentum is  

J(±) = mr(±) × (±) =  (e2Eo
2/mω3)

 
ez =  (ve2/mω3) E(±) ×B(±).  [10.81] 

As the received energy by the electron is UEM = e2Eo
2/mω2, we deduce that a 

progressive circularly polarized wave carries angular momentum of density 
sEM,v

(±) =  UEM,v
(±)/ω. In the general case of a progressive wave, a standing wave or a 

superposition of both types of waves, we write 

sEM,v
(±) = S/vω.  [10.82] 

In the case of a purely progressive wave, the Poynting vector is S = vUEM,v e. The 
momentum of the wave being directed toward the electron, the orbital angular 

r ∓ ∓

∓

∓
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momentum carried by the wave is equal to zero and sEM,v
(±) is effectively the density 

of intrinsic angular momentum (or spin) of the wave.  

In the case of a left-handed circularly polarized wave E(−), sv
(−) points in the 

direction of propagation (positive helicity), while in the case of the right-handed 
circularly polarized wave E(+), sv

(+) points in the opposite direction of the direction of 
propagation (negative helicity). 

Generally, an electromagnetic wave has orbital angular momentum, which adds 
to its intrinsic angular momentum; this increases the effect of angular momentum 
transfer. The total angular momentum density may be written as  

JEM,v
(±) = LEM,v

 + sEM,v
(±)

 ,    where  LEM,v = r × PEM,v = µε r × S.   [10.83] 

If a body receives an electromagnetic wave, the transfer of angular momentum 
may set the body in rotation. This effect was verified experimentally by Berth in 
1936 by observing the rotation of a plate of quartz if it intercepts a circularly 
polarized wave. Actually, the effect may be easily observed by using a laser beam.  

10.6. A simple model of dispersion  

The speed of propagation v = 1/ με  is independent of the signal profile if the 
magnetic permeability µ and the electric permittivity ε are constant characteristics of 
the medium. The reality is more complex: if an electromagnetic wave is incident on 
a dielectric, a fraction of it penetrates as a primary wave. It acts on the charged 
particles in the medium. These particles (especially the electrons) emit secondary 
electromagnetic waves. The superposition of the primary wave and secondary waves 
is the transmitted wave, while the reflected wave is a superposition of secondary 
waves emitted back, toward the incidence medium. We first note that on the 
microscopic scale, the electrons, atoms, and molecules are in permanent thermal 
agitation, the fields undergo large fluctuations and they become infinite at the 
positions of the particles. These are the microscopic fields. On the contrary, the 
Maxwell’s equations are written in terms of the macroscopic fields, charge densities, 
and current densities that are experimentally observable. These are mean values 
taken over time intervals and elements of volume and they are regular functions of 
the position and time.  

If the medium is anisotropic, the directions of E and P (or D) are different in 
general (see section 4.14). We assume in this chapter that the medium is isotropic. 
The speed of the charged particles in the dielectric is extremely small. Thus, the 
force exerted by the magnetic field q v × B is completely negligible. By symmetry, 
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the electrons move in the direction of the electric field. Thus, the polarization P of 
the dielectric is also in this direction. On the other hand, if there is no hysteresis 
effect in the medium, P vanishes if the electric field is removed. Writing P = f(E) 
and assuming that the field E is not very strong, we may always write f(E) as a 
power series in E. If only the first order term, P = εοχeE, is important for the 
considered phenomenon, we say that the medium is linear. In this chapter, we do not 
consider the variation of the electric susceptibility χe with temperature. 

 The properties of propagation of electromagnetic waves in a dielectric depend 
on the interaction of the wave with the particles of the dielectric. This interaction can 
be correctly formulated only in the framework of quantum mechanics. In this 
section, we adopt a simple classical model, which considers the medium as 
containing classical oscillators that may be excited by the electromagnetic wave. 
These oscillators are electrons, bound to their equilibrium positions by elastic forces 
−mωj

2uj, where m is the electron mass, uj is its displacement from equilibrium and 
ωj is its proper angular frequency. The index (j) labels the different possible 
bindings of the electrons to the atoms. We also assume that the electrons are subject 
to dissipative forces of the form −2mβj ju , where the βj are constant. An 

electromagnetic wave propagating in the medium acts on the electron with a force 
−eEl, where El is the local electric field, which is the resultant of the primary field E 
and the field of the charges of the medium other than the considered electron. If ε is 
the permittivity of the dielectric, the density of polarization is  

P = (ε − εo) E = Σj (−eNj) uj,  [10.84] 

where Nj is the number of electrons of the type (j) per unit volume. We have seen in 
section 4.12 that the local field is  

El  = E + P/3εo ≡ γE,        where   γ = 2/3 + ε/3εo.   [10.85] 

Thus, the equation of motion of the electron of the type (j) may be written as 

ju  + 2βj ju  + ωj2 uj = − (eγ/m) E.      [10.86] 

If the medium is linear and isotropic and the primary wave in the medium has an 
angular frequency ω, the electrons undergo sustained oscillations with the same 
frequency. By symmetry, the polarization P, the secondary electric field (that is 
emitted by the excited atoms and molecules) and, consequently, the total field E all 
have the same angular frequency ω as the primary field, and they are polarized in the 
same direction. Thus, we write the solution in the dielectric in the form 

E = Eo 
)i( k.r−ω te ,            uj = ujo 

)i( k.r−ω te .  [10.87] 
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Substituting these expressions in equations [10.84] and [10.86], we find the relations 

ε+ε
ε−ε

o

)o

2
(3 = 

o

2

εm
e Σj 

ωβ+ω−ω j
22

j

j

i2

N
 ,  [10.88] 

ujo = − m
eγ

ωβ+ω−ω j
22

j i2
1 Eo . [10.89] 

Then equation [10.84] gives the amplitude of the polarization, which results from 
these displacements  

P = Σj (−eNj) uj,o ≡ εo χe Eo   where  χe = 
o

2

ε
γ
m

e Σj 
ωβ+ω−ω j

22
j

j

i2

N
 .  [10.90] 

χe = ε/εo – 1 is the susceptibility of the dielectric. Thus, the index of refraction is 

n = c /v = ooμεεμ / = oe )1( μμχ+ /  .  [10.91] 

In particular, if the medium is non-magnetic (µ ≈ µo and ε = εon2), equation [10.88] 
becomes Clausius-Mossoti’s equation (called also Lorentz-Lorenz formula) 

2 1
22

n
n

−
+ N

1 = 
o

2

3 εm
e Σj 

ωβ+ω−ω j
22

j

j

i2

f
,   [10.92] 

where N is the number of bound electrons per unit volume and fj is the fraction of 
these electrons, which are of the type (j). The right-hand side does not depend on the 
temperature, if the molecules are non-polar. If the quantity [10.88] is small, 
compared to 1, we find  

n2 = 
oε
ε  = 1 + 

o

2

εm
e  Σj 

ωβ+ω−ω j
22

j

j

i2

N
.   [10.93] 

This expression shows that n is complex, of the form  

n = n(r) − in(i).  [10.94] 

The expressions of the real part and the imaginary part of n are  

n(r) = 1+
o

2

2 εm
e Σj 22

j
222

j

22
jj

4)(

)(

ωβ+ω−ω

ω−ωN
,    n(i) =

o

2

εm
e Σj 22

j
222

j

jj

4)( ωβ+ω−ω

ωβN
. [10.95] 
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The imaginary part of the index corresponds to an absorption of the wave and, 
consequently, to its attenuation. Indeed, the phase of the wave is  

ω(t −
v

e.r
) = ω[t − 

)i( innc r −
e.r ] = ω[t − 

)( 2
i

2
r

nnc
n

r +
e.r

] − i
)( 2

i
2

i

nnc
n

r +
ω e.r

.  

The wave propagates with a phase velocity v(p) and a free path l, given by 

v(p) = c[n(r) + 
(r)

2
(i)

n
n

]       and      l = 
δ
1  = 

ω
c

 [
(i)

2
(r)

n
n

 + n(i)].  [10.96] 

We note that the imaginary part of the index vanishes and there is no attenuation of 
the wave if there are no dissipative forces (βj = 0).  

Figure 10.6 illustrates typical variations of n(r) and n(i) versus the frequency of 
the wave. The curve representing n(i) is a succession of resonance curves at the 
characteristic frequencies ωj of the medium. For a wave frequency close to one of 
these frequencies, the wave is very damped. 

         

Figure 10.6. Typical variations of the real part of the  
index of refraction and its imaginary part 

In quantum theory, the energy of the photon h jν~  is equal to the difference of 
energy levels Ej − Eo, where Ej is the energy of an excited state of the atom and Eo is 
that of the ground state. The real part n(r) is an increasing function of ω (normal 
dispersion) except in a small frequency band near ωj in which the dispersion is 
abnormal. n(r) has a maximum and a minimum below and above each one of the ωj. 
At high frequencies (ω >> ωj), n(r) approaches 1 and n(i) approaches zero. In this 
limit, the medium behaves as the vacuum (since the atoms cannot respond to an 
excitation of very high frequency). This behavior of the index is generally valid in 
quantum theory with other interpretations of the constants β and Nj.  
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10.7. Electromagnetic waves in conductors 

In a conductor at electrostatic equilibrium, the charge density qv, the electric 
field E, and the current density j are all equal to zero. The conductor is then 
equipotential. In the case of a quasi-permanent regime with a certain difference of 
potential maintained between the ends of the conductor, any eventual charge density 
vanishes rapidly, but E and j do not necessarily vanish. The magnetic field is related 
to the current by Ampère’s law. Thus, it may not vanish inside the conductor. In the 
following, we consider only Ohmic conductors carrying an alternating current or 
exposed to a simple harmonic electromagnetic wave. We show that the fields and the 
current density decrease exponentially with depth, the higher the frequency the lesser 
the penetration depth. This effect is due to Eddy currents and the dissipation of 
energy as Joule heat.  

A) Equations of propagation and plane wave solutions 

In an Ohmic conductor, the current density is related to the electric field by 
Ohm’s law j = σE. Thus, Maxwell’s equations may be written as 

∇.E = qv/ε  [10.97] 

∇ × E + B  = 0  [10.98] 

∇.B = 0  [10.99] 

∇ × B = µσE + µε E .  [10.100] 

We know that, at electrostatic equilibrium, the charge density qv is equal to zero 
because of the repulsion of like charges. This property remains often valid in the 
variable regimes. Indeed, by taking the divergence of both sides of [10.100] and 
using [10.97], we find the equation of evolution of qv 

∂tqv + qv/τc = 0,            where  τc = ε/σ.  [10.101] 

The solution of this equation is qv = qvo
c/τ−te . Thus, an eventual charge density, 

equal to qvo at t = 0, decreases exponentially in time. In the case of a typical metallic 
conductor, such as copper, whose conductivity is σ = 5.98 × 107 Ω–1.m–1, the 
characteristic time (or relaxation time) is τc = 1.5 × 10–19 s and, in the case of a 
semiconductor, τc may be of the order of 10–11 s. The charge density decreases to 
6.7 × 10−3 qvo after a time equal to 5τc and to 0.45 × 10−6 qvo after 10τc. Thus, the 
charge density qv is practically equal to zero in the case of low-frequency phenomena 
compared to 1/τc (quasi-permanents approximation). 
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Setting qv = 0 in Maxwell’s equations [10.97] to [10.100] and making the same 
analysis as in section 9.2C, we find the equations of propagation of the fields in 
conductors 

ΔE − εµ∂2
ttE − µσ ∂tE = 0,          ΔB − εµ∂2

ttB − µσ ∂tB = 0.  [10.102] 

In the limit of a non-conducting medium (σ = 0), we find d’Alembert’s equation of 
propagation. 

In the following, we introduce the characteristic angular frequency of the 
conducting medium ωc = 1/τc = σ/ε. The equation of E has a plane wave solution 
E = Em

)i( φ+−ω e.rpte  if p verifies the equation v2p2 = ω2− iωωc, where v = με/1 . 
The root p of this equation is complex of the form p = ±(k − iη). Taking the sign (+), 
the wave may be written as 

E = Em 
e.rη−e )i( φ+−ω e.rkte   

k = { 21 Q+  + 1}½,  η = 
2v

ω { 21 Q+  – 1}½ ,    where Q = ωc/ω.  [10.103] 

The Maxwell-Gauss equation [10.97] (with qv = 0) is verified if E.e = 0, which 
means the transversality of E. Then, the Maxwell-Faraday equation [10.98] gives 

B = (k/ω − iη/ω) e × Em
e.rη−e )i( φ+−ω e.rkte  

    = (1/v) (1 + Q2)¼

 
e × Em 

e.rη−e )i( α−φ+−ω e.rkte .  [10.104] 

The other two Maxwell equations [10.99] and [10.100] are verified. Thus, the fields 
E and B in the conductor are orthogonal to each other and to the direction of 
propagation e and the trihedron of the vectors e, E and B is right-handed. The real 
amplitudes of B and E are related by the equation 

Bm = (1/v)(1 + Q2)¼ (e × Em). [10.105] 

The phase lag of the magnetic field over the electric field is  

α = Arctan(η/k) = Arctan[ 211 Q/+ + 1/Q]           (0 < α < π/2). [10.106] 

To interpret k and η, we note that the real fields may be written as 

E = Em
e.rη−e cos(ωt – ke.r + φ),  

B = (1/v)(1 + Q2)¼

 
e × Em 

e.rη−e cos(ωt – ke.r + φ − α).    [10.107] 

2v
ω
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The cosine functions express that the wave is simple harmonic of angular frequency 
ω propagating in the direction e with a wave number k. Thus, its phase velocity is 
vp = ω/k. Because of the factor e.rη−e , the amplitudes of E and B decrease 
exponentially while propagating. Note that choosing the root p′ = − (k − iη) is 
equivalent to change the direction of propagation e to −e, we find a function  
cos(ωt + ke.r), which expresses that the wave propagates in the direction −e with the 
wave number k and a amplitude Em

)( e.r−η−e , which decreases exponentially in the 
direction of propagation. If a wave of angular frequency ω is incident normally on 
the face Oxy of an infinite conductor toward the positive z (Figure 10.7a), a part of 
the wave penetrates in the conductor and continue to propagate toward the positive z 
(e = ez). If it does not meet an obstacle, on which it may be reflected, no wave 
propagates in the conductor toward the negative z. While propagating, the wave is 
attenuated with an attenuation coefficient η. Its amplitude decreases like δ− /ze  
where δ = 1/η is called skin depth or penetration depth. After each travel of a 
distance δ, the amplitude is divided by e. If the wave is incident on the first face of a 
thin conducting plate (Figure 10.7b), the wave may reach the second face, be 
reflected on it and propagate toward the negative z with an amplitude, which varies 
like δ/ze . A part of this wave crosses the first face back to the incidence medium.  

 
                 (a)                                               (b)                                                      (c) 

Figure 10.7. a) Electromagnetic wave incident normally on an infinite conductor, b) the wave 
incident on a plate, c) variations of k, η, and δ = 1/η versus the angular frequency ω 

The variations of k and η as functions of ω are illustrated in Figure 10.7c. At low 
frequency (ω << ωc), k2 and η2 tend to ½μσω and, at high frequency (ω >> ωc), k 
approaches asymptotically ω/v and η approaches ωc/2v. For ω = ωc, the expressions 
[10.103] give k ≈ 1.1 ωc/v and η ≈ 0.45 ωc/v. For instance, in the case of copper  
(σ = 5.98 × 107 Ω−1.m−1), the characteristic angular frequency is ωc  ≈ σ/εο = 6.77 × 
1018 rad.s–1. Using equations [10.103], we find η = 1.54 × 104 m–1 and δ = 65 µm for 
1 MHz radiowaves, η = 3.76 × 108 m–1 and δ = 2.7 nm for λ = 500 nm visible light 
and η = 1.19 × 109 m–1 and δ = 0.84 nm for λ = 50 nm ultraviolet. 
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B) Skin effect and magnetic shielding 

In a cylindrical conductor, for instance, a time-independent current I is usually 
uniformly distributed on the sections with a uniform density j = I/πR2. The magnetic 
field is then B(in) = (µoI/2π)(r/R2) inside the cylinder and B(ex) = µoI/2πr outside it 
(Figure 10.8a and b). If this conductor is used to carry an alternating current or if it 
receives an electromagnetic wave, an oscillating field is set up inside it. Then, a field 
and a current are induced and, according to Lenz law, they oppose the variations, 
which produce them. This induction is so important at high frequency that it cancels 
the current and the fields at sufficient depth in the conductor (Figure 10.8c) and 
produces a reflected wave on the conductor. Thus, the current and the fields are 
restricted to a narrow layer near the surface of the conductor. The consequences of 
this skin effect are important for the analysis and conception of high-frequency 
circuits, transmission lines, and antennas. It must be taken into account even in the 
distribution of electric energy at 50 Hz. 

 
            (a)                                (b)                                             (c)                                  (d) 

Figure 10.8. Skin effect in a cylinder: a) the field B in the case of a constant direct current 
and b) variation of B versus r in this case, c) the same variation for an alternating current, 

and d) concentration of j and B near the surface because of Eddy currents 

a) Quasi-permanent regimes  

The term −εµ∂2
ttE in the propagation equation of E is due to the displacement 

current ε ∂tE in the Maxwell-Ampère equation ∇ × B = µ(j + ε ∂tE), while the term 
−µσ ∂tE is due to the conduction current j = σE. In the case of a sinusoidal field  
E = Em

te ωi , the ratio of the amplitudes of these currents is ε ∂tE/j = ωε/σ = ω/ωc ≡ 
1/Q. Thus, the displacement current is negligible, compared to the conduction 
current if Q = ωc/ω >> 1, this is the case also in the magnetic quasi-permanent 
approximation. Then, Maxwell’s equations may be written as  

∇.E ≅ 0,       ∇ × E + ∂tB = 0,        ∇.B = 0,          ∇ × B ≅ µj.     [10.108] 

From the last equation, we deduce that ∇.j ≅ 0 and, replacing j by σE, we deduce 
the so-called diffusion equations  

ΔE − µσ ∂tE  ≅ 0    and         ΔB − µσ ∂tB ≅ 0.   [10.109] 
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Consider, for instance, a plane wave of angular frequency ω, polarized in the 
direction Ox and propagating in the direction Oz. In complex notation, it may be 
written as E = f(z) te ωi ex. Substituting this expression in equations [10.108], we find 
that B = (i/ω)∂zf te ωi ey and f must be a solution of the equation ∂2

zzf ≅ iµσωf, hence 
f = Em

pze i−  provided that p2 + iµσω = 0, thus p = (1− i)η where η = 2/μσω . Thus, 
the fields may be written as 

 E = Em
ze η− )i( zte η−ω ex      and   B = ωμσ/ Em

ze η− /4)i( π−η−ω zte ey .  [10.110] 

These are the limits of [10.103] and [10.104] for ω << ωc, i.e. Q >> 1. The 
characteristic angular frequency ωc of good conductors being very high (of the order 
of 1018), the skin depth in this case may be written as 

δ = 1/η = μσω/2 .                     [10.111] 

The expressions [10.110] represents a simple harmonic wave of wave vector k = η 
but its amplitude decreases exponentially with an attenuation coefficient η. As j = σE, 
the current density decreases with the penetrated distance according to the same 
exponential law. This decrease of the current density may be explained by the 
apparition of Eddy currents (Figure 10.8d). These currents reduce the current density 
j that produces them in the depth of the conductor and reinforces j near the surface.  

b) Effect on the resistance of conductors 

One of the important consequences of the skin effect is to increase the resistance 
of the conductor, as it reduces the section area of the conductor that carries the 
current. The exact analysis of this effect is complicated but, if it is assumed that the 
current has only a depth δ near the surface, the effective section in the case of a 
cylindrical conductor is 2πrδ and the resistance of the conductor is R ≈ h/2πσrδ = 
(h/2πr) σμω 2/ . Thus, the higher the frequency, the smaller the depth and the 
higher the resistance. For instance, the resistance of a copper wire of length 1 m and 
section 0.1 mm2 is 0.17 Ω for constant direct current, 0.23 Ω at 1 MHz and 0.72 Ω at 
10 MHz. On the other hand, the skin effect depends on the magnetic permeability of 
the conductor. Thus, iron is not useful as conductor to carry currents of frequencies 
higher than 1 kHz as its resistance becomes very high.  

The skin effect may be provoked also by nearby conductors carrying currents, in 
the case of a cable formed by several conductors, for instance. This proximity skin 
effect must be added to the own skin effect of each conductor. It may be reduced by 
keeping the conductors apart. However, in doing so, the inductance is increased and 
this is not desirable. To reduce the resistance, it is not useful to increase the diameter 
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of conductors to values much higher than δ because of the skin effect. Tube-like
conductors have the same resistance as full conductors. One may also use several
thin, parallel, isolated conductors with a convenient geometry to reduce proximity
effects. As silver has the highest conductivity of all metals, it has the largest skin
depth. Thus, it helps to plate a good conductor such as copper with a thin layer of
silver. The current circulates over all the section at low frequency and mostly in the
silver layer at high frequency.

c) Good conductors and superconductors

The equations of the quasi-permanent regime [10.108] are valid if the conduction
current density σE is higher than the displacement current εωE, thus Q = σ/εω is
much larger than 1 (say, Q > 100). The medium is then considered as a good
conductor for waves (i.e. signals) of frequency ω. So, the ratio Q may be considered
as a quality factor for conduction. For instance, copper has a characteristic
frequency ωc = 6.8 × 1018 rad.s–1. Thus, it is considered as a good conductor if ω <
ωc/100 ≈ 1016Hz, i.e. up to X-rays.

In the case of a good conductor, the wave number is k = η = (1/v) 2/cωω . The

phase velocity is v(p) = ω/k = v Q/2 while the group velocity is v(g) = ∂ω/∂k =

2v Q/2 . In the limit of a superconductor (σ = ∞), the skin depth is equal to zero.
Thus, there are no fields and current in the superconductor and there is no energy loss.
Hence, the use of superconductors to construct powerful electromagnets (used, for
instance, in the powerful particle accelerators). Superconductivity also allows the
conception of extremely precise measurement instruments.

d) Magnetic shielding

If a conductor is exposed to a time-independent magnetic field (ω = 0), the
attenuation coefficient η is equal to zero and the field may penetrate without
attenuation in the entire conductor and in the cavities that it may contain. If the field
depends on time, it may always be considered as a superposition of simple harmonic
waves of various angular frequencies ω (Fourier theorem). These waves are
attenuated inside the conductor and a large part is reflected, especially the high-
frequency spectral components. If a magnetic disturbance is incident on a metallic
plate of thickness d, it may partially cross the plate if d is comparable to the skin
depth δ. Conversely, if d exceeds about 5δ, the disturbance is almost totally
reflected. The points P, which are behind the plate, are electromagnetically
protected. According to equation [10.111], this protection is improved if the product
σµω is large.
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C) Energy dissipation in conductors 

The attenuation of electromagnetic waves in conductors is due to the dissipation 
of energy as Joule heat. Let us consider a wave whose real fields are [10.107]. 
Contrary to the case of a non-conducting medium, we find that the density of 
electric energy UE,v = ½εE2 and the density of magnetic energy UM,v = B2/2µ are not 
equal. The ratio of their average values over a period of time is 

< UM,v > / < UE,v > = 21 Q+ .   [10.112] 

It tends to 1 if Q << 1 (i.e. ω >> ωc). In the case of a good conductor (Q >> 1), we 
find UM,v/UE,v ≈ Q >>1. The energy is then essentially magnetic. The total 
electromagnetic energy density UEM,v = ½εE2 + B2/2µ may be written as 

UEM, v =  ½εEm
2 e.rη−2e {cos2(ωt – ke.r + φ) 

                 + (v/ω)2 [k cos(ωt – k e.r + φ) + η sin(ωt – k e.r + φ)]2}.  [10.113] 

The Poynting vector and the intensity of the wave may be written as 

S = e (Em
2/µv)(1 + Q2)¼

 
e.rη−2e  cos(ωt – k e.r + φ) cos(ωt – k e.r + φ – α)  

I = <S> = (k/2µω) Em
2
 

e.rη−2e ≡ Io 
e.rη−2e ,  [10.114] 

where Io is the intensity at the entry (r = 0). The intensity I decreases exponentially 
with distance travelled. In copper, for instance, after a distance x = 0.1 mm, the 
intensity is divided by a factor δ/2xe ≅ 22 in the case of a 1 MHz radio wave, and it 
becomes practically zero in the cases of visible light and ultraviolet. 

10.8. Electromagnetic waves in plasmas  

A plasma is a partially or totally ionized gas, formed from a mixture of electrons 
and heavy positive ions. Although it is rare on Earth, plasmas constitute a very large 
part of matter in the Universe. Ionization may be provoked at high temperatures 
(several thousands of degrees) by the energetic collisions of the molecules. Partial 
ionization may be also provoked at low temperatures if the gas is bombarded by 
particles. This occurs effectively in the ionosphere (i.e. the upper atmosphere at an 
altitude varying between 200 and 400 km). In these layers, low ionization of the 
order of 1% is produced by the absorption of ultraviolet radiation from the Sun and 
the collisions of cosmic rays. At a higher altitude, the ionization is lower because air 
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is more rarefied and, at lower altitude, the ionization is less probable because the 
number of ionizing particles is fewer. 

We assume that the plasma is at low pressure, in order to neglect all collisions 
between ions and molecules and we neglect the thermal agitation. This allows us to 
consider only motion due to electromagnetic waves.  

A) Equation of propagation in a plasma 

At equilibrium, the positive and negative charges counterbalance at each point. 
Thus, there are no global charge density, current density, and field. Under the 
influence of an electromagnetic disturbance, the very heavy positive ions move very 
little but the electrons move and produce a change in the charge density, a current 
density, and, consequently, electric and magnetic fields. These fields tend to bring 
the electrons back to their equilibrium positions. However, because of the electric 
acceleration, they come back with some kinetic energy. Thus, they continue their 
motion in the opposite direction and so on. Then, we have a plasma oscillation 
similar to the oscillation of a gas producing a sound wave.  

Consider a plasma containing at equilibrium Nv electrons per unit volume and an 
electromagnetic wave that is polarized linearly in the direction Ox and incident 
normally from the side z < 0 on the face Oxy of the plasma (Figure 10.9a). During 
motion, the electrons emit secondary waves, which superpose backward to form a 
reflected wave and they superpose with the incident wave in the plasma to form a 
transmitted wave. The very heavy positive ions do not move and do not contribute to 
the emission of secondary waves. Let u(r, t) be the average displacement of 
electrons at the point r and at time t, measured from their equilibrium positions. An 
element of volume δV = δx δy δz at equilibrium becomes δV ′ ≅ (1 + ∇.u) δV after the 
displacement u. The number of electrons in this volume Nv δV being unchanged, the 
density of electrons becomes N′v = Nv δV/δV ′≅ Nv(1 − ∇.u). The density of positive 
ions remains almost unchanged and equal to Nv. Thus, the total density of charge 
becomes qv = Nve(∇.u) and the current density (due to the displacement of electrons 
of charge −e and velocity ∂tu) is j = − Nve ∂tu. Thus, Maxwell’s equations in the 
plasma take the form 

∇.E = (Nve/ε) (∇.u),          [10.115] 

∇ × E + ∂tB = 0,   [10.116] 

∇.B = 0,            [10.117] 
∇ × B − εµ ∂tE = −µNve ∂tu.     [10.118] 
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To these equations, we must add the equation of motion of the electrons 

m ∂2
ttu = − eE.                  [10.119] 

By writing this equation, we neglect the magnetic force compared to the electric 
force. Indeed, if v is the speed of propagation, we have E ≈ vB ≈ cB, thus  
fM/fE = |v × B|/E ≈ (B/E)|∂tu| = |∂tu|/c and the electrons velocity ∂tu is much smaller 
than c (non-relativistic plasma). 

 
(a)                                                       (b)                                         (c) 

Figure 10.9. a) Displacement in a plasma, b) attenuation coefficient η (if ω < ωp)  
and wave number k (if ω > ωp), c) phase velocity and group velocity if ω > ωp 

B) Electromagnetic plane waves in a plasma 

In the case of a plane wave of angular frequency ω and wave vector k = ke, the 
fields and the displacement u may be represented by the complex expressions 

E = Em
)i( e.rkte −ω ,      B = Bm

)i( e.rkte −ω ,       u = um exp )i( e.rkte −ω .  [10.120] 

These expressions verify Maxwell’s equations and equation [10.119] if 

e.Em = 0,     e.Bm = 0,      Bm = (k/ω) (e × Em),   um = (e/mω2) Em   [10.121] 

provided that ω and k be related by the dispersion relation 

ω2 = ωp
2 + v2k2,         where   ωp

2
 = Nve2/mε  and   v = 1/ με .    [10.122] 

v is the speed of propagation in the plasma (different from the phase velocity of the 
wave vp = ω/k) and ωp is the plasma angular frequency. Thus, the wave in the 
plasma is transverse (Em and Bm orthogonal to the direction e of propagation) and 
they are orthogonal to each other. The electrons oscillate in the direction of the 
electric field (which is perpendicular to the direction of propagation) and this 
oscillation is in phase with E.  
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It is also possible to write an equation of propagation for the fields in the plasma. 
Indeed, differentiating equation [10.118] with respect to time and using the equation 
of motion [10.119], we find 

∇ × ∂tB − µε ∂2
ttE = µε ωp E. [10.123] 

Using equation [10.116], we get the equation 

v2 ΔE − ∂2
ttE − ωp

2E − v2 ∇(∇.E) = 0.    [10.124] 

If we take the divergence of this equation, we get [∂2
tt + ωp

2](∇.E) = 0. If E is 
simple harmonic of angular frequency ω different from ωp, we must have 
necessarily ∇.E = 0 and the equation of propagation may be simplified to 

v2 ΔE − ∂2
ttE − ωp

2E = 0.   [10.125] 

The magnetic field B and the displacement u obey similar equations. These 
equations of propagation are called Klein-Gordon equations. In the limit of a  
non-ionized medium (Nv = 0 and ωp = 0), we find d’Alembert’s equation of 
propagation. 

The dispersion relation [10.122] allows k to be determined as a function of ω. As 
this relation is nonlinear, the properties of propagation in the plasma depend heavily 
on the frequency. For this reason, we must distinguish two cases, depending on 
whether the angular frequency ω is higher or lower than ωp. 

1) If ω is higher than the plasma angular frequency ωp, the dispersion relation 
[10.122] gives a real value of k. This means that the plasma is dispersive and the 
wave propagates without attenuation with a wave number k, a phase velocity v(p) and 
a group velocity v(g) given by 

k = (ω/v) γ,    v(p) = ω/k = v/γ,     and     v(g) = vγ where γ ≡ [1 − ωp
2/ω2]½ < 1. [10.126] 

The variations of k and v(p) as functions of the frequency are illustrated in Figure 
10.9. We note that v(p) is always higher than the speed of propagation in the non-
ionized gas v = (εµ)−½. It tends asymptotically to infinity if ω tends to ωp and it tends 
to v at very high frequency. The ratio of the amplitudes of the fields in the plasma is  

Bm/Em = k/ω = γ/v.  [10.127] 

To evaluate the total energy density, we must include the density of the electrons 
kinetic energy to the energy density of the fields. Its average value over a period is  

< Uv> = < ½εE2 > + < ½B2/µ > + < ½m(∂tu)2 > = ½εEm
2.   [10.128] 
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The intensity of the electromagnetic wave is  

I = < S > = (1/2µ) <|E×B*|> = (k/2µv) Em
2 = (1/2µv) γEm

2 = γv <Uv >.  [10.129] 

This result means that the energy propagates in the plasma with the group velocity  
v(g) = vγ < v. The variation of v(g) versus ω is illustrated in Figure 10.9c. It increases 
from 0 at ω = ωp to v at very high frequency. The fact that v(g) is less than the speed 
of propagation in the non-ionized gas v, which is itself less than the speed of light in 
vacuum, agrees with the special theory of relativity, which requires that the velocity 
of any particle or signal be less than the speed of light in vacuum. Note that the 
phase velocity is not associated with a displacement of physical quantities; thus, it 
has not to be necessarily less than the speed of light. At the frequency ωp, the group 
velocity vanishes; this means that there is no transfer of energy or other physical 
quantities. If ω > ωp, the energy propagates without any loss as Joule heat or other. 
This is due to our starting assumption that the plasma is at very low pressure and at a 
very low temperature, which allows us to neglect collisions and, consequently, the 
resistivity. 

2) If ω is less than the plasma frequency ωp, the dispersion relation [10.122] 
gives an imaginary value for k. Writing k = −iη, we find 

η = (1/v) 22
p ω−ω .  [10.130] 

In this case, the fields and the displacement may be written as  

E = Em 
e.rη−e te ωi ,    B = Bm 

e.rη−e te ωi ,      u = um 
e.rη−e te ωi .  [10.131] 

This is an attenuated wave with an attenuation coefficient η, whose variation versus 
ω is illustrated in Figure 10.9b. It decreases from ωp/v = (µne2/m)½ for ω = 0 to 0 for 
ω = ωp. If we choose the root k = +iη instead of −iη, the solution would be 
exponentially increasing with the travelled distance; this is physically impossible in 
an infinite plasma. 

Substituting the expressions [10.131] in Maxwell’s equations [10.115] to 
[10.118] and in [10.119], we find that they are verified if  

e.Em = 0,      e.Bm = 0,     Bm = −i(η/ω)(e × Em),   um = (e/mω2) Em.  [10.132] 

Em and Bm are orthogonal to each other and to e, and B has a phase lag of π/2 over 
E. 
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Taking the real parts of the fields [10.131] and evaluating the mean values over a 
period for the electric, magnetic and kinetic energy densities, we find the total 
energy density 

< Uv> = <½εE2> + <½B2/µ> + <½m(∂tu)2> = ½ε (ωp
2/ω2)Em

2 e.rδ−2e .   [10.133] 

The intensity of the wave is  

I = < S > = 0.     [10.134] 

In this case, there is no transfer of energy or any other physical quantity. Thus, we 
cannot consider that there is a wave in the plasma. If an electromagnetic wave of 
frequency less than ωp is incident on the plasma, it penetrates the plasma to a depth 
of the order of δ = 1/η. Initially there is some small transfer of energy to set up the 
energy density [10.133] in this layer. However, after this transient regime, no more 
energy is transferred to the plasma. The wave is then totally reflected on the surface 
of the plasma exactly as on a perfect mirror (see section 11.5). 

In the ionosphere, Nv is of the order of 1012 to 1013 free electrons per m3 

depending on the hour of the day, seasons, and solar activity. The corresponding 
plasma frequency is about pν~  = 10 to 30 MHz (which corresponds to a wavelength 

of 10 m to 30 m). If ν~ < pν~ (thus, λ > λp), the incident wave on the ionosphere is 

totally reflected. On the contrary, if ν~ > pν~ (i.e. λ < λp), the wave propagates in the 

ionosphere without attenuation. For instance, if pν~ = 20 MHz (ωp = 1.3 ×108rad.s–1), 

a radio wave of wavelength 1 m ( ν~= 3 ×108 Hz) propagates with a phase velocity 
v(p) = 3.20 × 108 m/s and a group velocity v(g) = 2.72 × 108 m/s while a radio wave of 
200 m ( ν~ = 1.5 × 106 Hz) has an attenuation constant η = 0.42 m–1 and a penetration 
depth δ = 1/η = 2.3 m. Thus, it is totally reflected. AM radio waves of wavelength 
longer than 30 m allow the connection of points on the Earth’ surface that are not in 
line of sight. On the contrary, FM and TV emissions, which use wavelengths shorter 
than 30 m, propagate without attenuation in the ionosphere. 

The displacement of electrons in a plasma produces a current of density 

j = −Ne ∂tu = −i (Ne2/mω) Em 
)i( e.rkte −ω  = −iε(ωp

2/ω) E.        [10.135] 

This relation is similar to Ohm’s law but with an imaginary conductivity  

σp = −iεωp
2/ω.       [10.136] 

A 1 m3 cube of plasma has an impedance 

Z = 1/σp = iω/εωp
2.   [10.137] 
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This expression is similar to the impedance of a self-inductance (Z = iωL). Thus, the 
equivalent inductance of the plasma per unit volume is 

Lp = 1/εωp
2 = m/Ne2 = 3.55 × 107/N H/m3.   [10.138] 

The plasma behaves as an inductance that dissipates no energy. If we do not neglect 
the collisions of electrons with themselves and with the positive ions at rest, a 
certain amount of energy is dissipated and this corresponds to a supplementary 
resistance of the plasma. 

10.9. Quantization of electromagnetic waves 

According to classical concepts, a wave is extended in space and time with a 
certain continuous distribution of physical quantities, such as energy and momentum 
and a continuous flux of these quantities. However, some effects of emission and 
absorption of electromagnetic waves, such as the photoelectric effect, discovered by 
Hertz in 1887 and interpreted by Einstein in 1905, can be understood only if the 
wave is really constituted of “packets” of energy; we say that the wave is quantized. 
The quantum of radiation, called photon, of frequency ν~  has an energy 

Eγ = h ν~ ,     where h = 6.626 176 × 10–34 J.s = 4.135 669 × 10–15 eV.s. [10.139] 

h is Planck’s constant. The effects of radiation are fundamentally due to the 
interaction of a single photon with matter. Thus, they depend on its energy, i.e. its 
frequency ν~ or wavelength λ = c/ ν~ . A shorter wavelength corresponds to a more 
energetic photon and, consequently, a more important effect of the radiation. 

If Nv is the number of photons per unit volume of the wave, its energy density is 
UEM,v = Nvh ν~ . According to the relation [10.75], the wave also has a momentum 
density PEM,v = UEM,v/c = Nvh c/ν~ . Thus, the momentum of each photon is 

pγ = h/λ ,  [10.140] 

where λ is the wavelength. De Broglie generalized this relation to all particles. 

According to the special theory of relativity, the energy and the momentum of a 
particle of mass m are related by the equation E = 4222 cmcp + . Thus, the relation 

Eγ = cpγ implies that the photon has no mass. The expressions [10.139] and [10.140] 
for the energy and momentum of the photon are confirmed by all experiments, 
notably the Compton effect (1923). 
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                               (a)                                                                             (b) 

Figure 10.10. a) A left-handed circularly polarized wave is constituted of photons  
of helicity +1 (forward spin), b) a right-handed circularly polarized wave  

is constituted of photons of helicity −1 (backward spin) 

On the other hand, the electromagnetic wave has a density of intrinsic angular 
momentum sEM,v

(±). As it contains Nv photons per unit volume, each photon has an 
intrinsic angular momentum (or spin) 

s(±) = sEM,v
(±)/Nv =  ez ,            where  = h/2π.  [10.141] 

Thus, the spin of the photon is quantized: it may be either +  if the photon is 

polarized forward (positive helicity, Figure 10.10a) or s = –  if the photon is 
polarized backward (negative helicity, Figure 10.10b). A linearly polarized wave 
may be considered as a superposition of two right-handed and left-handed circularly 
polarized waves having the same amplitude. Thus, it is constituted of an equal 
number of photons that are polarized forward and backward. The intrinsic angular 
momentum of this wave is thus equal to zero. This is also the case of an unpolarized 
wave. 

10.10. Electromagnetic spectrum  

 An electromagnetic wave carries energy; thus, it cannot be emitted by charges at 
rest or in uniform motion: only accelerated charges (or variable currents) may emit 
them. If the current is a simple harmonic function of time, the emitted wave is 
simple harmonic of equal frequency. The emitter of a wavelength λ is always a 
system whose dimensions are comparable to λ. For instance, waves of wavelengths 
roughly more than 1 mm are emitted by macroscopic systems (electronic or 
electric). 

While propagating, an electromagnetic wave is subject to the various effects due 
to the propagation medium and eventual obstacles. The most important effects are 
the decrease of intensity with the travelled distance like 1/r2 (in the case of a 
spherical wave), reflection on surfaces of large dimensions compared to the 
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wavelength, diffraction by apertures and obstacles of dimensions comparable to λ, 
absorption by the medium, etc. 

The most important applications of electromagnetic waves are in the domain of 
telecommunications. Information (sound, image, etc.) may be transmitted by 
modulated waves, that is, of amplitude, frequency or phase that vary according to the 
information. Modulation is realized by using an input transducer, which transforms 
the information into an electric signal. Microphones and photoelectric cells are 
examples of input transducers. In the receiver, an output transducer transforms the 
electrical signal of the modulated wave into a non-electrical signal. A loudspeaker 
and a liquid crystal screen are examples of output transducers. The extracted signal 
reproduces the original one with some deformation depending on the quality of the 
system. 

The following is a classification of electromagnetic waves according to their 
frequency ν~  (or their wavelength λ = c/ ν~ ) and some of their principal uses. 

1) Waves of industrial frequencies (30 Hz < ν~ < 3 kHz and 105 m < λ < 107 m): 
these are emitted by alternating current generators and electrical setups. They are 
used in traditional telephony and for the transport of electrical energy. 

2) Radio waves (or Hertzian waves): these include: 

− very low-frequency (VLF) waves (3 kHz < ν~ < 30 kHz and 104 m < λ <105 m); 

− low-frequency (LF) waves (30 kHz < ν~ < 300 kHz and 103 m < λ < 104 m); 

− medium-frequency (MF) waves (0.3 MHz < ν~ < 3 MHz and 102 m < λ < 103 m); 

− high-frequency waves (HF) (3 MHz < ν~ < 30 MHz and 10 m < λ < 102 m); 

− very high-frequency waves (VHF) (30 MHz< ν~ <0.3 GHz and 1m<λ<10 m). 

Hertzian waves are emitted by macroscopic antennas. They are particularly used 
with amplitude modulation in telephony and AM radio emissions with a band width 
of the order of 10 kHz (which is the frequency band of the usual audible sounds). 
Frequency modulation is used for FM radio emissions and for television emissions. 

3) Microwaves or ultra-high frequency (UHF) waves (0.3 GHz < ν~ < 300 GHz 
and 1 mm < λ < 1 m) are emitted by some atoms and molecules (vibration spectrum 
and rotation spectrum). The ground state of the cesium atom consists of two very 
close energy levels separated by 4.14 × 10−15 eV. In the transition from the higher to 
the lower level, the atom emits a precise frequency of 9.192 631 77 × 109 Hz, which 
is the basis of the atomic clocks. Polar water molecules absorb microwaves easily; 
hence their use in microwave ovens (λ = 12.2 cm) to cook food that contains a large 
amount of water. They are also used by diathermy machines (to warm muscles and 
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joints in order to relieve soreness), and telecommunications with aircraft and 
satellites, radio-astronomy, and radar systems. 

4) Infrared radiations (3 × 1011 < ν~ < 3 × 1014 Hz and 1 µm < λ < 1 mm) are 
emitted and absorbed by molecules. Most hot materials emit heat in the form of 
infrared radiations. They have many applications in medicine (diagnostics, 
thermotherapy, and thermography), industry, and infrared teledetection. 

5) Light (4 × 1014 < ν~ < 7.5 × 1014 Hz and 400 nm < λ < 750 nm) is a major agent 
for the transport of solar energy to Earth, photosynthesis, and life itself. Its color is 
associated with its frequency, and it is emitted by atoms and molecules. 

6) Ultraviolet radiations (3 × 1015 < ν~ < 3 × 1016 Hz and 10 nm < λ < 100 nm) 
are emitted by atoms. They are used to study atoms and efficiently initiate some 
photochemical reactions (such as the combination of chloride and hydrogen, the 
breaking of the carbon-carbon bond, etc.). They depolymerize nucleic acids, destroy 
proteins and inhibit the body’s immune system, they have adverse effects on the skin 
and may cause skin cancer. They constitute a part of solar radiation and most of 
them are absorbed by the atmosphere, particularly the ozone (O3) layer.  

7) X-rays (20 pm < λ < 10 nm and 3 × 1016 < ν~ < 15 × 1020 Hz ) are emitted by 
atoms and charged particles (especially electrons) as they collide with other atoms. 
They are used in the study of crystalline structures and in medicine (radioscopy and 
radiotherapy). Gamma rays (λ < 20 pm and ν~ > 15 × 1020) are emitted by atomic 
nuclei and by decelerating charged particles. They are used in scientific research and 
in medicine (gammascopy and gammatherapy). 

10.11. Emission of electromagnetic radiations 

One of the basic ideas of quantum theory is that atoms and molecules can only 
be in discrete states of well-defined energies. Normally, they are in the lowest 
energy level, called the ground state, and they emit no radiation. If they are in an 
excited energy state Ej, they undergo a transition to a lower energy level Ei by 
emitting a photon of energy 

Ej – Ei = h jiν~ ,   [10.142] 

where ji
~ν  is the frequency of the emitted radiation. For instance, the ground state 

energy of the hydrogen atom is E1 = −13.6 eV and that of the first excited level is  
E2 = –3.40 eV. Thus, the wavelength of the emitted radiation in the transition 2 → 1 
is λ21 = hc/(E2 − E1) = 0.122 µm. The emission spectrum of atoms and molecules is 
discrete and it depends only on their energy levels. It is almost independent of the 
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physical or chemical conditions. This is true if the atoms or the molecules are well 
separated (in the gaseous state, for instance). In the case of dense mediums (liquids 
or solids), the emission is rather collective and the spectrum is almost continuous. 

In reality, the waves, which are emitted in atomic transitions, are not mono-
chromatic. The reason is that the exact transition time cannot be predicted. Quantum 
theory asserts only that, if the atom is excited at t = 0, the probability of staying in 
the excited state decreases exponentially according to τ− /te , where τ is the mean life 
of the excited state. τ may be considered to be the duration of the emission. It is 
usually of the order of 10−9 to 10−8 s. According to Fourier theory (section 10.1E), 
this wave packet may be considered as a superposition of monochromatic waves of 
frequencies ν~  and wave numbers k = ω/v. A wave packet, which propagates in the 
direction of Oz, may be written as 

E(z, t) = ∫
∞ ν0

~d )(ν~E )i( kzte −ω = (1/2π) ∫
∞ ω0 d  E(ω) )i( kzte −ω . [10.143] 

In the case of a monochromatic wave ao
)i( oo zkte −ω , the spectral amplitude may be 

written as E(ω) = 2πao δ(ω − ωo) = ao δ( ν~ − oν~ ) and the spectral intensity is  
I(ω) = Io δ(ω − ωo), where δ is the Dirac delta-function (see section A.11 of the 
appendix A). A three-dimensional wave may be written as 

E(r, t) = (2π)−3/2 ∫∫∫ d3k )(kÊ )i( k.r−ωte ,          where ω = ck.   [10.144] 

We may easily show the Parseval relation 

∫∫∫ d3r |E(r, t)|2 = ∫∫∫ d3k | )(kÊ |2,  [10.145] 

which expresses the intensity of the packet as the integral of its spectral energy. 

The spectral function )(kÊ  is important in a band of widths Δkx, Δky, and Δkz 
related to the extensions Δx, Δy, and Δz of the wave packet in the direction of Ox, 
Oy, and Oz by the uncertainty relations [10.24]. The band width Δω is related to the 
duration Δt of the packet by the uncertainty relation Δω.Δt ≈ 2π. If we identify Δt with 
τ, we find a band width oνΔ~  ≈ 1/τ  ≈ 108 to 109 Hz. This quantum width is very 
small, compared to the frequency of the radiation (≈ 1015 Hz for visible light). In this 
case, the radiation is said to be quasi-monochromatic. In fact, νΔ~  is wider than 

oνΔ~  because of the thermal agitation of atoms (producing collisions and a widening 
of the band by the Doppler effect). 
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A light wave that is emitted by a macroscopic body consists of many wave 
packets, which are emitted by the atoms of the body. There are two types of sources: 

− Incoherent sources, in which the atoms emit independently, thus the emitted 
packets have no relation of polarization, amplitude, frequency, and phase. In this 
case, the total wave is E = Σj Ej(r, t), where Ej are packets of the form of [10.144] 
whose random phases φj are related to the time of emission by the atoms. Thus, the 
total wave E(r, t) is neither polarized, nor coherent (Figure 10.11a). The intensity of 
the total wave is the sum of intensities that are emitted by the individual atoms  
I(r, t) = Σj Ij(r, t). This is the case of traditional (non-laser) sources, such as thermal 
sources (flames and incandescent lamp) and electric discharge sources (electric arcs, 
neon discharge tubes, and spectral lamps). 

 

Figure 10.11. a) Non-coherent wave and b) coherent wave 

− Coherent sources, such as lasers, in which the wave packets Ej(r, t) that are 
emitted by the atoms have well-defined polarization and phase relations. The atoms 
in these sources cannot be considered as completely independent, because the wave 
that is emitted by one atom acts on the others. The total emitted wave E = Σj Ej(r, t) 
is polarized and coherent (Figure 10.11b). Its intensity is given by  

I(r, t) = (1/2µv) |E(r, t)|2 = (1/2µv) |Σj Ej(r, t)|2.   [10.146] 

It may be much larger (or smaller) than the sum of the intensities Σj Ij of the 
individual atoms. 

10.12. Spontaneous and stimulated emissions 

The emission of radiation by an atom as it undergoes the transition from an 
energy level Ej to a lower level Ei may be spontaneous, if it occurs without the 
influence of an incident wave. This is the type of emission by the common natural or 
artificial sources. Atoms emit independently according to a probability law without 
any amplitude, polarization and phase correlation. The emitted radiation is 
incoherent. Conversely, if an atom is in an energy level Ei and it receives a photon 

(a) (b)
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of energy Ej – Ei = h jiν~ , it may undergo an excitation to a higher level Ej followed 
by the transition back to the level Ei with the emission of a photon of frequency jiν~  

but generally without any relation to the initial photon. Thus, a good radiation 
emitter is also a good absorber of this radiation. 

In 1917, Einstein discovered that if an atom is in an excited level Ej > Ei and it 
receives a photon of energy Ej − Ei, instead of being excited to a higher level Ej, 
there is a large probability that it undergoes a transition to the lower level Ei with the 
emission of a photon that is identical to the incident photon. This stimulated 
emission amplifies the incident wave. It is the basic principle of lasers. The emitted 
photon may excite another atom and so on, producing an avalanche of emissions. 
Noting that, if N identical waves Ej of the same intensity I1 superpose, the resulting 
intensity is, according to [10.146], I(r, t) = (1/2µv) |NE1(r, t)|2 = N2 I1; thus, it may 
be very large. This large energy is evidently supplied by the external system, which 
excites the atoms coherently. The word “laser” is an acronym for “light 
amplification by stimulated emission of radiation”. The emitted wave is extremely 
phase-coherent and directional with a very narrow spectral band. 

In conventional light emitters, the stimulated emission is not significant because 
of the extremely small probability that an atom is in an excited state. The situation is 
different in the case of population inversion, i.e. many atoms in an excited state 
caused by a process of optical pumping. For this, the excited state must have a 
sufficiently long lifetime τ (of the order of 10−3 s or more); it is then said to be a 
metastable state. To reinforce the process of light amplification, the lasing medium 
is placed between two plane or spherical mirrors (Figure 10.12a). The wave 
propagates back and forth with a period of 2en/c, where n is the index of refraction 
of the medium and e is the distance between the mirrors. The system constitutes an 
optical cavity with standing waves of frequency pν~ = pc/2ne similar to the waves 

on a stretched string. Here p is an integer, which labels the mode of the standing 
wave. The waves, which are emitted in the oblique directions with respect to the 
mirrors axis or whose frequencies are different from pν~ , are taken out of the beam 

by reflection on the mirrors or are rapidly attenuated. Only the waves propagating 
perpendicularly to the mirrors remain in the beam after many reflections. The 
beam intensity increases by a resonance phenomenon. Two parallel plates placed 
at the ends of the cavity receive the wave at the Brewster incidence and reflect only 
the wave that is polarized perpendicularly to the incidence plane (see the section 
11.2d). One of the mirrors (the output coupler) is partially transparent; it transmits 
a laser beam that is highly directional (if the cavity is long enough), polarized, and 
quasi-monochromatic. The high energy of the beam is provided by the optical 
pumping system, which maintains the population inversion. 
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(a)                                                                                    (b) 

Figure 10.12. a) Schematic representation of a ruby laser. The Brewster  
polarizers P polarize the beam, and b) the energy levels 

A lasing medium with only two levels Ei and Ej is not possible. A typical three 
level laser (and the first laser to be realized) is the ruby laser. This is a crystal of 
aluminum oxide (Al2O3) where some aluminum atoms are replaced with chromium 
atoms in a ratio of 1/104 (Figure 10.12a). The energy levels are illustrated in Figure 
10.12b. The intermediary level is in fact two very close levels E2 and E ′2. The levels 
E3 form a wide band covering the entire visible spectrum. The atoms of the lasing 
medium absorb any visible light and get excited to one level of the continuous band. 
Then they undergo a rapid transition to one of the levels E2 and E ′2, which have a 
relatively long lifetime (≈ 2 ms); this favors the inversion. Afterwards, they undergo 
transitions to the ground state E1 with the emission of 692.7 and 693.4 nm 
radiations, respectively. The difference between the absorbed energy in the 
excitation and the emitted radiation energy is dissipated as heat in the medium and 
must be evacuated.  

The output of a laser is a very narrow and intense beam. For instance, a beam of 
power 10 mW on a section of 1 mm2 corresponds to an intensity of 104 W.m−2, 
compared to about 150 W.m−2 for sunlight. Being very coherent, this beam can 
travel a very long distance without significantly spreading or it can be focused to a 
very tiny spot of very high irradiance. The laser may be operating continuously or in 
a pulsed mode, emitting flashes of very short duration (of the order of 1 µs). In the 
so-called Q-switched laser, the emission is held-up while the population inversion is 
allowed to build up to the maximum level; then, a rapid lasing is allowed, producing 
a pulse of very short duration (of the order of a nanosecond) but with very high 
power (up to 109 W). 

Actually, we have many types of lasers (gas lasers, solid-state lasers, 
semiconductor lasers, optical fiber lasers, etc.), for virtually all electromagnetic 
radiation: visible light, infrared laser, ultraviolet laser, X-ray laser, and so on. 
Similar devices operating at microwave and radio frequencies are called masers 
rather than lasers. The power of lasers varies between several milliwatts for the 
common types to considerable values for pulsed lasers. 

E1 

E′2 

E3 

E2 

692.7 nm 693.4 nm 

Half-silvered mirrorMirror 

Discharge lamp 
Ruby PP
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Due to the almost monochromatism of their radiation, coherence, polarization 
and high intensity, laser beams have many applications in research. They include 
spectroscopy, laser scattering and interferometry, holography, etc. Due to their high 
intensity, they may be used to study the interaction of the electric field with 
nonlinear materials, produce very hot plasma, realize nuclear fusion, etc. Laser beams 
enable high-precision measurements of small angles, small lengths (for machine 
tools, for instance), and large distances (for instance, the distance from the Earth to 
the Moon), and to achieve precise alignment for mechanical construction, etc. In 
industry, well-focused laser beams are used for cutting, welding, marking parts, 
micro-piercing of metals and very hard materials, realization of semi-conductors,  
non-contact measurements, etc. Military applications for lasers include guiding 
munitions, missile defense, an alternative to radar, etc. In medicine, they are used in 
bloodless surgery, laser healing, kidney stone treatment, eye treatment, etc. Their 
daily use includes compact disc players and engravers, laser printers, barcode scanners in 
supermarkets. In telecommunications, we are in the first stages of a new era of optical 
communications combining lasers and fiber optics with an incredible increase in 
data-handling capacity for television transmission, phone conversations, etc.  

10.13. Problems 

Propagation of waves 

P10.1 Consider the one-dimensional wave equation ∂2
ttu − v2∂2

xxu = 0. Introduce the 
variables ξ = t – x/v and η = t + x/v. a) Show that the wave equation becomes 
∂2u/∂ξ∂η = 0. b) Deduce that the solution of this equation may be written in the 
form u = f(ξ) + g(η) where f and g are two arbitrary functions. 

P10.2  a) Two waves of the same amplitude and the same linear polarization in the 
direction Ox propagate in the direction Oz in a dispersive medium. Let ω1 and ω2 be 
their frequencies and k1 and k2 their wave numbers. Determine the points where the 
amplitude of their superposition is maximum at a given time t. Show that, over the 
course of time, these points move with a velocity vmax = (ω1−ω2)/(k1−k2) that is close 
to the group velocity v(g) = dω/dk if ω2 is close to ω1. b) Consider now the general 
case of a signal of space extension Δz. By Fourier theorem, this signal may be 
considered as a superposition of waves of angular frequencies ω and wave numbers 
k, of the form u(z, t) = ∫Δω dω f(ω) )i( kzte −ω , where k is related to ω by the dispersion 
relation of the medium. The integral is non-negligible at z and t if (ωt − kz) remains 
almost constant as ω varies in the frequency band Δω ≡ [ω1, ω2]. Deduce that the 
points, where u(z, t) is large, are such that t − (dk/dω)z = 0. Deduce that, over the 
course of time, these points move with the group velocity v(g) = dω/dk. To study the 
effect of dispersion on the propagation of wave packets, assume that the amplitude 
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A(k) is real and Gaussian of the form A(k) = Am
22

o /4)( κ−− kke , where κ = constant. 
A(k) takes the value Am/e for k = ko ± 2κ. Thus, Δk = 4κ may be considered as the 
band width of k. Show that we may write the first two terms of the Taylor series  
ω = ωo + v(g)(k−ko) + ½β(k−ko)2

 +... Using the integral ∫
+∞
∞− du

2buaue − = b/π bae 4/2

 

and neglecting β, show that u(0,t) = 2 π κAm
2

g )( tve κ− te oiω . Deduce that the time 

width is Δt = 2/κv(g) such that Δt.Δω = 8. Show that u(x,0) = 2 π κ A
22 xe κ− xke oi− , 

thus Δx = 2/κ and Δx.Δk = 8. Keeping the term β in the expansion of ω, evaluate  

u(x, t) and verify that its space extension is Δx = (2/κ) 2424+1 tκβ ; thus, it widens 

as it propagates. 

P10.3 a) Knowing the expression of the phase velocity as a function of the 
wavelength λ, show that the group velocity may be written in the form  
v(g) = v(p) – λ(dv(p)/dλ). b) In optics, the index of refraction n is usually expressed as 
a function of the wavelength. Show that the group velocity may be written in the 
form v(g) = c/n + (cλ/n2)(dn/dλ). c) Knowing the expression of the phase velocity as 
a function of the frequency, show that the group velocity is given by the equation  
1/v(g) = 1/v(p) – ( ν~ /v(p)

2)(dv(p)/d ν~ ). d) The refraction index of glass depends on the 
light wavelength in vacuum, according to Cauchy empirical formula n = A + B/λ2. 
Calculate the phase velocity and the group velocity in a glass, whose parameters are 
A = 1.584 and B = 1.270 × 104 nm2  for the wavelength λ = 600 nm (in vacuum). 

P10.4 Assume that the transverse waves propagate on a string with a speed v. Look 
to waves of the form u(x, t) = f(x) cos(ωt). Show that f(x) obeys a differential 
equation. Write its general solution. If the string is fixed at its ends, the wave must 
verify the boundary conditions u(0, t) = u(L, t) = 0. Show that the solution depends 
on an integer n. What are the possible values of the frequency and the wavelength? 

Electromagnetic waves in dielectrics, polarization  

P10.5 Determine the polarization of the following waves: 

a) E = A cos(ωt – kz) ex + B cos(ωt – kz) ey, 
b) E = A cos(ωt – kz) ex + A sin(ωt – kz) ey, 
c) E = A cos(ωt – kx) ey + A sin(–ωt + kx) ez, 
d) B = A cos(ωt – kz + π/3) ex + A sin(ωt – kz) ey, 
e) B = –A cos(ωt – ky) ex + A sin(ωt – ky) ez, 
f) B = A cos(ωt + kx) ez – A sin(ωt + kx) ey. 

P10.6 Write down the expression for a plane wave propagating in a direction e, which 
lies in the plane Oxz making an angle θ with Oz if: a) it is polarized in the plane Oxz, 
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b) polarized perpendicularly to this plane, c) polarized right-circularly, and
d) polarized left-circularly.

P10.7 Consider the superposition of two waves, which propagate in the direction Oz
and which are polarized linearly in the directions ex and ey. The components of E in
the Oxy plane are x = Ex cos(ωt − kz) and y = Ey cos(ωt − kz +φ), where φ is the
waves phase shift. a) By considering the derivative ∂ty at t = 0, show that the tip of
E moves on an ellipse clockwise if 0 < φ < π and anticlockwise if −π < φ < 0. b) Let
Ox' and Oy' be the axes obtained from Ox and Oy by rotation through an angle α.
Write E as a superposition of two waves polarized in the directions Ox' and Oy'.
c) Let E'x and E'y be the amplitude of these waves and φ' be their phase shift. Show
that ½Ex Ey sin φ = ½ E'x E'y sin φ'. Interpret this relation. d) What should α be in
order to have the ellipse axes in the directions of Ox' and Oy' ?

P10.8 Consider the superposition of two waves Ej = Ej ej, which propagate in the
same direction e and which are polarized linearly in the directions ej, where j = 1.2.
They are not necessarily monochromatic. We define the 2 × 2 tensor, whose
elements are Iij = < EiEj* >. Here <f > stands for the time average of f. a)We define
the Stokes parameters: so = I11 + I22, s1 = 2 Re I21, s2 = 2 Im I21 and s3 = I11 − I22.
Interpret so. Write the tensor Iij as a 2 × 2 matrix [I] in terms of the parameters si.
What is its determinant and what is its trace? We define the polarization of the wave
as P = s2/so, where s2 = s12 + s22 + s32. Write [I] in a new basis e′1 and e′2 obtained
from e1 and e2 through a rotation of 45° and in the basis formed by the complex
vectors e(±±) = (e1 ± ie2)/ 2 . Verify that the trace of [I] and its determinant do not
depend on the used basis. b) What are the values of the parameters si if the wave is
completely unpolarized? c) Verify that so2 = s2, thus P = 1 if the wave is
monochromatic and polarized (elliptically in the general case).

P10.9 In an isotropic but nonlinear crystal, the electric displacement D is in the same
direction as E but with a magnitude D = ε E + γE2. A plane harmonic wave of
angular frequency ω is incident normally on this crystal. Assume that the wave is
polarized in the direction Ox and it propagates in the direction Oz. a) Show that the
symmetries imply that the wave in the crystal is polarized in the direction Ox and it
propagates in the direction Oz. b) Nothing requires that the wave in the crystal be
harmonic with the same frequency ω, but it must be repeated at intervals of time
equal to the period of the excitation wave. Thus, harmonic waves of frequencies 2ω,
3ω, etc., may be generated in the crystal. Write the solution in the form:

E = Σp Ep cos(pωt − kpz + φp) ex.
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Write the expression of D. Show that Faraday’s induction law gives: 

B = Σp (kp/pω) Ep cos(pωt − kpz + φp) ey. 

Show that Maxwell’s equations ∇.B = 0 and ∇.D = 0 are verified. c) Impose 
Ampère’s equation and deduce that we must have kp and φp proportional to p, of the 
forms kp = pk and φp = pφ. Keeping only two terms in the power series, show that  
E1 = E2 and that the phase velocity depends on the field amplitude according to the 
relation 1/v(p)

2  = µε + ½µγ E1. 

Energy and momentum of plane electromagnetic waves  

P10.10 a) Two waves propagate in the direction Oz. In which case, the energy 
density and the intensity of their superposition are the sum of the corresponding 
quantities for the waves? b) Consider a wave E = E )i( kzte −ω ex. Calculate its field B. 
Verify that the intensity of this wave may be written as |E × B*|/2µ. c) Natural 
unpolarized light may be considered as the superposition of two linearly polarized 
waves in the directions Ox and Oy, respectively, with a phase shift between them 
varying randomly. What is the transmitted intensity if this light in incident on a plate 
that absorbs completely the y component? 

P10.11 A wave of angular frequency ω propagates in a non-magnetic medium of 
index n. Its direction of propagation e lies in the Oyz plane and makes an angle 
θ with Oz. The wave is polarized in the Oyz plane. a) Write the expressions of its 
fields E and B. b) Calculate its energy density, its Poynting vector and its intensity. 
What is the average power received by the unit area of the Oxy plane? 

P10.12 A spacecraft of mass 103 kg moves in free space propelled by reaction to a 
beam of light of 106 W that it emits in the opposite direction to its motion. 
Neglecting the gravitational force, determine the exerted force on this spacecraft and 
its velocity after 24 hours, starting from rest. 

P10.13 A He-Ne laser beam has a wavelength λ = 632.8 nm, a section S = 0.10 cm2 

and a power P = 1 W. Calculate the amplitude of the corresponding electric field and 
that of the magnetic field. What should the power of an incandescence lamp of 
efficiency 10% be to produce the same light intensity at 1 m from the lamp? What 
should be the radius of a particle of mass density 103 kg.m−3 in order for it to be 
suspended by this upward laser beam? Assume that the particle absorbs light totally. 

P10.14 A light beam of intensity I falls on a surface S with an angle of incidence θ. 
a) Assuming that all light is diffused isotropically back to the incidence medium, 
calculate the rate of momentum transfer to the surface. b) Assume now that the 
surface absorbs a fraction α of this energy and diffuse the remaining isotropically. 



332     Electromagnetism 

Determine the rate of momentum transfer to the surface and the radiation pressure. 
c) Assuming that the surface is a perfect mirror, calculate the force and the exerted 
pressure on this mirror if I = 20 W/cm2, θ = 30° and S = 100 cm2. 

P10.15 The solar constant is the flux of the solar electromagnetic energy that is 
incident normally on the unit area of the surface of the Earth. It is about 1340 W/m2. 
a) Calculate the amplitude of the corresponding electric field. b) The average 
distance of the Earth to the Sun is 1.49 × 108 km. Calculate the total power that the 
Sun emits as radiation. Using the relativity relation ΔUo = Δm c2, calculate the mass 
that the Sun loses per second because of this emission. c) One project to convert 
solar energy into electric energy. What should be the surface of the solar panel in 
order to produce 1 kW, assuming 30% efficiency? d) Compare the force exerted by 
the radiation on a particle of radius ro with the gravitational attraction of the Sun, 
knowing that the mass of the Sun is about 2 × 1030 kg and the gravitational constant is 
G = 6.67 × 10−11 N.m2/kg2. Assume that the particle density is mv = 103 kg/m3 and 
that it absorbs all the radiation. Show that, if ro is less than a certain value, the 
radiation pressure may be larger than the gravitational attraction. The particle is then 
repulsed by the Sun instead of being attracted. This may explain the comet’s tail in 
the opposite direction of the Sun. 

P10.16 The emitter of a radar station has a power P and it consists of a small electric 
dipole located at the focus of a parabolic antenna whose aperture radius is R. As we 
shall see in section 11.8, the emitted wave of wavelength λ is diffracted in a cone of 
half-angle θ, such that sin θ = 0.6 λ/R. a) Assuming that the wave is emitted 
isotropically in this cone, calculate the intensity of the wave I′(r) at a distance r from 
the antenna. b) The wave encounters an obstacle of area S at a distance D. The 
reflected wave is assumed to be isotropic in all directions on one side of this surface. 
It is intercepted by the same parabolic antenna. Calculate the intercepted power Pi. 

Momentum and angular momentum densities, radiation pressure 

P10.17 An electromagnetic wave propagates in the direction Oz and is polarized 
linearly in the direction Ox. It is intercepted by a plane plate of area S initially lying 
in the Oxy plane and then rotated through an angle θ about Oy. Calculate the 
Maxwell’s tensor. Deduce the force exerted by the radiation on this surface S, 
assuming that it absorb totally the radiation. 

P10.18 a) Using the model of section 10.6 with a single binding force −mωo
2u for 

electrons and neglecting the friction force, show that the dispersion relation in this 
medium is c2k2 = ω2 + ωp

2ω2/( ωο
2 − ω2) with ωp

2 = Ne2/εom. Calculate the group 
velocity. b) Plot the index of refraction versus the angular frequency, ω. How can 
we interpret the negative values of n2 and the values of the index that are positive 
but less than 1? According to special relativity, the speed of particles, of energy, or 



Electromagnetic Waves     333 

any physical quantity is always less than the speed of light in vacuum c. Does an 
index of refraction less than 1 contradict special relativity? c) Plot the group velocity 
versus the angular frequency of the wave. Show that, if |n|2 increases as a function of 
ω (normal dispersion), v(g) is less than c, in agreement with special relativity. But, if 
|n|2 decreases as a function of ω (abnormal dispersion), v(g)

2 is negative. In this case 
v(g) cannot be interpreted as the speed of energy or signals. 

Electromagnetic waves in conductors 

P10.19 Analyze the equation of propagation of E in a conductor by using the 
method of separation of variables. Deduce that E = F(r) c/τ−te , where F(r) verifies 
the equation ΔF(r) = κ F(r) with κ contant. Using the continuity equation of the 
charge, show that τc = ε/σ and κ = 0. Deduce that an electric field, which may exist 
at t = 0, decreases exponentially in time with the same relaxation time τc as the 
charge density. 

P10.20 Show that, if we use a gauge such that ∇.A + µε ∂t V  + µoσV = 0, the 
equations of propagation of V and A may be written in an Ohmic conductor in the 
uncoupled forms  

ΔV − µε ∂tt V  − µoσ ∂tV = −qv/ε,        ΔA − µε ∂ttA − µoσ∂tA = 0.  

P10.21 Let us assume that the electric field is E = F(r) te ωi  in a conductor, whose 
conductivity is σ. We assume that µ = µo and ε = εo. a) Using Maxwell’s equations, 
determine the field B, the current density j and the charge density qv. b) Assuming that 
qv = 0, verify that Δj + ωµo(ωεo – iσ) j = 0. Compare the displacement current with 
the conduction current. 

P10.22 A wave is polarized in the direction Ox and it propagates in the direction Oz 
in an infinite conductor. Write the expression of the Poynting vector. Calculate the 
energy loss between the planes z and z + dz and verify that it is equal to the energy 
dissipated as Joule heat.  

P10.23 a) Show that the Maxwell’s equations in a linear, homogeneous and isotropic 
conductor imply that ∂tUEM,v + j.E = − ∇.S. Integrate this equation over a volume V 
bounded by a surface S and transform the volume integral of ∇.S into the flux of S 
over S. Interpret the two terms of the left-hand side. Deduce that the vector S is the 
density of the energy flux. b) Determine the Poynting vector S and analyze the 
energy flow inside a conducting cylinder carrying a current of uniform density j. 

P10.24 A simple harmonic wave of angular frequency ω propagates in the direction 
Oz and is polarized in the direction Ox in a conductor of conductivity σ. a) Write the 
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expressions of the fields E and B. b) In the usual metallic conductors, the charge 
density is negligible. At which frequencies is this condition verified? What then are 
the expressions of the fields and the current density? 

P10.25 Let us consider a good conductor and a wave that propagates in the direction 
Oz and suppose that the charge density is negligible. a) Show that E is transverse. Let us 
assume that E = Em

)i( pzte −ω ex. Show that B = (p/ω)Em
)i( pzte −ω ey. Show that the 

Maxwell’s equations are verified if p = k − iη where k and η are given by the 
expressions [10.103]. b) Calculate the equivalent surface current density and the 
fields just outside the surface. c) Write the expressions of the real fields.  

Electromagnetic waves in plasmas 

P10.26 If we neglect the friction force exerted on the conduction electrons in a metal 
and, consequently, the dissipation of energy as Joule heat, the metal may be treated 
as a plasma. Assume that the number of conduction electrons is 1 electron per atom in 
silver. a) Calculate the number of conduction electrons per unit volume and the cut-
off frequency pν~ . Can visible light propagate in solid silver? b) What is the 

attenuation coefficient in silver for light of wavelength λ = 580 nm in vacuum? 
Verify that visible light penetrates silver only a fraction of a micron. c) What should 
the thickness of silver on a glass plate be in order to have a mirror that reflects half 
the light intensity at 99%? At what wavelength does silver become transparent? 

P10.27 An ionized gas fills a parallel plate capacitor of thickness d and area S. The 
total current is the sum of the displacement current and the conduction current due to 
the motion of electrons. Assuming that the electric field in the plasma is  
E = Em

)i( kzte −ω , show that the total current density is j = i(εoω − Nve2/mω)E, where 
m is the mass of the electron, Nv is the number of electrons per unit volume and −e is 
the charge of the electron. Deduce that this set-up is equivalent to a capacitor of 
capacitance C = εoS/d and a solenoid of inductance L = md/SNve2 connected in 
parallel.  

P10.28  In section 3.7, we have interpreted Ohm’s law in the case of a stationary 
current by assuming that each conduction electron is subject to a friction force  
f = –bv. This force is due to the collision of the electron with the other electrons and 
with the positive ions. a) Let us assume first that the electric field E in the conductor 
is time-independent. Show that the electrons are accelerated by the field and that 
their velocity tends to a limit v = −eE/m. Deduce that the electric current is given by 
Ohm’s law j = σE where σ = Nve2/b and Nv is the number of electrons per unit 
volume. b) If the field E is sinusoidal with angular frequency ω, we expect that the 
result of question (a) holds at low frequency. Neglecting the magnetic force, write 
the equation of motion of the electron and its solution. Deduce that the conductor 
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obeys Ohm’s law with a complex conductivity σ = Nve2/(b + imω). c) Calculate the 
dissipated power per unit volume in this conductor. d) A medium may be considered 
as “metallic” if b >> mω and as a “plasma” if b << mω. At what frequencies may 
copper be considered a plasma? e) In a dense plasma, the electrons collide 
frequently with other electrons and the positive ions. Thus, they are subject to a 
friction force f = −bv exactly as an Ohmic conductor. Write Maxwell’s equations in 
this plasma. Deduce the relations 

e.Em = 0,    e.Bm = 0,    Bm = (k/ω) (e × Em),     and    um = eEm/(mω2 −ibω).  

What is the dispersion relation of this medium? 

Quantization of electromagnetic waves 

P10.29 A wave is specified by the electric field E = Em cos(ωt – kz) with the 
amplitude Em pointing in the direction Ox. a) Calculate the corresponding energy 
density and Poynting vector. b) Determine the energy of the photons of this wave, 
their momentum, and their average number per unit volume. These photons are 
intercepted by a totally absorbing surface S, which lies in the Oxy plane. Determine 
the average number of photons, which are absorbed per unit area of this plate and per 
unit time, the momentum that it receives and the force exerted by the radiation on it.  
c) Assume that the plate is metallic with the conduction electrons subject to a 
friction force –bv. Show that, at low frequency (ω << b/me), they tend to a terminal 
velocity v = –eE/b. Show that the electrons are subject to a magnetic force 
FM = (e2/2b) EB pointing in the direction Oz. d) This force may be assimilated to a 
radiation pressure. Show that it is equivalent to a rate of transfer of momentum 
Δp = (e2/b) EB per electron and per unit time. Show that the work exerted by the 
electric field on the electron in motion is ΔW = (e2/b) E2. Verify that, in the case of 
an electromagnetic wave in vacuum, ΔW = c Δp. This is the relationship between the 
energy density and the momentum density of the wave or between the energy and 
the momentum of the photons that are associated with the wave and absorbed by the 
metallic plate. 

P10.30 The ground state energy of the hydrogen atom is E1 = –13.6057 eV and its 
first excited level is at E2 = –3.4014 eV. What is the wavelength of the emitted 
radiation in the transition from E2 to E1? What should the kinetic energy of an 
electron, which collides with the atom, be in order to excite it from the ground state 
to the level E2? What should this kinetic energy be in order to ionize the atom from 
the ground state? 

 

 



Chapter 11 

Reflection, Interference,  
Diffraction and Diffusion 

In this chapter we study the laws of reflection and transmission of 
electromagnetic waves at the interface of two mediums (one of them may be the 
vacuum). The wave may be totally or partially reflected, a part being transmitted 
across the interface. The amplitudes of the reflected wave and the transmitted wave, 
as well as their possible phase shifts, are determined by the boundary conditions at 
the interface. First, we formulate the laws determining the direction of propagation 
of the reflected wave and the transmitted wave in the case of two dispersive 
mediums. These laws hold for any type of wave. Then, we study the reflection and 
refraction of electromagnetic waves on the interface of two dielectrics, of a 
dielectric with a conductor and of a dielectric with a plasma. In the second part of 
this chapter, we study the interference of two and several waves, the diffraction, and 
the diffusion of waves. 

11.1. General laws of reflection and refraction  

The laws of reflection and refraction of light, which were initially established  
experimentally, were interpreted by Huygens for any type of wave. To simplify, we 
consider a scalar wave u, which propagates in a medium (1). If it meets the interface 
of this medium with another medium (2), generally there is a reflected wave u′ back 
toward the medium (1) and a transmitted wave u" in the medium (2) (Figure 11.1). 
Huygens’ principle assumes that each point P of a wavefront Σο at time to behaves 
like a point source, emitting a secondary wavelet SP. The envelope Σ of these 
wavelets is the wavefront later. It is not necessary for the sources to be material 
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ones; the principle holds even in the case of the propagation of light in vacuum. 
From this general principle, it is possible to deduce the following laws of reflection 
and refraction, which are verified experimentally: 

− The direction of propagation of the incident wave, that of the reflected wave, 
and that of the refracted wave lie in the same plane containing the normal to the 
interface S at each point of incidence.  

− The angle of reflection θ′ (between the direction of propagation of the reflected 
wave and the normal Oz′ to S) is equal to the angle of incidence θ (between the 
direction of propagation of the incident wave and the normal Oz to S). The angle of 
refraction θ" (between the direction of propagation of the refracted wave and the 
normal Oz to S) is related to θ by Snell’s law 

n1 sin θ = n2 sin θ".  [11.1] 

n1 = c/v1 and n2 = c/v2 are the indices of refraction of mediums (1) and (2), where c 
is the speed of propagation in a medium of reference (the vacuum in the case of 
electromagnetic waves). 

Equation [11.1] determines the angle of refraction θ", if (n1/n2) sin θ < 1. This 
condition can be always satisfied if n1 < n2. In the case n1 > n2, we must have sin θ < 
n1/n2. Thus, θ must be less than a critical angle (or limiting angle) iL, given by 

sin iL = n2/n1.  [11.2] 

At the angle of incidence equal to iL the angle of refraction is θ" = 90°. If the angle 
of incidence θ is larger than iL, the wave undergoes total reflection. 

The wave theory enables us to establish the laws of reflection and refraction 
using the boundary conditions (or continuity equations) at the interface S. We have 
only to assume that these conditions are expressed as linear relations between the 
incident wave u, the reflected wave u′, and the transmitted wave u″, and their partial 
derivatives with respect to time or space coordinates. In the case of simple harmonic 
waves u = um 

)i( k.r−ωte , the time derivative is simply iωu and the derivative with 
respect to x, for instance, is –ikxu. Thus, the boundary conditions are linear, of the 
general form au + bu′ + cu" = 0, that is, 

a um 
)(i k.r−ωte )i( k.r−ωte + b u′m 

)''(i .rk−ω te  + c u"m 
)""(i .rk−ω te  = 0.  [11.3] 

A relation of this form can be verified at any t and at any point r of the interface S 
only if the angular frequency and the scalar product (k.r) on S are the same for the 
three waves, u, u′ and u". We deduce that the angular frequency undergoes no 
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change in the reflection and transmission (ω = ω′ = ω") and the tangential 
component of k, k′, and k" (i.e. their components which are parallel to S) are the 
same. The normal component of the wave vectors are obtained using the dispersion 
relation ω = ω(k) for each medium. 

 

Figure 11.1. Laws of reflection and refraction 

We choose the axes of coordinates in such a way that Oxy is tangent to the 
interface S with Oz oriented from medium (1) toward medium (2) and the x axis in 
the plane of incidence (formed by k and the normal axis Oz) (Figure 11.1). Due to 
the symmetry with respect to the plane of incidence Oxz, the vectors k′ and k" are in 
this plane. This same result may also be obtained by analysis. Indeed, let θ be the 
angle of k with Oz, θ′ the angle of k′ with Oz′, and θ" the angle of k" with Oz (so 
they lie between 0 and 90°). Let us assume that the azimuthal angles of the reflection 
plane and the refraction plane are φ′ and φ", respectively. Thus, we have 

k′(x sin θ′ cos φ′ + y sin θ′ sin φ′) = k"(x sin θ" cos φ" + y sin θ" sin φ") = k x sin θ. 

These relations are satisfied for all values of the coordinates x and y if 

k′ sin θ′ cos φ′ = k" sin θ" cos φ" = k sin θ,    k′ sin θ′ sin φ′ = k" sin θ" sin φ" = 0. 

As k = k′ = ω/v1 and k" = ω/v2, we obtain the relations 

φ′ = φ" = 0,              θ = θ′,              (1/v1) sin θ = (1/v2) sin θ".  [11.4] 

The equations φ′ = 0 and φ" = 0 are the expressions that the vectors k, k′, and k" lie 
in the plane of incidence Oxz. The equality θ = θ′ is the law of reflection and the last 
relationship [11.4] is the expression of Snell’s law [11.1]. Consequently, the wave 
vectors may be written as: 

k = k (sin θ ex + cos θ ez),     k′ = k′(sin θ′ ex – cos θ′ ez), 
k" = k"(sin θ" ex + cos θ" ez).  [11.5] 
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Taking into account the equality of the phases (ωt – k.r) on S, the boundary 
conditions [11.3] reduce to linear relationships between the complex amplitudes  
a um + b u′m + c u"m = 0. We must have two relations of this type to determine the 
complex amplitudes u′m of the reflected wave and u"m of the refracted wave in terms 
of the amplitude um of the incident wave. This is equivalent to determining the 
amplitudes and the phase shifts of u′m and u"m. The continuity relationships being 
linear, we find that u′m and u"m are proportional to um. We define the reflection 
coefficient R and the transmission coefficient T as the ratios of the complex 
amplitudes of the reflected wave and the transmitted wave, respectively, to that of 
the incident wave 

R = u′m/um,            T = u"m/um.  [11.6] 

The law of conservation of energy requires that the normal components of the 
vectors energy flux density (or Poynting vector) S verify the continuity condition 

Sz + S′z = S″z               (at z = 0). [11.7] 

The tangential components of S, S′, and S" play no part in the transfer of energy 
across the interface, as they correspond to a propagation of energy in a direction that 
is parallel to the interface in each medium. S being quadratic in u, equation [11.7] 
can be verified at each point of the interface S only if the phase (ωt − k.r) is the 
same for the three waves at the interface S. Thus, we must have ω = ω′ = ω" and  
k.r = k′.r = k".r for z = 0. We conclude that the laws of reflection and refraction are 
closely related to the principle of conservation of energy. 

The concepts of simple harmonic wave and plane wave are useful mathematical 
models. A real wave is always a superposition of waves in a certain band of 
frequency Δω and a certain band of wave vector Δk. The reflected wave has the 
same band of frequency and a band of wave vector Δk' (such that Δk'// = Δk// and  
Δk'z  = − Δkz), while the refracted wave has the same band of frequency Δω and a 
band of wave vector Δk" (such that  Δk"// = Δk// and |Δk'z| ≠  |Δkz|). 

11.2. Reflection and refraction on the interface of two dielectrics 

Consider an electromagnetic plane wave that is incident from a dielectric (1) at 
an angle θ on the face S of a dielectric (2). We assume that the dielectrics are linear 
and isotropic; thus, the electromagnetic field is specified by two fields E and B (since 
D = εE and H = B/µ). The primary electromagnetic fields act on the electric charges; 
they oscillate and emit secondary waves of the same frequency. The superposition of 
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the secondary waves constitutes the reflected wave backward toward medium (1) 
and their superposition with the primary wave constitutes the refracted wave 
forward in medium (2). The amplitudes of the reflected wave and the refracted wave 
depend on the interaction of the electromagnetic field with matter, which is related 
to the electric susceptibility and the magnetic susceptibility of the medium. 
Globally, this process produces the boundary conditions on the interface S. As the 
interface of the dielectrics carries no charge and current densities, these conditions 
may be written as (see section 9.5) 

E//1 = E//2,       B//1/µ1 = B//2/µ2,        ε1E1⊥ = ε2 E2⊥,        B1⊥ = B2⊥. [11.8] 

An electromagnetic wave has two independent states of linear polarization 
determined by the direction of the electric field E. Any wave is a superposition of 
these two states. Thus, it is sufficient to study the reflection and refraction of plane 
waves in these two states of polarization. As the mediums are assumed to be 
isotropic, if we choose the first direction of polarization in the plane of incidence 
Oxz and the second perpendicular to this plane, the incident wave is symmetric with 
respect to the plane of incidence (for the direction of propagation and the direction 
of polarization). The reflected wave and the transmitted wave must have the same 
symmetry. Thus their wave vectors are in the plane of incidence (and given by 
[11.5]) and they must have the same linear polarization as the incident wave. We 
write the fields in the form E = Em

)i( k.r−ωte , B = Bm
)i( k.r−ωte , etc., and, for 

simplicity, we omit the exponentials, which have the same value on the interface. 

A) Case of linear polarization in the plane of incidence 

In this case, the fields E, E′, and E" of the incident, reflected, and refracted 
waves are in the plane of incidence Oxz (Figure 11.2a), while B, B′, and B" are 
parallel to Oy. Thus, it is convenient to determine the waves by the magnetic  
fields. The electric fields are then E = B×k/ωµ1ε1, E′ = B′×k′/ωμ1ε1, and  
E" = B"×k"/ωμ2ε2. The complex amplitudes of the fields may be written as 

Bm = Bm ey,             Em = v1Bm (cos θ ex – sin θ ez), 
B′m = –B′m ey,         E′m = v1B′m (cos θ′ ex + sin θ′ ez), 
B"m = B"m ey,          E"m = v2B"m (cos θ" ex – sin θ" ez),  [11.9] 

where a (−) sign was introduced into the expression of B′m in order for E′m and Em 
to have the same sign at the limit θ = 0. At the interface S (z = 0), the boundary 
conditions [11.8] may be written as 

ε1v1(Bm sin θ – B′m sin θ′) = ε2v2 B"m sin θ", 
(Bm – B′m)/µ1 = B"m/µ2,            v1(Bm cos θ + B′m cos θ′) = v2 B"m cos θ". 
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These equations determine the amplitudes B′m and B"m of the reflected wave and the 
transmitted wave and, consequently, the electric fields as functions of Bm. We obtain 
the reflection and transmission coefficients 
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where we have used Snell’s law and the impedances of the mediums Zi = ii/εμ . 
We find that Bm, B′m, and B"m are in phase or in opposite phase; thus, we may take 
them to be real. If the mediums are non-magnetic (µi = µo, εi = εoni

2 and Zi = Zo/ni), 
we get Fresnel’s formulas for p-waves 
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                    (a)                                                                         (b) 

Figure 11.2. Reflection and refraction of an electromagnetic wave that is linearly polarized:  
a) in the plane of incidence, and b) perpendicularly to the plane of incidence 

B) Case of linear polarization perpendicular to the plane of incidence 

In this case, E is parallel to Oy and B = (k × E)/vk is in the plane of incidence 
(Figure 11.2b). Thus, it is convenient to determine the waves directly by the electric 
fields and write the amplitudes 

Em = Em ey,            Bm = (Em/v1) (–cos θ ex + sin θ ez),   
E′m = E′m ey,          B′m = (E′m/v1) (cos θ′ ex + sin θ′ ez), 
E"m = E"m ey,         B"m = (B"m/v1) (–cos θ" ex + sin θ" ez).  [11.12] 
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The boundary conditions of [11.8] give  

Em + E′m = E",       (n1/µ1) (Em cos θ – E′m cos θ′) = (n2/µ2) E"m cos θ.  [11.13] 

These equations determine the reflection and transmission coefficients  

R⊥=
m

m
E
E'

 = 
m

m
B
B'

 = θμ+θμ
θμ−θμ

tgtg
tgtg

12

12

"
"

 = "
"

θ+θ
θ−θ
 cos  cos

cos  cos
12

12

ZZ
ZZ

, 

T⊥=
m

m
E
E ′′

=
1

2
v
v

m

m
B
B"

= θμ+θμ
θμ
tantan

tan2
12

2

"
"

= "θ+θ
θ

 cos  cos
 cos2
12

2

ZZ
Z

.   [11.14] 

Particularly, if the mediums are non-magnetic, we get Fresnel’s formulas for s-
waves  

R⊥= "
"

θ+θ
θ−θ

coscos
coscos

21

21

nn
nn

= )sin(
)sin(

θ+θ
θ−θ

"
"

,  T⊥= "θ+θ
θ
coscos

cos2
21

1

nn
n

= )sin(
sincos2

θ+θ
θθ

"
"

.  [11.15] 

Note that the reflection and transmission coefficients in the case of incidence from 
medium (1) on medium (2) and from medium (2) on medium (1), for any state of 
polarization, verify the relations 

R12 = – R21        and         T12 T21 = 1 – R12 R21.  [11.16] 

If the angle of incidence is small (θ ≈ θ′ ≈ θ" ≈ 0), R// and R⊥ approach the same 
limit Ro, while T// and T⊥ approach the same limit To given by 
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The variations of the reflection and transmission coefficients as functions of the 
angle of incidence θ are illustrated in Figure 11.3. R⊥ decreases from Ro to −1 and 
R// increases from Ro to +1. If n1 < n2, T⊥ and T// are positive and decrease from To 
for θ = 0 to 0 for θ = π/2. If n1 > n2, we have similar variations, but θ cannot be 
larger than the critical angle iL given by [11.2]. R// vanishes for an angle of incidence 
θ = θB (called the Brewster angle) such that θ + θB = π/2. For θ < θB and for any 
state of polarization, the ratio E′m/Em is negative if n1 < n2 and positive if n1 > n2. 
The reflection on a more refringent medium (n2 > n1) occurs with a change of sign 
(i.e. a phase shift of π). The reflection on a less refringent medium (n2 < n1) occurs 
without a change of sign (i.e. without phase shift). As the transmission coefficient is 
always positive, the transmitted wave has no phase shift. 
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 (a)                                                                   (b) 

Figure 11.3. Variations of R⊥, R//, T⊥ and T// versus θ: a) if n1 < n2 (the graph corresponds 
to n1 = 1 and n2 = 1.5), and b) if n2 < n1 (the graph corresponds to n1 = 1.5 and n2 = 1) 

C) Conservation of energy 

The Poynting vector of an electromagnetic wave is 

S = μ
1 E × B = vμ

1 E2 e = Z
1 E2 e. [11.18] 

The conservation of energy on the interface S of two mediums requires that the 
power that any element of area of the interface dS receives from medium (1) is 
equal to the transmitted power toward medium (2). If the axis Oz is normal to S and 
oriented from medium (1) toward medium (2), this condition can be expressed by 
the equation Sz + S′z = S″z, that is, in the case of the interface of two dielectrics 
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Using the reflection and transmission coefficients, this relation may be written as 
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Any wave may be considered as the superposition of two waves, which are 
polarized in the plane of incidence and perpendicularly to this plane, respectively. 
The Poynting vector is the sum of the corresponding Poynting vectors (see section 
10.4). The equation of conservation of energy [11.20] holds for each of them, as 
may easily be verified using the expressions [11.10] and [11.14]. Thus, [11.20] 
holds for any state of polarization and for non-polarized waves. 
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We define the energy reflection factor as the ratio of the reflected power to the 
incident power and the energy transmission factor as the ratio of the transmitted 
power to the incident power per unit area of the interface S 
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The conservation of energy on the interface S requires that  

fR + fT = 1.  [11.22] 

The variations of fR and fT as functions of the angle of incidence are illustrated in 
Figure 11.4a. fR and fT vary very little for small angles of incidence and, in the case 
of non-magnetic mediums, their values are given by 
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fRo is usually small. For instance, it is 4% at the air-glass interface and 2% at the air-
water interface. 

 

 
   (a)                                             (b)                                             (c) 

Figure 11.4. a) Variations of the energy reflection factors fR⊥ and fR// and the transmission 
factors fT⊥ and fT// versus θ, b) Brewster polarization, and c) its interpretation 

D) Brewster’s law 

For any values of the indices n1 and n2, the coefficient R// is equal to zero if  
tan(θ + θ") = ∞, that is, θ + θ" = π/2. Thus, the intensity of the reflected wave 
vanishes if it is polarized in the plane of incidence. Using Snell’s law, we deduce 
that the Brewster angle verifies the relationship 

tan θB = n2/n1.  [11.24] 
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This result may be used to obtain a linearly polarized wave from waves of any 
polarization or from non-polarized waves. Writing such waves as a superposition of 
a wave polarized in the plane of incidence and a wave polarized perpendicularly to 
this plane, at Brewster incidence only the component that is polarized 
perpendicularly to the plane of incidence produces a reflected wave with the same 
polarization (Figure 11.4b). This phenomenon was first observed by Malus in 1807 
and was analyzed by Brewster in 1815. It may be explained by the polarization of 
the molecules of the second medium in the direction of E and the vanishing of the 
dipole radiation in the direction of the dipole. As the reflected wave is the 
superposition of these dipole radiations, it vanishes in this direction (Figure 11.4c). 

 In the case of a wave that is incident from the air side on the air-glass interface  
(n1 = 1 and n2 = 1.5), we find 2n1/(n1 + n2) = 0.8, (n1 − n2)/(n1 + n2) = −0.2 and  
θB = 56.31°. If the wave is incident from the glass side, we find 2n1/(n1+n2) = 1.2 
and (n1 − n2)/(n1 + n2) = 0.2 and θB = 18.43°. 

11.3. Total reflection 

To analyze what happens if the angle of incidence exceeds the critical angle iL, 
we consider again the boundary conditions at the interface of the mediums, which 
determine the laws of reflection and refraction. For instance, we consider the case of 
an electromagnetic wave that is polarized in the plane of incidence (Figure 11.2a). Let 
us assume that the incident wave has the form  

B = Bm
)(i k.r−ωte ey ,     and   E = v1Bm (cos θ ex – sin θ ez) 

)(i k.r−ωte ,  [11.25] 

where we have used Maxwell’s equation ∇ × B = µoεo ∂tE to relate E to B. Like the 
incident wave, the reflected wave in the medium (1) is progressive of the form 

B′ = – B′m 
)'(i .rk−ωte ey,      E′ = v1B′m (cos θ′ ex + sin θ′ ez) )'(i .rk−ωte . [11.26] 

Using the symmetries or a proof similar to that of section 11.1, we may show that k 
and k′ lie in the plane of incidence Oxz and they are of the form [11.5] with a 
magnitude ω/v1. In the second medium, we may always write the fields in the form 

B" = B"m 
)(i szqypxte −−−ω ey,      E" = (v2

2/ω) B"m (s ex – pez) 
)(i szqypxte −−−ω . [11.27] 

Writing the continuity conditions of the normal components of B and D = εE and 
the tangential components of E and H = B/µ at the interface, the equality of the 
phases for z = 0 gives the relations 

θ′ = θ,         k′ = k,        q = 0,         p = k sin θ = (ω/v1) sin θ.  [11.28] 
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On the other hand, the fields [11.27] must verify the equations of propagation in the 
second medium 

ΔE – (1/v2
2) ∂2

ttE = 0      and     ΔB – (1/v2
2) ∂2

ttB = 0.   [11.29] 

Thus, we must have 

p2 + q2 + s2 = ω2/v2
2.  [11.30] 

Using equations [11.28], we find 
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As long as θ < iL, we have sin θ < sin iL and s is real. In this case, the three 
parameters (p, q, s) are the components of a wave vector in the second medium and 
the wave is progressive. On the other hand, if θ > iL, s is imaginary, in the form 

s = ± iη             with         η = (2π/λ2) 1 /sinsin L
22 −θ i ,  [11.32] 

where λ2 ≡ 2πv2/ω is the wavelength in the second medium. In the general case, the 
wave in the second medium is a superposition of a solution with s = +iη and a 
solution with s = –iη, in the form 

B" = [B"m 
ze η− + C "m zeη ] )(i pxte −ω ey , 

E" = (v2
2/ω) [B"m 

ze η− (iηex + p ez) + C "m 
zeη (–iηex + p ez)] 

)(i pxte −ω .  [11.33] 

The oscillatory factor of the fields is )(i pxte −ω . This indicates that the wave 
propagates in the direction Ox parallel to the interface with a wave vector p  
(Figure 11.5a). Its phase velocity is 

vp = ω/p = v1/sin θ.  [11.34] 

The amplitude of this wave depends on the distance z to the interface: it is the sum 
of a term B"m

ze η− , which decreases exponentially with z and a term C"m
zeη , which 

increases exponentially with z. If the second medium is finite in the direction Oz, the 
two terms are possible (and even necessary in order to respect the boundary 
conditions on the other face of the second medium). If the second medium is infinite 
in the direction Oz, the second term is not physically possible. Thus, the wave 
decreases exponentially according to the expressions 
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B" = B"m
ze η− )(i pxte −ω ey,  E" = (v2

2/ω) B"m 
ze η− (s ex – p ez) )(i pxte −ω . [11.35] 

 

 
 

                          (a)                                                                    (b)                               

Figure 11.5. Reflection on a medium in which the wave is attenuated: a) total  
internal reflection, b) reflection on a resistive or a reactive medium 

The attenuation coefficient η of the wave in the direction of Oz is proportional to 
the inverse of the wavelength λ2 in the second medium. For instance, in the case of 
total reflection on the interface water-air, δ = 3.6 λ2

−1 for θ = 60°. The wave only 
penetrates a distance of the order of λ2 in the second medium. 

In the case of an infinite second medium, the boundary conditions at the 
interface may be written as 

Bm/µ1 – B′m/µ1 = B"m/µ2,          (Bm + B′m) v1 cos θ = –iB"mδ/μ2ε2ω. [11.36] 

These equations determine the amplitudes of the reflected and the transmitted waves 
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η+θωεμ
icos
icos

211

211
v
v

,           m

m

B
B
′′

= η−θωεμ
θωεμ
icos

cos2
211
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. [11.37] 

Setting φ = arctan(η/µ1v1ε2 cos θ),  we may write 

B′m= –Bm       and            B"m = 2Bm (µ2/µ1) cos φ .  [11.38] 

The physical fields are the real parts of the expressions [11.25], [11.26] and [11.27]; 
that is, taking Bm as real  

B = Bm cos(ωt – k.r) ey,                E = v1Bm (cos θ ex – sin θ ez) cos(ωt – k.r), 

B′ = –Bm cos(ωt – k′.r + 2φ) ey,  E′ = v1Bm(cos θ ex + sin θ ez) cos(ωt – k′.r + 2φ), 

B" = 2(µ2/µ1) Bm
ze η− cos φ cos(ωt – px + φ) ey, 

E" = 2(µ2v2
2/µ1ω) Bm 

ze η− cos φ [δ sin(ωt – px + φ) ex – p cos(ωt – px + φ)ez].[11.39] 
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We find that the reflected E wave has the same amplitude as the incident wave 
but with a phase shift 2φ. The average values of the Poynting vectors over a period 
are 

<S> = Bm
2
 (sin θ ex + cos θ ez),  <S′> = Bm

2(sin θ ex – cos θ ez), 

<S"> = 2  Bm
2 ze η−2  cos2φ sin θ ex.  [11.40] 

In the second medium, we have a propagation of energy in the direction Ox parallel 
to the surface but only at a depth not exceeding a few wavelengths (evanescent 
wave). The energy propagates as if it slightly penetrates the second medium where it 
propagates near the surface and returns to the first medium without any loss. 

11.4. Reflection on a conductor 

Consider a wave that is incident from a dielectric medium (1) on a conducting 
medium (2) (Figure 11.5b). The wave equations in these mediums are respectively  

ΔE1 – (1/v1
2) ∂2

ttE1

 
= 0       and      ΔE2 – (1/v2

2)∂2
ttE2 − µ2σ ∂tE2

 
= 0.  [11.41] 

As we have done in the preceding section, we write the fields of the incident wave 
and those of the reflected wave as progressive waves 

E = Em
)i( k.r−ωte ,    B = Bm

)i( k.r−ωte ,     E′ = E′m )i( .rk'−ωte ,    and B′ = B′m )i( .rk'−ωte .  

We write the transmitted fields in the general form E″ = E″m
)i( szqypxte −−−ω and 

B″ = B″m
)i( szqypxte −−−ω . The continuity conditions at the interface z = 0 give the 

relations [11.28]. On the other hand, E″ and B″ verify the wave equations in the 
conductor if 

p2 + q2 + s2 = (ω/v2)2 (1 – iQ), [11.42] 

where we introduced the quality factor Q = ωc/ω, and ωc = σ/ε2 is the characteristic 
angular frequency of the conductor (see section 10.7); hence, 

s2 = 2
2

2

v
ω (χ – iQ)          with     χ = 1 – 2

1

2
2

v
v  sin2θ.  [11.43] 

This equation shows that s is always complex of the form 

s = h – iη, [11.44] 
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h = 
22v

ω  [ 22 Q+χ + χ]½       and  η = 
22v

ω

 
[ 22 Q+χ – χ]½. [11.45] 

The wave in the conductor has the form E" = E"m 
ze η− )i( szqypxte −−−ω ey. It 

propagates with an attenuation coefficient η in the direction Oz and a wave vector  
p ex + h ez, which makes with Oz an angle θ" given by  

tan θ" = p/h.  [11.46] 

In the case of an electromagnetic wave that is polarized perpendicularly to the 
plane of incidence, for instance, the fields have the forms  

E = Em ey 
)i( k.r−ωte ,                    B = (Em/v1)(–cos θ ex + sin θ ez) )i( k.r−ωte , 

E′ = E′m ey )i( .rk'−ωte ,                  B′ = (E′m/v1) (cos θ′ ex + sin θ′ ez) )i( .rk'−ωte , 
E" = E"mey

)i( szqypxttee −−−ωη−
,   B" = (E"m/ω)(–sex + pez) )i( szqypxttee −−−ωη− . [11.47] 

Assuming that the surface of the conductor carries no surface charge density and no 
surface current density (although this is not always justified), the continuity 
conditions of the normal components of B and εE and the tangential components of 
B/µ and E may be written as 

Em + E′m = E"m,         (Em – E′m) cos θ = s E".  [11.48] 

We deduce from these equations the reflection and transmission coefficients  

'm
m

E
E  = )i(cos

)i(cos
112

112
η−μ+θωμ
η−μ−θωμ

hv
hv

,        
"m

m

E
E

= )i(cos
cos2

112

2
η−μ+θωμ

θωμ
hv .  [11.49] 

Thus, the reflected wave has a phase lead φ+ + φ−, while the transmitted wave gets a 
phase lead φ+. The phases φ± are given by the expressions 

tan φ± = hv
v

112

11

cos μ±θωμ
μη

          (0 < φ± < π).                        [11.50] 

In the case of typical metals, σ is of the order of 5 × 107 Ω–1 m–1 ; thus, the 
characteristic angular frequency ωc is of the order of 1018 rad/s. If the frequency is not 
very high, only the conduction electrons contribute to the secondary waves and the 
term ωc/ω is much larger than 1; hence, h ≈ η ≈ (ω/v2) 2/Q . The term µ1v1(h – iη) 
has a much larger magnitude than µ2 ω cos θ and we may write 

ωμ
μ

2

11v
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R⊥ = ≈ –1 + γ,      T⊥ = 
 
≈ γ,       where  γ =  2

Qv
v

11

22

μ
μ /4iπe cos θ.  [11.51] 

The wave is almost totally reflected with a phase shift close to π and there is a small 
energy transfer across the surface of the conductor. The transferred energy is totally 
dissipated as Joule heat.  

At very high frequency (ultraviolet and X-rays), the positive ions in the metal 
contribute with the conduction electrons to the emission of secondary waves. This 
increases the dissipated energy in the metal and reduces the reflection coefficient to 
values as low as 0.2 in the case of the reflection of light on silver. In this case, a thin 
metallic film transmits a certain fraction of the wave. 

The mean values of the Poynting vectors of the incident wave, the reflected 
wave, and the transmitted wave, evaluated over a period, are respectively 

<S> = Re E × Re B/µ = (1/2µ1v1) |Em|2 (cos θ ez + sin θ ex), 

<S′> = Re E′ × Re B′/µ = (1/2µ1v1) |R|2|Em|2 (–cos θ ez + sin θ ex), 

<S″> = Re E″ × Re B″/µ = (1/2µ2ω) ze η−2  |E"m|2 (Re s ez + p ex)].  [11.52] 

The transferred intensity to the conductor is  

I″ = <Sz> − <S′z> =
112

cos
vμ
θ

(1− |R|2) |Em|2 = 2
112

2
2

)i(cos

cos2

η−μ+θωμ

θωμ

hv

h
 |Em|2.   [11.53] 

In the case of a good conductor and a relatively low frequency (ω << ωc), we find   
η ≈ h ≈ = (ω/v2) 2/Q  >> µ2 ω cos θ, thus 

I″ = ε1v2 Q
2 |Em|2 cos2θ = 2 Q

2 I cos2θ.  [11.54] 

On the other hand, in the case of a relatively high frequency (ω >> ωc) and 
sin2θ << v1

2/v1
2, we find ωc

2/ω2 << χ2, δ ≈ ωc/2v2 χ and h ≈ ω χ /v2, thus 

I″ = 2
22vμ

χ Em|2 = 4
22

11
v

v
μ

χμ
I.  [11.55] 

In the case of a superconductor, ωc → ∞, Q → ∞ and δ →∞. Thus, the wave 
cannot penetrate in the conductor. The reflection coefficient is then E′m/Em = −1. 
The reflected electric field has the same amplitude as the incident electric field but 
they are in phase opposition. 
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11.5. Reflection on a plasma  

Let us consider an electromagnetic wave incident from a dielectric medium (1) 
on a plasma (medium 2), such as the ionosphere. The wave equations in these 
mediums are, respectively,  

ΔE1 – (1/v1
2) ∂2

ttE1

 
= 0        and      ΔE2 – (1/v2

2)∂2
ttE2 − (ωp

2/v2
2)E2

 
= 0.  [11.56] 

We assume, for instance, that the wave is polarized in the plane of incidence. The 
incident fields and the reflected fields have the forms [11.25] and [11.26], 
respectively, while the fields transmitted to the plasma may be written in the forms 
E″ = E″m

)i( szqypxte −−−ω and B″ = B″m
)i( szqypxte −−−ω . The equality of the phase on 

the interface z = 0 gives the equations [11.28]. On the other hand, E″ and B″ verify 
the wave equations in the plasma if 

p2 + q2 + s2 = (ω2 – ωp
2)/v2

2,        thus  s = (ω/v2) .  [11.57] 

If the quantity inside the square root in [11.57] is negative, s is imaginary:  

s = ± iη           with     η = 
2

2
λ

π 1)(sin)( 222

1
2 −ω

ω
+θ p

v
v .  [11.58] 

This is effectively the case if ω < ωp for any angle θ or if ω > ωp and θ larger than a 
critical angle θL given by 

sin θL = (v1/v2) .  [11.59] 

This case is similar to that of an incident wave on a dielectric at an angle of 
incidence larger than the critical angle iL. If the plasma is infinite in the normal 
direction Oz, the energy is totally reflected (with an amplitude equal to that of the 
incident wave and a phase lead equal to 2φ where φ = arctan(η/µ1v1ε2 cos θ), and η 
is given by [11.58]. The wave penetrates in the plasma to a depth of the order of λ2. 
In the limit ωp = 0, we find obviously the results of the reflection and refraction on a 
dielectric. 

If the quantity inside the square root of [11.57] is positive, s is real. In this case, 
the wave in the plasma is progressive with a wave vector k″ = pex + sez. This is 
effectively the case if ω > ωp and θ is less than the critical angle θL. In this case, 
there is a transfer of energy to the plasma as a progressive wave. This wave forms 
with the normal an angle θ" such that 

sin θ" = p/ = (v2/v1) sin θ / = sin θ / sin θL. [11.60] 

θ−ωω− 22
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The reflection and transmission coefficients are determined from the boundary 
conditions at the interface. To write them, we use the expressions [11.25] and 
[11.26] in the incidence medium and [11.27] in the plasma. 

11.6. Interference of two electromagnetic waves 

If two waves superpose in a region of space, the energy, momentum, and other 
physical quantities, which are received at a given point, are not necessarily the sums 
of the corresponding quantities for each wave if it is intercepted separately. We say 
that the waves interfere. 

Consider two electromagnetic waves, specified by their electric fields, with equal 
frequency and, to simplify, equal amplitudes and linearly polarized in the same 
direction. Then, we may treat the fields as two scalar quantities  

E1 = a cos[ω(t − r1/v) − φ1],         E2 = a cos[ω(t −  r2/v) − φ2].   [11.61] 

r1 and r2 are the distances of the observation point M to the sources and v is the 
speed of propagation. φ1 and φ2 are the phases of the sources chosen in such a way 
that the amplitudes are positive. We assume that the sources are at a sufficiently 
long distance from the region of observation, so that the amplitudes of the waves 
vary little in this region. The resultant wave at M is  

E(M) = E1 + E2 = 2a cos(½Δφ) cos(ωt − φ1 −½Δφ),  [11.62] 

where Δφ is the phase lag of the wave (2) over the wave (1) at M. It is given by 

Δφ = Δoφ + Δmφ     with    Δoφ ≡ φ2 − φ1     and   Δmφ ≡ (ω/v) Δr = 2π (Δr/λ).  [11.63] 

Δoφ is the initial
 
phase lag (at t = 0 and r1 = r2 = 0) and Δsφ is the phase lag due to 

the path difference Δr ≡ r2 – r1 at M. The total wave at M is a sinusoidal function of 
time, whose angular frequency is ω and amplitude is 

A(M) = 2a cos(½Δφ).  [11.64] 

If Δφ is an integer multiple of 2π, the amplitude at M is maximum in absolute value 
and equal to 2a; the waves at M are in phase and the interference is constructive. On 
the contrary, if Δφ is a half-integer multiple of 2π, the amplitude A(M) vanishes; the 
waves at M are in opposite phase and the interference is destructive: 

Δφ = 2pπ ,              p =  integer                  (maximums),  [11.65] 

Δφ = 2pπ ,              p =  half-integer           (minimums).  [11.66] 
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Thus, the state of interference at M is determined by the phase shift between the 
waves at M; We may define the order of interference p by 

 p ≡ 
π
φΔ

2
 = 

λ
Δr  +

π
φΔ

2
o .  [11.67] 

The interference is constructive if the order p is an integer number (positive, 
negative, or zero) and destructive if the order p is a half-integer number. The locus of 
the maxima of given order p is an interference fringe. In particular, the order 0 
corresponds to the waves reaching M with a phase shift equal to 0. Each increase of 
the path difference by Δr = λ increases the order of interference by 1. 

It is often convenient to use the complex representation E = a ) /i(ω φ−ω− vrte  of 
the wave, then E = Re E. The intensity I of the wave [11.62] may be written as  

I = E E*/2µv = (2a2/µv) cos2(½Δφ).                           [11.68] 

As a function of Δφ, I(M) oscillates between minimums equal to zero and 
maximums equal to 2a2/µv (Figure 11.6a). As the average value of cos

2
(½Δφ)

 
is ½, 

the average value of I(M) over space is <I(M)> =  a2/µv = I1 + I2. Thus, the 
interference produces a redistribution of the intensity, the average intensity being the 
sum of the intensities emitted by the sources. 

 In general, the amplitudes of the waves may be different and they may depend 
on the observation point M. Using the complex representation, the waves at M are 

E1 = a1(M) )i( 11 vrte /ω−φ−ω  ≡ a1(M) te ωi ,        E2 = a2(M) )i( 22 vrte /ω−φ−ω ≡ a2(M) te ωi . 

The resultant wave may be written as E(M) = E1 + E2 = [a1(M) + a2(M)] te ωi . Using 
the phase shift [11.63], the intensity at M can then be written as 

I(M) = (1/2µv) |a1(M) + a2(M)|2 = (1/2µv)[a1(M)2 + a2(M)2 + 2a1(M) a2(M) cos(Δφ)] 

          = I1(M) + I2(M) + 2 )()( 21 MM II cos(Δφ).  [11.69] 

I1(M) and 
 
I2(M) are the intensities of the waves if they are observed separately. The 

third term is the interference term. It may be positive or negative. Thus, the resultant 
intensity varies between a minimum Imin

 and a maximum Imax given by 

Imin = [ )(1 MI − )(2 MI ]2       and    Imax = [ )(1 MI + )(2 MI ]2 . [11.70] 
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Figure 11.6b is the phasor diagram for the interference of the waves [11.61]. 
The waves are represented by the projection over Ox of two vectors making with Ox 
the angles (ωt − ωr1/v − φ1) and (ωt − ωr2/v − φ2). The parallelogram rotates about O 
at the angular velocity ω without deformation. If the waves have different 
amplitudes but the same frequency and a fixed phase shift, the resultant amplitude 
varies between a minimum |a1 – a2| if the order pM = Δφ/2π is equal to a half-integer 
(then the vectors point in opposite directions), and a maximum (a1 + a2) if the order 
pM is equal to an integer (then, the vectors point in the same direction). We define the 
contrast or visibility factor by 

C = 
minmax

minmax
II
II

+
−

 = 
)()(
)()(2

21

 21

MM
MM

II

II

+
.  [11.71] 

C always lies between 0 and 1. The maximum value C = 1 corresponds to Imin = 0, 
that is, the waves having equal amplitudes. The minimum value C = 0 corresponds 
to Imax = Imin, that is, the total absence of interference fringes near the point M. 

 
 
 
 
 
 
 
 
 
 
                                     (a)                                                                               (b) 

Figure 11.6. a) The intensity versus Δr, and b) phasor diagram for interference 

The most useful interference phenomena are those of light waves. The historic 
experiment by Young confirmed the wave nature of light and even measured its 
wavelength (see problem 11.11). Another interference effect occurs between the 
reflected waves at the faces of thin films (see problem 11.12). 

11.7. Superposition of several waves, conditions for observable interference 

Consider several waves Ej = aj cos(ωjt − φj) that superpose at points M. Their 
phases φj may depend on M. We assume that the waves are polarized in the same 
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direction, so they can be treated as scalar waves. The resultant wave is then their 
algebraic sum E =  Σi aj cos(ωjt − φj). We deduce that  

E 2 = Σk,j  ak aj cos(ωjt − φj) cos(ωkt − φk) 
      = Σj aj

2 cos2(ωjt − φj) + ½ Σk≠j akaj cos[(ωk + ωj)t − φk − φj] 
          + ½ Σk≠j akaj cos[(ωk − ωj)t − φk + φj], 

where we separated the terms k = j from the terms k ≠ j. To evaluate the resultant 
intensity, we take the average over the time of observation. The first term gives the 
sum of the intensities of the waves taken separately Ij = aj

2 /2µv. The second term 
has an average equal to zero. Thus, we obtain 

 I = Σj Ij +  Σk≠j jkII  < cos[(ωk − ωj)t + (φj − φk)] >,  [11.72] 

where < f(t) > designates the average of f(t) over the time of observation. The second 
term is the interference term. As an application of [11.72] we consider the following 
cases: 

a) The waves have different angular frequencies: in this case, the time-average of 
the interference term is zero and the total intensity is equal to the sum of the 
intensities of the individual waves 

I = Σj Ij           (waves of different frequencies). [11.73] 

b) The waves have equal frequencies but different phases: in this case, we obtain 
a generalization of equation [11.69] 

I = ΣjIj + Σk≠j jkII cos(φk−φj)         (waves of equal frequencies);  [11.74] 

c) The number of waves N is large with different phases, or N is small but the 
phases φj change at random during the observation time (non-coherent waves). In 
this case, the average of the function cos[(ωk – ωj)t + (φj – φk)] for all the waves is 
equal to zero and the total intensity is equal to the sum of the intensities Ii 

I = Σj Ij                  (large number of waves or non-coherent waves). [11.75] 

Only in case (b) does the intensity I depend on the observation point via the 
phases φk. In the other cases, the intensity is uniform. Thus, the interference is 
observable under the following conditions:  

− the waves must be synchronous (i.e. they have the same frequency); 
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− the waves must have constant phases (i.e. independent of time), we say that 
they are coherent temporally; 

− the waves must have the same polarization, otherwise the minimums are not 
zero and the contrast is reduced; 

− in the case of light, the spatial coherence requires that the sources are not very 
large in order for its different points to be approximately coherent. 

The only way to have coherent light waves from traditional sources is to use an 
aperture splitting setup or an amplitude splitting setup. In setups of the first type 
(such as Young’s double slit experiment), two or several secondary waves originate 
from different parts of the same primary wave front. In setups of the second type, 
the secondary waves originate from the same part of the primary wave front (the 
half-silvered mirror is an example of such setups). In all cases, we have twin wave 
packets originating from the same atom, which have a short duration τc, called the 
coherence time. 

11.8. Huygens-Fresnel’s principle and diffraction by an aperture  

Diffraction refers to the bending of waves near obstacles, i.e. their deviation 
from rectilinear propagation in homogeneous mediums, contrarily to the 
displacement of free particles. The mathematical problem consists of determining 
the solution of the wave equation, which verifies some given boundary conditions 
according to the nature of the obstacle. This is in fact a considerably difficult 
problem; hence, approximation methods must be used.  

Huygens’ principle qualitatively explains the diffraction by assuming that the 
points of the aperture behave like sources, emitting spherical wavelets whose 
envelope at a later time is the wave front of the diffracted wave (Figure 11.7a). 
However, this simple geometrical formulation does not allow the determination of 
the angular distribution of the diffracted intensity and, in particular, does not explain 
the absence of a diffracted wave in the backward direction, i.e. the opposite direction 
to the incident wave. In order to quantitatively analyze diffraction, Fresnel assumed 
that the diffracted wave results from the interference of the spherical wavelets dud 
emitted by the elements of area dS of the aperture. According to the Fresnel-
Huygens principle, these wavelets may be written as 

dEd(M) = dS T(P)ηP(θ', θ)E(P)
PM

1 PMke  i− ,     where k = 2π/λ. [11.76] 
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In this expression, we have omitted the factor te ωi that is common to all the 
wavelets. E(P) is the incident wave at P and (1/PM) PMke  i− characterizes the 
spherical wavelet that is emitted by the element of area dS. The function T(P) is the 
coefficient of transmission equal to 1 if the aperture is completely transparent at P 
and equal to 0 if it is completely opaque.  θ and θ′ are, respectively, the angles that 
the direction of the diffracted wave and the incident wave make with the normal to 
the aperture oriented in the direction of propagation. Intuitively, Fresnel chose the 
inclination factor ηP(θ′, θ) equal to (1/2λ)(cos θ + cos θ′) to favor the direction of 
geometrical optics. The factor 1/2λ is necessary in order for ηP to have the right 
dimensions of the inverse of a length, which can only be λ. Later on, Kirchhoff 
explained the origin of this factor but with a phase of π/2 (see problem 11.16); thus, 
it may be written as 

ηP(θ', θ) = λ2
i  (cos θ + cos θ'). [11.77] 

The diffracted wave is obtained by integrating [11.76] over the aperture  

Ed(M) = ∫∫S dS ηP(θ', θ) T(P) E(P). [11.78] 

 
 
 
 

 

 

 
 
                                 (a)                                                                   (b) 

Figure 11.7. a) Huygens’ principle, and b) Fraunhofer diffraction by an aperture 

In general, the mathematical analysis of diffraction using [11.78] is very 
complicated. Indeed, it contains four scales of length: the wavelength λ, the 
dimensions of the aperture d, and the distances r ≡ OM and r′ ≡ OS of the center of 
the aperture to the observation point and to the source. It is simplified if the source S 
and the point of observation are far from the aperture and the angles θ and θ′ are 
small. This is the so-called Fraunhofer diffraction. In this case, the incident wave 
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and the total diffracted wave are plane waves (Figure 11.7b). In the expression
[11.78], the distance PM and the inclination factor ηP are approximately independent

of P and the incident wave is a plane wave u(P) = A , where k′ is the incident
wave vector. Setting PM = r −OP (where r ≡ OM and OP << r) and k for the wave
vector in the direction of PM (thus, k PM = k. PM ), we may write

1
PM

PMke i− ≈ 1
PM

PMe .ik− ≈ r
1 rk .i−e OPe .ik .

Similarly, if the source S is at large distance r', it may be assimilated to a point
source emitting a spherical wave E(P). Setting r′ ≡ OS , we may write

E(P) = 1
SP

SPke 'i− ≈ 1
SP

SPe .ik− ≈ 1
'r

'' rk .ie OPe .i 'k− .

Thus, the incident wave and diffracted wave are approximately plane waves. Their
wave vectors k′ and k have equal magnitudes k = k′ = 2π/λ. On the other hand, if the
aperture is plane, the inclination factor ηP(θ', θ) does not depend on P and, for small
angles θ' and θ, ηP(θ', θ) may be considered as a constant. If x and y are the
coordinates of the point P of the aperture, we may write the total diffracted wave as

Ed(θ) = χIS(K), where IS(K) = ∫∫S dS T(x, y) )i( yx yKxKe + and K = k − k′. [11.79]

In this expression, χ is a constant, which is independent of the observation angle θ if
it is small. The total diffracted wave is obtained by integration over the aperture.
Using an appropriate transmission factor T(P), it is possible to extend the integration
to the entire aperture screen. This allows us to consider the aperture function IS(K)
as the Fourier transform of the transmittance. In the following, we apply [11.79] to
the case of a narrow slit, a rectangular aperture, and a circular aperture.

a) Consider the case of a narrow slit of width d in the direction Ox with length L
in the direction Oy (Figure 11.8a). If L is large and the wave vector k′ of the incident
wave is parallel to the plane Oxz, the system has translational symmetry in the
direction Oy. Thus, we consider the observation points M in the O′Xz plane in the
direction making an angle θ with Oz (then, kx = k sin θ and ky = 0). If the incident
wave is normal to the aperture, k′x = k′y = 0, we have Kx = k sin θ and Ky = 0 and the
expression [11.79] may be written as

Ed(M) = χ ∫∫ −−
2/
2/

2/
2/

L
L

d
d dydx xixKe = χLd

2/
)2/sin(

Φ
Φ

with Φ = kxd = 2π
λ
d
sin θ. [11.80]

OPe .i 'k−
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As d sin θ is the path difference between the wavelets that are emitted from the 
extreme points of the slit in the width direction Ox, Φ is the phase shift between these 
wavelets. The diffracted intensity may be written as 

I(θ) = Io Fd(Φ),           where    Fd(Φ) = [
2/

)2/sin(
Φ

Φ ]2.  [11.81] 

The diffracted intensity I(θ) is illustrated in Figure 11.8b. For Φ = 0, Fd(Φ) = 1 
and the intensity has a sharp principal maximum equal to Io. The intensity I(θ) 
vanishes for Φ = 2pπ, i.e. 

sin θ = p
d
λ

,             p = ±1, ±2, ±3 ...  (zeros of intensity).  [11.82] 

Approximately, halfway between two zeros of I(θ), i.e. for sin θ ≈ (p + ½)(λ/d), the 
intensity has a secondary maximum equal to Io

2/[(p + ½)π]2, which decreases if p 
increases. Most of the diffracted intensity is concentrated in the principal maximum 
and, in the case of light, precise photometric measurements using photomultipliers 
confirm this distribution of the intensity. We may define the half-width as the 
distance between the center of the principal maximum (Φ = 0) and the first zero of I 
(Φ = 2π, i.e. sin θ = λ/d). Note that the width of the principal maximum is twice the 
width of the secondary maximums. 

 
(a)                                                                             (b) 

Figure 11.8. a) Diffraction by a slit AB of width d in the case of a normal incident 
wave, and b) variation of the intensity as a function of Φ/2 or sin θ 

If the angle of incidence on the aperture is θ′ (algebraic and measured from the 
normal n to the aperture in the direction of the incident wave), the previous 
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expressions remain valid but with a phase shift Φ = 2π (d/λ)(sin θ – sin θ′). Then, 
the direction of the principal maximum is θ = θ′. 

The first zero of the intensity corresponds to Φ = 2π, i.e. the wavelets emitted by 
the end points A and B in phase. To interpret this result, imagine that the slit is 
divided into strips of infinitesimal width in the direction AB. If the direction θ1 is 
such that the phase shift between the extreme wavelets emitted by A and B is 2π, the 
phase shift between the wavelet emitted by A and that which is emitted by the 
middle O of the slit is π. Their interference is destructive and will be so for all the 
elements of the upper half of the slit and the corresponding elements of the lower 
half. The diffracted intensity is thus equal to zero in the direction θ1. 

This argument may be repeated for the other zeros of the intensity: it is sufficient 
that the slit be formed by an even number of zones, such that the wavelets emitted 
by the points of a zone and the corresponding points of the next zone are in the 
opposite phase in the direction θp. Conversely, if the direction θ is such that the slit 
is formed by an odd number of zones, the wavelets emitted by the unpaired last zone 
do not interfere destructively with any other zone, and we have a secondary 
maximum. The emitted intensity is that of this unpaired zone and it decreases as the 
number of zones increases because the area of the unpaired zone decreases. 

 

                        (a)                                                                              (b) 

Figure 11.9. a) Diffraction by a circular aperture, and b) variation of the  
intensity as a function of sin θ, where θ is the angle of observation  

b) Consider the case of a circular aperture of radius R illuminated by a plane 
wave incident normally (Figure 11.9a). This setup has a rotational symmetry around 
the axis of the aperture Oz; thus, the intensity of the diffracted wave has the same 
symmetry. We divide the aperture into small elements of area and we use the polar 
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coordinates (ρ, φ) for a running point P of the aperture. In this case, the diffracted wave 
[11.79] may be written as 

Ed(M) = χ ∫∫
π φρρ 2

00 ddR φρ cosi xKe ,        where  Kx = (2π/λ) sin θ. [11.83] 

The integral over φ may be expressed in terms of the Bessel function Jo (see  
section 5.7) 

∫
π φ2

0 d  φcosise  = 2π Jo(s),          where   s = kxR = 2π(R/λ) sin θ. [11.84] 

As we have (d/ds)[sJ1(s)] = s Jo(s), where J1 is Bessel function of order 1, we get  

Ed(M) = 2πχ ρρ∫
R d0  Jo(kxρ) = 2πχ 2

x

1
k

sdss
∫ o
0  Jo(s) = 2πχR2

s
1 J1(s). [11.85] 

The intensity in the direction θ may be written as  

 I(M) = Io [ s
2 J1(s)]2.  [11.86] 

The function J1(s) oscillates similarly to a sine function but its amplitude 
decreases and its zeros s1p are not equally spaced. The ratio J1(s)/s has a principal 
maximum equal to ½ for s = 0. Figure 11.9b illustrates the variation of I as a 
function of sin θ. It has a sharp maximum equal to some value Io for sin θ = 0, 
vanishes for a series of values sin θmin = (s1p/2π)(λ/R) and it has a secondary 
maximum at sin θmax between each two consecutive zeros:  

 sin θmax = pmax R
λ ,             sin θmin

 = pmin
 
R
λ .  [11.87] 

The first values of pmax, pmin, and the relative intensities of the first maximums, are 

pmin
 =            0.61,      1.12,      1.62,      2.12,    etc. 

pmax =   0,      0.82,      1.32,      1.84,        etc. 

I max =   1,      0.0175,     0.0042,     0.0016,       etc.     [11.88] 

If the wave is intercepted on a screen normal to the axis, the diffraction pattern  
is a luminous disk, called the Airy disk, of radius given by the relation  
sin θ = 0.61 λ/R and followed by circular rings of decreasing intensity. 
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 (a)                                       (b)                                               (c) 

Figure 11.10. Babinet’s theorem: a) an aperture in a screen and  
(b) its complementary screen 

11.9. Diffraction by an obstacle, Babinet’s theorem 

The diffracted wave may be considered as resulting from the superposition of the 
primary wave E and the secondary wavelets emitted by the atoms of the obstacle. 
Consider a wave E incident on an opaque screen with an aperture S1 (Figure 
11.10a). Let S2 be the opaque part of this screen. The diffracted wave received at a 
point M is E(a) = E + E'2, where E'2 is the resultant of the waves that are emitted by 
the atoms of S2 if they are excited by E. Figure 11.10b illustrates the complementary 
screen of Figure 11.10a (i.e. the opaque parts of one are the transparent parts of the 
other). The wave at the same point M is E(b) = E + E'1, where E'1 is the wave emitted 
by the atoms of S1. If the two parts S1 and S2 were opaque (Figure 11.10c), the wave 
at M would be E(c) = E + E'1 + E'2 and this should be equal to zero, thus  
E'1 + E'2 = − E. By writing these expressions, we assume that the waves emitted by 
the atoms are the same in Figures 11.10a, b and c; this means that an atom is excited 
only by the primary wave (and not by the waves emitted by the other atoms). 
Comparing these relationships, we find that  

E(a) + E(b) = E , hence <|E(a)|2 > = < | E(b) |2 > + < | E |2> − 2 Re < E*E(b) > . [11.89] 

From this result, we draw the following conclusions: 

− If E(a) = 0, then E(b) = E. This means that the dark points in the case (a) receive 
the total wave in the case (b) (that is, the wave received if there is no screen).  

− If E = 0, then E(a) = −E(b). This means that at the points M, that receive no wave 
if there is no screen, the diffracted waves by the complementary screens are 
opposite; thus, they receive the same diffracted intensity. For instance, if a wave 
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converges ideally at a point A of an observation screen P, no wave is received at the 
other points of P. If this wave is diffracted by an aperture (a) or by its 
complementary (b) placed before P, the intensity observed on this screen is the 
same, whatever is the shape of the aperture, except at the point A. 

 

Figure 11.11. Diffraction by randomly distributed apertures  

11.10. Diffraction by several randomly distributed identical apertures 

Suppose that a wave of wave vector k′ is incident on a large number N of 
identical apertures. If they are randomly distributed in an opaque screen without any 
overlap, they are obtained from one of them (aperture 1, for instance) by translations 

j1 'AA  = ξj ex + ηj ey (Figure 11.11). The diffracted wave at a point M situated at  

large distance in the direction of the wave vector k is the superposition of the waves 
that are diffracted by all the apertures, thus  

Ed(M) = χ ∫
1

11S dydx )i( y1x1 KyKxe + + χ Σj≠1 jj
j

dydx∫S
)i( yjxj KyKxe + ,  [11.90] 

where we have set K = k − k'. The first term is the wave Ed1(M) diffracted by the 
aperture (1). If we make a change of integration variables xj = x1+ ξj and yj = y1+ ηj 
in the integrals over Sj, we find that they are equal to the first integral multiplied by 
a phase factor jiφe , where φj = ξj Kx + ηj Ky. Thus, the total diffracted wave is 

Ed(M) = Ed1(M) [1 + Σ1<j ≤ N jiφe ].  [11.91] 

As the number of apertures is large and they are randomly distributed, the phases φj 
take all values between 0 and 2π; thus, Σj≠1 jiφe  = 0 and the total diffracted wave is 
the same as the diffracted wave by a single aperture. However, this argument fails if 
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k = k', that is, in the direction of the incident wave, as all the phase shifts φj are then 
equal to 0, and we find 

 Ed = N Ed1.  [11.92] 

Thus, the diffraction pattern produced by a large number N of randomly distributed 
identical apertures is the same as that of a single aperture except in the direction of 
the principal maximum whose intensity is N2 times the intensity diffracted by a 
single aperture. The same result holds if the wave is diffracted by randomly 
distributed obstacles (dust or powder, for instance). 

11.11 Diffraction grating 

A diffraction grating is usually a series of N parallel and identical slits with a 
spacing d between adjacent slits. More generally, it is an optical structure that is 
repeated N times in the x direction with a period d of the order of the wavelength λ  
(Figure 11.12a). They produce, by reflection or transmission, N coherent waves of 
equal amplitude a with the same phase-shift between consecutive waves. Their 
diffraction properties are essentially determined by the spacing d and the number N 
of slits. It is possible to conceive diffraction gratings for light waves, infrared and 
ultraviolet waves, microwaves, acoustic waves, etc. The characteristic effects of 
diffraction gratings are easily observed on a compact disk, a fish scale, a bird’s 
fine feather, etc. 

 
(a)                                                                           (b) 

 Figure 11.12. a) Interference of several waves, and b) variation of A2/a2 versus φ/2π 

The resultant wave at an observation point M is the superposition of N waves 
emitted or diffracted by the slits. If the distance D from the diffraction grating to the 
observation screen is large, compared to Nd, the rays SiM are nearly parallel. The 
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setup is called Fraunhofer diffraction (or diffraction at infinity). If the observation 
point M is in the direction θ (with the normal Oz to the diffraction grating), the path 
difference between two consecutive waves is δ = d sin θ and their phase shift at M is 
φ = 2π(d/λ) sin θ. Using the complex representation for the N waves, the resultant 
wave is 

E = )i( k.r−ωtea + )i( φ−−ω k.rtea + … + ])1(i[ φ−−−ω Ntea k.r  

    = )i( k.r−ωtea [1 + φ−ie + φ− i2e  + ... + φ−− )1i(Ne ]. 

The expression in brackets is a geometrical progression; it may be written as 

  [ ] = )i( k.r−ωtea φ−

φ−

−
−

i

i

1
1

e
e N

= /2])1(i[ φ−−−ω NteA k.r .   

Thus, the real part of E is 

Re E = A(φ) cos[ωt − k.r − ½(N−1)φ]   where  A(φ) = a 
)2sin(
)2sin(

/
/

φ
φN

. [11.93] 

and the resultant intensity is  

I = Io
 Fdg(φ),     where    Io = αN2a2   and  Fdg(φ) ≡

)2(sin
)2(sin

22

2

/

/

φ
φ

N
N

. [11.94] 

Fdg(φ) is the diffraction grating function. The amplitude A(φ) has principal 
maximums equal to Na and Fdg(φ) has principal maximums equal to 1 for φ = 2pπ. 
Between two consecutive principal maximums, A(φ) and Fdg(φ) have (N – 1) zeros 
(corresponding to directions such that sin(Nφ/2) = 0, other than those of the principal 
maximums) and (N – 2) secondary maximums of relatively small amplitudes. The 
principal maximums correspond to all the slit waves in phase. The zeros correspond 
to phase shifts, such that the phasor representation is a closed regular polygon 
formed one or several times. The larger N is, the sharper the principal maximums 
are, and the more numerous and smaller the secondary maximums are. This makes 
diffraction grating very useful in spectroscopy. Figure 11.12b illustrates the function 
Fdg as a function of the phase shift φ/2π. 

If the incident wave makes an angle θ′ with the normal n to the diffraction 
grating (θ′ is algebraic measured from n pointing in the direction of the incident 
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wave), the previous expressions remain valid but with a phase shift 
φ = 2π (d/λ)(sin θ – sin θ′). Then, the direction of the principal maximum of order  
p = 0 is θο = θ′. 

Instead of having the superposition of waves that are diffracted by N slits, we 
may have the superposition of waves received by N receptors. For instance, a radio 
telescope is a set of highly adjustable antennas (often parabolic), which may be 
directed toward the sky to receive radio waves emitted by celestial bodies and to 
measure their wavelength (going from 1 mm to more than 1 km) and their intensity. 
The parabolic antenna must have a large aperture area to detect as much energy as 
possible and reduce the diffraction by the aperture of each antenna (see 
section 11.8b). The largest interferometric radio telescope in operation is the Allen 
Telescope Array in California. It is composed of 42 antennas of diameter 6.1 m and 
distributed over an area of diameter 1 km. It was conceived to detect waves of 
frequencies from 0.5 to 11 GHz (i.e. a wavelength going from 2.7 to 60 cm). 

One of the important uses of a diffraction grating is as a dispersive element for 
spectroscopic instruments, enabling very precise measurement of wavelengths. The 
direction θp of the order p is such that φp = 2π(d/λ) sin θp = 2pπ. Thus, a 
measurement of θp allows us to determine the wavelength λ = (d/p) sin θp. The first 
zeros of intensity correspond to φp ± δφ = 2pπ ± 2π/N. Thus, the half-width of the 
principal maximum of order p is δθp = λ/Nd cos θp. If the incident wave is a 
superposition of two wavelengths λ and λ′ = λ + Δλ, the principal maximum of 
order 0 is in the same direction θ = 0 for both waves; while the other principal 
maximums are in slightly different directions such that λ = (d/p) sin θp. By 
differentiating this relationship we obtain the angular separation Δθp = p Δλ/d cos θp 
for their principal maximums of order p. According to the Rayleigh criterion, the 
two radiations can be distinguished by observing the order p if their principal 
maximums are separated by an angle Δθp larger than the half-width of these 
principal maximums (Figure 11.13). Thus, we must have Δθp > δθ, that is,  
Δλ > λ/pN. This is the smallest wavelength difference that may be measured with 
this instrument. The resolving power in the pth-order is 

Rp ≡ λ/Δλ = pN.  [11.95] 

The higher the order and the larger the number of lines N, the higher the resolving 
power. 
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Figure 11.13. Rayleigh criterion and resolving power  

11.12. X-ray diffraction 

A diffraction grating may be two-dimensional or three-dimensional if the 
diffracting centers are distributed periodically over a plane or in a volume with 
spacing of the order of λ in all directions. X-rays are electromagnetic waves of very 
short wavelength, of the order of 0.1 nm (i.e. the inter-atomic distances in solids). It 
is impossible to have a one-dimensional diffraction grating with such small spacing. 
In 1912, Max von Laue observed the diffraction of X-rays by a crystal. He proposed 
that a crystal is a regular array of atoms, which may act as a three-dimensional 
diffraction grating for X-rays.  

 
                             (a)                                                                             (b) 

Figure 11.14. a) Unit cell of NaCl, b) the atomic planes reflect the wave like  
a mirror. The direction of the principal maximums verify Bragg condition 

The fundamental structure of a crystal is the unit cell, which is an arrangement of 
a certain number of atoms (or ions) in a characteristic geometrical configuration. A 
macroscopic crystal is a periodical three-dimensional juxtaposition of unit cells in 
all directions. For instance, the unit cell of sodium chloride is face-centered cubic of 
sides d = 0.562737 nm. It is formed by eight juxtaposed cubes with alternating Cl– 
and Na+  ions occupying their summits (Figure 11.14a). Note that all the ions of the 
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unit cell, except the central Na+, are shared by two, four or eight neighboring cells. 
Thus, on average, each unit cell is formed by only four Cl− ions and four Na+ ions. 
Each of these cells is a diffracting center for X-rays. The crystal is then equivalent to 
equally spaced diffraction centers in any direction (Figure 11.14b). The total 
diffracted wave results from the interference of these partial waves. The direction of 
the principal maximums of interference is determined by the geometry of the 
configuration of the unit cells, while the intensity of the diffracted wave in a given 
direction is determined by the distribution of the electric charge within the unit cell. 
Thus, by observing the direction of the diffraction maximums, we obtain 
information on the geometry of the diffraction centers, and by observing the 
intensity distribution, we obtain information on the distribution of charge within the 
unit cell. 

Analyzing the diffraction by a linear chain of unit cells, then by all the linear 
chains of the atomic plane Oxy (or any atomic plane parallel to Oxy), it may be 
shown that the intensity has a principal maximum in the direction of the reflected 
wave (θ' = −θ) and in the direction of the incident wave (θ' = θ). Here θ and θ' are 
the angles of the incident wave vector k and the diffracted wave vector k' with the 
atomic plane (Figure 11.14b). If d is the spacing between the atomic planes, the path 
difference of the waves diffracted by two consecutive planes is 2d sin θ. Thus, the 
total diffracted wave has a principal maximum if this path difference is an integer 
multiple of λ; hence, Bragg’s law 

 2d sin θp = p λ,                    where p is an integer.  [11.96] 

This condition must be verified by the angle θp of k with the atomic plane (which is 
equal to the angle of k' with this plane) in order to have a principal maximum. In the 
other directions, there is some phase shift between the waves diffracted by the 
planes. As the number of these planes is very large, the reflected intensity in these 
directions is negligible. We conclude that, if a wave (X-rays, electronic wave, etc.) 
is incident on the crystal in a direction making an angle θp with the atomic plane, 
there is a diffracted wave only in the directions verifying Bragg’s law [11.96]. For 
instance, in the case of X-rays of wavelength λ = 0.200 nm incident on a NaCl 
crystal, the Bragg condition gives sin θ = pλ/2d = 0.178 p, thus, θ = 0 − 10.2° 
− 20.8°, etc.  

The diffraction of X-rays of known wavelength enables the study of crystalline 
structures. If the spacing of a particular crystal (NaCl or CaCO3, for instance) is 
determined by a method other than X-rays, this crystal may then be used as a 
spectrometer for X-rays. Observation of the diffraction of a beam of X-rays by this 
crystal allows us to determine the wavelength of the X-rays. Then, the diffraction of 
this beam of known λ by other crystals can be used to study their structures. 
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The angular distribution of the diffracted wave depends on the structure of the 
unit cell. Let xj, yj and zj (j = 1, 2, …, n) be the coordinates of the n atoms of the cell. 
If the crystal is formed by N unit cells, we may consider it as the superposition of n 
simple crystals Cj, whose N atoms of the type j form parallel planes of spacing d. If 
the incident wave has an amplitude Eo and a wave vector k', the emitted wave by an 
atom (j) with a wave vector k is of the form EoAj jiφe . As φj is the same for all the N 
atoms of type j and given by φj = Kx xj + Ky yj + Kz zj with K = k − k', the total wave 
that is emitted by these atoms is Ej = N Eo Aj jiφe . The total wave that is diffracted by 
all the crystal is the superposition of the waves Ej diffracted by the simple crystals 
Cj, that is, 

 E = Σ1≤j≤n Ej = N Eo F(K)            with   F(K) = Σ1≤j≤n Aj jiφe ,  [11.97] 

where the summation runs over the atoms of a single unit cell. The complex function 
F(K) is called structure factor of the crystal. It is a characteristic of its unit cell (type 
of atoms, their number, and their geometrical configuration), not on the crystal, as a 
whole. A measurement of the intensity that is diffracted in the various directions 
allows the determination of |F(K)| and provides information on the cell structure. 

11.13. Diffusion of waves*  

If a light beam propagates in a medium, waves of small amplitude may be 
emitted in directions, and sometimes with frequencies, different from those of the 
primary wave. This effect, called diffusion, is due to the scattering of the wave by 
the particles of the medium designated as the scatterers. It may be also interpreted 
as due to the collision of individual photons with the scatterers and the subsequent 
emission of photons in different directions and eventually different energies. The 
study of the diffusion by atoms and molecules must inevitably use quantum 
mechanics and this is beyond the scope of this book. The laws of classical physics 
are sufficient to study the diffusion by macroscopic scatterers (large molecules, dust, 
smoke, fog, density fluctuations, roughness of surfaces, etc.). The difference 
between the diffusion and diffraction patterns is due to the randomly distributed 
scatterers; thus the absence of any coherent phase relation between the scattered 
waves. Several effects of propagation are consequences of diffusion. 

 In classical theory, the electric field of the wave acts on the charged particles of 
the scatterers and the energy of the wave may be absorbed and subsequently emitted 
in all directions according to the laws of electromagnetism. In quantum theory, a 
photon collides with a target particle and it may be absorbed or scattered according 
to the laws of quantum mechanics. The duration of the collision is very short and the 
wave or photon are scattered in various directions with a certain law of probability 
within certain limits imposed by the laws of conservation of energy and momentum. 
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If the medium is dense, the scatterers are not completely independent, and the 
analysis becomes more complicated. In some cases, the direction of the resultant 
diffused wave is more restricted and it may be even in a single direction, because of 
the constructive interference in this direction and the destructive interference in the 
other directions. This is the case of the reflection and refraction on polished 
surfaces.  

Diffusion is not an exclusive property of electromagnetic waves: all waves and 
particles (electrons, neutrons, alpha particles, etc.) undergo collisions with other 
particles. A collision is said to be elastic if there is little exchange of energy. Then, 
the incident and scattered photons have equal energy and, consequently, equal 
frequency and wavelength. The wave is simply deviated with a certain angular 
distribution, which may depend on energy. In principle, the complete knowledge of 
the properties of the medium enable the determination of the laws of diffusion (this 
is the direct problem). Conversely, the analysis of the diffusion in a medium allows 
us to study some properties of the scatterers (this is the inverse problem). The 
analysis of diffusion is a very important means to study these interactions, and it has 
many applications in physics, biology, physics of the atmosphere, etc. 

A) Resonance scattering  

An atom (or a molecule) is usually in its ground state of energy E1. If an 
electromagnetic wave is incident on the medium, it acts on the electrons and excites 
the atom to a state of energy Ei. According to quantum theory, this interaction is a 
process of absorption and subsequent emission of a single photon of energy  
Eγ = h ν~ . If Eγ is close to Ei – E1, that is, ν~ ≅ 1i,

~ν = (Ei – E1)/h, there will be a 
resonance effect. The atom then has a high probability of absorbing the photon, 
being excited to the state of energy Ei, and subsequently, returning to the ground 
state by emitting a photon of the same frequency but in a direction often different 
from that of the incident photon. The emitted photon may again be scattered by 
other atoms and finally emerge out of the medium in an arbitrary direction or be 
absorbed as heat. This scattering is said to be resonant. A beam having a 
frequency 1i,

~ν is almost totally diffused in all directions, giving to the body its 
characteristic color if it is observed by diffusion or reflection. The medium is almost 
opaque to this beam and the body appears black if it is observed by transmission. If 
a beam of continuous spectrum (white light, for instance) traverses this medium, the 
frequencies 1i,

~ν will be absent from the emerging beam, producing dark lines in the 
beam spectrum (this is the so-called absorption spectrum). A red filter, for instance, 
is transparent to the part of the spectrum close to red and it absorbs the part that is 
close to the blue. 

On the contrary, if Eγ is not close to the excitation energy Ei − E1 of one of the 
energy levels, the wave propagates through the medium almost without change of 
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intensity and frequency; the medium is transparent to this frequency. We say in this 
case that the diffusion is non-resonant. If Eγ is lower than all the excitation energies 
Ei − E1 of the atom, the photon cannot be absorbed by the atom. It may only make 
the electrons oscillate slightly and emit a secondary wave with a very small 
intensity. On the contrary, if Eγ is higher than the excitation Ei − E1, the photon may 
be absorbed and the exceeding energy transformed into kinetic energy and 
ultimately to heat. The excited atom subsequently emits a photon of frequency 1i,

~ν in 
any direction.  

 If a body has no resonance frequency νi,1 in the spectrum, it is transparent to all 
frequencies and it produces no diffusion; thus, it is completely invisible. However, if 
it is pulverized into small pieces, these parts diffuse all frequencies and it appears 
white if it is illuminated with daylight. 

The optical properties of a medium depend strongly on the degree of order of the 
scatterers and on the mean distance between them, compared to the wavelength. If 
the scatterers are distributed at random, there will be no phase shift relation between 
the secondary waves that they emit; the wave is then diffused in all directions. On 
the contrary, if the scatterers are exactly periodic (as in the case of a diffraction 
grating or a crystal) there will be no diffused wave but diffraction in specific 
directions. On the other hand, if the spacing between the scatterers is of the order of 
λ, the emitted wave emitted by one of them acts on the others; then, the scatterers 
cannot be considered as independent. For this reason, a strong correlation exists 
between the waves that are emitted by the molecules of a liquid or a solid that 
contains no impurities. This makes a plane wave propagate in these mediums in a 
single direction according to the laws of reflection and refraction. This direction is 
that of the constructive interference of the secondary emitted waves by these 
molecules. On the contrary, if the scatterers are distributed at random with spacing 
much larger than λ, we usually find the other extreme case of completely 
independent and incoherent sources. Then, the interference is completely negligible 
and the resultant intensity is the sum of the intensities that are emitted by the 
sources. This is the case of the molecules of a very rarefied gas. 

Assume that a primary wave is polarized in the direction Ox and propagates in 
the direction Oz in a medium. Under the influence of this wave, the scatterers emit 
secondary waves. The motion of electrons is proportional to the electric field and, by 
symmetry, it is in the direction Ox of E. Then, the scatterers are equivalent to 
electric dipoles that are polarized in the direction of E and oscillate with the same 
frequency. According to the laws of electromagnetism, the secondary wavelets, that 
they emit, are polarized also in the direction Ox and they propagate essentially in the 
normal direction to this axis.  
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B) Propagation in dense mediums 

A medium is considered as dense, if the spacing between scatterers is of the 
order of the wavelength λ; thus, much shorter than the coherence length of the wave. 
This is the case of liquids, solids, and a gas at high pressure. The wavelets emitted 
by neighboring scatterers interfere with the primary wave to produce the total wave, 
which propagates in the medium in a well-defined direction with a speed that is 
characteristic of the medium. To understand this, we first recall that the interference 
of a large number of waves whose phase randomly takes all values is completely 
destructive (see section 11.10). Consider a cylindrical beam of light in the direction 
Ox (Figure 11.15a). The scatterers of a plane wave front S1 are excited 
simultaneously. Thus, they emit wavelets in phase. However, the scatterers being 
very numerous and distributed randomly in the plane S1, emit wavelets that arrive to 
an observation point M1 outside the cylindrical beam with random phases. Their 
interference is destructive at this point (Figure 11.15b). Conversely, at points 
situated inside the beam, such as M2 following S1 or M3 preceding S1, many of these 
wavelets arrive almost in phase; thus, their interference is constructive, at least 
partially.  

 
 
 
 
 
 

 
              (a)                                              (b)                                                  (c) 

Figure 11.15. Diffusion of a wave: a) the superposition of randomly phased waves is 
completely destructive, b) propagation of a wave as interference of the diffused waves  

and the primary wave, and c) reflection as interference of diffused wavelets 

To understand why this interference produces a wave only in the forward 
direction, we have to consider the waves emitted by different planes Si. If the wave 
propagates from S1 toward S2 situated at a distance Δx, the scatterers of S2 start to 
emit with a time delay Δx/v over those of S1. However, to reach M2, the wave 
emitted by S2 must travel a distance Δx less than the wave emitted by S1. Thus, the 
two waves arrive in phase and they interfere constructively in the forward direction. 
On the other hand, if we consider a point M3 that precedes S1, the wavelets diffused 
by the scatterers of S1 interfere constructively at this point, but the wavelets diffused 
by S2 must travel a distance Δx more than those of S1. They interfere at M3 with a 
time delay 2Δx/v (i.e. a phase shift 4π Δx/λ). Thus, the waves diffused by the various 

M2

M3 

M1

S1
S2

Δx

O x
D’ DM 

S1 S2 S3 S4 

S 



374     Electromagnetism 

sections have random phase shifts in the backward direction if the medium is 
infinite; their interference is destructive. This explains why the wave propagates 
only in the forward direction if the medium is infinite toward the positive x. 

In the case of a dense medium bounded by a plane surface S (Figure 11.15c), let 
us assume that the region situated between M and S is divided into slices of 
thickness λ/4. The waves diffused by two consecutive slices interfere destructively 
at M, as the waves diffused backward by the corresponding scatterers D and D' are 
out of phase. Thus, the reflected wave at M results only from the interference of the 
wavelets that are diffused by the scatterers of the unpaired slice (or part of a slice) 
that precedes S. The interference of these wavelets can be constructive only if the 
surface S is polished, that is, if its irregularities do not exceed a small fraction of the 
wavelength. Otherwise, the wave is diffused backward in all directions.  

We note that the propagation of electromagnetic waves in vacuum is a very 
particular phenomenon with no diffusion at all. In modern physics, the vacuum is 
not completely devoid of electromagnetic properties, such as vacuum polarization, 
vacuum fluctuations, etc.  

C) Diffusion by rarefied mediums: Rayleigh diffusion 

A medium is said to be rarefied if the average spacing of the scatterers is much 
larger than the wavelength λ and they are non-coherent. This is the case of a gas at a 
very low pressure (as in the upper atmosphere) or rare impurities in a dense and 
homogeneous medium (such as smog, dust, density and temperature fluctuations of 
the atmosphere, etc.). In this case, the interference of the scattered wavelets is 
negligible and we have to add their intensities instead of their amplitudes.  

In vacuum, a beam of light progresses forward and it may be observed only in 
the direction of the beam, as there is no lateral diffusion. This is what is observed 
outside the Earth’s atmosphere: the Sun is visible only if it is looked at directly and 
the sky is black in the other directions. On the other hand, if we look to the sky from 
the ground, a pure atmosphere is almost completely transparent, as nitrogen and 
oxygen molecules have no resonances in the visible spectrum. Thus, light 
propagates in a pure atmosphere with very little absorption (provoked mostly by the 
ozone and vapor molecules). However, in the rarefied upper atmosphere, light 
undergoes some non-resonant diffusion by the nitrogen and oxygen molecules. Each 
molecule behaves as a small electric dipole, absorbing light energy and subsequently 
emitting mostly perpendicularly to the dipole. Being at relatively large distances 
apart, these molecules behave as independent sources of light. The rotation and 
vibration frequency spectrums of these molecules are lower than visible light while 
their electronic spectrums are higher. Thus, blue light is more diffused than red light 
and this is the reason for the blue sky, if we do not look in the direction of the Sun. 
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On the other hand, because of this more significant diffusion of blue, if light from 
the Sun crosses a larger thickness of the atmosphere (as at sunrise and at sundown), 
it tends to be red. 

If the medium is homogeneous, the interference is practically destructive in all 
non-forward directions. The lateral diffusion becomes more significant if the 
medium is less homogeneous, containing some impurities or fluctuations. For 
instance, if drops of milk are poured in a large amount of water in a glass container 
illuminated with white light, the diffused light is bluish while the transmitted light is 
reddish. Amorphous and transparent solids, such as glass and plastics, diffuse some 
light, in contrast to crystals (because of the perfect periodic structure of crystals). 
Non-ordered and well-spaced irregularities are very good scatterers, as their waves 
are less coherent. Thus, they do not interfere destructively in the lateral directions. 

The non-resonant diffusion depends on the size of the scatterers compared to the 
wavelength. If the dimensions of the scatterers are much smaller than λ, the intensity 
of the diffused wave depends on the frequency like 4ν~ . This is the so-called 
Rayleigh scattering (see section 11.14). This is the case of O2 and N2 molecules in 
the atmosphere. They have a diameter of about 0.2 nm, thus much smaller than the 
wavelength of visible light. The 4ν~  dependence explains why violet and blue are 
much more diffused laterally than red.  

If the size of the scatterers is comparable to λ or larger, the diffused intensity 
depends on the frequency like pν~  with p < 4 and it depends on the size and the 
shape of the scatterers. This is the case of a cloudy sky; the droplets of water have a 
much larger size than λ.  All wavelengths are diffused with almost the same 
intensity and the cloud appears white or grayish. This is the so-called Mie diffusion. 
Both Rayleigh and Mie scatterings are elastic, that is, without change of frequency. 
If the size of the scatterers exceeds about 10 λ, we may use the laws of geometrical 
optics. Then, the deviation of light depends on the wavelength because of dispersion 
(as in the case of rainbow). This effect is not usually considered as diffusion. 

11.14. Cross-section* 

The first study of diffusion or scattering was attributed to Rayleigh (1871) who 
analyzed the scattering of sound by a spherical body and the scattering of light by a 
gas (the blue sky). The scattering of an electron beam started with Faxen and 
Holtsmark in 1927. Actually, the scattering of beams of particles, X-rays and γ-rays 
by atomic nuclei is a very important means to study the structure of matter and the 
interaction of particles. In optics, the scattering of light by molecules, atoms, and 
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ions allows the study of the optical properties of matter (opacity and transparency, 
color, index of refraction, etc.). 

Let us assume that a wave ui = A )i( kzte −ω , comes from far away in the direction 
Oz to meet a small-sized target (Figure 11.16). In optics, u may represent the electric 
field. The total wave is then 

u = A te ωi [ kze i− + f(θ)
r
1 kre i− ], [11.98] 

where the second term represents the scattered spherical wave. The function f(θ) is 
the scattering amplitude in the direction θ; it depends on the interaction of the wave 
with the target. If the target and the wave are symmetric about Oz, f does not depend 
on the angle ϕ about this axis. 

 

Figure 11.16. Scattering experiment  

In a scattering experiment, a beam of particles is incident on a target and one 
measures the number of scattered particles by using appropriate detectors placed 
around the target (Figure 11.16). Let us assume that the incident beam contains Ni 
particles per unit volume moving with velocity vi. The flux of particles is the number 
of particles crossing, per unit time, the unit area placed perpendicularly to the beam, 
i.e. Fi = Nivi. If the target opposes to the beam a transverse area σ, each particle that 
passes through this area is absorbed or scattered in a direction other than that of the 
beam. Thus, the total number of particles extracted from the beam per unit time is 
the number of particles intercepted by the area σ, that is, Ns = Fiσ. This concept may 
be generalized to any target. The number of particles that are scattered per unit time 
depends on the interaction of the incident particles with the target. The cross-section 
is defined by 

σ = Ns/Fi.    [11.99] 

dΩ
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In fact, the concept of cross section is not simple. If the particles of the beam do
not interact with the target, there will be no scattering and the cross section vanishes,
exactly as if there is no target. On the other hand, the interaction may depend on the
energy of the particles; thus, the cross section depends on the energy and the target
seems to be “smaller” or “larger” if the energy varies.

It is also possible to measure the number dNs of scattered particles in a solid
angle dΩ around the target, by setting a counter in this direction; dΩ is then the solid
angle subtended by the entry of the counter as seen from the target. The differential
cross section is defined by

σ(Ω) dΩ = dNs/F. [11.100]

The cross section σ is obviously the integral of σ(Ω) over all directions. In modern
physics, the wave-particle duality allows the interpretation of |u|2, in the case of a
beam, as the number of particles per unit volume. Then, it may be shown that

σ(Ω) = | f(Ω) |2. [11.101]

Let us consider, for instance, an incident wave on a medium containing electrons
that are bound to the atoms with a force –mωo

2 x. Using the equation [10.89], we
find that the electrons oscillate with an amplitude

A = − e
m 22

o

1
ω−ω

Eo. [11.102]

The average power of the radiation that is emitted by this electron is (see section
15.8)
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where we have used the intensity of the incident wave, I = Eo2/2µoc, which
corresponds to a flux of photons Fi = I/hν. The power <P> corresponds to
Ns = <P>/h ν~ scattered photons. Thus, the cross section is

σ = Ns/ Fi = <P>/I = 2
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The quantity ro = e2/4πεomc2 = 2.81794 × 10−15m is the so-called classical radius of
the electron. In particular, at high frequency (ω >> ωo), we find Thomson cross
section

σTh = (8/3) πro2. [11.105]
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In the case of air molecules, the characteristic angular frequency ωo is much 
higher than the angular frequencies of visible light; thus, in the first approximation,  

σ = (8/3) πro
2 (ω/ωo)4.  [11.106] 

σ varies like the fourth power of the frequency (see Rayleigh scattering). 

The cross section of the scatterers is also related to the absorption coefficient of 
the wave in the medium. First, let us note that the intensity I of the wave is related to 
the flux F (defined as the number of particles that are received by the unit area and 
per unit time) by the relationship I = FE, where E is the energy of each particle. 
Assume that the medium contains Nd scatterers per unit volume with cross section σ. If a 
beam of section S and flux F travels in this medium a distance dx, it meets NdS dx 
scatterers. Each scatterer extracts σF particles per unit time from the beam. Thus, the 
beam loses σFNdS dx particles per unit time and its flux varies by 

dF = − FσNd dx .  [11.107] 

We deduce the variation law of the flux or the intensity 

F(x) = Fo xe μ− ,     i.e.       I(x) = Io xe μ−         with   µ = σ Nd .  [11.108] 

Like σ, the absorption coefficient µ depends on the energy of the particles (or the 
frequency of the wave). On the other hand, µ is proportional to the number of 
scatterers per unit volume. Thus, the attenuation in a gas increases if it is 
compressed. Finally, if the medium is formed by several types (i) of scatterers, its 
absorption coefficient µ is the sum of the µi: 

µ = Σi σi Ndi = Σi µi.  [11.109] 

11.15. Problems 

Reflection and refraction on the interface of two dielectrics 

P11.1 A non-polarized electromagnetic wave is incident at an angle θ on the 
interface of two dielectrics of indices n1 and n2. a) Calculate the energy reflection 
and transmission factors. Verify the conservation of energy. b) Assuming that  
n1 = 1, n2 = 1.5 and θ = 45°, calculate the reflection and transmission coefficients 
and the reflection and transmission factors. Determine the degree of polarization in 
the plane of incidence for the reflected and the transmitted waves. 
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P11.2 An electromagnetic plane wave is polarized in a direction that makes an angle 
α with the plane of incidence. a) Show that the reflected and transmitted electric 
fields form with the plane of incidence, respectively, the angles α’ and α" given by 
the relations tan α′ = (R⊥ /R//) tan α and tan α" = (T⊥/T//) tan α, where R⊥ and R// are 
the reflection coefficients, while T⊥ and T// are the transmission coefficients for 
parallel polarization and perpendicular polarization to the plane of incidence.  
b) Calculate the coefficients R⊥, T⊥, R// and T// for light that is incident on water 
(n = 1.33) at 60°. Calculate α’ and α" if α = 45°. 

P11.3 An electromagnetic wave is incident at an angle θ on the interface of two 
dielectrics of indices n1 and n2. The Fresnel formulas show that the amplitude of the 
transmitted electric field may be larger than that of the incident field. a) Verify that 
the incident power is always equal to the sum of the reflected and transmitted 
powers. b) A light wave is incident normally on a plate of index 1.5. Neglecting 
multiple reflections, calculate the global energy transmission factor. What should 
this factor be for a set-up of four parallel but separated plates? 

P11.4 A wave is incident on a glass plate of thickness L and index n at an angle of 
incidence θ. It is polarized perpendicularly to the plane of incidence. Calculate the 
global transmission factor fT. Note that, in the plate, there are a transmitted wave 
across the first face and a reflected wave on the second face. What is the numerical 
value of fT if L = 3 mm, n = 1.5 for light of wavelength λ = 0.6 µ incident normally?  

P11.5 Any wave that is incident on the interface of two dielectrics may be written in 
the form E = E// e// + E ⊥e⊥, where e// and e⊥ are unit vectors that are perpendicular to 
the direction of propagation. e// is in the plane of incidence and e⊥ is perpendicular 
to this plane. a) Write in this form the expression of a plane wave that is incident at 
an angle θ and polarized linearly, polarized circularly, and non-polarized.  
b) Consider the case of a non-polarized incident wave. Calculate the energy 
reflection and transmission factors. It will be convenient to set n = n2/n1. Determine 
the degree of polarization perpendicularly to the incidence plane for the reflected 
wave and for the transmitted wave. What are their values in the case of the incidence 
at the Brewster angle and at θ = 30° on the surface of water? 

P11.6 a) An electromagnetic wave that is polarized perpendicularly to the plane of 
incidence falls on a glass plate of index 1.5. Show that the intensity of the reflected 
wave varies from 4% to 100% as θ varies from 0 to 90°. Calculate the reflected 
intensity at θ = 45°. b) Show that, in the case of a polarized wave in the plane of 
incidence, the reflected intensity decreases from 4% at θ = 0 to zero at Brewster’s 
incidence, then it increases to 100% at θ = 90°. What is the reflected intensity at 
θ = 45°? c) A wave is incident on the glass-air interface from the glass side. Analyze 
the reflected intensity if the wave is polarized in the plane of incidence and if it is 
polarized perpendicularly to this plane. d) A loss of 4% is sometimes intolerable if 
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light crosses the plate many times. Show that, at the Brewster incidence, after a large 
number of crossings, the light component that is polarized perpendicularly to the 
plane of incidence is eliminated and only the component that is polarized in this 
plane remains with an intensity nearly equal to the incident intensity. 

Total reflection 

P11.7 a) What is the critical angle on the glass-air interface if the glass index is 1.5? 
A wave is incident at 50° on the glass-air interface from the glass side. Calculate the 
attenuation coefficient in air for light of wavelength 0.6 µm in vacuum. How deeply 
does it penetrate the air? b) Consider a thin layer of air between the planes z = 0 and 
z = L separating two glass plates, where L is of the order of the wavelength of light. 
A wave propagates in the first plate and falls on the surface z = 0 at an angle of 
incidence θ > iL. Assume that the wave is polarized in the plane of incidence. Write 
the boundary conditions on the faces of the air layer. Show that the wave may cross 
this layer, produce a wave in the second plate and propagate parallel to the direction 
of propagation in the first plate. Calculate the amplitude of the reflected wave and 
that of the transmitted wave for L = 1 µm. Note that, in the air layer, the wave has 
the form f ze δ− + g zeδ . 

Reflection on conductors and plasmas 

P11.8 A wave is incident normally on the interface of a dielectric and a good 
conductor. a) Show that, at low frequency (ω << σ/2ε2), the reflection and the 
transmission coefficients are approximately R  ≈ −1 + 4iκ and T ≈ 4iκ, where  
κ = (µ2v2/µ1v1)(ε2ω/σ). Deduce that the wave is almost totally reflected with a phase 
lead φ given by tan φ = − 4κ with π/2 < φ < π). b) Consider the case of a good non-
magnetic conductor, such as silver (of conductivity σ = 6.29 × 107 Ω.m−1). Using the 
exact expression of R and assuming that v2 = v1 = c, determine the frequency of the 
electromagnetic waves that are reflected at more than 95% in intensity. c) Estimate 
the magnitude and the phase of the reflection coefficient of silver for visible light of 
wavelength λ = 500 nm, ultraviolet of λ = 100 nm and X-rays of λ = 0.1 nm.  
d) What should the thickness of a film of silver be in order to transmit less than  
10 % of the light intensity that crosses the entry face? Assume that λ = 500 nm. 

P11.9 An electromagnetic wave is incident from a dielectric (medium 1) normally 
on the surface of a good conductor (medium 2). a) Show that Maxwell’s equations 
in the conductor are the same as those in a dielectric with a complex dielectric 
constant ε = ε2 − iσ/ω. Write the solution representing a plane wave, and deduce the 
usual properties of waves in conductors. b) Is it possible to define a complex index 
using ε, and write Snell’s law to determine the direction of propagation in the 
conductor? c) Consider a good conductor that is non-magnetic (like silver with 
σ = 6.29 × 107 Ω.m−1). Assume that v2 = v1 = c and use the exact expression of R. 
For which frequencies is the electromagnetic wave reflected with more than 95% in 
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intensity? Estimate the modulus and the phase of the reflection coefficient on silver 
in the case of visible light of wavelength 0.5 µm. 

P11.10 Show that an electromagnetic wave of frequency ν~ is totally reflected on the 
ionosphere if its angle of incidence θ is such that cos θ < pν~ / ν~ , where pν~  is the 
plasma frequency of the ionosphere. This means that, for an angle of incidence θ, 
the effective cut-off frequency is pν~ /cos θ. 

Interference of two electromagnetic waves 

P11.11 In Young’s historic experiment, light was incident normally on two parallel 
slits separated by a distance d and the interference of the diffracted waves was 
observed on a screen situated at a large distance D from the slits (Figure 11.17).  
a) Show that the phase shift between the waves at a point M of the screen is  
φ ≅ 2π(δ/λ) sin θ ≅ 2π (d/λ)(x/D), where x is the distance of M to the axis Oz and θ 
is the angle of OM with Oz. Deduce that the bright fringes correspond to x = p Dd/λ. 
b) Taking d = 0.150 ± 0.002 mm and D = 1.000 ± 0.003 m and using quasi-
monochromatic light, the fourth bright fringe is found at a distance x4 = 12.7 ± 0.1 
mm from the central fringe at O′. What is the value of the wavelength? Estimate the 
precision of this measurement. Using sunlight, a bright white fringe is found at O′. A 
pinhole is made in the screen at a distance of 1 cm from O′. Show that the light 
spectrum passing through this hole has dark lines (channeled spectrum). Determine 
the corresponding wavelengths in the visible spectrum 390 nm < λ < 760 nm. c) A 
light source is at equal distances from the slits. It emits two coherent waves of equal 
amplitudes and close wavelengths λ and λ + δλ. Determine the intensity at a point 
M. Calculate the contrast C at M and study its variation as a function of x. Is it 
possible to use these results to determine λ and δλ? 

   
 

P11.12 The interference of light on a thin film of thickness e produces the intense 
colors of a soap bubble, for instance. It occurs between the reflected waves R1 and 
R2 (or the transmitted waves T1 and T2) on both faces of the film (Figure 11.18).  

S1 

S2 

θ 

O′

M(x) 

D 

z 

H 

OO d H

R2

S

P2 

T2 

T1 

R1

O

θ2
 P1

 

 Q 

θ1

θ3 

e

(n3) 

θ2

θ2
θ1

θ1

θ1

θ3

S1
S2

Figure 11.17. Young’s experiment Figure 11.18. Interference on a thin film 

(n1) (n2) 

J2

J1



382     Electromagnetism 

a) Show that the phase shift between R1 and R2 is φR = φ + φ̂  and between T1 and T2 

is φT = φ + φ̂ + π, where φ = 4π(e/λ2) cos θ2 and φ̂ = 0 if n2 lies between n1 and n3 

and φ̂ = ± π otherwise. Deduce that, in the case of normal incidence, the reflected 
intensity is maximal if e = ¼λ2(1+ 2q) where q is an integer. b) Consider a wedge-
shaped air film situated between two plates, that make a small angle α and 
illuminated normally. Show that the bright fringes are parallel to the wedge at 
positions xq = (1+ 2q)(λ2/4α). c) A light wave is incident normally on the air film 
situated between the plane surface of a glass plate and the spherical surface of a 
planar convex lens whose radius of curvature is R. Show that the bright fringes are 
circular of radii rp ≈ Rp λ+ )2/1(  called Newton’s rings. Describe what one 

observes if this setup is illuminated with sunlight. 

Multi-slit interference 

P11.13 Consider a set-up similar to that of Young’s experiment but with six parallel 
slits emitting waves of amplitude a in phase. a) Draw a phasor diagram for the 
resultant wave in the direction θ. Verify that it has principal maximums Amax = 6a in 
the directions θ such that sin θ = qλ/d and that two principal maximums are 
separated by four secondary maximums and five minimums. Verify that the first 
minimum is in the direction given by sin θmin

 = λ/6d. b) A radar station uses an 
emitter that consists of six rectilinear parallel wires separated by a distance  
d = 20 cm between consecutive wires. The station uses a wavelength of 10 cm. 
What are the directions of the principal maximums of order 0 and 1 and what is their 
angular width? Instead of rotating the array, it is possible to use a phase command, 
which consists of producing a phase shift φi(t) between adjacent antennas. What then 
is the direction of the principal maximum of order 0? How should we choose φi(t) in 
order to have sweeping at an angular speed ω? 

P11.14 a) A light wave of wavelength λ = 0.6 µm, is incident normally on a slit of 
width 0.2 mm. The diffraction pattern is observed on a screen that coincides with the 
focal plane of a lens of focal distance f = 100 cm. Determine the distances of the first 
minimum and the first secondary maximum from the center of the diffraction 
pattern? b) Describe the diffraction pattern if the incident light is formed by two 
wavelengths λ1 = 0.6 µm and λ2 = 0.5 µm. c) The slit is illuminated with an ideally 
monochromatic light of wavelength λ = 0.6 µm, but at an angle θ′ = 30° with the 
normal to the slit. Show that the light intensity in the direction θ is I = IoFd(Φ) with 
Φ = 2π(d/λ)(sin θ − sin θ′) and Fd(Φ) = sin2(Φ/2)/(Φ/2)2. Deduce that the principal 
maximum is in the direction of geometrical optics. Determine the positions of the 
first minimums on both sides of the principal maximum. 



Reflection, Interference, Diffraction and Diffusion     383 

P11.15 The transmittance of an aperture is the ratio of the transmitted amplitude to 
the incident amplitude. Describe the Fraunhofer diffraction pattern produced by a 
slit of width d and transmittance depending on the distance x to the longitudinal axis 
of the slit according to the expression T(x) = cos2(πx/d) for |x| < d/2 and T(x) = 0 for 
|x| > d/2. 

P11.16 To simplify, we consider the propagation of a scalar wave E = f(r) te ωi .  
a) Show that f(r) obeys Helmholtz equation Δf + k2 f = 0, where k is the wave vector 
of magnitude k = ω/v and v is the speed of propagation in the medium. b) Consider 
the vector field (Ψ1∇Ψ2 − Ψ2 ∇Ψ1). Applying Gauss-Ostrogradsky’s theorem to a 
volume V bounded by a surface S, show Green’s identity  

∫∫∫V dV ' [Ψ1(r')Δ'Ψ2(r') − Ψ2(r')Δ'Ψ1(r')]  

                                      = ∫∫S dS(r') n(r').[Ψ1(r')∇'Ψ2(r')−Ψ2(r') ∇'Ψ1(r')],  [P11.1] 

where Δ' and ∇' are the Laplacian and the vector differential operators with respect 
to the coordinates of r' and n' is the normal unit vector pointing outward from S at 
the point r'. c) We would like to write a representation of the solution f(r) of the 
Helmholtz equation Δf + k2 f = 0 at a point M  in terms of the boundary conditions on 
a given surface S1 surrounding M (Figure 11.19). We take Ψ1(r') = f(r') and   
Ψ2(r) = (1/R) kre i− , where R = MM ' . Ψ2(r) may be interpreted as a spherical wave 
that is emitted by a point-source at M and evaluated at M' on the surface S1. Let S2 

be a sphere of center M and radius ρ. Apply Green’s identity [P11.1] to the volume V 
bounded by the surfaces S1 and S2. Verify first that ∇'Ψ2 = (R/R3)(1 + ikR) kre i−  
and that Ψ2 is a solution of Helmholtz’s equation at any point r' except the points 
where R = 0, therefore Ψ2 is singular. No point M' of V corresponds to R = 0. Deduce 
that the left-hand side of equation [P11.1] is equal to 0. Evaluating the integral over 
S2, show that  

∫∫
2S S'd  n'.[ f(r')∇'Ψ2(r') −Ψ2(r') ∇'f(r')] = ρ− ke i ∫∫ Ω

2S 'd  f(1+ikρ) + ρ.∇ f], 

where ρ = 2'MM . In the limit ρ → 0, the right-hand side tends to 4π f(M). Deduce 
Kirchhoff’s representation 

f(M) = ∫∫ 1π4
1

S S'd R
e kRi−

{n'.∇'f(r') − f(r') 2R
'R.n (1+ ik)}  

                        = ∫∫
1π4

1
S S'd R

e kRi−
{

nx
f

∂
∂  − f(r') R

'θcos
(1 + ikR)},   [P11.2] 
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where θ is the angle that n' forms with R and xn is the normal coordinate to S1. This 
relation allows f to be determined at each point M, if we know f and its normal 
derivative ∂f/∂xn on a closed surface S1. Note that, if M is outside S1, we consider 
the volume V, which is outside S1 and S2 and bounded by a closed surface S3, which 
we may take at infinity. If the function f decreases rapidly to 0 at  large distance, the 
integral over S3 tends to 0. Thus, the relation [P11.2] holds in all cases with S1 being 
any closed surface. d) In the case of a point-source S, the wave on S1 is of the form  
f(r') = (A/r') 'kre i− , where r' = SM'. Show that the relationship [P11.2] may be 
written as 

 f(M)= ∫∫λ 1

i
S S'd R

e kRi−
 

'

'

ikre
r

−

2
coscos 'θ+θ

.  [P11.3] 

We find the Fresnel inclination factor ½(cos θ + cos θ') with the right factor of 
proportionality 1/λ but with an additional phase shift π/2. 

 
 
 
 
 
 
 
 
 

Figure 11.19. Problem 11.16 

Diffraction by randomly distributed identical apertures or obstacles 

P11.17 Identical opaque disks of radius R are randomly distributed on a plate of 
glass and illuminated normally. The diffraction pattern is observed in the focal plane 
of a converging lens parallel to the plate. a) Show that, at any point except the lens 
focal point, the diffraction pattern is the same as that of a single disk of radius R.  
b) A powder, assimilated to small disks, is spread randomly on a plate of glass. 
Using light of wavelength 600 nm and a lens of focal distance 2 m, the radius of the 
first dark ring is 4.90 cm. What is the radius of the powder grains? c) The Sun and 
the Moon appear to be surrounded by a halo when the atmosphere is slightly cloudy 
or dusty. Explain why. What can you conclude if the angular radius of this halo is 3° 
and light has an average wavelength of 0.6 µm? 
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Diffraction grating  

P11.18 In the case of radio waves, it is easy to have sources with spacing of the 
order of the wavelength. A rectilinear antenna, carrying an oscillating current, emits 
an electromagnetic wave especially in radial directions of its median plane. Consider 
two parallel antennas with a spacing d (Figure 11.20). Let E1 = Em sin(ωt) and 
E2 = Em sin(ωt + φ) be the waves that they emit. a) Write the expressions of the waves 
at a long distance r from the center O and in the direction θ in the median plane of 
the antennas. What is the resultant wave? Determine the directions corresponding to 
the maximum intensity of the wave and to the minimum intensity. b) Assuming that 
d = λ/2 and φ = 0, determine the intensity for θ = 0, 30°, 60° and 90°. What can you 
deduce concerning the direction of the emitted wave? c) Now assume that d = λ/2 
and φ = 30°. What is the new direction of the emitted wave? d) Is it possible to 
narrow the direction of emission by increasing the number of antennas? 

 

P11.19 Radio-interferometers are used in radioastronomy. They consist of two or 
more antennas at a distance d apart (Figure 11.21). The radio signals are transmitted 
by cables to a global receiver, where they interfere. a) Let us consider first the case 
of two antennas. Show that the angles of incidence that correspond to maximums of 
intensity are given by sin θ = pλ/d. Plot the interference intensity versus θ. The 
Green Bank (West Virginia) interferometer has two antennas separated by a distance 
d, which may be as long as 2,700 m and it uses a wavelength λ = 11 cm. What is the 
angular separation of two maximums of interference? b) A radio-interferometer in 
Australia is formed by 32 antennas aligned and 7 m apart. What is the angular width 
of the central maximum and the angular separation of two consecutive principal 
maximums if  λ = 21 cm? 

P11.20 a) Analyze the Fraunhofer diffraction by three identical slits of width d at a 
distance a apart, if they are illuminated normally. b) The middle slit is covered with 
a plate of thickness e, which produces a phase shift φ in the transmitted wave 
without modifying its intensity. Analyze the new distribution of intensity on a screen 
placed at large distance and parallel to the slits. Consider successively the case of a 

R 
O 

 θ 
d 

Figure 11.20. Problem 11.18
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d

Figure 11.21. Problem 11.19 
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quarter-wave plate producing a phase shift φ = π/2, a half-wave plate producing a 
phase shift φ = π, and a plate producing a phase shift φ = π/2 + ε ( ε << π/2). 

P11.21 a) In order to determine the spacing of a diffraction grating, we observe the 
diffraction by transmission for a beam of wavelength 589 nm. One of the principal 
maximums is in the direction of the incident beam and the third is in the direction of 
45.0°. What is the spacing of the diffraction grating? b) This diffraction grating is 
illuminated with light of unknown wavelength. We find that the third-order 
maximum is in the direction of 35.5°. What is the value of λ? c) Hydrogen and 
deuterium have two lines that differ by 0.18 nm close to λ = 656.3 nm. What should 
be the minimum number of diffraction grating lines in order to separate these two 
lines? d) This diffraction grating is illuminated normally with sunlight. The 
transmitted light is received on a screen located at 60 cm from the diffraction 
grating. In this screen, we make a slit between the distances 10 and 11 cm from the 
central maximum. What is the band of the wavelength passing by this slit? 

X-rays diffraction 

P11.22 a) Consider the diffraction of a plane wave of wave vector k' by a linear 
chain of unit cells of spacing d in the direction of the unit vector e. Show that the 
interference is constructive in the directions of wave vector kq such that kq.e − k'.e = 
2πq/d where q is an integer. b) Consider now the waves that are diffracted by the 
parallel chains of an atomic plane. Take the origin O at the position of one of the 
cells and two axes (oblique in general) of unit vectors e1 and e2 in the directions of 
two chains. Any cell of this plane occupies the position rm, n = md1e1 + nd2 e2, where 
m and n are integers and d1 and d2 are the spacing in the directions e1 and e2 
respectively. Show that the phase shift of the diffused wave by this cell in a direction 
of wave vector k = k1 e1 + k2 e2 + kz ez is φm, n = m d1 e1.(k − k') + n d2 e2.(k − k'). We 
have a principal maximum if φm, n is an integer multiple of 2π for any m and n. This 
is possible if d1 e1.(k − k') = 2q1π and d2 e2.(k − k') = 2q2π. As the directions of the 
chains e1 and e2 may be chosen in many ways in the atomic plane, show that this 
implies that k'// = k//, thus k⊥ = k'⊥ (transmitted wave in the direction of incidence) or 
k⊥ = −k'⊥ (reflected wave on the atomic plane). c) Finally, consider the waves that 
are diffracted by the various atomic parallel planes. Show that they are in phase if 
Bragg’s law is verified. d) X-rays, of wavelength λ = 0.200 nm, are incident on a 
NaCl crystal. Determine the angles θ formed by the incident and reflected rays with 
the atomic planes, which are at a distance d = 0.5627 nm apart. 

Cross section 

P11.23 Consider a beam of Ni photons per unit volume, incident in the direction Oz 
on a sphere of radius R (Figure 11.22). a) What is the photons’ flux? Assuming that 
the photons are reflected on the surface of the sphere according to the usual laws of 
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reflection, determine the angle of deviation θ for the photons that are reflected at the 
point I, situated at a distance b from Oz. b) A counter, which is placed at large 
distance, counts the scattered photons in the solid angle dΩ. What is the count per 
second? Deduce the differential cross section σ(Ω). Calculate the total cross section 
σ and verify that it is πR2. c) Calculate the absorption coefficient of light in water if 
it contains 100 particles per cm3 and the diameter of these particles is 10 µm. 

 

Figure 11.22. Problem 11.23 
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Chapter 12 

Guided Waves 

If a wave propagates in an infinite and non-dispersive medium, its phase velocity 
v(p) and its group velocity v(g) are equal to the speed of propagation v, which appears 
in the wave equation for any frequency of the wave. All physical quantities 
associated with the wave are transferred with the group velocity. A wave is guided if 
it is canalized between surfaces, which limit the propagation medium in one 
transverse direction or in both of them. Guided waves propagate in specific modes. 
Each mode is characterized by a cut-off frequency, a phase velocity and a group 
velocity, which depend on the frequency of the wave and on the geometry of the 
waveguide. The propagation properties in the infinite medium are recovered if the 
transverse dimensions of the waveguide are much larger than the wavelength. We 
may analyze their propagation by studying the successive reflections on the guide 
walls. However, a more practical and general method consists of directly finding the 
solutions of the wave equation that satisfy the boundary conditions. 

If the medium is bounded in the direction of propagation, it can support only 
standing (or stationary) waves in normal modes of discrete frequencies (called 
normal frequencies). The modes are determined from the wave equation and the 
boundary conditions of the medium. In each mode, the propagation medium is a 
juxtaposition of wave zones with points called antinodes, where the amplitude of the 
wave is large, and points called nodes, where the amplitude is equal to zero. The 
physical quantities oscillate at each space point with no transfer from one zone to the 
other. More generally, guided or standing waves may be superpositions of modes.  

In this chapter, we study the propagation of the potential and the current along an 
electric line. Then we consider the propagation of electromagnetic waves, guided by 
two conductors or within a hollow conductor. We evoke some applications of 

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
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waveguides, namely in telecommunications, allowing the transmission of energy and 
information over long distances.  

12.1. Transmission lines  

Let us consider a transmission line constituted by two long and parallel 
conductors, carrying the electric current there and back. Eventually one of the 
conductors may be the ground. The current produces a magnetic field; thus, the line 
has a certain inductance Ll per unit length. The conductors also constitute a long 
capacitor with a certain capacitance Cl per unit length. In the following, we neglect 
the resistance of the conductors and an eventual current leak between them (ideal 
line).  

 
 
 
 
 
 

         (a)                                                                          (b) 

Figure 12.1. a) Element of length dz of a transmission line, and b) a transmission  
line supplied by a generator G and connected to an impedance Zc 

An element of the line MN of length dz consists of a self-inductance Ll dz in the 
direction of the line and a transverse capacitor of capacitance Cl dz (Figure 12.1a). 
The potential difference V between the two conductors and the current intensity I are 
functions of z and t. The potential drop between M and N is then – dV = ∂tI Ll dz. 
The charge of the equivalent capacitor of length dz is VCl dz and the current intensity 
in the transverse branch of the capacitor is ∂tV Cl dz. The decrease of the intensity 
between M and N is thus – dI = ∂tV Cl dz. Dividing by dz, we get the equations 

Ll ∂tI + ∂zV = 0,                       Cl ∂tV + ∂zI = 0.      [12.1] 

Differentiating one of these equations with respect to t and the other with respect 
to z and making linear combinations, we find the equations of propagation 

∂2
ttI – v2 ∂2

zzI = 0,       ∂2
ttV – v2 ∂2

zzV = 0,      where v = 1/ ll LC .  [12.2] 

In the case of a line constituted by two long, plane and parallel plates of width D, 
we find Cl = εD/d and Ll = µd/D, where d is the distance between the plates. In the 
case of a coaxial cable constituted by a cylindrical wire of radius r1 surrounded by a 

V(z, t) 
M N 

L dz 

dz 

I(z, t) 

Cl dz
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z
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cylindrical shell of internal radius r2, we find Cl = 4πε/ln(r2/r1) and 
Ll = (µ/4π) ln(r2/r1) (see problem 8.12). In these cases, the speed of propagation is  
v = 1/ ll LC = 1/ με . This is also the speed of light in the medium that separates 
the conductors. This result holds for any geometry of the line and, in the limit, of non-
guided waves. This result means that the potential and the current are produced by 
the electromagnetic wave that propagates in the medium that separates the 
conductors. The phase velocity v(p) = ω/k = 1/ με  depends only on the nature of 
this medium and it is independent of the frequency. The ideal line is thus  
non-dispersive; it transmits the electric signals without deformation or attenuation.  

If a generator G of electromotive force (emf) E = Em cos(ωt) is connected at the 
entry of an infinite line toward the positive z, the d’Alembert’s equation for the 
potential ∂2

ttV – v2∂2
zzV = 0 has solutions V(z, t) = A cos(ω't – k'z + φ') if ω'/k' = v. 

Imposing the condition V(0, t) = Em cos(ωt) at the entry, we find that A = Em and  
φ' = 0, ω' = ω and, consequently, k' = ω/v . Substituting V in the first equation [12.1], 
we find Ll ∂tI = − kEm sin(ωt – kz) and, consequently, I = (kEm/ωLl) cos(ωt – kz). As 
k/ω = 1/v = ll LC , we deduce that 

V(z, t) = Em cos(ωt – kz),   I(z, t) = (Em /Z) cos(ωt – kz),  [12.3] 

where Z = is the impedance of the line, that is, the ratio (Vm/Im) of the amplitude 

of the voltage to that of the intensity at any point of the line. 

The electric energy and the magnetic energy are distributed in the dielectric that 
separates the conductors. Their densities per unit length of the line are 

UE l = UM l = ½ Cl Em
2 cos2(ωt – kz).  [12.4] 

This energy is not stationary; it propagates along the line. Indeed, the power that flows 
through the section at z may be written as 

P(z, t) = V(z, t) I(z, t) = (Em
2/Z) cos2(ωt – kz).  [12.5] 

In particular, the power at the entry is the power that is supplied by the generator  

P(g) = V(0, t) I(0,t) = E(t) I(0,t). [12.6] 

The average power, taken over a period, is independent of z and t 

< P > = ½  Em
2 = ½ Em

2/Z. [12.7] 

In the case of a line constituted by two long, plane and parallel plates of width D 
and separated by a distance d, we find Z = (d/D). Particularly, if D = d, we get 

ll CL /

ll LC /

εμ/
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the impedance of the medium Z = . Its value in the case of vacuum is  

Zo =  = 377 Ω. 

Consider an ideal line of length d, capacitance Cl and inductance Ll per unit 
length (Figure 12.1b). Assume that it is short-circuited at the entry AB and 
connected at its terminal CD to a circuit of impedance Zc. If it is excited at the entry 
by a generator of angular frequency ω, the wave on the line is, in general, a 
superposition of a wave of the form [12.3] propagating toward the positive z and a 
wave that propagates in the opposite direction. To manage the phase shifts, it is 
convenient to use the complex representation and write 

V(z, t) = V1 + V2 ,   I(z, t) = (1/Z)[ V1 – V2 ]. [12.8] 

The line being short-circuited at AB, we must have V(0, t) = 0 and its end being 
connected to an impedance Zc, we must have V(d, t) = Zc I(d, t). These two 
conditions give two equations, which allow V1 and V2 to be determined: 

V1 + V2 = 0,            [V1 + V2 ] = (Zc/Z) [V1 – V2 ].  [12.9] 

In the particular case Zc = Z, these equations are verified if V2 = 0, that is, no 
reflected wave; we say that the impedance is matched (or adapted). The line of 
length d is thus equivalent to an infinite line toward the positive z.  

In the general case Zc ≠ Z, equations [12.9] have a non-trivial solution (i.e. non-
zero solution) only if  

–  = (Zc/Z)[ + ],       hence   tan(2πd/λ) = (Zc/Z).  [12.10] 

a) If the line is short-circuited at its end (Zc = 0), the possible wavelengths are 
λn = 2d/n, the corresponding angular frequency is ωn = πnv/d and the wave is 

I = Re(V1/Z)  [ + ] = (A/Z) cos(ωnt  + φ + π/2) cos(nπz/d), 
V = Re V1  [ – ] = A cos(ωnt + φ) sin(nπz/d).  [12.11] 

Thus, the line can support waves only according to the discrete modes (n) of 
frequencies nν~ = nv/2d. The entry and the end of the line are nodes for the voltage, 
i.e. V(0, t) = V(d, t) = 0, and antinodes for the intensity, i.e. Im has the maximum 
value A/Z. In the mode (n), the length of the line is equal to n times the half-
wavelength (d = ½ nλn). 

εμ/

oo/εμ

)i( kzte −ω )i( kzte +ω )i( kzte −ω )i( kzte +ω

kde i− kdei kde i− kdei
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b) If the line is open at its end (Zc = ∞), then tan(2πd/λ) = ∞, i.e. d = ½λ(n+½). 
The mode (n) has the frequency 1/2n+ν~ = (n+½)v/2d. The corresponding wave is 

I = Re (V1/Z)  [ + ] = (A/Z) cos(ωnt + φ + π/2) cos[π(n + ½)z/d], 
V = Re V1 [ – ] = A cos(ωnt + φ) sin[π(n + ½) z/d].  [12.12] 

The entry of the line is a node of V and an antinode of I, while its end is an antinode 
of V and a node of I. The length of the line is d = (n + ½)(λ/2). 

The existence of these standing waves was verified by Lecher in 1890 by 
exciting at high frequency the entry of a line open at its end. A measurement of V 
between the conductors at the various points z confirmed the existence of nodes and 
antinodes with the open end being an antinode of V. The distance between 
consecutive nodes is λ/2. Knowing the frequency, Lecher verified that the speed of 
propagation of the electromagnetic wave on the line is equal to the speed of light. 

If the two points C and D are disconnected and the conductors AC and BD 
aligned, we get a dipole-antenna of length 2d = λ(n + ½), whose extremities are 
nodes of I and antinodes of V. The shortest antenna of this type has a length 2d = ½λ 
(half-wave antenna, Figure 12.2a). If the points C and D are grounded, we find a 
dipole-antenna of length 2d = nλ, whose extremities are nodes of V and antinodes of 
I. The shortest antenna of this type has a length (2d = λ, Figure 12.2b). 

 
                    (a)                                                       (b) 

Figure 12.2. Standing electromagnetic waves: a) a dipole-antenna whose ends are  
free (nodes of I), and b) dipole-antenna whose ends are grounded (nodes of V) 

A standing electromagnetic wave on a line may be considered as an interference 
of a progressive wave and the corresponding reflected wave on both ends of the line. 
In general, a wave is stationary if it is confined in a finite region of space. If there is 
no energy dissipation, once the wave is established, it stays indefinitely and the 
generator needs to supply no more energy. In the case of a partial reflection on the 
boundary, a part of the wave may escape and the wave dies out. To maintain it, the 
generator must continuously supply energy. In this case, the wave on the line is a 
superposition of a standing wave and a progressive wave. 
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The modes are determined by the boundary conditions. If the electromagnetic 
wave meets the polished surface of a conductor, a part of the wave is reflected and 
the other is dissipated within the conductor as Joule heat. In the case of an ideal 
superconductor, there is no field inside it. The continuity of the tangential 
component of E and the normal component of B imply that the sum of the incident 
wave Ei and the reflected wave Ej vanishes on the surface of the conductor  
(Ei + Er = 0). Thus, we have total reflection with a phase shift of π for E. 

12.2. Guided waves 

We have seen in section 10.7 that the attenuation coefficient of an 
electromagnetic wave in a good conductor is large at high frequency; this means that 
the wave cannot propagate in conductors but it can in dielectrics (or vacuum). An 
ordinary electric circuit behaves as an antenna, emitting a large part of its energy as 
radiation. The amplitude of the emitted wave decreases with the travelled distance 
as, besides absorption, the wave spreads over a larger and larger wave front. To 
reduce this energy loss and the decrease in intensity, the electromagnetic wave must 
be guided by a metallic structure. The waveguide may be a hollow metallic pipe that 
is empty or filled with a dielectric (Figure 12.3a) or a two-conductor transmission 
line (coaxial cable, two-wire, or microstrip transmission lines) to conduct the current 
in both directions. Figure 12.3b shows the lines of E and B in the case of a 
transmission line constituted by two parallel wires usually used for the transport of 
electric energy and in traditional telephony. The two wires are isolated and set very 
close to each other in order to reduce the magnetic field and the inductance of the 
circuit and to reduce the interference of signals that are transmitted by nearby pairs 
of lines in cables containing several pairs. Figure 12.3c shows a coaxial cable 
constituted by a cylindrical conductor of radius R1, surrounded by an insulator and a 
cylindrical conducting shell of internal radius R2. In this case, the fields E and B are 
perpendicular to the direction of propagation parallel to the axis Oz of the line. We 
say that the wave is transverse electromagnetic (TEM).  

The propagation in the coaxial cable is easier to analyze. Using cylindrical 
coordinates, the symmetries require that the fields be of the form E = F(ρ) )i( kzte −ω eρ 

and B = G(ρ) )i( kzte −ω eϕ. The Maxwell-Gauss equation ∇.E = 0 in the dielectric 
implies that F = (Eo/ρ) and the Maxwell-Faraday equation implies that G = F/v. The 
real fields may be written as 

E = (Em/ρ) cos(ωt – kz) eρ,                 B = (Em/vρ) cos(ωt – kz) eϕ.  [12.13] 
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The Poynting vector is S = E × B/µ = (Em
2/vρ2) cos2(ωt – kz) ez and the 

transmitted power is the flux of S over the section of the insulator, that is, 

P = ∫ ρρ2
1

R
R d ∫ ϕπ2

0 d (Em
2/vρ2) cos2(ωt – kz) = (2πEm

2/v) cos2(ωt – kz) ln(R2/R1).    [12.14]  

Its average value is < P > = (πEm
2/v) ln(R2/R1). In reality, there is always a certain 

energy loss in the dielectric and in the conductors.  

 
   (a)                                                 (b)                                           (c) 

Figure 12.3. a) Electromagnetic waveguide in the form of a hollow conductor,  b) waveguide  
formed by two parallel conducting wires, and c) coaxial cable. The lines of E are  

drawn as solid lines and those of B are drawn as dashed lines 

In any waveguide, the wave must obey some boundary conditions at the surface 
of the conductors. In general, these conditions are satisfied if the wave propagates in 
specific modes, which depend on the geometry of the waveguide. As we have seen 
in section 9.5, the tangential component of E and the normal component of B vanish 
on the surface of an ideal conductor, while the normal component of E and the 
tangential component of B may not vanish, as this surface may carry charge and 
current densities. In the case of a good conductor, these properties are approximately 
valid. The energy loss as Joule heat is then negligible. In the following, we assume 
that the conductors are ideal and that the waveguide has translational symmetry in 
the direction Oz (Figure 12.3). At each point of the dielectric, the fields verify 
Maxwell’s equations with no charge and current densities: 

∇.E = 0,  [12.15] 
∇.B = 0,  [12.16] 
∇ × B = (1/v2) ∂tE,   [12.17] 
∇ × E = – ∂tB,  [12.18] 

where v = 1/ . We deduce the equations of propagation 

 v2ΔE – ∂2
ttE = 0,         v2ΔB – ∂2

ttB = 0.  [12.19] 
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On the other hand, on the surface of the conductors, the fields verify the conditions: 

B⊥ = 0          and           E// = 0,  [12.20] 

where B⊥ is the component of B, which is normal to the surface of the conductor, 
and E// is the component of E, which is parallel to this surface. The conditions 
[12.20] together with Maxwell’s equations impose that the wave can propagate in 
the guide only in certain modes with a characteristic lower cut-off frequency. In 
each mode, the fields E and B have specific orientations with respect to the walls 
and they propagate with a specific phase velocity and group velocity, which depend 
on the frequency and the geometry of the guide. In general, the conditions of [12.20] 
are compatible with Maxwell’s equations for three types of waves: 

a) Transverse magnetic (TM) waves such that  

Bz = 0    (everywhere)     and    E// = 0    (on the conductors).   [12.21] 

b) Transverse electric (TE) waves such that  

Ez = 0    (everywhere)     and    B⊥ = 0    (on the conductors).  [12.22] 

c) Transverse electromagnetic (TEM) waves such that 

Ez = 0    (everywhere)     and     Bz = 0    (everywhere).   [12.23] 

The TEM waves propagate only in free space or along transmission lines formed by 
two conductors, such as two parallel wires (Figure 12.3b) or a coaxial cable  
(Figure 12.3c). The fields E and B lie in the normal sections and are perpendicular to 
each other. Near the conductor, E is perpendicular to the conductor and B is 
tangential. 

In the case of a wave of angular frequency ω, which propagates in the direction 
of the axis Oz of a waveguide, the fields are of the form 

E = ,         B = ,  [12.24] 

where and  are two vector functions. Substituting [12.24] to E and B 

in the wave equations [12.19], we find that  and  verify Helmholtz equations 

      ∂2
xx  + ∂2

xx  + (ω2/v2 – k2)  = 0,       ∂2
xx  + ∂2

xx  + (ω2/v2 – k2)  = 0.[12.25] 

We note that the functions  and  are not independent, because E and 
B are related by Maxwell’s equations [12.17] and [12.18]. 

)( yx,Ê )i( kzte −ω )( yx,B̂ )i( kzte −ω

)( yx,Ê )( yx,B̂

Ê B̂

Ê Ê Ê B̂ B̂ B̂

)( yx,Ê )( yx,B̂
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12.3. Waveguides formed by two plane and parallel plates

This is the simplest waveguide to analyze mathematically. We chose the axes of
coordinates so that one of the plates lies in the plane Oyz and the other in the plane
x = a (Figure 12.4). The fields do not depend on y because of the translational
symmetry in this direction. Thus, the fields may be written as

E = and B = , [12.26]

where and are two vector functions of x only. In this case, the
Helmholtz equations of [12.25] become the simple differential equations

Êxx
2∂ + q2 Ê = 0 and B̂xx

2∂ + q2 B̂ = 0, where q2= ω2/v2 – k2. [12.27]

The equation for has the general solution

= (B1 ex + B2 ey + B3 ez) + (B′1 ex + B′2 ey+ B′3 ez) . [12.28]

The corresponding magnetic field is

B = [(B1 ex + B2 ey+ B3 ez) + (B′1 ex + B′2 ey+ B′3 ez) ] . [12.29]

Maxwell’s equation ∇∇.B = 0 is verified if

qB1 = kB3, qB′1 = – kB′3. [12.30]

The electric field is related to the magnetic field by the third Maxwell-Ampère
equation ∇∇ × B = iωE/v2, which gives in this case

E = (v2/ω){[kB2ex – (kB1 + qB3)ey+ qB2ez]

+ [kB′2ex – (kB′1 – qB′3)ey – qB′2 ez] } . [12.31]

The other Maxwell’s equations ∇∇.E = 0 and ∇∇ × E = −−B are identically verified.
Using [12.30] and q2+ k2= ω2/v2, we may write

B = {[B1ex + B2ey+ (q/k)B1ez] + [B′1ex + B′2ey – (q/k) B′1 ez] } ,

)(xÊ )i( kzte −ω )(xB̂ )i( kzte −ω

)(xÊ )(xB̂

)(xB̂

)(xB̂ qxei qxe i−

qxei qxe i− )i( kzte −ω

qxei

qxe i− )i( kzte −ω

qxei qxe i− )i( kzte −ω
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E  = (v2/ω){[kB2 ex – (ω2/kv2) B1 ey + qB2 ez]   

          + [kB′2 ex – (ω2/kv2) B′1 ey – qB′2ez] } .  [12.32] 

 
(a)                         (b)                           (c)                         (d)                        (e) 

Figure 12.4. Fields E and B in a waveguide formed by two plane parallel plates: a) fields of 
a TEM wave, b) fields of a TM wave (m = 1) in a transverse section, and c) in a longitudinal 

section, d) fields of a TE wave (m = 1) in a transverse section, and e) in a longitudinal 
section. The lines of E are solid lines and those of B are dashed lines 

The boundary conditions [12.20] are verified on the plate x = 0 if B′1 = –B1 and 
B′2 = B2. Thus, we may write the fields in the form 

B = 2[iB1 sin(qx) ex + B2 cos(qx) ey + (q/k)B1 cos(qx) ez] , 
E = 2(v2/ω)[kB2 cos(qx) ex – i(ω2/kv2)B1 sin(qx) ey + iqB2 sin(qx) ez]   [12.33] 

The boundary conditions [12.20] on the plate x = a are verified if  

B1 sin qa = 0         and        qB2 sin qa = 0. [12.34] 

These equations may be verified in the following three cases: 

i) q = 0, then k = ω/v and the fields have the form 

E  = vBo ex        and     B  = Bo ey ,  [12.35] 

where we have redefined the amplitude Bo = 2B2. This is a TEM wave with k related 
to ω by the dispersion relation 

ω = vk.  [12.36] 

The phase velocity and the group velocity are 

qxei
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v(p) = ω/k = v      and       v(g) = ∂ω/∂k = v.  [12.37] 

Thus, this waveguide transmits TEM waves at any frequency with a phase 
velocity and a group velocity equal to the speed of propagation v, exactly as if the 
medium were infinite. Figure 12.4a shows the lines of the fields E and B for this 
TEM wave. 

ii) sin(qa) = 0 (with q ≠ 0) and B1 = 0. Then q may have one of the values 

qm = mπ/a,           where  m = 1, 2, 3, …  [12.38] 

The integer number m specifies the mode. The corresponding value of k is given by 
the dispersion relation 

k2 = ω2/v2 – qm
2.  [12.39] 

We may write also 

k = k m = γmω/v,     where  γm = 22
m /1 ωω−  and ωm = mπv/a.  [12.40]  

If ω > ωm, km is real; the wave is progressive and the guide is dispersive. On the 
other hand, if ω < ωm, km is imaginary (k = −iηm ), the guide is reactive and the 
wave is attenuated with an attenuation coefficient in the direction Oz  

ηm = (1/v) .  [12.41] 

Thus, ωm is a lower cut-off frequency for the mode m. The fields in this mode are 

E  = vBo[γm cos(mπx/a) ex + i(ωm/ω) sin (mπx/a) ez] , 

B = Bo cos(mπx/a) ey,  [12.42] 

where we have redefined the amplitude Bo = 2B2. The corresponding real fields are 

E = vBo[γm cos(mπx/a) cos(ωt – kz +φ) ex – (ωm/ω) sin(mπx/a) sin(ωt – kz + φ)ez]  

B = Bo cos(mπx/a) cos(ωt – kz + φ) ey. [12.43] 

As Bz = 0 everywhere, this is a TM wave. Figures 12.4b and 12.4c illustrate the 
fields of a TM wave (m = 1) between the plates. 

22
m ω−ω

)i( kzte −ω

)i( kzte −ω
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iii) sin(qa) = 0 (with q ≠ 0) and B2 = 0. q may have one of the values of [12.38] 
with the same dispersion relation as [12.39] and a cut-off frequency ωm = mπv/a. 
The fields in the mode m are  

E  = Bo (v/γm) sin(mπ x/a)  ey. 
B  = Bo[–sin(mπ x /a) ex + i(ωm/ωγm) cos(mπ x /a) ez] ,  [12.44] 

or the real fields 

E = Bo(v/γm) sin(mπ x/a) cos(ωt – kz + φ) ey, 
B = Bo[–sin(mπx/a) cos(ωt – kz + φ) ex 

               – (ωm/ωγm) cos(mπ x/a) sin(ωt – kz + φ)ez].   [12.45] 

As Ez = 0 everywhere, this is a TE wave. Figures 12.4d and 12.4e illustrate the fields 
E and B of a TE (m = 1) wave. 

Contrary to TEM waves, TM and TE waves can only propagate in the guide in a 
mode m if its angular frequency ω is higher than the cut-off angular frequency of 
this mode ωm = mπv/a. Using the dispersion relation [12.39], we obtain the phase 
velocity and the group velocity of the mode m  

v(p) m = ω/k = v/γm > v        and     v(g) m = ∂ω/∂k = vγm < v.  [12.46] 

We always have v(p)m > v, v(g)m < v and v(p)mv(g)m = v2. 

12.4. Guided electromagnetic waves in a hollow conductor 

At hyper-frequencies ( ν~ of the order of the GHz), two-conductor waveguides are 
not practical. A single conductor waveguide (i.e. a hollow conductor) may be used. 
This type of waveguide cannot support TEM waves at any frequency. It may support 
a TE wave or a TM wave in a given mode if the frequency of the wave is higher than 
the cut-off frequency of the mode, which is determined by the geometry of the 
waveguide. The TE or TM mode with the lowest cut-off frequency is called the 
dominant mode. Thus, the frequency of the dominant mode is the minimum 
frequency of a wave that can propagate in the waveguide without attenuation. In this 
section, we study the propagation in a rectangular waveguide (Figure 12.5a) and we 
provide some results for circular waveguides (Figure 12.5b). 

)i( kzte −ω

)i( kzte −ω
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                   (a)                                                                      (b) 

Figure 12.5. a) Rectangular waveguide, and b) circular waveguide  

The simplest waveguide to analyze has a rectangular cross-section with sides a 
and b (Figure 12.5a). Such a guide is used for the transmission of linearly polarized 
waves. If we write the fields in the form [12.24], each component of the vector 
functions  and ˆ ( , )x yB  obeys Helmholtz equation [12.25]. Let us write, for 
instance 

 = X(x) Y(y).  [12.47] 

Substituting this expression into Helmholtz equation and dividing by XY, we get 

(1/X)∂2
xxX + (1/Y)∂2

yyY + ω2/v2 – k2 = 0.  [12.48] 

The first term being a function of x and the second a function of y, the equation is 
identically verified only if each term is constant, that is,  

∂2
xxX = – p2X,     ∂2

xxY = – q2Y            with    p2 + q2 + k2 = ω2/v2,   [12.49] 

where we chose the (–) sign in order not to have exponential solutions, which cannot 
respect the boundary conditions. Thus, we have 

X = A sin(px + φ),          Y = B sin(qy + ψ)  [12.50] 

and similarly for the other components )(y yxE ,ˆ  and . The condition 

∇.E = 0 may be verified only if the components of E are simple harmonic functions 
of x and y with the same parameters p and q. Thus, omitting the global factor 

, we may write 

= A1 sin(px + φ1) sin(qy + ψ1), )(y yxE ,ˆ  = A2 sin(px + φ2) sin(qy + ψ2),  

= A3 sin(px + φ3) sin(qy + ψ3),  [12.51] 
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)(x yxE ,ˆ

)(z yxE ,ˆ

)i( kzte −ω

)(x yxE ,ˆ

)(z yxE ,ˆ

z 

x

y

R
O

a 

z

x 

O 

b
 y 



402     Electromagnetism 

where p and the φi are not all equal to zero, this is also the case for q and the ψi 
(because this is equivalent to a field equal to zero). We may take the phases lying 
between 0 and π (π excluded) and the amplitudes to be positive, negative or zero. 
The boundary condition E// = 0 on the surfaces x = 0 and y = 0 gives the conditions 

A1 sin ψ1 = A2 sin φ2 = A3 sin φ3 = A3 sin ψ3 = 0.  [12.52] 

Redefining the amplitudes, we may write the electric field in the form 

Ex = A1 sin(px + φ1) sin(qy),         Ey = A2 sin(px) sin(qy + ψ2), 

Ez = A3 sin(px) sin(qy).  [12.53] 

The condition E// = 0 on the surfaces x = a and y = b is verified if 

A1 sin qb = A2 sin pa = A3 sin pa = A3 sin qb = 0.  [12.54] 

The magnetic field is given by the equation ∇ × E = −∂tB, that is,  

Bx = (1/ω)sin(px) [iqA3 cos(qy) − kA2 sin(qy + ψ2)], 

By = (1/ω) sin(qy) [ kA1 sin(px + φ1) −ipA3 cos(px)], 

Bz = (1/ω) [ ipA2 cos(px) sin(qy + ψ2) − iqA1sin(px + φ1) cos(qy)].  [12.55] 

The condition B⊥ = 0 on the surfaces x = 0, x = a, y = 0 and y = b is verified if 
equations [12.52] and [12.54] are verified. Maxwell’s equation ∇.E = 0 is verified if  

pA1 cos φ1 = qA2 cos ψ2 = pA1 sin φ1 + qA2 sin ψ2 + ikA3 = 0,  [12.56] 

while the other Maxwell equations are verified. All conditions [12.52], [12.54], and 
[12.56] can only be verified for the following types of waves: 

a) TE waves: 

B̂ = (A/ω) [pk sin(px) cos(qy)ex + kq sin(qy) cos(px)ey – i(p2+q2) cos(px) cos(qy)ez], 
Ê  = A [q cos(px) sin(qy) ex − p sin(px) cos(qy) ey];  [12.57] 

b) TM waves: 

Ê = (Cv2/ω)[pk cos(px) sin(qy)ex + qk sin(px) cos(qy)ey + i(p2+q2) sin(px) sin(qy) ez], 
B̂ = C[− q sin(px) cos(qy) ex + p sin(qy) cos(px) ey]. [12.58] 

In these expressions, p and q only take the values 

p = mπ/a,            q = nπ/b,           where m and n = 0, 1, 2, …   [12.59] 
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The integers m and n specifying the mode cannot both be equal to zero. Then, the 
last relation [12.49] gives 

k = k m,n = γm,n ω/v,             γm,n = ,  [12.60] 

where ωm, n is the angular cut-off frequency given by 

ωm,n = πv .  [12.61] 

If the angular frequency ω of the wave is higher than ωm, n, km, n is real; the wave 
is then progressive without attenuation with the dispersion relation [12.60]. The 
phase velocity and the group velocity are 

v(p) m,n = ω/k = v/γm,n > v        and        v(g) m,n = ∂ω/∂k = γm,nv < v.  [12.62] 

Conversely, if ω is lower than ωm, n, km, n is imaginary of the form −iηm, n; the wave 
is then attenuated in the Oz direction with an attenuation coefficient 

ηm, n = (1/v) .  [12.63] 

Figure 12.6a illustrates the dispersion relation for the mode (m, n): ω increases 
from the cut-off angular frequency ωm, n and asymptotically approaches the straight-
line ω = vk, which is the dispersion relation in an infinite medium. Figure 12.6b 
illustrates the attenuation coefficient ηm, n and the wave number km, n versus ω: ηm, n 
and km, n are equal to zero at the cut-off frequency ωm, n. Figure 12.6c illustrates the 
phase velocity and the group velocity versus ω: we always have v(p)m, n > v, v(g)m, n 
< v and v(p)m, n v(g)m, n = v2. At high frequency, v(p)m, n and v(g)m, n asymptotically 
approach the speed of propagation v in the infinite medium.  

 
 
 
 
 
 
 
 

Figure 12.6. a) Dispersion relation of a waveguide, b) attenuation coefficient and wave 
number versus ω, and c) phase velocity and group velocity versus ω for a mode (m, n) 
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For instance, if a = 3 cm and b = 7 cm, the cut-off frequency of the modes are 
nm,ν~  = 15 (m2/9 + n2/49)½ GHz. The first two frequencies are 0,1ν~  = 2.14 GHz and 

0,2ν~  = 4.29 GHz. To reduce the deformation of signals, the waveguide must be used 

only in the first mode, using only frequencies ν~  lying between 2.14 and 4.29 GHz. 
A wave of 3 GHz has a factor γ0,1 = 0.7; thus, it propagates with phase velocity  
v(p) 0,1 = 4.29 × 108 m/s and a group velocity v(g) 0,1 = 2.1 × 108 m/s. A wave of 1.5 
GHz entering the guide according to the first mode has an attenuation coefficient 
η = 32 m−1. Thus, this wave can penetrate only few centimeters. 

In the case of a circular waveguide of radius R, the fields can be expressed in 
terms of Bessel functions; the cut-off frequencies are not the same for the TE modes 
and the TM modes; they are given by  

ωm,j(TM) = xm,j v/R        and         ωm,j (TE)= x′m,j v/R,   [12.64] 

where xm, j is the jth zero of the Bessel function Jm(x). The first zeros are 

for  m = 0,     x 0,1 = 2.405,       x 0,2 = 5.520 ,      x 0,3 = 8.654.... 
for  m = 1,     x 1,1 = 3.832,       x 1,2 = 7.076,       x 1,3 = 10.173... 
for  m = 2,     x 2,1 = 5.136,       x 2,2 = 8.417,       x 2,3 = 12.620...  [12.65] 

x′m,j is the jth zero of the function J ′m(x) ≡ dJm/dx. The first zeros are 

for  m = 0,      x′0,1 = 3.832,      x′ 0,2 = 7.016,       x′ 0,3 = 10.174... 
for  m = 1,      x′ 1,1 = 1.841,      x′ 1,2 = 5.331,       x′1,3 = 8.536... 
for  m = 2,      x′ 2,1 = 3.054,       x′ 2,2 = 6.706,       x′2,3= 9.970…  [12.66] 

The lowest cut-off frequency is that of the TE mode m = 1 and j = 1, i.e. 
ω1,1(TE) = x′1,1 v/R = 1.84 v/R. 

12.5. Energy propagation in waveguides 

Let us calculate the energy density in a rectangular waveguide in the case of a 
transverse electric wave in the mode (m,n) [12.57], for instance. Taking the real part 
of the fields, we find the density of electric and magnetic energy per unit volume 

UE,v = ½εE2 = ½εA2[q2 cos2(px) sin2(qy) + p2 sin2(px) cos2(qy)] cos2(ωt–kz), 
UM,v = B2/2µ = ½(A2/µω2){[p2k2 sin2(px) cos2(qy) + k2q2 cos2(px) sin2(qy)] cos2(ωt – kz) 
                                                + (p2 + q2)2 cos2(px) cos2(qy) sin2(ωt – kz)}.  [12.67] 
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Contrary to the case of progressive waves in infinite space, these energy densities 
are not equal. Taking the average values over a period and integrating over the 
transverse dimensions x from 0 to a and y from 0 to b and using the integrals 

 sin2(px) = (1/2p) [ap – sin(ap)] = a/2    (si p = mπ/a).   [12.68] 

We find that the stored energy between the sections z and z + dz is  

dUE = dUM = (ε/16) abA2(q2 + p2) dz = (ε/16v2)abA2 ωm,n
2 dz,  [12.69] 

where we have used the relation p2 + q2 + k2 = ω2/v2. Thus, we find that the two time-
averaged densities of energy per unit length are equal. The total electromagnetic 
energy density per unit length is  

UEM,l = (ε/8v2) abA2 ωm,n
2.  [12.70] 

The Poynting vector S = E × B/µ of the wave may be written as  

S = (A2/4µω){− (p2+q2)[p sin(2px) cos2(qy)ex+ q cos2(px) sin(2qy) ey]sin(2ωt−2kz) 
          + 4k [q2 cos2(px) sin2(qy) + p2 sin2(px) cos2(qy)] cos2(ωt−kz) ez}.  [12.71] 

Evaluating its average over a period, the transverse components of <S> are equal to 
zero; thus, the energy propagates effectively only in the direction of the waveguide 

< S > = (A2k/2µω) [q2 cos2(px) sin2(qy) + p2 sin2(px) cos2(qy)] ez .  [12.72] 

Evaluating the flux of < S > over a section, we get the transferred average power 

<P> = (A2k/8µω) ab (q2 + p2) = (εk/8ω) ab A2 ωm,n
2 = v(g) m,nUEM,l .   [12.73] 

This expression shows that the electromagnetic energy propagates in the waveguide 
with the group velocity v(g) m,n.  

The preceding analysis assumes that the waveguide walls are superconductors 
(i.e. having infinite conductivity σ). In which case, there is no electric field in the 
superconducting wall and the continuity of the component of E parallel to the wall 
requires that it is equal to zero near the wall. Thus, the Poynting vector S has no 
component perpendicular to the wall. In other words, there is no energy flow 
through the wall. In the case of usual conductors, σ is finite and E varies with the 
traveled distance in the conductor according to the relations [10.110], that is, by 
taking the real part, E = Em

ze η− cos(ωt – ηz) where η ≈ . The time-averaged 
power dissipated as Joule heat in the unit volume of the conductor is 

< PJ > = < σ E2> = ½ σ Em
2 ze η−2 . [12.74] 

∫
adx0

2/μσω
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Thus, the time-averaged power that is dissipated per unit area of the walls is

Ps = ∫
∞
0 dz ½σ Em2 ze η−2 = (η/2µω) Em2. [12.75]

In general, the power loss in the waveguide depends on the wall material, its
geometry, the mode of propagation, and the dielectric that fills the guide. While
propagating from z to z + dz, power loss dP is proportional to dz and P. Thus, we
write dP = – ζ P(z) dz. By integration, we find that the transferred power varies with
the traveled distance according to the law

P(z) = Po ze ζ− , [12.76]

where Po is the power at the entry.

12.6. Cavities

An electromagnetic cavity is a finite volume bounded by a conductor in all
directions. If there is no energy loss, a wave remains indefinitely confined in the
cavity as a standing wave in modes having well-defined discrete frequencies. The
modes are determined by Maxwell’s equations and the boundary conditions on the
cavity walls. The analysis is complicated in the case of arbitrary shape. Let us
consider a cavity obtained by closing a waveguide at both ends. In order to respect
the boundary conditions on the lateral surfaces, the waves must propagate according
to the modes of the waveguide, that is, with a wavelength of the guided wave λ' =
v(p)/ ν~ = 2π/k where v(p) is the phase velocity of the mode. The boundary conditions
on the end surfaces, are respected if the waveguide has a length L equal to an integer
multiple of λ'/2; thus, we must have L = pλ'/2 = pπ/k. In the case of a rectangular
cavity, using the relations [12.60] and [12.61], this condition may be written as
Lγm,n ω/v = pπ. The discrete angular frequencies that verify this condition are

ωm,n,p = πv . [12.77]

Thus, a wave can be stationary in a cavity if its frequency is equal to one of the
normal frequencies of the cavity, which depend on its geometrical form and
dimensions. The cavity may be excited by sending a wave through a small hole in
the walls. Resonance occurs if the frequency of excitation is close to one of the
normal frequencies of the cavity.

In reality, there is always some energy loss (absorption in the dielectric, Joule
heat in the conductors, etc.). This gives each mode a certain characteristic relaxation
time τ and this corresponds to a resonance width Δω ≈ 2π/τ. If the excitation
frequency falls within the bandwidth of a normal frequency, the normal mode is
excited. In principle, all the normal modes may be excited. However, the excitation

222222 /// Lpbnam ++
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of a mode of high frequency nν~  is less likely because it requires higher energy. 
Figure 12.7 illustrates the variation of the absorbed power as a function of the 
excitation frequency. It is formed by a series of resonance peaks with a certain 
width. At low excitation frequencies, the resonances are well separated. At high 
frequencies, the resonances are closer and their width becomes comparable to their 
frequency spacing. The response of the system to the excitation becomes a slowly 
varying function of the frequency. 

 

Figure 12.7. Absorbed power  

A quantum system, such as atoms or molecules, has an infinite number of 
stationary modes, exactly like a cavity. If it is exposed to an electromagnetic field, it 
may absorb energy. The variation of the absorbed power versus the wave frequency 
is similar to that of Figure 12.7 with sharp peaks at the normal frequencies nν~ . If, 
for instance, a gas is exposed to a beam of light of bandwidth νΔ~ , the frequencies of 
this beam, which are equal to the normal frequencies of the gas molecules, are 
absorbed. Analyzing the spectrum of the emerging beam by using a spectrometer, 
the absorbed frequencies appear as dark lines (absorption spectrum). 

12.7. Applications of waveguides 

An electromagnetic wave of any frequency ν~  may propagate in the TEM mode 
only in waveguides formed by two conductors. It may propagate in a TE or TM 
mode if ν~  is higher than the cut-off frequency iν~  of this mode. Thus, a wave with a 
frequency lower than the frequency 1ν~  of the dominant mode cannot propagate in 
any TE or TM mode. If 1ν~ < ν~ < 2ν~ , the wave may propagate only in the dominant 
mode and, if 2ν~ < ν~ < 3ν~ , it may propagate in the dominant mode and the second 
mode and so on. As the velocity depends on the frequency and the mode, dispersion 
occurs. If a signal is a superposition of several frequencies, each spectral component 
propagates with its proper speed and the signal is inevitably deformed, even if a 
single mode is used for the transmission. The deformation is more important if more 
than one mode is used. Thus, to transmit a signal in a waveguide constituted by a 
hollow conductor with minimum deformation, only the dominant mode must be 
used. This is achieved by using frequencies that lie between the cut-off frequency of 

1ν~ 2ν~O 

P 

3ν~ ν~
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the dominant mode and that of the second mode. Other frequency bands may be
used with appropriate filters to enable a single mode.

As the cut-off frequencies depend on the geometry of the waveguide, the
transverse dimensions must be chosen so that the wave propagates in the dominant
mode. They are comparable to the wavelength. For instance, the mode m of a
waveguide formed by two plane and parallel plates has a cut-off frequency mν~

= mv/2a. A wave of frequency ν~ may only propagate in the dominant mode if
v/2a < ν~ < v/a, i.e. a < λ < 2a, where λ = v/ ν~ is the wavelength in the infinite
medium. Similarly, to transmit light in an optical fiber, its radius must be of the
order of the micrometer. As the transverse dimensions of waveguides are of the
order of λ, an important part of the wave is diffracted at its extremity and another
part is reflected back. If the waveguide ends in an antenna, the transmitted wave
may be directed and the reflection is reduced at its end.

One of the most important uses of waveguides is to transmit signals and
information. In order to only allow the dominant mode, the fields at the entry of the
guide must be established in this mode configuration by using appropriate mode
filters. We may transmit waves of frequency between several dozen kilohertz and a
few hundred megahertz by coaxial cables formed by a wire surrounded by an
insulating medium and a braided copper sheathing. This also protects the signal
from the interference of other unwanted signals. In such a cable, the TEM wave of
any frequency can propagate besides TM and TE waves if their frequency is higher
that the cut-off frequency of the modes. Coaxial cables are used, for instance, to
connect the parabolic antenna to a television set and the amplifier of a radar system
to its antenna. In telephony, a bundle of some 20 cables of this type allows more
than 1.3 × 105 simultaneous telephone calls to be transmitted. At hyper-frequencies
(several gigahertz), we may use the TE or TM modes if the TEM can be eliminated.
This can be achieved with a rectangular or cylindrical single-conductor waveguide.
For instance, a circular waveguide of 5 cm has a useful bandwidth of several
gigahertz near 40 GHz. This enables the transmission of approximately 5 × 104

telephone calls or 50 television channels.

A transparent fiber is an optical waveguide. This is a very thin cylindrical fiber
made of a transparent material with a high refraction index. It is surrounded by a
layer with a lower index, which is specially chosen to increase the reflection
coefficient for the light used and to protect the fiber. For short distance
transmissions, we may use plastic fibers (polystyrene, for instance), which are
economical, light, and flexible, but have high attenuation. We also use fibers
fabricated from a core of pure silica surrounded by a silicone layer. They are stiffer
and more costly than plastic fibers, but they have lower attenuation. We may also
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use fluoride glass, which is more difficult to manufacture but has extremely low 
attenuation. 

A large number of fibers may be assembled to form an optical fiber cable, which 
may be bent, with a radius as small as 1 cm, as light propagates separately in each 
fiber. This type of cable may be used to transmit images, thus to observe normally 
inaccessible places, such as internal organs of the body (endoscopy). It may be used 
to transmit an intense laser beam to be used in medical surgery and in industry. 
Because of the high frequency of light waves, fibers and lasers may be associated 
for the transmission of an enormous quantity of information as optical signals for 
distances of up to thousands of kilometers. 

12.8. Problems 

Transmission lines 

P12.1 A line has a capacitance Cl and an inductance Ll per unit length. a) Verify that 
a wave that propagates toward the positive z, may be written as V = Vm

)i( kzte −ω  and  
I = (Vm/Z) )i( kzte −ω , while a wave that propagates toward the negative z, may be 
written as V = Vm

)i( kzte +ω and I = −(Vm/Z) )i( kzte +ω . b) If a wave propagates toward a 
junction point z = D, where Z has a discontinuity, show that a part of the wave is 
reflected and another part is transmitted. Knowing the incident wave V, write the 
expressions of the reflected wave V' and the transmitted wave V", as well as the 
expressions of the intensities I' and I". c) If the line ends at the point z = D, show that 
it is equivalent to assuming that it is joined to another line of infinite impedance Z2. 
Then, there is a total reflection with a change of sign for I and without change of 
sign for V. d) If the line is short-circuited (Z2 = 0) at z = D, show that the wave is 
reflected totally with a change of sign for V and without change of sign for I. e) Is it 
possible to connect the end to an impedance Zc in order to have no reflected wave?  

P12.2 An air-filled coaxial cable of length L is formed by a cylindrical conductor of 
radius 1 mm surrounded by a cylindrical shell of internal radius 5 mm. Assume that 
the resistance of the conductors is negligible. A potential wave of amplitude Vm and 
frequency 10 MHz is sent along this cable. a) Calculate the impedance at the entry. 
b) Calculate the reflection coefficient, if the cable is connected to a circuit of 
impedance Zc. c) Calculate the current intensity and the average power that is 
supplied to this circuit and verify the conservation of energy. d) What should the 
value of Zc be in order for the wave to be totally reflected? What should the value of 
Zc be in order not to have a reflected wave? What should the value of Zc be in order 
to have the maximum supplied average power? 
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P12.3 A real line of inductance Ll and capacitance Cl per unit length has a small 
longitudinal resistance rl per unit length (for both conductors) and a small leak 
conductance Gl per unit length (i.e. reciprocal of a large resistance). Let V(z, t) and 
I(z, t) be the voltage and the intensity at point z and time t. a) Show that V and I obey 
the equations Cl ∂tV + Gl V + ∂zI = 0 and Ll ∂tI + rl I + ∂zV = 0. Deduce the equation 
of propagation ∂2

ttV − v2∂2
zzV + 2β∂tV+ γV = 0 and the same for I, where we have set 

v = (Cl Ll)−½, β = ½(Gl /Cl + rl /Ll) and γ = rlGl/ClLl. b) A generator of electromotive 

force E = Em 
te ωi  is connected to the entry. Show that the voltage and the intensity 

may be written as V = Em
xe η− )i( kzte −ω

 and I = Im
xe η− )i( kzte −ω where k and η are 

given by the equations k2 = ½(A + B) and η2 = ½(B − A) with A = (ω2/v2 − rlGl) and  
B = [A2 + ω2(GlLl + rlCl)2]½. c) Show that Im = Em/Z where Z = (ωLl − irl)/(k − iη) is 
the impedance of the line. Is it possible to choose the line parameters in order that 
there is no dispersion? Does the attenuation then depend on the frequency? 

Electromagnetic standing waves 

P12.4 The entry of an electric line is short-circuited and excited at high frequency 
while its end (z = D) is connected to an impedance Zc. a) Write the general solutions 
for V and I, impose the boundary conditions and show that the modes may be written 
as V = A cos(ωt + φ) cos(ωz/v)  and  I = (A/Zl) sin (ωt + φ) sin(ωz/v), where the 
normal frequencies are given by the condition tan(2πD/λ) = i(Zc/Zl). b) Determine 
the normal modes if the line is short-circuited and if it is open-ended. 

P12.5 A linearly polarized wave of angular frequency ω is incident normally on the 
face Oxy of an ideal conductor. a) Write the expression of the total field in front of 
the conductor and show that the wave is stationary. Determine the nodal planes of E. 
b) Calculate the electromagnetic energy density and the Poynting vector of this 
wave. c) Calculate the surface charge density and the surface current density on the 
conductor surface. Deduce the radiation pressure on this surface. d) Using the 
quantization of radiation, what is the number of photons that are intercepted by this 
surface? What are the energy and the momentum that are transferred to the 
conductor per unit time and per unit area? Deduce the radiation pressure. e) Assume 
now that the incident wave is right-handed circularly polarized. Write the expression 
of the reflected wave and that of the total wave. Determine its Poynting vector and 
radiation pressure. f) Assume that a linearly polarized wave is confined between two 
metallic surfaces at z = 0 and z = d. What are the frequencies that correspond to 
standing waves? Write the expressions of E and B for these modes. 

P12.6 Assume that an electric field E = A cos(kz) cos(ωt) ex is established in a 
region of a dielectric. a) Calculate the magnetic field. b) Calculate the electric 
energy density, the magnetic energy density, and the Poynting vector. c) Describe 
the fields E and B as functions of z in a wave zone situated between two nodal 
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planes of E at the instants t = 0, T/8, T/4, 3T/8 and T/2. Analyze the distribution of 
the electric energy, magnetic energy, and total energy, the magnitude and the 
direction of the Poynting vector at these instants of time. d) Show that the total 
energy that is stored in a half-zone (of length λ/4 between a nodal plane and an 
antinodal plane) remains constant in the course of time. Thus, there is no energy 
transfer from one half-zone to the adjacent half-zone. Calculate the total 
electromagnetic energy that is stored in a half-zone. 

P12.7 A circularly polarized standing wave may be considered as the superposition 
of two linearly polarized waves that are in quadrature 

E± = Eo[cos(ωt)ex + cos(ωt ± π/2) ey] sin(kz). 

a) Show that, at points whose z coordinates differ by λ/2, the tips of E move on 
equal circles. The nodes of E correspond to a radius equal to 0 and the antinodes to a 
radius equal to Eo. What is the direction of rotation? b) Show that, if a circularly 
polarized progressive wave is reflected totally on a fixed obstacle, the reflected 
wave is polarized circularly in the opposite direction to that of the incident wave. 
Show that the wave, which results from the superposition of the incident wave and 
the reflected wave, is a circularly polarized standing wave. c) Show that the reversal 
of the direction of circular polarization is a consequence of conservation of angular 
momentum. 

Guided waves 

P12.8 An electromagnetic wave is incident at an angle θ on an ideal metallic plate 
M1 lying in the Oyz plane (Figure 12.8). Assume that the wave is polarized in the 
direction Oy. a) Write the expressions of the incident wave E, the reflected wave E′, 
and those of the corresponding magnetic fields. b) Write the expression of the 
resultant field E. Show that the total wave propagates in the direction Oz with a 
phase velocity v(p) = ω/k sin θ and that it has nodes and antinodes. c) Calculate the 
resulting energy density, Poynting vector, and intensity. d) The wave is reflected 
also on a metallic plate M2 parallel to M1 at a distance d. Write the continuity 
conditions on the plates. Deduce the cut-off frequency of the modes. e) Determine 
the charge densities and the densities of the currents that are induced on the plates. 
What is the radiation pressure on them? 

 
 
 
 

 

Figure 12.8. Problem 12.8 
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P12.9 A waveguide is formed by two plane and parallel plates separated by a 
distance a. Verify that a TE wave may be written as 

E = −ivBo ey [ )i( kzpxte −+ω  − )i( kzpxte −−ω , 

B = iBo{[ex + (ωm/γmω) ez] )i( kzpxte −+ω  + [−ex + (ωm/γmω) ez] )i( kzpxte −−ω  }. 

Deduce that this wave may be considered as the superposition of an oblique wave 
and the corresponding reflected wave on the plate (zigzag wave). 

Hollow waveguides and cavities 

P12.10 An electromagnetic waveguide has a rectangular section of sides a = 2 cm 
and b = 1 cm. a) What is the lowest cut-off frequency for TE waves? Write down the 
expressions of the electric and magnetic fields in this mode. Determine the frequency 
of the first five modes. b) Calculate the phase velocity and the group velocity for a 
wave with a frequency of 10 GHz that propagates in the dominant mode. 

P12.11 What is the cut-off frequency of the dominant mode in a waveguide whose 
section is a square of side a? Consider a fiber of this type with index 1.5. If light has 
a frequency that is less than the cut-off frequency, it cannot propagate. What should 
the minimum value am of the side a be to allow the propagation of light, whose 
wavelength is λ = 500 nm, in vacuum? Determine the phase velocity and the group 
velocity for the dominant mode if a = 2am. 

P12.12 a) What are the three first frequencies of a cubic cavity of side a? What is 
their degeneracy? b) Determine the cut-off frequencies of the first three modes of a 
cylindrical waveguide of radius R = 10 cm. What are the lowest frequencies of a 
cylindrical cavity of radius R = 10 cm and length 10 cm? 
Applications of waveguides 

P12.13 Suppose that a cylindrical hollow conductor of internal radius 1.5 cm is used 
as a waveguide to transmit electromagnetic waves. Determine the cut-off frequency 
of the first three modes. To reduce the deformation of signals, only the frequencies 
that lie between the cut-off frequency of the dominant mode and that of the second 
mode must be used. What are the limits of this frequency band? Estimate the 
number of simultaneous telephone calls that may be transmitted by this waveguide. 
Estimate the number of TV channels that may be transmitted by this waveguide.  



 Chapter 13 

Special Relativity and 
 Electrodynamics 

Until the end of the 19th Century, classical mechanics was confirmed by all 
experiments and nobody dared to think that this might not be the case in 
electromagnetism. However, several experiments have shown some contradictions 
between classical mechanics and electromagnetic phenomena, especially the 
propagation of light. In fact, as we shall see in this chapter, Maxwell’s equations, 
which are the basic laws of electromagnetism, are not in accordance with the 
Galilean invariance, which is one of the basic principles of classical mechanics. 
Several attempts have been made, without success, to modify Maxwell’s equations 
in order to make them agree with classical mechanics. Lorentz adopted the opposite 
strategy and proposed to modify classical mechanics by replacing the Galilean 
transformation by the now-called Lorentz transformation. In 1905, Einstein 
analyzed the basic concepts of space and time, and formulated the special theory of 
relativity. The Lorentz transformation resulted straightforwardly from this analysis. 
Up to now, all the consequences of this theory have been verified experimentally.  

The special theory of relativity and the general theory of relativity, both 
formulated by Einstein, are new perceptions of physics and the Universe with very 
important consequences. Special relativity is used to study high-velocity (thus high-
energy) phenomena. All fundamental physical theories must be formulated in 
accordance with relativity in order to be covariant (that is, independent of the 
observation frame). In this chapter we introduce the basic ideas of this theory and 
analyze some of its consequences in mechanics and in electromagnetism. 

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
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13.1. Galilean relativity in mechanics 

One of the basic principles of physics is the principle of relativity, according to 
which the laws of physics can be formulated in a way that is independent of the 
frame of reference. Without this principle, physics would not be a universal science. 
This principle, first discussed by Galileo at the beginning of the 17th Century, is 
valid in mechanics for a class of frames, called inertial frames. They are in relative 
uniform motion, one with respect to the other. They are assumed to exist but nobody 
can say whether a frame (such as the frame of the Earth) is inertial or not! One of 
these frames is fixed with respect to the stars assumed to be “at rest”. If we prefer to 
use a non-inertial frame (i.e. an accelerated frame), so-called inertial forces must be 
introduced in order to maintain the validity of the laws of mechanics. 

Some physical quantities (such as mass, charge, etc.) have the same values in all 
inertial frames; they are said to be invariant. Other physical quantities, A, B, etc., 
may depend on the frame of reference. The theory of relativity requires that any 
physical law may be written as a mathematical relationship that holds in any inertial 
frame: f(A, B, ...) = g(C, D, ...) in S and f ′ (A′, B′, ...) = g ′ (C′, D′, ...) in S'. We say 
that the law is covariant.  

Obviously, covariance does not require that A′ = A, B′ = B, etc., or f′ = f  
(i.e. invariance). If the frames of reference are fixed with respect to the same 
material support, they can be obtained from one another by a time-independent 
translation of the origin or rotation of the axes of coordinates. The validity of the 
physical laws in these frames requires that the physical quantities A, B, etc., as well 
as the functions f(A, B…) and g(C, D, ...) have well-defined transformation rules in 
translations and rotations. They may be scalars, vectors, or tensors of various ranks. 
The covariance of the law f = g requires that f and g have the same nature (both are 
scalars, vectors, etc.). 

Things are not so evident if we consider physical quantities measured in different 
inertial frames S and S′ (that is, defined with respect to different material supports in 
relative uniform motion). For this reason, the transformation of coordinates and time 
plays an important part in the theory. 

Let us assume that S' is moving with a constant velocity vo with respect to S. If 
necessary, by making appropriate translation and rotation of the axes of coordinates 
in one frame or the other and an appropriate time shift, we may always assume that 
the axes of coordinates coincide at t = 0 and that the velocity vo is in the direction 
Oz. In classical mechanics, the coordinates of the same point in space, measured in 
two frames of reference, are related by the Galilean transformation 

x = x′,        y = y′,         z = z′ + vot,         i.e.       r = r′ + vot.  [13.1] 
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Although, the origin of time and that of the positions are arbitrary in the inertial 
frames, the time interval Δt between two events is the same in all frames. This is 
also true for distances Δr = |r1 – r2|, angles, volumes, etc. Thus, in classical 
mechanics, these quantities are invariant (or absolute). Other quantities, such as the 
velocity, the energy, etc., are relative. Differentiating the relations [13.1] with 
respect to time (assumed to be the same in both frames), we obtain the Galilean 
transformation of the velocity of a body v in S to v′ in S' 

v = v′ + vo.  [13.2] 

Differentiating once more, we find that the acceleration is the same in both frames. 
The fundamental law f = ma holds in all inertial frames if the force f is independent 
of the frame (this is just the definition of inertial frames). 

If we use spherical coordinates around the origin, we specify the velocity by its 
magnitude v, its angle θ with Oz and its azimuthal angle ϕ around Oz. The vector 
relation [13.2] is equivalent to the relations 

v = ,  [13.3] 

tan θ = sin θ'/[cos θ' + vo/v'],      ϕ = ϕ'.  [13.4] 

We note that the equality of the azimuthal angles ϕ and ϕ′ is expected from 
symmetry: if vo is in the direction of Oz, we have a rotational symmetry about Oz; 
the plane P containing v′ and Oz is a plane of reflection symmetry; thus, v is in the 
same plane. 

As any mechanical quantity may be expressed in terms of positions and 
velocities, we deduce its transformation law from equations [13.1] and [13.2]. For 
instance, the momentum and kinetic energy of a particle transform according to the 
relationships 

p = mv = m(v' + vo) = p' + mvo,           
UK = ½mv2 = ½m(v+vo)2 = ½mv'2 + ½mvo

2 + m(v'.vo) = U'K + ½mvo
2 + m(v'.vo). 

13.2. Galilean relativity and wave theory* 

A simple harmonic plane wave is characterized by its angular frequency ω, its 
phase velocity vp, its direction of propagation, and its amplitude (related to the wave 
intensity, i.e. the energy that it carries). Note that, generally, vp is different from the 
speed of propagation v, which appears in the wave equation (that we may write only 

''' θ cos  2 +  + o
2

o
2 vvvv
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in the rest frame of the medium). Taking Oz and O′z′ in the direction of the velocity 
vo (Figure 13.1a), the wave function may be written in S and S' 

u(r,t) = um cos[ω(t – e.r/vp)] ≡ um cos(ωt – k.r),                     [13.5] 
u′(r′,t') = u′m cos[ω′(t' – e′.r′/v′p)] ≡ u′m cos(ω′t' – k′.r′).  [13.6] 

e = k/k and e′ = k′/k′ are the unit vectors in the direction of propagation. Figure 
13.1b illustrates the directions of propagation in S and S′. 

   

    (a)                                                                            (b) 

Figure 13.1. Transformation of a wave: a) the wave in the  
frame S, and b) directions of propagation in S and S' 

The laws of transformation of the wave must verify the condition that the phase 
at each point M of space and at any time is the same in both frames of reference. The 
reason is that, if the wave reaches a maximum or a minimum S, it must be so in any 
other frame S′. Thus, we have 

ω(t – e.r/vp) = ω′(t' – e′.r′/v′p)  [13.7] 

at any time (t = t') and at the same point in space of position r and r′ in S and S′. The 
direction of propagation e is determined by its angle θ with vo and its azimuthal 
angle ϕ about vo taken in the direction Oz (Figure 13.1b). Expressing x, y and z in 
terms of x′, y′ and z′ by using the Galilean transformation [13.1], the relationship 
[13.7] may be written as 

ω′{t – [x′ sin θ′ cos ϕ′ + y′ sin θ′ cos ϕ′ + z′ cos θ′]/v′p } 
        = ω{ t – [x′ sin θ cos ϕ + y′ sin θ cos ϕ + (z′ + vot) cos θ ]/vp }.  [13.8] 

This relation is identically verified, that is, for any x′, y′, z′ and t, if the coefficients 
of these quantities on both sides are equal; thus, we find the equations  
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(ω′/v′p) sin θ′ cos ϕ′ = (ω/vp) sin θ cos ϕ, (ω′/v′p) cos θ′ = (ω/vp) cos θ,
ω′ = ω [1 – (vo/vp) cos θ] .

These equations imply that

θ′ = θ, ϕ′ = ϕ, [13.9]
v′p = vp – vo cos θ, [13.10]
ω′ = ω[1 – (vo/vp) cos θ]. [13.11]

Obviously, the inverse transformations are obtained by changing vo into –vo.
These are the Galilean transformations for the characteristics of a wave. The
relations [13.10] and [13.11] imply that the wavelength λ = 2πvp/ω is the same in
both frames. This result agrees with the invariance of distances in classical physics
and the interpretation of the wavelength as the distance separating two crests and
measured in interference experiments (see Chapter 11).

The equations [13.9] state that the direction of propagation of a wave is the same
in all reference frames. The aberration of light, discovered by Bradley in 1727,
confirms the transformation property for the direction of the velocity of light in the
corpuscular model [13.4], but not for the direction of propagation of a wave [13.9].
This aberration is due to the motion of the Earth on its orbit, which gives a deviation
α ≅ vo/c ≅ 10−4 rad for the starlight (see problem 13.1).

Equation [13.11] is the transformation law of frequency. It agrees with the
Doppler effect discovered in 1842 for sound waves and later generalized by Fizeau
to light waves. To analyze this effect, we designate the proper frames of the medium
of propagation, the observer, and the source by SM, SO and SS, respectively. The
velocities of the source and of the observer with respect to the medium are
designated vS and vO. The angles of these velocities with the direction of
propagation e of the wave (Figure 13.2a) are designated by θO and θS. The physical
quantities are measured in SO, the phase velocity vp,M in SM is known, and in SS the
proper angular frequency ωS of the source is known. Using equation [13.11] to
transform from SM to SO and then to transform from SM to SS, we obtain

ωO = ωS
SMp,S

OMp,O

cos)/(1
cos)/(1

θ−
θ−

vv
vv

= ωS
Mp,S

Mp,O

/).(1
/).(1
v
v

ev
ev

−
−

. [13.12]

If the observer is at rest in the medium (SO ≡ SM and vO = 0) and the source is
moving with a velocity vS, we obtain ωΟ = ωS/[1− vS.e/vp(M)] and if the source is at
rest in the medium (SM = SS and vS = 0) and the observer is moving with a velocity
vO, we obtain ωΟ = ωS[1− vS.e/vp(M)]. If the observer is moving away from the
source θO is acute, therefore ωO < ωS, and if the source moves toward the source θS
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is obtuse, therefore ωO > ωS. We note that the Doppler shift does not have the same 
expression if the source is moving toward the observer, or the observer is moving 
with the same relative velocity toward the source. The wave also undergoes a 
Doppler-Fizeau effect if it is reflected on a moving body (Figure 13.2b); the effect is 
used in this case to measure the velocity of the moving obstacle (see problem 13.2b).  

Sometimes, in the case of electromagnetic waves and especially light waves, the 
Doppler effect is expressed in terms of the “the wavelength in vacuum” λο = 2πc/ω 
instead of the frequency. In non-relativistic theory, λο is shifted while the 
wavelength in the medium λ = 2πv/ω is not. 

      
(a)                                                                       (b) 

Figure 13.2. The Doppler-Fizeau effect: a) in the case of an observer and a source in motion 
with respect to the medium, and b) in the case of the reflection of a wave on a moving mirror 

The radiation spectrum emitted by an atom is characteristic of that atom, 
independently of the physical or chemical conditions. This allows the determination 
of the elements that constitute the stars (mostly hydrogen, helium, and other light 
elements in small proportions). The measurement of the Doppler shift allows the 
determination of the velocity of celestial bodies, for instance, the rotation velocity of 
the Sun, and the approach velocity of celestial bodies. The experiment shows a red 
shift of light emitted by all galaxies. In 1929, Edwin Hubble proposed that this red 
shift is a Doppler effect, which shows that the galaxies move away. In other words, 
the Universe is expanding from the initial big bang explosion at the formation of the 
Universe. The velocity v of a moving away galaxy is proportional to its distance D, 
according to the law v = HD, where H is the Hubble constant. Its reciprocal T = 1/H 
is considered in certain cosmological models as the age of the Universe (about 
16 × 109 years). 

Equation [13.10] is the law of transformation of the phase velocity (identical to 
the group velocity in the case of propagation of electromagnetic waves in vacuum). 
It is not the same as the transformation law of the velocity of a particle [13.3], unless 
the motion of the particle and the propagation of the wave are in the direction of the 

SO SS θS 

e

vS 

L

SM 

θΟ 

vO
L

(1)

S′ S 

v

(2)
O z,z′ 

x x′



Special Relativity and Electrodynamics     419 

velocity of transformation vo (then, θ = θ′ = 0 and v = v′ + vo) or in the opposite 
direction (then, θ = θ′ = π and v = v′ – vo).  

To derive the law of transformation of the group velocity, we note that the 
invariance of the wavelength (λ = λ′) implies the invariance of the wave number 
(k = k′). As the direction of k is the same in both frames of reference (see [13.9]), 
we deduce that the components of k are invariant 

kx = k′x,         ky = k′y,         kz = k′z.  [13.13] 

This result may also be obtained by writing um cos(ωt – k.r) ≡ u'm cos(ω't' – k′.r′). 
On the other hand, the phase velocity is vp = ω/k. Thus, we may write the law of 
transformation of the angular frequency as 

ω′ = ω – kvo cos θ = ω – kzvo.  [13.14] 

This relation shows that, in a frame S′ moving with respect to the medium (frame S), 
the propagation of the wave is not isotropic and there is necessarily a dispersion 
effect. 

Differentiating both sides of [13.14] with respect to k'x, for instance, and noting 
that ω′ is related to k′x, k′y, and k′z by the dispersion relation in S′ and ω is related to 
kx ky and kz by the dispersion relation in S, we find the components of the group 
velocity 

v′gx = ∂ω'/∂k'x =∂ω/∂kx = vgx,            v′gy =∂ω'/∂k'y = ∂ω/∂ky = vgy,   
v′gz = ∂ω'/∂k'z = ∂ω/∂kz  – vo = vgz – vo.  [13.15] 

Thus, the group velocity transforms exactly like the velocity of a particle [13.2]. 
Assimilating the direction of light with that of the group velocity, we may explain 
the aberration of starlight in the wave theory, exactly as in the corpuscular theory. 

If a particle is moving in a medium, its velocity v does not depend on the 
properties of the medium if they do not interact. The physical quantities, associated 
with this motion (energy, momentum, etc.) are transferred with the same velocity as 
the particle. On the other hand, the phase velocity of a wave does not depend on the 
source but essentially on the frequency and the medium (its nature, physical 
conditions, its dimensions if it is bounded, etc.). The physical quantities associated 
with the wave are transferred with the group velocity (not the phase velocity). This 
is evident if we consider the case of a wave packet, which moves with the group 
velocity and obviously contains all the physical quantities. 
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13.3. The 19th Century experiments on the velocity of light 

Before the formulation of electromagnetism by Maxwell, light was widely 
considered as a mechanical wave, similar to elastic waves and sound. However, 
contrarily to mechanical waves, light propagates in vacuum. The physicists of that 
period assumed that a very rarefied medium, called ether, fills the vacuum and the 
transparent bodies and serves to transmit light. Thus, Earth sails in a “sea of ether” 
assumed to be at rest and to fill all the space. The phase velocity of light (c in 
vacuum and c/n in transparent mediums) is the phase velocity in the ether.  

If the observer is moving with respect to the ether with a velocity vo, the phase 
velocity of light must be modified according to the Galilean law of transformation of 
the velocity [13.2] in the corpuscular theory of light and [13.10] in the wave theory. 
In practice, vo is much less than v and this modification of light speed is too small to 
be observed. The highest speed vo for macroscopic bodies at disposal on Earth is the 
velocity of Earth itself on its orbit, which is about 30 km/s. This produces a relative 
modification of only 10−4 in the velocity of light (and only 10−8 in experiments 
measuring back-and-forth time of propagation). Only very high precision 
experiments (notably using interference) can detect it. Several experiments have 
tried to detect this modification (and indirectly detect the ether). We discuss in the 
following only the historic Michelson-Morley experiment in 1881, which has been 
repeated several times. It has shown without any doubt that the speed of light in 
vacuum does not depend on the motion of the observer. 

 

Figure 13.3. Michelson-Morley experiment: a) the light beams in the frame  
of the Earth, and b) the beams in the frame of the hypothetical ether 

Michelson’s interferometer is illustrated in Figure 13.3. A monochromatic light 
beam of wavelength λ is split into two beams by a half-silvered mirror M. They 
propagate on two perpendicular axes from M to the mirrors M1 and M2 and back to 
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M. Their interference pattern is observed through a telescope T. The interferometer 
is set on a horizontal turntable. Figure 13.3a illustrates the light beams as observed 
in the Earth reference frame and Figure 13.3b illustrates them in the frame of the 
ether. As time is assumed absolute in classical physics, the time of travel of these 
beams may be calculated in either frame, by using the appropriate speed. The speed 
of light is c in all directions in the ether frame and (c – vo) in the Earth frame. In the 
following, we set vo = cβ for the velocity of the frame S' (of the Earth) with respect 
to the frame S (of the ether). 

First, the arm MM1 was oriented in the direction of the Earth velocity vo. The 
travel times along MM1 and M1M are easily calculated in the frame of the Earth 
(Figure 13.3a). The speeds of light in the directions MM1 and M1M are c – vo and  
c + vo, respectively. The travel time for MM1M is t1 = d1/(c–vo) + d1/(c+vo) = 2d1γ2/c, 

where γ = 1/ 21 β− . The travel times for MM2 and M2M are calculated easily in 
the frame of the ether (Figure 13.3b). The path MM2 makes with vo an angle θ such 
that cos θ = vo/c. The length of the path MM2M is 2d2/sin θ = 2d2γ. As the speed on 
this path is c, the travel time on this path is t2 = 2d2γ/c. The interference pattern is 
determined by the difference δt = t1 – t2 = 2d1γ2/c – 2d2γ/c. A rotation of the 
turntable through 90° brings the arm MM2 to the direction of vo of the Earth’s 
velocity and the arm MM1 to the perpendicular direction. The difference in time 
becomes δt' = t'1 – t'2 =2d1γ/c – 2d2γ2/c. If i is the interference fringe width, the 
rotation produces a displacement of the fringes by a distance 

x = (i/λ) (c δt – c δt') = 2(i/λ)(d1 + d2) (γ2 – γ) ≈ (i/λ) (d1 + d2)β2 .  [13.16] 

Taking d1 + d2 = 11 m and λ = 300 nm, this analysis expects a displacement of 0.37i. 
The experiment has shown no displacement, although the set-up was able to detect a 
displacement as small as 0.01 i. This negative result has shown that the Galilean 
transformation of velocity is not valid in optics, neither in the corpuscular theory of 
light, nor in wave theory. It has shown also that it is impossible to detect 
experimentally the ether. Moreover, this hypothetical medium should have some 
contradictory properties. 

13.4. Special theory of relativity 

The discrepancy of the results of the 19th Century experiments with the law of 
transformation of velocities has a deep theoretical origin. Indeed, light waves are 
electromagnetic. The fundamental laws of electromagnetism are Maxwell’s equations, 
which are non-covariant in the Galilean transformation. In particular, these 
equations predict a velocity of electromagnetic waves in vacuum equal to c 
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independently of the inertial frame of reference. Comparing with sound, for 
instance, it is possible to formulate a theory for the speed of sound in the rest frame 
of the medium. In the case of electromagnetic waves in vacuum, it does not make 
sense to speak of the “rest frame of vacuum”. All attempts to modify Maxwell’s 
equations to make them covariant in the Galilean transformation have failed. In 1892, 
Lorentz proposed to modify the Galilean transformation to make Maxwell’s 
equations covariant. He obtained the famous Lorentz transformation, according to 
which, both space coordinates and the time of events depend on the inertial frame of 
reference. An important consequence of this transformation is the universality (or 
invariance) of the speed of light in vacuum. This explains the negative result of 
Michelson-Morley experiment. 

In 1905, Einstein followed another and more radical approach. Analyzing the 
basic physical concepts of space and time, starting with the simple case of the 
simultaneity of events, he concluded that time cannot be absolute, but relative. To 
measure time, synchronized clocks are assumed to be distributed everywhere in the 
Universe and the synchronization may be carried out at different places only by the 
exchange of light signals, which can propagate even in vacuum. This definition of 
time led him to the formulation of the special theory of relativity, based on two 
principles: 

− the principle of relativity: any physical law can be written in a covariant 
mathematical form (i.e. valid in all inertial frames);  

− the principle of universality of the speed of light in vacuum: in vacuum, light 
propagates isotropically with the same speed c in all inertial frames of reference. 

The first principle generalizes the principle of relativity to all physics (not just 
mechanics). According to our discussion of section 13.1, the physical quantities 
must have well-defined transformation properties from one inertial frame to another 
and similarly for the equations, which formulate the physical law. In Einstein’s 
formulation, the universality of the speed of light in vacuum must be considered as a 
logically required “principle” that allows time to be defined. Actually, there are 
several direct experimental verifications of this universality.  

Using these two principles, Einstein derived Lorentz transformation. In the case 
of an inertial frame S and S ' such that their axes are parallel and they coincide at  
t = t' = 0 and S ' is moving with a velocity vo ≡ βc in the direction Oz parallel to Oz, 
this transformation is 

x = x′,        y = y′,          z = γ(z′ + vot'),            t = γ(t' + voz'/c2

 
) ,   [13.17] 
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where γ = 1/ 21 β− . If the transformation velocity vo is small compared to c, 
neglecting terms of the order of 1/c2, the Lorentz transformation [13.17] reduces to 
the Galilean transformation. The inverse transformation of [13.17] is obtained by 
changing vo into –vo: 

x′ = x,        y′ = y,          z′ = γ(z – vot),            t' = γ(t – voz/c2

 
).   [13.18] 

If the velocity of S ' with respect to S is in an arbitrary direction of unit vector eo, 
we write vo = voeo. It may be shown that the Lorentz transformation may be written 
as   

r = r′ + (γ −1)(r′.eo)eo + γvot′,       t = γ(t′ + vo.r′/c2).      [13.19] 

The Lorentz transformation treats space and time as a single entity called space-
time. A point of space-time represents an event specified by its four coordinates x, y, 
z, and ct. Two events (1) and (2) are separated by an interval 

ΔS2 = (x1 – x2)2 + (y1 – y2)2 + (z1 – z2)2 – c2(t1 – t2)2 ≡ Δr2 – c2 Δt2. [13.20] 

An event may be the position of a particle at a given time. Note that the interval ΔS2 

may be positive, negative, or equal to zero. 

The Lorentz transformation is linear; thus, it holds for the difference of the 
coordinates of two events Δx, Δy, Δz, and Δt. It implies that the period of time Δt and 
the distance Δr separating two events are relative quantities but the interval ΔS2 

between them is invariant (that is, the same in all inertial frames) contrarily to 
Galilean physics, where both Δt and Δr are invariant. In particular, if the events 
represent the space coordinates and the timing of a photon, which moves at the 
velocity c, we must have Δr = cΔt and the interval ΔS2  = Δr2 − c2Δt2 is equal to zero 
in all frames.  

As a direct consequence of Lorentz transformation, we mention the time dilation. 
If two events occur at the same space point in S' (Δr′ = 0) and they are separated by 
a time Δt', the transformation [13.17] gives Δx = 0, Δy = 0, Δz = γvoΔt' and  

Δt = γ Δt' > Δt'.  [13.21] 

The time dilation holds for all phenomena, in particular the readings of clocks and 
the lifetime of particles (and even the life of human beings). The time dilation is 
verified experimentally to very high precision even in our daily telephone call and 
use of the global positioning system (GPS) via satellites. 
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Another consequence of the Lorentz transformation is the contraction of length 
in the direction of motion. Consider a rod, that is moving with a velocity vo in the 
direction of its length taken along Oz. The length of the rod in the frame S of the 
observer is the distance Δz separating two events, which occur simultaneously at its 
ends (Δt = 0). The Lorentz transformation [13.18] gives Δx′ = Δx = 0,  Δy′ = Δy = 0 
and Δz′ = γ(Δz – cβΔt) = γΔz for the difference of coordinates of these events in the 
proper frame S ′ of the rod (i.e. the frame in which the rod is at rest). The length of 
the rod in S is related to its proper length by the relationship 

Δz = Δz′/γ < Δz′.  [13.22] 

Thus, it is contracted in the ratio 1/γ. A similar analysis shows that, if the length of 
the rod is perpendicular to its velocity, it is not contracted. In general, an extended 
object is contracted in the direction of its motion and not in the transverse directions. 
Thus, its volume is contracted in the same ratio 1/γ, its angles and its shape are 
consequently relative, its mass density is increased, etc. The length contraction 
explains the negative result of Michelson-Morley experiment. 

As our concepts (such as the time duration and distances) and, consequently, the 
principles of the Galilean and Newtonian mechanics are based on our daily 
observation of objects whose velocity is much lower than c, the relativistic effects 
seem to be unusual or paradoxical. Actually, it is firmly established that any 
physical theory concerning phenomena that involve velocities comparable to c (in 
other words, high-energy effects) must be formulated in accordance with the special 
theory of relativity.  

13.5. Four-dimensional formalism  

In a change of the frame of reference, the transformation of the space-time 
coordinates of an event is similar to the transformation of the ordinary three-
dimensional space coordinates. Thus, it is convenient to treat space-time as a four-
dimensional vector space. An event is then represented by a four-vector that we 
write as a bold-faced, overlined symbol 

x  = (x, y, z, ct) ≡ (x1, x2, x3, x4).  [13.23] 

Sometimes, we write explicitly the coordinates xµ with Greek indices (µ, α, etc.) 
taking the values 1, 2, 3 and 4. Ordinary three-dimensional vectors are represented 
by non-overlined, bold-faced symbols (x, A, etc.) of components xi, Ai, etc., with 
Latin indices taking the values 1, 2 and 3. 
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A Lorentz transformation is represented by a 4 × 4 matrix [ L ] of elements Lµν, 
such that the transformation of the four-coordinates xµ may be written in the four-
vector notation 

x  = L 'x ,   i.e.     xµ = Σα Lµα x'α   with    [ L ] = .  [13.24] 

In the equation xµ = Σα Lµα x'α, the repeated summation index α is a dummy (or a 
contraction) index; it may be renamed ν, β, etc. The µ index is fixed for the 
equation; it may be renamed only in both sides of the equation. 

Four quantities A1, A2, A3, A4 are the components of a four-vector A , if they 
transform like the four coordinates xµ in a Lorentz transformation. In the case of a 
transformation of velocity vo = cβ in the direction Oz, for instance, we must have 

A'1 = A1,        A'2 = A2,        A'3 = γ(A3 – βA4),         A'4 = γ(βA3 – A4) .  [13.25] 

We define the norm of a four-vector A  and the four-scalar product of two four-
vectors A and B  as 

( A . A ) ≡ Aµ Aµ = A2 – (A4)2,           ( A . B ) ≡ Aµ Bµ = (A.B) – A4B4 .  [13.26] 

It is easy to verify that they are invariant in a Lorentz transformation. We say that 
they are four-scalars. For instance, the norm of the four-vector Δxµ separating two 
events is the interval of the events and it is invariant. Contrarily to the three-dimensional 
space, the norm of a four-vector may be positive, negative, or equal to zero. 

A four-scalar field is represented by a single function f(r, t) that we write as f(xµ) 
or )(xf . It is invariant in a Lorentz transformation, that is, 

f '(x'µ) = f(xµ)            with     xµ = Lµν x'ν.  [13.27] 

Similarly, a four-vector field is represented by four components Fµ(r, t) ≡ )(xμF  
that transform exactly like the xµ, that is, 

)(xμF = Lµν )'(' xνF             with    xµ = Lµν x'ν .   [13.28] 
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Note that the components )(xμF  are linear combinations of the components )'(' xνF  

where x  and 'x  are related by the same Lorentz transformation as Fµ. We may 
define also four-tensor fields of various ranks Τμνα.... It is possible to add or compare 
tensors of the same rank. The tensorial rank of a tensor or a tensorial expression is 
the number on non-dummy indices: a four-scalar has no non-dummy index (rank 0), 
a four-vector has a single non-dummy index (rank 1), etc. 

The derivatives with respect to the space-time coordinates xµ  

∂µ ≡ ( , , , ) ≡ [ ∇,  ] .  [13.29] 

are the components of a four-vector operator. Acting on a four-scalar field )(xf , it 
gives a four-vector field ∂µf, called the four-gradient of f. Acting on the components 
of a four-vector field )(xμF with contraction of µ, we get a four-scalar )(xμμ∂ F , 
called four-divergence. A repeated action of this operator (with contraction on µ) 
defines the d’Alembertian: 

 ≡ ∂µ∂µ ≡ ∇2 – 2
1
c

.  [13.30] 

This is a four-scalar operator. Acting on a four-scalar field )(xf , it gives another 

four-scalar field ∂µ∂µ )(xf and acting on a four-vector field, it gives another four-

vector field ∂µ∂µ )(xνF . 

Consider the integrals of four-scalar, four-vector, or four-tensor fields over a 
four-volume of space-time d4x ≡ dx dy dz dt, of the form  

A = ∫∫∫∫ d4x )(xf ,           Aν = ∫∫∫∫ d4x )(xνF ,   etc.  [13.31] 

They are a four-scalar A, a four-vector Aµ, etc. We note that the Jacobian of the 
Lorentz transformation is equal to 1, hence  

d4x =  d4x' = d4x' . [13.32] 

A physical theory is said to be relativistic if it is formulated in accordance with 
the principles of the special theory of relativity. For this, it is necessary that all its 
physical quantities have well-defined transformation properties under Lorentz 
transformations; these quantities must be four-scalars, four-vectors or four-tensors. In 
relativistic quantum field theory, we may also have spinors. If the equations of the 
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theory are expressed in terms of such quantities, they are covariant in Lorentz 
transformations. We say that the theory is invariant in Lorentz transformations. 

13.6. Elements of relativistic mechanics  

From the Lorentz transformation [13.17], we deduce the law of transformation of 
the velocity of a particle defined by its components dx/dt, dy/dt, and dz/dt in a frame 
S and dx′/dt', dy′/dt', and dz′/dt' in a frame S ′  

vx = = ,        vy = = ,      vz = = cv
cv

/1 z

z

'
'
β+

β+
.  [13.33] 

Particularly, if v′ is parallel to vo, we find that v is parallel to vo and the law of 
transformation of velocity (also called law of addition of velocities) reduces to 

v = .  [13.34] 

For small velocities compared to c, equations [13.33] reduce to the Galilean 
equation of addition of velocities [13.2] if we neglect terms of the second order in 
1/c. However, the relativistic law gives completely different results than the Galilean 
law, if the velocities are comparable to c. In particular, in the limit v′→ c or vo→ c, 
we find v → c. On the other hand, Lorentz transformation becomes meaningless if  
vo > c as γ becomes imaginary. Thus, the speed of light is the upper limit of the 
velocity of particles. This is also the upper limit for the speed of transfer of any 
physical quantity (energy, momentum, etc.), information, or interaction. 

The law of transformation [13.33], being different from that of x, y, and z, the 
components of the velocity are not the first three components of a four-vector. This 
is due to the fact that dt in the definition of the velocity vi = dxi/dt is not a scalar 
quantity. We may define a four-vector velocity Vμ, if we replace dt by an 
infinitesimal quantity dτ, which is a four-scalar having the dimension of time. 
Recalling that the norm ds2 = dxµ dxµ, is a four-scalar, we may calculate it in any 
inertial frame. In the proper frame (S′) of the particle (in which dr' = 0) and the 
frame S of the observer (in which dr = v dt, where v is the velocity of the particle), 
we may write  

(dS2)S' = – c2 dt'2,            (dS2)S = dr2 – c2dt2 = (v2 – c2)dt2 .   [13.35] 

The time t' is the proper time of the particle, usually called τ. Comparing the two 
expressions of dS2, we deduce that 

dτ = dt.  [13.36] 
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As dS2 = –c2 dτ2 is a four-scalar, we deduce that the infinitesimal proper time dτ is a 
four-scalar. Thus, we define the four-vector velocity as 

Vµ = . [13.37] 

Writing explicitly the space and time components of Vµ, we find 

Vi = = ,       V4 = =  . [13.38] 

The norm of this four-vector may be calculated in any frame of reference. 
Particularly, in the proper frame of the particle, we find V'i = 0 and V'4 = c, hence 

Vµ Vµ = V′2 – (V'4)2 = V2 – (V4)2 = – c2 .  [13.39] 

Admitting that the mass m is the same in all inertial frames (i.e. m is a four-
scalar), the four quantities 

Pµ = mVµ   [13.40] 

are the components of a four-vector, whose space and time components are 

Pi = ,            P4 = .  [13.41] 

To interpret these quantities, let us write them as power series of (v/c), we find  

Pi = mvi + ½ (v/c)2 mvi + ...,             cP4 = mc2 + ½ mv2 + ...  [13.42] 

We recognize in the expression of Pi, the components of the classical momentum 
pi = mvi. This allows Pi to be interpreted as the three components of the relativistic 
momentum of the particle. In the series of cP4, we recognize the kinetic energy 
½mv2. Thus, we interpret cP4 as the relativistic energy of the particle and we write 

W = cP4 = .  [13.43] 

In particular, if the particle is at rest 

Wo = mc2 .  [13.44] 
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Contrarily to classical physics, a particle at rest has energy. In fact this is an 
enormous energy; the rest energy of 1 g of matter is 9 × 1013 J! The relativistic kinetic 
energy UK is defined as the difference between the energy W of the body in motion 
and its energy at rest: 

UK =  – mc2.  [13.45] 

All experiments in nuclear physics and particle physics show that the mass may be 
transformed into energy according to [13.44] and that the relativistic momentum and 
energy of isolated systems as defined by [13.41] and [13.43] are conserved. 

The velocity of a particle may be expressed in terms of P and W by the relation 

v = c2P/W .  [13.46] 

Substituting this expression of v in the expression of W, we find the relation between 
the energy and the momentum of a particle of mass m  

W = 2242 Pccm +      or      W2 = m2c4 + c2P2 .  [13.47] 

We may introduce the concept of force as the rate of variation of the relativistic 
momentum in time  

f = dP/dt .  [13.48] 

Using the expression [13.47], we deduce that W dW = c2 P.dP, hence a variation of 
the relativistic energy (or the kinetic energy),  

dW =  dUK = c2 P.dP/W =  dP.v = dt f.v = f.dr , [13.49] 

where we have used [13.46] and [13.48]. Thus, the variation of W (or UK in the case of 
constant masses) is equal to the work of the force f. 

Using the law of transformation of P, we deduce the law of transformation of f  

f = dP/dt = [dP′/dt'+ (γ –1)(eo.dP′/dt') eo + γ(vo/c2) dW ′/dt'] / (dt/dt') 
            = [ f′ + (γ –1)(eo.f′) eo + γvo(f′.v′)/c2]/γ[1 + (vo.v′)/c2]    [13.50] 

since dP′/dt' = f′, dW ′/dt' = f ′.v′ and dt = γ[dt' + (vo.dr′)/c2] = γ dt' [1 + (vo.v′)/c2]. 

The three components of the force, defined by [13.48], are not the first three 
components of a four-vector. For this reason, f is called Newton’s force. It should 
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not be confused with the “classical Newton’s force” fc = dp/dt, where p = mv. Using 
the proper time τ of the particle, we may define a four-vector force F  of 
components 

Fµ = dPµ/dτ .  [13.51] 

Explicitly, the components of this four-vector are  

F = = = ,   F4 = =
22/1

/
cvc

dtdW
−

= .

 

[13.52] 

Now, let us consider the case of a massless particle. Apparently, the expressions 
[13.41] seem to indicate that P = 0 and W = 0, which mean that the particle carries 
no momentum and no energy, contrarily to experiment (in the case of photons, for 
instance). In fact, P and W may not be equal to zero if the velocity of the particle is 
equal to c. Then the denominator of P and W is equal to zero and these expressions 
are meaningless. Thus a massless particle must be always moving with the speed of 
light in vacuum c. Note also that, if v exceeds c, P and W become imaginary; Thus, 
the velocity of a particle cannot exceed c. On the other hand, setting m = 0 in 
[13.47], we find the relation  

W = cP                 (if m = 0).  [13.53] 

In the case of photons, this relation may be obtained from the energy and 
momentum densities for electromagnetic waves (see section 10.5). In quantum 
theory, a wave of frequency ν~  is associated with photons of energy W = h ν~ , where 
h = 6.626 075 × 10 –34 J.s is Planck’s constant. According to equation [13.53], the 
momentum of the photons is p = W/c = h ν~ /c = h/λ. This is de Broglie’s relation. 

13.7. Special relativity and wave theory* 

Using spherical coordinates, the velocity of a particle is specified by its 
magnitude v, its angle θ with Oz (i.e. with vo) and its azimuthal angle ϕ about Oz. 
The Lorentz transformation for these quantities is 

ϕ = ϕ',    tan θ =
)'sin'(

'sin'
β+θγ

θ
cv

v
,    v =

'sin )/(1
'sin)('cos'2' 22

o
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o
2
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cv'
v'vvvv

.  [13.54] 

In the case of a wave, the invariance of the phase may be written as 

ω(t – e.r /vp) = ω'(t' – e′.r′/v′p). [13.55] 
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Writing the scalar products e.r and e′.r′ explicitly, and expressing x, y, z and t in 
terms of x′, y′, z′, and t' by using Lorentz transformation [13.17], we find  

ω'{t' – (1/v′p)[x′ sin θ′ cos ϕ′ + y′ sin θ′ cos ϕ′ + z′ cos θ′]} 
= ω{γ(t' + βz′/c) – (1/vp)[x′ sin θ cos ϕ + y′ sin θ cos ϕ + γ(z′+ cβt') cos θ]}.  [13.56] 

The coefficients of x', y', z' and t' must be equal on both sides, hence the relations  

ϕ′ = ϕ,            tan θ′ = 
)/(cos

sin
p cvβ−θγ

θ ,  [13.57] 

v′p = 
θβ−+θ−β

θ−
222

p

op

sin)1()cos/(

cos 

cv

vv
,  [13.58] 

ω′ = ωγ [ 1 – (cβ/vp) cos θ ] .  [13.59] 

Contrarily to classical wave theory, the relations [13.57] imply a modification of 
the direction of propagation. In the case of starlight aberration, if θ = 90°, we get 

tan θ' = – 1/γβ,  [13.60] 

which corresponds to an inclination α = θ′ – 90° given by 

tan α = – γβ.  [13.61] 

This result may be also obtained by using the relativistic law of transformation of 
the direction of the velocity of a particle [13.54]. Thus, the equivalence between the 
wave theory and the corpuscular theory of light is recovered for the aberration 
phenomenon. 

Equation [13.59] is the expression of the relativistic Doppler effect; we may 
write it as 

ω′ = ωγ [1 – e.vo /vp ].           [13.62] 

Particularly, in the case of propagation of light in vacuum (vp = c), this relation 
shows that the Doppler effect depends only on the velocity vo of S ′ with respect to S. 
Thus, the effect depends only on the relative velocity of the source with respect to 
the observer, not on the velocity of each one, contrarily to the classical expression 
[13.12]. Indeed, the concept of the ether being abandoned, the velocity of the source 
or the observer with respect to the medium of propagation is meaningless in this 
case. An experiment by Ives and Stilwell in 1938 has shown that the Doppler shift of 
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light emitted by atoms in motion is in perfect agreement with the relativistic 
expression [13.62] and not with the classical expression [13.12]. 

We note that the Doppler effect multiplies the angular frequency of a simple 
harmonic wave by a factor ρD = γ [1 – (e.vo)/vp], thus the period by 1/ρD. If the wave 
has a period T without being necessarily simple harmonic, Fourier theory allows it to 
be considered as a superposition of simple harmonic waves of angular frequencies 
nω. The Doppler effect makes these angular frequencies nωρD. If the medium is 
non-dispersive, ρD does not depend on the frequency, and the profile of the wave is 
not affected by the Doppler effect, only its period becomes T/ρD. In the case of a 
signal, its central frequency and the band width of its spectrum are multiplied by ρD. 
Thus, its time duration is divided by ρD and so is the time interval separating two 
signals. The Doppler effect is thus related to the transformation of time in special 
relativity. Contrarily to the classical theory, if the relative motion is perpendicular to 
the direction of propagation (vo.e = 0), the relativistic theory predicts a transverse 
Doppler effect ω′ = ωγ, which is identical to time dilation. 

The law of transformation of the angular frequency [13.59] and the law of 
transformation of the phase velocity [13.58] imply a transformation of the wavelength 
according to the relation 

λ′ = = .  [13.63] 

In particular, in the case of a light wave in vacuum, vp = c, this equation reduces to 

λ′ = .  [13.64] 

This result may be obtained easily from the law of transformation of the angular 
frequency by using the relation ω = 2πc/λ and ω′ = 2πc/λ′. Contrarily to the 
Galilean transformation, the wavelength is not the same in all inertial frames. In 
special relativity, time duration and distances depend on the frame. 

The law of transformation of the phase velocity [13.58] is not similar to the law 
of transformation of the velocity of a particle [13.33]. Thus, contrarily to the 
velocity of a particle, nothing requires that the phase velocity be less than the 
velocity of light in vacuum. This is not surprising, since the phase velocity does not 
correspond to the propagation of physical quantities, such as energy and momentum. 
Physical quantities are transferred at the group velocity, which must always be less 
than the velocity of light in vacuum, in order to respect the causality principle. 
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To derive the law of transformation of the group velocity, we write the 
invariance of the phase as 

ωt – kxx – kyy – kzz = ω′t' – k′x x′ – k′x y′ – k′x z′ .  [13.65] 

Using the transformation [13.17] to express x, y, z, and t in terms of x', y', z', and t' 
and identifying the coefficients, we get the law of transformation of the wave vector 
k and the angular frequency ω: 

k′x = kx,       k′y = ky,       k′z = γ (kz – βω/c),       ω′ = γ (ω – cβkz) .  [13.66] 

These relations express that kx, ky, kz, and ω/c are the components of a four-
vector, just to make k.r – ωt a scalar product of two four-vectors, thus invariant in 
Lorentz transformation. Writing the inverse of the last equation [13.66],  
i.e. ω = γ(ω′ + cβk′z) and using the dispersion relation to express ω as a function of 
k and ω′ as a function of k′, the relations [13.66] may be written as  

k′x = kx,     k′y = ky,     k′z = γ [kz – βω(k)/c],      ω = γ[ω′(k′) + cβk′z] . [13.67] 

Differentiating ω with respect to kz, for instance, we find 

= γ[ + + + vo ] = γ[v′gz +vo ]. 

Thus we can write 

vgz = γ2(v′gz + vo)[1– βvgz/c],       i.e.  vgz(1– β2) = (v′gz + vo)[1– βvgz/c] . [13.68] 

We deduce that  

vgz = . [13.69] 

We find a law of transformation similar to that of the third component of the 
velocity of a particle (see equation [13.33]). Similarly, we may derive the 
transformation laws for vgx and vgy. Thus, the group velocity of a wave transforms 
exactly like the velocity of a particle. 

Considering a wave packet, the energy and the other physical quantities of the 
wave are obviously localized in the same region as the wave packet. Thus, they are 
transferred with the same group velocity vg as the wave packet. Similarly, if a 
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modulated wave is used to transmit information, the velocity of this transmission is 
the group velocity. As the group velocity transforms like the velocity of a particle, 
the group velocity cannot exceed the velocity of light in vacuum. 

13.8. Elements of relativistic electrodynamics  

We have seen that the instantaneous interaction-at-a-distance disagrees with the 
principle of causality. Thus, all interactions must be local, that is, mediated by fields 
propagating with finite velocities. On the other hand, for velocities (of particles and 
waves) comparable to the velocity of light, relativistic theories must be used. 
Electromagnetism is a typical theory, which is formulated in terms of fields and it 
analyzes phenomena with velocities comparable (or equal) to the velocity of light. 
Thus, it is not surprising that special relativity was created from the contradictions of 
electromagnetism with the principles of the Galilean-Newtonian mechanics. For a 
theory to be relativistic, it is necessary that its laws be formulated in terms of 
quantities and functions that are four-scalars, four-vectors or four-tensors. In fact, 
electromagnetism was a relativistic theory before the formulation of special 
relativity, although the laws of electromagnetism are not usually written in a 
manifestly covariant form. In this section we introduce some elements of the 
relativistic formulation of electromagnetism, leaving many details to specialized 
texts. The association of relativistic electromagnetism with quantum theory produces 
quantum electrodynamics, which agrees perfectly with experiment. 

A) Transformation laws of charge and current densities 

Exactly like mass, electric charge is a characteristic quantity of particles. 
Experiments show that it is independent of their motion or the motion of the 
observer; thus, it is independent of the inertial frame. The charge contained in an 
element of volume d3r = dx dy dz near a point r and time t is dq = qv(r, t) dx dy dz. 
This charge being invariant in a Lorentz transformation, comparing it with the 
invariant d4x ≡ dt dx dy dz (see [13.32]), we deduce that the charge density qv 
transforms like dt, i.e. the fourth component of a four-vector. 

The current density j(r, t) is related to the charge that is intercepted by an 
element of area dS normal to the unit vector n by the relation dq = (n.j) dS dt. 
Consider, for instance, an element of area dS = dx dy parallel to the (x, y) plane. The 
intercepted charge during dt is dq = (ez.j) dS dt = j3 dx dy dt and it is four-invariant. 
Comparing it with the invariant d4x, we deduce that j3 is the third component of a 
four-vector. Similarly, j1 and j2 are, respectively, the first and the second 
components of the same four-vector. Thus, the four quantities j1, j2, j3 and cqv are 
the four components of the four-vector current density Jµ 
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Jk ≡ jk,           J4 ≡ cqv         (k = 1, 2, 3) .  [13.70] 

This implies that the four-vector (j, cqv) transforms exactly like (r, ct). Using the 
transformation [13.19], the law of transformation of j and qv may be written as 

J = J' + (γ –1)(J'.eo) eo + γ q'v vo,          qv = γ [q'v + (J'.vo)/c2] .  [13.71] 

The inverse transformation is obtained by changing vo into –vo: 

J' = J + (γ – 1)(J.eo) eo – γqvvo,             q'v = γ [qv – (J.vo)/c2] .  [13.72] 

Particularly, if the charges are at rest in the frame S', the current density J' is equal to 
zero. We find in the frame S of the observer  

J = γq'vvo = qvvo .                qv = γq'v.  [13.73] 

Thus, in the frame of the observer S, we have both charge and current densities. This 
is the case of a rigid body carrying fixed charges (with respect to the body) and 
moving with a velocity vo with respect to the observer. S' is then the proper frame of 
the body. This is also the case of a beam of charged particles of velocity vo (S' is 
then the proper frame of the particles). Note that the relation qv = γq'v can be 
understood because of the contraction of volumes in the ratio 1/γ, thus an increase of 
the charge density in the ratio γ. Also the relation J = qvvo is expected because charge 
density qv in S is moving with the velocity vo. This current is not due to the 
displacement of charges with respect to the body (i.e. conduction current) but to the 
displacement of the body itself, whether it is a dielectric or a conductor  
(i.e. convection current). In general, if there is a conduction current density j' as well 
as a charge density q'v in S', using [13.71], we may write the current density is S as 

j = [ j' + (γ–1 – 1)(j'.eo) eo] + qvvo ≡ jc + qv vo .  [13.74] 

This is the sum of a conduction current density jc and a convection current density 
qvvo. Both currents have some common physical properties (production of a 
magnetic field for instance), but they may have some different properties (for 
instance, the production of Joule heat by the conduction current but not by the 
convection current).  

Using the four-vector current density, the local equation of conservation of 
electric charge ∂tqv + ∇.J = 0 may be written as ∂tqv + Σk ∂kJk = 0, i.e. 

∂µJµ = 0 .  [13.75] 
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Note that ∂µJµ is the contracted product of the four-vector operator ∂µ and the four-
vector Jµ. Thus, it is invariant in Lorentz transformations; if it vanishes in one 
inertial frame, it must vanish in any other inertial frame. 

B) Transformation law of fields and potentials 

Assume that we have an electric field E(r, t) and a magnetic field B(r, t) in an 
inertial frame S. Let S' be another inertial frame moving with a velocity vo with 
respect to S. To write the expressions of the fields E'(r', t') and B'(r', t') in S'; we start 
with the definition of the fields in relation to the relativistic Newton force  
f = dP/dt that the fields exert on a charge q: 

f = q[E + (v × B)],           f ' = q[E' + (v' × B')] ,  [13.76] 

where we have used the fact that the charge q is the same in both frames. Using the 
laws of transformation of velocity and force, we may express f and v in the first 
equation [13.76] in terms of f ' and v′, then substitute the expression  
q[E' + (v' × B')] for f′. We get an equation that must be identically verified for any 
velocity v'. We deduce the law of transformation of the fields: 

E = γE' + (1–γ)(E'.eo) eo – cγ(β×B'),     B = γB' + (1–γ)(B'.eo) eo +(γ/c)(β×E')  [13.77] 

The inverse transformation is obtained by changing vo into –vo: 

E' = γE + (1–γ)(E.eo)eo + cγ(β×B),       B' = γB + (1–γ)(B.eo)eo – (γ/c)(β×E) .  [13.78] 

Decomposing the fields E and B into longitudinal components E// = (E.eo) eo and 
B// = (B.eo) eo (parallel to vo) and transverse components E⊥ = E – (E.eo) eo and 
B⊥ = B – (B.eo) eo (orthogonal to vo), their laws of transformation are  

E// = E'//,           E⊥ = γ[E'⊥ – (vo×B')],        
B// = B'//,           B⊥ = γ[B'⊥ + (vo×E')/c2] .  [13.79] 

Thus, the longitudinal components of the fields are not modified in the 
transformation. In particular, if the velocity of transformation vo is in the direction of 
Oz, we find  

E1 = γ[ E'1 + cβ B'2],         E2 = γ[ E'2 – cβB'1],            E3 = E'3, 
B1= γ [B'1 – (β/c) E'2],       B2 = γ [B'2 + (β/c) E'1],       B3 = B'3 .  [13.80] 
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These transformation laws show that the fields E and B cannot be considered as 
independent fields. For instance, if the field in S is purely electric (B = 0), we find 
both electric and magnetic fields in S' given by 

E' = γ E + (1 – γ) (E.eo)eo,          B' = – (βγ/c) (eo × E) . [13.81] 

Similarly, if the field in S is purely magnetic (E = 0), we have both electric and 
magnetic fields in S' given by 

E' = cγβ (eo × B),             B' = γB + (1 – γ)(B.eo) eo .  [13.82] 

We verify easily that E' and B' in [13.81] and [13.82] are orthogonal. 

In the non-relativistic limit (vo << c, i.e. β << 1), we have γ ≈ 1 + ½β2. The law 
of transformation becomes (to the first order in β): 

E ≈ E' – vo × B',         B ≈ B' + (vo × E')/c2 .  [13.83] 

The equations of propagation of the scalar potential V and the vector potential A 
may be written in the Lorentz gauge as 

V = –
o

v

ε
q ,         A = –µoj          with      ≡ ∂µ∂µ ≡ ∇2 – 2

1
c 2

2

t∂
∂ . [13.84] 

Using the relation εoµo = 1/c2 and the four-vector current density Jν = (j, cqv), these 
equations of propagation may be written in a single equation  

Aν = –µoJν ,  [13.85] 

where we have grouped the three components of A and V/c to form a single entity Aν. 
As with any physical law, the relation [13.85] must be valid in any inertial frame. The 
d’Alembertian being a four-scalar operator and Jν a four-vector, we deduce that  

Aµ = (A, V/c)  [13.86] 

is a four-vector called four-vector potential. We may then write its law of 
transformation: 

A = A' + (γ –1)(A'.eo) eo + γV' β/c ,       V = γ[V' + c(A'.β)] .  [13.87] 

In particular, in the case of a transformation of velocity vo = cβ in the direction Oz, 
this law of transformation can be explicitly written as 

A1 = A'1,      A2 = A'2,         A3 = γ[A'3 + V' β/c]      and      V = γ[V' + cβA'3] .  [13.88] 
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If the field in S ' is purely electric (as in the case of the field of a charge at rest), we
may take A' = 0 and find in S

A = γ V'ββ/c, V = γV' . [13.89]

Thus, we find in S both an electric and a magnetic field. The electromagnetic
induction is closely related to the transformation law of the fields (see section 8.4).

It may be shown that Maxwell’s equations are covariant in Lorentz
transformations (problem 13.23). This shows the covariance of electromagnetism.

13.9. Problems

Galilean relativity and waves

P13.1 Let S be the reference frame of the fixed stars (and the Sun) and S' be the
Earth’s frame moving with a speed vo = 30 km/s on the ecliptic. For simplicity,
assume that the starlight falls normally to the ecliptic and the velocity vo is in the
direction O'z′. In this problem, we use Galilean transformation. a) Determine the
velocity and the direction of the starlight as seen by the observer on Earth. Verify
that the apparent direction of the star makes an angle α ≈ 10−4with the normal to the
ecliptic, the star describing an ellipse in 1 year. b) Considering the wave fronts in
both the stars and the Earth’s frame, show that the deviation of light cannot be
explained by using the phase velocity. Show that it may be explained by using the
group velocity.

P13.2 a) Choose the right frames of reference and show the Doppler-Fizeau formula
ωΟ = ωS/[1 – (vS/vp(M)) cos θO] in the case of a moving source and an observer at
rest and ωΟ = ωS [1– (vO/vp(M)) cos θO] in the case of a moving observer and a
source at rest. b) Show that, if a wave of frequency ω1 is emitted by an observer and
reflected on a moving mirror toward the observer, the reflected wave has a
frequency ω2 = ω1(1+ v/vp)/ (1− v/vp).

Special relativity

P13.3 An event (1) occurs at the origin at time t1 = 0 and an event (2) occurs at a
time t2 at the point (0, 0, z2). What are the positions and times of these events as seen
by an observer travelling at a speed vo in the direction Oz? Can he see event (2)
precede event (1)? What is the condition on z2 and t2 for this does not happen?
Interpret this result in terms of causality.

P13.4 To derive Lorentz transformation, we consider an event of space-time
coordinates (x1, x2, x3, x4 = ct) in a frame S and (x'1, x'2, x'3, x'4) in a frame S'.
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According to the principle of inertia, a free particle has a uniform motion in all 
frames. This is possible if the transformation is linear, of the form 

x1 = a1
1 x'1 + a1

2 x'2 + a1
3 x'3 + a1

4 x'4 ,     x2 = a2
1 x'1 + a2

2 x'2 + a2
3 x'3 + a2

4 x'4, 
x3 = a3

1 x'1 + a3
2 x'2 + a3

3 x'3 + a3
4 x'4 ,     x4 = a4

1 x'1 + a4
2 x'2 + a4

3 x'3 + a4
4 x'4.  

a) Show that the reflection symmetry with respect to the planes O'y'z' and Ox'z' 
requires that a12 = a13 = a14 = a21 = a23 = a24 = 0. Show that the 90° rotational 
symmetry about Oz implies that a11 = a22 and a31 = a32 = a41 = a42 = 0. b) Writing 
that O' has the coordinates x'1 = x'2 = x'3 = 0 in S', x1 = x2 = 0 and x3 = vot in S, show 
that a34 = β a44 , where β = vo/c. Thus, the transformation is of the form 

x1 = a11 x'1 ,    x2 = a11 x'2,     x3 = a33 x'3 + β a44 x'4 ,    x4 = a43 x'3 + a44 x'4.       

c) Consider two events (r, t) and (r + dr, t + dt), which correspond to two positions 
of a photon and the interval dS2 = dr2 – c2 dt2. The invariance of the velocity of light 
requires that dS'2 = 0 if dS2 = 0. Write dS2 = f(x', y', z', t', vo) dS'2. It may be shown 
that the homogeneity of space and time and other requirements imply that  
f = 1. Show that the invariance of the interval (dS2 = dS'2) implies that a11

2 = 1,  
a33

2 − a43
2 = 1, a44

2 = γ2 and βa33 = a43, where γ = 1/(1−β2)½. d) As the 
transformation reduces to the identity at the limit β → 0, deduce that  

x1 = x'1,        x2 = x'2,        x3 = γ(x'3 + βx'4),          x4 = γ(x'3 + βx'4) . 

P13.5 a) In order to write the Lorentz transformation in the case of an arbitrary 
velocity vo ≡ cβ in the direction of the unit vector eo, we decompose the position 
vector r' into a longitudinal component (r'.eo)eo (parallel to vo) and a transverse 
component r' − (r'.eo)eo (normal to vo). Noting that the transverse component is not 
modified in the transformation, while the longitudinal component transforms as z in 
[13.17], show that r = r' + (γ − 1)(r'.eo)eo + γx'4β and  x4 = γ[x'4 + (β.r)]. b) Derive 
the transformation laws of the velocity and the force. 

v = [v′ + (γ –1)(v′.eo)eo + γcβ]/γ(1 + β.v′/c) , 
f = [ f′ + (γ –1)(f′.eo)eo + γ(β/c)(f′.v′)]/γ[1 + (β/c)v′] . 

Four-dimensional formalism 

P13.6 Verify that the norm of a four-vector A  and the four-scalar product of two 
four-vectors A  and B  defined by ( A . A ) ≡ A2 – (A4)2 and ( A . B ) ≡ (A.B) – A4B4 
are invariant in a Lorentz transformation in the direction Oz. This may also be 
shown for a Lorentz transformation in an arbitrary direction. In fact, the general 
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Lorentz transformation (including rotations) is defined by the condition of the 
invariance of the scalar product of four-vectors. 

P13.7 Using Lorentz transformation in the direction Oz, show that the 
d’Alembertian is a four-scalar operator, that is, it gives a four-scalar if it acts on a 
four-scalar f(x, y, z, t). It may be shown that this property holds for Lorentz 
transformations in any direction. Deduce that, if a wave propagates with a speed c 
isotropically in a medium at rest in a frame S', it will be so in any frame S. Does this 
result hold for waves that propagate with a speed less than c? 

Elements of relativistic mechanics 

P13.8 A galaxy subtends an angle of 20' as seen from Earth. It rotates about itself 
with a period of 8 × 104 years. Requiring that the velocity of the stars at its periphery 
does not exceed c, what is the upper limit on its distance to Earth? 

P.13.9 a) Two electrons move toward each other with a speed v = c/2. Knowing that 
me = 0.51 MeV/c2 or 9.11 × 10–31 kg, calculate their momentum, their energy and 
their kinetic energy and compare with the classical values. b) What is the relative 
velocity (i.e. the velocity of one of them in the rest frame of the other)?  

P13.10 Compare the expressions of the invariant ( P . P ) in the proper frame of a 
particle and another frame, derive the relation of W to P. 

P13.11 The mass of the electron is m = 9.11 × 10–31 kg. a) What is its rest energy in 
joules and in MeV? b) Assume that it is accelerated by a voltage of 3 × 105 V. 
Calculate its velocity and its momentum. What do you find if you use non-
relativistic mechanics? c) What is the produced energy in the pair (e+e–) annihilation 
if the initial particles are at rest and if they move toward each other with the 
velocities of 108 m/s? 

Special relativity and waves 

P13.12 In 1851, Fizeau tried to measure an eventual modification of light speed in 
moving water. A half-silvered mirror M splits a beam of light into two parts, which 
propagate in opposite directions in water that flows in a glass tube. Their 
interference is observed through a telescope T (Figure 13.4). The speed of light with 
respect to the hypothetical ether of water is c/n where n is the index of water. If 
water is moving with a speed vo, assume that its ether is dragged with a speed αvo 
where 0 < α < 1. Let d be the total distance travelled in water. a) Show that the 
difference in the travel time of these beams is t2(vo) – t1(vo) ≈ 2αn2(dvo/c2). Thus, by 
observing the interference figure before and after setting water in motion, Fizeau’s 
was able to determine the drag coefficient α. Using a particular mechanical model of 
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the ether, Fresnel has found α = 1 – 1/n2 in agreement with Fizeau result. b) Show 
that this “partial drag” can be obtained by using the relativistic transformation of the 
velocity both in the particle and the wave model of light.  

 
 

    Figure 13.4. Fizeau experiment, P13.12                                Figure 13.5. Problem 13.15 

P13.13 A source of light moves toward the observer and emits red light of 
wavelength λo = 700 nm. What should be the source velocity vo in order that this 
light appears blue of wavelength λ'ο = 400 nm? 

P13.14 A quasar is a very far away celestial body. It has the size of a star but it 
radiates as much energy as a thousand galaxies. The emitted radiation by the farthest 
known quasar has a wavelength 4.4 times its value on Earth. What is the velocity of 
this quasar? Hubble law states that the velocity of this body is proportional to its 
distance D according to the relation v = HD, where H ≈ 20 km.s–1 /106 light-year is 
Hubble constant. What is the distance D to this quasar? 

Elements of relativistic electromagnetism 

P13.15 The plane parallel plates of a capacitor have charge densities ±q's in their 
proper frame S' (Figure 13.5). The capacitor moves with a velocity vo with respect to 
the observer (whose proper frame is S). Assume that vo is in the direction Oz and 
that the plates are parallel to Oyz. Calculate the fields E and B in S' and deduce the 
fields in S. Calculate the fields directly in S. 

P13.16 In a frame S, an electron moves with a velocity v in the direction Ox in a 
field E parallel to the plane Oyz and making an angle α with Oy. An observer is 
moving with a velocity vo in the direction Oz. a) Calculate the velocity of the 
electron in the frame S' of the observer. Using the force exerted on the electron in S 
and the transformation law of the force, calculate the force exerted on the electron in 
S'. b) Calculate the electric and magnetic fields in S' and verify the expression of the 
force. 
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P13.17 A particle of charge q moves with respect to the observer with a velocity vo 
in the direction Oz. In the proper frame S ' of the particle, its field is purely 
electrostatic. Using the transformation law of the electromagnetic field, determine 
the fields in the frame S of the observer. Show that these fields verify the equations 
∇×E + ∂tB = 0 and ∇.B = 0.  

P13.18 a) Show that the quantities (E.B) and (E2 – c2B2) are invariant in Lorentz 
transformation of arbitrary velocity. Deduce that, if the fields are orthogonal or one 
of them is equal to zero in a frame S, the fields are necessarily orthogonal in any 
other frame S'. b) Given the fields E and B in a frame S, is it possible to find a frame 
S' such that B′ = 0 or a frame S″ such that E″ = 0? 

P13.19 a) Two particles of charges q1 and q2 are moving with the same velocity  
vo = cβ and they are separated by a distance r. Show that the force exerted by q1 on 
q2 is F1→2 = (q1q2 Ko/r3) η[r/γ2

 + β βr cos θ], where θ is the angle that r forms with 
vo and η = (1−β2)(1−β2 sin2θ)−3/2. Verify that this force is not in the direction of the 
line joining the two particles but F1→2 = − F2→1. Compare the electric force with the 
magnetic force depending on the values of vo and θ. b) Assume now that the 
particles are situated at points r1 and r2 and they are moving with different velocities 
v1 and v2. Calculate the forces exerted by the one on the other. Is the principle of 
action and reaction verified? c) A very long linear conductor carries a current I. 
What is the force that it exerts on a charge q situated at a distance r from this 
conductor? 

P13.20 Consider a very thin cylindrical beam of particles having charge q and 
velocity vo in the frame S of the observer. Let q'L be the charge per unit length in the 
frame S' in which the charges are at rest. Calculate the fields and the potentials in S' 
and deduce the fields and the potentials in S. Verify Ampère’s law.  

P13.21 Using the transformation laws [13.87] for the potentials A and V and the 
expressions of the fields in terms of the potentials, derive the laws of transformation 
of the fields. 

P13.22 Assume that, in a frame S', the electromagnetic field is static and that S' is 
moving with respect to S with a velocity vo in an arbitrary direction. Verify that 
Maxwell’s equations are valid in S. 

P13.23 Show the covariance of Maxwell’s equations in a Lorentz transformation of 
velocity vo in an arbitrary direction.  



Chapter 14  

Motion of Charged Particles in  
an Electromagnetic Field 

The motion of charged particles in an electromagnetic field is of great practical 
importance. It is used in observation instruments (oscilloscopes, electron 
microscopes etc.), accelerators, mass spectroscopy, the investigation of nuclear and 
particle reactions, etc. It is also important in some other fields of physics: plasma 
physics, astrophysics, cosmic ray physics, electronics, etc. In this chapter we analyze 
the simplest problems of motion in uniform electric and magnetic fields both in 
Newtonian and relativistic mechanics. We also consider some simple applications.  

14.1. Motion of a charged particle in an electric field  

In this section we consider the motion of a charged particle in a uniform electric 
field E. The relevant effect is its acceleration and deviation, which is widely used in 
observation and measurement instruments (oscilloscopes, television sets, etc.). 

A) Non-relativistic analysis  

An electric field E exerts a force F = qE on a particle of mass m and charge q. 
Thus, its equation of motion is  

a = F/m = (q/m) E.                                        [14.1] 

If the field E is uniform, the acceleration a is constant. The equation of motion 
[14.1] may be integrated to give the velocity and the position 
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v = (q/m)E t + vo,       r = (q/2m)E t2 + vot + ro,    [14.2] 

where vo and ro are the initial velocity and the initial position, respectively.  

 
                       (a)                                               (b)                                              (c) 

Figure 14.1. a) Trajectory of a charged particle in a uniform field E, b) deviation 
 of the particle versus z, and  c) variation of the velocity versus z 

Assume that the particle enters at the origin O with a velocity vo pointing in the 
direction Oz in a uniform field E = Eex, for instance between the plates of a parallel plate 
capacitor (Figure 14.1a). Using [14.2] and, taking into account the initial conditions, the 
components of the velocity of the particle and its coordinates may be written as 

vx = (q/m)Et,      vy = 0,      vz = vo,  [14.3] 

x = (q/2m)Et2,     y = 0,       z = vot.        [14.4] 

The particle remains in the plane Oxz. Its motion is uniform in the direction Oz and 
accelerated in the direction Ox of the field. The equation of the trajectory is obtained 
by eliminating t between x and z. We find a parabola whose apex is at O 

x = (qE/2mvo
2) z2.   [14.5] 

If the length of the capacitor in the direction Oz is L, the particle leaves the field 
at time t = L/vo with a velocity having the components vx = qEL/mvo and vz = vo. 
Outside the field, the particle is free; its velocity remains constant. Its path is 
rectilinear and it makes with the initial direction Oz an angle θ such that  

tan θ = (vx/vz) = qEL/mvo
2 = qVL/mdvo

2,                      [14.6] 

where V = Ed is the voltage of the capacitor and d is the plates spacing. The impact 
point on a screen perpendicular to Oz and situated at a distance D is displaced by 

x = D tan θ = k V,       where  k = qLD/mdvo
2.   [14.7] 
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Thus, this displacement is proportional to the voltage V of the capacitor. For 
instance, if the electron is first accelerated by a potential Vo = 10 kV, its initial 
kinetic energy is UK = eVo = 1.602×10−15 J and its initial velocity is vo = (2UK/m)½  = 
0.593 × 108 m/s (thus, almost non-relativistic). If the capacitor has a length  
L = 1 cm and a thickness d = 2 mm, a voltage V = 100 V produces a displacement  
x = 5 mm on a screen situated at a distance D = 20 cm from the capacitor. 

The variation of the kinetic energy in the interval of time dt in the field is  

dUK(t) = m v.dv = mv.a dt = qE.v dt = − q ∇V.dr = −q dV = − dUE.     [14.8] 

It is the opposite of the variation of the potential energy UE = qV of the charge in the 
field. This is valid also for the variation in a finite interval of time independently of 
the path 

ΔUK = −ΔUE.                [14.9] 

This equation is the basis of electrostatic accelerators: charged particles are 
produced almost at rest by a source at a point O. A potential Vo is applied between O 
and another point P. The particles move from O to P and gain a kinetic energy |qVo|. 

Their velocity at P is then v = mqV /o2 . 

B) Relativistic analysis 

In the non-relativistic treatment, the velocity of a charged particle in an electric 
field increases indefinitely if the particle travels a large distance or if the field is 
very strong. However, if the particle velocity becomes comparable to the speed of 
light in vacuum c, the relativistic mechanics must be used and the particle speed will 
never reach c. The relativistic corrections are approximately of the order of v2/c2 at 
low velocities. For instance, if the velocity of the particle is 0.1 c, the relativistic 
corrections are roughly 1%. Another way to see whether the non-relativistic 
expressions are valid consists of comparing the kinetic energy of the particle to its 
rest energy. For instance, the electron rest energy is mc2 = 511 keV. Thus, if an 
electron is accelerated by a potential of 20 kV, its kinetic energy becomes 20 keV 
and UK /mc2 ≈ 4 %. The same correction is reached for protons (which are 1836 
times heavier than electrons) if they are accelerated by a potential of V ≈ 40 MV. 

Consider the problem of a particle fired with a velocity vo = vo ez in a field  
E = E ex. The relativistic equation of motion dP/dt = f = qE gives the equations  

dPx/dt = qE,          dPy/dt = 0,          dPz/dt = 0.  [14.10] 
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The initial momentum is Po = mvo/(1 − vo
2/c2)½ and the initial relativistic energy is 

Wo = mc2/(1 − vo
2/c2)½. Equations [14.10] may be solved with these initial conditions 

to give  

Px = qEt,          Py = 0,         Pz = Po.  [14.11] 

The energy of the particle is then W = 4222 cmPc + , that is, 

W(t) = 22222
o tEcqW + ,   where    Wo = 422

o
2 cmPc + .    [14.12] 

Knowing the momentum and the energy, we may determine the velocity by using 
the equation v = c2P/W, hence 

vx = dx/dt = c2qEt/W(t),     vy = dy/dt = 0,       vz = dz/dt = c2Po/W(t). [14.13] 

The coordinates of the particle are obtained by integrating these equations with 
respect to time. Taking into account the initial position at O, we find 

x = [W(t) − Wo]/qE,      y = 0,    z = (cPo/qE) sinh−1(cqEt/Wo
2).   [14.14] 

The equation of the trajectory in the Oxz plane is  

z = (Wo/qE) [cosh−1(qEx/cPo) – 1].          [14.15] 

The speed of the particle is  

v = c2 2222
o tEqP + /W(t) = c [ 1 −m2c4/(qEz + Wo)2]½ .  [14.16] 

The variation of the particle energy between t = 0 and t is given by 

W − Wo = qEz = −q(V − Vo),              [14.17] 

where (V − Vo) is the variation of the electric potential. 

The non-relativistic limits of the preceding expressions correspond to small 
velocities compared to c. For this reason, it is necessary that the initial velocity be 
small and that the field E be sufficiently weak. In this limit, we may write P ≅ mv 
and W ≅ mc2 + ½mv2. Expanding the cosh function [14.15] as a power series and 
keeping the second order, we find  

z ≈ (mc2/qE) [1 + (qEx/cmvo)2 – 1] = (qE/2mvo
2) x2.  [14.18] 
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Thus, we find again the classical parabola. The relativistic trajectory and the 
classical trajectory are illustrated in Figure 14.1b. The speed [14.16], has the  
non-relativistic limit v = (vo

2 + 2qEz/m)½. The relativistic treatment shows that the 
speed of the particle never exceeds the speed of light in vacuum c, while it increases 
indefinitely in the non-relativistic treatment (see Figure 14.1c). 

C) Applications 

Many types of equipment use the deflection of charged particles in an electric 
field E. In an ink jet printer, for instance, fine, charged droplets of ink are fired and 
pass between the parallel plates of a capacitor under the control potential of the 
signal. The resulting electric field directs the beam of ink as the paper moves in front 
of it.  

The deflection of charged particles in an electric field E is used in cathode-ray 
tubes, which were the basic elements in oscilloscopes and television sets before the 
use of liquid crystal screens. In these vacuum tubes, a beam of electrons is emitted 
from the cathode and accelerated toward the anode. They are deflected by vertical 
and horizontal electric fields between the plates of capacitors (Figure 14.2) and they 
strike a fluorescent screen producing a bright spot. The spot is deviated vertically 
and horizontally proportionally to the applied voltages on the capacitors. An 
oscilloscope allows voltages to be compared and the shape of a voltage signal V(t) to 
be observed. The instrument may be used to observe any physical quantity that may 
be transformed into an electric signal (sound waves, variation of temperature, 
heartbeat, etc.). In television sets, the deviation of the spot is controlled by the 
modulated electromagnetic wave, which is picked up and amplified. 

 
 
 
 
 
 
 
 

Figure 14.2. Cathode-ray tube 

14.2. Bohr model for the hydrogen atom* 

By 1905, the quantization of radiation was established. A light wave of 
frequency ν~  is formed by photons of energy Eγ = h ν~ , where h is Planck’s constant. 
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One of the long-standing problems was the interpretation of the hydrogen spectrum: 
the wavelengths of the emitted radiations by the hydrogen atom are given by the 
empirical formula 

1/λn,p = RH (1/p2 − 1/n2),           where  RH = 1.097 × 107 m−1.     [14.19] 

RH is the Rydberg constant for hydrogen, while n and p are positive integers.  

The analysis of section 2.9 shows that, in classical mechanics, a system of 
charged particles can be in a stable equilibrium configuration only if the positive 
charge and negative charge are distributed with vanishing total charge density. This 
led Thomson to propose a model, according to which the protons are distributed in 
the whole volume of the atom of radius 10−10 m, and in this way, neutralize the 
electrons. However, Rutherford’s experiment showed that the protons are 
concentrated in a small nucleus of radius ~10−15 m. If the electrons are at rest, they 
cannot be stable, as nothing prevents them from being attracted and neutralized by 
the nucleus. In 1913, Bohr tried to interpret the empirical formula [14.19]. By 
analogy to the solar system, he proposed a model of the atom, according to which 
the electrons move on orbits around the nucleus at distances of the order of 10−10 m. 
Thus, the orbital motion of the electrons prevents them from being captured by the 
nucleus. 

Consider a system formed by a nucleus of charge Ze and an electron of charge 
−e. The nucleus being much heavier than the electron, its displacement is negligible. 
The electron is subject to Coulomb’s force F = −ΚοZe2/r2, which corresponds to a 
potential energy UE = −ΚοZe2/r. The study of this motion shows that the electron 
may follow elliptical, circular, parabolic, or hyperbolic orbits. The two last types 
correspond to collisions, while the closed orbits of the first two types correspond to 
a bound electron in the atom. Let us consider the simplest case of a circular orbit of 
radius r. The conservation of energy requires that the velocity be constant and given 
by the radial equation of motion F = −ΚοZe2/r2 = −mev2/r. This gives the electron 
velocity v = (ΚοZe2/mer2)½ and angular momentum L = merv = (ΚοZe2mer)½. 
According to electromagnetic theory, an accelerated electron radiates energy. To 
have the atom in a stationary state, Bohr supposed (without apparent raison) that it 
radiates no energy and its angular momentum L is an integer multiple of  = h/2π 
(called reduced planck’s constant) 

L = n  ,               where n = 0, 1, 2,...    [14.20] 

He deduced that the radius of the orbit that corresponds to a stationary state takes 
only the discrete values 

rn = n2 (εoh2/πΖmee2).               [14.21] 
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The total energy of this state is conserved and given by  

En = ½ mev2 + UE = − 2
1

no

2

4 r
Ze
πε  = − 2

2

n
RhcZ ,             [14.22] 

where the constant R is given by 

R = 32
o

4

8 hc
me
ε

 = 1.097 373 20 × 107 m−1,        [14.23] 

which is very close to Rydberg’s constant RH [14.19] and in perfect agreement with 
the experimental value 1.097 373 76 ± 1.2) × 107 m−1. 

The state of lowest energy, called the ground state, corresponds to n = 1. In the 
case of the hydrogen atom, the corresponding energy E1 and orbit radius (called 
Bohr radius) are 

E1 = −hcR = −2.18 × 10−18 J = −13.61 eV,            [14.24] 
r1 = εoh2 /πmee2 = 0.529 175 × 10−10 m.             [14.25] 

The states n = 2, 3... are excited states. The higher the principal quantum number n, 
the longer the orbit radius rn (proportional to n2) and the higher the energy level 
(proportional to −1/n2). Figure 14.3a illustrates the Bohr orbits for hydrogen and 
Figure 14.3b illustrates the energy levels. The orbit n = ∞ has an energy E∞ = 0 and a 
radius r∞ = ∞, it corresponds to an electron separated from the nucleus. The energy 
required to separate the electron from the state n is E∞ − En = − En. In particular, the 
energy necessary to separate the electron from the ground state is the ionization 
energy of the atom −E1 = 13.61 eV = 2.1806 × 10−18 J.  

      
    (a)                                                                             (b) 

Figure 14.3. Bohr model for the hydrogen atom: a) the orbits, and b) the energy levels 
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To interpret the hydrogen spectrum, Bohr assumed that the atom is usually in the 
ground state E1. If it is excited to a state of energy En, it may undergo a transition to 
a lower energy state Ep with the emission of a photon of energy 

pn,ν~h  = En − Ep = hcRZ2 (1/p2 − 1/n2).               [14.26] 

The corresponding wavelength is given by the Rydberg relation 

1/λn,p = pn,ν~ /c = Z2RH (1/p2 − 1/n2).        [14.27] 

Conversely, if the atom is in a state Ep, it may undergo a transition to a higher 
energy level En if it absorbs a photon of energy h pn,ν~ = En − Ep. The frequencies of 
the radiations that an atom may emit are thus the same as those of the radiations that 
it may absorb. According to Bohr’s model, in a given stationary state, the atom 
obeys the laws of classical mechanics but it violates the laws of electromagnetism as 
the accelerated electron emits no radiation. The transitions from one state to another 
are jumps in a very short time interval, during which the laws of motion are not 
known, thus classical mechanics is probably violated.  

Bohr’s model is considered as semi-classical as the motion of the electron is in 
accordance with the laws of classical mechanics but subject to the quantization rule 
[14.20]. This model is not satisfactory because it does not justify the origin of this 
quantization rule and the absence of radiation in the stationary states. The properties 
of the atom can be understood only in the framework of quantum mechanics, which 
abandons the concept of orbit in favor of a distribution of probability and the duality 
of the wave-particle. The electrons form an electronic cloud around the nucleus, 
even in the hydrogen atom, which has a single electron. The atom may be only in 
quantized states completely determined by quantum theory. It undergoes transitions 
from a state to another not by a continuous variation of the physical quantities but a 
quantum jump with the emission of a photon. The ground state is the stable 
configuration because there is no lower energy state. In quantum mechanics, the 
concepts of position and motion do not have the same significance as in classical 
physics. Particularly, they cannot be determined simultaneously with precision.  

14.3. Rutherford’s scattering * 

While studying the scattering of alpha particles by a thin gold leaf, Rutherford 
and his collaborators, Marsden and Geiger, observed that a good many particles 
were scattered backward. Rutherford interpreted this unexpected result by proposing 
that the positive charges in the gold atom are concentrated in a very small nucleus of 
radius Rn ≈ 7 × 10−15 m instead of being spread in all the atom of radius Ra ≈ 10−10 m 
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as in Thomson’s model. Indeed, we saw in section 2.7 that the maximum of the 
electric field of a charged ball is at its surface. Thus, it is ETh = KoZe/Ra

2 = 1.14 × 
1013 V/m in Thomson’s model and ERu = KoZe/Rn

2 = 2.32 × 1021 V/m in 
Rutherford’s model. The alpha particles are scattered in Rutherford’s model like 
small bullets fired on a very hard metallic ball instead of a large cotton ball.  

The alpha particle of charge Z′e (where Z′ = 2) moves on a hyperbolic trajectory, 
whose focus is at the position of the nucleus of charge Ze. It approaches from far 
away with a velocity vo initially on a straight line at a normal distance b from the 
nucleus (Figure 14.4). b is the impact parameter and it is related to the angular 
momentum L by the relation b = L/mvo. After the collision, it moves away on a 
straight line, which makes an angle θ with its initial direction. The conservation of 
energy and angular momentum implies that it is scattered with the same velocity vo 
and the same impact parameter b. 

 
 
 
 
 
 
 
 

Figure 14.4. Rutherford’s scattering 

The atom being globally neutral, the electrons constitute a screen, which reduces 
the electric field of the nucleus. The alpha particle is strongly repulsed only if it 
penetrates deeply in the atom. It is then subject to the repulsion of the almost point-
like nucleus. It may be shown that its deviation θ is related to b by the relation  
tan θ/2 = KoZZ′e2/2Eb (see problem 14.10).  

14.4. Motion of a charged particle in a magnetic field  

A) Non-relativistic analysis 

Let us assume that a particle of mass m and charge q is fired from the origin O 
with a velocity u in a uniform magnetic field B pointing in the direction Oz (Figures 
14.5a and 14.5b). The equation of motion of this particle is  

v  = (q/m) (v × B).  [14.28]  
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Projecting this equation on the axes, we find 

xv  = (qB/m) vy,       yv  = − (qB/m) vx,       zv  = 0.    [14.29] 

Let uy and uz be the components of u in the directions Oy and Oz. The equation  
zv = 0 implies that vz be constant, thus equal to its initial value  

vz = uz.   [14.30] 

The first two equations [14.29] are coupled. To uncouple them, we differentiate the 
second with respect to time and use the first equation, we find 

yv + ωc
2 vy = 0      where      ωc = |q|B/m.   [14.31] 

The general solution of this equation is  

vy = A cos(ωc t + α ).   [14.32] 

Using the second equation [14.29], we find 

vx = ± A sin(ωc t + α),                 [14.33] 

where ± is the sign of the charge. Imposing now the initial conditions vx = 0, vy = uy, 
we find α = 0 and A = uy. Thus, the components of the velocity of the particle are 

vx = ± uy sin(ωc t),         vy = uy cos(ωc t),        vz = uz.  [14.34] 

Integrating once more with respect to time and taking into account the initial 
conditions x = y = z = 0, we find the coordinates 

x = ±R [1− cos(ωc t)],         y = R sin(ωc t),          z = uzt,   [14.35] 

where we have set   

R = uy/ωc = muy/|q|B.   [14.36] 

a) If the charge q is positive, the coordinates are given by 

x = R [1− cos(ωc t)],          y = R sin(ωc t),         z = uzt.   [14.37] 

The trajectory is a helix of radius R around the axis of equation x = R and y = 0 
parallel to B. The particle has about this axis an angular velocity ωc, called cyclotron 
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frequency (Figure 14.5a). The motion about this axis is left-handed and the velocity 
in the direction of the field is constant (equal to the component of the initial velocity 
in the direction of Oz). The pitch of the helix, i.e. the difference of the z coordinates 
of two positions that are separated by a period T = 2π/ωc, is  

Δz = uz (2π/ωc) = 2πmuz/|q|B.                       [14.38] 

 

(a)                                        (b)                                                 (c) 

Figure 14.5. a) Motion of a positively charged particle in a field B, b) motion of a  
negatively charged particle in a field B, and c) schematic representation of the cyclotron 

b) If the charge q is negative, the coordinates are given by  

x = R [cos(ωc t) − 1],      y = R sin(ωc t),      z = uzt.    [14.39] 

The trajectory is a helix with the same characteristics, except that the axis is at  
x = − R and y = 0 and the motion about this axis is right-handed (Figure 14.5b).  

In particular, if the particle is fired with an initial velocity perpendicular to the 
magnetic field (uz = 0), the motion is circular of radius R and angular velocity ωc in a 
plane perpendicular to the field. 

In the case of the motion in a constant magnetic field, we have two important 
conserved quantities: 

− The kinetic energy of the particle is constant since the work of the magnetic 
force on the particle q v × B is zero (as it is orthogonal to v). Consequently, the 
speed of the particle remains constant. In fact both the longitudinal component v// 
(parallel to B) and the transverse component v⊥ remain constant. On the other hand, 
the cyclotron angular frequency ωc does not depend on the particle speed, while the 
radius of the helix is proportional to the transverse component of the velocity.  

– The longitudinal component of the angular momentum is conserved, i.e. 

Lz = −(q/|q|) mR2ωc = − qR2ωc,  [14.40] 
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where the (−) sign must be taken since, for instance, negative charges have a right-
handed motion. Consequently, the orbital magnetic moment is conserved  

M = qLz /2m = − ½ qR2ωc,        |M| = ½ mv⊥
2
 /B.  [14.41] 

The motion in a time-dependent or a non-uniform field is much more 
complicated. If the field is uniform but slowly varying in time, in the sense that 
during the cyclotron period Tc = 2π/ωc, the field varies very little, Tc |∂tB| << |B|, the 
helicoidal motion varies slowly. The variation of B induces a field E according to 
Faraday’s equation ∇×E = −∂tB. This induced electric field acts on the charged 
particle with a force qE and, during a complete revolution, it produces a work  

ΔW = ∫C r.Fd = q ∫C r.Ed = q∫∫S dS n.∇×E = −q∫∫S dS n.∂tB = −q ∂tΦ = −q πR2∂tB, 

where S is a surface bounded by C, and Φ is the magnetic flux through S. This work 
produces a variation of the particule kinetic energy at a rate 

dUK/dt ≅ ΔW/Tc = − ½ qωcR2∂tB ≅  M ∂tB.  [14.42] 

This variation of the particle energy by varying the magnetic field is used in the 
betatron (see section 8.9E). If B increases, as the particle progresses in the direction 
of B, ωc = |q|B/m increases and R = (2M /|q| ωc)½ decreases.  

Let us now consider the motion of a particle in a slowly varying B field in space. 
We assume that the field is symmetric about Oz and Bz is independent of ρ (Figure 
14.6). Using cylindrical coordinates, the equation ∇.B = ρ−1∂ρ(ρBρ) + ∂zBz = 0  
implies that Bρ = −½(∂zBz)ρ. Assuming that Bz varies slowly, such that R |∂zBz| << 
|Bz|, we deduce that |Bρ|/|Bz| << ½ρ/R. The small component Bρ acts on the charge 
with a force parallel to Oz producing a drift in this direction according to the 
equation of motion  

m (∂tvz) = −qvϕ Bρ  = ½qvϕ R(∂zBz) = (q/|q|) M (∂zBz).  [14.43] 

As the kinetic energy UK = ½m(R2ωc
2 + vz

2) = −(m/q)Mωc + ½ mvz
2 is conserved and 

M is conserved, we deduce by differentiation that 

m (∂tωc) = vz
 |q|(∂zBz).  [14.44] 

If, for instance, the particle moves toward a stronger field, the right-hand side is 
positive; thus, ωc increases. As M = −½qR2ωc is constant, R decreases and the 
particle slows down. If the field is strong enough, the particle may return back as if 
it is reflected from a magnetic mirror. It may also be confined between two regions 
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where the field B is very strong, forming so-called magnetic bottles. This effect is 
used to confine very hot plasmas, which cannot be confined in an ordinary 
container, in order to study thermonuclear fusion.  

 
 
 
 
 

Figure 14.6. Motion of a charged particle in a slowly varying magnetic field 

B) Relativistic analysis 

If the particle has high velocity, its momentum and energy vary according to  

dP/dt = f = q v × B,         dW/dt = f.v = q (v × B).v = 0.     [14.45] 

The second equation shows that the energy of the particle remains constant (equal to 
its initial energy Wo). Using the relation v = c2P/W, the first equation becomes  

dv/dt = (qc2/Wo) (v × B).  [14.46] 

The only difference with the non-relativistic equation [14.28] is the replacement of 
1/m by the constant factor c2/Wo. We find a helicoidal motion with a cyclotron 
angular frequency and radius 

 ωc = |q|c2B/Wo,        R = uy/ωc = Poy /|q|B,   [14.47] 

where Poy = Wovoy/c2 is the transverse component of the initial relativistic 
momentum (in the direction Oy). The non-relativistic limit is obtained by taking the 
limits Po → mvo and Wo → mc2, thus neglecting the kinetic energy compared to the 
rest energy. 

C) Applications 

1) The cyclotron is a particle accelerator using the combined action of a constant 
magnetic field and an alternating electric field. The first cyclotron was constructed 
by Lawrence in 1932. It is essentially formed by two hollow, copper, D-shaped, 
half-cylinders  (also know as “dees”), D1 and D2, separated by a gap and immersed 
in a magnetic field B parallel to the axes of the dees (Figure 14.5c). An alternating 
electric field is set up in the gap by applying an alternating potential between the 
dees. The particles of positive charge q, for instance, are produced with a small 

B
ρ

z
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velocity by a source S near the center. They are injected in D1 perpendicularly to B. 
Each particle follows a half-circle path inside D1 with the cyclotron angular 
frequency ωc. As it reaches the gap, the alternating potential V is at its maximum Vm. 
The particle receives an energy qVm and enters in D2 where it follows a half-circle of 
larger radius but with the same frequency. By reaching the gap again, the alternating 
potential becomes –Vm if it has a frequency exactly equal to the cyclotron frequency. 
The particle gains again an energy qVm and enters D1 and so on.  

As P = |q|BR, to accelerate the particle to high energy (thus, high momentum P) 
the field B and R must be as large as possible. Practically, there is a limit as it is very 
difficult to have a strong uniform magnetic field over a large area. On the other 
hand, at high energy, relativistic relations must be used. As the cyclotron frequency 
decreases with increasing energy, the frequency of the alternating potential must be 
decreased accordingly. Such accelerators are called synchro-cyclotrons. It is also 
possible to vary B and the frequency in order to have an orbit of given radius, 
practically in a circular ring, whose radius may be very large (hundreds of meters); 
such accelerators are called synchrotrons. To give an idea of the order of magnitude 
in the case of a cyclotron of radius R = 0.5 m and a field B = 2 T, it is possible to 
accelerate protons to about 50 MeV, deuterons to 25 MeV, and alpha particles to  
12 MeV.  

2) Frequently, the charged particles (electrons, protons, α particles, ions, etc.) are 
emitted by sources with various velocities. A velocity selector allows a focalized 
beam of mono-energetic particles to be selected (Figure 14.7a). The initial beam is 
sent through two holes O1 and O2. Between them, an electric field E and a magnetic 
field B are set up in perpendicular directions by a capacitor and an electromagnet. 
The particles pass through both holes if they are not deviated by the fields. As in the 
case of Thomson’s experiment, the condition for this is qE = qvB. This determines 
the velocity of the particles v = E/B.  

3) A mass spectrometer uses the motion of charged particles in a magnetic field 
B to measure its mass or to separate particles of different masses mi. It is used, for 
instance, to measure the mass of isotopes and separate them. The atoms are ionized 
in a source and accelerated by a potential V (Figure 14.7b). They form a beam of 
ions of velocity vi = (2qV/mi)½. They normally enter a uniform field B and travel in 
half-circles, whose radii depend on the masses of the particles according to 

Ri = mivi/|q|B = 2
i /2 qBVm .         [14.48] 

After traveling in half-circles, they are intercepted by a plate at Mi at a distance  
OMi = Di = 2Ri. Thus the mass of the atoms are given by the relation mi = 
|q|B2Di

2/8V. In the case of a mixture of isotopes, the Mi form mass spectral lines. 



Motion of Charged Particles in an EM Field    457 

Thus, the mass spectrometer allows the separation of isotopes that cannot be 
separated by chemical methods; however, this method is very slow and costly.  

 
 
 
 

                   (a)                                                  (b)                                              (c) 

Figure 14.7. Applications of the motion of a charged particle in a field B: a) velocity selector, 
b) mass spectrometer, and  c) visualization of the reaction p + p → p π+ n 

4) A charged particle, which moves in a liquid (often hydrogen or propane) 
maintained under pressure at a temperature slightly higher than the boiling point, 
produces bubbles around the ions along its trajectory. The bubble chamber uses this 
effect to detect charged particles and to visualize their circular trajectories in a 
strong field B. For instance, the production of a π+ meson in the proton-proton 
collision p + p → p + n + π+ may be observed and analyzed (Figure 14.7c). The 
incident proton arrives along a circular path and collides with a proton of the 
hydrogen liquid initially at rest (thus, it has no trajectory). The photograph shows 
two circular trajectories that are curved in the same direction as the incident proton; 
thus, they are positively charged particles. A measurement of the radii of these 
trajectories allows their momentums to be determined. The conservation of 
momentum implies the existence of another particle, the neutron, which is invisible 
because it is neutral. The experiments undertaken using bubble chambers played an 
important part in the development of particle physics before the discovery of more 
efficient methods. Instead of bubbles in a liquid, the Charpak chamber (1968) is 
formed by a grid of high-voltage parallel wires. If a particle passes near one of them, 
it provokes a detectable signal. If the chamber is immersed in a strong magnetic 
field, the curved trajectory may be reconstituted with the help of computers. 

14.5. Motion in crossed electric and magnetic fields 

Let us assume that, in a frame S, a charged particle is subject to the fields  
E = E ex and B = B ey, where E and B are positive. To simplify, we assume that the 
motion is non-relativistic and that the particle is fired with an initial velocity vo in 
the plane Oxz. The equation of motion m v  = q(E + v × B) is equivalent to the 
equations 

m xv = qE − qBvz,          m yv  = 0,           m zv  = qBvx.  [14.49] 
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As the initial velocity lies in the plane Oxz, the motion remains in this plane. It is
convenient to use complex notation and set u = x + iz. This complex variable verifies
the equation mu = qE + iqBu , whose solution is u = i(E/B)t + b + a exp(iηωct),
where a and b are arbitrary complex constants, ωc = |q|B/m is the cyclotron angular
frequency and η = ±1 according to the sign of the charge. Setting a = A exp(iφ) and
b = bx + ibz we find

x = A cos(ηωct + φ) + bx and z = (E/B)t + A sin(ηωct + φ) + bz.

Setting voz – E/B = v'z and taking into account the initial conditions x = z = 0 and
vo = voxex + voz ez, we find

ωc x = −ηv'z [1 − cos(ωc t)] + vo, x sin(ωc t),
ωc z = ωc (E/B)t + v'z sin(ωc t) + ηvo, x [1 − cos(ωc t)]. [14.50]

(a) (b) (c)

Figure 14.8. Trajectory in the plane Oxz, respectively,
in the cases: a) v'z< E/B, b) v'z > E/B, and c) v'z = E/B

Particularly, if the initial velocity points in the direction Oz, we find

ωc x = −ηv'z[1 − cos(ωct)] and ωc z = ωc(E/B)t + v'z sin(ωct). [14.51]

Differenciating these equations with respect to time, we obtain the velocity of the
particle v = −ηv'z sin(ωct) ex + [E/B + v'z cos(ωct)]ez. The average velocity over a
period is the drift velocity <v> = (E/B) ez. The motion of the charged particle is the
superposition of a helicoidal motion of radius R = |v′z| = |voz – E/B| and angular
frequency ωc = |q|B/m and a translational motion in the direction Oz with a velocity
equal to the drift velocity E/B. If |v'z| < E/B (that is, 0 < voz < 2E/B), the sign of the
velocity in the direction ez does not change and the trajectory is illustrated in Figures
14.8a. If |v'z| > E/B (that is, voz < 0 or voz > 2E/B) the sign of the velocity in the
direction ez changes at certain times and we find the trajectory of Figure 14.8b. In
the particular case v'z = −E/B, we find the trajectory of Figure 14.8c.
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14.6. Magnetic moment in a magnetic field 

An electron, in orbit around a nucleus at O, has an orbital magnetic moment  
Mo = − el/2m, where m is the electron mass and l is its orbital angular momentum 
with respect to O. If a magnetic field B acts on the atom, the orbit changes 
continuously in time. This change is conveniently analyzed as a variation of the 
angular momentum l or that of the magnetic moment Mo. The moment of force 
acting on the atom may be written as Γ = Mo × B and this produces a variation of the 
angular momentum given by the equation 

d
dt

l = Γ = −
2
e
m

l × B.  [14.52] 

Taking the axis Oz in the direction of B, we may write 

dlx/dt = − ωLly,       dly/dt = ωLlx,        dlz/dt = 0,      [14.53] 

where we have set ωL = eB/2m. Combining the equations [14.53], we may show that 
l2 remains constant in the course of the motion. The three equations [14.53] have the 
solution 

lx = lo cos(ωLt + α),         ly = lo sin(ωLt + α),        lz = Cte.   [14.54] 

This shows that the vector l undergoes a precession about B with an angular 
frequency ωL called Larmor precession. Thus, the orbit of the electron undergoes 
the same precession about the magnetic field without modification of shape (Figure 
14.9a). The moment of force Γ = Mo × B is equivalent to a magnetic interaction 
energy 

UMO = − Mo.B = 
m
e

2
(l.B).  [14.55] 

 
                              (a)                                                                     (b) 

Figure 14.9. a) Larmor precession, and b) spin precession in a magnetic field 
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The electron also has an intrinsic angular momentum or spin s associated with a 
magnetic moment Ms = − (ge/2m)s, where g is the gyromagnetic ratio of the electron 
(very close to 2). A magnetic field B′ (measured in the rest frame S′ of the electron) 
acts on this magnetic moment with a moment of force Γs = Ms × B′. Thus, the 
variation of the spin is given by  

sd
dt

= Γs = −
2
ge
m

s × B′.       [14.56] 

The corresponding interaction energy is  

Us = − Ms.B′ = 
m

ge
2

(s.B′).  [14.57] 

Let us consider an electron, which moves with a velocity v in the fields E and B 
measured in the frame of reference S of the observer (Figure 14.9b). The magnetic 
field in the proper frame of the electron is  

B′ = B − (v × E)/c2 + O(β2).  [14.58] 

The interaction energy of this spin with the magnetic field is 

UMs = 
m

ge
2

(s.B) − 22mc
ge s.(v × E).  [14.59] 

The first term is responsible for the Zeeman effect, that is, the splitting of the 
spectral lines if a magnetic field acts of the atom. 

Assume that the electron is moving in the central electrostatic potential V(r) of a 
nucleus. Its interaction energy is U(r) = − eV(r) and the electric field acting on the 
electron is  

E = −∇V(r) = 
e
1

dr
dU

r
r .                                      [14.60] 

In the proper frame of the electron, we have both electric and magnetic fields. The 
induced magnetic field acts on the electron spin. The energy of this interaction is  

U′s = − 22mc
ge s.(v × E) = 222 cm

g
r
1

dr
dU (s.l),  [14.61] 

where we have used the relation l = m r × v. This interaction, which is proportional 
to (s.l), is called spin-orbit coupling. It contributes to the fine structure of atoms. 
However, the corresponding experimental values are only half of [14.61]. This 
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discrepancy is due to the fact that the proper frame of the electron is not an inertial 
frame. Because of the instantaneous velocity v and acceleration a = dv/dt of the 
electron, its proper frame has not only a translational motion of velocity v but also 
the so-called Thomas precession of angular frequency ΩT = (a × v)/2c2. It may be 
shown that, in this non-inertial frame, equation [14.56] must be replaced by 

dt
ds + (ΩT × s) = Γs = −

m
ge
2

s × B′.               [14.62] 

This is equivalent to replace the magnetic field B′ by B′ + m ΩT/e in the spin 
equation of motion and to an additional interaction energy 

U″s = 24mc
ge s.(a × v).                                     [14.63] 

The acceleration of the electron being a = F/m = −(e/m)E = − (1/mr)(dU/dr)r, 
equation [14.63] becomes U″s = −(g/4m2c2r)(dU/dr)(s.l), which is exactly half of the 
expression [14.61] with opposite sign. Thus, the spin-orbit coupling corrected by 
Thomas precession may be written as 

Us = 224 cm
g

r
1

dr
dU (s.l).                                [14.64] 

14.7. Problems 

Motion of a charged particle in an electric field  

P14.1 a) Write the equation of motion for an electron in a uniform electric field E 
pointing in the direction Ox and determine its motion if it is fired from the origin 
with a velocity vo in the direction Ox. b) Assume that E = 105 V/m and vo = 0. What 
is the acceleration of the electron and the distance that it travels to attain the speed 
c/10, where c is the speed of light? c) Assume that vo= 106 m/s and E = 105 V/m, 
both of them pointing in the positive x direction. What is the distance that the 
electron travels before it changes direction and the time it takes to reach this 
position? 

P14.2 An electron is fired with a kinetic energy of 104 eV toward a sphere of radius 
1 cm and charge Q = −5 µC. From what distance must it be fired in order to hit the 
sphere?  
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P14.3 In 1913 Millikan’s experiment established the quantization of electric charge 
and determined the elementary charge with reasonable precision. The set-up is 
illustrated in Figure 14.10. A uniform electric field E is set up between the plane 
parallel plates of a capacitor. Fine droplets of oil from a spray fall on this field 
through a hole in the upper plate. A droplet may acquire a charge q by friction in the 
spray or by collision with the air molecules. In the absence of electric field, the 
droplet is subject to its weight mg, the Archimedes’ buoyancy in air −m'g (negligible 
in this experiment), and the viscosity force given by Stokes’s law fv = −6πηrv, 
where η is the viscosity of air, r is the radius of the droplet and v is its velocity. Let 
µ be the mass density of the oil and µ′ that of air. Write the equation of motion of 
the droplet if the plates have a difference of potential Vo. Show that the velocity may 
be written as v = A τ− /te + (mgd +qVo)/6πηrd, where τ = m/6πηr. What is the limit 
velocity? It was found that, in the absence of electric field, the droplets fall a 
distance of 1 mm in 27.4 s and that they stay in equilibrium in a field E = 8.50 ×  
103 V/m. How many excess electrons does it contain knowing that η = 1.8 × 10−5 
N.s/m, µ = 950 kg/m3 and µ' = 1.29 kg/m3? 

 
 
 
 
 

Figure 14.10. Millikan experiment, problem 14.3             Figure 14.11. Problem 14.4 

P14.4 An electron is fired with a kinetic energy of 3 × 10−16 J in a uniform electric 
field E = 2 × 104 V/m set up between the plates of a parallel plate capacitor. The 
initial velocity of the electron is in the direction Ox parallel to the plates (Figure 
14.11). a) Calculate the displacement of the electron in the normal direction Oy as it 
leaves the capacitor, whose length in the direction Ox is of 1 cm. Determine its 
velocity, direction, and energy upon leaving. b) The electron is intercepted on a 
screen situated at 20 cm from the capacitor. What is the displacement of the impact 
point on this screen due to the electric field? 

P14.5 An electrostatic precipitator is formed by a rod of radius 1 cm surrounded by 
a metallic cylindrical shell of radius 50 cm with a difference of potential of 60 kV. 
Calculate the electric field near the cylinder. Determine the force that acts on a 
singly ionized dust particle of mass 0.1 µg and its acceleration if it is near the rod 
and if it is near the cylindrical shell. 

P14.6 In a cathode-ray tube, the electrons are emitted with negligible velocity by a 
heated filament and attracted by an anode at a potential of 20 kV higher than the 
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cathode. a) What is the velocity of the electrons as they arrive to the anode? b) As this 
velocity is not small compared to c, the relativistic expressions of the kinetic energy 
UK = mc2(1− v2/c2)−½ − mc2 must be used. What is the exact value of the velocity?  

Bohr model for the hydrogen atom  

P14.7 In an ionized atom, the point-like nucleus has a charge Ze and the Z′ electrons 
are distributed uniformly in a sphere of radius R around the nucleus. Calculate the 
force acting on an electron situated at a distance r from the nucleus (r < R). 
Calculate the electrostatic interaction energy of this system and discuss its stability. 

P14.8 a) According to Thomson’s model, protons and electrons are distributed 
uniformly in all the volume of the atom of radius R. What is the force acting on an 
electron as a function of r in the case of a neutral atom? Determine the motion of 
this electron and its frequency if R = 10−10 m. b) Using Bohr’s model for the 
hydrogen atom, calculate the frequency of the electron on its ground state orbit of 
radius 0.5 × 10−10 m. Compare the results of both models with visible light 
frequencies. 

Rutherford’s scattering 

P14.9 An alpha particle of mass 6.6 × 10−27 kg and energy 5 MeV is incident on a 
gold nucleus (Z = 79). What is the velocity of this particle? What is its shortest 
distance of approach to the nucleus? Determine the electric field and potential at this 
distance. What is the maximum acceleration of this particle?  

P14.10 The trajectory of a particle of mass m subject to a central force K/r2 exerted 
by a second particle of large mass M may be written in polar coordinates in the form 

1/r = C [1 + η cos (φ − φo)] where C = −mK/L2, η = 22 /21 mKEL+ and φo is the 
polar angle of the major axis. E is the energy and L is the angular momentum, which 
are conserved quantities. If E is positive (as in the case of a collision), the eccentricity η 
is larger than 1 and the trajectory is a hyperbola. In the case of Rutherford’s 
scattering (Figure 14.4), a particle of charge Z′e is fired from large distance along an 
axis situated at a distance b (called impact parameter) from a nucleus of charge Ze. 
At large distance after the collision, the particle moves away along a straight line 
that makes an angle θ with the initial direction. a) Express the constants L, η and C 
in terms of E and b. By considering the asymptotic directions (as r → ∞), show that 
tan θ/2 = (ε2−1)−½ = ZZ′e2/8πεoEb. b) Consider a beam of intensity I (that is, the 
number of particles that are incident per unit time on the unit area placed normal to 
the beam). Show that the number of incident particles per unit time with an impact 
parameter lying between b and b + db is dN = 2πIb db. Show that these particles are 
scattered with an angle lying between θ and θ + dθ, where dθ = −(db/b) sin θ, that 
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is, in a solid angle dΩ = 2π sin θ dθ. The differential cross-section σ(Ω) is defined 
by the relation σ(Ω) dΩ = dN/I. Deduce Rutherford’s formula  

σ(Ω) = (ZZ′e2/16πεoE)2 [1/sin4(θ/2)]. 

Motion of a charged particle in a magnetic field  

P14.11 In the cathode-ray tube of a television set, the electron beam is accelerated 
by a potential V = 50 kV. a) Calculate the velocity of the electrons. b) Assume that 
the Earth magnetic field has a vertical component B = 4 × 10−5 T and that the beam 
travels from west to east. In which direction is the beam deviated by this magnetic 
field and what is this deviation if the beam travels 25 cm in the tube? 

P14.12 a) A proton moves on a circle of radius 0.8 m in a field B = 2 T. Calculate its 
velocity, energy, and period. What is the voltage that may accelerate the proton to 
this velocity? b) What is the energy of an electron in order to have the same 
period as the proton in this field?  

P14.13 Assume that, within the atom, an electron moves on a circle of radius r. A 
magnetic field B is applied perpendicularly to this orbit. Does the frequency of this 
motion increase or decrease? Verify that the variation of the frequency is  
δ ν~ = ±eB/4πm. This variation of the frequency is responsible for the Zeeman effect 
in this classical model.  

P14.14 A parallel plate capacitor of thickness d is under a voltage V. If an energetic 
photon is incident on the negative plate, an electron may be extracted and attracted 
by the positive plate. A magnetic field B is applied perpendicularly to E. Neglecting 
the initial velocity of the extracted electron, analyze its motion and show that it may 
reach the positive plate only if B > [2mV/ed2]½. 

P14.15 An electron of energy 50 keV enters a magnetic field B = 2T with its 
velocity making 60° with B. Analyze its motion.  

P14.16 In a cyclotron, the magnetic field is B = 0.5 T and the dees have a radius of 
0.5 m. What is the frequency of the accelerating potential for protons? What is the 
energy of the protons as they leave at the periphery of a dee? How many turns will 
the protons have travelled in order to be accelerated to this energy if the amplitude 
of the accelerating potential is 20 kV? Is it possible to use this cyclotron to 
accelerate electrons? 

P14.17 An electron of energy 15 keV enters an electric field E = 200 V/cm 
horizontally pointing downward. How should a magnetic field B be oriented in order 
that the electron suffers no deviation? What should the orbit of the electron be if E is 
removed? 
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P14.18 In a mass spectrometer, carbon ions are accelerated by a potential of 10 kV. 
They enter a magnetic field of 0.3 T. What is the mass of these ions if they move on 
half-circles of radius R = 16.62 cm? In fact, the ionized gas is a mixture of 12C and 
13C of masses 12.00000 u and 13.00336 u where u = 1.66055 × 10−27 kg is the unit of 
atomic mass. What is the spacing between the mass spectral lines of these ions? 

Motion in crossed electric and magnetic fields 

P14.19 We consider the motion of a charged particle in a field E pointing in the 
direction Ox and a field B pointing in the direction Oy in a frame S. In order to study 
this motion, it is convenient to make a Lorentz transformation to a frame S' where 
there is only one field. a) If E < cB, show that it is possible to find a frame S' whose 
velocity with respect to S is vo= c2(E×B)/E2 and such that  

E' = 0       and       B' = γ [B − (vo × E)/c2 ] = [1 − E2/B2c2]½ey.  

Study the motion in S' and deduce the motion in S. b) If E > cB, show that it is 
possible to find a frame S' whose velocity with respect to S is vo= (E×B)/B2 and such 
that 

B' = 0      and         E' = γ [E − (vo × B)] = [1 − E2/B2c2]½ ex.  



Chapter 15 

Emission of Radiation 

The purpose of this last chapter is to study the emission of waves by time-
dependent sources: moving charges and simple harmonic currents in antennas. As in 
the case of a sustained oscillator, the source is taken into account by a term f(r, t) on 
the right-hand side of the equation of propagation. In mechanics, knowledge of the 
forces and the equations of motion is not sufficient to determine the motion; the 
initial conditions are needed. In wave theory, knowledge of the equation of 
propagation and the sources f(r, t) at each point r and at any time t is not sufficient 
to determine the wave. We need the initial conditions, i.e. the values of u and its 
time derivative at the initial time t = 0 and at each point in space. If the medium is 
bounded, we need also the boundary conditions. In this chapter, we assume that the 
medium is infinite, linear, and isotropic of electric susceptibility ε and magnetic 
permeability µ, and that the source is restricted to a small region, so that the solution 
and its gradient vanish rapidly at large distances.  

15.1. Retarded potentials and fields  

We have seen that the fundamental laws of electromagnetic phenomena are 
Maxwell’s equations [9.12] to [9.15]. We have also seen in section 9.3 that it is 
often practical to use the vector potential A and the scalar potential V such that 

B = ∇ × A        and         E = – ∇V – ∂tA. [15.1] 

The homogeneous Maxwell equations ∇.B = 0 and ∇×E + ∂tB = 0 are then 
identically verified. If we use potentials that verify Lorentz condition 

∇.A + µε ∂tV = 0, [15.2] 
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the other two Maxwell equations, ∇.E = qv/ε and ∇ × B = µj + εµ ∂tE, are verified if 
V and A are solutions to the equations of propagation 

 ΔV – µε ∂2
ttV = – qv/ε           and         ΔA – µε ∂2

ttA = –µj,  [15.3] 

where v = 1/  is the speed of propagation. These equations have particular 
solutions called retarded potentials 

Vret(r, t) = (1/4πε) ∫∫∫ dV ′ qv(r′, t− R/v)/R     where   R = r − r′, [15.4] 

Aret(r, t) = (µ/4π) ∫∫∫ dV ′ j(r′, t− R/v)/R.  [15.5] 

The charge density qv(r, t) appears to be the source of V and the current density  
j(r, t) the source of A. In fact, as V and A are coupled by the Lorentz condition, each 
one of these densities may be a source for both V and A.  

Knowing the retarded potentials, the relations [15.1] determine the retarded 
fields. We may write them in the form (which is not very useful) 

Eret(r, t) = –(1/4πε) ∫∫∫ dV ′ (1/R) [µε ∂t′j(r′, t) + ∇′qv(r′, t′)]t′ = t – R/v, [15.6] 

Bret(r, t) = (µ/4π) ∫∫∫ dV ′ (1/R) [∇′ × j(r′, t′)] t′ = t – R/v.  [15.7] 

To the solutions Vret(r, t) and Aret(r, t) we may add any solutions Vo(r, t) and Ao(r, t) 
of the homogeneous equations 

ΔVo – µε ∂2
ttVo = 0         and       ΔAo – µε∂2

ttAo = 0  [15.8] 

and obtain another solution. Accordingly, we add the terms Eo = –∇Vo – ∂tAo and  
Bo = ∇ × Ao to the retarded fields [15.6] and [15.7]. It is always possible to choose 
Vo and Ao in order that the solutions V = Vret + Vo and A = Aret + Ao satisfy the initial 
and the boundary conditions. The retarded potentials [15.4] and [15.5] and the 
corresponding fields correspond to an infinite medium with Vret → 0 and Aret → 0 as 
r → ∞ if qv  and j occupy a finite region of space. 

In the particular case of time-independent charge density and current density, we 
find the time-independent solutions  

VP(r) = (1/4πε) ∫∫∫ dV ′ qv(r′)/R,         AP(r) = (µ/4π)∫∫∫ dV ′ j(r′)/R,  [15.9] 

EP(r) = (1/4πε) ∫∫∫ dV ′ qv(r′) R/R3,    BP(r) = (µ/4π)∫∫∫ dV ′ R × j(r′)/R3. [15.10] 

In the following, we consider only the particular retarded solutions. To simplify, 
we omit the indices (ret) and we designate the solutions simply by V, A, E, and B. 

με
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15.2. Dipole radiation 

Consider a charge and current distribution in a small region V that constitutes the 
emitter. The retarded potentials [15.4] and [15.5] at a point r may be written as  

V(r, t) = πε4
1 ∫∫∫V dV ′ R

1 qv(r′, t′),       A(r, t) = π
μ
4  ∫∫∫ V dV ′ R

1 j(r′, t′), [15.11] 

where we have set R = r – r′ and t' = t – R/v. Here r′ is a running point in the 
volume V of the source. In general, these expressions are very difficult to use, as the 
charge and current densities must be taken at an earlier time t′ with a time delay R/v 
that depends on r′. Thus, some approximations are necessary. If we are interested 
only in the potentials at large distance from the volume V, we may write up to the 
first order in r′/r 

R = |r – r′| ≅ r[1 – 2r
'r.r ],      R

1 = 
'rr −

1 ≅ r
1  + 2

r

r
'.re ,       where  er = r

r . 

Within the same approximation, the time of the densities at r′ may be written as 

t′ ≅ to + (r.r′)/vr,       where  to ≡ t – r/v.  [15.12] 

Writing all quantities as power series in r′/r and keeping only the first order, we find 

qv(r′, t′) ≅ qv(r′, to) + )( ovt o trq ,'∂  (er.r′)/v, 

j(r′, t′) ≅ j(r′, to) + )( oto tr ,'j∂ (er.r′)/v.  [15.13]
 

Thus, the potentials may be written as  

V(r, t) ≅ V1(r, t) + V 2(r, t),           A(r, t) ≅ A1(r, t) + A2(r, t), [15.14] 

V1(r, t) ≅ πε4
1

r
q  |ret,      V2(r, t) ≅ πε4

1
2

1
r

 [(er.p) + v
r  (er. )] |ret, [15.15] 

A1(r, t) ≅ π
μ
4  r

p |ret,        A2(r, t) ≅ π
μ
4 3

1
r

 [(M × r) + v
r  (  × r)]ret, [15.16] 

where f |ret means that f must be evaluated at time to = t – r/v, that is, 

q|ret = ∫∫∫V dV ′qv(r′, to),    
p|ret = ∫∫∫V dV ′ r′qv(r′, to),      M|ret = ½∫∫∫V dV ′ r′×jv(r′, to).  [15.17] 

p

M
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V1 involves the total charge q, V2 involves the electric dipole moment p, and its 
time-derivative p , A1 involves p , and A2 involves the magnetic dipole moment M 

and its time-derivative . 

The total charge q of atoms, molecules, and macroscopic systems is often equal 
to zero. The approximation R ≅ r(1 – r.r′/r2), which consists of keeping only the first 
order r′/r, is equivalent to neglecting the contributions of electric and magnetic 
multipoles that are higher than the electric dipole moment p and the magnetic dipole 
moment M. For this reason, it is called dipole approximation. If the sources are 
simple harmonic functions of angular frequency ω, all the quantities depend on time 
by the intermediary of a factor . In this case, we may replace the differentiation 
with respect to time by the factor iω. Designating by k = ω/v the wave number, we 
find: 

V(r, t) ≅ (1/4πεr2){(1 + ikr)(er.p)}|ret, 

A(r, t) ≅ (µ/4πr2)
 
{ivkrp + (1 + ikr)(M × er)}|ret,  [15.18] 

E(r, t) ≅ (1/4πεr3){ (3 + 3ikr – k2r2)(er.p) er – (1 + ikr – k2r2) p 
                                +i(kr/v) (1 + ikr)(er × M) }|ret,  [15.19] 

B(r, t) ≅ (µ/4πr3){ ivkr(1 + ikr)(p × er) + (3 + 3ikr – k2r2)(er.M)er  
                                 – (1 + ikr – k2r2) M }| ret .  [15.20] 

Note that the potentials V and A are related by Lorentz condition [15.2], which may 
be written as ∇.A + ikV/v = 0. Thus, in this case, V and the fields E and B are known 
if we know the vector potential A: 

V = i(v/k) (∇.A),       E = –i(v/k) [k2 A + ∇(∇.A)],         B = ∇ × A.  [15.21] 

15.3. Electric dipole radiation  

Consider an electric dipole p(t) situated at the origin and oriented in the direction 
Oz and assume that it is a simple harmonic function of time 

p(t) = pm  ez.  [15.22] 

This dipole produces a time-dependent electric field that induces a magnetic field. 
Thus, it emits an electromagnetic wave of angular frequency ω. Such a dipole may 
be modeled as two balls located at A and B at a distance d apart with charges  

M

te ωi

te ωi
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±qm such that pm = qmd (Figure 15.1). These charges are supplied by an
oscillating current

I(t) = = iωqm = Im with pm = –i(d/ω)Im . [15.23]

We assume in this section that the distance d is small enough, so that the electric
current may be considered uniform on the segment AB. To get an idea of the order
of magnitude, we note that an electric current propagates in an electric circuit with
the speed of the electromagnetic wave in the surrounding dielectric or vacuum. The
wave takes a time d/c to travel the distance d. The intensity I may be considered as
uniform over AB = d, if the time d/c is much shorter than the period 2π/ω of
oscillation of the dipole. This is equivalent to the condition

d << λ, [15.24]

where λ = v/ ν~ = 2πv/ω is the wavelength. The case where d is of the order of λ will
be considered in section 15.5 in studying emission by antennas.

Figure 15.1. Electric dipole, lines of E (solid curves), and of B (dashed curves)

An element of length dz′ near the point z′ of AB produces at the point r at time t a
retarded vector potential dA = (µ/4πR) dz' I(t – R/v) ez. Thus, the total vector
potential produced by the segment AB is

A(r, t) =
4π
μ ez I(t – |r – r′|/v). [15.25]

Using the expression [15.23] for I, we may write in the limit of large distance
compared to d (r >> d) and large wavelength compared to d (kd << 1)

|r–r′| ≅ r – z′ cos θ, )/(i vte 'rr−−ω ≅ )/(i vrte −ω θcos'ikze ≅ (1+ ikz′ cos θ) )/(i vrte −ω .[15.26]
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Thus, to the first order in d 

A(r, t) = π
μ
4 r

p ωmi
ez ≡ π

μ
4 r

ωi p⏐ret, [15.27] 

where p⏐ret means that p must be evaluated at time t' = t – r/v.  

We note that A propagates with a phase velocity equal to v. The equations 
[15.18], [15.19], and [15.20] give the scalar potential and the fields  

V = πε4
1

2
1
r

 (1 + ikr) (p.er)ret,  [15.28] 

E = πε4
1  3

1
r

 [(3 + 3ikr – k2r2)(p.er)er – (1 + ikr – k2r2)p]ret, 

B = π
μ
4 3

1
r

iω(1 + ikr)(r × p)ret.  [15.29] 

Explicitly, using spherical coordinates about Oz, we find 

A(r, t) = π
μ
4 r

piω (cos θ er – sin θ eθ) |ret,    V = πε4
1

2r
p (1+ ikr) cos θ |ret, [15.30] 

E = πε4
1

3r
p [(2+2ikr)cos θ er + (1 + ikr – k2r2) sin θ eθ)]ret, 

B = π
μ
4 2r

piω  (1+ikr) sin θ eϕ| ret .  [15.31] 

The lines of the field E and B are illustrated in Figure 15.1.  

If the wavelength is very long (λ >> r >> d), the terms 1/r3 in the expression of E 
and 1/r2 in the expression of B are dominant. So, the potentials and the fields may be 
written as  

A(r, t) = π
μ
4 r

piω (cos θ er – sin θ eθ) |ret,         V(r, t) = πε4
1

2r
p  cos θ |ret,  [15.32] 

E(r, t) = πε4
1

3r
p [(2 cos θ er + sin θ eθ]ret,     B(r, t) = π

μ
4 2r

piω  sin θ eϕ| ret . [15.33] 

But, at large distances compared to λ (r >> λ >> d), i.e. in the so-called wave zone, 
the terms 1/r in the potentials and the fields are dominant and we find 

A(r, t) = π
μ
4 r

piω (cos θ er – sin θ eθ)|ret = π
μ
4 r

d (cos θ er – sin θ eθ) I(t – v
r )|ret, [15.34] 

)i( krte −ω
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V (r, t) =
ε4π
1

vr
d I(t – v

r ) cos θ | ret , [15.35]

E =
ε4π
1

vr
kdi I(t – v

r ) sin θ eθ)| ret , B =
4π
μ

r
kdi I(t – v

r ) sin θ eϕ| ret . [15.36]

In this zone, the wave propagates in the radial direction er with the phase velocity v,
but it does not have spherical symmetry. The fields E and B are orthogonal to the
direction of propagation, the trihedron (E, B, er) is right-handed, and the ratio E/B is
equal v. These are the usual properties of electromagnetic plane waves.

The energy density and the Poynting vector associated with this wave and
averaged over a time equal to a period of the wave are

< U(DE) v > = 2232 vπ
μ

2
1
r

pm2 ω4 sin2θ, [15.37]

< S(DE) > = μ2
1 (E×B*) =

v232π
μ

2
1
r
pm2ω4 sin2θ er = <U(DE) v > v er . [15.38]

This means that the energy propagates in the radial direction with the velocity v. We
note that the intensity of the electric dipole radiation I(DE) = < S(DE)> decreases like
1/r2, this can be explained by the distribution of the energy over a sphere of radius r.

The power of the electric dipole radiation, emitted in the solid angle dΩ in the
direction of the angles θ and ϕ, is

dP(DE) = I(DE) r2 dΩ =
v232π

μ pm2ω4 sin2θ dΩ =
επ232

v pm2 k4 sin2θ dΩ. [15.39]

The radiation is not isotropic. The intensity of radiation vanishes in the direction of
the dipole (θ = 0 or θ = π), since the fields E and B vanish in this direction. The
averaged total emitted power is the flux of <S> over a sphere of radius r:

P(DE) = ∫∫dS <S(DE)> er = ∫∫sphere I(DE) r2 sin θ dθ dϕ

=
v232π

μ pm2ω4 sin3θ = vπ
μ

12 pm2ω4. [15.40]

It may be expressed in terms of the effective intensity Ieff = Im/ = ωpm/d as

P(DE) = π
μ
6
v (kd)2 Ieff2 = 3

2 πµv ( λ
d )2 Ieff2. [15.41]

∫
π θ0 d ∫

π ϕ2
0 d
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Particularly, for waves in vacuum we find P(DE) ≅ 80π2 (d/λ)2 Ieff
2. This power is 

obviously supplied by the generator of the electric current. The electric dipole 
consumes as much energy as if it has a radiation resistance 

R(DE) = (2/3) πµv (d/λ)2 = 80π2(d/λ)2          (in ohms).  [15.42] 

For a given intensity Ieff, the total emitted power varies as the frequency squared, at 
least for large wavelengths such that kd = 2πd/λ << 1. 

15.4. Magnetic dipole radiation 

The magnetic moment of a loop of area S carrying a current I(t) is M(t) = SI(t). 
If the loop lies in the plane Oxy, M points in the direction Oz (Figure 15.2a). We 
assume that the loop is circular with a small radius, compared to the wavelength 
λ. The current is then approximately the same at all the points of the loop. If the 
current is simple harmonic of angular frequency ω, the magnetic moment is a simple 
harmonic function with the same angular frequency: 

I = Im ,        M = Mm ez,     where    Mm = SIm .  [15.43] 

 
 
 
 
 
 
 
 

Figure 15.2. Magnetic dipole moment and its lines of field 

The retarded vector potential, produced by this circuit at a point r and a time t, is  

A(r, t) = π
μ
4 ∫C R dϕ′

'rr −
1 I(t – |r – r′|/v) e′ϕ,  [15.44] 

where we have considered an element of the circuit of length dr′ = R dϕ′. As R << r, 
we may write, to the first order in R/r: 

|r – r′| ≅ r [1 – (R/r) sin θ cos(ϕ – ϕ′)].  [15.45] 
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Using the expression [15.43] of I(t) and assuming that kR << 1 (that is, λ >> R), we 
may write, to the first order in kR and R/r: 

A(r, t) ≅ π
μ
4 r

R I(t – v
r ) [1 + ( r

R + ikR) sin θ cos(ϕ–ϕ′)][–sin ϕ′ex+ cos ϕ′ey] 

= π
μ
4 2

2

r
R I(t– v

r )(1+ikr) sin θ[–sin ϕ ex+cos ϕ ey] = 34 rπ
μ (1+ikr)(M×r)⏐ret .  [15.46] 

As there is no accumulation of electric charge (qv = 0), the retarded scalar 
potential V(r, t) is equal to zero at all points of space. On the other hand, using 
[15.46], we may verify easily that ∇.A = 0. The Lorentz condition [15.2] implies 
that ∂tV = 0. As V is necessarily of the form Vm , we deduce that Vm = 0 and, 
consequently, that V = 0. Knowing V and A, the fields may be written as 

E = –∇V – ∂tA = π
μ
4 3r

ω  (–i + kr)(M × r)⏐ret, 

B = ∇ × A = π
μ
4 3

1
r

[ 2r
r (r.M)(3 + 3ikr – k2r2] – M(1+ ikr – k2r2]]ret . [15.47] 

Explicitly, using spherical coordinates, we find 

E = π
μ
4 2r

vk  (–i + kr) M(t – v
r ) sin θ eϕ, 

B = π
μ
4  3

1
r

 M(t – v
r )[ (2 + 2ikr) cos θ er + (1 + ikr – k2r2 sin θ eθ] . [15.48] 

Particularly, we find at large distances 

E = π
μ
4 r

vk2
 M(t – v

r ) sin θ eϕ,        B = – π
μ
4 r

k 2
M(t– v

r ) sin θ eθ .  [15.49] 

E and B are orthogonal to the direction of propagation er, the trihedron (E, B, er) is 
right-handed and the ratio E/B is equal to v. These are the usual properties of 
electromagnetic plane waves. Both fields decrease like 1/r at large distances.  

The energy density and the Poynting vector associated with this wave and 
averaged over a time equal to a period of the wave are  

< U(DM) v > = 232π
μ

2

4

r
k Mm

2 sin2θ,  [15.50] 

< S(DM) > = μ2
1 (E×B*) = 232π

μ  Mm
2 sin2θ er = <U(DM) v> v er .  [15.51] 

∫
π ϕ2

0 'd

te ωi



476     Electromagnetism 

The energy propagates in the radial direction with the velocity v and the intensity 
decreases like 1/r2. The power that is emitted in a solid angle dΩ is  

dP(DM) = I(DM) r2 dΩ = 232π
μ  vk4 Mm

2 sin2θ dΩ .  [15.52] 

The radiation is not isotropic. The intensity of radiation vanishes in the direction of 
M (θ = 0 or θ = π), since the fields E and B vanish in this direction. The averaged 
total emitted power intercepted by a sphere of radius r is 

P(DM) = ∫∫S <S(DM)> er dS = ∫∫S I(DM) r2 sin θ dθ dϕ 

  = π
μ

16 vk4 Mm
2 ∫∫S sin3θ dθ = π

μ
12 vk4 Mm

2.  [15.53] 

Expressing this power in terms of the effective intensity Im/ in the loop, we find 

P(DM) = 6
1 πvµ(kR)4 Ieff

2.  [15.54] 

Thus, the magnetic dipole consumes energy as if it has a radiation resistance  

R(DM) = (1/6)πvµ (kR)4 = (8/3)π5vµ (R/λ)4,  [15.55] 

that is, R(DM) = 3.074 × 105 (R/λ)4 (in ohms). Comparing the power that is emitted by 
an electric dipole [15.40] and by a magnetic dipole [15.54] having the same current 
intensity, we find 

(DM)

(DE)
P
P

 = ( 2kR
d

π
)2 = 44

1
π

 ( R
d )2 ( R

λ )2 .  [15.56] 

As λ is usually much larger than R and the length of the dipole d for an antenna may 
be taken much larger than the radius of the loop, the emission of an electric dipole is 
often much more efficient than that of a magnetic dipole. 

15.5. Antennas 

We consider an antenna constituted by two rectilinear conductors OA and OB of 
length d/2 each and supplied at O by a sinusoidal current of angular frequency ω 
(Figure 15.1a). We suppose that d is comparable to the wavelength λ. The electric 
current is established in the conductors under the influence of the electromagnetic 
wave produced by the current itself. The wave propagates in the medium 
surrounding the antenna with the speed of light in this medium and the electric 
current is established in the conductor with this speed. The current is reflected at the 

2
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end points A and B. It is a sinusoidal function of time of angular frequency ω and a 
function of z (−d/2 < z < d/2) along the antenna with a wave number k = ω/v. 
Assuming that I(t, z) is symmetric in z, it may be written as 

I(t, z) = I1 m )i( 'zkte −ω  + I2 m )i( 'zkte +ω .  [15.57] 

The intensity being equal to zero at the ends A and B (z = ± d/2) at any time, we 
must have I2 m = – I1 m kde i− . Redefining the amplitude, we may write:  

I(t, z) = I m te ωi sin(k|z′| – ½kd) .  [15.58] 

Each element dz′ of the antenna emits like a small electric dipole of length dz′ 
carrying a current of amplitude Im sin(k|z′| – ½kd). According to equation [15.23], it 
is equivalent to an electric dipole dpm = (1/iω) Im sin(k|z′| – ½kd) dz′ ez . Using the 
expression [15.34], the vector potential of this element at the point M of position r is  

dA(r, t) = π
μ
4 R

Im  sin(½ kd – k|z′|) dz′ ez,  [15.59] 

where R ≈ r[1 – (z′/r) cos θ] is the distance from the element dz′ to M and r is the 
distance from the center O of the antenna to M. The total potential at M is obtained 
by integration over z′. The dominant term at large distance r is  

A(r, t) = π
μ
2  r

Im ez   sin(kd/2 – k|z′|) 

  = π
μ
2  kr

Im

θ2sin
1  [cos(½ kd cos θ) – cos(½kd)] ez .  [15.60] 

The corresponding scalar potential and fields at large distances are 

V = π
μ
2 kr

vIm

θ
θ

2sin
cos

 [cos(½kd cos θ) – cos(½kd)] , 

E = i π
μ
2 r

vIm
θsin

1 [cos(½kd cos θ) – cos(½kd)] eθ, 

B = i π
μ
2 r

Im
θsin

1 [cos(½kd cos θ) – cos(½kd)] eφ . [15.61] 

The fields decrease like 1/r. They are orthogonal to the direction of propagation, 
the trihedron (E, B, er) is right-handed, and the ratio E/B is equal to v. On the other 
hand, the field E is in the plane containing the antenna and the radial direction from 
O to the observation point M; thus the wave is polarized in the azimuthal plane. The 

)i( kRte −ω

)i( krte −ω
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d
d dz' θcosi 'kze
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fields vanish if OM is in the direction of the antenna. Taking the real part of the 
fields, we may calculate the Poynting vector: 

S = μ
× BE = 24π

μ
2

2
m

r
vI

θ2sin
1 sin2(ωt–kr) [cos(½kd cos θ) – cos(½kd)]2 er . [15.62] 

Thus, the intensity of the wave in the direction θ is  

I = <S> = 28π
μ

2

2
m

r
vI

θ2sin
1 [cos(½kd cos θ) – cos(½kd)]2 . [15.63] 

The radiation power that is emitted in the solid angle dΩ is  

dP(ray) = <S> r2 dΩ = 28π
μ vIm

2 

θ2sin
1 [cos(½kd cos θ) – cos(½kd)]2 dΩ . [15.64] 

The most efficient antenna is such that kd = nπ, i.e. d = nλ/2. The shortest antenna 
verifying this condition has a length d = λ/2 (half-wave antenna). The corresponding 
angular distribution of the emitted power is 

Ωd
dP(ray) |d=λ/2 = 28π

μ  vIm
2 

θ2sin
1  cos2(½ π cos θ). [15.65] 

In the case of a full-wave antenna (d = λ, i.e. kd = 2π), we find: 

Ωd
dP(ray) |d=λ = 28π

μ  vIm
2 

θ2sin
4 cos4(½ π cos θ).  [15.66] 

The angular distribution of the radiation in the case of a half-wave antenna is similar 
to that of an electric dipole but that of a full wave antenna is more concentrated in 
the normal direction to the antenna (θ = π/2). 

The time-averaged power intercepted by the sphere of radius r is  

P(ray) = ∫∫S dP(ray) = π
μ
4  cIm

2 ∫ dθ θsin
1  [cos(½kd) – cos(½kd cos θ)]2 . [15.67] 

Making the successive change of variables u = cos θ, 1± u = x, then kdx/2 = ξ, we 
may write: 

P(ray) = π
μ
4  cIm

2 ∫ ξkd d0 ξ
1 [(1− cos ξ) cos(½kd) − sin(½kd) sin ξ] . [15.68] 
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These integrals may be expressed in terms of the so-called cosine integral and sine 
integral: 

Ci(x) ≡ − ∫
∞ ξx d (1/ξ) cos ξ,       Si(x) ≡ ∫ ξx d0 (1/ξ) sin ξ,  

∫ ξxd0 (1/ξ) (1 − cos ξ ) = γ + ln(x) − Ci(x), [15.69] 

where γ = 0.57721 is Euler’s constant. We find  

P(ray) = π
μ
4  cIm

2{ cos(½kd) [γ + ln(kd) – Ci(kd)] – sin(½kd) Si(kd) }, [15.70] 

P(ray) = 1.21 π
μ
4  cIm

2            (half-wave antenna), 

P(ray) = 3.35 π
μ
4  cIm

2            (full-wave antenna).  [15.71] 

Thus, the full-wave antenna emits almost three times more energy than a half-wave 
antenna with the same current. 

15.6. Potentials and fields of a charged particle* 

Let us consider a particle of charge q, position rq(t′) and velocity . This 

particle is equivalent to a charge density and a current density, at each point r′, 
proportional to three-dimensional Dirac functions around the point rq(t′):  

qv(r′, t′) = q δ3[r′–rq(t′)],          j(r′, t′) = q δ3[r′– rq(t′)].  [15.72] 

Substituting these expressions to qv and j in equations [15.4] and [15.5], we find the 
scalar potential, for instance 

V(r, t) = πε4
q

∫∫∫
'
'
rr −
rd 3

∫ dt′ δ(t′– t + v
'rr − ) δ3[r′ – rq(t′)] 

           = πε4
q

∫dt′ )(
1
'tR δ[t′ − t + v

tR )( ' ],  [15.73] 

where we have integrated over r′ by using the Dirac function δ3[r′– rq(t′)] and set 

R(t′) = r – rq(t′),       thus   R(t′)2 ≡ r2 + rq(t′)2 – 2 r.rq(t′).  [15.74] 

)(q 'tr

)(q 'tr
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Using the property of Dirac delta function δ[F(t′)] = Σj δ(t′– ti)/| F′(tj)|, where the 
sum is over the roots tj of F(t′) = 0 (see the section A.11 of the Appendix A) and 
assuming that the argument of δ[t′− t + R(t′)/v] has a single root, we may write  

V(r, t) = πε4
q

)()(
1

'' tRtg | ret,  [15.75] 

where 

g(t ′) ≡ 1– eq(t′).βq(t′),          eq(t′) = R(t′)/R(t′) and βq(t′) = vt )/(q 'r .  [15.76] 

eq(t′) is the unit vector in the direction that joins the position rq(t′) of the charge at 
time t′ to the point r, where the potential is calculated (see Figure 15.3a). βq(t′) is 
the vector velocity of the particle, measured in units of the speed of propagation v of 
the wave (i.e. βq = vq/v). The symbol (ret) means that the preceding expression is to 
be calculated at a time t′, which is a root of the equation 

t′ – t + R(t′)/v = 0,          i.e. r2 + rq(t′)2 – 2 r.rq(t′) = v2(t′ – t)2 .  [15.77] 

Similarly, the vector potential may be written as: 

A(r, t) = π
μ
4

q  )()(
)(q
''

'
tRtg

tr
| ret.  [15.78] 

The potentials [15.75] and [15.78] are the Lienard-Wieckert retarded potentials. 
These expressions are valid for any motion of the charge. They show that we must 
take into account the time delay due to the propagation if the charge q or its position 
varies. We note that equation [15.77], which determines t′, may be very 
complicated. It may have no roots; then, the potentials vanish at the considered 
position and time. If it has several roots ti, the potentials are the superpositions of the 
potentials produced by the particle at the corresponding positions and arriving at M 
at the same time t. 

To understand the physical meaning of the retarded potentials and fields, let us 
consider the following simple example: assume that a charge q is initially at rest at 
the origin O and it is suddenly accelerated at t = 0 to have a velocity vq. At t < 0, the 
field configuration is that of a particle at rest, i.e. B = 0 and E = qr/4πεr3 

(spherically symmetric). After t = 0, the field is deformed. It is evident that a test 
charge placed close to O will feel this deformation before a test charge placed far 
away. A test charge located at a distance R from O feels this deformation only after 
the time t = R/v. At this time, the source charge q is no longer at O but a point O′ 
such that OO′ = vqt. At a given time t, the sphere of radius R = ct divides the space 
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into two regions: outside the sphere, where there is only the spherical symmetric 
electric field E = qr/4πεr3 of the charge q at rest and inside the sphere, where we 
have both electric and magnetic fields with the electric field having no spherical 
symmetry. 

If the charge velocity is small, compared to the propagation speed of the wave 
(βq << 1), the correction factor g(t') is almost equal to 1. Thus, we find 

V(r, t) = πε4
q

)(
1
'tR | ret,         A(r, t) = π

μ
4

q  )(
)(q

'
'

tR
tr

| ret. [15.79] 

If, in addition, the distance R from the position of the charge q to the point r, where 
the potentials are evaluated, is always small in the sense that the delay R/v is much 
smaller than the characteristic time of the charge motion (such as the period of its 
motion if it is periodic), the propagation effects are small and we find the usual 
expressions of the permanent regime: 

V(r, t) = πε4
q

)(
1
tR

,   A(r, t) = π
μ
4

q  
)(
)(q

tR
tr

 ,     with R(t) = |r − rq(t) |. [15.80] 

For instance, if an antenna of length 1 m emits a wave of 10 MHz, the effects of the 
time delay are negligible if R << cT = 30 m. 

 
 (a)                                   (b)                                                      (c) 

Figure 15.3. a) Potentials of a charge q, b) field of a point charge  
at small distance, and c) fields at large distance (wave zone) 

Knowing the retarded potentials, we may calculate the retarded fields, by using the 
relation [15.1]. Using the expression [15.74] of R(t′)2, we find  

∂R/∂xα = Rα/R = eq, α,   ∂R/∂t′ = –v eq(t′).βq(t′)   and ∂t/∂t′= g(t′). 

Thus, the retarded electric field may be written as 

θ
R

q

S

B

E
)(q 'tr

)(q 'tr E
 

R
q

B1 rq(t’) 

q 

O 

r 

r 'q(t )

eq(t')

R(t’)
  V(r, t) 
  A(r, t) 
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E = –∇V – ∂tA ≡ E1 + E2,           B = ∇ × A ≡ B1 + B2.  [15.81] 

The fields E1 and E2 are given by: 

E1(r, t) = πε4
q

232
1

Rgγ
 (eq – βq) |ret, 

E2(r, t) = πε4
q

Rvg3
1 {eq × [(eq – βq) × αq]} |ret,  [15.82] 

where we have set γ = (1−βq
2)−½ and αq(t) = dβq/dt = /v,  being the 

acceleration of the charged particle. The magnetic fields B1 and B2 are given by 

B1(r, t) = (eq × E1) = π
μ
4

q  332
1

Rgγ
 (  × R)ret, 

B2(r, t) = (eq × E2) = π
μ
4

q
Rg3

1 eq × {eq × [(eq – βq) × αq]}ret.  [15.83] 

We note that the fields E1 and B1 decrease as functions of the distance like 1/R2, 
while E2 and B2 decrease like 1/R. At short distance from the charge (Figure 15.3b), 
the fields E1 and B1 dominate, with E1 almost longitudinal (in the direction of eq) 
and B1 transverse. On the contrary, at large distances, i.e. the wave zone, (Figure 
15.3c), the fields E2 and B2 dominate. They are transverse (perpendicular to eq) and 
they vanish if the particle is not accelerated at instant t′. If the velocity of the particle 
is small and the fields are evaluated at short distance, the time delay R/v is negligible 
and we find the permanent regime expressions  

E(r, t) = πε4
q

3)(
)(

tR
tR ,             B(r, t) = π

μ
4

q  
3

q

)(

)()(

tR

tt Rr ×
. [15.84] 

15.7. Case of a charged particle with constant velocity * 

Consider a particle of charge q and constant velocity vq = vβq. We may assume, 
without loss of generality, that the particle is at the origin at time t′ = 0 and that vq is 
in the direction Oz (Figure 15.4a). Thus, we have rq(t′) = vβqt′. Equation [15.77] is 
quadratic in t′; its retarded root is  

t′ = t – (γ2/v) [ Rq.βq + D(t) ],         where  γ = 1/ 2
q1 β− ,  [15.85] 

where Rq(t) = r – vβqt is the vector that joins the position vβqt of the particle at time 
t (at which we evaluate the fields) to the point r (where we calculate the field) and 

qr )(q tr

v
1

qr

v
1
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D(t) =  = . [15.86] 

Thus, the retarded potentials may be written as 

V(r, t) = πε4
q

)(
1
tD             and           A(r, t) = π

μ
4

q
)(

q
tD

r
  [15.87] 

and the fields may be written as  

E = πε4
q

32
q

Dγ
R

,           B = π
μ
4

q
32
qq )(

Dγ
× Rr

.  [15.88] 

We note that these fields are in fact E1 and B1, which decrease like 1/Rq
2 since the 

acceleration of the charged particle is equal to zero. 

 
 (a)                                                 (b)                                           (c) 

Figure 15.4. a) Fields of a charged particle in uniform motion, b) the field lines of E are 
radial and those of B are circular about the trajectory. The fields are the most intense in the 

plane containing the particle and normal to the trajectory (θ = π/2), c) Cherenkov effect 

Designating by θ(t) the angle that Rq(t) form with β, we may write 

V(r, t) = πε4
q

)(q tR
η ,      A(r, t) = π

μ
4

q
)(
)(

q

q

tR
trη

,     where  η = (1−βq
2 sin2θ)−½, [15.89] 

E = πε4
q

3
q

q

R
R'η ,     B = π

μ
4

q
3

q

qq

R
Rr ×η'

,   where  η' = (1−βq
2)(1−βq

2 sin2θ)−3/2. [15.90] 
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The potentials and the fields depend on time through Rq(t) and θ(t). V and E are 
not isotropic as in the case of a charge at rest but more concentrated in the directions 
normal to the velocity (θ close to π/2), and this concentration becomes more and 
more accentuated as the velocity of the charged particle increases. They have a 
rotational symmetry about the rectilinear trajectory of the particle and reflection 
symmetry with respect to the normal plane containing the particle (Figure 15.4b). 

According to the special theory of relativity, the velocity of a particle vq is always 
less than c, hence βq < 1. If the charged particle is moving in vacuum (v = c), the 
expressions of the potentials and the fields make sense for any angle θ. However, if 
the particle is moving in matter, where v < c, its velocity may exceed v, the 
potentials and the fields become infinite in the directions θ = α and π – α such that 

|sin α | = 1/βq = v/vq  (α < π/2). [15.91] 

If the angle θ lies between α and π – α, (1– βq
2 sin2θ)½

 is imaginary and the 
expressions become meaningless. Thus, the wave is concentrated in a cone whose 
vertex is at the position of the particle and situated behind the particle with a half-
angle α (Figure 15.4c). The cone situated in front of the particle, such that θ < α, is 
forbidden by causality. This effect is the electromagnetic equivalent of the shock 
wave in acoustics (α is then called Mach angle). It was initially predicted by 
Sommerfeld and it was observed in water by the French doctor Mallet in 1926 and 
studied by Cherenkov in 1934. The Cherenkov emission has a continuous spectrum 
and the wave is strongly polarized. It is produced by high-energy electrons. The 
emitted radiation may be detected by photomultipliers, and it may be used to study 
nuclear reactions and reactions of particles. 

The potentials and the fields of a charged particle may be evaluated using the 
laws of transformation of the potentials and the fields from the proper frame of the 
particle S' to the observer’s frame S. In S', we have A′ = 0, V ′(r′, t′) = q/4πεoR′, B′ = 0 
and E′(r′, t′) = qR′/4πεoR′3. Using the Lorentz transformation for the coordinates, the 
potentials and the fields, we obtain the same results [15.87] and [15.88] (see 
problem 15.12). 

15.8. Radiated energy by a moving charge 

Consider the electromagnetic fields [15.82] and [15.83] of a moving charged 
particle. Assuming that the particle is non-relativistic (β << 1) and keeping only the 
first order in β, we may replace the factors g and (1 – β2) by 1 and write 



Emission of Radiation     485 

E1 = πε4
q

3R
R |ret,     B1 = π

μ
4

q  3
1

R
 (  × R) |ret, 

E2 = πε4
q

3
1

vR
 [R × (R × α)]|ret = – πε4

q
vR
1  α⊥ |ret, 

B2 = π
μ
4

q
4

1
R

{R × [R × (R × α)]}|ret = – π
μ
4

q
2

1
R

 (R × α⊥)|ret, [15.92] 

where αq⊥ is the component of αq = /v that is normal to R. The Poynting vector of 

this wave may be written as 

S =
επ2

2

16
q [ 6R

v R × (β × R) − 5
1

R
R × (R × αq⊥) 

                       – 4
1

R
αq⊥ × (β × R) + 3

1
vR

αq⊥ × (R × αq⊥)]|ret. [15.93] 

As we have seen in section 15.6, the fields E2 and B2 are dominant in the wave 
zone. E2 is orthogonal to R(t′) and B2 is orthogonal to both R(t′) and E2 (Figure 
15.3c). The Poynting vector in this region is  

S ≅ μ
1 E2×B2 = vμ

1 (E2)2eq = 22

2

16 vR
q
επ

αq⊥
2eq = 22

2

16 vR
q

π
μ 2

q⊥r eq |ret. [15.94] 

Thus, the energy propagates in the radial direction eq = Rq/Rq. The intensity of the 
wave being proportional to , there is no emitted energy in the direction of 
acceleration. The total radiated power is the flux of S through a large surface S 
surrounding the charge: 

P(ray) = ∫∫S dS n.S =   r2 sin θ S. 

Taking for S a sphere of radius R with a polar axis in the direction of α, we find  
α⊥= α sin θ and the radiated power is given by Larmor formula 

P(ray) = v
q
π

μ
6

2
. [15.95] 

As an application, consider an electron bound to the atom by a force  
–mω2x where x is the displacement from the equilibrium position. For simplicity, we 
assume that the electron oscillates on the axis x′Ox with an amplitude A. Its position 

qr

qr

2
q⊥r

∫
π ϕ2

0 d ∫
π θ0 d
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is x = A cos(ωt) and its acceleration is x = –Aω2 cos(ωt). As it is emitting in 
vacuum,  v = c and the time-averaged radiated power is  

<P(ray) > = T
1  P = c

e
π

μ
12

2
o A2ω4.  [15.96] 

As the energy of this oscillator is U = ½mω2A2, it decreases according to the 
equation  

dt
dU  = − <P(ray)> = − cm

e
π

μ
6

2
o  ω2U,  [15.97] 

whose solution is  

U = Uo                    with τ = 22
o

12
ωμ

π
e

cm .  [15.98] 

τ is the relaxation time in this classical model of emission. In the case of light 
emission (ω ≈ 3 × 1015 rad/s), we find τ ≈ 10–8 s. This corresponds to a band width 
given by the uncertainty relation  

Δω ≈ τ
1 = cm

e
π

μ
12

2
o ω2 ≈ 108 Hz.  [15.99] 

15.9. Problems 

Electric dipole radiation 

P15.1 Consider an electric dipole p(t) variable but at rest. It is modeled by two 
charges –q(t) and +q(t) at the points A and B of axis Oz at a distance d apart. Using 
the expressions [15.4] and [15.5], show directly the expression [15.15] for the 
retarded scalar potential. 

P15.2 Using the definitions [15.17] and the expressions of the charge density of a 
point-like charge and the current density of a thin current (in terms of Dirac delta 
functions), evaluate the electric dipole moment of two point charges q and –q at a 
distance d apart and the magnetic moment of a plane loop made of a thin wire. 

P15.3 In this problem we review the emission of radiation by an oscillating electric 
dipole. We consider two small balls situated at A and B of coordinates d/2 and −d/2 
on the axis Oz and connected by a wire of negligible resistance (Figure 15.1a). Let 
+Q(t) and –Q(t) be the charges of these balls at the time t. The current intensity is 

∫
T dt0

τ− /2te
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then I = ∂tQ fed at the origin O. a) Show that, at a point r situated at a large distance  
( r >> d), the retarded vector potential may be written as 

A(r, t) = π
μ
4 ∫−

2
2

/
/ 'd

d dz  
'rr −

1 I(z′, t − |r − r′ |/v) ez . 

Show that |r – r′| = r – z′ cos θ. Assume that I is a sinusoidal function of angular 
frequency ω, such that d << λ, where λ is the wavelength of the radiation. Show 
that A(r, t) = (µ/4π)(d/r) I(t – r/v) ez. b) Using the Lorentz condition, show that the 
scalar potential may be written as  

V(r, t) = πε4
1  3r

zd  [Q(t – v
r ) + v

r I(t – v
r )]. 

c) Consider the case Q = –Qm cos(ωt). Calculate the fields E and B and show that 
the time-averaged radiated power is <P> = µd2 ω2 Im

2/12π v. Deduce that the dipole 
consumes the same energy as a resistance R = (2π/3) εμ / (d/λ)2. Calculate R if the 
dipole emits in vacuum. 

Magnetic dipole radiation  

P15.4 A small electric circuit of area S lies in the plane Oxy around O. It carries a 
current I(t). a) Determine the vector potential A(r, t) and the scalar potential V(r, t) 
that it produces at large distance. b) Deduce the expressions of the fields E(r, t) and 
B(r, t). c) Write the expressions of A, E and B, if I is a sinusoidal function of 
angular frequency ω. d) Calculate the radiated power in the solid angle dΩ and the 
total radiated power. 

P15.5 a) What is the length of a half-wave antenna emitting an FM wave of 
frequency ν~  = 100 MHz? What is the emitted power if this antenna is fed with an 
effective current of 10 A? b) Assume that a circular loop of the same length is fed 
with the same current. What is the emitted power? 

Potentials and fields of a point charge 

P15.6 Work out the details of the calculation leading from the expression [15.73] to 
the expression [15.75] for the retarded potential of a point-like particle of charge q. 

P15.7 a) The Fourier transform of 1/r is F(k) = (2π)−3/2 ∫∫∫ d3r (1/r)e−ik.r. The Fourier 
theory allows to write the inverse relation 1/r = (2π)−3/2∫∫∫d3k F(k)eik.r. Show that 
F(k) = 2(2π)−½k2. Deduce that Δ(1/r) = – 4π δ(r) where δ(r) is the three-dimensional 
Dirac function (see section A.11 of appendix A). Generalize this relation in the form 
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Δ(1/|r – r′|) = – 4π δ(r – r′). b) Deduce that the retarded potentials [15.4] and [15.5] 
verify the equations of propagation [15.3]. 

P15.8 An element dL of a conductor points in the direction Oz and its center is at the 
origin O. Assume that the conductor contains negative conduction charges of density 
−ql per unit length, moving with a velocity −v in the direction Oz and producing a 
current I. Using spherical coordinates, show that the fields E and B produced by 
these charges at a point r are 

E− = −(ql dL/4πεo)[(1−β2)/(1−β2 sin2θ)3/2] (er /r2),  
B− = (µoql dL v sin θ /4π)[(1 − β2)/(1 − β2 sin2θ)3/2] (eϕ /r2) .  

The positive charges in the conductor are at rest with a density +ql per unit length. 
They produce the fields E+ = (ql/4πεo)(er /r2) and B+ = 0. Deduce the expressions of 
the total electric and magnetic fields produced by the conductor. Show that the 
global field E is not exactly equal to zero but it points in a certain direction for some 
values of θ and in the opposite direction for other values of θ and its average value is 
equal to zero. What are the approximate expressions of E for β << 1? Verify that we 
find Biot-Savart law in this limit. 

P15.9 Using the retarded potentials of a charged particle in uniform motion, derive 
the expressions of the fields. 

P15.10 A charge q oscillates on the z axis with an angular frequency ω and a 
amplitude zm. a) Calculate its electric dipole moment and show that the average 
power of the electric dipole radiation that it emits in the solid angle dΩ around the 
angles θ and ϕ is  

dP(DE) = I(DE) r2 dΩ = 
v232π

μ pm
2ω4 sin2θ dΩ = 

επ232
v pm

2 k4 sin2θ dΩ..  

Calculate the total emitted power. Draw the radiation diagram, that is, a plot of I(θ) 
in polar coordinates. What is the fraction of the power that is emitted in the 
directions making an angle less than 45° with the Oxy plane?  

P15.11 Using the expressions [15.87] of the potentials of a point-like charge q 
moving with constant velocity, derive the expressions [15.88] of the fields. For this, 
first derive the relations ∇D−1 = −D−3[Rq(1−βq

2)+(Rq.βq)βq] and ∂tD−1= D−3(Rq.βq). 
Show that V and A verify the Lorentz condition ∇.A + εoµo ∂tV = 0. Calculate the 
flux of B through a sphere surrounding this charge, thus verifying Gauss’s law. 
Show directly that B verifies the equation div B = 0. 
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P15.12 A particle of charge q is moving with a velocity vq = cββq. Let S' be the frame
of the particle and S that of the observer. Assume that the particle is at the origin of
both frames. a) Write the Lorentz transformation (r, t) to (r', t') for the space-time
coordinates, for the potentials and for the fields. Set Rq = r − vqt for the relative
distance of r from the position of the charge at time t. Show that

r' = Rq + (γ−1)(Rq.eq)eq and r' = γ D(t),

where γq = (1 − βq
2)½, eq = vq/vq and D(t) = [Rq2(1 − βq

2) + (Rq.ββq)2]½. b) Write the
expressions of the potentials and the fields in the frame S'. c) Using the
transformation of the potentials and the fields, show that

V(r, t) = Koγq/r' = Koq/D(t) and A(r, t) = Koγqqvq/c2r' = µoq/4πD(t'),
E(r, t) = (Koq/r'3)[γqr' + (1 − γq)(r'.eq) eq] = KoqRq/γq2D3,
B(r, t) = (Koq/c2r'3) γq(vq × r') = (µoq/4πγq2D3) (vq × Rq).

Derive the expressions [15.89] and [15.90]. d) Show that in the non-relativistic limit,
we obtain the expressions E(r, t) = KoqRq/Rq3 and B(r, t) = (µoq/4πRq3)(vq×Rq).

Radiated energy by a point charge

P15.13 a) Calculate the Poynting vector of the radiation emitted by a charged
particle. b) Calculate its limit at large distances. c) Deduce the expression [15.94].

P15.14 a) Work out the derivation of the expression of the emitted power by an
accelerated charge q. Assume that the charge is moving along the axis Oz with a
velocity qr = vββ(t). b) Show that, because of this radiation, the particle is subject to a

braking force and that its velocity decreases according to the law = ,
where τ = µq2/6πmv. Calculate τ in the case of the electron. c) In a linear accelerator,
a proton is uniformly accelerated from rest to a final kinetic energy UK over a
distance L. Calculate the energy that the proton radiates in this process if L = 10 m
and UK = 10 MeV, mp = 1.67 × 10–27 kg and e = 1.60 × 10–19 C.

P15.15 Green function method. Consider the emission equation

Δu − (1/v2)∂2ttu = −f(r, t),

where u stands for the potential and the source f is, in general, non-sinusoidal. We
may always write a Fourier representation of u and f,

u(r, t) = ∫ dω te ωi U(r,ω) and f(r, t) = ∫ dω te ωi F(r,ω).

r or τ− /te
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Show that U verifies Helmholtz equation ΔU + k2U = −F, where k = ω/v. b) We 
define the Green function as the solution of the equation ΔG(r) + k2G(r) = −δ(r), 
where δ is the three-dimensional Dirac function. Verify that G(r) = kre i− /4πr. 
Deduce that  

U(r,ω) = ∫ d3r' G(r − r') F(r',ω)   and   u(r, t) = (1/4π)∫d3r' f(r', t − |r − r'|/v)/|r − r'|. 



Answers to Some Problems 

Chapter 1 

P1.2  a) e'1 = cos ϕ e1 + sin ϕ e2, e'2 = −sin ϕ e1 + cos ϕ e2, e'3 = e3 
A'1 = A1 cos ϕ + A2 sin ϕ,  A'2 = − A1 sin ϕ + A2 cos ϕ,  A'3 = A3 

[Rz(ϕ)] = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
ϕϕ−
ϕϕ

100
0cossin
0sincos

,  Rz(ϕ)−1 = )(~
z ϕR = [Rz(−ϕ)] = 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
ϕϕ
ϕ−ϕ

100
0cossin
0sincos

.  

b) B = (µoI/2πr'2)(−y' e'x + x' e'y) is a vector equal to (µoI/2πr'2)( e'z × r'), while  
B′ = (µoI/2πr'2) [(x' sin 2ϕ + y' cos 2ϕ) e'1 + (x' cos 2ϕ − y' sin 2ϕ) e'2] is not a vector. 

P1.4  ∫∫S dS n.E(r) = 4πR2f(R), ∇.E = 2f/r + ∂r f  and ∫∫∫V dV ∇.E = 4πR2f(R). 

P1.5 Let x′α = Σβ Rβα x β. We find ∂α = Σβ ∂′β.(∂x′β/∂xα) = Σβ ∂′β Rαβ = Σ β Rαβ ∂′β. 

P1.6 b) If dr is on V = Constant, dV = Σα ∂αV dxα = ∇V.dr = 0, hence ∇V is normal to 
dr. c) If only x varies, as r2 = x2 + y2 + z2, we get 2r dr = 2x dx, hence ∂αr = xα/r and  
∂αf(r) = (df/dr)(∂αr) = (df/dr)(xα/r). If f = K/r, we find ∂αf(r) = (−K/r2)(xα/r) = −Kxα/r3. 

P1.8 a) If V = K(p.r)/r3, E = −∇V = (K/r3)[3(p.r) r/r2 − p]. If p = pez, V = Kpz/r3 and  
E = (Kp/r3)[3zr/r2 − ez]. b) If A = k(M×r)/r3, we find B = (k/r3)[3(M.r)r/r2 − M].  
Using spherical coordinates, if M = Mez, we find A = kM sin θ eϕ/r2 and  
B = (k M/r3)[3 cos θ er − ez]. 

P1.9 As ∇ × E = 0, E is the gradient of the scalar function f = 3x2 − 5xz − 4y2 + C. 

P1.10 As ∇.B = 0, we may write B = ∇ × A, where A = − ½Byex + ½Bx ey + ∇f. 

P1.12 a) ∇.(kr) = 3k and ∇.[rf(r)] = 3f + r.∇f. 

P1.16 a) Verify that ∇1= ∇r and ∇2= −∇r. b) F2→1 = − F1→2 = (dU/dr)(r/r). 

P1.18 Ne = Np = 1.37 × 024 and Nn = 1.65 × 1024. Q = 2.2 ×105 C. t = 2.2 ×104 s ≅ 6.1 h.  

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.
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Chapter 2 

P2.1 a) dF = 2πKo qqs R2 sin θ dθ (z − R cos θ) [R2 + z2 – 2zR cos θ]−3/2 ez 
F = 2πKo qqs (R/2z2) ez{ 2R − |z – R| + (z2 – R2)/|z – R|}. If z < R, F = 0 and, if z > R,  
F = (KoqQ/z2) ez. b) Fz<R = KoqQz/R3 and Fz>R = KoqQ/z2  

P2.2 F = 2Koqq′ y(y2 + a2)−3/2 ey. W = 2Koqq′ (y2 + a2)−½  independently of the path. 

P2.4 a) V(x) = 90{1/|x| − 2/|x'|} and E(x) = 90{1/x|x| − 2/x'|x'|}, where x' = x − 0.05. 
b) V(x, y) = 90(1/r − 2/d) and E = 90[x/r3 − 2(x − 0.05)/d3]ex + 90y[1/r3 − 2/d3]ey, where 
r = (x2 + y2)½ and d = [(x − 0.05)2 + y2]½. c) V(x,y) → −90/r and E → − 90r/r3. 

P2.6 VM = Vo − Ex and W =  40 eV independently of the path. 

P2.7 a) qv,1 = 0 and qv,2 = − 4εob. E1 = − 2ax ex + 2ay ey and E2 = − 2bx ex − 2by ey.  
b) ∇ × E1 = 2ez and ∇ × E2 = 0, E2 may be an electrostatic field with a potential  
V = yx – (3/2)x2 − (3/2)y2 + C and charge density qv = 6εo.  

P2.8 a) If x < −d/2, E1 = −qvd/2εo and V1 = qvdx/2εo + qvd2/8εo + B. If  −d/2 < x < d/2, 
E2(x) = qvx/εo and V2 = − qvx2/2εo + B. If x > d/2, E3 = qvd/2εo and  
V3 = −qvx d/2εo + qvd2/8εo + B. c) The total energy is UT = ½mv2 + (qqv d/2εo)(d/4 + xo) 
and it remains constant. If qqv > 0 and UT > 0, the particle crosses the plate. Let  
Uo = − qqv d2/8εo. If Uo<UT<0, the particle penetrates to x1 = (−εomv2/qqv − d2/4 − dxo)½. 
If UT < Uo, the particle can reach the point x1 = xo + εomv2/qqvd in front of the plate.  
If qqv < 0, the particle crosses the plate and oscillates between the points –x1 and x1, 
where x1 = −εomv2/qqvd − xo. d) For x < −d/2, V1 = (qvd/2εo)x + qvd2/8εo − qsd/2εo + B 
and E1 = −qvd/2εo. For −d/2 <x< d/2, V2 = −qvx2/2εo + qsx/εo+B and E2 = qvx/εo − qs/εo.  
For x > d/2, V 3 = −(qv d/2εo)x + qv d2/8εo + qs d/2εo + B and E3 = qv d/2εo. 

P2.9 a) R is the radius of the atom and qo = 15Ze/8πR3.  
b) q(r) = −(Zer3/2R5)(5R2 – 3r2) for r < R. c) E(r) = ΚοZe/r2 − ½(ΚοZe/R5) (5R2r – 3r3) 
for r < R and  E(r) = 0 for r > R. V(r) = ΚοZe/r + (ΚοZe/8R5) (10R2r2 – 3r4 – 15 R4) for  
r < R and  V(r) = 0  for r > R.  

P2.12 b) p = qr in the case of a single charge, p = − q BA  in the case of two charges of 
Figure 2.16a and p = 0 in the case of four charges of Figure 2.16b. c) Setting p = qr, 
<E> = −Kop/a3 if q is inside the sphere and <E> = − Kop/r3 if q is outside the sphere. 
This result also holds in the case of several charges. 

P2.13 p ≈ 9.0 × 10−28 C.m. 

P2.14 a) UE = −Ko q(R.p)/R3, where R = r − r′. Fq→p = Ko q[p/R3 – 3R(p.R)/R5] and 
Γq→p = −Koq R × p/R3 = p × E. 
b) Fp′→p = 3(Ko/R5) [p (p′.R) + p′(p.R) + R (p.p′) − 5 R(R.p′)(R.p)/R2]  
and  Γp′→p = Ko[(p′ × p)/R3 − 3(R.p′) (R × p)/R5] 

P2.15 UE = −qV(r − d/2) + qV(r + d/2) − Ko q2/d  ≅ − qd.E − Ko q2/d and W = −p.E.  
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P2.17 a) V(z) = Ko q/(R2 + z2)½, Ez(0, 0, z) = −∂zV(0, 0, z) = Koqz/(R2 + z2)3/2. The field has a 
minimum Emin = −2Koq/33/2R2 for z = −R/ 2  and a maximum Emax = 2Koq/33/2R2 for  
z = R/ 2 . b) F = −Koeqz/(R2 + z2)3/2. For |z| >> R, F → −Koeq/z|z|. For z = 0, F = 0. If 
the electron may move only on Oz, this is a stable equilibrium position. Near z = 0,  
F ≅ −Koeqz/R3, the oscillation frequency is ν~ = (1/2π)(Koeq/mR3)½. c) If the charge is 
not uniform, V remains the same but the field is not in the direction Oz. However, the 
component of E in the direction Oz remains the same. 

P2.19 E = (qs/2εo) [z/|z| − z(R2 + z2)−½]ez  and V = (qs/2εo) [(R2 + z2)1/2 − |z|]. 
If |z| << R, V  → (qs/2εo) [R  − |z|] and E → (qs/2εo) [z/|z|] ez. 

P2.20 a) For – d/2 < z < d/2, E = qs/εo − q′s/εo and V = z(q′s/εo − qs/εo). 
For z > d/2, E = qs/εo + q′s/εo and V = z(−qs/εo − q′s/εo) + q′sd /εo. 
For z < −d/2, E = −qs/εo − q′s/εo and V = z(qs/εo + q′s/εo) + qsd /εo. 
 b) The invariance in translations perpendicular to Oz implies that V and E do not depend 
on x and y, hence V = V(z) and E = − ∂zV ez = E(z) ez.  

P2.21 Because of the symmetries, E is normal to the surface. Gauss law and the 
continuity of V give: E1 = − qvd/2εo, E2 = qvd/2εo, E3(z) = qvz/εo, V1 = qvd(z + d/4)/2εo,  
V2 = qvd(d/4 – z)/2εo and V3 = −qvz2/2εo. If d → 0, in such a way that qs = qvd remains 
constant, E1 = −qs/2εo, E2 = qs/2εo, V1 = qsz/2εo and V2 = − qs/2εo.  

P2.22 a) Ein = 0 and Eex(ρ) = (qsR/ρεο) eρ. c) Ein(ρ) = (qvρ/2εο) eρ and Eex(ρ) = 
(qv/2εο)(R2/ρ) eρ. d) Vin(ρ) = (qv/4εο)(R2 − ρ2) + C and Vex(ρ) = (qv/2εο) R2 ln(R/ρ) + C. 

P2.23 a) Ein = Ko(Q r/R3) ez, Vin = ½KoQ(3/R − r2/R3), Eex = Ko(Q/r2) ez and Vex = KoQ/r. 
b) Ein = Ko(Q r/R3 + q/r2) er, Vin = ½KoQ(3/R − r2/R3) + Koq/r, Eex = [Ko(Q + q)/r2] er 
and Vex = Ko(Q + q)/r. In the case of the atom, Ein = KoZe(1/r2 − r/R3)er, Eex = 0, 
Vin = (KoZe)(1/r + r2/2R3− 3/2R) and Vex = 0. 

P2.24 a) For r > R1, E1(r) = (qv/3εor2)(R13 – R23) er and V1(r) = (qv/3εor)(R13 − R23).  
For R2 < r < R1, E2(r) = (qv/3εor2)(r3 – R23) er and V2(r) = (qv/6εo)(3R12 − r2 − 2R23/r). 
For r < R2, E3 = 0 and V3 = (qv/2εo)(R12 − R22). b) Setting r′ = (r2  + d2 – 2Rd cos θ)½, we 
find V1 = (qv/3εo)( R13/r − R23/r′ ),  V2 = (qv/6εo)( 3R12 − r2 − 2R23/r′ ),  
V3 = (qv/6εo)( 3R12 − r2  −3R22  + r′2 ), E1 = (qv /3εo)[(R13/r2 − R23r/r′3) er + (R23d /r′3) ez],  
E2 = (qv/3εo)[(r − rR23/r′3) er + (R23d /r′3) ez] and E3 = (qvd /3εo) ez. 

P2.26 C2/N.m, UE = −4.50 + 9.0 [(100x + 40)2]−½ − 18.0 [(100x – 6.0)2]−½. 
F = 900(100x + 40)/|100x + 40|3 − 1800(100x – 6.0)/ |100x – 6.0|3 = − 46.5 N. 

P2.27 a) F = Ko qq′ ex/(x'2 − L2/4). b) F = Ko(qq'/LL') ln(A−/A+), where 
A± = 4D2 – (L ± L')2. If D >> L and D >> L′, we find F → Ko (qq′/d2) ex. 

P2.28 V = 3yx −5y2 + zy + C. We find )'(' r.Er∫
M
O d  = 14 = V(M) − V(O). 

P2.29 UE ≈ (Koq2/d)(1 − 2N ln 2) ≈ − 2N (Ko q2/d) ln 2. 
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P2.30 b) UE = (3/5) KoQ2/R. 

P2.31 c) Re = (3/5) Koe2/mc2 = 1.69 × 10−15 m . 

P2.32 The potentials and the fields are:  
Inside (1): V(1) = (KoQ1/2R13)(3R12 –r12) + KoQ2/r2 and E(1) = KoQ1r1/R13 + KoQ2r2/r23. 
Inside (2): V(2) = KoQ1/r1 + (KoQ2/2R2)(3 – r22/R22) and E(2) = KoQ1r1/r13 + KoQ2r2/R23. 
Outside the balls: V(3) = Ko Q1/r1 + Ko Q2/r2 and E(3) = KoQ1r1/r13 + KoQ2r2/r23. 
b) UE(1) = (3/5) KoQ12/R1, UE(2) = (3/5) KoQ22/R2 and Uint = W = KoQ1Q2/d.  
c) F1→2 = KoQ1Q2/z2. d) qs = qv d cos θ. 

P2.34 a) UE = (3/5) Ko Z(Z−1)e2/R = 1.56 × 10−10 J. b) Ui – Uf = 0.58 × 10−10 J 

Chapter 3 

P3.1 a) qs = qvd. Ein = 0 for x > d, E(x) = (qs/εo)(1 – x/d) for 0 < x < d) and Eex = qs/εo for  
x < 0. b) qs = A/δ, Ein = (qs/εo) exp(−δx) and Eex = qs/εo. c) Q = R2E/Ko = 4.4 × 10−4 R2 

(in coulombs), V = RE = 4 × 106 R (in volts), V5 cm = 0.20 MV and V1 m = 4 MV.  
d = 3.8 × 0−15 m. 

P3.2 a) For r > R3, Eex = Koq/r2 and Vex = Koq/r. For R1 < r < R2, Ein = Koq/r2 and  
Vin = Koq/r + Koq(1/R3 − 1/R2). Vball = 420 V and Vshell = 150 V. The ball acts on a charge 
q′ placed outside the shell but q' does not act on the ball. b) Let q1, q2 and q3 be the 
charge of the ball, of the internal surface of the shell and the external surface of the shell. 
Then, q2 = −q1, Eex = Koq3/r2 and Vex = Koq3/r, Ein = Koq1/r2 and Vin = Koq1/r + A.  
The given potentials and the continuity equations give:  
q1 = R1R2(V2 – V1)/Ko(R1 − R2) = −1.85 nC,  q3 = R3V2/Ko= 6.67 nC 
Vcav = Koq1/r + A and  Vex = Koq3/r, where A = (V1R1 − V2R2)/(R1 − R2) = 267 V. 

P3.3 a) E = 101 V/m pointing downward and ΔV = 182 V. There will be no current 
because the body is equipotential. b) The plate has a charge of  −0.9 nC on its upper face 
and 0.9 nC on its lower face. The galvanometer indicates 0.9 nC. 

P3.4 Ewire = 2.17 × 106 V/m, Eshell = 2.17 × 104 V/m, qL = 1.21 × 10−8 C/m, CL = 12.1 pF/m 
and r = 0.217 mm. 

P3.5 Q1 = 500 µC, Q2 = 1000 µC, UE1 = 2.5 × 10−2 J, UE2 = 5.0 × 10−2 J. The potentials, 
the charges and the energies are not modified. If one connects the plates of opposite 
polarities, we find Q′1 = 166.7 µC, Q′2 = 333.3 µC, V′ = 33.3 V, U′E1 = UE1/9 and  
U′E2 = UE2/9. Thus, 8/9 of the energy is dissipated as Joule heat. 

P3.6 a) C = 2.21 nF, Q1 = 30 µC and Q2 = 20 µC. 

P3.7 b) In the case of a cylindrical capacitor UE = ½(Q2/2πεoL) ln(R2/R1). c) The stored 
energy between R1 and r is UE(r) = ½(Q2/2πεoL) ln(r/R1). It is equal to ½UE if r = 21RR .  
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P3.8 UE,o = ½KoQ2/R1 and UE = ½Koq2/R1 + ½Ko(Q – q)2/R2. The minimum of UE 
corresponds to qmin = QR1/(R1 + R2), a potential Vmin = KoQ/(R1 + R2) and an energy  
UE, min = ½KoQ2/(R1 + R2) . There is some energy loss. qmin = 4.95×10−2 µC,  
Vmin = 44.55 kV, UE,o = 11.25 J and UE, min = 0.111 J. 

P3.9 a) δC = − εo S δx/x2, δUE(x) = (Qo2/2εoS) δx, hence F = −(Qo2/2εoS). b) δUE(x) = 
−½ εoSVo2 δx/x2, δUbat = − εo SVo2 δx/x2, dW′ = dUE − dUbat, hence F = −½ εo SVo2/x2.  

P3.10 a) d = 0.125 mm. b) C = εoS/h = 35 nF, E = q/εoS, q = εoSEc = 141.5 C,  
V = 4×109 V. UE = 2.83×1011 J. c) Q = 0.45 C and UE = 1.01 kJ and P = 2.05 ×105 W.  

P3.11 a) C′ = εoS/(d − d′) = Cd /(d − d′) independently of the position of the plate and its 
inclination. b) UE = ½Q2d(d − d′)/εoL[L(d − d′) + xd′)], F = −dUE/dx|Q = constant  
or dUE/dx|V = constant , hence F = ½ Q2 dd′(d − d′)/εoL(Ld − d′L + xd′)2. 

P3.12 Γ = (½ Q2/C2)(∂C/∂θ) ≈ − εoL3V2/4d2. 

P3.13 vd = 0.15 mm/s. 

P3.14 a) R = (ρ/2πL) ln(R2/R1). b) R = (ρ/4π)(1/R1 − 1/R1).  

P3.15 At 220 V, the lost power is PJ = 8.26×108 W (all the energy is lost). 
At 22 kV, the lost power is PJ = 82.6 kW. At 220 kV, the lost power is PJ = 826 W.  

P3.17 a) j = E(σ13 e1 + σ23 e2 + σ33 e3), b) E = j(σ−113 e1 + σ−123 e2 + σ−133 ep),  
Vx = aσ−113 j, Vy = bσ−123 j and Vz = cσ−133j, where σ−1ij  is the inverse matrix of σij.  

P3.18 ICD = E(Z1Z3 – Z2Z4)/[ Z1Z2(Z3 + Z4) + Z3Z4(Z1 + Z2) + z(Z1 + Z2)(Z3 + Z4)].  

Chapter 4 

P4.1 a) The field and charge densities are Eout = qs/εo, Ein = qs/ε, qs = εV/[b + εr(d–b)], 
hence C = εS/[b + εr(d–b)] and qs′ = V(ε − εo)/[b + εr (d – b)] . b) Co = 0.885 nF and  
Qo = 0.310 µC, C = 1.107 nF, εr = 1.25, qs =3.10 µC/m2 and qs′ = 0.620 µC/m2. 

P4.3 Q = 2πεo LV/α, where α = [ln(R4R2 /R3R1) + εr−1 ln(R3/R4)], D = (εoV/αρ) eρ,  

E(ρ) = V/αρ outside the dielectric and E(ρ) = V/εrαρ inside the dielectric 
P(ρ) = εo(1 − εr−1) (V/αρ )eρ and q′v = −∇.P = 0.  

P4.4 D(r) = (q/4π)(r/r3) everywhere, Ein = Kqr/r3 and Eex = Koqr/r3. Pex(r) = 0 and  
Pin = (q/4π)(1 − εo/ε)(r/r3). The bound charge densities are qs′ = (q/4πR2) (1 − εo/ε) and 
q′v(r) = 0. The total bound charge is Q′ = 4πR2qs′ = q(1 − εo/ε).  

P4.5 q′s = P cos θ, q′ = ±πPR2, xbarycenters = ±(2/3)R, p = (4/3)πR3P ez = PV.  
b) Vex(r) = R3(P.r)/3εor3 and Vin(r) = (P.r)/3εo. Eex = (R3/3εo)[3(P.r)r/r5 – P/r3],  
Ein = r/3εo, Dex = (R3/3) [3 (P.r) r/r5 – P/r3] and Din = 2P/3. We find on the sphere  
(R = r):  Eex// = Ein// = (1/3εo)[(P.r)r/r2 – P] and Dex⊥ = Din⊥ = (2/3r2)(P.r) r.  
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P4.6 Ein = (P/2εo)[(z + ½h)/R+ − (z − ½h)/R− − 2], Din(z) = ½P[(z+½h)/R+ − (z − ½h)/R−] 
Eex = (P/2εo)[(z + ½h)/R+ − (z − ½h)/R−],   Dex(z) =  ½P[(z + ½h)/R+ − (z − ½h)/R−] 
where R± = (R2 + z2 + h2/4 ± zh)½. If h << R and |z| >> R, Dex = εoEex = PR2h/2z3 and, if  
h << R, Ein ≅ −P/εo and Din ≅ Ph/2εoR. 

P4.7 en = (−1/3)nEo and pn = εoen−1; thus, E = Eo/(1+χe/3) and P = 3εoEo(εr−1)/(2+εr). 

P4.9 UE = ½CoVo2 = Qo2/2Co and U′E = Qo2/2εrCo = UE/εr . The variation of the energy 
comes from the work of the force F' = −Qo2d(ε − εo)/2L′[εo(L − x) + εx)]2. 

P4.10 UE = ½CV2, where C = εoL[(L − x)/d + εx/(εd − εd′ + εod′)], 
F = ½V2 ∂xC = ½V2εoLd′(ε − εo)/d(εd − εd′ + εod′)]. 

Chapter 5 

P5.2 V = (qL/2πεo) ln(2h/R) and CL = (2πεo)/ln(2h/R). In the case of two conductors in a 
horizontal plane, C'L = πεo/ln(d/R) and in the case of two conductors in a vertical plane, 
C"L = (2πεo)/ln[(hd2)(h + d)2/R2(h +d/2)3]. If d << h, C"L = (πεo)/ ln(d/R) 

P5.3 V = Vo ln(ρ/r)/ ln(R/r) and E = − [Vo/ ρ ln(R/r)] eρ 

P5.5 If the potential of the electrode is V = Constant, we must have  
V(x,y,z) = (4Vo/π) Σ0≤p≤∞ (2p+1)−1 exp[−(2p+1)πy/d] sin[(2p+1)πz/d]. 

Chapter 6 

P6.1 v = 1.85 × 10−5 m/s, FM = 5.92 × 10−24 N, EH = 37 µV/m, VH = 3.7 µV and  
qs = 3.27 × 10−16 C/m2. If the conductor has the same number of positive and negative 
charge carriers, there will be no Hall voltage. 

P6.2 F = 2IRB ey. 

P6.4 b) A = − ½yB ex + ½xB ey + ∇f. We find Φ = ∫C dr.A = πr2B. 

P6.5 a) B(z) = [µoINa2/2(a2 +z2)3/2]ez, BO = (µoIN/2a) ez. If z>>R, B = (µoINa2/2z3)ez. 
The field of a magnetic moment M = πNIa2 ez is BM(r) = (µo/4πr5)[3(M.r)r − r2M ].  
B differs from BM by less than 1% if z = 12.2 a. The circulation of B is µoI.  
b) B = ½µoNIa2(1/R+3 + 1/R−3) ez , where R± = [(D/2 ± z)2 +a2]½. 

P6.8 B = (µoqN /a2){(a2 + z2)½ + z2(a2 + z2)−½ − 2|z|½ } ez → (µoqNa2/4z3 . 
B(r) = (µo/4πr5) [3(M.r) r − r2 M]. If r is in the direction of M, B = (µo/2πr3) M, where 
M = ½πqNa2 = ¼ qa2ω. b) B = (µoqNR2/3z3) ez = (µo/2πr3) M , where 
M = (2πqNR2/3) ez = (qωR2/3) ez.  

P6.10 a) B(r) = (µoIL/2πρD) eϕ and A(r) = (µoI/4π) ln[(D + L)/(D − L)] ez, where we 
use cylindrical coordinates and D = (ρ2 +L2)½. In the case of the square circuit A = 0 and  
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B = (2µoIL2/πρ2D) ez, where D = (z2 + 2L2)½. If z >> L, we find B = µoM/4π|z|3, where  
M = 4L2I. b) B(ex)(ρ) = (µoI/2πρ)eϕ and B(in)(ρ) = (µoIρ/2πa2)eϕ. We may write  
A(ex) = [−(µo I/2π) ln ρ] ez+ ∇f  and A(in) = [µoI(a2−ρ2)/4πa2 − (µoI/2π) ln a] ez + ∇f.  
If a → 0, A(in) diverges. c) Set j = jex, we find Ax(in) = −½µojsz2/d  and By(in) = −µojs z/d 
A(ex) = [− ½ µojsz + (1/8)µojsd] ex and B(ex) = − ½ µojs ey  (for z > d/2) 
A(ex) = [− ½ µo js z + (1/8) µojsd] ex and B(ex) = ½ µojs ey  (for z < −d/2)  

P6.11 For r < r1, B = (µoIr/2πr12) eϕ. For r1 < r < r2, B = (µoI/ 2πr) eϕ . 
For r2< r < r3, B = [µoI(r3 2 − r2)/2πr (r3 2 – r22)] eϕ . For r  > r3, B = 0 

P6.12 a) B(ρ) = (µoIρ/2πa2) eρ, B(a) = (µoI/2πa) = 4 × 10−4 T. b) vd = 4.74 µm/s.  
c) FM = − eBvd eρ. d) E = − (µoI2ρ/2π2a4ene) eρ, qv = −I2/π2 c2a4ene, where ne ≈ 8.4 × 1028 

is the number of free electrons per m3. Note that qv/nee = 2.5 × 10−28. 

P6.13 a) E = Nvqρeρ/2εo, B = ½µoρNvqveϕ, Fm = −½µoρNvq2v2eρ and Fe = Nvq2ρeρ/2εo, 
hence Fm = −(v2/c2)Fe. The total force is F = Fe + Fm = (qIρ/2πεoR2v)(1−v2/c2) eρ, where  
I = πR2Nvqv is the beam intensity. b) The equation of the radial motion of the particle at 
the periphery is ρ  = C2/2ρ. Integrating, we find ρ = C [ln(ρ/ρο)]½. 

P6.15 b) ∫C dr.A = ΦB, c) Α(in) = ½µo nIρ eϕ et A(ex)z = −(µo I/2π) ln ρ + C. 

P6.19 A(in) = ¼µoj(a2–ρ2) ez, B(in) = (½µojρ) eϕ, A(ex) = ½µoja2 ln(a/ρ) ez  and  
B(ex) = (½µoja2/ρ) eϕ. 

P6.20 Aϕ(cond) = − (1/3)µojρ2 + ½µojbρ − (1/6ρ)µojb3, B(cond) = (−µojρ + µojb) ez. 
Aϕ(in) = ½ρµoj(b − a) + (1/6ρ)µoj(a3 – b3), B(in) = µoj(b − a) ez, Aϕ(ex) = 0 and B(ex) = 0. 

P6.23 F = πR2IBopex. b) Laplace’s force method gives F = −πpIR2Boez, while the energy 
method gives F = 0 since ∇.B = pBo; hence B cannot be a magnetic field.  

P6.24 Fwire→e = (µoIev/2πρ)eρ = 4.8×10−19 ez (in N), Be = (μoevρ/4π) eϕ/[ρ2 + (z – ze)2]3/2, 
Fe→wire = −(μoIev/2πρ) eρ = −Fwire→e. 

P6.25 B = (µo/2πD)[(I1 – I2) sin α ex + (I1 + I2 ) cos α ey], B = 3.29 ×10−5 T.  
B1 = (µo/2πd)I1 ex. The exerted force on the unit length of circuit (2) is  
F1→2 = (µoI1I2/2πd) ey. It is attractive with a magnitude FL = 1.2 × 10−3 N/m. 

P6.26 a) B(r) = (µoM/2πz3) ez, Γ = (µoM2/2πz3) sin θ ex. The stable equilibrium position 
is θ = 0. b) UM = − (µoM2/2πz3) cos θ.  W = 1.6×10−22 J, Fz = − (3µoM2/2πz4) =  
− 2.4 × 10−12 N. c) T = (2πr/e)(mr/Ko)½, I = (e2/2πr)(mr/Ko)½ and Mo = el/2m, where 
l = mrv is the orbital angular momentum, B(O) = (µoel/4πmr3) ez and  
UM = − (µoe/4πmr3) Mp.l. 

P6.27 B2 = −µo n12 × js.  
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Chapter 7 

P7.5 The internal fields for |z|<<h and the external fields for |z| >> h are respectively 
B(in) = ½ µo(R12–R22)(h2+z2)/(h2−z2)2]M and H(in) = ½(R12 − R22)(h2+z2)/(h2−z2)2]M, 
B(ex) = [µoh|z|(R22 − R12)/(h2 − z2)2]M and H(ex) = [h|z|(R22 − R12)/(h2 − z2)2]M. 

P7.6 a) For R > |z|, B(in) = (2/3)µoM ez and for R < |z|, B(ex) = (µoM /2π|z|3) ez. 

P7.8 a) For ρ < R1, Bwire = µoHwire = (µoIρ/2πR12)eϕ and Mwire = 0. 
For R1 < ρ < R2, Bcavity = µoHcavity = (µoI/2πρ)eϕ and Mcavity = 0. 
For R2 < r < R3, Bmedium = µHmedium = (µI/2πρ)eϕ and Mmedium = (I/2πρ)(µ/µo – 1)eϕ. 
For R3 < ρ, Hexterior = (I/2πρ)eϕ, Bexterior = (µoI/2πρ)eϕ and Mexterior = 0. 
b) j' = 0, j's2 = (I/2πR2)(µ/µo – 1) ez and j's3 = − (I/2πR3)(µ/µo – 1) ez. 

P7.9 χM = −1.58 × 10−9. 

P7.10 a) Bin(0) = 5.03×10−3 T, Hin(0) = 1.96 × 105 A.m−1, B(3 cm) = 3.17×10−3 T and 
H(3 cm) = 2.52×103 A.m−1. The magnetic moment of the disk is M = 3.1416 A.m2 and 
its field on the axis is BM = 6.28 ×10−7 /z3 (in teslas). The B field differs from BM by 5% 
for z ≈ 27 cm. b) z ≈ 4.71 cm. 

P7.11 a) M = lSM.  
F1→2 = (3µo/4πr5){(M2.r) M1 + (M1.r) M2 −  (5/r2)(M1.r)(M2.r) r + (M1.M2) r}. 

P7.13 a) χm = 2.771 × 10−3, M = 5.51 × 10−3 A.m2 . b) M = 7.61 A.m2 and  
Γ = 7.61 × 10−2 N.m.  

P7.14 a) Na = 8.39 ×1028 atoms/m3, Ne = ZN = 2.18 ×1030 electrons/m3, Msat = 2.03 ×107 

A/m. M/Msat = 10%, i.e. 2.6 electrons per atom. b) M1 kg = 256 A.m2 and F1 kg = 5 130 N. 

P7.15 a) Φ = 2.5 × 10−4 Wb, b) B = 1.48 × 10−2 T. 

Chapter 8 

P8.1 E = −Sk, I = −Sk/R, q(t) = −Skt/R and UJ(t) = S2k2t/R.  

P8.2 A = ½ µonIρ eϕ for ρ < a and A = µonI(a2/2ρ) eϕ for ρ < a.  
E = − ½ µon ∂tI ρ eϕ  for ρ < a and E = −µo n ∂tI (a2/2ρ) eϕ  for ρ > a.  
The circulation of E over the circuit of radius a is E = −πµo na2 ∂tI. 

P8.3 a) Eϕ = – ½µnρ ∂tI. The induced e.m.f. is E = L ∂tI, where L = πµn2r2h is the 
inductance. b) A = ½Bρ eϕ . 

P8.4 a) E = voDB = 0.2 V, I = E/R = 50 mA. The exerted force is F′ = voD2B2/R =  
5 × 10−3 N. The power is P' = voD2B2/R = 0.01 W. b) x = IDBt2/2m. The e.m.f. must be  
E = IR + ID2B2t/m. The conservation of energy gives the equation EI = RI2 + ∂tUM.  
c) x = (DBE/Rm)[t + (Rm/D2B2) τ− /te − Rm/D2B2]. The velocity reaches the limit value 
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vlim = DBE/Rm. Then, I = (E /R)(1 – D2B2/Rm). d) v = vo[1 − τ− /te ] and  
x = vo[t + (Rm/D2B2) τ− /te −Rm/D2B2]. I = (DvoB/R) [ τ− /te −1] 

P8.5 a) VA – VO = ½(ω.B)L2. b) VA – VO = ½ωBR2 = 0.94 V. 

P8.7 a) The induced current in the small loop opposes the variation of Φ through this 
loop. Thus, it is in the direction of I if I decreases. b) If the small loop is approached 
toward the large loop, a current is induced in the opposite direction to I.  
c) M = πµor2R2/2(R2+h2)3/2. 

P8.8 a) L = µoπa2n2[(a2 + 4h2)½ − a]. L = 18.8 mH and L∞ = 2µoπa2n2h = 19.7 mH.  

P8.9 E = 800V, UJ = 20.67 J, ΔUM = − 240 J. Ug = − 219.33 J (the generator takes back 
energy).  

P8.10 a) L Q + R Q + Q/C = 0. The solution is Q = (ωo/ ω~ )Qo
te β− cos( ω~ t+ϕ), where  

ωo = 1/ LC = 70.71 rad/s, β = R/2L = 50 rad/s, ω~  = 22
o β−ω  = 50 rad/s and 

ϕ = arctan(−β/ ω~ ) = − π/4. b) I = −(ωο2/ ω~ )Qo
te β− sin( ω~ t),  

UE = (Qo2/2C) (ωο/ ω~ )2 te β−2 cos2( ω~ t + ϕ), UM = (Qo2/2C) (ωο/ ω~ )2 te β−2 sin2( ω~ t), 
U = UE +UM. c) UJ = U(0) − U(t). d) τ = 20 ms,  fq = 0.7071. t = 9.9 ms. 

P8.11 <E> = − 0.625 V, <I> = 125 mA, Q = 25 mC, ΔUM = 0 and W = 1.56×10−2 J. 

P8.14 a) Li = (µaNi2/π)ln[(R + a)/(R − a)] and M12 = (µaN1N2/π)ln[(R+a)/(R−a)].  
b) I1R1 + L1∂tI1 + M ∂tI2 = E1 and I2R2 +L2∂tI2 +M ∂tI1 = 0,  
P = R1I12 + R2I22 + ∂t(½L1I12 + ½L2I22) + ∂t(M I1I2).  
c) I1 = (E1/D)[R22 + ω2 L22] cos(ωt − φ1) and I2 = ωM(E1/D) cos(ωt − α − π/2),  
where D = [(R1R2)2 + ω2(L1R2 + L2R1)2]½, α = Arctan(ω L1/R1 + ω L2/R2) 
and φ1 = Arctan{R2ω L1/[R1R2 + ω2L2 (L1 + L2R1/R2)]}. 

P8.15 a) L = 19.74 mH, UM = 0.987 J and t = 2.47 ms. b) qb = − 59.22 µC independently 
on the coil radius and the time of variation of the intensity.  
c) If I = Im sin(ωt), B = µo (Ns/h) Im sin(ωt) and Ib = − πµoa2(NbNs/hR) ωIm cos(ωt). 

P8.16 a) UM = πµ N2R2I2/2h. b) M = πµn1n2xR22 and F12 = I1I2 ∂xM = πµ n1n2R22. 

P8.17 dF = ½ dS(B2/µo) eρ.  

P8.18 a) ΓM = −πNBor2I sinθ. b) Neglecting the self-induction, Γ′ = πNBor2I sin θ; then, 
I = (πωNBor2/R) sin(ωt). The conservation of energy requires that dW = dUJ = 
R(πωNBor2/R)2 sin2(ωt) dt. Taking into account the self-induction, the circuit equation 
becomes RI + L∂tI = πωNBor2 cos(ωt). The solution of this equation is I = A sin(ωt–α), 
where A = πωNBor2/(R2 + L2ω2)½ and α = Arctan (Lω/R). The conservation of energy 
requires that dW = dUM + dUJ, which is verified. 

P8.19 j = σE = − ½ σρωBo cos ωt eϕ and <PJ> = (πR4h/16)σω2Bo2 = 372 W. 
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P8.20 a) F = ½ eρ <∂tB> + eB∂tρ) eϕ − eBρ ∂τϕ eρ, hence the equations of motion 
eBρ ∂tϕ = m (v2/ρ) and ∂tv = (e/m) (½ ρ <∂tB> + B∂tρ).  

Chapter 9 

P9.2 a) The equation ∇.E = qv/εo requires that qv = 4 × 103εο. b) The Maxwell’s 
equations (with qv = 0 and j = 0) are verified if ρ−1 ∂ρ(ρEρ) = 0 and −∂ρEz eϕ = −bez, 
hence b = 0, Eρ = α/ρ and Ez = β, where α and β are arbitrary constants. 

P9.4 a) The symmetries require that A = A(r) r/r or 0 by making a gauge transformation 
with f = −∫dr A(r), hence B = ∇×A = 0. Also, E = E(r) r/r, where E(r) = −∂rV and Gauss 
law give Eex(r) = (1/4πε) qr/r3, hence Vex = (1/4πε) q/r. b) The symmetries require that 
A = A(ρ, t) ez and E = E(ρ, t) eρ. Setting t ′ = t – (ρ2 + u2)½/v, the retarded potentials are  
V = 0 and A(r, t) = (µ/2π) ez ∫

Ldu0 I(t ′)/(ρ2 + u2)½, hence the fields  

B = ∇ × A = (µρ/2π)eϕ ∫
Ldu0 [I ′(t ′)/v(ρ2+u2) + I(t ′)/(ρ2+u2)3/2] and  

E = − ∂tA = −(µ/2π)ez ∫
Ldu0  I ′(t ′)/(ρ2+u2)½ . c) If I = Io (constant),  

A(r, t) = −(µIo/2π)ez ln ρ + Cte, E = − ∂tA = 0 and B = ∇ × A = −∂ρAz eϕ = (µI/2πρ).  
If I = Io starting at t = 0, i.e. I = Ioθ(t), setting ξ = (t2 v2 − ρ2)½, we may write  
V = 0,  A(r, t) = (µIo/2π) θ(vt−ρ) ez ln[(ξ + tv)/ρ],  
E = − ∂tA = −(µvIo/2πξ) θ(vt−ρ) ez  and B = ∇ × A = (µtvIo/2πρξ) θ(vt − ρ) ez. 

P9.5 a) Gauss law and Ampère’s law give E = NS/2πεoρ and B = µoNvS/2πρ. 
b) We find q′v(r′) = qv(r) and j′v(r′) = j(r) − qv(r)vo, B′ = (µoNvS/2πρ) eϕ and  
E′ = E(1−v2/c2)eρ. E' does not verify Gauss law, which gives E′ = (NS/2πεoρ) eρ. 

P9.7 a) BMQ-P(r,t) ≅ BP(r,t) = µnI(t)ez, VMQ-P(r,t) ≅ VP(r,t) = 0 and  
AMQ-P(r,t) ≅ AP(r,t) = ½µnIρeϕ, while EMQ-P ≅ −∇VP − ∂tAP = −½µnρ ∂tI eϕ.  
b) EEQ-P ≅ EP(r,t) = [q(t)/πεR2] ez and VEQ-P ≅ VP(r,t) = q(t) (d − z)/πεR2, while BEQ-P is 
calculated as in the permanent regime but with the current density jT = j + ε ∂tE = 
(∂tq/πR2)ez, hence BEQ-P = (µρ/2πR2) ∂tq eϕ and AEQ-P = −(µρ2/4πR2) ∂tq ez + ∇f.  
c) We find  j = jo + j′o c/τ−te , where jo and j′o are constant vectors, B = ½µρjo eϕ and  
A = −(¼µρ2jo)ez, E = j/σ  and V = –jz/σ + C. In the MQ-P approximation j′o << jo. 

P9.8 VMQ-P(r,t) = q/4πεR,  AMQ-P(r,t) = µq vq(t)/4πR = − (µqaω/4πR) sin(ωt) ez,  
BMQ-P(r,t) = µq vq(t)×R /4πR3 = −(µqaω/4πR3) sin(ωt) ez × R., where R = r – rq,  
EMQ-P ≅  −∇VQP − ∂t AQP = qR/4πεR3 +  (µqaω2ez /4πR3)[R2 cos(ωt) – aRz sin2(ωt)]. 

P9.9 qv = −Q ′(t – r/ve)/4πr2ve and j = −[Q ′(t – r/ve)/4πr2] er. The potentials are: 
For r < vet: VMQ-P(r, t) = (Ko/r) Q(t – r/ve) − (Ko/ve) ∫

tv
r dre ' Q ′(t – r′/ve)/r′  

and AMQ-P(r, t) = −(µo/12πr2) er{ ∫
rdr0 '  r′ Q ′(t – r′/v) + r3 ∫

tv
r dre ' Q ′(t – r′/ve)/r′2 } 

For  r > vet: VMQ-P(r, t) = 0 and AMQ-P(r, t) = −(µ/12πr2) er ∫
tv dre

0 ' r′Q ′(t – r′/ve)  
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P9.10 In the case of the solenoid, for instance, UEM,v ≅ (1/8v2)µρ2n2 I 2 + ½µn2I2, 
∂tUEM,v ≅ µn2 I [ρ2 I /4v2 + I], S ≅ − ½ρµn2I I eρ and ∇.S = ρ−1 ∂ρ(ρS) ≅ − µn2 I I . 
Verify that ∇.S + ∂tUEM,v ≅ 0. For the cylinder verify that ∇.S + ∂tUEM,v + j.E = 0. 

P9.11 S = −(ρjoj/2σ)eρ, Pentering = 2πaLS = πLa2jjo/σ, where jo = j + τc∂tj, PJ = (j2/σ)πa2L 
and UEM,v = 2πL[εj2a2/4σ2 + (µa4/32)jo2]. The conservation of energy requires that 
Pentering = PJ + ∂tUEM , which is verified. 

P9.12 The non-zero elements of the Maxwell’s tensor are: τ11 = − (µoa2j2/8) cos(2ϕ),  
τ22 = (µa2j2/8) cos(2ϕ) and τ12 = τ21 = −(µa2j2/8) sin(2ϕ). The force acting on dS is 
fα = dS Σβ nβ ταβ, where n is the unit vector normal to dS, hence f = dS (B2/2µ) n. 

Chapter 10 

P10.2 a) xmax = (Δω/Δk)t − nπ/Δk, where Δω = ½(ω2 − ω1) and Δk = ½(k2 – k1). 

P10.3 d) v(p) = c/(A + B/λ2) = 1.85×108m/s and v(g) = c(A − B/λ2)/(A + B/λ2)2 = 
1.77×108 m/s. 

P10.4 ∂2xxf + k2f = 0, where k = ω/v. Its general solution is f = A sin(kx + φ). The modes 
are fn = An sin(knx), where ωn = nπv/L and λn = 2π/kn = 2L/n. 

P10.5 a) E = A cos(ωt – kz) ex + B cos(ωt – kz) ey (linear polarization).  
b) E = A cos(ωt – kz) ex + A cos(ωt – kz – π/2) ey (left-circular polarization).  
c) E = A cos(ωt – kx) ey + A cos(ωt – kx + π/2) ez (right-circular polarization).  
d) E = vA [cos(ωt – kz – π/2) ex+ cos(ωt–kz –π/2– π/6) ey] (left-elliptic polarization).  
e) E = vA[cos(ωt – ky + π) ez + cos(ωt – ky + π – π/2)ex] (left-circular polarization).  
f) E = vA [cos(ωt + kx+π/2) ez + cos(ωt +kx+π/2+π/2) ey ] (right-circular polarization). 

P10.6 Let ξ = ωt–kx sin θ – kz cos θ +φ and e1 = cos θ ex – sin θ ez. a) E = Ee1 cos ξ.  
b) E = Eey cos ξ. c) E = E cos ξ e1 − E sin ξ ey. d) E = E cosξ e1 + E sin ξ ey. 

P10.7 b) E′x = [Ex2 cos2α + Ey 2 sin2α + ExEy sin 2α cos φ]½. 
E′y = [Ex2 sin2 α + Ex2 cos2 α − Ex Ey sin 2α cos φ]½. 
cos φ′ = [(Ey2 – Ex2) sin 2α + 2ExEy cos 2α cos φ]/2E′xE′y. 
sin φ′ = (ExEy /E′xE′y) sin φ. d) tan 2α = 2 ExEy cos φ/(Ex2 − Ey2). 

P10.8  b) I11 = ½(so + s3), I12 = ½(s1 − is2), I21 = ½(s1 + is2), I22 = ½(so − s3). 
det I = ¼so2(1−s2/so), where s2 = s12 + s22 + s32 and tr I = so.  
I′11 = ½(so + s2), I12 = −½(s3 + is2), I21 = ½(−s1 + is2), I22 = ½(so − s2). 
I″++ = ½(so + s2), I″+ − = ½(s3 − is1), I″− + = ½(s3 + is1), I″− − = ½(so − s2). 
b) If the wave is completely non-polarized, s1 = s2 = s3 = 0, thus P = 0. 
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P10.10  a) <UEM> = <UEM,v 1> + <UEM,v 2> and I = I1 + I2 if E1 and E2 are polarized in 
two perpendicular directions or non-polarized. c) The transmitted intensity is half the 
incident intensity. 

P10.11 a) E = Em cos ξ [–cos θ ey + sin θ ez] and B = (nEm/c) cos ξ ex, where we have 
set ξ = ωt – ky sinθ + kz cosθ + φ and k = nω/c. b) UEM,v = n2εoEm2 cos2 ξ, 
S = (n/µoc)Em2 cos2 ξ e, I = (n/2µoc)Em2 and <dP/dS> = I cos θ , <Ps> = I cos θ. 

P10.12 f = 0.33 × 10−2 N and v = 0.29 m/s. 

P10.13 Em = (2µocI)½ = 8.7 kV.m–1, P = 4πr2I = 1.26 MW, r = 2.6 × 10−8 m. 

P10.14  a) δp/δt = (SI/c) cos θ [sin θ ey – (cos θ + ½)ez].  
b) δp/δt = (SI/c) cos θ {sin θ ey – (cos θ + ½ − α/2) ez} 
and pr = (I/c) cos θ (cos θ + ½ − α/2) ez. c) f = 1.0 × 10−5 N and pr = 1.0 × 10−3 Pa. 

P10.15 a) Em = 1.00 kV/m. b) P = 3.74 × 1026 W and m = P/c2 = 4.15 × 109 kg/s. 
c) S = 2.5 m2. d) fr/FG = 3P/16GMSπromvc = 5.6×10−7/ro. We find fr > FG if ro < 0.56 
µm. 

P10.16 a) I′(r) = P/Ωr2. b) Pi = 0.428 SPR4/λ2D4. 

P10.17 We have in this case E = E cos(ωt – kz)ex and B = (E/v) cos(ωt – kz)ey, where 
k = ω/v. The Maxwell’s tensor has only one non-zero component τ33 = – UEM,v = 
 −εE2 cos2(ωt – kz). The force is F = SUEM,v cos θ ez. 

P10.18 a) vg = cn/[1 + (ωp/ωo)2 (n2 − 1)2].  

P10.21 a) B = (i/ω)∇ × F te ωi , j = { (i/ωµo)[∇(∇.F) – ΔF] + (εo/µo)F } te ωi  and  
qv = εo∇.F te ωi . b) jd/j = ωεo /σ.  

P10.22 If E = Em
ze δ− cos ξ ex and B = (Em/v) ze δ− cos(ξ−α) ey, where ξ = ωt −kz,  

S = (Em2/µv) (1+Q2)¼ ze δ−2 cos ξ cos(ξ− α) ez and dPJ = σS dz ze δ−2 Em2 cos2ξ. 

P10.23  b) S =
 
– (j2r/2σ) eρ. 

P10.24  a) E = Eo exp(−ηz) exp(−ikz) ex and B = −(iEo/ω)(η+ik)exp(−ηz)exp(−ikz) ey, 
where η2 = ½(ω/c)2[(1 + ωo2/ω2)½ + 1], k = σωμo/2η and ωο = σ/εo. b) The charge 
density is negligible if ω >> ωo; then, η ≈ (ω/c) and k = ½σμoc.  

P10.25 b) js ≅ (−iσ/p) Em
tie ω ex ,  Eex ≅ 0 and Bex = iµo(σ/p) Em

tie ω ey.  

P10.26 a) N = 5.86 × 1028 electrons/m3, pν~ = 2.17 × 1015 Hz. 

b) δ = (ωp – ω2)½/v = 4.4 × 107 m–1, l = 0.023 µ. 
c) x0.5 = 7.9 × 10–3 µ, x0.01 = 0.052 µ, λ < 2πc/ωp = 0.138 µ (X-rays). 
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P10.28 b) If E = Em 
tie ω , the equation of motion is m v = −bv – eE, hence  

v = –emE/(b + imω) and j = −eNv = Nme2E/(b + imω). The complex conductivity is 
σ = Nme2/(b + imω). c) <Pv> = ½ bNe2Em2/(b2 + m2 ω2). 
d) k2 = (ω/v2)(mω2 − mωp2 − ibω)/(mω − ib). 

P10.29 a) UEM,v = εEm2 cos2 ξ and S = (Em2/µv) cos2 ξ ez = UEM,v vez, where  
ξ = ωt − kz. b) Eγ = hω/2π,  pγ = hω/2πc, <Nγ> = πεEm2/hω. NS = c <Nγ>,  
Ps = pr = ½ εEm2.      

P10.30 λ = 121.5023 nm, UK = 1.6349 × 10−18 J and U′K = 2.1799 × 10−18 J.  

Chapter 11 

P11.1 a) fR = tan2(θ – θ″)(1 + tan2θ tan2θ")/(tanθ + tan θ")2   
fT = 2 tan θ tan θ" [2 + tan2(θ−θ")]/(tanθ + tan θ")2. The conservation of energy requires 
that fR + fT = 1 and it is verified. b) θ″ = 28.13° and R// = −0.0920, T// = 0.7280,  
fR // = 8.46 × 10−3 and fT // =  0.9915. R⊥= −0.303, T⊥= 0.69, fR = 9.199×10−2,  
fT = 0.9081. P' = −0.832 and P″ = 0.044 

P11.2 b) θ" = 40°.6. R// = 0.066, T// = 0.702, R⊥= −0.337, T⊥= 0.6, α′ = 79° and  
α″ = 40°. 

P11.3 a) I' = R2I, I" =T2(Z1/Z2)I. The energy conservation on the surface requires that 
 (1– R2) cos θ' = T2(Z1/Z2) cos θ", which is verified by R// and T// and by R⊥ and T⊥, thus 
in the case of any wave. b) I3 = 16n2 I1/(1+ n)4I1 = 0.9216 I1. After four plates, the 
intensity becomes If = (0.9216)4 I1 = 0.7214 I1.  

P11.4 fT = 4 n2 cos2θ cos2θ″/[(n2−1)2 sin2α + 4 cos2θ(n2 − sin2θ)], where  
α = (nωL/c) cos θ″. We find α = 4.7124 × 104 rad,  sin α = −0,589 and fΤ = 0,94. 

P11.5 a) E = A//
)i( k.r−ωte e// + A⊥

)i( φ+−ω k.rte e⊥ such that φ = 0 ou π if the wave is 
polarized linearly, A// = A⊥ and φ = ± π/2 if the wave is polarized circularly and the 
amplitudes or φ varying at random in the case of a non-polarized wave.  

b) fR  = tan2(θ – θ″) 2

22

)tan (tan
tantan1

θ′′+θ
θ′′θ+

, fT = 2)tan tan(
tantan2

θ ′′+θ
θ ′′θ
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P′ = 22222222
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P′ = 1  and  P" = − 0.04 at Brewster incidence. P′ = 0.44 and P" = −0.0097 at 30°. 
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P11.6 We set Δ1 = [(n2 – sin2θ]½ and Δ2 = [(1 – n2 sin2θ]½. 
 a) I′⊥(θ)/I = [Δ1 – cos θ]4/(n2–1)2, I′⊥(0) = 0.04 I, I′⊥(π/2) = I, I′⊥(π/4) = 0.092 I. 
 b) I′//(θ)/I = [Δ1 – n2 cos θ]2/[Δ1 + n2 cos θ]2, I′//(0)/I = 0.04, I′//(π/2)/I = 1, 
 I′//(θB)/I = 0, I′//(π/4)/I = 8.47 × 10–3. c) I'⊥/I = (n cos θ – Δ2)2/(n cos θ + Δ2)2, 
I'///I = (nΔ2 – cos θ)2/(nΔ2 + cos θ)2. I'⊥/I increases from (n–1)2/(n+1)2 = 0.04 for θ = 0 
to 1 for θ = iL= 41.8°. I'///I = R//2 decreases from (n–1)2/(n+1)2 = 0.04 for θ = 0, vanishes 
for θ = θ'B = Arctan(1/n) and then increases to 1 for θ = iL. 

P11.7 a) iL ≈ 41.8°, δ = 5.927 µ−1, l ≈ 1µm. b) Setting η = ω cos θ/δcn, one finds  
R = − (1/Δ)(1 + η2) sh(Lδ) and T = 2iη/Δ,, where Δ = (1− η2) sh(Lδ) + 2i ch(Lδ). 
Numerical values: |R| = 1 − 1.31 × 10−5 and |T| = 5.13 × 10−3. 

P11.8 b) For λ = 500 nm, |R | ≅ 0.968  and φ = 3.11rad. For λ = 100 nm |R | ≅ 0.930  and 
φ = 3.07 rad. The thickness of the film must exceed 3.0 nm. 

P11.9 E = Em
)i( q.r−ωte and B = Bm

)i( q.r−ωte with the conditions µoεωEm = − q × Bm, 
ωBm = q × Em, q.Em = 0, q.Bm = 0 and the dispersion relation q2 = ω2µoε  i.e.  
q2 = ω2µo (ε2 − iσc/ω). b) It is possible to introduce a complex index, but the ratio  
sin θ″/sin θ is not constant and it is not possible to write Snell’s law. 

P11.11 b) λ = 476 ± 12 nm. The dark spectral lines correspond to λ = 600 nm and  
λ = 429 nm. c) I = 4Io [1 + cos (2π x/i) cos (π x δλ/iλ)], where Io is the intensity of each 
source. C = | cos (π x δλ/iλ)|, where i = λD/d.  

P11.13 b) If the antennas are in phase the order 0 maximum is in the normal direction 
and the order 1 at 30°A. The half-width of the principal maximums is λ/6d = 4.8°. The 
sweeping is obtained if the phase shift is φ(t) = − 2π(d/λ) sin(ωt). 

P11.14 a) x(first minimum) = 3 mm, x(first secondary maximum) = 4.5 mm. b) The 
principal maximums coincide at x = 0, the first minimum for λ = 0.5 µ is at x′ = 2.5 mm 
and its first secondary maximum is at x′ = 3.75 mm. c) The first minimum is at  
x = 57.74 ± 0.46 cm. 

P11.15 I = Io Fd(Φ/2) F(Φ/2), where Φ = 2π(d/λ) sin θ, Fd(x) = (sin x)2/x2 and  
F(x) = [1− x2/π2]−2. The zeros of I are at Φ/2 = nπ. The intensity of the principal 
maximum is increased and that of the secondary maximums is reduced. 

P11.17 c) The radius of the water droplets or the dust particles is R ≈ 7 µm. 

P11.18 a) E1 = Em sin[ω(t – r1/c)], E2 = Em sin[ω(t – r2/c) + φ], 
E = 2Em cos(πΔr/λ – φ/2) sin[ω(t – r1/2c – r2/2c) + φ/2], where Δr = r2 – r1 ≈ d sin θ.  
I is maximal if sin θmax = (p + φ/2π)λ/d and minimal if sin θmin = (p + φ/2π + ½)λ/d. To 
modify the direction of the maximums, one has only to modify the phase φ. 
b) If d = λ/2 and φ = 0, I(θ) = 4I ocos2(½π sin θ); hence I(0) = 4Io, I(30°) = 2I o,  
I(60°) = 0.175 I o and I(90°) = 0. c) If d = λ/2 and φ = 30°, I is maximal for θmax = 9.6°. 
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d) With N antennas, I = N2Io sin2(NφT/2)/N2 sin2(φT/2) where φΤ = φ – 2π(d/λ) sin θ. 
The width of the principal maximum is δθ ≈ 2λ/Nd. 

P11.19 a) The maximums are at θ = 0, ± 2.334×10−3, ± 4.668×10−3, … in degrees.  
b) The angular width of the central maximum is about δθ = 0.107°, the principal 
maximums are at θ = 0, ± 1.72°, etc. 

P11.20 a) I = Io Fi(θ) Fd(Φ/2), where Fi(θ) = [1 + 2 cos α]2  and Fd(x) = (sin x)2/x2 with  
α = 2π(a/λ) sin θ and x = Φ/2 = π(d/λ) sin θ. b) I' = Io F’i Fd(θ), where  
F'i = 1 + 4 cos2α + 4 cosα cosφ. 

P11.21 a) d = 2.50 µm. b) λ′ = 484 nm. c) N > 3650/p, where p is the order.  
d) 411.0 nm < λ < 450.8 nm. 

P11.22 d) θ = 0,  10.24°, 20.82°, 32.22°, 45.30°, 62.69°. 

P11.23 a) F = Nic. θ = π – 2 Arcsin(b/R ), b) dNs = ¼R2F dΩ. σ(Ω) = ¼R2, σ = πR2,  
c) µ = 7.85×10−3 m−1.  

Chapter 12 

P12.1 a) V and I verify the equations of the line if k = ω/v, where v = ll LC and  

Z = ll CL / . b) V = Vm
)i( kxte −ω , V′ = V′m )i( xkte '+ω , V″ = V″m

)i( xkte ′′−ω , hence  

I = Im
)i( kxte −ω , I′ = −I′m )i( xkte '+ω , I" = I″m

)i( xkte ′′−ω , where Im = Vm/Z1, R = V′m/Vm = 
kDe i2− (Z2 −Z1)/(Z2 +Z1), I′m/Im = − kDe i2− (Z2 −Z1)/(Z2 +Z1), k = k′ = ωLll/Z1 and  

k" = ωLl2/Z2. T = V″m/Vm = 2 Dkke )i( −′′ Z2/(Z2 +Z1), I″m/Im = 2 Dkke )i( −′′ Z1/(Z2 +Z1). 
c) I(D,t) + I′(D,t) = 0, R → V′m/Vm = kDe i2− , I′m /Im = − kDe i2− . 
d) Vm 

kDe i− + V′m 
kDei  = 0, R = V′m/Vm = − kDe i2− , I′m /Im = kDe i2− , e) Zc = Z. 

P12.2 a) Z = (Ll/Cl)½ = 96.5 Ω.  b) V(L,t) = ZcI(L,t), R = V′m/Vm = (Zc−Z)/(Zc +Z) e−iφ  

c) V(x, t) = Vm[cos(ωt − kx) + Ro cos(ωt + kx – φ)],  
I(x, t) = (Vm/Z)[cos(ωt − kx) − Ro cos(ωt +  kx – φ)], <Pg> = 2Vm2Zc/(Zc +Z)2 = Pc where 
Pc = V(L,t)I(L,t). d) The wave is totally reflected if Zc = 0. No wave is reflected if Zc = Z. 
The mean supplied power is maximal if Zc = Z. 

P12.3 c) There is no dispersion if kLlGl = rlCl (Heaviside’s condition). The attenuation 
coefficient is then η = Gl(Ll/Cl)½ = ZGl independently on the frequency. 

P12.4 b) If the line is short-circuited (Zc = 0), ωn = πnv/D,  
Vn = A cos(ωnt+φ) cos(nπz/D) and In = (A/Zl) sin (ωnt + φ) sin(nπz/D).  

If the line is open (Zc = ∞), ωn = π(n + ½)v/D, Vn = A cos[ωnt + φ] cos[(n + ½)πz/D] and 
In = (A/Zl) sin [ωnt + φ] sin[(n + ½)πz/D]. 
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P12.5 a) ET = 2Em sin(kz) sin(ωt) ex and BT = 2(Em/c) cos(kz) cos(ωt) ey. The nodal 
planes of ET are at zp = pπ/k = pπc /ω = pλ/2.  
b) UEM,v = 2εoEm2[sin2(kz) sin2(ωt) + cos2(kz) cos2(ωt)] and <UEM,v > = εo Em2. 
S = (4Em2/µc) sin(kz) sin(ωt) cos(kz) cos(ωt) ez and < S> = 0. 
c) qs = 0, js = (2Em/cµo ) cos(ωt) ex and pr = 2(εoEm2) cos2(ωt).  
d) Nγ = πcεoEm2/hω. The radiation pressure is equal to the momentum transfer per unit 
time and per unit area, hence pr = ΔP = εoE2 and ΔU = 0. 
e) E = Em[cos(ωt − kz) ex + E cos(ωt − kz + π/2) ey]  
B = (Em/c)[− cos(ωt − kz + π/2) ex + cos(ωt − kz) ey]  
E′ = −Em [cos(ωt + kz) ex + cos(ωt + kz + π/2) ey ]  
B′ = (Em/c)[− cos(ωt + kz + π/2) ex + cos(ωt + kz) ey]  
ET = 2Em sin(kz)[sin(ωt)ex + cos(ωt)ey], BT = (2Em/c) cos(kz)[sin(ωt)ex + cos(ωt)ey]  

S = 0 and pr = 2εo Em2. f) pν~ = pc/2d and kp = pπc/d. The fields in the mode p are 

ET = 2Ep sin(pπcz/d) sin(pπct/d+φp) ex, BT = 2(Ep/c) cos(pπcz/d) cos(pπct/d +φp) ey. 

P12.6 a) B = (A/v) sin(ωt) sin(kz)ey, v = ω/k. b) UE,v = ½εA2 cos2(ωt)cos2(kz),  
UM,v = ½ε A2 sin2(ωt) sin2(kz), S = (A2/4µv) sin(2ωt) sin(2kz) ez. 
d) UEM (half wave zone) = (1/16) εA2λS. 

P12.7 a) If E± = Eo [cos(ωt) ex + cos(ωt ± π/2) ey] sin(kz), (E±) 2 = Eo2 sin2(kz). The tip 
of E± moves on a circle of radius Eo|sin(kz)|. b) E±i = uo [cos(ωt – kz)ex + cos(ωt – kz ± 
π/2) ey] and E±r = Eo [cos(ωt + kz + π) ex + cos(ωt + kz + π ± π/2)ey], hence E± = E±i + 
E±r = 2Eo [cos(ωt – π/2)ex+cos(ωt – π/2 ± π/2)ey] sin(kz).  
c) The angular momentum transfer per unit time of the incident wave and that of the 
reflected wave are LEM,v±i = ∓ (UEM ±,v i/ω)ez and LEM,v±r = ∓  (UEM ±,v r/ω)(−ez) 
Their sum LEM,v±i + LEM,v±r is equal to zero at each point. 

P12.8 a) E = Em cos(ωt – k.r)ey, B = −(Εm/c) cos(ωt−k.r)[sin θ ex + cos θ ez], 
k = (ω/c)(− cos θ ex + sin θ ez), E′ = −Em cos(ωt – k′.r ) ey,  
B′ = (Em/c) cos(ωt − k′.r)[sin θ ex − cos θ ez], k′ = (ω/c)(cos θ ex + sin θ ez) 
b) Setting ξ = kx cos θ and η = kx sin θ, ET = − 2Em sin ξ sin(ωt − kz sin θ ) ey  
BT = (2Em/c)[sin θ sin ξ sin(ωt − kz sin θ) ex  − cos θ cos ξ cos(ωt − kz sin θ) ez] 
vp = c sin θ. The nodes of E are at xm = mλ/2 cos θ, where m is an integer. 
c) Uem = 2εoEm2{cos2θ cos2ξ + [sin2θ − cos(2ξ)] sin2(ωt − kz sin θ)}  
S = (Em2/cµo)[cos θ sin(2η) sin(2ωt−2kz sin θ) ex + 4 sin θ sin2ξ sin2(ωt − kz sin θ)ez] 
I = (2Em2/cµo) sin θ sin2ξ. d) cos θn = nπc/ωd,  ωn = nπc/d, kn = nπ/d  
e) qs = 0, js(x = 0) = 2εocEm cos θn cos(ωnt − kn z sin θn ) ey  
and js(x = d) = (−1)n+1(2εocEm) cos θn cos(ωnt − kn z sin θn) ey 
Πr = 2 εo Em2 cos2θn cos2(ωt − kz sin θn).  

P12.10 a) nm,~ν = ½c(m2/a2 + n2/b2)½. 0,1~ν = 7.5 GHz, k = (ω/c) γ1,0,   
where γ1,0 = (1− ω102/ω2)½. The fields are E(TE) = Eo sin(πx/a) )i( kzte −ω ey  
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and B(TE) = (Eo/c)γ1,0[ − sin(πx/a) ex + i(π/ak) cos(πx/a) ez] )i( kzte −ω

0,1~ν = 7.5, 0,2~ν = 1,0~ν = 15.0, 1,1~ν = 16.8, 1,2~ν = 21.2, 0,3~ν = 22.5 (in GHz ).

b) ω2 = ω1,02 + c2k2⇒ vp =ω/k = c(1 − 2
01,

~ν / 2ν~ )−½ = 4.54×108m/s,

vg = dω/dk = c(1 − 2
01,

~ν / 2ν~ )½ = 1.98 × 108m/s.

P12.11 ωp,q = (πv/a)(p2+ q2)½, amin = λ/2n = 0.1667 µm. v(p) = ω/k = v/γp,q, v(g) = vγp,q
⇒ γ0,1 = γ1,0 = 0.866, v(p) = 2.31 × 108m/s, v(g) = 1.73 × 108m/s.

P12.12 a) 0,0,1~ν = 0,1,0~ν = 1,0,0~ν = v/2a (degeneracy 3), 0,1,1~ν = 1,0,1~ν = 1,1,0~ν = v/2½a
(degeneracy 3) and 1,1,1~ν = 3½v/2a (non-degenerate). b) The lowest cut-off frequencies
are 1,1ν~ (TE) = 0.878 GHz, 0,1ν~ (TM) = 1.15 GHz and 2,1ν~ (TE) = 1.46 GHz. The lowest
frequencies of the cavity are 1,1,1ν~ (TE) = 3.14 GHz, 0,1,1ν~ (TM) = 3.91 GHz and

1,1,2ν~ (TE) = 4.08 GHz.

P12.13 jm,ν~ (TM) = (c/2πR) xm,j, where x0,1 = 2.40, x1,1 = 3.83, x2,1 = 5.14,

x0,2 = 5.52 . jm,'~ν (TE) = (c/2πR)x′m,j, where x′1,1= 1.841, x′2,1= 3.054, x′0,1= 3.832,

x′1,2= 5.331. For R = 1.5 cm, 1,1'~ν (TE) = 5.856, 0,1ν~ (TM) = 7.650 and

2,1'~ν (TE) = 9.714 (in GHz). The bandwidth is 0,1ν~ (TM) – 1,1'~ν (TE) = 1.794 GHz.

This corresponds to 1.8 × 105 telephone calls or 287 TV channels.

Chapter 13

P13.1 a) v′ = (c2 + vo2)½ and tan θ′ = – c/vo, hence tan α = vo/c ≅ 10–4 ≅ α. b) The
transformation law of the group velocity gives v′gx = vgx = – c, v′gy = vgy = 0,
v′gz = vgz – vo = –vo.

P13.3 z′1 = γ(z1−vot1) = 0, t′1 = γ(t1− voz1/c2) = 0, z′2 = γ(z2 − vot2), t′2 = γ(t2 − voz2/c2).

Event (2) precedes event (1) if t′2 < 0, thus t2 < vo z2/c2. As vo < c, event (2) will never
precede (1) if c > z2/t2. This is the condition on events related by causality.

P13.6 A′1 = A1, A′2 = A2, A′3 = γ(A3 − βA4), A'4 = γ(βA3 − A4) etc.

P13.7 ∂x = ∂x′, ∂y = ∂y′, ∂z = γ∂z′ − (γvo/c2)∂t′, ∂t = −γvο∂z′ + γ∂t′
⇒ ∂µ∂µf(xρ) = {∂x′∂x′ + ∂y′∂y′+ ∂z′∂z′ − (1/c2)∂t′∂t′ }f′(x′ρ)

P13.8 D < cT/πα = 4.14 × 1022 m, i.e. 4.4 × 106 light-years.

P13.9 a) P = 0.294 MeV/c = 1.578 × 10–22 kg.m/s, E = 0.589 MeV = 0.947 × 10–13 J and
UK = 0.079 MeV = 0.129 × 10–14J, compared with the non-relativistic values
p = 1.366×10–22 kg.m/s and UK = 0.102 × 10–14J. b) vrel = 0.8 c compared to the non-
relativistic value c.

P13.10 ( P . P ) = P2 – E2/c2 = 02 − (mc2)2⇒ E2 = c2P2 + m2c4.
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P13.11 a) mc2 = 8.20 × 10−14 J = 0.511 MeV. b) vrel = 0.776 c and vcl = 1.08 c  
c) Prel = 3.36 × 10−22 kg.m/s. pcl = 2.95 × 10−22 kg.m/s. d) E(at rest) = 1.02 MeV =  
1.64 × 10−13 J and E(in motion) = 1.08 MeV = 1.74 × 10−13 J. 

P13.12 b) In light propagates in the same direction as  the motion of the medium,  
v = (v′ + vo)/(1+ βv′/c) ≈ (v′ + vo)(1– βv′/c) ≈ (c/n +vo)(1– β/n) ≈ c/n + vo (1–1/n2). 

P13.13 vo = 1.52 × 108 m/s. 

P13.14 v = 2.70 × 105 km.s−1, D = 1.4×1010 light-years = 1.3 ×1023 km. 

P13.15 B' = 0 and E' = (qs'/εo)ex. Transforming to the observer’s frame, we get 
E = γE' = γ(qs'/εo)ex and B = (γ/c)(β × E') = γ(qs'/εoc2)voey.. Directly in S, we get  
E = (qs/εo)ex and B = µojsey with the relation qs = γqs' and js = qs = γqs' vo.  

P13.16 a) v = vex and v' = (v/γ)ex. f = −eE = −eE(cos α ey + sin α ez) and  
f′ = [ f +(γ –1)(vo.f) vo/vo2 − γvo(f.v)/c2]/γ[1−(vo.v)/c2] = −eE (cos α ey /γ + sin α ez) 
b) E' =E(γ cos α ey + sin α ez), B' = (γ/c)Eβ cos α ex, hence f' = −e[ E' + v' × B']. 

P13.18 b) B′ = 0 if vo = co2(E × B)/E2 + kE, where k is arbitrary. This is possible if  
vo < c, i.e. cB < E. c) E′ = 0 if vo = (E × B)/B2 + kB, possible if vo < c, i.e. cB > E.  

P13.19 a) FM/FE = β 2 sin θ < β2 < 1.  
b) F1→2 = (Ko q1q2/c2r'13) [c2r12 − (v2.v1)r12 + v1(v2.r12)], where  r12 = r2 – r1 and  
r'1 = γ1[r122 – β12 r122 + (r12.β1)2]½, hence F21 ≠ –F12. c) Evaluating the force exerted by 
the element dz' of the conductor containing the conduction charges −eNLdz' of velocity 
v1 and the charge eNLdz' of the ions at rest and integrating over the conductor, we get the 
expected result F = (µoqI/2πρ)(v2 × eϕ), where I = −eNLv1. 

P13.20 B' = 0, A' = 0, V'(ρ', ϕ', z') = − 2Κο q'L ln (ρ'), E'(ρ', ϕ', z') = 2(Κο q'L/ρ') eρ 
A = (γ/c2)voV' = −(µo/2π)(γq'Lvo) ln(ρ),  V = γV' =  −(γq'L/2πεo) ln(ρ) 
E = γE' + (1 − γ)(E'.e)e = (γq'L/2πεoρ) eρ, B = (γ/c)(β × E') = (µo/2π)(γq'Lvo/ρ) eϕ.  
Note that γq'L = qL(because of length contraction) and the current intensity is I = qLvo, 
hence B = (µoI/2πρ) eϕ as given by Ampère’s law. 

P13.21 Use the relationships ∇ = ∇'+(γ−1)(β.∇')β/β2 + (γ/c)β∂t' and ∂t = γ(∂t'+cβ.∇'. 

P13.23 Write Maxwell’s equations in the frame S', use the transformation laws of the 
fields, that of charge and current densities and the relationships  
∇ = ∇'+ (γ −1)( β.∇')β/β2 + (γ/c)β∂t' and ∂t = γ (∂t' + cβ.∇')  

Chapter 14 

P14.1 a) x = − a, where a = eE/m, y  = 0 and z  = 0, v = (−at + vo)ex and 
r = (−½at2 + vot)ex. b) a = −eE/m = −1.76×1016 m/s2 ex, v = − at and x = −½at2.  
It reaches the speed −c/10 at t = 1.71 × 10−9 s after travelling a distance of 2.56 cm.  
c) x = 2.85 × 10−5 m and t = 5.69 × 10−11 s. 
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P14.2 ri ≈ 1 cm. 

P14.3 The limit velocity is vl = [qE + (4/3)πr3g(µ − µ′)]/6πηr, q ≈ −5e. 

P14.4 a) ys = −0.267 mm, v = 2.57×107 m/s, θ = −3.05° and UK = 3.0085 × 10−16 J.  
b) y =1.07 cm. 

P14.5 Ecyl = −30.7 kV/m, Fcyl = 4.91×10−15 N, Frod = 2.45 × 10−13 N and  
arod = 2.45×10−3 m/s2. 

P14.6 a) v = 8.38 × 107 m/s and b) v = 8.15 × 107 m/s. 

P14.7 F = −eE = −KoZe2r/r3 + Ko(Z′−1)e2r/R3 and UE = − (3/10)(KoZ′e2/R)[5Z−2Z′].  
As 5Z > 2Z′, we deduce that UE is always negative. The atom is stable. 

P14.8 a) F = −Koe2r/R3. The general motion is elliptic with a frequency of  
2.53 × 1015 Hz. b) According to Bohr’s model, f = (F/mR)½/2π = (e/2πR)(KoZ/mR)½ = 
2.53 × 1015 Hz compared to 5×10 14 for the visible wavelength λ = 0.6 µm.  

P14.9 v = 1.58×107 m/s. The shortest distance is d = 4.55 × 10−14 m, E = 5.49 × 1019 V/m 
and V = 2.5 × 106 V. The maximum acceleration is a = 2.66 × 1027 m/s2.  

P14.10 a) L = b(2mUK)½, η = [1 + (8πεobUKZZ′e2)2]½ and C = −ZZ′/8πεob2UK. 

P14.11 a) v = 1.237 × 108 m/s. b) The beam is deviated toward the south by a distance 
of x = 2.53 mm. 

P14.12 a) Using the expressions, P = mv/(1−v2/c2)½ = eBR = 2.563×10−19 kg.m/s, we get 
v = cP/(P2 + m2c2)½ = 0.4548 c and W = (m2c4 + c2P2)½ = 1.688594 × 10−10 J, thus  
UK = 1.84976 × 10−11 J. ωc = c2|q|B/W = 1.70533 × 108 rad/s and V = 114.98 MV.  
b) The electron would have a speed ve = 0.99975 c = 2.9972 × 108 m/s. 

P14.13 νδ~  =  ±½ eBr ν~ /mv = ± eB/4πm.   

P14.15 As the kinetic energy is comparable to the rest energy (mc2 ≅ 0.5 MeV), we must 
use the relativistic expressions, which give v = 1.237×108 m/s. The component of v in the 
direction of B is vz = 6.1886×107 m/s and its normal component is v⊥ = 1.0715 × 107 m/s. 
The trajectory is a helix of radius 30.5 µm and the angular velocity is ω = 3.52×1011 rad/s 
in the right-hand direction. The pitch is a = 1.106 mm. 

P14.16 ν~  = 7.62 MHz, UK = (eBRo)2/2m = 2.99 MeV and N = 74.8 turns. The cyclotron 
cannot be used to accelerate electrons because they become extreme relativistic. 

P14.17 B must have a component −E/vy in the direction Ox.  

P14.18 m = 1.9915 × 10−26 kg, R(C12) = 16.625 cm and R(C13) = 17.306 cm. The lines 
are separated by a distance of 1.36 cm. 
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Chapter 15 

P15.1 Use the charge density qv(r′, t′) = q(t′) δ3(r′–½d) – q(t′) δ3(r′+½d) with d<< r. 

P15.3 c) Seting Im = ωQm, k = ω/c, we find  A(r,t) = (µod Im/4πr) sin(ωt′)ez, where  
t′ ≡ t – r/c .Thus, V(r, t) = (Kozd Im/ωr3) [– cos(ωt′) + kr sin(ωt′)]. 
E = (KodIm/ωr3){ 2[kr sin(ωt′) – cos(ωt′)] cos θ er  
                                 + [k2r2 cos(ωt′) + kr sin(ωt′) – cos(ωt′)] sin θ eθ}. 
B = (µod/4πr2) Im [sin(ωt ′) + kr cos(ωt ′)] sin θ eφ. At large distance,  
S ≈ (µod2/16π2cr2) ω2Im2 cos2(ωt′) sin2 θ er,  P = (π/3εοc)(d/λ)2 Im2, R = 789 (d/λ)2. 

P15.4 Setting t′ = t – τ, where τ = r/c is the propagation time, we find 
a) M(t) = S I(t) ez , A(r,t) = (µo/4πr3) [ M(t′) × r + τ M ′(t′) × r ]ret,  V(r,t) = 0.  
b) E(r,t) = −(µo/4πr3) [(M ′× r) + τ (M ″× r)]ret. 
B(r,t) = (µo/4πr3) [ 3(M .er)er − M + 3τ(M ′.er) er − τ M ′− τ2 M ″+ τ2 (M ″.er) er ]. 
c) If I = Im eiωt, setting Mm = Im S and k = ω/c, we find 
A(r,t) = (µo/4πr2)(1+ ikr) Mm ei(ωt–rk) sin θ eϕ → i(µo/4πr) k Mm ei(ωt–rk) sin θ eϕ , 
E(r,t) = (µo/4πr2) ω(–i + kr) Mm ei(ωt–rk) sin θ eϕ →(µo/4πr)ωk Mm ei(ωt–rk) sin θ eϕ , 
B(r,t) = (µo/4πr3){(2 + 2ikr) cos θ er + (1 + ikr – k2r2) sin θ eθ } Mm ei(ωt–rk)  

    → – (µo/4πr) k2 Mm ei(ωt–rk) sin θ  eθ. 
d) <dP> = (cµo/32π2) k4 Mm2 sin2θ dΩ ,  < P > = (4/3) π3 µoc Mm2/λ4. 

P15.5 a) L = 1.5 m. P(DE) = 3.63 kW. b) P(DM) = 1.23 kW. 

P15.6 The retarded potential at r and t is V(r,t) = (Qo/4πεor) cos[ω(t – |r |/c)]. 

P15.10 a) p = qzm cos(ωt) ez , P(ray) = (µq2/12πc)
 
ω4 zm2. The power that is emitted in 

the directions making less than 45° with the Oxy plane is 79%.  

P15.13 a) S = E × B/µ  

     = 462

2

16 Rvg
q
επ

{ eR2[α2g2 – (e.α)2(1–β2) + 2g (e.α)(α.β)] + v2(1– β2)2[gβ – e(e.β – β2)] 

                    + gvR(1–β2)[ β(e.α) + αg] + e vR(1–β2)[(e.α)(2β2 – 1 – e.β) + 2g(α.β)]}ret . 

b) S ≈ 262

2

16 Rvg
q
επ

 [α2g2 – (e.α)2(1 – β2) + 2g(e.α)(α.β)] e⎟ ret . 

P15.14 a) P(rad) = µo q2a2 /6πc. b) Writing P(rad) = −fv, we get the braking force  
f = − (µo q2a2 /6πc)(v/v2). The equation of motion ma = f has the solution  
v = vo exp(−t/τ), where τ = µoq2/6πmc. In the case of the electron, τ = 6.26 × 10−24 s.  
c) a = UK/mL, U(ray) = 2(τ/t) UK = 2.4 × 10−32 J = 1.5 × 10−13 eV.  



Appendix A 

Mathematical Review 

In this appendix, we designate the natural or Napierian logarithm as ln(x), and 
the hyperbolic functions as sinh(x), cosh(x), and tanh(x). The inverse functions are 
designated by sinh−1(x), cosh−1(x), tanh−1(x), sin−1(x), cos−1(x), and tan−1(x), instead of 
Arcsin x, etc. The unit of angles is the radian. To simplify the notations, the partial 
derivatives (or derivatives) are designated by ∂xf for ∂f/∂x, ∂2

xy
 f for ∂2f/∂x ∂y, etc.  

A.1. Taylor series  

Taylor series about x = 0 and x = a are, respectively, 

f(x) = f(0) + ∂xf |x=0 x/1! + ∂2
x f |x=0 x2/2! + ∂3

x
 f |x=0 x3/3! + ... 

f(x) = f(a) + ∂xf |x=a (x − a)/1! + ∂2
x f |x=a (x − a)2/2! + ∂3

x
 f |x=a (x − a)3/3! + ... 

Examples: 

(1 + x)n = 1 + n x + n(n − 1) x2/2! + n(n − 1)(n − 2) x3/3! + ...            (|x| < 1) 

(x + y)n = xn
 + n xn−1y + n(n−1) xn−2y2/2! + n(n−1)(n−2) xn−3y3/3! + ... (|y| < |x|) 

A.2. Logarithmic, exponential, hyperbolic and trigonometric functions 

y = ex = 1 + x/1! + x2/2! + x3/3! + ...,         ln(1 + x) = x −x2/2!+ x3/3! −...  (x2 < 1) 

sinh(x) = ½(ex −e−x) = x/1! + x3/3! + x5/5! ...,   cosh(x) = ½(ex+e−x) = 1+x2/2! +x4/4! 
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tanh(x) = sinh(x)/coch(x) = x−x3/3 + 2x5/15...,   cosh2(x) − sinh2(x) = 1 

sinh(x ± y) = sinh x cosh y ± cosh x sinh y,       cosh(x±y) = cosh x cosh y ± sinh x sinh y 

cosh(2x) = 2 cosh2x −1 = 2 sinh2x + 1,      sinh(2x) = 2 sinh x cosh x 

sin x = x/1! − x3/3!+ x5/5! ...,           cos x = 1 − x2/2! + x4/4! ... 

cos x = sin(π/2 − x) = −cos(π − x),       sin x = cos(x –π/2) = sin(π − x) 

tan x = sin x/cos x = x +x3/3+2x5/15 + ...||x|<π/2, cos2(x) + sin2(x) = 1  

sin(x ± y) = sin x cos y ± cos x sin y,               cos(x ± y) = cos x cos y ∓  sin x sin y 

sin(2x) = 2 sin x cos x,                  cos(2x) = 2 cos2x −1 = 1 − 2 sin2x 

cos x + cos y = 2 cos ½(x +y)
 
cos ½(x−y),       cos x − cos y = 2 sin ½(x+y) sin½(y−x)  

sin x + sin y = 2 sin ½(x +y) cos ½(x−y),    sin x − sin y = 2 sin ½(x−y) cos ½(x+y) 

tan(x ± y) = (tan x ± tan y)/(1 ∓  tan x.tan y),  tan x ± tan y = sin(x ± y)/cos x . cos y 

sin−1(x) =
2
π − cos−1(x) = 1

1 x + 3.2
1 x3 + 54.2

31
.

.
 x5 + .. =Σk≥0 22

12

)!(2)12(
)!2(

kk
xk

k

k

×+

+
 (x2 < 1) 

tan−1(x) = x − x3/3 + x5/5 − x7/7 +...|if |x|<1    or   π/2 − 1/x + 1/3x3 − 1/5x5+... |if |x| ≥1  

A.3. Integrals 

The indefinite integral f(x) is its primitive: ∫dx f(x) = F(x), where dF/dx ≡ f. The 
definite integral ∫ba xfdx )( is the area under the curve representing the function f(x) 

between the points x = a and x = b. It may be shown that ∫ba f(xdx ) = F(b) – F(a). 
The average value of a function f(x) between the points x = a and x = b is 

< f > = 1
b a−

∫
b
a f(xdx ) = F(b ) F(a )

b a
−
−

.   

Thus, the area under the curve f(x) between a and b is the same as that of the 
rectangle of sides (b − a) and < f >. 

∂x ∫ dx f(x) = f(x),                   ∫ dx ∂xf . g(x) = f(x) g(x) − ∫ dx ∂xg . f(x)  

∫ dx x−1 = ln(x)                                         ∫ dx xn = xn+1/(n + 1)         (n ≠ −1),   

∫ dx ∂xf /f  = ln f(x),                 ∂x ∫
)(
)( )(xb

xa tfdt =  f[b(x)] ∂xb − f[a(x)]∂xa 
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∫ dx axe  = axe /a,               ∫ dx x axe  = (ax −1) axe /a2 

∫ dx sinh x = cosh x,                 ∫ dx cosh x = sinh x 

∫ dx tanh x = ln(cosh x),               ∫ dx/tanh x = ln(sinh x) 

∫ dx sin x = −cos x,                 ∫ dx cos x = sin x 

∫ dx tan x = − ln(cos x),               ∫ dx/tan x = ln(sin x)    

∫ dx sin2x = ½ x − ¼ sin 2x,         ∫ dx cos2x = ½ x + ¼ sin 2x 

∫ dx (a + b cos x)−1 = 2(a2–b2)−½ tan−1[f/(a+b)]   (where f = |a2–b2|½ tan(x/2) if a2 > b2)                     
or  (b2–a2)−½ ln[(f+a+b)/(f−a−b)]   (where f = |b2–a2|½ tan(x/2) if a2 < b2)  

∫ dx (a2 + x2)−1 = (1/a) tan−1(x/a)          ∫ dx(a2 − x2)−1 = (1/2a) ln[(a + x)/(a − x)]  

∫ dx(x2 ±a2)−½ = ln[x + (x2±a2)½]                ∫dx(a2−x2)−½ = sin−1(x/a) = π/2 – cos−1(x/a) 

Integrals involving v = a + bx + cx2  (with w = b + 2cx and Δ = b2 − 4ac) 

∫ dx w−½ = (1/c) w½                                                         ∫ dx w−3/2 = −(1/c) w−½ 

∫dx/v = Δ−½ ln[(w–Δ½)/(w+Δ½)]|if Δ>0 ,    or   −2/w|if Δ=0   or   = 2|Δ|−½ tan−1(w|Δ|−½)|if Δ<0  

∫ v
dx  = c−½ ln(w + 2 cv )|if c > 0 ,               or    = c−½ sinh−1[w|Δ|−½]|if c > 0 and Δ < 0 ,           

          or  = − |c|−½ sin−1(wΔ−½) |if c < 0 and Δ > 0,    or      = c−½ ln w |if c > 0 and Δ = 0 

∫dx v−3/2 = −2w/Δv½ ,                ∫dx xv−3/2 = 2(2a + bx) /Δv½  

A.4. Complex numbers 

A complex number (represented by an underlined symbol) is the association of 
two real numbers: 

z = x + iy,             where     i2 = −1 .   

x and y are the real part and the imaginary part, respectively, of z: 

x = Re z ,       and       y = Im z .   

The complex conjugate of z ≡ x + iy is z* ≡  x − iy. A function of z is defined by the 
same Taylor series as for a real variable. For instance,  
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φie = 1 + !1
1 (iφ) + !2

1 (iφ)2
 + !3

1 (iφ)3
 + !4

1 (iφ)4 ...  

       = 1 − !2
1 φ2

 + !4
1 φ4 ... + i( !1

1 φ − !3
1 φ3

 + ...) = cos φ + i sin φ (Euler equation) . 

We deduce that 

sinh(x) = −i sin(ix),        cosh(x) = cos(ix),       tanh(x) = −i tan(ix)  

sinh(ix) = i sin(x),         cosh(ix) = cos(x),       tanh(ix) = i tan(x) .  

A complex number z = x + iy may be represented by a point of coordinates x and 
y in the (x, y) (Argand diagram, Figure A.1). We may use the polar coordinates ρ 
and φ for this point; then,  

z = x + iy = ρ cos φ + i ρ sin φ = ρ φie    

with the relations  

x = ρ cos φ,         y = ρ sin φ,        tan φ = y/x,         ρ = |z| = (x2 + y2)½ . 

ρ is the modulus of z and φ is its argument or its phase (determined up to 2π). 

 

Figure A.1. Argand diagram for complex numbers 

The sum of two complex numbers is 

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + x2) + i (y1 + y2) .  

The product and the ratio of two complex numbers may easily be evaluated using 
the exponential form 

z1 z2 = (ρ1 1iφe )(ρ2 2iφe ) = ρ1ρ1 
)i( 21 φ+φe ,           

2

1
z
z  =

2
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ρ

e
e =

2

1
ρ
ρ )i( 21 φ−φe . 

 φ

x

 y   Imaginary axis 

ρ

x =  Re z

y = Im z

Real axisO 
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If the algebraic form is used, we find 

z1 z2 = (x1 + iy1)(x2 + iy2) = x1 x2 − y1 y2 + i(x1 y2 + x2 y1), 

1

2

z
z

 = 
22

11
i
i
yx
yx

+
+ = 

22

11
i
i
yx
yx

+
+

22

22
i
i
yx
yx

−
− = 2

2
2

2

21122121 )i(
yx

yxyxyyxx
+

−++ .    

A.5. Functions of several variables 

a) Consider the function of several variables f(x, y, z). The partial derivative  
∂xf ≡ ∂f/∂x, for instance, corresponds to the variation of x, while the other variables 
are maintained constant. Higher-order derivatives are defined in the same way. 
These derivatives are independent of the order of differentiation. We have, for 
instance, ∂x∂y f = ∂y∂x f. Thus, it is not necessary to note this order and we may write 
∂2

x,y f ≡ ∂2f/∂x ∂y, etc. 

The variation of f if x varies by dx, while the other variables remain constant, is 
df |y,z  = ∂xf dx. If all the variables vary, the corresponding total variation of f is  
df = dx ∂xf + dy ∂yf + dz ∂zf. Conversely, a differential expression of the form 
P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz is the total differential of a scalar function 
f(x, y, z) if P, Q and R are the partial derivatives of f, that is, P = ∂xf, Q = ∂yf and  
R = ∂zf. For this, it is necessary and sufficient that ∂yP = ∂xQ, ∂zP = ∂xR , etc., then, 
df = P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz.  

b) Consider the finite integral I = ∫
b
a dx f(x). Making a change of variable  

x = x(u), we obtain I = ∫
'
'

b
a du  (∂ux) f[x(u)], where a' and b' are the values of u that 

correspond to a and b, i.e. x(a') = a and x(b') = b. This result can be generalized to 
multiple integrals. For instance, the double integral I = ∫∫D dx dy f(x, y) over a 
domain D, becomes in the change of variables x = x(u, v) and y = y(u, v) a double 
integral over a domain D′ in (u, v)   

I = ∫∫D' du dv 
)(
)(

vuD
yxD

,
,  f[x(u, v),y(u, v)],       where 

)(
)(

vuD
yxD

,
,  ≡ ⎥

⎦

⎤
⎢
⎣

⎡
∂∂
∂∂

yy
xx

vu

vu . 

D(x, y)/D(u, v) is the Jacobian of the transformation.   

c) Let I(t) = ∫
)(
)(

tb
ta dx  f(x, t). The derivative of I with respect to t is 

 ∂tI = f(b, t)∂tb − f(a, t) ∂ta + ∫
)(
)(
tb
ta dx ∂tf. 
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A.6. Vector analysis in Cartesian coordinates 

To write summations over coordinates, we designate the Cartesian coordinates 
by x1 ≡ x, x2 ≡ y, and x3 ≡ z and, for instance, the partial derivative with respect to x1 

by ∂1f ≡ ∂xf ≡ ∂f/∂x. The unit vectors of the axes are ex, ey, and ez; then, for instance  

Σα ∂αf eα ≡ (∂f/∂x1)e1 + (∂f/∂x2)e2 + (∂f/∂x3)e3 ≡ (∂f/∂x)ex + (∂f/∂y)ey + (∂f/∂z)ez. 

A vector V may be specified by its Cartesian components such that  

V = Vx ex + Vy ey + Vz ez = Σα Vα eα . 

The sum of two vectors V and W is 

V + W = (Vx + Wx) ex + (Vy + Wy) ey + (Vz + Wz) ez = Σα (Vα + Wα)eα . 

If V and W have magnitudes V and W, and form an angle θ, their scalar product is 

V.W = VW cos α = Vx Wx + VyWy + VzWz = Σα Vα Wα . 

The cross products of the basis vectors are ey × ez = ex, ez × ex = ey, and ex × ey = ez. 
Therefore, the cross product (also called the vector product) of V and W is 

V × W = (Vx ex + Vy ey + Vz ez) × (Wx ex + Wy ey + Wz ez) = 
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

zyx
zyx
zyx

WWW
VVV
eee

  

         = (Vy Wz − VzWy) ex + (Vz Wx − VxWz) ey + (VxWy − VyWx) ez . 

The double cross product of three vectors is 

U × (V × W) = (U.W) V − (U.V) W. 

The vector differential operator ∇ (called del or nabla) is 

∇ =  Σα eα ∂α ≡  ex ∂x + ey ∂y +  ez ∂z . 

The gradient of a scalar field f is a vector field 

∇f  ≡  Σα ∂α f eα  ≡  ∂xf ex + ∂yf ey + ∂zf ez .      

It verifies the properties 

df = dr.∇f,      ∇(fg) = f ∇g + g∇f . 
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The divergence of a vector field V is the scalar field 

∇.V = Σα ∂αVα  ≡  ∂xVx + ∂yVy + ∂zVz . 

The curl of a vector field V is the vector field 

∇ × V = (∂y Vz  − ∂z Vy) ex + (∂z Vx  − ∂x Vz) ey + (∂x Vy  − ∂y Vx) ez . 

The Laplacian is the scalar operator 

Δ = ∇2 = ∂2
xx +  ∂2

yy + ∂2
zz . 

Here are some useful vector analysis relationships: 

∇ × (∇f) = 0 ,                                   ∇.(∇f ) = Δf , 

∇.(fV) = f ∇.V + ∇f.V ,                      ∇.(V × U) = U.(∇ × V) − V.(∇ × U) , 

Δ(fg) = f Δg + 2 ∇f.∇g + g Δf ,          ∇.(∇ × V) = 0 , 

∇ × (∇ × V) = ∇ (∇.V) − ΔV ,          ∇ × (f V) = ∇f × V + f ∇ × V) , 

The circulation of a vector field V on a path C is  

∫C dr.V = ∫C  Σα dxα Vα   ≡ ∫C (dx Vx + dy Vy + dz Vz) .  

The flux of a vector field V through a surface S (of orthogonal unit vector n) is 

∫∫S dS n.V . 

A.7. Two theorems 

The two following theorems are very useful in vector analysis:   

THEOREM 1. The necessary and sufficient condition for a vector field E to be the 
gradient of a scalar field f is that its curl ∇ × E is equal to zero.  

Indeed, if E is the gradient of a function f, we have Eα = ∂αf. Thus, the 
components of the curl of E are (∇×E)α = ∂βEγ − ∂γEβ = ∂β(∂γf) − ∂γ(∂βf) = 0, since 
the differentiations commute. Conversely, if ∇ × E = 0, we have ∂αEβ − ∂βEα = 0. 
By taking α = 1, for instance, we find ∂1Eβ = ∂βE1. Integrating with respect to x and 
designating by f the primitive of E1 with respect to x, we find  
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Eβ = ∫ dx ∂βE1 = ∂β ∫ dx E1 ≡ ∂β f ,       where     f ≡ ∫ dx E1. 

We note that f is defined up to the addition of a constant.  

THEOREM 2. The necessary and sufficient condition that a vector field B be the curl 
of a vector field A is that its divergence ∇. B is equal to zero.  

Indeed, if B = ∇ × A, we have ∇.B = ∇.(∇ × A) = 0. Conversely, for any vector 
B, we may write, for instance, B1 = −∂3F and B2 = ∂3G. Then, the equation ∇.B ≡ 
∂1B1 + ∂2B2 + ∂3B3 = 0 gives B3 = −∂1F + ∂2G. These expressions of B1, B2, and B3 
are equivalent to the vector relation  

B = V × A,       where A = G e1 + F e2 . 

We note that, if A is replaced by A' = A + ∇f, the field B is not modified for any f. 
Thus, A is determined up to the addition of the gradient of an arbitrary function.   

 
 
 
 
 
 
 
 

a)                                                                                     (b) 

Figure A.2. Stokes’s theorem: a) case of an infinitesimal plane rectangle, b) generalization 

A.8. Stokes’s theorem 

This theorem allows us to write the circulation of a vector V on a closed path C 
as the flux of ∇ × V through the surface S bounded by C and such that C is 
orientated according to the right-hand rule around the normal to S. Consider first a 
small rectangular contour of center M(x, y) and sides dx and dy (Figure A.2a). The 
circulation of the vector E over its perimeter is 

dC = ∫ dr.E(r) = AB .E(x,y−½dy) + BC .E(x+½dx, y) + CD .E(x, y+½dy) + DA .E(x−½dx, y) 

where, over AB for instance, we took the field at the middle point of this segment 
N(x, y − ½dy) up to the first order in dx and dy. Thus, we may write 

dC = dx Ex(x, y −½dy) + dy Ey(x+½dx, y) − dx Ex(x, y +½dy) − dyEy(x−½dx, y) 

Q B C 

D 

P

n 

C2

A

C1

z

A B

CD 

O x

 y 

M(x,y) E(x,y−dy/2)
E(x+dx/2, y)E(x−dx/2, y) 

E(x,y+dy/2) 

N 



Appendix A     519 

As Ex(x, y −½dy) ≈ Ex(x, y) − ½dy ∂yEx (x, y), for instance, we may write 

dC = dx dy [∂xEy − ∂yEx] = (∇ × E).n dS,   

where dS = dx dy is the area of the rectangle and n = e3 is the unit vector that is 
normal to dS. 

This result may be generalized to any finite surface S bounded by a closed path 
C. Indeed, this surface may always be considered as a juxtaposition of small surfaces 
bounded by infinitesimal rectangles Ci parallel to the planes of coordinates. 
Consider two such rectangles ABCD and BAEF having a common side AB  
(Figure A.2b). The circulation over AB for the first rectangle and the circulation over 
BA for the second rectangle cancel, since they are in opposite directions. Thus, the 
sum of the circulations over these rectangles is equal to the circulation over the 
external path CDAEFBC and the sum of the circulations over all the Ci is equal to 
the circulation over the path C. By choosing n according to the right-hand rule and 
the orientation of C, the circulation over each rectangle Ci is equal to the flux of  
(∇× E). Thus, the total circulation over C is equal to the flux of (∇ × E) through the 
surface S bounded by C. This result is known as Stokes’s theorem  

∫C dr.E(r) = ∫∫S dS (∇ × E). n.    

In particular, if (∇ × E) = 0, this theorem implies that the circulation of E over any 
closed path is equal to zero and, consequently, the circulation of E between any two 
points A and B depends on these points and not on the path. Then, by the theorem 
(1) of section A.7, there exists a potential V such that  

E = −∇V ,        and       ∫B
A dr.E = V(A) – V(B) . 

 
 
 
 
 
 
 
 

         (a)                                              (b)                                          (c) 

Figure A.3 a) Gauss-Ostragradsky’s theorem for an infinitesimal parallelepiped;  
b) flux through two adjacent parallelepipeds; c) conservation of the flux  

through the surfaces bounded by the same closed path C  if  ∇.B = 0 
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A.9. Gauss-Ostrogradsky’s Theorem 

This theorem allows the flux of any vector field B through any closed surface S  to 
be written as the integral of ∇.B over the volume V enclosed by S. Consider first an 
infinitesimal rectangular parallelepiped of center M(x, y, z) and sides dx, dy, and dz 
(Figure A.3a). Taking the normal unit vector n pointing outward, the fluxes through 
the opposite faces PQCD and EFGH are 

dΦPQCD = B(x + ½dx, y, z).nPQCD dy dz = B1(x + ½dx, y, z) dy dz 

dΦEFGH = B(x − ½dx, y, z).nEFGH dy dz = − B1(x − ½dx, y, z) dy dz . 

Keeping only the first order in dx, dy, and dz, we find for the sum of these fluxes 

  dΦPQCD + dΦEFGH = [Bx(x+½dx, y, z) − Bx(x−½dx, y, z) ]dy dz = ∂xBx(x, y, z) dx dy dz. 

Calculating the fluxes through the other two pairs of opposite faces in the same way, 
as dx dy dz is the volume dV of the parallelepiped, we find the total outward flux  

dΦ = (∂xBx + ∂yBy + ∂zBz) dx dy dz = (∇. B) dV.  

This result may be generalized to any finite volume V enclosed by a surface S. 
We may always consider V as a juxtaposition of infinitesimal parallelepipeds dVi. If 
two parallelepipeds have a common face (Figure A.3b), the normal unit vector 
outgoing from one of them is the opposite of the normal unit vector outgoing from 
the other and the fluxes of B through this common face cancel in the sum  Σi dΦi. As 
each dΦi is equal to (∇.B) dVi, by summing over all the parallelepipeds, we find that 
the outward flux through the external surface S is equal to the volume integral of the 
divergence of B. This result is known as Gauss-Ostragradsky’s theorem 

∫∫S dS n.B = ∫∫∫V dV (∇.B) .  

In particular, if ∇.B = 0, this theorem implies that the flux of B through any closed 
surface is equal to zero and, consequently, the flux of B through two surfaces S1 and 
S2 bounded by the same contour C are equal (Figure A.3c). Then, by the theorem (2) 
of section A.7, there is a vector potential A such that 

B = ∇ × A ,          and       ∫∫S dS n.B = ∫∫S dS n.(∇×A) = ∫C dr.A . 
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A.10. Vector analysis in curvilinear coordinates 

Cylindrical coordinates 

If a physical system has rotational symmetry around the z axis, it is more 
convenient to use cylindrical coordinates (ρ, ϕ, z) (Figure A.4a). The cylindrical 
coordinates of a point M are related to its Cartesian coordinates by the equations: 

ρ = 22 yx + ,        tan ϕ = y/x,        x = ρ cos ϕ,        y = ρ sin ϕ . 

Note that the whole space corresponds to 0 < ρ < ∞, 0 < ϕ < 2π and −∞ < z < ∞. The 
position of a point M is written as 

r = OM  = ρ cos ϕ ex + ρ sin ϕ ey + z ez . 

The unit vectors tangent to the coordinate curves are related to the Cartesian 
vectors eα by the equations 

eρ = cos ϕ ex + sin ϕ ey,             and         eϕ = −sinx ϕ ex + cos ϕ ey  

or    ex = cos ϕ eρ − sin ϕ eϕ,      and         ey = sin ϕ eρ + cos ϕ eϕ . 

The displacement vector dr generated by the variations dρ, dϕ, and dz is given by 

dr = dρ eρ + ρ dϕ eϕ + dz ez . 

A vector field A is specified by its cylindrical components Aρ, Aϕ and Az or by its 
Cartesian components Ax, Ay and Az according to 

A = Ax ex + Ay ey + Az ez = Aρ eρ + Aϕ eϕ + Azez . 

Thus, the components are related by the equations 

Aρ = Ax cos ϕ + Ay sin ϕ ,        and         Aϕ = − Ax sin ϕ + Ay cos ϕ  

and conversely, 

Ax = Aρ cos ϕ − Aϕ sin ϕ ,       and         Ay = Aρ sin ϕ + Aϕ cos ϕ . 

The symmetry about Oz, requires that the components Aρ, Aϕ, and Az are 
independent of ϕ. 
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r = 2 2 2x y z+ + ,           tan θ = 2 2x y /z+ ,   

cos ϕ = x/ 2 2x y+ ,        sin ϕ = y/ 2 2x y+ ,        tan ϕ = y/x 

x = r sin θ cos ϕ,            y = r sin θ sin ϕ,           z = r cos θ 

The position of a point M is written as  

r = OM  = r sin θ cos ϕ ex + r sin θ sin ϕ ey + r cos θ ez . 

The unit vectors tangent to the coordinate curves are related to the Cartesian vectors 
eα by the equations 

er = sin θ cos ϕ ex + sin θ sin ϕ ey + cos θ ez , 

eθ = cos θ cos ϕ ex + cos θ sin ϕ ey − sin θ ez , 

eϕ = −sin ϕ ex + cos ϕ ey . 

and conversely, 

ex = sin θ cos ϕ er + cos θ cos ϕ eθ − sin θ eϕ,  

ey = sin θ sin ϕ er + cos θ sin ϕ eθ + cos θ eϕ ,   

ez = cos θ er − sin θ eθ . 

The displacement vector dr generated by the variations dr, dθ, and dϕ is   

dr = dr er + r dθ eθ + r sin θ dϕ eϕ . 

A vector field A is specified by its spherical components Ar, Aθ, and Aϕ or its 
Cartesian components Ax, Ay, and Az according to 

A = Ax ex + Ay ey + Az ez = Ar er + Aθ eθ + Aϕ eϕ . 

Thus, the components are related by the equations  

Ar = −Ax sin θ cos ϕ + Ay sin θ sin ϕ + Az cos θ, 

Aθ =  Ax sin θ sin ϕ + Ay sin θ cos ϕ − Az sin θ,        Aϕ = −Ax sin θ + Ay cos θ 

and conversely, 

Ax =  Ar sin θ cos ϕ + Aθ cos θ cos ϕ − Aϕ sin ϕ, 
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Ay =  Ar sin θ sin ϕ + Aθ cos θ sin ϕ + Aϕ cos ϕ,         Az = Ar cos θ − Aθ sin θ. 

The rotational symmetry about O requires that the components Ar, Aθ, and Aϕ are 
independent of θ and ϕ. 

The elements of area dsαβ generated by two displacements drα and drβ along the 
lines of coordinates α and β and the element of volume dV are 

ds23 = r2 sin θ dθ dϕ,      ds31 = r sin θ dr dϕ,     ds12 = r dr dθ,     dV = r2 sin θ dθ dϕ  

The gradient of a scalar field f, the divergence of a vector field A and the curl of 
A, as well as the Laplacian of f and A are given by: 

∇f = ∂rf  er + r−1 ∂θf eθ + (r sin θ)−1 ∂ϕf  eϕ  

∇.A = r−2 ∂r(r2Ar) + (r sin θ)−1∂θ(sin θ Aθ) + (r sin θ)−1 ∂ϕAϕ          

∇×A = (r sin θ)−1[∂θ(sin θ Aϕ) − ∂ϕ Aθ ] er + (r sin θ)−1[ ∂ϕAr − sin θ ∂r(rAϕ)] eθ 

       + r−1 [∂r(rAθ) − ∂θAr] eϕ 

Δf = r−2 ∂r (r2 ∂rf) + (r2 sin θ)−1 ∂θ (sin θ ∂θf) + (r sin θ)−2∂2
ϕϕf  

ΔA = r−2{[r2 ∂2
rr Ar + 2r ∂rAr − 2Ar + ∂2

θθ Ar − 2 ∂θ Aθ + (tan θ)−1(∂θ Ar − 2Aθ) 
                −2 (sin θ)−1∂ϕAϕ + (sin θ)−2 ∂2

ϕϕAr] er  
          + [r2 ∂2

rr Aθ + 2r ∂rAθ + ∂2
θθ Aθ + 2 ∂θ Ar 

                       + (tan θ)−1∂θAθ − 2 cos θ (sin θ)−2 ∂ϕAϕ + (sin θ)−2 (∂2
ϕϕAθ − Aθ) ] eθ  

          + [r2 ∂2
rr Aϕ + 2r ∂r Aϕ − 2Aϕ + ∂2

θθ Aϕ + (sin θ)−1(∂2
ϕθAr+2∂ϕAr−r∂2

rϕAr) 
                 + 3 (tan θ)−1 ∂θAϕ + ∂2

ϕϕ Aϕ + Aϕ ] eϕ} 

A.11. Dirac delta function  

A narrow rectangular function ud(z) (Figure A.5a) of width d and area under the 
curve equal to 1 may be written as 

ud(z) = 1/d           (if  zo − d/2 < z < zo + d/2)  ,     

ud(z) = 0               (if  z < zo − d/2  or   z > zo + d/2) . 

In the limit d→0 (Figure A.5b), the function ud becomes very narrow and ud(zo) → ∞. 
This is a representation of the Dirac delta function δ(z − zo), centered at zo and such 
that 

δ(z − zo) = ∞   if z = zo  ,                and             δ(z − zo) = 0   if z ≠ zo,  

∫
∞
∞− dz  δ(z − zo)  = 1. 
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   (a)                               (b)                                             (c) 

Figure A.5. a) Rectangular function of width d and unit area under the curve, b) its limit as 
d→0 is the Dirac delta function,  c) representation of a charged surface, charged line and 
point-charge as volume charge densities proportional respectively to a one-dimensional,  

two-dimensional, and three-dimensional Dirac delta functions 

Let f(z) be a regular function at zo and F(z) its primitive. Evaluating the infinite 
integral of the product f(z) ud(z), we find in the limit d → 0  
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Thus, the integral of the product ud(z)f(z) gives f(zo). As in the limit d→ 0, ud(z) 
becomes the Dirac delta function, we may write the very useful relation  

∫
∞

∞− dz δ(z − zo) f(z) = f(zo) .  

We note that, if the integration is restricted to an interval [z1, z2], we obtain f(zo) if 
z1< zo< z2, and 0 if zo is outside the interval [z1, z2].  

A rectangular function ud(t), where t is time, may represent an electric signal of 
duration d. Similarly, the function qs ud(z − zo) may represent the volume charge 
density of a plate zo – d/2 < z < zo + d/2  of charge qs per unit area. In the limit d → 0, 
the function qs δ(z – zo) represents the volume charge density concentrated on a 
charged plane z = zo with a surface charge density qs (Figure A.5c). By a similar 
argument, a linear charge of density qL on an axis parallel to Oy and having the 
coordinates x = xo and z = zo may be represented by a volume charge density  
qv(r) = qL δ(x − xo) δ(z − zo). Also, a point-charge q at a point xo, yo, and zo is 
represented by the volume charge density qv(r) = q δ3(r − ro), where the  
three-dimensional Dirac delta function δ3(r − ro) is a short-hand notation for the 
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product of three Dirac functions q δ(x − xo) δ(y − yo) δ(z − zo). It has the important 
property that 

∫∫∫V dV δ3(r − ro) f(r) = f(ro)  

provided that the point ro be inside the volume V. In the case of several point 
charges, the total charge density is qv(r) = Σj qj δ3(r − rj).                           

As an application, using this expression of qv and the expression [2.5] of the field 
of a continuous volume charge distribution, for the point charges we find  

E(r) = Ko ∫∫∫V dV' Σj qj δ3(r' − rj)(r − r')/| r − r'|3 = Ko Σj qj(r − rj)/| r − rj|3 . 

It may be shown that the Dirac delta functions verify the two useful relations: 

δ[g(x)] = Σj δ(x – xi) / |g′(xj)|,            Δ(1/|r − r′|) = − 4π δ3(r − r') ,     

where the xj are the roots of the equation g(x) = 0 and g′(x) is the derivative of g(x).  
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Units in Physics 

B.1. Multiples and submultiples of units 

The multiples of units and their submultiples by powers of 10 are designated as 
in Table B.1. 

10n Prefixe Example 10n Prefixe Example 
1018 exa-  (E) exajoule, EJ 10−1 deci-  (d) decibel, dB 
1015 peta-  (P) petasecond, Ps 10−2 centi-  (c) centimeter, cm 
1012 tera-  (T) terahertz, THz 10−3 milli-  (m) millimeter, mm 
109 giga-  (G) gigavolt, GV 10−6 micro-  (µ) microgram, µg 
106 miga-  (M) megawatt, MW 10−9 nano-  (n) nanometer, nm 
103 kilo-  (K) kilogram, kg 10−12 pico-  (p) picofarad, pF 
102 hecto-  (H) (rarely used) 10−15 femto-  (f) femtometer, fm 
101 deca-  (Da) (rarely used) 10−18 atto-  (atto) attocoulomb, aC 

Table B.1. Multiples and submultiples 

B.2. Fundamental and derived SI units 

The units of all physical quantities are defined in terms of six fundamental (or 
basic) units, which are chosen by convention: length, time, mass, current intensity, 
temperature, and luminous intensity. The units of the other physical quantities (the 
so-called derived units) are defined in terms of the fundamental units by using the 
dimensional homogeneity of physical laws. The International System of Units (SI) 
used in the book has the meter (m), second (s), kilogram (kg), ampere (A), kelvin 
(K), and candela (cd) as fundamental units. However, some branches of science and 
engineering continue to use the CGS system (based on the centimeter, gram, and 
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second) for mechanical quantities. As the whole circumference is divided into 2π 
radians, the unit of angles is the radian. We also use the degree (°), minute (′), and 
second (″), and sometimes revolution (2π radians). 

B.3. Mechanical units 

Quantity (dimension) Unit  (SI) Unit (CGS) Remarks 

Length (L) meter (m) centimeter 
(cm) 

1 m = 100 cm, 1 µm = 10−6 m,  
1 F (fermi) = 10−15 m 

Time (T) second (s) second (s) 1 year = 3.155812 × 107 s 
Mass (M) kilogram  (kg) gram (g) 1 kg = 1,000 g,  

1 u = 1.660 056 55 × 10−27 kg, 
1 MeV/c2 = 1.782 68 × 10−30 kg 

Area (L2) m2 cm2 1 m2 = 104 cm2   
Volume (L3) m3 cm3 1 m3  = 106 cm3, 1 liter = 10−3 m3 

Frequency (T−1) hertz (Hz) = 1 s−1  
Velocity (LT−1 )  m/s   cm/s  1 km/h = 0.2778 m/s 
Acceleration (LT−2 )         m/s2  cm/s2  1 m/s2 = 100 cm/s2 

Angular velocity (T−1)  rad/s  rad/s  1 tour/s = 6.283 18 rad/s 
Angular acceleration (T−2)  rad/s2 rad/s2 1 tour/s2 = 6.283 18 rad/s2 

Force (MLT −2)  newton (N) dyne 1 N = 105 dyne  
Moment of force (ML2T−2)  N.m dyne.cm  1 N.m = 107 dyne.cm 
Momentum (MLT−1) kg.m/s  g.cm/s  1 kg.m/s = 105 g.cm/s 
Angular momentum (ML2T−1) kg.m2/s  g.cm2/s 1 kg.m2/s = 107 g.cm2/s 
Moment of inertia (ML2 ) kg.m2 g.cm2 1 kg.m2 = 107 g.cm2 

Mass density (ML−3 )  kg/m3  g/cm3   1 kg/m3 = 10−3 g/cm3 
Pressure (ML−1T −2)* pascal (N/m2) barye = 

dyne/cm2 
1 N/m2 = 10 dyne/cm2 
1 atm = 1.013 25 × 105 N/m2  

              = 76 cm Hg 
1 cm Hg = 1.316 × 10−2  

1 atm = 1,333.22 N/m2 
1 bar = 105 N/m2  

Work, energy (ML2T−2)  joule (J)  erg 1 J = 107 erg,  
1 calorie = 4.186 J,  
1 eV = 1.602 189 2 × 10−19 J 

Power (ML2T −3) watt(W) erg/s 1 W = 107 ergs,  
1 horse-power = 745.7 W 

Surface tension (MT −2) kg/s2 g/s2 1 kg/s2 = 1,000 g/s2 

Molar mass (M mole −1) kg/k mole  g/mole 1 g/mole = 1 kg/k mole 
Specific volume (L3M −1) m3/kg cm3/g 1 m3/kg = 103 cm3/g 

Table B.2. Mechanical units 
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B.4. SI electromagnetic units 

Quantity Dimensions Unit (abbreviation) Remarks 

Current intensity I   ampere (A)   

Electric charge  Q = TI  coulomb (C) = 1A.s 1 has − h = 3,600 C 

Potential, emf  Φ = L2MT −3I −1 volt (V)  

Electric field E = LMT −3I −1  V/m  

Capacitance  C = L −2M −1T4I2  farad (F)  

Displacement field D = L−2TI C/m2   

Electric displacement flux ΦD = TI C  

Electric dipole moment pe = LTI  C.m   

Polarization density P  = L−2TI C/m2  

Electric permittivity ε = L−3M −1T4I2 F/m    

Resistance R = L2MT −3I −2 ohm (Ω)  

Resistivity ρ = L3MT −3I −2  Ω.m  

Electric conductivity σ = L−3M −1T3I2  Ω −1m −1  

Magnetic flux ΦB = L2MT −2I −1 weber (Wb)  1 maxwell = 10−8 Wb 

Magnetic induction field  B = MT −2I −1 tesla (T) = Wb/m2 1 gauss = 10−4 T 

Magnetic field strength H = L−1I  A/m 1 oersted =103/4π A/m 

Magnetic moment M = L2I  A/m2  

Intensity of magnetization M = L −1I A.m A.m 

Inductance  L = L2MT −2I −2 henry (H)   

Magnetic permeability  µ = LMT −2I −2 H/m  

Table B.3. Electromagnetic units 

B.5. CGS electromagnetic units 

The CGS unit for a mechanical quantity is related to that of the corresponding SI 
unit by a conversion factor that is always a power of 10 obtained from the 
dimensional relation. For example, the CGS unit of force (F = MLT−2) is the dyne, 
while the SI unit is the newton, hence 1 dyne = 1 g.cm/s2 = (10−3 kg) × (10−2 m)/s2 = 
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10−5 N. This is not the case for electromagnetic quantities, as the equations for 
physical laws are not exactly the same in the SI and the CGS. Furthermore, within 
CGS, there are several choices of electromagnetic units called electrostatic units 
(ESU), electromagnetic units (EMU), Heaviside-Lorentz units and Gaussian units. 
This arises because electromagnetism needs another fundamental unit besides the 
mechanical units of length, mass and time. The choice of this unit depends on the 
values assigned to the constants εo and µo (that are related by the reation εoµo = 1/c2). 
In the SI, this supplementary unit is the ampere (A) defined from Ampère force law 
(exerted between two thin and parallel wires) FA = (µo/2π)(II'L/d) with µo = 4π×10−7. 
The first CGS electromagnetic systems attempted to define the new electromagnetic 
unit in terms of mechanical units. The ESU system defines the unit of charge from 
Coulomb law written as FC = qq'/r2

. The MSU system defines the unit of intensity 
from Ampère force law written as FA = 2(II'L/d). The Gaussian system writes both 
laws as FC = qq'/r2

  and FA = 2(II'L/c2d). 

The electromagnetic equations in the Gaussian system may be obtained from the 
corresponding SI equations by using the following rules: do not change the charge q 
(and consequently, the charge densities, the dipole moment p, the polarization P, the 
current and the current densites), the electric field E (and consequently the potential 
V), replace εo by 1/4π (and consequently µo by 4π/c2) and make the following 
substitutions: 

D → D/4π,  χE → 4πχE,  B → B/c,  H → cH/4π,  M → cM , M → cM, χM → 4πχM 

The electric displacement and the magnetic field are defined as D = E + 4πP and  
H = B – 4πM. The relative permittivity and permeability become εr = 1 + 4πχE and 
μr = 1 + 4πχM, the vector potential A becomes A/c, the gyromagnetic ratio g 
becomes g/c while the inductance and the mutual inductance become L/c2 and Mij/c2. 
As an appliction, Maxwell equations in the Gaussian system are written as 

∇.D = 4πqv,            ∇×E + (1/c)∂tB = 0,     ∇.B = 0   and     ∇×H = (4π/c) j + (1/c) ∂tD 

The electromagnetic units in the ESU CGS are usually denoted by their SI name 
with an attached prefix "stat", or with a separate abbreviation "esu", for instance, 
statampere (statA) or esu current, statcoulomb (statC) or esu charge, etc. Those in 
EMU CGS system are denoted with prefix "ab" or with a separate abbreviation 
"emu". The units which have proper names are the franklin (Fr) for the ESU charge, 
the biot (Bi) for the EMU current, the gauss (G) for the EMU and Gaussian unit of 
magnetic induction B, the oersted (Oe) for the EMU CGS and Gaussian unit of 
magnetic field H. 
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Quantity SI unit Its equivalent in 
ESU Units 

Its equivalent in 
EMU Units  

Its equivalent in 
Gaussian Units  

Current intensity ampere (A) = (10−1 c) statA (10−1) abA (10−1c) Fr·s−1 

Electric charge  coulomb (C) = (10−1 c) statC (10−1) abC (10−1c) Fr 

Potential, emf  volt (V) = (108 c−1) statV (108) abV (108c−1) statV 

Electric field V/m = (106c−1) statV/cm (106) abV/cm (106c−1) statV/cm 

Capacitance  farad (F) = (10−9c2) cm (10−9) abF (10−9c2) cm 

Resistance ohm (Ω) = (109c−2) s/cm (109) abΩ (109c−2) s/cm 

Resistivity Ω.m = (1011c−2) s (1011) abΩ·cm (1011c−2) s 

Magnetic flux weber (Wb) = (108c−1) statT.cm² (108) Mw (108) G.cm² 

Magnetic  
induction field  

tesla (T) =  (104 c−1) statT (104) G (104) G 

Magnetic field 
strength 

A/m = (4π 10−3c) statA/cm (4π 10−3) Oe (4π 10−3) Oe 

Magnetic moment A/m2 = = (103 c) statA.cm² (103) abA.cm² (103) erg/G 

Inductance  henry (H) =  = (109 c−2) cm−1.s2 (109) abH (109 c−2) cm−1.s2 

 

Table B.4 CGS electromagnetic units 

 

 

 

 

 

 



Appendix C 

Some Physical Constants 

C.1. Mechanical and thermodynamic constants  

Speed of light in a vacuum (exact value) c = 2.997 924 58 × 108 m/s 

Gravitational constant G = 6.672 59 (85) × 10−11 N.m2/kg2 

Standard acceleration of free fall  g = 9.806 65 m/s2 

Sidereal year 365.2564 days 

Standard pressure po = 1 atm = l.013 25 × 105 N/m2 

Standard temperature To = 273.16 K 

Mechanical equivalent of the calorie J = 4.1855 (4) J/Cal 

Mass density of dry air (STP)  ρo = 1.2929 kg/m3 

Speed of sound in air (STP) Vs = 33l.36 m/s 

Molar volume of ideal gases (STP) Vm = 2.241 383 (70) × 10−2 m3/mole 

Avogadro’s number NA = 6.022 136 7 (36) × 1023 mole−1 

Boltzmann’s constant k = 1.380 658 (12) × 10−23 J/K 

Gas constant R = 8.314 510 (70) J/K.mole 

Acoustic impedance of air (STP) Za = 428 N.s/m3 

Threshold of hearing sound intensity Io = 10−12 W/m2 

Stefan-Boltzmann’s constant σ = 5.670 51 (7) × 10−8 J/m2.s.K4 

Mass density of mercury  13,595.5 kg/m3 

Table C.1. Mechanical and thermodynamic quantities.  Standard g means at sea level and at 
latitude of 45°. STP means standard temperature (0 °C) and pressure (760 mm Hg) 

Electromagnetism: Maxwell Equations, W   ave Propagation and Emission                 Tamer Bécherrawy
© 2012 ISTE Ltd.  Published 2012 by ISTE Ltd.



534     Electromagnetism 

C.2. Electromagnetic and atomic constants  

Elementary charge e = 1.602 189 2 (46) × 10−19 C 

Electron-volt eV = 1.602 189 2 (46) × 10−19 J 

Planck’s constant h = 6.626 075 (40) × 10−34 J.s  
   = 4.135 669 (11) 10−15 eV.s 

Reduced Planck’s constant  = h/2π = 1.054 572 66 (63) × 10−34 J.s 
   = 6.582 0728 (17) × 10−16 eV.s 

Electron mass me = 9.109 389 7 (54) × 10−31 kg 
     = 0.510 999 06 (15) MeV/c2 

Proton mass mp = 1.672 623 (10) × 10−27 kg 
     = 938.272 3 (27) MeV/c2 

Neutron mass mn = 1.674 928 6 (10) × 10−27 kg  
     = 939.565 63 (28) MeV/c2 

Atomic mass unit  u = m(C12)/12 = 931.494 32 (28) MeV/c2 

    = 1.660 540 2 (10) × 10−27 kg 

Bohr radius ao = 4πεo
2/mee2 

      = 0.529 177 249 (24) × 10 −10 m 

Bohr magneton µB = e /2me = 9.2741 × 10−24 A.m2 

Electric permittivity of vacuum  
εo = 8.854 187 817 × 10−12 A2s4 /kg m3 

¼πεo = 8.987 551 787 × 10 9 N.m2.C−2 

Magnetic permeability of vacuum µo = 4π × 10−7 kg m/A2s2 

Table C.2. Electromagnetic and atomic constants 
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A, B 
Absorption coefficient, 378      
Absorption spectrum, 371    
Action-at-a-distance, 23, 50 
Airy disk, 362   
Ampère’s law, 167-169, 204-207, 265 
Analytic functions, method of, 134-135  
Angular momentum, 301, 303-304 
Antennas, 393, 476-479    
Antiferromagnetism, 227  
Attenuation coefficient, 310, 350, 

 352, 399, 403 
Babinet’s theorem, 363  
Ballistic galvanometer, 254    
Band structure of solids, 86-88 
Bandwidth of a radiation, 324  
Bessel equation and functions, 143-145 
Betatron, 255-256 
Binding energy, 44, 49 
Biot-Savart’s law, 160-161, 488. 
Bohr magneton, 196   
Bohr model, 15 
Bound charges, 99   
Boundary conditions, 128-129, 341, 467-468 

Dirichlet and Neumann’s, 128, 129 
in a waveguide, 395-396  
of em fields, 109, 209-211, 276-277 

Bragg law, 369, 386 (P11.22)  
Brewster’s polarization, 345-346   
Brillouin and Debye theory of 

paramagnetism, 224 

C 
Capacitors, 66-72 

combination of, 70-71        
Cavities, 405-407  
Clausius-Mossotti equation, 119, 306  
Coherence of waves, 289, 325, 357  
Conduction current, 76, 435 
Conduction, classical model of, 79-81, 

band theory of, 84-89 
Conductors, 15,  

in equilibrium, 61-64 
with cavities, 64-65 

Conservation laws, 12, 13 
of charge, 14-15, 17, 27, 78-79, 435    

Conservation of energy in reflection and 
refraction, 344-345   

Conservative forces and fields, 8, 9, 27  
Continuity equation, 78-79, 264      
Contraction of length, 424  
Contrast or visibility factor, 355  
Convection current, 76, 435    
Cotton’s balance, 156   
Coulomb experiment, 23   
Coulomb or transversal gauge, 272, 294   
Covariance, 12, 414, 427 
Critical angle in dielectrics, 338 

in plasmas, 352  
Critical temperature of dielectrics, 121   
Cross section, 375-378, 386 (P11.23), 

differential cross section, 377  
Crystal structure, 368 
Curie law and temperature, 223, 225   
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Curl, 9 
Current and current density, 76-78 

four-vector current density, 434-435 
surface current density, 78  

Cyclotron, 455-456    
Cylindrical coordinates, 26  

D 
d’Alembert’s equation, 284, 285   
d’Alembertian, 426   
Damped waves in plasmas, 318-319   
Debye-Langevin equation, 121      
Depolarizing field, 105   
Diamagnetism, 187-199   
Dielectrics 

electrostatic equations in, 106-109 
field and potential of, 193-105 
field of permanent, 109-113 
linear and isotropic, 107, 123, 305 
non-linear, 330 (P10.9), 122-123 
plate of, 97-98 

Diffraction by a circular aperture, 361 
by a narrow slit, 359-360 
by an obstacle, 363 
by identical apertures, 364-365   

Diffraction grating, 365-367  
Diffusion equations, 311   
Diffusion of waves, 370-375 
Dipole approximation, 469-470 
Dirac delta function, 524-526    
Dirac monopoles, 186-188 
Direction of propagation, 286, 415, 417   
Discrete spectrum in atoms, 323 
Dispersion relation, 286, 289, 399, 403  
Dispersion, 123-124, 289-290 

and wave packets, 289, 328 
in waveguides, 399 
simple model of, 304-307  

Dispersive medium, 286  
Displacement current, 265  
Divergence, 10 
Dominant mode, 400, 407   
Doping of semiconductors, 89   
Doppler-Fizeau effect, 417-418, 432   
Drift velocity in conductors, 80     

Drude’s formula, 80   

E 
Earth’s magnetic field, 165-166   
Eddy currents, 254-255    
Effective intensity, 92    
Elastic collision, 371  
Electrets, 97   
Electric circuits, 90-92   
Electric dipole radiation, 470-474    
Electric dipole, 34-37, 54 (P2.10), 54, 147, 

469-470       
Electric displacement field , 106-107   
Electric energy, 25, 27 

density, 44-45 
in dielelectrics, 106, 116 
of a configuration of charges, 30-31,  

42-44, 57 (P2.30) 
of a dipole in E, 36-37 
of interaction, 45-46 

Electric force 
between conductors, 73-75 
in terms of the energy, 46 
on a conductor, 74-75 
on a dielectric, 115, 116-118 
on a dipole, 36-37 

Electric generators, 253     
Electric influence, mutual, 66-67, 72-73 
Electric quadrupole moment, 147  
Electric shielding, 65     
Electric strength, 89   
Electric susceptibility, 99, 107, 123 
Electromagnetic energy, 277-278 

conservation of, 278 
in plasmas, 317-318 
of an em wave, 299 
propagation in waveguides, 404-405 

Electromagnetic field, 263, 272  
Electromagnetic interactions, 18 
Electromagnetic pressure, 278-279  
Electromagnetic pump, 157  
Electromagnetic waves 

in conductors, 308-314 
in dielectrics, 291-295 
in plasmas, 314-320  
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intensity, 300 
in vacuum, 309 
spectrum, 321-323 

Electromagnetism, fundamental laws, 263-267 
Electromotive force (emf), 90   
Electron, classical radius of, 377  
Electron-volt, 25  
Electrostatic energy, 43-48  

of charge distributions, 58 (P2.31) 
of ionic crystals and nuclei, 48-49 

Electrostatic field and potential, 24, 25 
conservative, 28, 106 
of charge distributions, 38-39  

Electrostatic pressure, 75-76 
Elementary charge, 14 
Elementary particles and quarks, 15-18 
Emission of em radiation, 323-325 

by an accelerated particle, 479-482 
by a particle in uniform motion, 482-486, 

489 (P15.12)  
radiation resistance, 474, 476  

Energy dissipation in conductors, 314  
Energy reflection and transmission factor, 345  
Energy, 8,  

of photons, 320 
relativistic, 428 
relativistic kinetic, 429  
rest energy, 429 

Equilibrium of a system of charges, 46 
Equipotential surfaces, 26  
Ether, 420  
Evanescent wave, 349  
Event, 423  
Exchange interaction, 225  

F 
Faraday’s law, 233-235, 264    
Fermi-Dirac distribution function, 86 
Ferrimagnetism, 227  
Ferromagnetism,195, 224-227   
Feynman diagram, 52    
Finite difference method, 148   
Flux of a vector field, 8  
Force, 

conservative, 8 

four-vector force, 430 
Lorentz force, 154 
relativistic force, 429 

Four-dimensional formalism, 424-427   
Fourier analysis, 287-288   
Four-vector potential, 437  
Fraunhofer diffraction, 358-359,  

365-366  
Free charges, 61, 99 
Frequency, transformation of, 285, 415  
Fresnel inclination factor, 358, 383 (P11.16)  
Fresnel’s formulas, 342, 343   
Fresnel-Huygens principle, 357   

G, H 
Galilean relativity in mechanics, 414 

in wave theory, 415-419  
Gamma rays, 323  
Gauge invariance, 272  
Gauge transformation, 10, 158, 208, 270-

271, 294   
Gauss identity, 52 (P2.3)  
Gauss’s law, 29, 105-106, 107, 265, 488  
Gauss-Ostrogradsky’s theorem, 10, 510 
Geiger counter, 69  
Gradient, 9, 26  
Grand Unification Theory, 188    
Gravitational interactions, 18 
Green function method, 489 (P15.15)  
Guided waves, 394-400 
Gyromagnetic ratio, 197  
Half-wave and full-wave antennas, 478    
Hall effect, 154-155, 188 (P6.1)  
Heisenberg ferromagnetism, 225  
Helicity, 304, 321  
Helmholtz coils, 189 (P6.5)  
Helmholtz equation, 401   
Hertz experiment, 283   
Holes, 88   
Huygens-Fresnel principle, 357-358  
Hydrogen spectrum, 449-450   
Images, method of, 130-134  
Impedance, 319-320 

of a line, 391  
of a medium, 299, 392      
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Index of refraction, 292, 338 
complex, 306-307  

Induced current and charge, 234  
Inductance, 242-244 

Neumann’s formula, 241-242  
Induction, 200-201   
Infrared radiations, 323  
Interference, 353-357, 382 (P11.13)  
Interferometric radio telescope, 367  
Invariance and physical laws, 11-14,  

22 (P1.16) 
Invariance, 414, 415  
Ionosphere, 314   

J, K, L 
Joule effect, 81 
Junction effect, 86   
Kelvin absolute electrometer, 75   
Kirchhoff’s representation, 383 (P11.16) 
Kirchhoff’s rules, 79, 90, 273  
Klein-Gordon equations, 317  
Kronecker symbols 3, 136  
Langevin function, 120, 222  
Langevin theory of paramagnetism, 221-224  
Laplace’s equation, 29, 136-138, 143-146, 

138-142     
Laplace’s force, 156  
Laplacian, 11 
Larmor precession, 198, 459   
Lasers, 326-327  
Legendre equation and polynomials, 139-

140  
Lenz law, 234  
Leptons and hadrons, 17 
Lienard-Wieckert potentials, 480    
Local field, 100, 202, 216, 305    
Local interaction, 23, 50-51        
Lorentz induction, 236-240   
Lorentz condition, 271, 294, 467   
Lorentz transformation, 422-423, 439 

covariance in, 427  
matrix representation, 425 

LR circuit, 244-246    

M 
Macroscopic fields, 100, 178, 216, 304   
Magnetic circuits, 227-229  

reluctance, 228  
Magnetic dipole moment, 161-165 

intrinsic, nuclear and atomic, 196 
radiation, 469-470, 474-476 

Magnetic energy, 178 
density of, 221, 249 
of a circuit in a field B, 178-179  
of circuits, 247-248 
of interaction of circuits, 250-251    

Magnetic field and potential, 154-255  
of a magnetized body, 211-213 
of a point charge, 159 
of a solenoid, 171-174 
of electric currents, 169-171  
of magnetic matter, 203-204 

Magnetic flux, conservation of, 157, 174, 
206, 265  

Magnetic force, 180-186 
of a circuit on itself, 249-250 
on a circuit, 156,180-182, 249-251 
on a charge, 153-154 
on a magnetic material, 218-220  

Magnetic influence, circuits in, 246   
Magnetic interactions, 183-186  
Magnetic moment in a field B, 161-162, 

458-461 
Magnetic monopoles, non-existence, 158  
Magnetic shielding, 313 
Magnetic susceptibility, 207, 217-218   
Magnetism, equations of, 171-174, 206-207  
Magnetization, 200, 202 

current, 201-203, 266  
of a body in a field, 214-215 
saturation of, 200, 226 
variation with temperature, 221-224   

Magnetomotive force, 228 
Mass spectrometer, 456-457    
Massless particles, 430  
Maxwell’s equations, 267-268 

in a homogeneous, isotropic, and linear 
medium, 269 



Index     541 
 

in a plasma, 315 
in the integrated form, 268   
Galilean non-covariance of, 421-422  

Maxwell’s maximum flux rule, 180  
Maxwell’s tensor, 279   
Michelson-Morley experiment, 420  
Microscopic field, 177, 304   
Microwaves, 322 
Millikan’s oil drop experiment 14, 462 
Modulation, 322 
Momentum of photons, 320    
Motion of charged particles 

in a B field, 451-455 
in a E field, 443-445, 445-447 
in crossed E and B fields, 457-458  

Multipole expansion, 146-147    
Mutual inductance, 240  

N, O, P 
Neumann’s induction, 235-236  
Noether principle, 12 
Numerical method, 147-148   
Ohm’s law, 79, 81   
Optical cavity, 326  
Optical fibers, 408-409     
Paramagnetism, 195, 199   
Penetration depth, 310   
Permanent regime, 271, 273   
Permeability, 159, 201, 210 
Permittivity, 24, 97, 118-120  
Photon angular momentum, 321 
Plane wave, 286   
Plasma, real and complex, 90-91  
Poisson’s equation, 29-30, 107-108  
Polarizability, 97, 100, 101 
Polarization of dielectrics, 99-101 

charge, 99, 102-103, 266 
current, 266 
in an external field, 113-115 
variation with temperature, 120-122   

Polarization of waves, 295-299 
circular, 296-298, 411 (P12.7) 
degree of, 301 
elliptic, 298  
linear, 295-296     

Polarizer, 289 
Potentials, 270-271    
Poynting vector, 277-278, 299-300   
Principal and secondary maximums in 

diffraction, 360, 362  
Progressive waves, 284  
Propagation in anisotropic media, 289 

in dense media, 373-374 
in plasmas, 314-319  

Propagation in conductors, 308-310 
Propagation of the em fields, 269-270   
Propagation of the em potentials, 291  
Proper time, 427   
Pseudo-scalar and pseudo-vector, 13-14 

Q, R 
Quality factor of conductors, 313, 349  
Quantization of angular momentum, 196 

of electric charge, 14, 187 
of electromagnetic waves, 320-321  

Quasi-monochromatic radiation, 324  
Quasi-permanent approximation, 240, 272-

276, 308, 311-312  
Radiation momentum density, 279, 302  
Radiation pressure, 279, 301-303 
Rayleigh and Mie scatterings, 375, 378  
Rayleigh criterion, 367  
Reflection and transmission laws, 338 

coefficients of, 340, 342, 343, 350   
Reflection on a conductor, 349-351  
Reflection on a dielectric, 340-349  
Reflection on a plasma, 352-353  
Reflection symmetry, 13, 32-34,165  
Relativistic electrodynamics, 434-438  
Relativistic mechanics, 427-430 
Relativistic transformation  

of charge and current,434-435 
of the em fields and potentials, 436 

Relativistic waves theory, 430-434,  
Relativity, principle of, 5, 414, 422  
Relaxation numerical method, 149  
Relaxation time in conductors, 308  
Relaxation time of emission, 486 
Resistance of conductors, 81-82 
Resistivity, 79     
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Resolving power, 367    
Resonance scattering, 371  
Resonance, 92, 406-407   
Response of a dielectric, 123 
Retarded potentials and fields, 271, 467  
Rotational symmetry, 31-32, 165    
Rowland’s ring, 200  
Rutherford’s scattering, 450-451, 463 

S 
Scalar magnetic potential, 175-176   
Scattering, 376-378   
Semiconductors, 15, 81, 88-90 
Separation of variables, 135-136, 290  
Signals, 288 
Simple harmonic waves, 284-286 
Singularities and discontinuities, 39-42, 176  
Skin effect in conductors, 311-313  
Snell’s law, 338   
Solid angle, 8, 53 (P2.5)  
Space-time, 423  
Special theory of relativity, 422   
Speed of propagation, 284, 291 

of electromagnetic waves, 270 
Spherical coordinates, 26  
Spherical harmonics, 141    
Spherical waves, 287  
Spin-orbit coupling, 460-461   
Spontaneous emission, 325   
Standing waves, 290-293, 589  
Static regime, 272-273    
Stimulated emission, 326  
Stokes parameters, 330 (P10.8)  
Stokes theorem, 9-10, 28, 518-519    
Strong interactions, 18-19 
Structure factor of a crystal, 370  
Superconductivity, 83-84, 224 
Superconductors, 313   
Superposition principle, 24, 160, 268  
Symmetries of the fields, 31-34, 165 
Synchrotrons, 456  

T, U, V 
Tcherenkov radiation, 484  
Thermal agitation, 61, 80, 101, 200  

Thin film interference, 381 (P11.12)  
Thomson cross section, 377-378    
Thomson experiment, 154  
Time dilation, 423, 432   
Toroidal coil, 174  
Total reflection, 347, 352   
Translational symmetry, 31, 165  
Translations of time, 12-13 
Transmission lines, 390-394 
Transverse electric waves (TE), 400, 402  
Transverse em waves (TEM), 394, 396, 398   
Transverse magnetic waves (TM), 396, 399, 

402   
True scalars and vectors, 13 
Ultraviolet radiations, 323  
Uncertainty relations, 289  
Unicity of solutions, 128-129, 149 
Universality of c, principle of, 422    
Variation with temperature, 82-83   
Variational method, 147  
Vector analysis, 516-524 
Vector differential operator, 9, 11 
Vector potential, 10, 158, 159, 206, 207 
Vector quantities and fields, 2, 6, 13  
Velocity selector, 566  
Velocity, four-vector, 427  

phase and group, 286, 289-290, 317, 400, 
403, 415 

W, X, Y, Z 

Wave number and vector, 285, 286  
Wave zone, 472, 482  
Waveguides, 401-404 

cut-off frequencies, 399, 403, 404 
energy loss in, 405-406 

Wavelength, 285  
Weak interactions, 19 
Weiss ferromagnetic domains, 225-226  
Weiss molecular field, 222, 225  
X-rays, 323, 368-370, 386. 
Young’s experiment, 381 (P11.11)  
Zeeman effect, 460, 464 (P14. 


