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Electromagnetism for Electronic Engineers — Examples Preface

Preface

This is a companion volume to Electromagnetism for Electronic Engineers (3 edn.) (Ventus, 2009).
It contains the worked exampl es, together with worked solutions to the end of chapter examples,
which featured in the previous edition of the book. | have discovered and corrected a number of
mistakes in the previous edition.

| hope that students will find these 88 worked examples helpful in illustrating how the fundamental
laws of electromagnetism can be applied to arange of problems. | have maintained the emphasis on
examples which may be of practical value and on the assumptions and approximations which are
needed. In many cases the purpose of the calculationsis to find the circuit properties of a component
so that the link between the complementary circuit and field descriptions of a problem areillustrated.

Richard Carter
Lancaster 2010
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1 Electrostatics in free space

1.1 Introduction

Electrostatic problems in free space involve finding the electric fields and the potentia distributions
of given arrangements of electrodes. Strictly speaking ‘free space’ means vacuum but the properties
of air and other gases are usually indistinguishable from those of vacuum so it is permissible to
include them in this section. The chief difference isthat the breakdown voltage between electrodes
depends upon the gas between them and upon its pressure. The calculation of capacitance between
electrodes in free space is deferred until Chapter 2.

The other problems included in this chapter involve the motion of charged particles (electrons and
ions) in electric fields in vacuum. This topic remains important for certain specialised purposes
including high power radio-frequency and microwave sources, particle accelerators, electron

mi croscopes, mass spectrometers, ion implantation and el ectron beam welding and lithography.

1.2 Summary of the methods available

Note: Thisinformation is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated by square brackets.

Symbol Signifies Units

g0 (epsilon) Theprimary electric constant ~ 8.854 x 10 F.m™
Q Electric charge C

q Electric line charge cm?

o (sigma)  Surface charge density c.m?

p (rho) Volume charge density cm?

E Electric field vV.m'!

V Electric potential V

V (dd) The vector differential operator

rX,y,Z Unit vectors

Inverse square law of force between chargesin free space

F— QQ, ; [1.1]

E-—% (1.2]
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e Forceacting on acharge placed in an electric field
F=QE [1.3]

e Gauss Theorem
The flux of E out of any closed surface in free space is equal to the charge enclosed by the surface
divided by &.

e Theintegra form of Gauss Theorem

[[j E.dA:gim pdv [1.5]

S

e Thedifferential form of Gauss Theorem

O0E, OE, OE
VE=| & | P [1.9]
ox oy oz £

0

e Electrostatic potential difference

B

B
V, -V, =—jA E-dl [1.13]
e Calculation of electric field from the electrostatic potential

E=-|x—+y—+z— |=—gradV =-VV [1.22]

.oV .oV .oV
oX oy 0z

e Poisson’s equation

oV oV oV
VZ\/:82+62+6 Zz_ﬁ [1.24]
X y X £

0
e Laplace sequation

RV R VARV,
= + + =

A,
oxt  oy* o7

0 [1.27]

e ThePrinciple of Superposition and the method of images
e ThePrinciple of conservation of energy
e Thefinite difference method
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Example 1.1

Find the force on an electron (charge -1.602 x 10°*° C) which is 1 nm from a perfectly conducting
plane. What is the electric field acting on the electron?

Solution

Using the method of images the conducting plane is replaced by an image charge of +1.602 x 10%° C
which is 1 nm behind the position of the conducting plane

The force acting on the electron is found using the inverse square law [1.1] noting that the charges are
2 nm apart.

QQ, ~(1.602x10719)2 2

— 57.7x10 12 N (1.2)

Force is avector quantity so a complete answer must specify its direction. The negative sign indicates
that the electron is attracted to the image charge. The force is therefore acting towards the plane and at
right anglestoit.

The electric field acting on the electron is found by substituting its charge and the force acting on it
into [1.3]

F -57.7x10 2

E = —=
Q _1602x10 19

1

=360MV-m~ (1.2)

The electric field is avector quantity and the positive sign indicates that it is acting away from the
plane.

Example 1.2

The surface charge density on ametal electrode iso. Use Gauss' theorem to show that the electric
field strength close to the surface iSE = o/ ¢, .

Solution

Consider asmall element of area of the surface dA such that the surface around it can be considered to
be aplane. Thelocal charge density can be considered to be constant and, from symmetry
considerations, the electric field must be normal to the conducting surface. Now construct a Gaussian
surface dS, as shown in fig. 1.1, such that it encloses the element dA and has sides which are normal

to the surface and top and bottom faces which are parallel to the surface.
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Fig. 1.1 A Gaussian surface for calculating the electric field of a surface charge.

Since E is paralel to the sides of dSthe flux of E through the sidesis zero. Also, because the electric
field within a conducting material is zero when the charges are stationary, the flux of E through the
bottom of dSis zero. The flux of E through the top of dSis

do=EdA (1.3
where E is the magnitude of E (since E is hormal to the top of dS). Thetotal charge enclosed by dSis
dQ=0cdA (1.4)

By Gauss' theorem

do = 99 (15)
0

Substituting in (1.5) from (1.3) and (1.4) gives

-2 (1.6)

2

Note: Because a conducting surface is always an equipotential surface when the charges are stationary
E must always be normal toit. If the surface is curved the electric field varies over it (1.6) shows that,
locally, the charge density is always proportional to the electric field.

Example 1.3

Figure 1.2 right shows a charged wire which is equidistant from a pair of earthed conducting planes
which are at right angles to each other.

a) Where should image charges be placed in order to solve this problem by the method of images?
b) What difference would it make if the planes were at 60° to each other?

¢) Could the method be used when the planes were at 50° to each other?

10
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H

d I

Fig. 1.2 A charged wire close to the intersection of two conducting planes
Solution
a) If Cartesian co-ordinates are used to describe the positions of the wire and of itsimagesin the

plane then the image line chargesare—q at (- d, d) and (d, - d) and +q at (- d, - d) asshown in fig.
1.3.

11
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b)

o

Fig. 1.3 Image charges for planes intersecting at 90°

¢) When the planes are at 60° to each other five image charges are equally spaced on acircle as
showninfig. 1.4.

Fig. 1.4 Image charges for planes intersecting at 60°

d) No. The method can only be used when the angle between the planes divides an even number of
timesinto 360°. Thusit will work for planes at angles of 1/4, 1/6, 1/8, 1/10 of 360° and so on.

Example 1.4

A wirel mm in diameter is placed mid-way between two parallel conducting planes 10 mm apart.
Given that the planes are earthed and the wireis at a potential of 100 V, find a set of image charges
that will enable the electric field pattern to be calculated.

Solution

If we were to put just one image charge on either side of the wire the field pattern could be calculated
by superimposing the fields of the original wire and the image wires. The results would be as shown
infig.1.5. None of the equipotential surfacesis aplane. The solution isto use an infinite set of equally
spaced wires charged alternately positive and negative, as shown in Fig. 1.6. The symmetry of this set
of wiresis such that there must be equipotential planes mid-way between the wires.

12
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\
\
|
I
1
Fig. 1.5 The field pattern around a positively charged wire flanked by a pair of negatively charged

wires.

Fig. 1.6 The field pattern around a set of equispaced parallel wires charged alternately positive and

negative.

Example 1.5

An air-spaced coaxial line hasinner and outer conductors with radii a and b respectively as shown in
fig.1.7. Show that the breakdown voltage of the line is highest whenIn(a/b) =1.

&

Fig. 1.7: The arrangement of an air-spaced coaxial line

13
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Solution

For most practical purposes the properties of air are indistinguishable from vacuum. From the
symmetry of the problem we note that the electric field must everywhere be radial. The field between
the conducting cylindersisidentical to that of along, uniform, line charge g placed along the axis of
the system.

To find the electric field of aline charge we apply the integral form of Gauss' equation to a Gaussian
surface consisting of acylinder of unit length whose radiusisr and whose ends are normal to the line
charge as shown in fig.1.8. We note that, from considerations of symmetry, the electric field must be
acting radially outwards and depend only on the radiusr.

Fig. 1.8 A Gaussian surface for calculating the electric field strength around a line charge.

14
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Let the radial component of the electric field at radiusr be E;(r). On the curved surface of the cylinder
the radial component of the electric field is constant and the flux is thus the product of the electric
field and the area of the curved surface.

] E-dA =271 x1xE (1) (1.7)
S

The flux of the electric field through the ends of the cylinder is zero because the electric field is
parallel to these surfaces.

We apply Gauss' theorem [1.5] to find the relationship between the electric field, radius (r) and the
unknown line charge g. Since Shas unit length the total charge contained within it, which is denoted
by the right-hand side of [1.5] isjust . Thus

277 E (r)=— (1.8)
&

0

which can be rearranged to give

E(r)=-21 (19)

27g, 1

Since the electric field isinversely proportional to r, it must be greatest when theradiusisleast, i.e.
whenr =a.

g -41 (1.10)
27g, a
The potential difference between the cylindersis found from the electric field using [1.13]
‘ (1 b
V, -V, =—[E (r)dr =2 j—dr:—iln(—j (1.11)
" 215, J 1 27g, \a

The negative sign tells us that if the charge on the inner cylinder is positive then the electrostatic
potential of the outer cylinder is negative with respect to the inner cylinder.

The unknown charge q can be eliminated between (1.10) and (1.11) to give the potential differencein
terms of the maximum permitted electric field and the dimensions of the line.

b
V,-V,=-E_aln— (1.12)
a

15
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The condition that the potential difference should be maximum isfound by differentiating the
potential difference with respect to the ratio of the dimensions of the conductors and setting the result
to zero. If we set R = b/a the condition can be expressed as

d(1 ~ In(R) 1

2 (En(r)--"0 -0 (113)
or

In(R)=In(b/a)=1 (1.14)
Example 1.6

An air-spaced transmission line consists of two paralel cylindrical conductors each 2 mm in diameter
with their centres 10 mm apart as shown in fig. 1.9. Calculate the maximum potential difference
which can be applied to the conductors assuming that the electrical breakdown strength of air

isSMV-m™.

+
.

=

q.q
Z A X
|
|
1

d

w|a
O
o]

Fig. 1.9 A cross-sectional view of a parallel-wire transmission line.
Solution

Since the diameters of the wires are small compared with their separation it is reasonable to assume
that close to the surface of each wire the field pattern is determined almost entirely by that wire. The
equipotential surfaces close to the wires take the form of coaxial cylinders, as may be seenin Fig.
1.10. Thisis equivalent to assuming that the two wires can be represented by uniform line charges £ q
aong their axes. Note that this approximation is only valid if the diameters of the wires are small
compared with the spacing between them.

16
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Fig. 1.10 The field pattern around a parallel-wire transmission line

The electric field of either wire is then given by Equation (1.9) (for r >1 mm) with the appropriate
sign for g. Since the strength of the electric field of each line chargeis inversely proportional to the
distance from the charge, the greatest electric field must occur on the plane passing through the axes
of the two conductors. Using the notation of Fig. 1.9 and Equation (1.9) the electric field on the x axis
between the wires is found by superimposing the fields of the two wires.

q q
=- - 115
27g,(2d-x) 275, (2d+X) (L1

17
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It is easy to show that this expression is amaximum on the inner surfaces of the wires (as might be
expected from Fig. 1.10), that is, when x = i(% d- a) . The maximum permissible chargeis therefore

given by

q =2 E a(d—_a)

0 —max d (116)

The potential at points on the x axis between the wiresis found from (1.15) using [1.13]

1
V(x)=—2 IR N VSR EF P L (1.17)
27z, ) ((2d-x) (2d+X) 2re, \ 3d-X

where C isaconstant of integration. It is convenient to choose C = 0 so that the potential is zero at the
origin.

The maximum permissible potential at A is obtained by substituting the maximum charge from (1.16)
into (1.17) and setting x=(<d —a) to give

a(d-a d-a

V,=E,_. ( ) In( ) (1.18)
d a

The potential at B is -V so the maximum potential difference between the wires is 2Va. Substituting

the numbers gives the maximum voltage between the wiresas 5.9 kV.

When the wires are not thin compared with their separation the method of solution is similar but, as
can be seen from the equipotentials in Fig. 1.10, the equivalent line charges are no longer located at
the centres of the wires.

Example 1.7

A metal sphere of radius 10 mm is placed with its centre 100 mm from aflat earthed sheet of metal.
Assuming that the breakdown strength of air is 3 MV.m™, cal cul ate the maximum voltage which can
be applied to the electrode without breakdown occurring. What is then the ratio of the maximum to
the mean surface-charge density on the sphere?

18



Electromagnetism for Electronic Engineers — Examples 1. Electrostatics in free space

Solution

This problem is solved using the same procedure as the previous one. It is necessary to assume that
thefield is equivalent to that of a pair of point charges placed at the centre of the sphere and of its
image in the plane as shown in fig.1.11. Since the diameter of the sphere is 20% of its distance from
the plane this assumption should not be seriously in error. We note that the attraction between the
surface charges will ensure that the charge density and the electric field are greatest at the point on
each sphere lying closest to the other one.

2a
Q ~ Q

i as L.
S T

3
4
A

Fig. 1.11 The arrangement of the sphere and its image in the plane.

Thefirst step isto use Gauss' theorem to find the electric field at a distancer from a point charge Q.
The problem has spherical symmetry and therefore the electric field must be constant on the surface
of a sphere of radiusr centred on the charge and directed radially outwards. The surface area of a

sphere of radiusr is 47 r? so that from [1.5]

47rr2E,(r):g (1.19)
80
so that
Q
= .2
Er(r) 47zgor2 (1.20)

Next we use [1.13] to find the potential at a distancer from the charge.

V(r)=-[E (r)dr=- C w- 2 . c (1.21)

47z50r2 Adre,r
where C is a constant of integration. Now
r=d-x (1.22)

so that the potential due to the first chargeis

19
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_ Q
V, (%)= d) C, (1.23)

Similarly the potential due to the other chargeis

=«
V, (x) = (din) C, (1.24)

Superimposing the potentials of the two charges gives

. Q 1 B 1 _ Q . X
V(X)_47rgo(d—x d+x} 27z, (d—x)(d+x) (1.29)

At the surface of the first sphere x=d —a and

_Q d-a
V(d-a)= 2re, [a (2d _a)j (1.26) (1.27)

The electric field at the surface of the sphereis found by superimposing the fields of the two charges
using (1.20)

20
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gyt
E(d a)_47zeo(a2+(2d—a)2J (1.28)

Eliminating Q between (1.27) and (1.28) gives the relationship between the breakdown field and the
breakdown voltage

d-a 1 1)
V =2E |——— || —+——— 1.29
max max[a(zd_a)j [az+(2d—a)2J ( )

Substituting the numerical values of the quantities we find that the maximum voltage is 28.3 kV.

From example 1.2 we know that the maximum surface charge density is
Ot = EE = 8.854x10% x3x10° = 26.6x10°C-m* (1.30)

The total charge on the sphere can be computed from (1.28)

Q=E,, 4, [%+—1 ] (1:31)
a (2d-a)

so the average charge density is

-1 ) -1
o, =E_ 4”’9; iz+ = | =gE,|1t—2 (1.32)
4ra’| a® (2d-a) (2d -a)

and the ratio of peak to average charge density is
o a’

=) 1+ > |=1.003 (1.33)
O, (2d-a)
Example 1.8

An electron starts with zero velocity from a cathode which is at a potential of -10 kV and then moves
into aregion of space where the potential is zero. Find its velocity.

21
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Solution

The principle of conservation of energy requires that the sum of the kinetic energy and the potential
energy of the electron must be constant. Thus

%mv2 +qV =0 (1.34)

where q isthe charge on the electron and V is the potential relative to the cathode. The charge to mass
ratio of an electron q/ m=—-1.759x10"C.kg* and the region of zero potentia has a potential relative
to the cathode +10 kV so that, rearranging (1.34) we obtain

|29V
m

v — 2x1.759%10" x10* = 59.3x10° m.s™ (1.35)

Note: For accelerating voltages much above 10 kV relativistic effects become important because the
electron velocity is comparable with the velocity of light (0.2998 x 10° m s%). It is then necessary to
use the correct relativistic expression for the kinetic energy of the electron, but the principle of the
calculation is unchanged.

Example 1.9

An electron beam originating from a cathode at a potential of -10 kV has a current of 1 A and aradius
of 10 mm. The beam passes along the axis of an earthed conducting cylinder of radius 20 mm as
shown infig. 1.12. Use Gauss' theorem to find expressions for the radial electric field within the
cylinder, and calculate the potential on the axis of the system.

X
Electron
beam

Fig. 1.12 The arrangement of an electron beam within a concentric conducting tunnel

Note: Electron beams like this are found in the high power microwave vacuum tubes used in
transmitters for radar, TV broadcasting and satellite communications and for powering particle
accelerators such as the Large Hadron Collider at CERN.

22
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Solution

The velocity of the electronsis given by(1.35). The charge per unit length in an electron beam with
current | and electron velocity v is given by

|
q=-—=-169x10° C.m* (1.36)
\Y

The negative sign arises because the direction of the conventional current is opposite to that of the
electron velocity. If the radius of the beamisb and it is assumed that the current density p isuniform
within the beam then

q _
o= o -53.7x10° C.m® (1.37)

T

Between the electron beam and the conducting cylinder (region 2) the problem isidentical to that in
Example 1.5 and the radial electric field is given by (1.8)

E,(r)=—1 1 (1.38)

23
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Within the electron beam (region 1) Gauss' Theorem can be applied in exactly the same way but the
charge enclosed in unit length of a Gaussian surface of radiusr is now

q(r)=x=r’p (1.39)
This expression replaces g in (1.38) to give the radial field in region 1

E,(r)=""r (1.40)

2¢e,
The potential in each region isfound using [1.13]. Inregion 1 the result is

q

2re,

V. =—

1

Inr+C, (1.41)

The value of C; ischasen by requiring V; to be zero when r = a so that

9 nt (1.42)
2re, a

Vo=—

1

In region 2 we have

V=L frar=-Lr* 4 c, (1.43)
2¢,

z 4e

0

The value of C, ischosen by setting V, = V; whenr =b.

P 2 2 q a
V,=2—(b"°—r*)+ In| — 144
z ( ) 27, (b} ( )

Ontheaxisr =0 and

V,(0)=2-b*+—9In (Ej ~ 362V (1.45)

4e, 27,

Note: This means that the electrons on the axis have a velocity dightly less than that calculated in
(1.35) and electron velocity increases with radius. To obtain an accurate result it would be necessary
to re-compute the electron velocities and the charge density (which now depends onr) to obtain
mutually consistent values.

24
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Example 1.10

Figure 1.13 shows a simplified form for the deflection plates for alow current electron beam. Given
that the electron beam is launched from an electrode (the cathode) at a potential of -2000V and passes
between the deflection plates as shown, estimate the angular deflection of the beam when the
potentials of the plates are 50 V.

120 mm
1
50 mm

:

Fig. 1.13 The arrangement of a pair of electrostatic deflection plates for an electron beam.

y

Note: The original use of electrostatic deflection systems in cathode ray tubes for oscilloscopes is now
obsolete but the same system can be used in machines for electron beam lithography, electron beam
welding and scanning electron microscopes.

Solution
To make the problem easier we assume that the electric field is constant everywhere between the
plates and falls abruptly to zero at the ends. Then the field between the plates is found by dividing the

potential difference between the plates by their separation to be E, = -5000V m,

Because there is no x-component of E, the axial velocity of the electronsis constant and found using
the principle of conservation of energy asin Example 1.8.

v, =4/2nV =26.5x10° ms"* (1.46)

where 7 is the charge to mass ratio of the electron. The time taken for an electron to pass along the
length of the plates (L) isthen

t= L. 1.89 ns (1.47)
V.

X

The equation of motion in they direction for an electronis

(1.48)

25
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where g is the magnitude of the electronic charge. The transverse acceleration of the electronsis
constant and the y-component of velocity as they leave the platesis

m

v, =——2t=1.66x10° ms* (1.49)

y

The angle of deflection is found from the ratio of they and x components of the velocity

v
0 = arctan (—yj =3.6° (1.50)
v

X

Note: Itis, of course, unrealistic to assume that the field between the plates has the idealized form
chosen above. To obtain amore accurate estimate of the deflection it would be necessary to find the
field distribution between the plates by solving Laplace’ s equation. Equation (1.48) could then be
integrated using a more realistic expression for E,.

26
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Example 1.11

A simple thermionic diode consists of two plane parallel electrodes: the cathode and the anode.
Electrons are emitted from the surface of the cathode with zero velocity and accelerated towards the
anode which is maintained at a potential V, with respect to the cathode. If the density of electrons
between the electrodes is great enough the space charge alters the distribution of the electric field.
Show that, in the limit of high space-charge density, the current through the diode is proportional to

V7% and independent of the rate at which electrons are supplied by the cathode.

Solution
The problem as stated is a one-dimensional problem in which the electron velocity, charge density
and potential depend only on the position x. The motion of the electronsis governed by three

eguations: the non-relativistic velocity isfound from (1.46) with the difference that V is now a
function of x.

X =217V (X) (1.51)
The current density isrelated to the charge density and the velocity by
J=pX (1.52)

The relationship between the charge density and the potential is given by the 1-dimensional form of
Poisson’s equation [1.24]

dz\z/ =L (1.53)
dx &
Eliminating the velocity and the charge density between these equations yields
1
dz\ﬁ __ vV 2 (1.54)
dx Eon 21
This equation can be integrated by multiplying both sidesby 2(dV/dx) to give
1

VA G B
(—j = V2 + C (1.55)

dx 804277

where C is a constant.

27
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To determine C we consider the effect of the electronic space-charge on the potential as shown in fig.
1.14. If no electrons are present in the space between the el ectrodes the potential varies linearly with
position as shown by the dashed line. When electrons are emitted from the cathode (at x = 0) they are
drawn towards the anode gaining velocity as they go. Because the electrons are negatively charged
they depress the electrostatic potential locally as shown by the solid curve. The limit to this process
arises when the slope of the solid curveis zero at the origin because the electric field is zero there and
no more electrons are drawn from the cathode. The current cannot be increased beyond this limit
given by setting C = 0in(1.55).

|
s V7
~ 08 '
> T 7
:_,'E 0.6} 1 /
3 #E
o .
f=
o 0.4 /
Z r.
E 0.2) -
2 ¥
% 0.2 0.4 0.6 0.8

Normalised position (x/d )

Fig. 1.14 The potential distribution in a space-charge limited diode

Equation (1.55) can then be written

1

v _ Y ya (1.56)

ey

which can be integrated by writing

JV_Z dx=— 4 [dx (1.57)

e

Performing the integration we get

3
Avi Yy 4 oc (1.58)

3 e

Now V = 0 when x = 0 and therefore the constant of integration C is zero. At theanodeV =V, and x =
d so that

28
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3 2
V2= —9 d J (1.59)
4\ eg2n
asrequired.

Thetotal current flowing in the diode is obtained by multiplying the current density by the area of the
cathode surface. This equation, known as the Child-Langmuir Law, is of fundamental importancein
the theory of vacuum electron devices which remain the dominant technology for generation of radio
waves at high power levels.

Example 1.12

Find the potential distribution between along thin conducting strip and a surrounding rectangular
conducting tube, as shown in fig. 1.15, when the potential difference between themis100V.

43 V =100

24 V=0
-—-—-a-—— 23

Fig. 1.15 The arrangement of conductors for this problem.
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Solution

The problem may be simplified by observing that the solution is the same in each quadrant, subject to
appropriate reflections about the planes of symmetry. One quadrant of the diagram is redrawn on an
enlarged scale in Fig. 1.17 with a square mesh added to it. In this example we discuss the solution by
hand.

To start the solution we first write down the potential s on the electrodes and estimate them at all the
interior mesh points. An easy way to do thisisto assume that the potential varies linearly with
position. These potentials are written along-side the mesh points as shown. Next we choose a starting
point such as A and work through the mesh, generating new values of the potentials with Equation
[1.30].

V, :%(V1+V2 +V;+V,) [1.30]

where the definitions of the potentials are as shown in fig. 1.16

Fig. 1.16 Basis of the finite difference calculation of potential.

Aseach new valueis calculated it is written down and the previous estimate crossed out. Figure 1.17
shows the results of the first pass through the mesh working along each row from right to left. Along
the lines PQ and RSwe make use of the symmetry of the field to supply the potentials at the mesh
points outside the figure (i.e. V4 =V, on PQ and V; = V; on RS). Check the figures for yourself and
carry the process on for one more pass through the mesh to see how the solution develops. It is not
necessary to retain many significant figuresin the early stages of the calculation because any errors
introduced do not stop the method from converging. If we work to two significant figures we can
avoid the use of decimal points by choosing the electrode potentials at 0 and 100 V. The final vaues
of the potentials can be scaled to any other potential differenceif required.
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P
100 100 100 100 100 100 100 100 100
A
” W » - 8 ® »w » 100
75 75 75 75 75 76 78 a8
i_
54 0 54 50 0 - -] .1 100
50 50 50 50 51 54 64 78
x® #® » »w » » 50 w 100
25 25 25 26 29 40 54 76
Q 0 0 o] 0 100
Q ] * 56 % $
33 52 76

(a)

Fig. 1.17. The finite difference solution for one quadrant of the problem: The initial stages.

The process is continued until no further changes are observed in the figures to the accuracy required.
Thefinal result is shown in fig. 1.18. Evidently the accuracy could be improved by using afiner
mesh.

100 100 100 100 100 100 100 100 100
100
75.9 76.1 76.9 78.6 81.6 86.1 91.0 95.6
51.3 51.6 52.9 55.8 61.7 71.9 823 91.6 100
25.9 26.2 273 30.1 375 57.6 74.7 88.3 100
0 0 0 0 0 46.5 70.7 86.8 100
{b)

Fig. 1.18. The finite difference solution for one quadrant of the problem: The final solution.

Example 1.13

Figure 1.19 shows a square coaxia arrangement of electrodes. If the potential of the inner electrodeis
5V above that of the outer electrode estimate the maximum and minimum values of the electric field
in the space between the electrodes.
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10 mm

& mm

6 mm 10 mm

Fig. 1.19. A square coaxial arrangement of electrodes.
Solution

The finite difference method can be used to find the fields around two-dimensional arrangements of
electrodes on which the potentials are specified. In this example we show how the method can be
implemented on a spreadsheet.

A uniform square mesh is defined such that the electrodes coincide with mesh lines. The mesh
spacing is chosen so that it is small enough to provide a reasonably detailed approximation to the
fields whilst not being so small that the computational time isvery large.

Cells of the spreadsheet are marked out such that one cell corresponds to each mesh point. The
symmetry of the problem can be used to reduce the number of cells required. Thus, for the geometry
shown aboveit is sufficient to find the solution for one quadrant of the problem. Special careis
needed to ensure that the correct numbers of cells are used. Remember that the cells correspond to
intersections between mesh lines and not to the cells enclosed by them.
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The electrode potentials are entered into the cells corresponding to the electrodes and the formula in
Equation [1.30] is entered into all the other cells. It is convenient to take the electrode potentials as 0
and 100 to reduce the number of digits displayed. When symmetry has been used to reduce the size of
the problem the formulae in the cells along symmetry boundaries make use of the fact that the
potentials on either side of the boundary are equal.

The formulae in the cells are then applied repeatedly (a process known as iteration) until the numbers
in the cells cease to change. To do this the calculation options of the spreadsheet must be set to
permit iteration. It is best to set the iteration to manual and to limit the number of iterations so that
the evolution of the solution can be observed. The final numbers in the cells are then approximations
to the potentials at the corresponding points in space.

From this solution the equipotential curves can be plotted and the field components can be calculated at
any mesh point by taking the ratio of the potential difference to the mesh step. Figure 1.20 shows the
final result obtained in this way. An active version of this figure is available for download as an EXCEL
file. Clicking on the Potential Map tab will show you the potential map plotted using the results of the
calculations. The electric field lines could be sketched in at right angles to the equipotential lines.

Fig. 1.20. Finite difference calculation of the problem. Mesh step = 0.25 mm. The red and blu e areas
contain fixed potentials. The white area contains the standard formula and the green areas use
formulae which assume symmetry at the boundaries.

33



Electromagnetism for Electronic Engineers — Examples 1. Electrostatics in free space

The method can be applied to more complicated problems including those with curved electrodes
which do not fit the mesh and three-dimensional problems. Further information can be found in the
literature.
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2. Dielectric materials and capacitance

2.1 Introduction

This chapter provides examples of the solution of problems involving dielectric materials and the
calculation of capacitance. The methods can also be used for air-spaced and vacuum capacitors. The
introduction of materials also makes it possible to discuss problems in the theory of semi-conductor
devices.

2.2 Summary of the methods available

Note: This information is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated by square brackets.

Symbol Signifies Units
¢ (epsilon) Perm ittivity F.m

&r Relative permittivity Dimensionless
D Electric flux density ~C.m™

C Capacitance F

W Stored energy J

e Relationship between permittivity and relative permittivity

E=8)&,

e Definition of electric flux density D

D=¢E [2.4]

e The integral form of Gauss’ theorem (all materials)

Dj[ D-dszmpdv [2.5]

e The differential form of Gauss’ theorem (all materials)
V-D=p [2.6]

e Boundary conditions
The tangential component of E is continuous at a boundary
The normal component of D is continuous at a boundary
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e The definition of capacitance
o=Ccr

e The energy stored in a capacitor

2
W=£CV2 ZEQ_ZEQV
2 2C 2

e Energy stored in an electric field

W:%I”D-Edv

e Finite difference method
e Estimation of capacitance using energy methods

Example 2.1

[2.14]

[2.16]

[2.18]

A MOS transistor is essentially a parallel-plate capacitor comprising a silicon substrate, a silicon
dioxide insulating layer, and an aluminium gate electrode as shown in fig. 2.1. The silicon dioxide has
relative permittivity 3.85 and dielectric strength 6.0 x 108 V.m™, the insulating layer is 0.1 um thick,
and the area of the gate electrode is 0.02 mm?. Estimate the capacitance between the gate and the
substrate and the maximum voltage which can be applied to the gate electrode.

| N

Fig. 2.1 Arrangement of layers in a MOS transistor.

Solution

Aluminium gate
electrode

Silicon dioxide
insulator

Silicon substrate

When fringing fields are ignored the capacitance of a parallel plate capacitor can be calculated by

using (1.5) in the form

D=coc

2.1)
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If the potential difference between the electrodesisV and their separation isd then
D =8r6‘0E=6‘r80% (2.2

The total charge on either plate of the capacitor is

QzAngDZ%A‘V (2.3)

where A isthe area of one plate. The capacitance of a parallel plate capacitor is therefore, from [2.14]

C= ngOA - 6.8pF (2.4)

when the numbers given in the question are inserted. The maximum permissible voltage difference
between the gate and the substrate is the product of the dielectric strength (breakdown field) of the
silicon dioxide and the thickness of the insulating layer (see [1.13]). Theresult is60 V.
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Example 2.2

Using the results of Example 2.1 calculate the maximum charge per unit area which can be induced in
the semiconductor material. If there are 2.0 x 10'® atoms per square metre in the first layer of the
silicon crystal, what proportion can be ionized by applying a voltage to the gate which is one sixth of
the breakdown voltage?

Solution
The maximum charge per unit areais obtained from (2.3) by setting A= 1m?and V = 60 V

&9 x3.85x60 2
=———————=0.02 Cm 2.5
O =0 1x10°° @3)
If the applied voltage is 10 V then the number of electrons per square metre corresponding to the
surface chargeis

n=3="6ﬂ=2.13x1016 m2 (2.6)
q 6q

where q is the charge on an electron. If we assume that this charge is represented by ionisation of
atomsin thefirst layer of the silicon substrate then, dividing n by the number of atoms per square
metre, we find that 1.06% of them are ionised

Example 2.3

A variable capacitor comprised a set of fixed plates, A, and a set of moving plates, B, as shown in Fig.
2.2. The capacitor is used to tune the frequency of aresonant circuit which variesinversely asthe
sguare root of the capacitance. Assuming that the effects of fringing fields can be neglected, find the
shape which the moving plates must have if the frequency is to be proportional to the angle 6 in the
range 20-160° and 500-1500 kHz.

8

Fig. 2.2 Schematic diagram of a variable capacitor. A set of moving plates B rotates within a parallel
set of fixed plates A.

38



Electromagnetism for Electronic Engineers — Examples 2. Dielectric materials and capicitance

Solution

This capacitor is a special example of aparalel plate capacitor. The separation between the platesis
fixed so we know from (2.4) that the capacitance is proportional to the area of overlap between the
platesif fringing effects are neglected. Since the frequency must be linearly related to the angle et

f=a+bo (2.7
If fisinkHz and 0 isin degrees then, substituting the extreme values given

500=a+20b and 1500=a+160b (2.8)

The solution of the pair of simultaneous equations (2.8) is b= a/50 so (2.7) becomes

0
f= a(1+ 5) (2.9)

Now the capacitance, and therefore the overlap of the plates, is proportional to the inverse square of
the frequency so we may write the area of overlap as

A
A(6) = 1050 (2.10)

where Aq is aconstant. If the plates are moved through a small angle dé then the change in the area of
overlapis

dA= —%rzde (2.11)

so that

r= \/_2% = (_Z)L/SOB (2.12)
dé (1+6/50)

Therefore the dependence of r on § whichisrequiredis
roc (1+6/50) ™ (2.13)

where 6 isin degrees.
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Example 2.4

Show that the capacitance per unit length between the parallel wires shown in Fig. 2.3 is given by

c=— "0 __ if d >> a. Calculate the capacitance per unit lengthif d=20mmanda=1

~In((d/a)-1)

mm

+
.

d

w|a
O

-
—oi—
|
|

Fig. 2.3 Cross-sectional view of a parallel-wire transmission line
Solution

From Example 1.6 we know that the electric field on the x-axis is given by

__ q B q
2re, (%d - X) 2re, (%d + X)

(1.15)

The electrostatic potential difference between the wiresisfound using [1.13]

1d-a
2 1d-a
l _ 2
JAvR— JLl T— ]dx: 9 In(fd Xj :im(ﬂ—j (214)
27, e (Ed_x) (5d+x) 27, sd+Xx ioea e, a

Then from the definition of capacitance [2.14] we obtain the result required. Thisresult isonly valid if
d >> a because we have assumed that the equipotential surfaces are circles centred on the wires.
Substituting the dimensions given we find that

c o

=0 _—-94pF.m? 2.15
in(1g) ~ 4PEM @55
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Example 2.5

The parallel wires of Example 2.4 are placed so that each is 10 mm from alarge flat sheet of metal.
How does this affect the capacitance? Cal cul ate the capacitance per unit length between the wiresin
the presence of the metal sheet. Represent the result by an equivalent circuit which shows the effect of
the presence of the sheet.

Solution

The effect of the metal sheet on the potential distribution around the wiresis found by using the
method of images asin Example 1.3(a). Let us number the line charges as shown in fig. 2.5.

3

Fig. 2.4 Arrangement of charges and image charges for example 2.5
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The potentia at a point distance r from aline charge qis given by

q
V=-— I C 2.16
27, n(r) " ( )

where C is a constant of integration. Summing for al the charges we find that

Y, =L|n(ﬂj (2.17)

27gy  \ Ily

where the sum of the constants of integration has been set to zero so that the zero of potential ison
the mid-planes between the wires (shown as chain-dotted linesin fig. 2.4). Provided that d >> a we
may write for a point on the surface of wire 1 on aline passing through the origin r, =a,

r,=r, :(d —a/ﬁ) and r, =/2d —aat a point on the surface of wire 1. Thus

Vv, =—4 i 193x19.3)__4 x2.61 2.18
1
27s, 1x27.3 27,

The potential on the surface of wire 2 is -V, so the capacitance between wires 1 and 2 is therefore

C= ;%01 ~10.6 pF.m™ (2.19)

which isan increase of 13% compared with the previous result. This result can be represented by an
equivalent circuit which includes the parasitic capacitance between the wires and the metal sheet as
showninfig. 2.5.

@

Co—

Fig. 2.5 Equivalent circuit for example 2.5

The capacitance added by the plane comprises the two parasitic capacitors in series with each other
and in parallel with the capacitance between the wires. Thus C, = 2.4 pF.
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Example 2.6

A capacitor consists of two parallel conducting plates whose areais large enough compared with their
spacing for edge effects to be negligible. The sheets are 0.1 mm apart and the space between them is
partialy filled with polythene sheet of thickness 0.09 mm, relative permittivity 2.25 and breakdown
strength 30 MV.m* as shown in fig. 2.6. Assuming that the breakdown strength of air is3 MV.m™*,
calculate the maximum voltage which can be applied to the capacitor. What difference doesit make if
the polythene sheet completely fills the space between the plates?

/ Alr
A

0.09 mm —_—
v Polythene

0.01 mm l

Fig. 2.6 Capacitor with mixed dielectrics
Solution
L et the surface charge on the plates of the capacitor be o then by [2.4] and (1.5) D = o . Since the

normal component of D is continuous at the boundary between the dielectricsit follows that D isthe
same everywhere. The electric fields in the two dielectrics are given by [2.4] as

Ey =— (2.20)
o
and
D
Epoly = go_gr (221)
The potential drops across the two materials are found by multiplying the electric field by the
thickness. The total potentia drop istherefore
tpoly
V=E,|t,; + (2.22)
r

From (2.20) and (2.21) we see that the electric field in the air is greater than that in the polythene.
Therefore the air will break down before the polythene. The maximum permissible voltage across the
capacitor is obtained by substituting the breakdown strength of air into (2.22) to give 150 V.

If the polythene completely fills the space between the plates then the maximum voltage is the
product of the breakdown strength of the polythene and its thickness: 3.0 kV. This example shows the
importance of avoiding air gaps in high voltage insulation because they seriously reduce its
effectiveness.
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Example 2.7

Figure 2.7 shows a coaxial cable with two layers of dielectric material. Find an expression for the
electric field at any point within the dielectric.

Fig. 2.7 A coaxial cable with two concentric layers of dielectric material between the conductors
Solution

Asin the simpler case with a single dielectric described in section 2.2 of the textbook we assume a
charge q per unit length on the inner conductor. Applying Gauss' theorem gives

0. 9 [2.7]
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From this point on we must consider the two dielectric regions separately. If the radial components of
the electric field are E; and E; in the inner and the outer region, respectively, then

__4d (2.23)
27e, I
and
q
E, = 2.24
2 27, I (2:24)

The potential difference across the inner layer isfound using [1.13]

b

q q a
Vi,=— dr = In| — 2.25
b2 JZﬂglr [Zﬁgj (bj (22)
In the same way the potential difference across the outer region is
V,, = ( g J |n(9j (2.26)
2re, c

The overall potential differenceis the sum of these two potential differences

v, :%(giln(b/aﬁgiln(c/b)} (2.27)

The expressions for the electric field can then be found as eliminating g between (2.23), (2.24) and
(2.27).

-1
Vo (1 1
E =a(gln(b/a)+ - In(c/b)j (2.28)
and
Vo (1 Linget]
E, =§(81 In(b/a)+ - In(c/b)} (2.29)
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Although the conditions for continuity of the field components have not been involved explicitly on
this occasion, it is easy to show that they are satisfied by this solution. The symmetry of the problem
ensures that the electric field is entirely radial, so the tangential field is zero on each side of the
boundary. The continuity condition for the radial component of the electric flux density is satisfied
automatically in the application of Gauss' theorem.

Example 2.8
Find the capacitance per unit length of the coaxial system shownin Fig. 2.7.

Solution

Using (2.27) and [2.14]

C= Zﬁ(iln(b/a) +iln(c/b)j_ (2.30)
& &
Example 2.9

A coaxial cableisto be made with two dielectric layers as shown in Fig. 2.7. The inner layer is made
from a high-quality but expensive material which has dielectric strength E; and the outer layer from a
cheaper material of dielectric strength E,. Find an expression for the outer radius, b, of the inner layer
if the cable isto be made as cheap as possible without reducing its maximum working voltage.

Solution

From (2.23) and (2.24) we know that the maximum electric field in each region occurs at the inner
surface (i.e. the minimum radius). Thus the radius of the boundary between the two regions cannot be
reduced beyond the point at which the two regions reach their breakdown fields simultaneously. From
(2.23) and (2.24) this requires

E_&b (2.31)
E, ga
where E; and E, are the breakdown fields in the two dielectrics. Thus the minimum value of b is
b= 518 4 (2.32)
E &
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Example 2.10
Calculate the stored energy per unit length in the coaxial cable shown in Fig. 2.8 when the voltage
between the electrodesis Vg

a) by using the expression for the energy stored in a capacitor, and
b) by integrating the energy stored in the electric field,

and compare the results.

Fig. 2.8 A coaxial cable
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Solution
The capacitance per unit length of a cable with a single dielectric layer can be deduced from (2.30) as

2re

C=ina) &%)

Then, using Equation [2.16], the stored energy per unit lengthis

w=teoyz- ¢ Vo (2.34)
2 In(b/a)

Alternatively, the electric field at radius r is given by eliminating q between (2.23) and (2.25)

E- #%/a) (2.35)

The stored energy in athin cylinder of thickness dr at radiusr isthen

AW =1DE 271 dr =ﬂ0221 (2.36)
2 (in(o/a))” T

Integrating with respecttor fromr =ator = b gives

W ZEVe (2.37)
In(b/a)

as before.

Example 2.11

Figure 2.9 shows the cross-section of two adjacent tracks on a printed circuit board. If the tracks run
parallel to each other for 50 mm, estimate the capacitance between them. The relative permittivity of
the material of the board is 6.0.

4 mm

Y, #

1Tmm—s| |e— —| je—1mm

Fig. 2.9. The arrangement of conducting tracks on a printed circuit board.
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Solution

The exact solution to this problem would be rather difficult, but an adequate estimate can be obtained
by elementary methods. Consider first the approximation of the system by two parallel cylindrical
wires as shown in fig. 2.3. We should not be too far out if we take the separation of the conductors to
be the same in each case and the diameters of the wiresto be equal to the widths of the strips on the
printed circuit board.

From Example 2.4 the capacitance per metre of the parallel wiresin free spaceis

co_ (2.38)

~In((d/a)-1)

So, for the dimensions given, C = 0.7 pF. If the wires were wholly embedded in the dielectric then this
capacitance would be multiplied by the relative permittivity to give 4.2 pF.

Now the capacitance between the conductors can be regarded as two capacitances in paralel, one for
the part of the diagram above the board (C;) and the other (C,) for the part within and below it. Since
capacitancesin parallel add, C; must be just half the capacitance between the wires in free space, so
that C, = 0.35 pF.

The value of C, must lie somewhere between this figure and half of the capacitance between the wires
when they are wholly embedded in the dielectric because of the finite thickness of the dielectric
board. Thus 0.35 pF < C, < 2.1 pF. Combining these estimates for C, and C, gives for the total

capacitance 0.7 pF < C< 2.5 pF. Although this estimate is rather crude it is probably accurate enough
for the purpose for which it is required.

Example 2.12
Calculate the capacitance per unit length for the coaxial system of electrodes shown in fig. 2.10

4a

2a
2a

Fig. 2.10. Rectangular coaxial electrodes.

49



Electromagnetism for Electronic Engineers — Examples 2. Dielectric materials and capicitance

Solution
R s
- I | 2a -
24.1 | 239 1 23.1 | 21.4 | 18.4 | 13.9 | 9.0 | 44 ‘
100 / l
A 4.4
(759 76.1 76.9 78.6 816 86.1 91.0 85.6
B 8.4 a
91.6
11.7
88.3
0 132 Y
6.8

Fig. 2.11. The electrostatic potential distribution close to the outer conductor of the arrangement of
electrodes shown in fig. 2.10. (see Fig. 1.18).
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Figure 2.11 shows the potentials at the mesh points close to the outer electrode taken from Fig. 1.18.
The potential difference across AB is23.9 V so the electric field strength is

239 a1
=——V.m 2.39
= (2.39)
The charge density at A istherefore
o=23%% o2 (2.40)
a/4

from (1.6). If we assume that thisis the mean charge density between R and S then the total charge on
astrip of the outer conductor, of unit length, lying between Rand Sis

q= 0% ~239s, Cm™ (2.41)

The charge on each section of the outer conductor can be calculated in this way. The results of the
calculations are shown in Fig. 2.11. Summing these charges gives the total charge on the outer

conductor: 629¢, C.m *for a potential difference of 100 V between the electrodes. The capacitance

per unit length is therefore 6.3, F.m™.

When this figure is compared with the exact value (5.87 &) it isfound to bein error by about 7%.
Thisis accurate enough for many purposes but greater accuracy can be obtained, if required, by using
afiner mesh.

Example 2.13

Use approximations to the equipotential surfaces and field lines to obtain estimates of the capacitance
per unit length of the electrodes shown in fig. 2.10.

Solution

From the finite difference solution to this problem shown in Fig. 1.18 we can plot the equipotentials,
field lines and charge distributions as shown in Fig. 2.12.
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Fig. 2.12. The field map and charge density distributions derived from Fig. 1.18.

If conducting sheets were placed along the equipotentials the field pattern would remain the same. It
follows that the whole capacitance can be thought of as being made up of a set of capacitorsin series,
with each capacitor being bounded by a pair of adjacent equipotentials. Thisidea can be used to
estimate the capacitance from a set of approximate equipotential surfaces. These surfaces must be
chosen so that the electrodes form part of the set and match the boundary conditions on the electrodes.
Figure 2.13(a) shows one possible way of satisfying this requirement.

1
i b
R
e i B a
| 1|| |
x| 4. [
i Ij | |
\ R .
| a I L - s A -
| |
j_x__l J
fal (b

Fig. 2.13. (a) Approximate equipotentials and (b) approximate field lines for the problem

Now consider the elementary capacitor which isformed by the surfaces which are x and (x + dx) from
the inner electrode. The perimeter of this capacitor is (4a + 8x) so that its contribution to the
reciprocal of the capacitance per unit length between the electrodesis
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1 dx

When thisisintegrated from x = 0to x = atheresult is

1_InG) (2.43)
C 8
sothat C=7.3 26

Comparison between Figures 2.12 and 2.13(a) shows that the potential gradient close to the outer
electrode is greater in the latter case. Thus the total charge associated with the approximate
equipotentiasis greater than the true value. We therefore conclude that the actual capacitance must be
less than the figure above.

In the second approach we imagine the charges and their associated field lines being rearranged as
shown in Fig. 2.13(b). Because the charges are crowded more closely together than in their
equilibrium state we expect the potential difference between the electrodes to be increased so that the
estimate of the capacitance will be lower than the actual value. In this case we can imagine the whole
capacitance as being made up of a number of wedge-shaped capacitorsin parallel.
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Each elementary capacitor is bounded by apair of field lines and can be thought of as a sector of a
coaxial capacitor. The boundaries at the ends of the element are small arcs which do not coincide
exactly with the electrode surfaces but, provided that dd is small, the error is not very large. The
capacitance of the element isreadily deduced from (2.33) to be

€0

dc = In(r,/r,)

do (2.44)

wherer; and r; are the inner and outer radii of the element, respectively. Since the charge
distributions on the electrodes have been assumed to be uniform it follows from the geometry of the
problem that r,/r, = 2 for every element. Equation (2.40) is then readily integrated from 9 =0to 6 =

7/4 to find the capacitance of one quadrant. The whole capacitance is therefore

e,

In(2)

=45¢, (2.45)

If we take the arithmetic mean of the two values of capacitance as the best estimate, we conclude that
C=(59+14)¢, Fm™

Thisfigureis about 0.5% greater than the exact value (5.87 &) and is actually much closer to it than
the result of the finite difference calculation. It should not be expected that the mean of the upper and
lower bounds calculated in this way will always be as accurate as this. Neverthel ess, the method
usually gives accuracy which is remarkable considering the crudity of the assumptions made.

Example 2.14

Calculate the capacitance per unit length of the square coaxial arrangement of electrodes shown in
fig.2.14:
a) by making use of the results of the finite difference solution obtained in Example 1.13, and
b) by energy methods

10 mm

6 mm

6 mm 10 mm

Fig. 2.14. Square coaxial electrodes
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Solution (a)

The capacitance between the electrodes is found in exactly the same manner as described in Example
2.12. Details of the calculation of capacitance using the spreadsheet of the finite difference solution
are shown in fig. 2.15. An active version of this figure is available for download as an EXCEL file.
The potential differences between the mesh points are calculated and stored in a row above the matrix
and a column at the right-hand side. These figures are summed (note that the figure corresponding to
the central plane must be halved to avoid counting it twice). The sum for the top edge and the right-
hand side is 179.0 as would be expected from the symmetry of the problem. Thus the capacitance is

8x179 _
SRETTRG, =143¢, Fm* (2.46)
The details of the calculation and the potential map can be viewed by double-clicking on the figure.

Solution (b)

Consider an elementary capacitor in the form of a square tube of unit length, side 2x, and thickness dx.

d [ij T (2.47)
C) 8gyX

Integrating fromx=3tox=5
1 1

—=—1In(10/6 2.48
C 8¢ ( / ) (2.48)
By the same argument as before this must be an upper bound. i.e. C < 15.7¢o F.m™

Now consider an elementary capacitor in the form of a wedge of angle dé. As before

€o

=076

deo (2.49)

Integrating from O to 2z gives the lower bound.

2w &,
=———-=12.3¢, 2.50
In(10/6) ° (250)
Taking the arithmetic mean of the two bounds gives the final value of the capacitance as
C=140¢, Fm™ +12%
Again we note that this is very close to the finite difference solution.
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10.7 101 93 84 73 62 50 37 25 1.2 [sum = 179.0|

10 11 12 13 14 15 16 17 18 19 20

Delta V
89.3 89.9 90.7 916 92.7 93.8 950 96.3 975 98.38 1.2
784 796 812 831 853 87.6 90.1 925 95.0 975 25
67.2 69.0 714 744 777 813 850 888 925 096.3 3.7
55,5 579 611 652 699 749 799 850 90.1 950 5.0
431 459 50.0 555 618 683 749 813 87.6 938 6.2
298 327 375 450 534 618 699 777 853 0927 7.3
154 176 221 336 450 555 652 744 831 916 8.4
221 375 500 611 714 812 907 9.3
176 327 459 579 69.0 79.6 89.9 10.1
154 29.8 431 555 672 784 893 10.7
143 281 413 53.8 658 774 8838 11.2
136 27.0 400 526 648 76.7 884 11.6

Fig. 2.15. Calculation of capacitance from the finite difference solution.
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Example 2.15

Figure 2.16 shows the distribution of fixed electric chargesin the depletion region of ap-njunctionin
equilibrium. Assuming that the silicon has a permittivity €, show that the potential difference between
the two sides of the junction is given by:

Vo =1 Npd? + Nod2)

2s,

where g is the magnitude of each charge.

4 Number density of charges

N,

Fig. 2.16. The distribution of ionized donor and acceptor states in the depletion layer of an idealized
p-n junction.

Solution

The depletion region is created by the transfer of mobile charges from one side of the junction to the
other. Thus the total number of exposed ionised charge is the same on both sides of the junction and

N,d, =Nyd

P (2.51)

n

Consider first aplane at position zin the n region. The charge per unit area of the junction between
thisplaneand z= d,is gNp (dn - z) where q is the charge on each ionised atom.. Applying Gauss

Theorem to this charge we find that

E,(2)=-3Np (d, - 2) (2.52)

g

because the electric field is zero outside the junction. The potential difference across the part of the
depletion region in the n-type material is

dy 2
v, = dNo [ (d,~2) = ANod, (2.53)
0

& 2¢
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The potentia difference across the part of the depletion region in the p-type material isfound in the
same way and the contact potential differenceisthen

v, =%(NDdf+ N,d2) (2.54)

asrequired.
Example 2.16

The formula obtained in Example 2.15 is still valid when areverse-bias voltage is applied to the
junction if Vi isreplaced by the sum of V, and thereverse bias V. If asmall a.c. signal dV is
superimposed on the bias voltage, the transition capacitance of the junction is given by

_dQ

Cr=oy (2.55)

where Q isthetotal charge on either side of the junction. The net charges on the two sides of the
junction are always equal to each other. Find an expression for the capacitance Crin terms of V, V,
and the constants of the material.

Solution

The effect of the applied reverse bias voltage is to increase the thickness of the depletion region by

exposing more fixed ionised atoms. Since the total charge on each side of the junction must be the
same we may substitute for d, in (2.54) from (2.51) to give

q Np 2
V+V,=—|1+—=|N,(d +Xx 2.56
0= ( NAJ D( n ) ( )

whereV isthe externally applied reverse bias and x is the increase in the thickness of the depletion
region on the n-type side of the junction. Now the total charge exposed in the n-type material is

Q=aNp A(d, +x) (2.57)

where A isthe area of the junction. Differentiating (2.56) and (2.57) with respect to x gives

av q N

— =3 1+—L|N,(d, +x 2.58
dx 8[ NAJ D( " ) ( )
and

dQ

—=gN,A 2.59
dx o (2.59)
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Dividing (2.59) by (2.58) yields the expression for the transition capacitance

da (2.60)

o [1+'|:ll'3j(dn £x)

A

But, from (2.56)

(2.61)

A

(1+%J(dn )=

Substituting in (2.60) gives

/qND Np 1
=eA | —>|1+— 2.62
Cr=¢ 25{ NA],/V+V0 (2:62)

We note that in (2.60) the denominator is the total thickness of the depletion layer (W) so that the
transition capacitance may be written

c, -tA (2.63)

which is the same as the capacitance of a parallél plate capacitor (2.4) whose thicknessis equal to the
thickness of the depletion layer.
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3. Steady electric currents

3.1 Introduction
This chapter provides examples of the solution of problemsinvolving resistive materials and the

calculation of resistance. The examples include both uniform and non-uniform electric current
densities and show how localised heating results from concentrations of current density.

3.2 Summary of the methods available

Note: Thisinformation is provided here for convenience. The equation numbersin the companion
volume Electromagnetism for Electronic Engineers are indicated in square brackets.

Symbol  Signifies Units

u (mu) Mobility m2.V1s?
J Current density A.m?

o (sigma) Conductivity Sm?

p (rho) Resistivity Q.m

R Resistance Q

& Electromotive force V
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e Drift velocity of charge carriersin an electric field

vy=uE [3.1]
e Current density in a current-carrying conductor

J=ngqv, =nquE=cE or E=pJ [3.3]

e Ohm'slaw
_(P1Y,
V_(AJI_RI [3.6]

e Power dissipated in aresistor
P=VI =12R=V?/R [3.7]
e Density of power dissipation in a current-carrying conductor

SP=E-Jov [3.11]

e Principle of conservation of charge

@ J-dA:—%I\J;I pav [3.13]

e The continuity equation (differential form of [3.13])

v.y__9 [3.14]
ot

e Electromotive force

E-dl=¢ [3.17]
|

C

61



Electromagnetism for Electronic Engineers — Examples 3. Steady electric currents

Example 3.1

A current of 1 A flowsin a copper wirel mm in diameter. Given that there are about 10%° conduction
electrons per cubic metre in copper, calculate their rms drift velocity. If the current is the rms value of
a 50 Hz dternating current, how far do the electrons move along the wire? What is the power
dissipated per metrein the wire? (p = 17.7 x 10° Q.m).

Solution
Using [3.3] with wire of radiusr = 0.5 mm carrying current |

v, I3 ~=795ums ™" (3.1
ng nozr

where | isthe rms current. The instantaneous drift velocity is

val1) =% (32

so the distance travelled by an electron in half acycleis

:ﬁl 17 J2i 2

—|sinfdo= —=0.716 um (3.3
2 2
ngzre sy ngrre

d

where 6= wtand ©=1007 s .

Using [3.6] the resistance per metre of the wireis

R=—--0023 Qm (34)
wr

and from [3.7] the power dissipated per metreis

P=1?R=23mW.m* (3.5)
Example 3.2

A coaxial cable hasinsulation made of a dightly conducting material of resistivity p as shown in fig.

3.1. Given that the inner and outer radii of the insulation are a and b, respectively, find an expression
for the leakage resistance per unit length between the inner and outer conductors.
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Fig. 3.1. Arrangement of a coaxial cable.

Solution

From the symmetry of the cable the flow of the leakage current must be radial. Consider athin tube of
radius r and thickness dr as shown. The resistance of unit length of the tube to aradial current is, from

[3.6], the product of the resistivity and the thickness of the tube in the direction of the current flow
divided by the area of the tube normal to the current flow

dR=—L—dr (3.6)
2rr
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Thetotal leakage resistance per unit length is found by adding the resistances of al such elementary
tubes connected in series

2rJ r 2

b
_ P (Ltyg-r
R= j dr In(b/a) (37)

Example 3.3

A diffused resistor in an integrated circuit is made by diffusing athin layer of p-type impurity into an
n-type isolation island. Assuming that the conductivity of the p-type layer varies linearly from ¢, at
the surface to zero at the interface with the n-type layer, and that the interface is d below the surface,
find an expression for the resistance between opposite edges of a square section of p-type layer whose
transverse dimensions are much greater than its thickness.

Solution

Consider an elementary sheet of the p-type layer of thickness dz lying z below the surface, as shown
infig. 3.2.

4 |
d:[ 1'dz f ‘

L L
|

ot
Fig. 3.2 Calculation of the sheet resistance of an integrated-circuit diffused resistor.

Because the current flow is along the length of the sheet we shall want to add up the resistances of al
such sheetsin parallel and it is best to use the conductance G = /R in the analysis. The conductivity
of the sheet as afunction of zis given by

o(z)=0,(1-2/d) (3.8)
so the conductance of the sheet is, from the inverse of [3.6] the product of the conductivity and the

cross-sectional area normal to the current flow divided by the length in the direction of the current
flow

4G = o (1- z/d)(LTdZ) oy (1- 7/d )z (3.9
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The conductance of the whole layer is thus

d
G =0y [(1-7/d)dz=0d/2 (3.10)

0

s0 the resistance in ohmsis

R=—=-2_ (3.11)

1

G oy
Note that the resistance is independent of the size of the square chosen. Thisis a general result
applying to any sheet of resistive material. For this reason the resistances of resistive sheets are
usually quoted in *Ohms per square’ (ohms/0D). In this example we have, in effect, assumed unit

potential difference across the square and calculated the sum of the currents flowing in the elementary
sheets.

Example 3.4

Figure 3.3 shows the arrangement of a pinch resistor in an integrated circuit. If the p regions (shown
shaded) are earthed and the n region is always positive, the two p-n junctions are reverse biased. A
layer of the n region adjacent to each junction is depleted of conduction electrons and is, effectively,
an insulator. The thickness of the depletion layer is given by

V +Vgg

Vo

t=a (3.12)

where V, is a constant and V is the local potential in the channel referred to S Given that the n channel
has width w (into the page) and its other dimensions are as shown in Fig. 3.3 find expressions for the
current in the channel:
a) when the current through the resistor is small, so that the voltage Vps is much less than Vgs,
and
b) when the current through the resistor is not small.

I P 1°
’/ AN,

4
/////%///Y 77T

| 'I

Fig. 3.3 Arrangement of a pinch resistor for an integrated circuit.

\\‘
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Solution (a)

If Vs << Vgsthen, to afirst approximation V = 0 and the channel thicknessis constant along its
length and equal to 2(a —t). The conductance of the channel, using the inverse of [3.6], is

L L V

oo 20,w(a-t) _ Zanwa(l_ VﬁJ (3.13)
p

where g, is the conductivity of the n-type material. The current in the channel isthen

20,wa V,
Ip = i [1— /Vij]VDS (3.14)

If Ves =V, thent = a, the thickness of the channel is zero and the current fallsto zero. The resistor is
then said to be pinched off.

Solution (b)
When Vpsis not small then the thickness of the channel is not constant but the continuity equation

requires that the current is constant everywhere. Consider a small length dx of the channel which is
distant x from S. Its contribution to the resistance of the channel is
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-1
are— 1 0 MtVes | g (3.15)
2c,w(a-t) 2o,wa A

The potential difference across the element is

1
aV=lgdR=—to [1- Y Vs | g (3.16)
20, wa Ve

Rearranging (3.16) and integrating along the length of the channel we have

VDS

L
lo fox = J(l— /%jd\/ (3.17)
20,wa | Ve

0

Performing the integrations we obtain the required expression for the current

3
2

3
g =2omaly 2 Ves| g o [q,Vos (3.19)
L 3V Ve Gs

When Vps << Vgsit can be shown that (3.18) reduces to (3.14) by expanding thetermin
(1+Vps/Vgs) Using the binomial theorem and ignoring powers of (Vps/Vas) greater than one.

Example 3.5

A burglar alarm system works by detecting the change in the resistance of athin conducting film on a
window when the window is broken. A window istypically 1 m square, and contact with thefilmis
made by conducting strips at the top and bottom of the window. Estimate the percentage change in the
resistance which would have to be detected by the electronic circuitsif a burglar cut a hole just large
enough to pass an arm through. What difference does it make where the hole it cut?

Solution

When the window is broken the current flux lines must deviate to pass around the hole. If the total
current flowing across the window is held constant then the power dissipated in the resistance of the
window increases and therefore the resistance of the window increases. Since we wish to know the
minimum change of resistance which must be detected it is sufficient to find alower bound to the
resistance of the broken window. It is shown in [3.20] that thisis achieved by employing approximate
equipotentials.
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L et us suppose that the hole made by the burglar is 100 mm square. Now divide the whole window into
equal squaresthissize, asshown in fig. 3.4, and let the resistance of each square be R. The resistance of
one horizontal strip of such squaresisthat of ten squaresin parallél, i.e. 0.1R. Theresistance of the
whole window before it is broken isthe sum of ten such stripsin series, i.e. R. Note that thisresult is
expected because the resistance of a square of conducting sheet isindependent of its size.

When the window is broken let us assume that the equipotentials remain as equally spaced horizontal
straight lines. The resistance of the window is then just the sum of the resistances between the
equipotentials. When one of the strips has ahole in it the resistance of the strip is now that of 9
squaresin parallel, i.e. R/9 = 0.11R and the resistance of the window is9x 0.1R+ 0.11R=1.01R
which isalower bound.

Fig. 3.4 Division of the window into equal squares.

Thus, if the electronic circuits can detect a change in the resistance of the window of at least +1%,
they will certainly be able to detect the hole made by the burglar. At thislevel of approximation it
does not matter where in the window the hole is made. A higher value of the lower bound could be
found by using a more complex approximation to the equipotentials but it is unlikely that the
improved estimate would justify the effort involved.

Example 3.6

A right-angled bend is formed in a conducting bar of square section. Estimate the length of straight
bar which would have the same resistance as the corner.

Solution

Let the width and thickness of the bar be a and its resistivity be p. Then the resistance of unit length of
astraight section of the bar is

o
R= =z (3.19)

To find an upper bound for the resistance of the bend we assume that the current flux lines are as
shown by the broken linesin fig. 3.5.
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Fig. 3.5 Approximate current flow lines.

Well away from the corner we expect the current density to be uniform. Now consider an elementary
strip of the conductor bounded by the dashed lines. The resistance of such astripis

dR— p(2L+7X/2)

3.20
adx (3.20)
Thecurrent inthe strip is
dl =%I (3.22)
a
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The power dissipated in the strip is

2 2L+ 7x/2
dWw’' = di’dR - '—Z{M} dx (3.22)
a a
The power dissipated in the whole bar is
2 ¥ 2
wo= 2 ﬂzuﬁdex - A (2|_+”—a (3.23 )
a 2 a 4

0

Now the power calculated using approximate current flux lines must always be greater than or equal

to the actual power dissipated W = 1?R where R is the resistance of the bar. Thus

!

R < W %(2L+”—aj 3. 24)
a 4

2
I

To find the upper bound of the resistance of the corner we subtract the resistance of the straight
sections of bar

R < %[2“”_&)_2'-/’ - TP _ 07852 (325 )
a

¢ a 4 a’ 4a

We note that this is independent of the choice of L as might be expected from an examination of fig.
3.5.

To seek for a lower bound to the resistance of the corner we employ approximate equipotential
surfaces as shown in fig. 3.6. Far away from the corner these surfaces will be at right angles to the
sides of the bar.

Fig. 3.6 Approximate equipotential surfaces
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Consider an element such as the one shown which can be treated as a section of a circular current
flow. The resistance contributed by a sub-element of thickness dr at radius r is

r_prdo (3.26)
adr
If the potentials at the ends of the bar are £V then the potential difference across the element is
(4Vd 0/ 7[) so that the power dissipated in the whole element is
2 g 2
dw” = (‘Nd‘gj f 8 g = 10V290 ) (3.27)
Vs prdd TP
From the geometry of the figure we observe that
L _L+a (3.28)
r L
for all elements. The angle 6 ranges from 0 to /2 so the resistance of the whole bar is
2 2 2
wr = 1O “in(1+a/L) [do = VR (1+a/L) (3.29)
Tp 0 TP
This power must be greater than or equal to the actual power dissipated in the bar given by
W =(2V )’ /R so that
2
R > N "p (3.30)
w” 2aln(1+a/L)

Subtracting the resistance of the straight sections of bar we find that the resistance of the corner is

TP 2pL P

V4 2L
Al 2ain(1+a/L) a E[zln(ua/L)_?J 63D

This function does depend on L so we wish to find the value of L which maximises it. The best way to
do this is to plot the function using a spreadsheet. It is then found that the function has a maximum

value R, =0.477(p/a) when a/L =4.56 and this must be a lower bound for R.

Finally we take the geometric mean of the upper and lower bounds as our best estimate of the
resistance of the corner so that the length of straight bar equivalent to the corner is0.61a £ 28%.
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Example 3.7

Find the resistance between AA and BB of the conducting strip shown in Fig. 3.7.

da a

4a 4/.——— ————— _— —-——————P'*—‘—L/ 2a

Thickness t

Resistivity p

A B

Fig. 3.7 Electric field lines and equipotential surfaces for a current flowing through a conducting strip
with a step change in width

Solution
The solution can be found using the finite difference method because when a steady current flows

through a uniform resistive medium, the electrostatic potential satisfies Laplace' s equation. Figure 3.8
shows the implementation of the finite difference method using a spreadsheet.
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One half of the problem has been modelled and the step size in each direction has been chosen to be
a/5. The red and blue regions are specified as fixed potentials of 100V and 0V respectively and the
white region uses the standard finite difference formula. In the green regions it is assumed that the
equipotential lines are normal to the boundary and that the potentials at points which are mirror
images of each other in the boundary are equal. This procedure forces the current flow to be tangential
to the boundary.

An active version of this figure is available for download as an EXCEL file. Tabs showing the
calculations and the potential map can be selected. Note that the potential map is upside down
compared with the calculations and that the bottom right-hand corner of the map lies outside the
conducting area and should be ignored.

Delta V
3.64
3.64
3.65
3.67
3.69
3.71
3.73
3.76
3.77

3.78

3.79

SUM 37.11
Fig. 3.8 Finite difference solution for the problem shown in Fig. 3.7.

To find the resistance between the ends of the strip we note that each mesh square has resistance

R = p/t . We assume that the current through each square can be calculated from the mean potential
difference across it. The best potentials to use for this purpose are those along the left-hand edge of

the mesh because the field is most uniform there. The current through each square is obtained using

Ohm’s law and the currents are summed across the strip. The result for the half problem is

=371 (3.32)
P

The total current is found by doubling this figure. The resistance of the strip is then the ratio of the
potential difference (100 V) to the current:

_ 100 P35 (3.33)
2x37.1 ¢ t
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Example 3.8

Use energy methods to obtain an approximate value for the resistance of the conducting strip shown
inFig. 3.7.

Solution

To obtain the upper bound for R we must choose approximate current flux lines. Figure 3.9 shows one
possibility, no current flows at al in the shaded area of the diagram and the total current is assumed to
be uniformly distributed across any plane perpendicular to the axis. It is convenient to divide the
problem into two parts as shown and to cal culate the resistances R; and R, separately.

1
[

X ~‘ dx
Fig. 3.9 Approximate current flow lines to find an upper bound for the resistance of the strip shown in
Fig. 3.7.

Yy

Thetotal width of the strip dx is found from the geometry of the problem to be
2
w=4a- 3 X (3.34)

If thetotal current is |, then the power dissipated the strip is the product of the resistance of the strip
and the square of the current.

3p dx

aw’'=1% ——F——
2t(6a— x)

(3.35)

Integrating from x = 0 to x = 3a gives the total power dissipated in the left-hand part of the strip

3a

wo= 22 230, (3.36)
2t ) (6a-x) 2t
0

S0 that
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W’ 3p 0
< — = —In2 = 104~ 3.37
R 2 o : (3.37)
The resistance of the right-hand part of the strip is found by elementary methods to be

R, = 0.5? (3.38)

Thus the upper bound of the resistance of the strip is1.54 p/t .

T |l[ T
| | |

I
; I : |
EEEA
o b e
|I|Il1||1|

Fig. 3.10 Approximate equipontential surfaces to find a lower bound for the resistance of the strip
shown in Fig. 3.7.

To obtain the lower bound to R we assume that the equipotential surfaces are planes perpendicular to
the axis, as shown in Fig. 3.10. The resistances R; and R, can be calculated by elementary methods:

R = 0.75? (3.39)
and
R, = 0.5? (3.40)

giving the lower bound

Py,
\2

1.25? (3.41)

We note that the result found in Example 3.7 does indeed lie between these two bounds. The
resistance of the strip is taken to be the geometric mean of the two bounds so that the best estimate of
R using thismethod is

R:1.4€ + 11% (3.42)

which isvery close to the result obtained with greater effort by the finite difference method.

75



Electromagnetism for Electronic Engineers — Examples 4, The magnetic effects of electric currents

4. The magnetic effects of electric currents

4.1 Introduction

This chapter illustrates the methods of calculating the magnetic flux density produced by given
arrangements of current-carrying conductors. The methods are appropriate for al problemsin which
no ferromagnetic materials are present. For practical purposes al other materials can be regarded as
free space.

4.2 Summary of the methods available

Note: Thisinformation is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated in square brackets.

Symbol  Signifies Units

o (Mu)  Primary magnetic constant  H.m'™

B Magnetic flux density T, Wb.m™?
v Magnetic scalar potential A
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e Thelaw of force between moving charges

F= 4?;9322 r+ ﬂZ%?Z (V2 A(vy /\f'))zFe +F,

o Magnetic flux density due to amoving charge

B:Z‘;?;(wf)

e Magnetic force on amoving charge
F, =Q,(v,AB)

e Magnetic flux density due to a current element

J7x| -
dB:?Orz(dl/\r)

e TheBiot-Savart Law

B:ﬂ_o'mdl_AP

4r r2

e Themagnetic circuit law in free space
f1B-di=p[[3-aa

e Magnetic scalar potential

U, - U :—ﬂiOJ'SB-dl

B =—u,0radV = — 14, VU
div(grad?)=Vv*¥=0

e Theintegra form of Gauss' theorem

[ﬁ[B-dAzo

[4.1]

[4.3]

[4.4]

[4.6]

[4.7]

[4.12]

[4.13]

[4.14]

[4.17]

[4.15]
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e Thedifferentia form of Gauss theorem

divB=V-B=0 [4.16]
e [Forceon acurrent element

F=1(dlAB) [4.18]
Example 4.1

Figure 4.1 shows asingle circular loop of wire carrying current |. Find an expression for the magnetic
flux density at the point P on the axis of the loop.

Fig. 4.1. Calculation of the magnetic flux density on the axis of a circular current loop.
Solution

Consider the flux density at P due to the current element at R. The current element has length adé
and its distance from P aong the line RP isr. From the triangle ORP,

r=a/siny 4.1
The flux density produced by the current element is represented by the vector dB, which must be
normal to both RP and the current element according to the rule for vector products. The vector dB,

therefore, liesin the plane ORP at right anglesto RP, as shown in Fig. 4.1. Because RP is at right
anglesto the current element it follows from equation [4.6] that

dB =L'2ad9 _ Al G2y, do (4.2)
4dra

This can be resolved into itsradial and axial components
dB, =dBsiny and dB, =dBcosy (4.3

Integrating around the loop we find that the total zcomponent is
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Hol . 3
=-=-9n 4.4
B, g NV (4.4)

while B, = 0, as would be expected from symmetry.

This method can be extended to a very wide range of problemsinvolving currentsin wires. Some
examples of its application are given in the examplesin this the chapter. The solution of problems
involving severa current-carrying conductors in free space can be made easier by using the principle
of superposition. Thisis possible because the flux density is proportional to the current producing it,
as can be seen from Equation [4.7].

Real coils usualy have many turns of wire and one should, in theory, integrate over the cross-
sectional area of the winding. But, if the cross-section of the winding is small compared with the
diameter of the cail, it is possible to make an approximation. The real coil is replaced by an equivalent
current loop having a diameter equal to the mean diameter of the coil. The error in the calculated
values of the flux density on the axisis of the order of afew per cent when this approximation is
made. The calculation of the off-axis flux density istrickier and involves elliptic integrals.
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Example 4.2

A pair of circular coils have the same axis and radius a. They are separated by a distance 2d. Find the
value of d which makes the magnetic flux density on the axis mid-way between the coils as uniform
aspossible.

Solution

The field of the pair of coilsisfound from (4.4) using the principle of superposition. If the currents
arein the same direction in both coils then the fields are added together. The field variation along the
axis close to the mid-point can be expressed as a power seriesin z. From the symmetry of the problem
we note that this series can only contain even powers of z.

The problem as stated has only one variable, namely the ratio d/a. In order to make the field as
uniform as possible we choose the value of thisratio so that the term in Z is zero. The field expansion
then contains only a constant term and termsin even powers of z from the fourth power upwards. This
choice is equivalent to requiring that the second derivative of the field of each coil with respect to z
vanishes at the mid-point.

Differentiating (4.4) with respect to z

dBZ ILIOI d . 3 dy/

=20 =~ (gn —_ 4.5
dz 2a d://( W)(dz (4.3)
Now
a=ztany (4.6)

Differentiating (4.6) with respect to y gives

Ozﬂtanz/ﬂrz 5
dy cos”

(4.7)

Substituting for zfrom (4.6) in (4.7) and rearranging we obtain

dz a
L 4.8
dy  sn’y “8)

And, substituting for (dy/dz) in (4.5) gives

dB, 7 I
—~% =-—"=-3sn" iy Cos 4.9
s a2 Y COSy/ (4.9

80



Electromagnetism for Electronic Engineers — Examples 4, The magnetic effects of electric currents

Differentiating a second time with respect to z

d’B, 3yl d /., dy ) 3/, . 5 5 s sin’

=— sin” 7 cos — |= 4sin” w cos” i —sin 4.10
dz* 2a’ dz,u( v V/) dz ) 2a° ( veos v l//) a (4.10)
which is zero when
tan’ y = 4 4.11)
or
a
—=2 4.12
g (4.12)

Therefore the field midway between the coils is as uniform as possible when the distance between
them is equal to the radius of each coil. Coils arranged in this way are known as Helmholtz coils.
They are sometimes used to provide uniform magnetic fields for scientific experiments.

Example 4.3
Find an expression for the magnetic flux density at the centre of a loop of wire in the shape of a
regular polygon with 2N sides. Check your answer by showing that it tends to the expression for the

flux density at the centre of a circular loop when N — 0.

Solution

The magnetic flux density at a point distant R from a length of straight wire carrying current I is

B= —”02' 51;1 “ [4.9]
VA

where the wire is perpendicular to the line joining it to the point and it subtends an angle 2« there. The
polygon is made up of 2N such pieces of wire so

a=" 4.13)

Substituting for o in [4.9] and multiplying by the number of sides

B_,uolsin(ir/fZN) 2N—ﬂ°| sin(7/2N)
- 2R 2R z/2N

(4.14)
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when N — o0, sin(z/2N)— 7z/2N and

B _ZOR! (4.15)

which is the flux density at the centre of a circular loop of radius R as given by (4.4) when v =7/2.

Example 4.4

Figure 4.2 shows the arrangement of a short solenoid. Find expressions for the magnetic flux density
a) at the point P,

b) at the centre of a solenoid whose diameter is equal to its length, and

c) at the centre of a solenoid whose diameter is small compared with its length.

n turns per metre tength

Fig. 4.2. A short solenoid.
Solution

The solutions are obtained from (4.4) using the principle of superposition. Consider an element of the
solenoid of length dz at a distance z from P. The current flowing in the element is nl dz so its

contribution to the flux density at P is

dB, = “"M Gndy dz (4.16)
2a

Substituting for dz using (4.8)

dB, = ,ugnl sin%u( ._a ) dl//=—’u°2n| siny dy (4.17)
a

a) The flux density at P is found by integrating (4.17) with respect to w over the length of the
solenoid

s
nl . nl
Bzzj—ﬂoz siny dl//='u02 (cos B—cosa) (4.18)

o
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b) At the centre of asolenoid of length 2a S = z/4and o = 37/4 . Substituting these angles into
(4.18)

B, — el (4.19)

2

c) At the centre of asolenoid whose diameter is small compared withitslength « — 7 and g — 0.
Substituting these anglesin (4.18)

B, = uyl (4.20)
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Example 4.5

A sguare coil of side a carriesa current | as shown in fig. 4.3. Show that the magnetic flux density at a
point on the axis of the coil and distance z from its plane is given by

B _ 22w a’
’ r (a2+422)\/a2+222
&
R
Ry
F
0 % B
o
/,// 2 P
/I//ﬂ
Fig. 4.3. A square coil
Solution
Thefield at P dueto the current in QSis
B tol SN [4.9]

2xr

where r is the perpendicular distance between the wire QS and the point P. From the geometry of the
problem

r= w/(%a)z +2° =1\a® + 47° (4.21)

and o isthe angle RPQ so that

1

sna =22 2? -2 (4.22)
QP \/(%a) L2 ~2a2+4z

So that, substituting for sin o in [4.9],

g _ tol a (4.23)

271 \[2a% + 47°

84



Electromagnetism for Electronic Engineers — Examples 4, The magnetic effects of electric currents

The z components of the fields of the four sides of the coil add together whilst the components normal
to the z axis cancel each other out. Thusthefieldat P is

B, =4Bsin(ZOPR) = 22 (4.24)
r

Substituting for B and r in (4.24) gives

B - Ul 2a a _ 2\/§ﬂ0| a’

©o2nr 1 \Joa? 1 472 w (a2+4zz)\/a2+222

(4.25)

asrequired. Thisresult can be checked by setting z= 0 and comparing the result with that obtained
from (4.14) whenN=2andR=2a/2.

Example 4.6

Figure 4.4 shows the arrangement of a set of saddle coils. Find an expression for the magnitude and
direction of the magnetic flux density at the point P.

Fig. 4.4. The arrangement of a pair of saddle coils.
Solution

The direction of the magnetic flux dueto a current in awire is given by the right hand corkscrew rule.
If the thumb of the right hand pointsin the direction of the current then the curled fingers point in the
direction of the flux. From the symmetry of the problem the flux density at P must therefore be
directed vertically upwards. The flux density at P isfound by adding together the flux densities due to
the individua wires.

The flux density due to one of the straight wiresis given by [4.9] in which the perpendicular distance
between P and the wire R = a and the anglea = /4 . The angle between B and the vertical is also

7/4 0 that the contribution to the total flux density is
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g _ Kl sin(z/4)cos(z/4)
o 2ra 4ra

(4.26)

The radial component of the flux density due to an element one of the curved wiresis given by (4.2)
and (4.3)

I .
dB, =2 sin®y cosy dé (4.27)
4ra

where y = z/4. Resolving thisin the vertical direction and integrating over the length of the wire

T

tol 1
B, = —
* Ara 242

4
ol 1 2 o
cosf df = —F— ——.— = —— 4.28
J ira 202 2 ra (4.28)

4
Finally we sum the contributions to the flux density from all the wiresto give

B, =4 £ol | #ol |_ 3l (4.29)
4ra 8ra 2ra
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Example 4.7

Figure 4.5 shows a non-magnetic ring having inner radius R; and outer radius R, on which iswound a
uniform coil of N turns carrying current |. Find the magnetic flux density at any point within the ring.

Fig 4.5. A coil wound on a ring-shaped former.
Solution
From considerations of symmetry, the flux density within the winding must be in the tangential

direction and vary only with radius. Applying the magnetic circuit law [4.12] to the circular path of
radius r shown by the broken linein the diagram gives

mB-dl:Zﬂng:,uOHJ-dA:,uONI (4.30)

Hence

g _ oI (4.31)
2rr

within the winding. Any surface spanning a path of integration lying outside the winding is crossed by
equal numbers of conductors carrying currents in each direction so that the magnetic flux density
outside the ring is apparently zero.

More careful thought shows that if the winding isasingle layer, then current | must encircle the ring
once in the tangential direction. The magnetic flux density is therefore given by Equation (4.4) at
points outside the ring and remote from it. If it is necessary to produce aring with no flux outside it
then awinding with an even number of layersis used. Each layer iswound in the opposite direction
around the ring from the one beneath it so that the tangential component of the current is cancelled.

Example 4.8

Find an expression for the magnetic flux density at the centre of along solenoid by considering the
limit of atoroidal coil (the coil-former isaring with circular cross-section) whose diameter islarge
compared with the diameter of the winding.
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Solution

Let the number of turns per unit length of the winding be n. Then, for atoroidal winding with a total
of N turns and an inner radius R;

N
2r R

n

(4.32)

Asthe radius of the torus increases while the radial thickness is kept constant the inner radius, the
mean radius and the outer radius tend to the same value, thus r — R, . Also the azimuthal component

of the flux density in atoroidal coil becomes the axial field component in along solenoid.
Substituting for N and r in (4.31) from (4.32)

B, = Nl (4.33)
which isidentical to the result obtained in (4.20) by a different method.

Example 4.9

Two straight wires are paralel to each other and 10 mm apart. Find the force exerted per unit length
on each wire when the wires carry currents of £1 A.

Solution
Let us suppose that the current in the first wireisin the x direction and that the wiresliein the x-y

plane. To find the flux density in the region of one wire caused by the current in the other we allow o
totend to /2 in[4.9] so that

_ M (4.34)
2rr

p4

wherer is the distance between the wires. (Note: the same result can be obtain by using the magnetic
circuit law [4.12]. The flux density is at right angles to the wires and in the right-hand corkscrew
sense with respect to the current in the first wire.

The force on the second wireis given by
F=-I(dlAB)=-Id,B,y [4.18]
where y isaunit vector in they direction. Substituting for B, we obtain

E __,uol2 _4zx107x10°
Y 27 Y 27 x0.01

20 uN (4.35)
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Example 4.10

An electron moving with velocity v enters aregion of space in which the magnetic flux density isB at
right angles to the velocity of the electron, as shown in Fig. 4.6. Given that the magnetic field is
constant for adistance L in the direction of the initial motion of the electron and then falls abruptly to
zero, find an expression for the angular deflection of the electron motion by the magnetic field.

Solution

The force on amoving charged particleis given by [4.4]. Thisforce always acts at right anglesto the
direction of motion of the particle and therefore does no work on it. The magnetic force acting on a
particle can therefore change its direction of motion but not its speed. The simplest caseisthat of a
particle moving at right angles to the direction of a uniform magnetic field, as shownin Fig. 4.6.
Because the particle is acted on by a constant force which is perpendicular to its direction of motion, it
must move in an arc of acircle, as shown.
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|

Fig. 4.6. The deflection of a stream of electrons by a transverse magnetic flux.

Theradial acceleration is provided by the magnetic force, so that

mRw? = qvB = gRwB (4.36)

whence

w=38 (4.37)
m

This freguency is known as the cyclotron frequency, from its application in the particle accel erator of
that name. For an electron in a magnetic flux density of 0.1 Tesla the cyclotron frequency is about 2.8
GHz.

If the particle has an initial component of velocity paralel to the vector B, then that component is
unaffected by the magnetic field. The motion of the particle is then helical from the combination of

the steady motion in the direction of B with the circular motion in the direction perpendicular to it.

Since v= R theradius of the circular path of the particle is from (4.36)

R= E (4.38)
But
Rsng=L (4.39)

so the angular deflection is given by

6 =arcs n[ﬂj (4.40)
mv
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Example 4.11

An electric current of density J, flows through a sample of semiconductor material in the x direction
and a uniform magnetic field By isimposed in they direction as shown in fig. 4.7. The resulting
deflection of the charge carriers produces a surface charge on the sample and an electric field E, in the
z direction which balances the magnetic force on the chargesin the steady state. Find an expression

for the electric field strength in terms of J,, By, the charge on each charge carrier and the density of
charge carriers.

Fig. 4.7. Current density and flux density for Example 4.11
Solution

In equilibrium no current flows in the z direction and the net force on a charge carrier in thez
direction must be zero. Therefore

qE, +qv,B, =0 (4.41)

where g is the charge on a charge carrier (assumed positive) and v, is the mean drift velocity of the
carriers. Now

J, =nqgv, [3.3]

where n is the number density of the carriers, so from (4.41)

E,=-v,B, =——~ (4.42)

The electric field E, is associated with a potential difference between the faces of the sample and can
be measured by a high-impedance voltmeter. As the product J,B, is positive, the magnitude of the

voltage is ameasure of the density of charge carriers in the sample and its sign shows their sign. This
effect, known as the Hall Effect, is used routinely to measure the properties of samples of
semiconductor material. It is aso used as a means of measuring magnetic flux density.
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5. The magnetic effects of iron

5.1 Introduction

This chapter illustrates the calculation of the fields of systems of current-carrying wiresin the
presence of iron pole-pieces using the method of images and the principle of superposition. It also
shows the application of the magnetic circuit law to problems involving soft iron and permanent
magnets.

5.2 Summary of the methods available

Note: Thisinformation is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated in square brackets.

Symbol  Signifies Units
w(mu)  Permeability H.m™*
Ur Relative permeability

H Magnetic field Am?
M Magneto-motive force A

R Reluctance A.Wb*
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e Definition of magnetic field

B

H= [5.5]

e Thegenera form of the Magnetic Circuit Law
-:j:H-dl:j J-dA [5.7]

¢ Boundary conditions

The normal component of B is continuous across a boundary

The tangential component of H is continuous across the boundary
e Definition of Magneto-Motive Force (MMF) in amagnetic circuit

M=NI

¢ Definition of the reluctance of a uniform section of a magnetic circuit

L
HA

e Simplified form of the magnetic circuit law applied to iron circuits

M=RD [5.15]

Example 5.1

Figure 5.1 shows along straight wire parallel to the surface of alarge flat sheet of iron and at a
distance d from it. Given that the wire carries a current |, find expressions for the x and y components
of the magnetic flux density at the point Q(x, V).

NN NN N x

Iron

Fig. 5.1 The magnetic flux lines when a current-carrying conductor P lies parallel to the surface of a
sheet of iron.
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=
Ve

Q@

Fig. 5.2 The calculation of the flux density at Q for the arrangement shown in Fig. 5.1 by replacing the
iron sheet with an image conductor at P'.

Solution

Assuming that the iron can be regarded as a perfect magnetic conductor, its effect can be represented
by animage wire at P' as shown in Fig. 5.2. Notice carefully that, in order to make the flux lines meet
the iron surface at right angles, the current in the image wire must be in the same direction asthat in
the original wire. The flux density at Q can now be found by considering each wire in turn and
superimposing the results. Let the angle OPQ be 6. Since the field around along straight wireis
circularly symmetrical about the wire we can apply the magnetic circuit law to give

B:—Z‘;Ir (5.)

The field components in the coordinate directions are then

B, -0 cos0 (5.2)
2rr
and
Hol
B, =———sn¢ 5.3
y 2rr 3

If the position of Q with respect of P' isgiven by 8 and r', then the field components due to the image
wire are

B, =~ o ~cost’ (5.4)
2rr
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Thetotal field isthus

g _ 4l cosd’  cosd
2z r r

and

By:_,uol (sm’e +sm¢9]
2 r r
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Finally, using some simple trigonometry, we obtain

| d —d
B =20 Y*C v Y0 (5.8)
X +(y+d)” x*+(y-d)
and
] X X
B, =— + (5.9)
y 27r{x2+(y+d)2 x2+(y—d)2]

Notice that By is zero wheny = 0 asit should be.

Strictly speaking, the imaging plane should not quite coincide with the iron surface, because iron is
not a perfect conductor of flux, but the difference is not usually important. Because the flux density in
ironislimited by saturation effectsit is possible to regard an iron surface as a magnetic equipotential
only if the flux density is below the saturation level.

Example 5.2

A solenoid of the form shown in Fig. 5.3 may beidealized as a set of circular current loops at the
centres of the windings. If each coil has 100 turns, mean diameter 200mm, and carries a current of 1A
calculate the maximum and minimum values of the magnetic flux density on the axis of the solenoid.
What is the effect of changing the coil spacing to 2a?

Coils
A / \ -
Ve L~
- L
X 0+
-~ s
-1 L i
P % ba dia.
g [ )
iron /1 |
pole — s
piece /1 E =
7 4
1 p——a ai2, ¥
1 —-I L —

Fig. 5.3 The arrangement of a solenoid having a number of coils and iron pole pieces at either end.

Solution

Theiron pole-pieces are at symmetry planes so the coils are multiply reflected in them with the result
that the field within the solenoid isidentical to that of an infinite set of coils at the same spacing. The
field on the axis of an individual cail isfound by substituting the current, the number of turns and the
radius of the coil in (4.4)
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B, :1000—2%si Ny (5.10)

From the symmetry of the problem we expect that the flux density will be a maximum in the plane of
each coil and a minimum midway between the coils. We recall that v is the angle subtended by a coil
at the point at which the flux density is determined and superimpose the fields of al the coils at that
point to find the total flux density.

a) The angle subtended at the centre of a coil by one which isdistant na fromitis

v, =arctan [Ej (5.11)
2na

Thetotal flux density at the centre of a cail istherefore

n=1

B, =500, {1+ Zisi n? v/n} (5.12)
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b) The angle subtended at a point midway between two coils by one distant (n —1/2)a fromitis

5a
y, =arctan (WJ (5.13)

and the total flux density at that point is given by

B, =10004, » siny, (5.14)

n=1

The simplest way to evaluate this is to use a spreadsheet as shown in fig. 5.4.

pi 3.141592654 In plane of call Midway between coils

Mo 1.25664E-06 n Wn B, Wn B,

Constant 0.000628319
0 1.571 0.00063
1 1.190 0.00101 1.373 0.00118
2 0.896 0.00060 1.030 0.00079
3 0.695 0.00033 0.785 0.00044
4  0.559 0.00019 0.620 0.00025
5 0.464 0.00011 0.507 0.00014
6 0.395 0.00007 0.427 0.00009
7 0.343 0.00005 0.367 0.00006
8 0.303 0.00003 0.322 0.00004
9 0.271 0.00002 0.286 0.00003
10 0.245 0.00002 0.257 0.00002

Total Flux Density (Tesla) 0.003056 0.003048

Fig. 5.4. Calculation of the flux density produced by the coils

The flux density when the coil spacing is increased to 2a (and the distance from the pole-pieces to a)
is calculated in exactly the same manner. The maximum and minimum flux densities are 1.564mT and
1.554mT. An active version of this figure showing the details of the calculations is available for
download as an EXCEL file.

Example 5.3

Figure 5.5 shows the arrangement of a magnetic circuit. Given that the coil has 1000 turns and carries
a current of 10 mA, and that the dimensions of the circuit are:

L =50 mm g=2mm

w =10 mm p = 1000p,
calculate the flux density in the air gap.
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/ ‘ / Nturns

Fi | 7
@ : L
J S .
/, L—— k___g_l ¥ // ]}
Iron L I’_-’l
Air gap

Fig. 5.5. A simple magnetic circuit made up of an iron core with an air gap in it. The magneto-motive
force is supplied by a winding of N turns of wire

Solution

The problem can be represented approximately by the equivalent circuit shown in Fig. 5.6.

N 1

Fig. 5.6. A network representing the magnetic circuit of Fig. 5.5 including the effects of flux leakage.
The magnetomotive force is given by
M=NI =10A (5.15)

The reluctances of the iron and the air gap are, from the two terms of equation [5.17]

4L 2
R = — == 5.16
()2 (519
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9 1000
R, = > |= (5.17)
o (W+g) 1214

To estimate the leakage reluctance across A-A' we regard the path as alarge air gap. The pole-face
areas are (40 x 10) mm? and the gap is 40 mm. To alow for the fringing of the flux let us suppose that
the effective cross-sectional areais double the pole-face area. Then the leakage reluctance is given by

;RLZL.LZE (5.18)
u, 2x0.04x0.01 4

Some simple network analysis then yields the flux in the air gap

®, =0.618x, Wb (5.19)

The very crude approximation to &, can be justified by considering the effect of ignoring leakage
altogether. In that case @ =0.629., Wb — an error of 2%. An even more drastic approximation is to
regard the iron as having negligible reluctance so that @ =0.724, Wb— an error of about 17%. The

best estimate of the flux density in the air gap is obtained by putting in the numerical value of p, and
dividing @ by the effective areaof the air gap: By =5.4mT .

The exact solution of this problem would require avery large computer. Fortunately such high
accuracy is not needed in most practical cases. The worked example shows how figures which are
accurate to a few per cent can be obtained by some quite crude approximations. Even the most
accurate calculation made using magnetic circuit theory islikely to be in error by afew per cent
because of the non-linear properties of theiron.

Example 5.4

Figure 5.7 shows a ‘pot core’ made of Ferroxcube B4. Cores like this are used to make radio-
frequency inductors. Given that the coil has 100 turns, estimate the maximum a.c. current which can
be passed through it without the behaviour of the inductor becoming non-linear. The initial
magnetization curve of Ferroxcube B4 isshownin Fig. 5.8.

14 dia.

il \ @\Cou

20dia. |
]

> »
g
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Fig. 5.7. The arrangement of a ferrite pot core for a radio frequency inductor. The dimensions are in

millimetres.
0-2 /
0.1 /

e

8(T)

0
H (kA m-1)

Fig. 5.8. The initial magnetization curve for the ferrite material Ferroxcube B4.
Solution

Since the flux circulating in the core is constant the flux density is greatest where the cross-sectional
area is least. Two parts of the magnetic circuit must be examined:

e Axial flux density in the central core: Area =7 x2.5* =19.6 mm’

e Radial flux density at the end of the central core: Area =7 x5x2 =31.4 mm®

Evidently the flux density is greatest in the central core. The magnetisation curve is approximately
linear up to a flux density of 0.15 T so the maximum flux in the core is

®=19.6x10"°x0.15=2.95x10"° Wb (5.20)

To calculate the maximum current in the winding using [5.7] we must compute the line integral of H
around a closed path. It is not possible to do this exactly without knowledge of the detailed fields but
a useful approximation can be found by breaking the magnetic circuit up into a number of sections as
shown in fig. 5.9. The Magneto-motive force needed to drive the flux through each of these sections
can be computed using elementary methods. This approach requires the assumption that the bunching
of the flux as it turns the corner from one section to another can be represented satisfactorily by
including some extra length in one or more of the sections as shown.

Fig. 5.9. The sections of the magnetic circuit.
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We note that, in the linear region of the curvein fig. 5.8 the relative permeability can be calculated
using [5.5] as

B 0.15 B
tH 4z x107" x1000

L 119 (5.21)

In region 1 the flux density is the maximum flux density so H = 1000 A.m™ and the magneto-motive
forceis

M, =1000x8x10° =8A (5.22)

In region 2 the flux density and the magnetic field decreases inversely as the radius as the flux spreads
out radially. Thusthe flux density at radiusr is

B, (r ) _ )] 0.0025 (5.23)
2rx0.002 r
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B,(r) 1 295x10°0.0025 1.563

Ha(r)= T L 27 %0.002
Hity  Hity 2 xU. r r

and the magneto-motive forceis

I.

2 7
My = [H,(r)ar :1.563In£Ej:1.609A
f

Inregion 3

2
Hy = Hl(z'—572J:122.5A.ml

10°

o that
M;=1225%x8x10°=0.98A

The total magneto-motive forceis therefore

M =8+2x1.61+0.98=12.2A

(5.24)

(5.25)

(5.26)

(5.27)

(5.29)

Dividing by the number of turnsin the coil we find that the peak current should not exceed 120 mA if

the behaviour of the inductor isto remain linear.

Example 5.5

Figure 5.10 shows a magnetic recording head made of Permalloy D. Given that the magnetic material
has arelative permeability of 500, estimate the number of turns needed to produce aflux density of

0.05T intheair gap from a current of 10 mA.
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F

Fig. 5.10. The magnetic core for a recording head (dimensions in millimetres).

=
L

Solution

Magnetic recording is not now asimportant as it once was for video and audio recordings but it is still
used for archiving large amounts of computer data. The magnetic field in the air-gap of the magnetic
core magnetises a small region of magnetic tape placed against it.

If fringing of the magnetic field in the air gap isignored then the flux density is constant throughout
the circuit. The magneto-motive force is the sum of the MMF sfor the core and the air gap and is
equal to the current in the coil multiplied by the number of turns. We take the path length in the core
to be the perimeter of a circle having the mean diameter (11 mm). The thickness of the coreis not
needed for this calculation. Thus

N :%[ Bair Iajr + B|ron |

-3
Imnj _ i(o.lx 103 4 71110 J 005 _673tums (5.29)
o N o

0.01 500 Az x10”

Example 5.6
A magnetic circuit like that shown in Fig. 5.5 has the following parameters

L =50 mm g=02mm w =10 mm
N =100 turns I=10A

Given that the core is made of a magnetic material having the initial magnetization curve shown in
fig. 5.10, estimate the flux density in the air gap.
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2.0

Ny

1.0
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N N

D \B .

0 500 4 (am 1 1000

Fig. 5.11. The graphical solution of Example 5.6, showing that doubling the magnetomotive force in a
magnetic circuit does not necessarily produce a doubling of the flux density.

Solution

We assume that for this material the initial magnetization curve is an adequate approximation to the
hysteresis loop. Allowing for the fringing around the air gap,

2
W+
B,mn:( ng B, =104B,, (5.30)
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so that
H, = ( NI - g—Baji =500~ 765B,, (5.31)
My )AL
or
Bon = — (500~ Hy oy (5.32)
iron 765 Iron

A second relationship between B;o, and Hi;on iS given by the initial magnetisation curvein fig. 5.11.
The solution to this pair of non-linear simultaneous equation is found by plotting the load line (5.32)
plotted as AB on Fig. 5.11. The working point is

Hiron= 85 A.m™, Biron=0.55T

and the flux density inthe air gap is
Byr =053T

Bair isless than B, because of the fringing field of the gap.

If the current in the coil is doubled so that the load line is CD, then the working point is
Hiron= 210 A.m™%, Biron=1.04T

and
Bar=210T

Doubling the current in the coil does not result in a doubling of the flux density in the air gap. This
shows clearly the non-linear behaviour of the material.

Example 5.7

When amagnetic circuit is being designed it islikely that the reverse problem to that in Example 5.6
has to be solved. The flux is specified and the ampere turns to produce it have to be calculated.
Calculate the ampere turns needed to produce a flux of 0.14 mWhb in the magnetic circuit of Example
5.6.
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Solution

The flux density in theironis

3
iron — % =14T (5.33)
(001)

The magnetic field strength in the iron is read from Fig. 5.11: Hi;o, = 660 A.m™. Neglecting fringing,
Bair = Biron and

H,, = Bar _1114x10°A.m* (5.34)
Ho

Applying the magnetic circuit law [5.7], the total number of ampere turnsis

NI =H, | +Hy |y =660x0.2+1.1x10° x0.2x10" = 355 Ampere— turns (5.35)

The number of turns used would depend upon the current available.
Example 5.8

A magnetic circuit consists of a soft iron yoke, which may be assumed to have infinite permeability, a
permanent magnet 60 mm long and 2400 mm? cross-sectional area, and an air gap 5 mm long and
3600 mm? in cross-sectional area. The permanent magnet is made from Columax, which has the
demagnetisation curve shown in Fig. 5.12. Initially a keeper made of soft magnetic material is
inserted into the air gap and the magnet magnetised to aresidual flux density of 1.35 T by means of a
coil wound on theiron yoke.

Determine:

a) theflux density inthe air gap when the keeper is removed if fringing around the gap can be
neglected, and

b) thevalue of the flux density in the permanent magnet if the keeper is replaced in the air gap,
assuming that the recoil permeability of Columax is|.8y.
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/"——_ (Wbm 2)
P'41.0
Q

N
N

- 60 -40 -20
H{kA m-)

Fig. 5.12. The demagnetization curve for Columax.
Solution
a) When the keeper isremoved the flux density in the air gap isrelated to that in the iron by

2400

air _ﬁ iron (536)
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No MMF is supplied by a current in a winding, therefore

B
iron “iron + Hair lair = Hiron liron + ilair = O (537)
Ho

Substituting for By, in (5.36) from (5.35) and for the lengths of the iron and air paths

Hiron + %i@ = O (538)
1, 60 2400

so that the load line is

B, =-2.262x10°xH, (5.39)

iron iron

The working point is found from the intersection of this line with the demagnetisation curve as shown
by the dashed line in fig. 5.13. The working point is

Biron = 112 T I_Iiron = '49 kA.m_1
k. -__ﬂd B
Y e
~, (Wb m ?)
o= £a10

-60 -—-40 -20
H (kA m-1)

Fig. 5.13. The graphical solution to part (a) of example 5.8.

b) When the keeper is replaced the magnet recoils to /,,, = 0 along a line whose slope is 1.8y,. Thus
the increase in By, IS

AB,, =1.8x 11;x49,000=0.11T (5.40)

Thus the flux density becomes 1.23 T.

109



Electromagnetism for Electronic Engineers — Examples 5. The magnetic effects of iron

Example 5.9

Figure 5.14(b) shows a cross-sectional view of acylindrical loudspeaker magnet. Estimate the flux
density in the air gap.

Frame \ Cone 31

50 dia.
30 dia.

20 dia.
18 dia.
] ‘|

F‘?ﬂ // rrras —
cot —7 %% "/ Magnet
\{né<‘ ke d assembly 20 \\M""‘-Fernba 1
| .
b
3
n
Softiron
{a) (o)

Fig. 5.14. (a) A cross-sectiona| view of a moving-coil loudspeaker. The coil is placed in the air gap of
the magnetic circuit so that it experiences an axial force when a current is passed through it. The
movement of the coil is transferred to the air through the motion of the paper cone. (b) An enlarged
view of the magnet assembly.

Solution

To get arough estimate of the flux density in the air gap we neglect fringing and the reluctance of the
soft iron parts of the circuit, and we assume that the magnet is operating on its main demagnetization
curve. From the magnetic circuit law [5.7] we know that

I, 1
Hiron = _[I:Iorn ] Hair = _%Hair (541)

The condition for the continuity of flux gives

B

ron

= o Bar = 20x 3 Bair :iBair (542)

B

ron

=-3uyH, ;o =—3.8x10°H, (5.43)

Figure 5.15 shows the demagnetization curve for Ferobal with the load line plotted on it. The
working point of the magnetisH,,.. =40kA.m™, B = 0.15 T. The flux density in the air gapis 1.0 T.

Iron
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< 0.3
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Fig. 5.15 The demagnetization curve for the ferrite permanent magnet material Feroba 1. The energy-
product curve is shown dotted.

Example 5.10

Redesign the magnetic circuit shown in Fig. 5.14(b) so that the magnetic material is used as
efficiently as possible.
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Solution

Figure 5.15 shows the demagnetization curve of Feroba 1 with the curve of BH against B added. The
energy product is a maximum when Bj;o, = 0.11 T and Hj;on = 68 kA.m*. The flux density inthe air
gapistobe 1.0 T as before, so the cross-sectional area of the magnet must be 9 times that of the air
gap, thus A, = 9x 607 mm?. Assuming that the inner diameter of the magnet is to remain

unchanged, it can be shown that the outer diameter must be 55 mm, to give the correct area. Similarly
the length of the magnet must be

iron :[ Bair ]Iajr = 1x 0001 =12mm (544)
;UOH iron ;uo 68000
Example 5.11

Figure 5.16 shows a cross-sectional view of acylindrical loudspeaker magnet. The permanent magnet
is made from Columax (Fig. 5.12) and operates on its demagnetization curve. Neglecting fringing
fields, leakage flux, and the reluctance of the soft iron pole pieces, estimate the flux density in the air
gap. Calculate the optimum magnet dimensions for this flux density. If the magnet were aready in
production would you consider this design change justified?

12 dia.

Fig. 5.16. The arrangement of a Columax loudspeaker magnet. Notice how the use of a magnet
material with a higher energy product allows the permanent magnet to be put at the centre instead of
outside as shown in Fig. 5.13(b).
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Solution

The solution proceeds in exactly the same manner as that of Example 5.9. Theload lineis

B

ron

=-2.765x10°H,,,, (5.45)

The working point is Bion = 1.23 T, Hiron = -43 kA.m*. Thus the flux density inthe air gap is

2
B, —Arnpg _ 57 453 o567 (5.46)
A, 5x11r

The maximum BH product for Columax is about 56 kJ.m. This can be compared with the BH
product at the working point: 53 kJ.m™. The saving in magnet volume by redesigning the magnet is
about 6% and therefore the change is probably not worth making.

Example 5.12

Figure 5.17 shows an Alnico magnet for a magnetron, which is operated at aflux density of 0.4 T.
How much weight could be saved by replacing it with a samarium cobalt magnet? The
demagnetization curves of the two materials are shown in Fig. 5.18. The density of Alnicois 7300
kg.m™ and that of samarium cobalt is 8100 kg.m™.

50 rad.

b ——— - =

Alnico

30 rad.

Softiron 50 I 50

Fig. 5.17. The arrangement of an Alnico magnet for a magnetron. This magnet is typical of those used
earlier generations of these radar transmitter tubes (dimensions in millimetres).

1.0
B(T)

Samarium___~
cobalt 0.5
/ Alnico

-800 -600 -400 -200 0
H (kA m-)

Fig. 5.18. The demagnetization curves for Alnico and samarium cobalt (SmCos).
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Solution

The Alnico magnet is operated at B = 0.4 T, H = - 30 kA.m™. Thereforeits MMF is
H1=30x10°x2x40x10°37 = 7540 A (5.47)

The energy product of samarium cobalt is maximum when B = 0.4 T and H = -350 kA.m™. The two
magnets must supply the same MMF and, therefore, the length of the samarium cobalt magnet is

7540

X

ls

Both magnets have the same flux and, asit happens, the same flux density, so the cross-sectional area
of the magnet is unchanged. The weights of the two magnets are

W, = 7(0.05? ~ 0.08?) x 0.05x 7300 =1.83 kg (5.49)

W = 0.05x 0.02x 0.0215x 8100 = 0.17 kg (5.50)

Thus the change to the more modern material leads to a substantial saving in both the size and the
weight of the magnetron. The actual saving in weight would be less than appears at first sight because
additional soft iron would be needed to complete the magnetic circuit with the samarium cobalt
magnet.
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6. Electromagnetic induction

6.1 Introduction
This chapter shows the solution of problems involving time-varying currents using Faraday’s Law of

Electromagnetic Induction. The problems include examples both with and without magnetic materials.
The results of the calculations are typically self and mutual inductances.

6.2 Summary of the methods available

Note: Thisinformation is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated in square brackets.

Symbol Signifies Units
3 Electro-motive force (EMF) V

A (Lambda) Flux linkage Wb

L Self inductance H

M Mutual inductance H

w Stored magnetic energy J

w Magnetic energy density Jam?
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e Faraday’sLaw of Electromagnetic Induction

_dA
dt

mE-dlz—HZ—]:-dA

o Definition of flux linkage (single turn)

A:jB-dA
S

e Definition of flux linkage (N turns)
A=NOD
e Definition of self inductance

—

Iy

e Definition of mutual inductance

e Energy stored in an inductor

W=1|_|2
2

e Energy storage in amagnetic field

W:lB.H
2

WzéﬂjB-Hdv

e Energy storageiniron

w:j:ZHdB

[6.14]

[6.18]

[6.15]

[6.24]

[6.20]

[6.19]

[6.38]

[6.45]

[6.46]

[6.68]
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Example 6.1

Two coaxial circular wire loops, with radii 0.01 m and 0.5 m, lie in the same plane. Estimate their
mutual inductance. If the smaller loop is rotated about a diameter, how does the mutual inductance
depend upon the angle between the planes of the two loops?

Solution

The flux density on the axis at the centre of the larger loop is given by (4.4) with w = z/2. Because

the small loop is small compared with the large one we can assume that the magnetic flux density is
uniform everywhere within it. Thus

B, - 4ol (6.1)
2r,

wherer; isthe radius of the larger loop. Then the flux linkage to the smaller loop is

Ay =7r7B, =7 I‘ZZ#Lll (6.2
2r
From [6.19]
2
M=z, 2T 03050 (6.3)
[ 2r,

If the smaller loop is rotated about a diameter so that its plane makes and angle o with the plane of the
larger loop then the component of flux density normal to the small loop is

B, =B, cosa (6.4)

The mutual inductance is proportional to the normal component of the flux and therefore varies
ascos« .

Example 6.2

Figure 6.1 shows a cross-section of adjacent tracks on a printed circuit board. Given that the tracks
run parallel to each other for 50 mm, estimate the mutual inductance between the circuit comprising A
and B and that comprising C and D.
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pd Z yd /]

Fig. 6.1. A cross-sectional view of the conductors on a printed circuit board.
Solution

Take the origin of coordinates to be mid-way between A and B as shown. The flux density at a
distance r from along straight wire carrying current | is given by (4.30)

B- o ©9)

Assume that equal and opposite currents | flow in A and B. Then, applying the magnetic circuit law to
A and B separately and superimposing the results, the net flux density at a point lying between C and
D and x from the origin is from (6.5).

B:ﬂ‘)l[ ! ! J 6.:6)

27 ( x—3d N x+3d
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The magnetic flux is normal to the plane containing the conductors. The flux linked to the second
circuit isfound by integrating B over the area of circuit C-D. Since the circuit has only one turn the
resultis

5d

2
A=tell 11 | sl [2 (6.7)
27 Ja |\ x—3d x+3d 2r 3
2

where L is the length over which the two circuits are coupled by the magnetic field. Putting in the
numbers shows that the mutual inductance between the circuitsis 2.9 nH.

Whether this mutual inductance will lead to appreciable crosstalk between the circuits of the kind
illustrated by Fig. 6.1 depends upon such factors as their impedances and signal levels, Note that in
solving the problem we have assumed that the source currents can be regarded as line currents and
that the dimensions of the conductors can be neglected. These assumptions are not strictly valid, but
the result obtained by making them has an accuracy which is quite adequate for most purposes. In
cases like this the real question is whether the mutual inductance islikely to be big enough to cause
trouble.

Example 6.3

The centres of the line and neutral conductors of a30 A, 50 Hz, ring main cable are 5 mm apart,
Estimate the maximum e.m.f. induced in a circuit enclosing an area of 0.1 m? which is 2 m from the
cable.

Solution

The amplitudes of the currentsin the two wires are +304/2 A and their distances from the circuit

under investigation are 2.005 m and 1.995 m. Thus the maximum flux density at the circuit is
obtained using (6.6) as

B:”O‘o’oﬁ( t 1 )zZlnT (6.8)
27 (1995 2.005

The amplitude of the EMF induced in the circuit is obtained from [6.14]

dA

|£|:E

= @AB =27 x50% 0.1x 21x10°° = 0.67 uV (6.9)
W

where A is the area of the circuit.
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Example 6.4

Figure 6.2 shows an iron core which may be assumed to have a constant relative permeability of 1000,
across-sectional area of 100 mm?, and a mean path length around the magnetic circuit of 150 mm.
Two coils of wire are wound on the core to form a simple transformer. Coil 1 has 100 turns and coil 2
1000 turns. Calculate the self-inductances of the two windings and the mutual inductance between
them.

1 2
-—..__:____—. 4 ——
h-—..._' b 4

L
L L
‘hll-—.-: .--._
L L
e — [ —
b S

Fig.6.2. The arrangement of a simple transformer
Solution

Assume that a current |, flowsin coil 1. Applying the magnetic circuit law [5.7] the magnetic field in
the coreis

_Nyxly

ST =667x1, Am™ (6.10)

Then the flux in the coreis
®, = Ay, piyH, =84 uWhb (6.11)

so that from [6.20] the self and mutual inductances are

N,®
L,=—t=84mH (6.12)

=84 mH (6.13)

If now acurrent I, is assumed to flow in coil 2 we get

N, x1, 1
=—=—<=6670x1, A.m 6.14
2 0.15 X1y ( )
®, = AuH, =840 Wb (6.15)
so that
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N,

L, =272 —ga0mH (6.16)
2

and

M = NP2 _ga (6.17)

5

We have shown, incidentally, that Equation [6.22] is valid for this case and that M = L, aswould

be expected from Equation [6.28] for the perfect coupling between the coils which has been assumed
here.

Example 6.5

Figure 6.3 shows the arrangement of aferrite pot core inductor for use at radio-frequencies. Given
that the relative permesability of the ferriteis 130, what is the inductance of the coil? If the ferrite
begins to saturate at aflux density of 0.15 T, what is the maximum current in the coil for linear
operation?
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Fig. 6.3. A cross-sectional view of an inductor made with a cylindrical pot core of magnetic material.
Solution

The magnetic circuit in this problem is similar to that in example 5.4 and can be treated using similar
methods. We will assume that the reluctance attributable to the bending of the flux around the corners
can be represented by extending the lengths of the inner and outer cylindrical sections of the core by 5
mm. The reluctance of a section of the path in which the flux density is uniform is given by

R= LA (6.18)
7

The reluctances of the air gap and the inner and outer cylindrical regions are therefore

R, = 0.001 - 50.9 (6.19)
Uo7 x 0.0025 Ho

R, = 0.014 : _55 (6.20)
Hor x130x0.0025° 4

R, - 4><0.01&2 : _04 (6.21)
po x130%(0.025” - 0.015%) 4o

The reluctances of the top and bottom regions, where the flux isradial, are given by

1P}

ygzif o= o2 ]- L In(3)=23 (6.22)
uJ, 2zrh 2rpuh \r ) 27uy%x130x0.005 Ho

The total reluctance of the circuit is therefore

%zﬂg+ﬁl+2£2+£3=%3 (6.23)

0
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If the current in thewinding is| then, from [5.14] the flux is

o NI _ 100! (6.24)
R 57.3
The self inductance is found from [6.20] as
N® 1007
L=—="—4,=022mH 6.25
| 573" (6:29)

To find the maximum current we note that the flux density is greatest in the region where the cross-
sectional areaisleast namely the inner cylindrical region. Thus the maximum flux is

®, . =71°B,, =7x0.0025"x0.15=2.9 uWhb (6.26)

m

And the maximum current is, from [5.14]

| _ ROy, 573x 2.9x10°°

~13A 6.27
TN 100 1, (627)

Example 6.6

A toroidal transformer core is made by winding 20 turns of Permalloy D strip 10 mm wide and 0.5
mm thick onto a 40 mm diameter former. A toroidal primary winding of 100 turnsiswound
uniformly over the core and a secondary winding of 500 turns is wound uniformly over the primary.
Calculate the self-inductances of the two windings and the mutual inductance between them, given
that Permalloy D has arelative permesability of 4000.

Solution
From the dimensions given the finished core has an inner radius of 20 mm, an outer radius of 30 mm

and athickness of 10 mm. If the current in the primary winding is | then the magnetic field at radiusr
in the core can be found using the magnetic circuit law [5.7]

N, |
H(r)=-—% 6.28
() 2rr ( )
Thusthe flux in the coreis
Pl
o=h["B(r)dr = LN [P L g aNlly (6.29)
n 2 Ji 1 2 r

where h isthe thickness of the core. The self inductanceis given by [6.20]
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2 2
L= Ni® _ uNrh (1, ) 40004 x100 xo.01|n(§j:32 H
| 27 n 27

Similarly the self inductance of the secondary winding is given by

2 2
L - uNZh |n[r—2]: 40004, x 500 xo.01ln(3o

—j =811mH
2r r 2r 20

And the mutual inductanceis

M = ,uNlethn[r_zJ: 4000, ><100><500><0.01|n(30
T

—j =162 mH
n 2 20
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Example 6.7

Figure 6.4 shows an iron ring of square cross-section. An inductor is made by winding N turns of wire
uniformly on the ring as shown. Assuming that the permeability of theiron is constant, calculate the
energy stored in the inductor when a current | isflowing in the winding,

a) usingequation[6.38], and

b) using equation [6.46].

Fig. 6.4. The arrangement of a toroidal inductor.
Solution

a) Using equation [6.38]:
When a current | is flowing in the winding the magnetic field at radiusr is given by (6.28) and the
flux circulating within theiron is, from (6.29)

R 1
o= NI [ RF3a (6.33)
2 R-1a

From (6.30) the inductance is

2 R 1
L - 4N R¥aa (6.34)
2 -1a

and, from [6.38], the stored energy is

2|12 R+1a
wo 4N PR (6.35)
A R-1a

b) Using equation [6.46]:
Taking avolume element in the shape of aring of radiusr, thickness dr and width a, the stored
energy inthe element is

2

dW=%,u(27rra)H(r) dr (6.36)
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Substituting for H(r) from (6.28) and integrating over r from (R—La)to (R+%a) gives

4r R-3a

N Y N1%, (R+1a
WZﬂ/mJ [ J rdr =" In{ 2 J (6.37)

as before. It is important to realize that this calculation has been made possible by assuming that p
is a constant so that the system is linear. When the non-linearity of the iron has to be taken into
account the inductance of the coil is not a constant and the energy stored depends upon the
previous history of the iron.

Example 6.8

Figure 6.5 shows the arrangement of a transformer used to measure the current in a high-voltage
cable. Calculate the open circuit voltage induced in the toroidal winding if the material of the ring has
a relative permeability of 130 and the current in the central conductor is 10 A rms at | kHz. Does this
answer change if the primary conductor is not on the axis of the transformer?

10 mm
diameter

Mean diameter
50 mm

200 turns

Fig. 6.5. A toroidal coil can be used as a transducer to measure the current in a conductor which
passes through it.

Solution

When the conductor passes along the axis of the ring the magnetic field is given by the magnetic
circuit law as

(6.38)

2rr
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If the thickness of the ring (2a) is small compared with its diameter (2R) we may assume that the
magnetic field is constant within it and equal to the value at the mean radius R. Then the rms flux in
the ring due to the central conductor is

2 2
®=puHra® = ”211‘; = 1ty 130"12)(50'005 = 0.41 Wb (6.39)

The rms EMF induced in the toroidal winding is given by

e:il—’t\:a)zvqbo.sw (6.40)

When the wire is not in the centre of the ring the MMF remains the same even though the magnetic
field is no longer uniform around the path of integration. Provided that the behaviour of the material
of the core is linear the flux and the EMF induced will also be independent of the position of the
central wire. This principle is used in current transformers. The flux density in the core may be
detected, alternatively, by a Hall Effect sensor (see Example 4.11) and this method is used in clip-on
ammeters.

127


http://bookboon.com/count/pdf/309121/127

Electromagnetism for Electronic Engineers — Examples 6. Electromagnetic induction

Example 6.9

Estimate the inductance per unit length of the coaxial line shown in Fig. 6.6.

- -
43 ,-"', t,’
’/
-~
r———— - ——
wl (275 AT
] ]
[
|

Fig. 6.6. A rectangular coaxial line with a strip centre conductor.
Solution

Upper and lower bounds to the inductance of the line can be obtained using approximate equipotential
and flux distributions in a manner analogous to that demonstrated for capacitance in Example 2.13.

To obtain alower bound to the inductance we assume approximate flux lines as shown by the dashed
linein Fig. 6.6. Assuming that H is everywhere parallel to that line and applying the magnetic circuit
law to this path we find that

H(X)= 15 (6.41)

The flux contained in unit length of tube of thicknessdx is

® = yigH dx=—0! ¢ (6.42)
4a+8x

so that the self-inductance of the element dx is

dL=—*o g« (6.43)

 4a+8x

The inductances of the elements are effectively in series with each other so the total self-inductanceis
found by integrating (6.43) fromx=0tox=a Theresultis

L > %In(B) = 0.14y, (6.44)

128



Electromagnetism for Electronic Engineers — Examples 6. Electromagnetic induction

An upper bound to the inductance is obtained by assuming an approximate current distribution. One
possibility, as shown in fig. 6.7, is to distribute the current uniformly over the broad faces of the outer
conductor and over the whole of the inner conductor. The approximate magnetic equipotential
surfaces associated with this distribution of current are also shown in fig. 6.7. Now the inductance of
the region between each pair of equipotentialsis associated with part of the total current flow. The
total inductanceis, therefore, approximately that of all such elementsin parallel with each other.

7~
Q@ o o ./’g
/

/
/
RN/

(O] Q © O]

Fig. 6.7. An approximate current distribution in the rectangular coaxial line with a strip centre
conductor.
Thereciprocal of the inductance of an element subtending an angle dd is obtained from [6.37]

1 do

d(ﬂzm

(6.45)

Since the outer conductor is twice the width of the inner conductor it follows that b/a = 2 for all the
elements. Equation (6.45) is integrated over all the stripsto give

L < fin(2) = 0224 (6.46)
T

as the upper bound of L. It will be noticed that the triangular regions at each side of the diagram have

been omitted from the calculations so that (6.45) isintegrated over x rather than 2z. The inductances
of these regions are large because the ratiob/a — o . Thus they have the effect of reducing the

estimate of L dlightly and so the figure given aboveis certainly an upper bound on L.

The best estimate of L is given by the average of the upper and lower bounds, so
L =(0.18+0.04) 1, (6.47)

The exact figure is 0.17uo so the approximate value isin error by about 6%.
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Example 6.10

Show how the LCRZ analogy can be used to deduce the results of Examples 2.13 and 6.9 from each
other.

Solution

In Example 2.13 it was shown that

6 < ¢ o< B (6.48)

n(2) i

so the geometrical parameter I' must lie in the range

< I < 6.49
In(2) In(3) (649)
Now, using the LCRZ analogy
L=# [6.56]

r
so the inductance must lie in the range
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%In(S) < L o< %In(z) (6.50)

which agrees exactly with the results of Example 6.9.
Example 6.11

Estimate the inductance per unit length of the square coaxial arrangement of conductors shownin fig.
6.8.

Dimensions
in milimetres

P

6
10 6

10

Fig.6.8. A square coaxial arrangement of electrodes
Solution
The solution to this problem proceeds in exactly the same manner as that of example 6.9.

An upper bound is obtained from (6.45) by noting that each side of the line subtends an angle of 90°
on the axis and that the ratio of the width of the outer sides to the inner sidesis 5/3. Thus

L < £on(5/3) = 0081y, (6.51)
2
A lower bound is obtained in the same manner as before. The element of inductanceis

Ho
d=——"="—d 6.52
4(a+2x) X (6:52)

where a is the length of one side of the inner conductor. Integrating fromx = 0to x=a/3 gives
L > %In(S/s) = 0.0644, (6.53)

The inductance per unit length is therefore

L =(0.073+0.008) 1, (6.54)
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7. Transmission lines

7.1 Introduction
This chapter shows the solution of problems involving pulses and waves on transmission lines. It is

shown how the finite velocity of propagation produces distortion of pulses and changesin the
apparent impedance as aresult of the reflection of waves.

7.2 Summary of the methods available

Note: Thisinformation is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated in square brackets.

Symbol Signifies Units
k Propagation constant mt

A (lambda) Wavelength m

Zo Characteristic impedance Q

I' (Gamma) Voltage reflection coefficient -

S Voltage standing waveratio -

e Phasevelocity of awave
)

e Phasevelocity on an LC transmission line

Voo [7.11]
¢ Relationship between propagation constant and wavelength

K=" [7.12]
o Definition of characteristic impedance

\I/— ol [7.17]
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e Definition of the voltage reflection coefficient

r:%:i_io [7.25]
i T4

e Time-average power flow on atransmission line

v ML
W = 52 [7.27]

e Definition of voltage standing wave ratio (VSWR)

5= Vem 1T 732
Vo 1-|T|

e Apparent impedance on aline terminated by impedance Z,

Z] Z +jZytan(K)

sl S 7.42
Zy Zy+jZ tan(K) 742
e Phasevelocity of aTEM wave
1 o
V =——=— [7.46]
’ \ Ho€ \/E
e Waveimpedance of aTEM wave
z B _ [ [7.51]
H, £
Example 7.1

A transmission line of characteristic impedance Z, terminated by aresistor R=4Z,asshownin

fig.7.1 is connected to a matched source by a switch for a short time z to produce a pulse on the line.
If the propagation time along the lineis T, where T 7, investigate the variation of voltage with time
at each end of the line.
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Z, A 8
-
v, Z, ‘z
<

(a)

Fig. 7.1. A matched source is connected to a transmission line of impedance Z, for a short time 1.

Solution

When the switch is closed the uncharged line appears to the source as an impedance equal to its
characteristic impedance. The source voltage is, therefore, divided equally between the source

impedance and the line impedance and a voltage pulse of amplitude$Vislaunched on theline. After

time T this pulse reaches the other end of the line where the reflection coefficient from Equation
[7.25] is

_2%-%_ 1

_ _ (7.2)
®1z,+2, 3
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After time 2T the pulse reflected at B returns to A. Since T [1 7 the switch is now open and the
reflection coefficient is

r,= =1 (7.2)

The multiple reflection of pulses can be represented by the diagram in fig. 7.2. Each time a pulse is
reflected its amplitude is multiplied by the appropriate reflection coefficient.

E :

[ ]

'

L]

4T :
118 H

[ ]

L]

-1/6 i

L]

i

. ;
27 :
=16 :

L]

i

=1 :r'_ 173

. (]

112 :

L]

L]

!|"

Fig. 7.2. Time of flight diagram for the circuit in fig. 7.1.

During each reflection of the pulse the voltage appearing across the line is equal to the sum of the
amplitudes of the incident and reflected waves. Figure 7.3 shows the voltages across the line at A and
B as a function of time. The result of closing the switch for a short time is to produce not just one
pulse at B but a whole string of pulses with gradually decreasing amplitudes. If the line is short so that
T <<, then this effect shows itself as a blurring of the edges of the pulse. Evidently care has to be
taken with the matching of lines for the digital transmission of data if errors in the information
received are not to occur.
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ITI A

1/9

v

! 'H A

\J

Fig. 7.3 Voltages across the line at A and B as a function of time for example 7.1
Example 7.2

Sketch graphs of the variation of voltage with time at A and B in the circuit of Fig. 7.1 if the source
and load impedances are 27, and the switch is closed whent > 0.

Solution

When the switch is first closed the amplitude of the voltage pulse is ¥ . The reflection coefficients at

the source and the load are given by [7.25]

2Z,-7Z, 1
= ~%0 o _ 1 (7.3)

2Z,+Z72, 3
The method of solution is exactly the same as in the previous example. Figure 7.4 shows the time of
flight diagram for this case. Because the pulse persists after it has been switched on the voltages at A
and B accumulate. Thus

t=T: Vy =l+l=0.444
3 9
1 1 1
t=2T: V,=—+—+—=0482 (7.4)
3 9 27
t=3T: Vy =l+l+L+L=O.494
3 9 27 81
and so on.
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1/243 :

4T :
1/81 !

1/27 :

2T !

1/9 :

1

1

r=1/3 ' =1/3

13

Ly

Fig. 7.4. Time of flight diagram for example 7.2

Figure 7.5 shows the variation of the voltages at 4 and B with time. As ¢ — oo the voltages at 4 and B
tend to 0.5 which is the value which would be obtained from d.c. analysis which ignores the finite
propagation time of the pulses.
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V, 4
‘ 0.482 0.498
0.333 .

v

0.444

\ 4

Fig. 7.5. Voltages across the line at A and B as a function of time for example 7.2

Example 7.3

A solenoid is wound uniformly at 318 turns per metre on an insulating cylindrical former 100 mm in
diameter and 2.5 m long. Calculate its inductance per unit length. Ten tapping points are made on the
solenoid at regular intervals, and each is connected to earth through a 0.001 puF capacitor. The
resulting network is a cascade of symmetrical tee sections as shown in Fig. 7.6. This line is used as
the pulse-forming network for a high-power radar transmitter in the following manner: The line is
charged to a potential difference of 20 kV with both ends open-circuited; a matched load is then
connected across one end and the line is discharged through it. Assuming that the line can be treated
as a uniform transmission line, calculate the amplitude and duration of the voltage pulse supplied to
the load. Calculate also the current flowing in the load during the pulse, and the total pulse energy.

L L

— T TIT—o
R C
=™ 0.001 4F

. °

Fig. 7.6. One section of the pulse-forming network
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Solution

The flux density within along solenoid having n turns per metreis given by

B = N (4.29)
The flux linked to unit length of the solenoid is

A= gl (72 79)

where aisthe radius of the former on which it iswound. Then the self inductance per unit length is

L=|§=y0n2(;za2)=1mH.m (7.6)

From the information given the shunt capacitance per unit length is

~10x1x 10°°
25

C =0.004 uF.m™ (7.7)

Thus, from [7.11] and [7.17] we know that the phase velocity and characteristic impedance are

v ——1 _05x10° ms™ (7.8)

Z, = \E =500Q (7.9)

When the lineis discharged it behaves as a source whose impedance is equal to the characteristic
impedance until the discharge pulse has travelled to the other end of the line and back. Thisisthe
reverse of the charging sequence shown in fig.7.5 of the textbook. Thus the amplitude of the voltage
pulse applied to the load is 10 kV and its duration is

T=2—I ﬂ:lops (7.10)

v, 05x10°

The current flowing into the load during the pulse is found using Ohm’s law

~ 10x10°

0

=20A (7.112)

If it is assumed that the lineisloss-less then the total pulse energy is equal to the energy stored in the
capacitors when the lineis fully charged
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1 10x 0.001x10° x(20x10°)°
2 =

W ==CV =2J (7.12)
2 2

Example 7.4
A voltage step generator whose source impedance is 50 Q is connected to an oscilloscope by | m of 50

Q, polythene-insulated, coaxial cable. If the input impedance of the oscilloscopeis 1 MQ in parallel
with 10 pF, find the waveforms appearing at the input of the oscilloscope and at the source.

Solution

The relative permittivity of polytheneis 2.25 so, from [7.46], the phase velocity of waves on the line
is

Vv, =—2 —02x10° ms*? (7.13)

p [
&

and the transit time for signalsisT =5 ns.
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Initially the source sees the cable as a matched load so the incident wave amplitude V, =4Vg where

Vsisthe amplitude of the source voltage step. The amplitude of this wave remains constant because
the cable is matched to the source and any reflected wave is absorbed by the source. Because the input
resistance of the oscilloscope is much greater than the impedance of the source we can make the
approximation that the effective input resistance of the oscilloscope isinfinite.

At the input to the oscilloscope the current is related to the voltage by

av
| =C— 7.14
dt’ (7.14)

where t'=t+T . The current and voltage can be expressed in terms of the amplitudes of the incident
and reflected waves so that

-1 =Cd

T

(V, +V.) (7.15)

Then, substituting for the amplitudes of the currentsin terms of the corresponding voltages and
rearranging (7.15)

dv 1
@ z,g" ) o
0

because V. is constant. Thus

v 1o,
J V) " ZE [at (7.17)

Performing the integrations we have

t!
Z,C

—In(V, -V_)= + const (7.18)

Now the voltage across a capacitor cannot change instantaneously because, as (7.14) shows, that
would require an infinite current to flow. Therefore V, +V_=0whent'=0 so that the constant of

integration is—In ( 2V, ) . Substituting this expression into (7.18) and rearranging gives the equation for
the amplitude of the reflected wave as a function of time

V. =V, (1— Zapi—%n (7.19)
0
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we seethat as t' — o, V. —V, so that the steady-state voltage at the oscilloscope terminalsis Vs
When the system eventually reaches equilibrium the oscilloscope input voltage will be equal to Vs
because the input resistance of the oscilloscope is much greater than the characteristic impedance of
the cable. The time constant of the exponential is

71=2,C=05ns (7.20)

Thus the wave-forms at the oscilloscope input and at the source are as shown in Fig. 7.7.

ViV,
1.0 -

0.5 4

t{ns)

-0.54

v,

1.0

0.5

Fig. 7.7. Waveforms: (a) at the oscilloscope, and (b) at the source

The response of the system to short pulses could be found by superimposing positive and negative
steps at appropriate time intervals.

Example 7.5

A transmission line isterminated by aresistive load which is less than the characteristic impedance
and the VSWR on the lineis 2.0. Calculate the voltage reflection coefficient of the load, the ratio of
the load impedance to the characteristic impedance of the line, and the ratio of the reflected wave to
the incident wave, expressing your answer in decibels.
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Solution
By re-arranging [7.32] we find that the voltage reflection coefficient is

|r|=S—_1=o.33 (7.21)
S+1

Note that because the load is resistive the voltage reflection coefficient isreal. Also, because the load
Zisrea and lessthan Z,, I must be negative. Similarly, rearranging [7.25]

Z 1+ 23 1 (7.22)
Z, 1-T 43 2

Note that thisratio isequal to 1/S if Zisrea and less than Z,. If Zisrea and greater than Z, the
magnitude of the voltage reflection coefficient is the same but the ratio of impedancesisequal to S
Theratio of the amplitude of the reflected wave to that of theincident waveis

20log|I'|=-9.5dB (7.23)

Thisis known as the Return L oss.

Example 7.6

A transmission line has a characteristic impedance of 50 Q, and the wavelength on the lineis 150 mm
at afrequency of | GHz. Given that the lineis 20 mm long and is terminated by a 100 Q load, find the
impedance which would be measured at the input of the line at afrequency of 1 GHz.

Solution

The electrical length of thelineis

K =-2% 0.02=0.838 radians (7.24)
0.15

SO

tan(kl)=1.11 (7.25)

From Equation [7.42] the input impedance of the lineis

Z, +jZytan(K) [100+ j50x1.11

Z! = Zy=| — e
- % | 50+ j100x1.11

50=(37.6-28.1})Q 7.26
Zo+jZ, tan(K) JX ( i) (7.20)
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Example 7.7

A coaxia cable with a characteristic impedance of 50Q is insulated with a dielectric whose relative
permittivity is 2.7. Calculate the wavelength of signals on the line at 500 MHz, 1 GHz and 2 GHz.
Given that a1 metre length of this cableisterminated in a 75Q resistor, calculate the input impedance
of the cable at each of the three frequencies given above.

Solution

The phase velocity of waves on this transmission line is found from [7.46] to be

% _182x10° ms (7.27)

1
V. =— =
i e

The wavelengths at the three frequencies are found from [7.10] to be 365mm, 182mm and 91 mm
respectively. The input impedances at the three frequencies are calculated in exactly the same manner
asin the previous example to give: (33.4-1.7)) Q; (73.7+7.3)) Q; (70.1+13.4j) Q respectively.
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Example 7.8

A polythene-insulated coaxial cable has a characteristic impedance of 50Q and an inner conductor
1 mm in diameter. Calculate the diameter of the outer conductor and the wavelength on the line at a
frequency of 1 GHz.

Solution

The relative permittivity of polythene is 2.25. The characteristic impedance of a coaxial cable is given
by

_ 1 |4 (b
Z°_27z\/jln(aJ [7.47]

where a and b are the diameters of the inner and outer conductors respectively and ¢ is the permittivity
of the dielectric separating them. Hence

In(2j=50x27rx\/2.25>< [%0 ~125 (7.28)
a Ho

so the diameter of the outer conductor should be
2b=2axe'® =35mm (7.29)

From [7.46] the phase velocity is

V=S —0.2x10° ms (7.30)

P J2.25

At 1 GHz the wavelength is given by [7.10] as
v
ﬁ,szzo.zm (7.31)

Example 7.9

A 50Q air-spaced coaxial cable has an outer conductor with 10 mm inside diameter. Calculate the
diameter of the inner conductor. A quarter-wave transformer is needed to match this cable to a 75Q
load at | GHz. Assuming that the outer diameter of the transformer is the same as that of the cable,
calculate the dimensions of the transformer.

145



Electromagnetism for Electronic Engineers — Examples 7. Transmission lines

Solution

Using [7.47] we find that

-12
In(éJ = 50x 27 x| o210 T _ g g3y (7.32)
a 47 x10

Hence the diameter of the inner conductor is
10x e "% = 4.34 mm (7.33)

From [7.43] the characteristic impedance of the quarter-wave transformer must be

Z,=/50x75=61.2Q (7.34)

Thus, from (7.32),

In(é) = 0.834x%=1.021 (7.35)

a
Hence the diameter of the inner conductor is
10xe™ % =3.6 mm (7.36)
At 1 GHz the free-space wavelength is 300 mm so the transformer should be 75 mm long.

Example 7.10

Show that an air-spaced coaxial cable is correctly matched if a sheet of resistive card having a surface
resistance of 377 QQ per square is placed across its end with a short circuit behind it. Find the
position of the short-circuit.

Solution
The resistance to radial flow of electric current of a sheet having inner and outer radii « and » and

sheet resistance Ry is calculated by considering the resistance of a ring of radial thickness dr and
integrating from « to b.

b
R= f Rs ar= ﬁln[ﬁj (7.37)

2rr 27 a
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Now the characteristic impedance of an air-spaced line is given by

7, - ﬂln(éj [7.47]
27\ & a

so, if R in (7.37) is equal to Z, in [7.47] it follows that

Ry= [ =3770 (7.38)
€y

Thus the resistive card forms a shunt resistance equal to the characteristic impedance of the line. If the
line were merely continued beyond the card then the input resistance of the continuing line would be
in parallel with the resistance of the card and the termination would not be matched. To obtain a
matched termination the continuation of the transmission line must present an open circuit at the plane
of the card. Therefore, from [7.43] a short circuit must be placed a quarter-wavelength behind the
card. Note that this arrangement will only be matched exactly at the frequency at which this condition
holds.
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Example 7.11

Find the phase velocity and characteristic impedance of the air-spaced two-wire transmission line
shown infig.7.8.

! 2mm dia.
i 20mm _%

Fig. 7.8. Air-spaced two wire transmission line

Solution

All uniform air-spaced transmission lines propagate TEM waves as the velocity of light.

To find the characteristic impedance it is sufficient to determine either the inductance per unit length
or the capacitance per unit length by analysis of the static fields. The capacitance per unit length of a

transmission line with the dimensions shown in fig. 7.8 was found in Example 2.4 to be 9.4 pF.m™.
Thus, from [7.11] and [7.17]

L 1 1

Z,=.]—==+4LC=——=355Q 7.39
° Yc cC v,C (7:39)
Example 7.12

Find the phase velocity and characteristic impedance for the square coaxial transmission line shown in
fig. 7.9 if the space between the conductors isfilled with amaterial having arelative permittivity of
4.0.

2mm
2mm

4mm

Fig. 7.9. A square coaxial transmission line
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Solution

The phase velocity of TEM waves on all uniform two-wire transmission lines embedded in a uniform
dielectric is equal to the velocity of light divided by the square root of the relative permittivity of the
dielectric (see [7.46]). Thus

V. =

) =0.15x10° m.s* (7.40)

N O

To find the characteristic impedance it is sufficient to find either the capacitance or inductance per
unit length. The capacitance per unit length of an air-spaced line having the form shown in fig.7.9 was
found in Example 2.12 to be 6.29¢, F.m™. Note that this figure depends only on the shapes of the
conductors and not on their absolute dimensions. The capacitance per unit length when the space
between the conductors s filled with adielectric is found by replacing the primary electric constant &
by the permittivity of the dielectric. From (7.39)

L Jeo L i 31T _gq (7.41)

Z = = = =
° v,C 629g¢,C 629x2\ g 629x2
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8. Maxwell’s equations and electromagnetic
waVves

8.1 Introduction

The main purpose of Chapter 8 in the textbook isto summarise the laws of electromagnetism asa

preparation for advanced study of the subject. A few examples are introduced here to illustrate some
of the simpler applications of those laws to electromagnetic waves in free space.

8.2 Summary of the methods available

Note: Thisinformation is provided here for convenience. The equation numbers in the companion
volume Electromagnetism for Electronic Engineers are indicated in square brackets.

Symbol  Signifies Units
S The Poynting vector W.m'?

e Theintegra forms of Maxwell’s equations

Uj[ D.dS=mpdv [8.20]

ﬁ B-dA =0 [8.21]
dD
§H~dl=ﬂ (J+Ej-dA [8.22]
OB
§E-dlz—”H-dA [8.23]

e Thedifferentia forms of Maxwell’s equations

V.D=p [8.24]
V-B=0 [8.25]
VaH=J+2 [8.26]
ot
oB
VAE=-—" 8.2
A P [8.27]
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e The constitutive relations

D=¢E [8.29]
J=cE [8.30]
B=uxH [8.31]

e The phase velocity of plane wavesin free space

vV, = ! [8.37]

’ \ €oto

e Thewaveimpedance of plane wavesin free space

B _ /ﬂ -3770 [8.42]
Ho &g

e The Poynting vector

S=EAH [8.45]
e Poynting'stheorem

The integral of (E A H) over aclosed surface is equal to the instantaneous flow of

electromagnetic power out of the volume enclosed by that surface.

Example 8.1

Show that plane electromagnetic waves can propagate in a uniform dielectric material and find their
phase velocity and wave impedance.

Solution
The solution follows the method used in section 8.6 of the textbook. We assume that waves propagate

in the z-direction and that the electric and magnetic fields have only x and y components respectively.
Then, using Maxwell’ s equations, we obtain as before

OF, = —% [8.33]
0z ot
and
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oH
—— = oD, [8.34]
oz ot

Making use of [8.29] and [8.31] with x = 1, we find that [8.35] is replaced by

o°H O°E
Y _¢ x 8.1
ozor M ap &.1)

O’E,
o

This is the wave equation for waves whose phase velocity is given by

Vv, = —=—— (8.2)

Assuming propagation as exp j (a)t - kz) and substituting in [8.33] we find that
JKE, = jou,H, (8.3)

Thus the wave impedance is

Ly _ o /ﬂo L4
—_— — = ) —_—— —_— 8.4
H, k Ho¥s e Je \ & &4

Example 8.2

The international guidelines for exposure of the general public to electromagnetic radiation in the
range 400 to 2000 MHz state that it should not exceed a power density of // 200 W.m™ where the
frequency f* is in MHz. Find the maximum electric and magnetic field strengths permissible at 2000
MHz.

(See: Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electro-magnetic
Fields (Up To 300 GHz), Table 7, International Commission on Non-Ionizing Radiation Protection,
1998; available at http://www.icnirp.de/documents/emfgdl.pdf’)

Solution

The time-average power density in an electromagnetic wave is given by
S=1EH, (8.5)

where E, and H, are the amplitudes of the electric and magnetic fields.
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Substituting for Hy from [8.42]

E, =28 x377 =/2x10x377 =87 V.m ™ (8.6)

Substituting for £y in [8.42]

o L0 8T a3 Am? (8.7)
377 377

Note: This information needs careful interpretation in practical cases because radio-frequency

antennas do not radiate power uniformly in all directions and the fields at distances closer to an
antenna than around ten wavelengths can not be approximated by plane waves

Example 8.3

Calculate the wave impedances of electromagnetic waves travelling in free-space, polystyrene

(sr = 2.7) and alumina (gr = 8.9). Find the time-average power density in each case if the amplitude

of the electric field is 100 V.m''.
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Solution

The wave impedances calculated from (8.4) are 377 Q, 229 Q and 126 Q respectively. The power
density may be calculated using (8.5) and (8.4)

_Es
27

w

S=1E,H,

(8.8)

where Z,, is the wave impedance. Substitution of the given field strength and the wave impedances
gives 13.3, 21.8 and 39.6 W.m respectively.

Example 8.4

The reflection and transmission of plane electromagnetic waves at plane dielectric boundaries normal
to the direction of propagation can be treated by using transmission line theory in which the electric
and magnetic field strengths are represented by the voltage and current and the wave impedance is
represented by the characteristic impedance. Use this method to estimate the attenuation of an
electromagnetic wave at 2 GHz as it passes through a brick wall 120 mm thick assuming that the
relative permittivity is 4.0 and that losses can be neglected.

Solution

In air the wavelength of radio waves at 2 GHz is 150 mm and the wave impedance is 377 Q. Making
use of (8.2) and (8.4) the wavelength in brick is 75 mm and the wave impedance is 189 Q. The
electrical thickness of the brick is

g =27 27420 40 adians (8.9)

A 75

The problem can therefore be represented by the equivalent transmission line network shown in fig.
8.1 in which the source is taken to be at the left of the diagram. Waves which pass through the wall
are assumed to be absorbed in a matched load.

|

3770 189 O3 377 Q

Y
-

Fig. 8.1. Transmission line equivalent circuit for example 8.4
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The impedance terminating the 189 Q line at A is 377 Q. The input impedance to the line at B can be
found from [7.42]

377+ j189tan(10.1)

o= : x189=183- j131 (8.10)
189+ j377tan(10.1)

Then the voltage reflection coefficient at B is, from [7.25]

_186- 131377 458 j0.30 (8.11)
186— 131+ 377

For unit incident power the reflected power is
IT[*=0.165 (8.12)
Therefore the amplitude of the transmitted wave in decibels relative to the incident wave is

A=10|og( 1—|F|2)=10Iog(0.835)=—O.79dB (8.13)

Example 8.5

A long straight cylindrical wire carries a current |. Given that the wire has radius a and resistance R
per unit length, calculate the power dissipated per unit length both directly and by integration of the
Poynting vector.

Solution

(a) By direct methods. The power dissipated per unit lengthis| °R.

(b) By Poynting’ s theorem. Just outside the surface of the wire, the magnetic circuit law gives

Hy=—— (8.14)

Electric field isthe voltage drop per unit length
E.=IR (8.15)
The Poynting vector on the surface of the wireis

S - EH _I°R (8.16)
- 7Y 2za '
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The fig.8.2 shows the directions of E, and H,. It is clear that the Poynting vector is directed into the
surface of the wire as represented by the minus signin (8.16). The power flow into unit length of the
wire isfound by integrating the Poynting vector over acylinder just outside the wire which has radius
a and unit length. The total power flow into the wireis

W=-2z7aS =1°R (8.17)

as before. Thus the ohmic power lossin the wire can be considered the result of a steady flow of
energy into the wire from the surrounding electromagnetic field. The circuit and field approaches are
aternative descriptions of the same situation.

/

E, /

Fig. 8.2. Electric and magnetic fields associated with current flow in a resistive wire
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