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Foreword

The sources of quasimonochromatic radiation of electrons, which are based on
their passing through various periodic structures (undulator, crystal, field of laser
flash), as well as close to the optical gratings (Smith-Purcell radiation) are con-
sidered in this monograph. Alongside with such traditional radiation mechanisms,
as the coherent bremsstrahlung and undulator radiation, which properties have
been investigated in details in the last 50–60 years, relatively new radiation
mechanisms (parametric X-ray radiation, Smith-Purcell radiation, radiation of
electrons in the field of laser flash) have been significantly attended in this book.

The theory bases of the considered effects are stated, as well as the recent
experimental results are described in this book.

Tomsk, 2010 Alexander Petrovich Potylitsyn
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Preface

In the existing literature there are a number of monographs, with sufficient com-
pleteness describing such traditional radiation mechanisms, as undulator radiation,
bremsstrahlung, coherent bremsstrahlung, transition radiation. However, the
interest has appreciably increased in recent years to such effects, as parametric X-
ray radiation, Smith-Purcell radiation, Compton-effect on the relativistic electrons
(which can be treated as radiation in a ‘‘light’’ undulator).

These new mechanisms of radiation, as well as some others (for example, the
resonant transition radiation) have the common characteristic i.e. the radiation is
quasimonochromatic one because of the constructive interference of radiation
fields from each element of periodic structure.

An attempt to assemble the results of the numerous theoretical and experi-
mental works devoted to investigation of radiation, which is generated by rela-
tivistic electrons in different periodic structures with the period from *10–8 cm
(the crystals) up to *1 cm (undulators) is made in this book. Author tried to
present the book contents in the form being available for researchers planning the
usage of radiation beams for applied purposes, as well as for beginning scientists.
So, the list of quoted literature does not claim to be exhaustive.

The author is very much obliged to colleagues B.N. Kalinin, V.N. Zabaev,
I.E. Vnukov, Yu.N. Adischev, G.A. Naumenko, V.V. Kaplin, S.R. Uglov, A.S.
Gogolev, V.A. Verzilov, D.V. Karlovets, L.G. Sukhikh (Tomsk Polytechnic
University), prof. I. Endo (Hiroshima University, Japan), prof. K. Yoshida, prof.
H. Okuno (the Institute of Nuclear Studies, Tokyo University, Japan), Dr.
T. Suwada (the National Accelerating Center RTR, Japan), who are his co-
authors in numerous experimental studies, in a varying level reflected in the
book.

The author is also grateful to prof. B.M. Bolotovsky, prof. N.F. Shul’ga,
prof. N.N. Nasonov, prof. E.G. Bessonov, prof. V.M. Katkov, prof. V.M.
Strakhovenko, prof. V.G. Serbo, prof. M.N. Strikhanov, prof. M.I. Ryazanov,
prof. K.A. Ispiryan, prof. H. Backe, Dr. G. Kube, Dr. A.V. Shchagin, Dr. A.A.
Tishchenko for stimulating discussions, which certainly have influenced upon
the content of the book.
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Author expresses the special thanks to L.V. Puzyrevich, E.A. Babakhanyan for
the invaluable help in preparing the manuscript for publication.
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Chapter 1
Introduction

The periodic magnetic structures (undulators) are widely used in many accelerator
centers for generation of the monochromatic radiation in the wavelength range
from the far infrared up to the c-range. The emission spectrum in such a periodic
structure is quasimonochromatic due to a constructive interference of radiation
fields generated by a charged particle on each element of the structure.

The trajectory of a particle in such a magnetic system is either a periodic plane
curve (close to a sinusoidal one) in the plane undulator, or spiral one in the helical
undulator. The period of a trajectory d in both cases is defined by the period of
undulator and, as a rule, due to the technical reasons it cannot be chosen much less
than 1 cm.

The resonance condition, connecting an emission frequency x and the photon
outgoing angle h (along the unit vector n), can be written in the form:

x ¼ k X

1� n
hVki

c

¼ k X

1� hVkic cos h
; k ¼ 1; 2; 3; . . .; ð1:1Þ

where X denotes the frequency of a trajectory disturbance, hVki—an average
longitudinal velocity of the electron. For ultrarelativistic particles with Lorentz-
factor c � 1 and emission angles of photons h� c�1 � 1 this expression is
written as [1]:

x ¼ 2kXc2

1þ c2h2 þ c2hb2
?i
; ð1:2Þ

where hb2
?i is a mean square velocity of electron in transverse direction in units of

the speed of light.
In the case of undulator radiation (UR)

X � 2pc

d
� 1011 s�1 ð1:3Þ

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
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It should be pointed out that relationship (1.2) does not depend on the determined
mechanism of radiation. During the passing of relativistic electron through a
crystal the straight trajectory of a particle has been disturbed with a period d sin w
(d is a period of crystalline lattice, w is the angle between crystalline axis and
particle momentum), which is just the reason of the quasimonochromatic radiation
occurrence named the coherent bremsstrahlung (CBS).

In pioneering works devoted to the bremsstrahlung process in an oriented
monocrystaline target [2, 3] authors used the term ‘‘interference effect of brems-
strahlung’’ and only a few years later in the work of Diambrini [4] the term
‘‘coherent bremsstrahlung’’ was introduced.

Nowadays one understands ‘‘coherent radiation’’ as a radiation from a charged
particle ensemble (bunch) if the emission wavelength is greater than a bunch
length. Authors of the works [5, 6] used the term ‘‘coherent bremsstrahlung’’
considering the process of radiation of a charged particles bunch caused by the
collective electromagnetic field of the counterpropagating bunch.

In order to keep the traditional terminology the process of bremsstrahlung in a
crystal will be described as the coherent bremsstrahlung. But a reader should have
in mind that this process is the resonant bremsstrahlung only.

In the CBS case (d 3 5 Å, w� 10�2 rad), and, therefore, X � 2pcw=d ¼
4� 1016 s�1.

However despite such a big difference of natural frequencies (five orders of
magnitude), the main characteristics of the radiation have been described by the
similar formulae just because of the fact that spectral–angular distribution of both
types of radiation is defined by the formula (1.2), so, as a rule, the typical energy of
CBS photons is such that it is possible to neglect their absorption in crystal.

At present the UR and CBS generated by the beams of ultrarelativistic electrons
in the modern accelerators are widely used both in the applied, and in the basic
investigations (see, for example, the books [1, 7–9]) in many respects due to such
characteristics, as monochromaticity, polarization, tunability, which are the result
of radiation generation in the periodic structure.

In recent years the great interest has been attracted to such types of radiation
generated by the electron beams, as the resonant transition radiation, Smith–
Purcell radiation, Compton scattering of laser photons by a counterpropagated
relativistic electron beam. In spite of the difference in mechanisms, the main
characteristics of the radiation are defined by periodicity of the structure, through
which (or close to which, as in the case of the Smith–Purcell radiation) the beam of
electrons passes. From this point of view the process of Compton scattering of the
laser photons on the beam of electrons can be considered as the radiation of
electrons in the ‘‘light’’ undulator.

The theoretical approaches describing the different radiation mechanisms from
the unified point of view are described in presented monograph, as well as the most
interesting experimental results received last years are given here.

In conclusion it should be noted that all radiation mechanisms may be divided
in two classes [1]:

2 1 Introduction



• Radiation from the accelerated charge;
• Radiation from polarization currents induced in the condensed media through

which (or close to) the relativistic charge passes.

The first class is more known (synchrotron and undulator radiation, brems-
strahlung, radiation from electrons interacting with intense laser field), and the
second one called polarization bremsstrahlung includes such kinds of emission as
Cherenkov radiation, transition radiation [10], Smith–Purcell radiation [11] and
so on. Despite such a big distinction in origin of radiation mechanisms mostly
important features of radiation from different periodic structures are common and
may be calculated using the unified approach.
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Chapter 2
Basic Characteristics of Electromagnetic
Radiation

2.1 Radiation Characteristics in the Classical and Quantum
Electrodynamics

In case of charged particle motion in an external field, one of the most fruitful
approaches allowing to calculate the characteristics of radiation, generated by a
particle with charge e, is an approach, where a trajectory r(t) of the particle in the
given field has been found at first, and then the electric and magnetic components
of the electromagnetic field are defined according to the rules of classical elec-
trodynamics [1]:

E tð Þ ¼
e 1� b2� �

n� bð Þ
R2 1� n bð Þ3

þ
e n n� bð Þ b

:h ih i

cR 1� n bð Þ3
; ð2:1:1aÞ

H tð Þ ¼ n t0ð ÞE tð Þ½ �: ð2:1:1bÞ

In these expressions cb ¼ _r tð Þ; n is a unit vector in direction connecting the
observation point with a charge at the retarded moment of time t0,

t � t0 ¼ R� r t0ð Þj j
c

: ð2:1:2Þ

Here R is a radius-vector of the observation point.
It is clear, the similar approach gives the reasonable results in a case when it is

possible to neglect the particle energy losses due to photon emission (radiation
losses), i.e. when the process of radiation has no influence upon a trajectory of the
particle.

The first summand term in the formula (2.1.1a) being proportional to R�2 does
not depend on acceleration of the charge _b and characterizes the quasi-stationary
Coulomb field of the moving charge itself (so called ‘‘velocity field’’) while the

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
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second summand being inversely proportional to the distance R and depending on
the charge acceleration, characterizes the radiation wave field (‘‘acceleration
field’’) [1]. The range of the distances R, where the contribution of the first
summand is negligible in comparison with the contribution of the second one,
refers to the wave (or far-field) zone. In the wave zone both components of the
field (2.1.1a) and (2.1.1b) are perpendicular to the vector n that allows to introduce
the Poynting’s vector S ¼ EH½ �; directed along a wave vector and describing the
density of the energy flow of the electromagnetic wave.

The angular distribution of an energy flow (intensity) in a solid angle dX (the
value defined in the observation point) is determined through the Poynting’s
vector:

dI

dX
¼ cR2

4p
Sj j ¼ cR2

4p
Ej j2: ð2:1:3Þ

The angular distribution of the power of particle radiation losses (with a value
determined in a particle position) is connected with intensity (2.1.3) as follows:

dP

dX
¼ 1� nbð Þ dI

dX
: ð2:1:4Þ

Going over to Fourier-components of a field, it is possible to get the expressions

E xð Þ ¼ e

cR
eikR

Z
n E� bð Þ _b
� �� �

1� bnð Þ2
eiðxt�krÞdt;

H xð Þ ¼ n E xð Þ½ �:
ð2:1:5Þ

Substituting the received expressions in (2.1.3), it is possible to receive the
spectral–angular distributions:

dI

dx dX
¼ cR2

4p
E xð Þj j2: ð2:1:6Þ

As a rule, the radiation is formed by a source with a finite area S, moreover, this
source can emit the electromagnetic waves (the photons) anisotropically. In this
case the radiation is characterized by brightness

L ¼ dP

dX dS

W

sr�m2

� �
ð2:1:7Þ

and spectral brightness:

dL

dx
¼ dP

dx dX dS

W

s�1 � sr�m2

� �
: ð2:1:8Þ

For the radiation with frequencies from optical and above ones the spectral
brightness is often assigned through the number of photons. Using the Planck’s
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law e ¼ �hx in semi-classical approach, the energy characteristics are expressed
through the number of photons N:

dP ¼ e
dN

dt
: ð2:1:9Þ

Then instead the spectral brightness one may use the brilliance

dL

de
¼ B ¼ dN

dt dX dS de=e
photon

s� sr�m2 � de=e

� �
: ð2:1:10Þ

The spectral–angular density of radiation is got after the integration on the
source area

I h;w; eð Þ ¼
Z

S

B dx dy
photon

s� sr � De=e

� �
: ð2:1:11Þ

The spectral flux (spectral density) is calculated after the integration over a
solid angle

US eð Þ ¼
Z

B dx dy dX
photon

s� De=e

� �
: ð2:1:12Þ

And finally, the radiation flux is received via the integration over a spectrum:

U ¼
Z

US eð Þ de=e
photon

s

� �
: ð2:1:13Þ

The field strength of the monochromatic electromagnetic wave (for example, the
laser radiation) is characterized by the dimensionless parameter:

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2 A2h i

mc2ð Þ2

s

¼ e E0

mc x
: ð2:1:14Þ

In the last formula by A2
	 


a mean-square value of an electromagnetic vector
potential is designated, E0 is an amplitude of a wave.

In the majority of experiments the beams of the electromagnetic radiation,
formed by means of different optical systems, including, for instance, mirrors,
apertures, lenses, etc. are used. In this case, the radiation power can be distributed
on the area of the target according to an arbitrary law. Then after the integration
with respect to the beam cross-section, we can receive:

P ¼
Z

r

dP

dS
dr ¼ Ireff ; ð2:1:15Þ
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where I ¼ dP=dSh i is an averaged value of the power flux density, reff is an
effective area of the beam. In the laser physics, the parameter laser field strength
[2] is often used

I ¼ P

reff

; I½ � ¼W/cm2; ð2:1:16Þ

which can be expressed through the density of the energy of the laser flash q:

I ¼ P� cs
reff � cs

¼ c
W

V
¼ cq: ð2:1:17Þ

In the last expression through s is designated the flash duration, V is a volume,
occupied with laser photons. Then instead of (2.1.14), it is possible to receive a
more evident formula:

a2
0 ¼

2r0Ik2

p mc3
¼ 2r0k

2 q
p mc2

; ð2:1:18Þ

where r0 = 2.82 9 10-13 is the classical radius of an electron, as well as the
‘‘engineering’’ formula:

a0 ¼ 0:85� 10�9k l½ � I1=2 W/cm2
� �

: ð2:1:19Þ

In formulas (2.1.18) and (2.1.19), k is a length of a monochromatic wave.
Going from the energy density to the concentration of photons per volume unit

n: n ¼ q=�hx, it is possible to receive the estimation of (2.1.18) through the number
of photons in a volume 4a k2

e k; i.e. in a parallelepiped with transverse cross section

�k2
e (�ke is the Compton wavelength of the electron) and length 4ak:

a2
0 ¼ 4a k2

e k n; ð2:1:20Þ

a ¼ 1=137 is the fine structure constant.
For a field strength parameter a0 C 1, it is spoken about the ‘‘strong’’ elec-

tromagnetic wave, whereas the ‘‘linear’’ model of the classical electrodynamics
remains valid for a0 � 1.

2.2 Polarization Characteristics of Radiation

Hereinafter, the usage of the term ‘‘the photon beam’’ supposes that it concerns the
electromagnetic radiation propagating along the fixed direction with a negligibly
small angular divergence, the characteristics of which (intensity, polarization,
position of maximum in spectrum, temporal modulation, etc.) are possible to
adjust in a rather large range.
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A single photon, i.e. an elementary particle with a spin equal to 1, definitionally
exists in a pure spin state (just as the flat monochromatic electromagnetic wave—a
classical analogue of a photon—is always completely polarized). There is a whole
ensemble of photons in a real beam, therefore, for the description of a beam
polarization as a whole (after averaging on ensemble), the matrix of the density qij

(Hermitian tensor of the second rank determined in a plane, which is perpendicular
to a direction of photon beam propagation) is used:

qij ¼
1
2

1þ n3 n1 � in2

n1 þ in2 1� n3

 !

¼ 1
2

dij þ nr
� �

; ð2:2:1Þ

where r ¼ r1; r2; r3f g are the Pauli matrices.
Three real-valued parameters ni (i = 1, 2, 3)—so-called Stokes parameters

completely describe a polarization state of a photon beam. The Stokes parameters
n1, n3 characterize the linear polarization of a beam, and n2 the circular one. The
values n2

1 þ n2
3 and n2 are the Lorentz-invariants. Parameters n1, n3 are scalars, and

n2 is pseudo-scalar.
In case when none of Stokes parameters is equal to zero, it is spoken about

elliptic polarization, and when n2 = 0—about linear polarization of the radiation.
In the last case, the following values are often used instead of the Stokes

parameters:

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
3

q
ð2:2:2Þ

is a degree of polarization;

u0 ¼ 1=2ð Þ arctg n1=n3ð Þ ð2:2:3Þ

—the inclination angle of a plane of the maximal linear polarization concerning
the chosen system of basis vectors (for instance, concerning a plane XZ, if Z-axis is
directed along a photon beam direction).

The degree of linear polarization P can be determined as follows:

P ¼ Njj � N?
� �

= Njj þ N?
� �

; ð2:2:4Þ

where Njj ?ð Þ is the number of the photons polarized parallel (perpendicularly) to a
plane of the maximal linear polarization.

Reverse transition to the Stokes parameters follows from (2.2.2), (2.2.3):

n1 ¼ P sin 2u0ð Þ; n3 ¼ P cos 2u0ð Þ: ð2:2:5Þ

An unpolarized beam can be always presented as superposition of two non-
interacting completely polarized beams of photons with identical intensity and
with mutually perpendicular planes of polarization. Similarly, it is possible to
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present a partly polarized photon beam (for which 0\n2
1 þ n2

2 þ n2
3\1) as

superposition of completely polarized and non-polarized beams with various
intensities.

In the classical electrodynamics, the Stokes parameters are calculated as
follows:

n1 ¼
E�1E2 þ E1E�2
E1j j2þ E2j j2

; n2 ¼ i
E�1E2 � E1E�2
E1j j2þ E2j j2

; n3 ¼
E1j j2� E2j j2

E1j j2þ E2j j2
: ð2:2:6Þ

The components of the field are calculated in a system, where the third axis
coincides with the direction of a wave vector. If the task has any chosen plane, the
coordinate system is assigned via basis vectors. If in problem there is a chosen
plane, then the coordinate system is

e1 ¼ c1 n; b½ �; e2 ¼ e1; n½ �; n ¼ k=x; ð2:2:7Þ

where b is the vector, perpendicular to the chosen plane; k is a wave vector; x is a
frequency; c1 is a normalization factor.

For the radiation of ultrarelativistic particles the cone of outgoing photons has
an opening of order c-1 (c is the Lorentz-factor) relative to the average value of the
electron momentum. Therefore, it is possible to speak about the mean polarization
of a beam (with accuracy to c-2) if the radiation cone is formed by the aperture
with opening DX� c�2. In this case, for calculation of average Stokes parameters
in (2.2.6), it is necessary to use the bilinear combinations of fields E�i Ek

	 

, aver-

aged on the given angular interval:

E�i Ek

	 

¼
Z

DX

dX E�i Ek; i; k ¼ 1; 2: ð2:2:8Þ

Generally speaking, the averaging similar to (2.2.8) can be carried out not only by the
angular variables but also by any other non-observable kinematic ones. Thus, during
the calculation of polarization characteristics of coherent bremsstrahlung, the
averaging similar to (2.2.8) is carried out by the momentum of a final electron [3].

2.3 The Formation Length of Radiation by a Charged Particle

Ter-Mikaelyan in his monograph [4] considering the spatial region, in which the
bremsstrahlung is generated by ultrarelativistic electron moving in a medium, has
shown that the longitudinal size of this region (along the direction of the initial
electron) sharply increases with the growth of the electron Lorentz-factor and with
decrease of the photon energy. This spatial scale, which was named ‘‘formation
length’’ ‘f, can have macroscopic sizes greatly exceeding the wavelength of the
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bremsstrahlung photon. After the passage of the length ‘f, the electron and emitted
photon can be considered as independent particles.

The estimation of this spatial scale can be found from classical electrodynamics
(see, for example, [5]). In this approach, the charge, which passes through a rather
small area and where external fields are concentrated, is emitted an electromag-
netic wave with the length k without appreciable distortion of a charge trajectory
and the change of its energy (see Fig. 2.1).

The determination of the formation length follows from the phase relationships:
on the length ‘f, which a charge passes after the area of a field at velocity b, the
front of a wave, emitted in angle h, should ‘‘lag behind’’a charge for a wave length:

‘f

b
� ‘f cos h ¼ k; ð2:3:1Þ

and (2.3.1) directly results in the formula for the formation length:

‘f ¼
k

1=b� cos h
: ð2:3:2Þ

In the ultrarelativistic approach 1=b � 1þ c�2=2ð Þfor the ‘‘straightforward’’
radiation we have

‘f ¼ 2c2k: ð2:3:3Þ

If the following area of a field concentration is located along a trajectory on the
distance L\‘f (see Fig. 2.1), then in this case the electromagnetic waves, emitted
by a charge in two areas of an external field, will interfere in a destructive manner,
i.e. the intensity of resulting radiation will be less than the sum of intensities from
two independent sources.

Let carry out the quantum consideration of the formation length problem on an
example of bremsstrahlung, following to Ter-Mikaelyan [4].

We shall estimate the minimal value of a longitudinal recoil momentum ql,
which is transferred to a nucleus, during the process of bremsstrahlung of the
ultrarelativistic electron with energy e1. Such situation is realized for collinear
geometry, when the final electron with energy e2 and a photon with energy �hx
move along the direction of the initial electron:

ql min ¼ p1 � p2 � k: ð2:3:4Þ

Fig. 2.1 The scheme
illustrates the concept of the
formation length
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Here p1, p2, k are momenta of initial and final electrons and photons, accordingly.
Neglecting the energy transferred to a nucleus (i.e. in case of fulfillment of a
condition e1 ¼ e2 þ �hx), momentum pi in the ultrarelativistic approach becomes

p1 ¼
e1

c
1� 1

2c2
1

� �
; p2 ¼

e1 � �hx
c

1� 1

2c2
2

� �
;

and (2.3.4) results in

ql min ¼
mc

2c1

�hx
e2
: ð2:3:5Þ

From the uncertainty principle it follows that the last expression defines the length:

‘ ¼ h

ql min

¼ 2c1�ke
e2

�hx
; ð2:3:6Þ

where �ke is the Compton wavelength of an electron. It is clear that for the case
�hx� e1; e2 (i.e. e2 � e1) from the formula (2.3.6) follows the expression (2.3.3):

‘ ¼ 2c2k ¼ ‘f

that illustrates the generality of the concept of the formation length both for
quantum consideration, where recoil effects are important, and for classical one.

The concept of the formation length plays an important role in considering of
various physical effects (see in detail the review [6]). With regard to the radiation
in periodic structures, where a constructive interference is the reason of mono-
chromaticity of the radiation spectrum (for the fixed radiation angle h), the
wavelength corresponding to the spectral line with minimal frequency (so-called
‘‘fundamental’’ harmonic), is defined from the relationship

‘f ¼ d; ð2:3:7Þ

where d is a period of the structure.
Expression (2.3.7) does not depend on the radiation mechanism and is appli-

cable both in classical electrodynamics (for instance, for undulator radiation or
Smith–Purcell radiation), and in quantum one (the typical example is the coherent
bremsstrahlung). The mentioned mechanisms, as well as some others, are con-
sidered in the following chapters of this book.

2.4 Interference Factor and the Resonance Condition

Let us consider the electromagnetic radiation of the charge moving on a flat
periodic trajectory (Fig. 2.2). Let us designate through E1 kð Þ the radiation field on
the first period, where k is a wave vector; Dte ¼ d=bkc is time of the electron
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passing with velocity bkc through the first period; DtK ¼ d cos h=c is time of the
wave front passing from the first period till identical position on the second period.

The phase difference of two wave packages generated by electron on the first
and second periods are the follows:

U ¼ x Dte � DtKð Þ ¼ 2p
k

bjjc
d

bjjc
� d cos h

c

 !

¼ 2p
d

k
1� bk cos h
 �

: ð2:4:1Þ

Thus, the field of radiation on the second period is defined by the expression

E2 kð Þ ¼ E1 kð Þ exp iUð Þ: ð2:4:2Þ

Reasoning by analogy, it is possible to express the radiation field for the nth
period as:

En kð Þ ¼ E1 kð Þ exp i n� 1ð ÞUð Þ: ð2:4:3Þ

Then the total field from the periodic structure containing N elements is repre-
sented as the sum

ER kð Þ ¼ E1 kð Þ þ E2 kð Þ þ E3 kð Þ þ 	 	 	 þ EN kð Þ
¼ E1 kð Þ 1þ exp iUð Þ þ exp i 2 Uð Þ þ 	 	 	 þ exp i N � 1ð ÞUð Þf g: ð2:4:4Þ

Having designated (expðiUÞ ¼ q), we shall receive an expression for the total
intensity of the field:

ER kð Þ ¼ E1 kð Þ 1þ qþ q2 þ 	 	 	 þ qN�1
� �

¼ E1 kð Þ1� qN

1� q
¼ E1 kð Þ 1� exp iNUð Þ

1� exp iUð Þ ; ð2:4:5Þ

using the well-known formula for a geometric progression.

Fig. 2.2 Constructive
interference of the
electromagnetic radiation in
the periodic structure
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The spectral–angular distribution of the radiation intensity can be calculated,
knowing the field intensity:

d2WR

dx dX
¼ const ER kð Þj j2

¼ const E1 kð Þj j2
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

d2W
dx dX

1� exp iNUð Þj j2

1� exp iUð Þj j2
¼ d2W

dx dX
FN : ð2:4:6Þ

Here d2W
dx dX ¼ const E1 kð Þj j2 describes the radiation ‘‘collected’’ from one period of

a trajectory, and a multiplier

FN ¼
1� exp iNUð Þ
1� exp iUð Þ

����

����

2

ð2:4:7Þ

refers to as an interference factor, since it describes the interference from
N identical radiators.

Using known trigonometric rules, the last formula can be rewritten as

FN ¼
sin2 NU=2ð Þ
sin2 U=2ð Þ

: ð2:4:8Þ

The function FN has a set of sharp maxima for the values of an argument, which
makes a denominator zeroth:

U
2
¼ p

d

km
1� bk cos h
 �

¼ m p; m is an integer:

The last formula is reduced to the following expression for the case b � bk

km ¼
d

m
1� b cos hð Þ; ð2:4:9Þ

which was received regardless to any fixed radiation mechanism and can be
applied to any type of radiation, which is characterized by the periodic disturbance
of a trajectory. The received relationship is generalization of the resonance con-
dition (2.3.7) for m 6¼ 1.

Frequently, the index m ¼ 1; 2; 3; . . . refers to harmonic number. The harmonic
m = 1 for ultrarelativistic particles with frequency

x1 ¼
4pc2c

d 1þ c2h2� � ¼ 2c2x0

1þ c2h2 ð2:4:10Þ
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is identified as fundamental. The resonance condition brings to the following
conclusion: the frequencies of the higher harmonics in m time differ from fun-
damental ones:

xm ¼ m x1: ð2:4:11Þ

The diagram of the function FN is presented in Fig. 2.3 for h = 0 at N ¼ 5 and 10.
As expected, the function FN differs from zero in a small range of frequencies

close by xm, and the width of this range is defined by a number of the periods:

Dxm

xm
� 1

N
: ð2:4:12Þ

As it follows from the picture, the maximal value of the function is

FN max ¼ N2: ð2:4:13Þ

From (2.4.12) and (2.4.13) it follows that the area under the peak is

S�Dxm � FN max ¼ Nxm ð2:4:14Þ

and linearly increases with a number of periods.
For big values N 
 10 the function FN (2.4.7) is approximated well by

d-function:

FN � 2p Nd U� 2m pð Þ ¼ N

m
d

x
m x0

1� b cos hð Þ � 1

� �
: ð2:4:15Þ
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Chapter 3
Undulator Radiation

3.1 Moving of Charged Particle in Periodic Magnetic Field

Let us consider a case, when the magnetic field is directed along x-axis and is
periodic with the period ku along z-axis (so-called plane undulator, see Fig. 3.1a,
and the law of magnetic field change is described by a sinusoid [1]:

H ¼ Hx; 0; 0f g; Hx zð Þ ¼ H sin
2pz

ku
: ð3:1:1Þ

The equation of a charge e movement in an external electromagnetic field is
given by expression:

dp

dt
¼ eEþ e

c
t�H½ �; ð3:1:2Þ

where p ¼ cmc t=c is a particle momentum.
The relativistic electron (c� 1) flies into the undulator along z-axis. It is clear

that a trajectory of the electron is flat and lies in the yz-plane.
From (3.1.2) we can obtain a system of equations for two components of the

electron velocity:

dtz

dt
¼ e

cmc2
Hx z tð Þð Þty;

dty

dt
¼ e

cmc2
Hx z tð Þð Þtz:

ð3:1:3Þ

Considering a magnetic field being weak enough (or, in other words,
ty

�� ��� tz � c), it is possible to obtain an approximate solution of system (3.1.3).
The second equation in this approach (z ¼ ct) gives the following dependence
for tyðtÞ:

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_3,
� Springer-Verlag Berlin Heidelberg 2011
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cbz ¼ tzðtÞ � tk ¼ const,

by ¼
ty tð Þ

c
¼ � eHku

2pcmc2
cos

2pz

ku
:

ð3:1:4Þ

The velocity tz is easy to derive from a condition c ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t2

yþt2
zð Þ=c2

p ¼ const

(the particle energy does not change in magnetic field).
Hence in the same approach, as before,

tz tð Þ ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�2 � b2

y

q
� c 1� 1

2
c�2 þ b2

y tð Þ
� �� �

: ð3:1:5Þ

From (3.1.4) it is possible to obtain the equation:

b2
y

D E
¼ 1

2
eHku

2pcmc2

� 	2

: ð3:1:6Þ

Let us estimate this quantity for typical values: H ¼ 1 T ; ku ¼ 5 cm; c ¼ 103.
Using the ‘‘engineering’’ formula: eH = 3 9 106 (eV/cm) H [T], we obtainffiffiffiffiffiffiffiffiffiffiffi
b2

y

D Er
¼ 0:021� 1:

This value characterizes an average deflection of trajectory from a straight line.
Often instead of (3.1.6) the so-called deflection parameter (undulator parameter)
is used:

hb2
yi ¼

K2

2c2
; K ¼ c

eHku

2p c mc2
: ð3:1:7Þ

The physical meaning of parameter K is connected with the maximal angle w
between the line tangent to a trajectory and average velocity of a the particle bh i:

Fig. 3.1 a The scheme of
plane magnetic undulator;
b the scheme of helical
magnetic undulator
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K ¼ c w � c ku=Rð Þ:

Having substituted to the expression for radius R of the trajectory of electron
with energy E in a constant magnetic field H in the previous formula, we receive

K ¼ cðeHku=bEÞ � cðeHku=EÞ:

Then from (3.1.5) follows

tk ¼ htz tð Þi ¼ c 1� 1
2c2

1þ K2

2

� 	� �
: ð3:1:8Þ

Reasoning by analogy to the usual Lorentz-factor, the so-called longitudinal
Lorentz-factor is often used:

c2
k ¼

1

1� t2
k=c2

¼ c2

1þ K2=2
: ð3:1:9Þ

In the next approximation the longitudinal velocity vz tð Þ ¼ cbzðtÞ will depend
on time:

cbzðtÞ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � K2

c2
cos2

2p Vk t

ku

s

¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� c�2 � K2

2c2
1þ cos

4p Vk t

ku

� 	s

:

From here we have

bzðtÞ ¼ 1� 1
2c2

1þ K2

2

� 	
� K2

4c2
cos

4p tk t

ku

¼ bk �
K2

4c2
cos

4p tk t

ku
: ð3:1:10Þ

That is to say the longitudinal velocity is modulated with the double frequency
in comparison with transversal one. From (3.1.4) and (3.1.10) it is easy to derive
the equations of the motion:

y ¼ �K ku

c 2p
sin x0t;

z ¼ cbk t � K2ku

4c2p
sin 2x0t;

x0 ¼ 2pcbk=ku:

ð3:1:11Þ

The Eqs. (3.1.11) describe the electron trajectory in a yz-plane, being repre-
sented parametrically. In the system, where electron is at rest on the average, i.e. in
the system moving with velocity cbk in parallel with z-axis (further we shall
designate it as R), after standard Lorentz-transformations we receive
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bzR ¼ � K2



4
� �

cos 2xR tR; byR ¼ �K cos xR tR;

where xR ¼ x0 ck ¼ 2pc=kuð Þck:
In this system the equation of trajectory is easily found after integration of the

equations and exception of parameter tR:

yRxR

c

� �2
K2 � yRxR

c

� �2
� �

¼ 16
zRxR

c

� �2
: ð3:1:12Þ

Evolution of a particle trajectory depending on parameter K is shown in
Fig. 3.2. It is easy to see that for values of parameter K � 0:1 the trajectory comes
nearer to a straight-line one (i.e. the particle makes along y-axis harmonious
oscillations with small amplitude).

If the source moving with velocity bk emits on frequency xR, then in the
laboratory system a frequency x hð Þ is registered under the angle h

x hð Þ ¼ xR

ck 1� bk cos h
� � ¼ x0

1� bk cos h
: ð3:1:13Þ

The formula (3.1.13) can be rewritten as ku ¼ k=1� bk cos h; where in the right
part there is the formation length that coincides with a condition (2.3.7). For the
ultrarelativistic case

0.5

(a) (b)

Fig. 3.2 An electron
trajectory in R-system in
yz-plane for various values
of parameter K
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xðhÞ ¼ x0

1� 1� 1þK2=2
2c2

� �
1� h2

2

� � ¼ 2c2x0

1þ K2=2þ c2h2: ð3:1:14Þ

The typical wavelength of an undulator radiation (UR) in straightforward
direction (h ¼ 0) is defined by the Lorentz-factor and the undulator parameter:

k1 ¼ ku K2 þ 2
� �


4c2:

Relativistic electron (c� 100), when moving on a sinusoid with macroscopic
period ku, radiates on the wavelength more than by four order shorter, than the
period of trajectory (at K � 1).

3.2 Radiation of Harmonically Oscillating Charge

Let consider the radiation of a charge in magnetic field of undulator at K � 1.
In this case in R-system the radiation of a charge, which oscillates according to the
harmonious law with non-relativistic velocity, is described by the known formulae
of classical electrodynamics. In this paragraph we shall omit the index R for
simplification of formulae. Further we shall use the unit vectors e1; e2, which are
perpendicular to a wave vector k:

e1 ¼ Cn n; b½ �; e2 ¼ e1 n½ �: ð3:2:1Þ

Here n ¼ k= kj j ¼ sin h sin u; sin h cos u; cos hf g; b ¼ 1; 0; 0f g is the unit vec-

tor, perpendicular to the charge oscillation plane, Cn ¼ 1
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 hþ sin2 h cos2 u
p

is a

normalization factor.
Following [1, 2], we shall write the radiation field E in the observation point

R ¼ Rn, bearing in mind, that the observation point is located in a wave zone
R� kð Þ:

E ¼ e

cR

n n� bð Þ _b
 � �

1� nbð Þ3
� e

c2R
n n _m½ �½ �: ð3:2:2Þ

The obtained expression (3.2.2) is valid for a case b k b
:

under condition of
bj j � 1. Using the known formulae of the vector analysis, we shall calculate the

components E1;E2:

E1 ¼ �
e

cR
Kxð Þ cos h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ sin2 h cos2 u

p sin x t;

E2 ¼ �
e

cR
Kxð Þ sin2 h sin u cos u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 hþ sin2 h cos2 u

p sin x t:

ð3:2:3Þ
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The radiating power in a solid angle unit is found from the last formulae:

dP

dX
¼ c

4p
R2E2 ¼ c

4p
R2 E2

1 þ E2
2

� �

¼ e2

4p c
K2x2 cos2 hþ sin2 h sin2 u

� �
sin2 x t: ð3:2:4Þ

The physical meaning has a power averaged on the period of oscillations. If
we are interested in radiation intensity, which is not dependent on azimuthal angle
of a wave vector, the expression (3.2.4) is necessary to integrate over azimuthal
angle u:

dP

d cos h

� �
¼ e2

4c
K2x2 1

2
1þ cos2 h
� �

¼ e2

4c
K2c2

k x
2
0

1
2

1þ cos2 h
� �

: ð3:2:5Þ

Further the symbol of averaging will be omitted. As it was to be expected, the
expression for radiation power in R-system in used approximation coincides with
the formula describing radiation of an electric dipole. Therefore, the approxima-
tion tk ¼ const; K � 1 is frequently called the dipole one.

3.3 Characteristics of Undulator Radiation in Dipole
Approximation

Let us remind that all formulae in the previous paragraph are obtained in R-system.
To get the expression for UR power in laboratory system, it is necessary to carry
out the corresponding Lorentz-transformations. UR power in laboratory system
is defined as P = DW/Dt, where DW is energy, radiated by charge during
time Dt. We are using following Lorentz transformations:

DW ¼ DWR

ck 1� bk cos h
� �;

Dt ¼ ck DtR;

cos hR ¼
cos h� bk

1� bk cos h
;

d cos hR

d cos h
¼ 1

c2
k 1� bk cos h
� �2:

ð3:3:1Þ
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Therefore, the resulting formula is written as

dP

d cos h
¼ dPR

d cos hR

DW

DWR

DtR
Dt

d cos hR

d cos h

¼ e2

4c
K2c2

kx
2
0

1
2

1þ cos2 hR

� � 1

c4
k 1� bk cos h
� �3: ð3:3:2Þ

In ultrarelativistic approximation h	 c�1
k , therefore the derived formula can be

simplified, using relations:

cos hR ¼
1� c2

kh
2

1þ c2
kh

2;

1� bk cos h ¼ 1

2c2
k

1þ c2
kh

2
� �

:

ð3:3:3Þ

Further, to pass from the radiation power to the energy W, emitted by one
electron during passage through undulator with the length N0 ku, we shall multiply
(3.3.2) by the time Dt � N0k0=c ¼ 2p N0=x0:

dW

d c2
kh

2
� � ¼ 2p a N0K2�h x0 c2

k
1þ c2

kh
2

1þ c2
kh

2
� �5: ð3:3:4Þ

Here a ¼ e2

�hc ¼ 1
137 is the fine structure constant.

As follows from the obtained equation, the energy lost due to undulator radi-
ation in a weak sinusoidal field, is proportional to deflection parameter squared and
to the longitudinal Lorentz-factor squared. In the considered approach the energy
of a photon is determined by polar angle h:

�hx hð Þ ¼ �hx0

1� bk cos h
� 2c2 �h x0

1þ K2=2þ c2h2: ð3:3:5Þ

Hence a maximal energy of UR photon, occurs in a radiation spectrum proper to
a radiation angle h ¼ 0:

�hxm ¼
2c2�h x0

1þ K2=2
: ð3:3:6Þ

Introducing a relative variable:

n ¼ x
xm
¼ 1þ K2=2

1þ K2=2þ c2h2; 0
 n
 1; ð3:3:7Þ

which characterizes the UR spectral distribution, instead of Eq. (3.3.4) it is
possible to write the formula:
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dW

dn
¼ 2p aN0K2�h x0 c2

k n 1� 2nþ 2n2� �
; ð3:3:8Þ

which is presented in Fig. 3.3.
The spectrum is concentrated in area n
 1 (in other words, �hx
 �hxm), i.e. only

a first (fundamental) harmonic exists in a spectrum, what is a consequence of the
used approximation.

By integration of the last expression it is possible to obtain radiation losses in
undulator:

W ¼ 2p
3

aN0K2c2
k �h x0 �

2p
3

aN0K2c2 �h x0: ð3:3:9Þ

In quantum consideration with spectral distribution of emitted energy the
so-called photon spectrum is frequently considered:

dNUR

�h dx
¼ 1

�hx
dW

�h dx
; ð3:3:10Þ

or, through a variable n

dNUR

dn
¼ 1

�hxm

1
n

dW

dn
¼ p aN0K2 1� 2nþ 2n2� �

: ð3:3:11Þ

From the last formula it is possible to obtain the total number of emitted
photons

NUR ¼
Z1

0

dn
dNUR

dn
¼ 2

3
p aN0K2 ð3:3:12Þ

and average energy of photons in UR spectrum: �hxh i ¼ nh i�hxm; where

h�hxi ¼ W

NUR

¼ c2
k �hx0 ¼

1
2

�h xm;

nh i ¼
R

n dNUR
dn

NUR

dn ¼ 1
2
:

ð3:3:13Þ

 

Fig. 3.3 Spectrum of UR
intensity in plane undulator in
dipole approximation
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Once again we shall note that all obtained results refer to a case of ultrarela-
tivistic electron radiation in the dipole approximation.

3.4 Undulator Radiation Spectrum in a Weak Sinusoidal
Magnetic Field (K £ 1)

Rigorous theory of UR in a plane undulator for arbitrary value of deflection
parameter K is presented, for instance, in the monograph [3]. Omitting details of
calculations, we will bring the result for a Fourier-transform of the field for one
period of undulator:

E xð Þ � e

cR
eikR 2px

x0

1
T

ZT

0

n nb½ �½ �ei xt�krð Þdt

2

4

3

5; ð3:4:1Þ

where integration is carried out over the particle passage time through one
undulator period.

It is necessary to note that the modulated longitudinal velocity (3.1.10) in a
similar undulator results in rather cumbersome calculations. The term kr in
expression (3.4.1) contains the trajectory of a particle (3.1.11) in the exponent,
which depends on parameter K. The higher harmonics will give significant con-
tribution in the integral (3.4.1) for values K� 1.

Using formulae (1.4.6) and (3.4.1) it is possible to get an expression for
spectral–angular distribution of UR intensity:

dW

dX dx
¼ cR2

4p2c
E xð Þj j2FN ¼

e2x2

4p2c

ZT

0

nb½ �ei xt�krð Þdt

������

������

2

FN : ð3:4:2Þ

The spectral–angular distribution of the first three harmonics for K
 1 was
investigated in works [4, 5]. Using the same basis vectors (3.2.1), written down in
laboratory system, we will bring expressions for both polarization components of
the first harmonic intensity:

dW1;1

dX dx
¼ 2

e2c2

p2c
FN

K2=2ð Þ
1þ c2h2� �3 1� c2h2 cos 2u

� �2
;

dW2;1

dX dx
¼ 2

e2c2

p2c
FN

K2=2ð Þ
1þ c2h2� �3 c4h4 sin2 2u:

ð3:4:3Þ

Here the azimuthal angle u is counted from the plane of oscillations. The first
index in the left part of expression corresponds to the linear polarization along
vectors e1; e2, whereas the second one—to the number of harmonic. According to
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determination of basis vectors e1; e2, the radiation polarization is defined in a
system connected with a wave vector. In the ultrarelativistic case practically
almost all radiation is concentrated in an angle cone 	 1=c� 1, what allows to
carry out averaging of expressions (3.4.3) over an azimuthal angle u. In this case
the system of basis vectors e1h i; e2h i will be defined only by a plane, in which the
particle trajectory is located. It is easy to show that for a flat trajectory of electron
with the symmetry corresponding for a plane undulator, the radiation will have
only a linear polarization. Using approximation of the ‘‘long’’ undulator (N !1)
we will carry out integration in (3.4.3) with respect to frequencies and azimuthal
angle:

dW1;1

c2d cos h
¼ 2p a N

c2�hx0

1þ c2h2 þ K2=2
� �

K2 1þ 1
2 c4h4� �

1þ c2h2� �4 ;

dW2;1

c2d cos h
¼ 2p a N

c2�hx0

1þ c2h2 þ K2=2
� �

K2 1
2 c4h4

1þ c2h2� �4:

ð3:4:4Þ

Carrying out the similar integration of expressions for the second and the third
harmonics, formulae for which are given in [5], it is possible to get the following
expressions:

dW1;2

c2d cos h
¼ 2pa N

2c2�hx0

1þ c2h2 þ K2=2
� �

5
8 K4 c2h2 5� 2c2h2 þ c4h4� �

1þ c2h2� �6 ;

dW2;2

c2d cos h
¼ 2p a N

2c2�hx0

1þ c2h2 þ K2=2
� �

K4

4 c2h2 1� c2h2 þ 5c4h4� �

1þ c2h2� �6 ;

dW1;3

c2d cos h
¼ 2p a N

3c2�hx0

1þ c2h2 þ K2=2
� �

�
81
64 K6 1� 14c2h2 þ 183

2 c4h4 � 41c6h6 þ 10c8h8� �

1þ c2h2� �8 ;

dW2;3

c2d cos h
¼ 2p a N

3c2�hx0

1þ c2h2 þ K2=2
� �

81
64 K6 c4h4 9

2� 18c2h2 þ 18c4h4� �

1þ c2h2� �8 : ð3:4:5Þ

Going again from a polar angle to a relative spectral variable n ¼ �hx



2c2�hx0

for the first harmonic: n � 1


ð1þ c2h2 þ K2=2Þ and summarizing with respect to

polarizations, from (3.4.4) and (3.4.5) we will get the spectral distributions of
intensity for the first three harmonics:
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dW1

dn
¼ 2p a N c2 �hx0K2n 1� 2nþ 2n2� �

; 0
 n
 1



1þ K2=2
� �

;

dW2

dn
¼ 2p a N c2 �hx0K4 1

4
n
2

� 	2

1� n
2

� 	
15� 22nþ 14n2� �

;

0
 n
 2



1þ K2=2
� �

;

dW3

dn
¼ 2p a N c2 �hx0K6 9

64
n
3

� 	3

252� 513nþ 441n2 � 165n3 þ 22n4� �
;

0
 n
 3



1þ K2=2
� �

: ð3:4:6Þ

As follows from the obtained expressions, the intensity of nth harmonic is
defined by a factor K2n, therefore in a weak field of the plane undulator the main
part of energy is emitted on the first harmonic. From (3.4.4) and (3.4.5) it is
possible to get the intensities of each polarization components dW1=dn; dW2=dn
after summation over the second index:

dW1

dn
¼
X

i

dW1; i

dn
;

dW2

dn
¼
X

i

dW2; i

dn
: ð3:4:7Þ

The last formulae allow to calculate the linear polarization of UR in plane
undulator.

The spectra of UR intensity for various values of parameter K are shown in
Figs. 3.4 and 3.5.

It is necessary to note, that connection between frequency of emitted photon
and the polar angle h allows to achieve the so-called ‘‘monochromatization’’ of UR
using hard angular collimation:

h\hc
 1=c: ð3:4:8Þ

In this case in the spectrum corresponding to the first harmonic, there will be
frequencies in the interval 1



1þ c2h2

c

� �

 n
 1 and 2



1þ c2h2

c

� �

 n
 2;

3



1þ c2h2
c

� �

 n
 3 for the second and the third accordingly.

Monochromatized spectrum for a collimation angle in the case of hc ¼ 0:5 c�1

is shown in Fig. 3.6. As follows from the figure, in this case the first harmonic
monochromaticity will be defined by value c hc : Dx=x1	Dn � c2h2

c




1þ c2h2
c

� �
� 20%

As it was mentioned above, the UR polarization in a plane undulator will be
linear. In an ultrarelativistic case the polarization characteristics of UR beam as a
whole are defined after averaging over azimuthal angle:
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n1h i ¼
Z

du E1E�2 þ E�1E2
� �

�Z
du E1j j2þ E2j j2
� �

;

n3h i ¼
Z

du E1j j2� E2j j2
� ��Z

du E1j j2þ E2j j2
� �

:

ð3:4:9Þ

For a flat trajectory of electron in undulator the parameter n1h i becomes zero
after this averaging, and for linear polarization in a plane of oscillations instead of
(3.4.9) we have

(a)

(b)

Fig. 3.4 A spectrum of UR
intensity in undulator with a
finite number of periods for
K = 0.05 (a) and
K = 0.25 (b)

Fig. 3.5 A spectrum of UR
intensity in plane undulator
with K = 0.4 with taking into
account the contribution of
the first three harmonics
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Plin ¼ n3h i ¼
R

du dW1
dX dx�

dW2
dX dx

� �

R
du dW1

dX dxþ
dW2

dX dx

� �: ð3:4:10Þ

The Fig. 3.7 presents the calculation results of polarization of UR beam
obtained for the case of hard collimation of radiation. It is possible to note
that the radiation collimated on the first harmonic possesses practically
100%-polarization.

3.5 Radiation Along an Undulator Axis in a Strong Magnetic
Field (K ‡ 1)

For a plane undulator with arbitrary value of parameter K [6] one can obtain the
analytical formula for intensity of radiation along an undulator axis:

dW

dX dx

����
h¼0

¼ e2c2

c

X1

n¼1

1� �1ð Þn½ �FN nK2



1þK2=2
� �

� Jn�1
2

nK2

4

�
1þK2=2
� �� 	

� Jnþ1
2

nK2

4

�
1þK2=2
� �� 	� �2

: ð3:5:1Þ

Fig. 3.6 A spectrum of UR
intensity with the
contribution of three
harmonics in case of hard
collimation (chc ¼ 0:5)

Fig. 3.7 The degree of linear
polarization of UR in case of
hard collimation (c hc ¼ 0:5)
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As follows from this formula, the contribution of even harmonics at h ¼ 0
becomes zeroth.

We again use the approximation of ‘‘long’’ undulator for integration with
respect to frequency. Going to a variable ch, after integration over azimuth, we
will have

dW1

dðc2h2Þ

����
h¼0

¼ 2paN K2 c2 �hx0

1þK2=2ð Þ3
X1

n¼1

n2

� Jn�1
2

nK2
� �

= 1þK2=2
� �� �

� Jnþ1
2

nK2
� �

= 1þK2=2
� �� �h i2

: ð3:5:2Þ

For the case K2 � 1 we will write an expression for intensity of the first
harmonic, keeping summands, which are proportional to K2:

dW1; 1

dðc2h2Þ

����
h¼0

¼ 2p a N K2 c2 �h x0: ð3:5:3Þ

Comparing the obtained formula with expression (3.3.4), one may see a good
coincidence for K2 � 1.

From (3.5.1), using approximation of a ‘‘long’’ undulator, it is possible to derive
the spectral distribution of UR in the range of maxima in the radiation spectrum
(radiation in a straightforward direction corresponds to these maxima, h ¼ 0):

dWn

�hdx

����
x¼xn

¼ 2p aN
2c2�hx0

xn

X

n

n2K2=2

1þ K22ð Þ2

� Jn�1=2
n K2=4

1þ K2=2

� 	
� Jnþ1=2

n K2=4
1þ K2=2

� 	� �2

: ð3:5:4Þ

To compare the obtained expressions (valid for any K) with formulas (3.4.6),
which are true for K � 1, we’ll use in (3.5.4) a variable n (3.4.6): dxn �
2c2 x0 n dn:

Having written down through new variable the maximal value of UR intensity
for n = 1, 3 and keeping the main term of expansion in square brackets:

dW1

dn

����
n¼1

¼ 2p aNc2�hx0
K2

1þ K2=2ð Þ;

dW3

dn

����
n¼3

¼ 2p aNc2�hx0
81
64

K6

1þ K2=2ð Þ3
;

ð3:5:5Þ

one can see the coincidence of obtained quantities with (3.4.6) for K2 � 1.
Calculations of maximal values of odd harmonics according to (3.5.4) are

given in Fig. 3.8 for various values of deflection parameter K. As follows from
Fig. 3.8c, for parameter K [ 1 the maximum in a spectrum corresponds to higher
harmonics (n = 11 for K = 3). Undulators with a field providing value K C 1
refer to wigglers.
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Spectral–angular distribution of radiation in a plane wiggler can be calculated
with usage of extremely bulky formulas. However, for large enough values of
K (see Fig. 3.8c) the spectral distribution for UR in a straightforward direction
ðh ¼ 0Þ is described by expression [6]

dW

dn

����
n¼nn

¼ const
nn

K
� K2=3

2
3

nn

K

� 	� �2

; ð3:5:6Þ

where nn ¼ xn
2c2x0

¼ n
1þK2=2:

 

(a)

(b)

(c)

Fig. 3.8 UR intensity in
plane undulator in a
straightforward direction for
various values of parameter
K:K = 1a; K = 2 b and
K = 3 c depending on
number of harmonics
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Expression (3.5.6) achieves its maximum at nmax � 0:625 K.
The comparison of exact distribution and approximation (3.5.6) for various values

of parameter K is shown in Fig. 3.9a, b. As follows from the figure, at K� 3 the
wiggler radiation in straightforward direction is well described by expression (3.5.6).

3.6 Radiation in a Helical Undulator

In a helical undulator the magnetic field is created, for instance, by a solenoidal
current, which describes by the formula

H ¼ ex Hm sin
2p
ku

zþ ey Hm cos
2p
ku

z: ð3:6:1Þ

Electron with velocity bc, entering in the undulator field in an initial point with
coordinate r0 ¼ R; 0; 0f g, moves in a ‘‘right’’ helix:

r tð Þ ¼ exR cos x0 t � eyR sin x0 t þ kbk c t; ð3:6:2Þ

where

R ¼ b?c=x0; b? ¼ e Hmk0
2p c mc2 ¼ K

c ; bk ¼ b 1� b?
b

� �2
� �1=2

� 1� 1þK2

2c2 ;x0 ¼ 2p
ku

bk c:

By means of the Lorentz-transformation with parameters bk and ck ¼ cffiffiffiffiffiffiffiffiffi
1þK2
p it is

possible to go to a system, where electron rotates in a circular orbit (R-system).

(b)

(a)Fig. 3.9 Approximation of
distributions, presented in the
previous figure, for K=3 (a)
and K=5 (b) by dependence
(3.5.6)
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In R-system the electron rotation velocity on the orbit of radius R achieves the
value bR ¼ K.

The angular distribution of a power in this system is given by the Schott
formula:

dPR

dXR
¼ e2c b2

R

2p R2

X

n

n2 b2
RJ
02
n n bR sin hRð Þ þ ctg2hR J2

n n bR sin hRð Þ
h i

: ð3:6:3Þ

For non-relativistic movement bR � 1, what allows, keeping in the sum (3.6.3)
the term with n = 1, to get the Larmor formula

dPR

dXR
¼ e2c b4

R

2p R2
:
1
4

1þ cos2 hR

� �
¼ e2 b2

R x2
R

2p c
� 1
4

1þ cos2 hR

� �
: ð3:6:4Þ

Integrating with respect to azimuthal angle and expressing bR and xR through
parameters in laboratory system, we’ll obtain

dPR

d cos hR
¼ e2

4c
K2c2

kx
2
0 1þ cos2 hR

� �
: ð3:6:5Þ

Comparing the obtained expression with similar one for a plane undulator
(3.2.5), it is possible to note that they coincide in the case of

K2
hel !

K2
pl

2
: ð3:6:6Þ

That is all formulae describing UR in a plane undulator in dipole approx-
imation in Sects. 3.2 and 3.3, remain true for the helical undulator in the case
of substitution (3.6.6) as well. Using the exact expression for radiation power in
R-system (3.6.3) and the procedure of transition to the laboratory system (see
the formula (3.3.2)), we’ll get the following expression for angular distribution
of UR:

dW

dX
¼ 8 a �h x0N c4

1þ K2 þ c2 h2� �3 K2
X1

n¼1

n2 J02n nxð Þ þ c h
K
� 1

x

� 	2

J2
n nxð Þ

" #

: ð3:6:7Þ

The ultrarelativistic approximation is used here again sin h	 h; x ¼ 2K c h
1þK2þc2 h2

� �
:

Expression (3.6.7) allows to carry out the analytical summation over n, using
known formulae [2]:

X1

n¼1

n2 J02n nxð Þ ¼ 4þ 3x2

16ð1� x2Þ5=2
;

X1

n¼1

n2 J 2
n nxð Þ ¼ x2 4þ x2ð Þ

16ð1� x2Þ7=2
:
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In this case instead of the sum (3.6.7) we have

dW

d c2 h2� � ¼ 8 a p c2�h x0N

1þ K2 þ c2 h2� �3 K2 1

16 1� x2ð Þ5=2

� 4þ 3x2 þ 4þ x2

1� x2

1þ K2 � c2 h2� �2

1þ K2 þ c2 h2� �2

( )

: ð3:6:8Þ

The angular distributions of UR intensity (3.6.8) for various values of parameter
K are shown in Fig. 3.10a, b.

As follows from Fig. 3.10a, the intensity of radiation for values K
 0:5
achieves a maximum in the straightforward direction, whereas for K� 1 the
radiation maximum is generated at the angle hm	K=c (see Fig. 3.10b). Radiation
losses by an electron passing through one period of undulator are calculated by
integration of expression (3.6.8):

W0 ¼
2
3

a p c2 �h x0 K2 ð3:6:9Þ

 

(a)

(b)

Fig. 3.10 Angular
distribution of UR intensity in
the helical undulator for
various values of parameter
K:K
 0:75 a and K � 1b
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and depend in the square-law on the parameter K. The exact UR theory in a helical
undulator with arbitrary number of periods is developed, for example, in the work
[6]. The spectral-angular distribution on nth harmonic in the ultrarelativistic
approximation is written as

dWn

�h dx dX
¼ a K2 4c2

1þ K2 þ c2 h2� �2 FN n2Gn;

Gn ¼
1þ K2 � c2 h2� �

2Kc h

 !2

J2
n n xð Þ þ J02n n xð Þ:

ð3:6:10Þ

The other designations in (3.6.10) are the same, as before.
An intensity spectrum of undulator radiation in a helical undulator for K ¼ 0:25

and N ¼ 10 is shown in Fig. 3.11 in case of summation with respect to three
lowest harmonics:

dW

�h dx
¼
Z

dX
X3

n¼1

dW

�h dx
: ð3:6:11Þ

Integration in (3.6.11) will be carried out over angles 0
u
 2p; 0
 c h
 4.
Only the two first harmonics give the observable contribution to a radiation

spectrum for the specified value of parameter K. For value K\1, the intensity of
the higher harmonics is proportional to K2n (n is a number of harmonic), what is
completely similar to a case of plane undulator. The following relative variable is
used again: n ¼ �hx



2c2�hx0:

The maximal values of variable n for the first and second harmonics for a
‘‘long’’ undulator are:

n1 ¼
1

1þ K2
¼ 0:94; n2 ¼

2
1þ K2

¼ 1:88: ð3:6:12Þ

For an undulator of finite length (N ¼ 10, as in this case) a drop of intensity in
UR spectrum near values (3.6.12) will be slightly ‘‘smearing’’.

Fig. 3.11 A spectrum of UR
intensity in a helical
undulator for K ¼ 0:25 with
taking into account the
contribution of the first three
harmonics
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The spectra of UR intensity for K ¼ 0:5 and K ¼ 1 with taking into account
contribution of ten harmonics are shown in Figs. 3.12 and 3.13. In the first case the
main contribution to a spectrum are given by harmonics with n = 1, 2, 3 and
n3 ¼ 3

1þ0:52 ¼ 2:4:
An appreciable shift of harmonics into a soft part of a spectrum occurs with

increase of parameter K (up to K = 1, as in this case). So, for example, the
maximum of the seventh harmonic corresponds to a value n7 ¼ 7

1þ12 ¼ 3:5:
For this case ten summands were kept in the sum (3.6.11) during calculation

of spectrum, however, only the first seven harmonics give the main contribution
(see Fig. 3.13).

As it was noted before, in the ultrarelativistic case it is possible to consider
polarization of UR beam as a whole. For a helical undulator, where the electron
trajectory represents the right or left helix, from the common reasons one may
expect that UR polarization will be elliptic (with the large contribution of a
circular one).

Fig. 3.12 The same, as in
Fig. 3.11 for K = 0.5 with
taking into account the
contribution of the first ten
harmonics

Fig. 3.13 The same, as in
Fig. 3.11 for K = 1 with
taking into account the
contribution of the first ten
harmonics
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Spectral dependence of circular polarization can be found from the general
formula (2.2.6), where basis vectors are chosen as:

e1 ¼
1
ffiffiffi
2
p ex þ iey

� �
; e2 ¼

1
ffiffiffi
2
p ex � iey

� �
: ð3:6:13Þ

Then, the required dependence �n2 �hxð Þ may be found after integration of the
following expression over a solid angle

�n2 �hxð Þ ¼
Z

dX
X

n¼1

2aK2 4c2

1þ K2 þ c2h2� �2

� FN n2 1þ K2 � c2h2� �

2Kc
Jn nxð ÞJ 0n nxð Þ

" #,Z
dX
X

n¼1

dWn

�hx dX
: ð3:6:14Þ

As follows from (3.6.14), for a radiation angle

c h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2

p
ð3:6:15Þ

circular polarization changes the sign regardless of harmonic number (in other
words, for the angle (3.6.15) UR polarization becomes linear, and the polarization
plane will be perpendicular to the radiation plane, which passes through the
undulator axis and a wave vector k).

Dependence of circular polarization on a spectral variable n for K ¼ 0:25 and
N = 10 is shown in Fig. 3.14. The integration over a solid angle was carried out
practically over a full cone: 0
u
 2p; 0
 c h
 4.

Expectedly, in the range n
 n0 ¼ 1
2þ0:252 ¼ 0:485 polarization becomes ‘‘left-

circular’’ due to the contribution of radiation at angles c h[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ K2
p

, whereas in
more hard part of a spectrum the polarization is ‘‘right-circular’’ one.

Fig. 3.14 A spectral
dependence of a degree of
circular polarization for
helical undulator with
K ¼ 0:25 and N ¼ 10
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In case of hard collimation of UR alongside with improvement of monochro-
matization it is possible to get a beam, for which the degree of circular polarization
will be close to one.

Thus, the UR spectrum for K = 0.25 and N = 10 is shown in Fig. 3.15 in the
case of collimation chc ¼ 0:5. In this case the calculated value of average circular
polarization in the first maximum achieves �n

� �
� 0:96.
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Chapter 4
Coherent Bremsstrahlung

4.1 The Main Characteristics of Bremsstrahlung in the Screened
Coulomb Field

The quantum theory of bremsstrahlung (BS) in the Coulomb field of nucleus was
developed more than 60 years ago [1]. Later the development of bremsstrahlung
theory has allowed to take into account such corrections as screening effect, BS on
electron shells of target atoms [2, 3].

The formulae for calculation of characteristics of bremsstrahlung in the Born
approximation are written most simply in the coordinate system connected with
emitted photon (Fig. 4.1). The projections of momenta of initial and scattered
electron on a plane, which is perpendicular to the photon momentum k are des-
ignated in this system of coordinates in dimensionless units through vectors u and
m. The system of units m ¼ c ¼ 1; (i.e. dimensionless variables), where energy is
measured in units of mc2, momentum—in terms of mc, length—in the Compton
electron wave lengths, is used in this chapter everywhere, where it is not stipulated
especially, for simplification of calculations and formulae. Let’s put a designation

J ¼ 4peV qð Þ
�hx

I; ð4:1:1Þ

where

I ¼ u

1þ u2
� m

1þ v2
þ n

1
1þ u2

� 1
1þ m2

� �
;

n ¼ k
�hx; V qð Þ is a Fourier-transform of a field of nucleus VðrÞ, and cross-section

of BS by non-polarized electron is written as follows:

dr ¼ e2

2pð Þ4
F0 þ niFif g�hxdð�hxÞdX1e

2
2dX2;

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_4,
� Springer-Verlag Berlin Heidelberg 2011
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where ni are the Stokes parameters,

F0 ¼ 2 �hxð Þ2 Jj j2þ 4e1e2 Jtj j2¼ 2 e2
1 þ e2

2

� �
Jj j2�4e1e2 J3j j2;

F1 ¼ 8e1e2J1J2;

F2 ¼ 0;

F3 ¼ 4e1e2 J1j j2� J2j j2
� �

:

ð4:1:2Þ

The following designations are made here: J1 ¼ Je1; J2 ¼ Je2; J3 ¼ Jn;
Jt ¼ J1e1 þ J2e2; through e1; e2; �hx are designated the energy of initial electron,
scattered electron and photon.

As it is shown, for instance in [4], a linear polarization of BS does not depend
on polarization of electron, i.e. it has a ‘‘classical’’ origin, whereas a circular
polarization of BS appears only from polarized electrons.

We’ll consider the linear polarization of photons relative to the plane defined by a
geometry, i.e. a plane, which passes through momentum of initial electron p1 and
emits photon k. To designate a normal to this plane through b, then as basis vectors it
is possible to choose the followings: e1 ¼ n; b½ �= n; b½ �j j; e2 ¼ e1; n½ �;which together
with a vector n form the right system of coordinates (see Fig. 4.1). We choose
screening for a nucleus field according to the Thomas–Fermi model [4, 5]:
VðrÞ ¼ Ze

r expð�r=q0Þ;q0 ¼ 0:81ke

aZ1=3 � 111
Z1=3 ke; (where ke is Compton wavelength of an

electron). Fourier-transform of potential will become VðqÞ ¼ Ze
�

q2 þ �h2=q2
0

� �
and

integration in (4.1.2) with respect to an unobservable kinematic variables (i.e.
over angles of scattered electrons) will be easily carried out analytically. However
the other approach for a generality of description with the following material (with
the theory of coherent bremsstrahlung) will be used here.

Let’s introduce a variable qt as a transverse nucleus recoil momentum, which is
perpendicular to a photon momentum. There is the relationship from the law of
momentum conservation of qt ¼ u� m: It is easy to show that an element of a
solid angle dX2 is connected with differential of the introduced variable as follows:

dX2 ¼
1

e2
2

dqt ¼
1

e2
2

qt dqt dw2:

Here w2 is an azimuthal angle of momentum qt (see Fig. 4.1).

Fig. 4.1 The kinematic
variables describing the
bremsstrahlung process
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In new variables the vector I and its projections Ii are written in the form:

I ¼ qt

1þ u2 þ q2
t � 2uqt cos w

�
u� nð Þ 2uqt cos w� q2

t

� �

1þ u2ð Þ 1þ u2 þ q2
t � 2uqt cos w

� �;

I1 ¼
qt cos w2

1þ u2 þ q2
t � 2uqt cos w

�
u cos w1 2uqt cos w� q2

t

� �

1þ u2ð Þ 1þ u2 þ q2
t � 2uqt cos w

� �;

I2 ¼
qt sin w2

1þ u2 þ q2
t � 2uqt cos w

�
u sin w1 2uqt cos w� q2

t

� �

1þ u2ð Þ 1þ u2 þ q2
t � 2uqt cos w

� �;

I3 ¼
2uqt cos w� q2

t

1þ u2ð Þ 1þ u2 þ q2
t � 2uqt cos w

� �:

ð4:1:3Þ

An angle w ¼ w1 � w2 entered in expressions (4.1.3) is the angle between two
vectors: u and qt.

Integration of expression (4.1.2) over unobservable kinematic variables reduces
to integration with respect to the two-dimensional transverse recoil qt. Herewith in
the integrand there are combinations of the type J1 � J2; J2

1 etc. We’ll illustrate the
calculation of integrals on the following example:

Z
J2

1dX2 ¼
1

2e2
2

Z
J2

1 dq2
t dw2:

Everywhere in the integrand

J2
1 ¼

4peV qð Þ
�hx

� �2 q2
t cos2 w2

1þ u2 þ q2
t � 2uqt cos w

� �

(

þ
u2 cos2 w1 4u2q2

t cos2 w� 4uq3
t cos wþ q4

t

� �

1þ u2ð Þ2 1þ u2 þ q2
t � 2uqt cos w

� �2

þ
2uqt cos w1 cos w2 q2

t � 2uqt cos w
� �

1þ u2ð Þ 1þ u2 þ q2
t � 2uqt cos w

� �2

)

ð4:1:4Þ

it is expressed an angle w2 through w1 and w for simplification of azimuthal
integrals:

cos w2 ¼ cos w1 cos wþ sin w1 sin w;

cos2 w2 ¼ sin2 w1 þ cos2 w cos 2w1ð Þ þ sin w cos w sin 2w1ð Þ:

Since, dw2 ¼ dw it is necessary to calculate the azimuthal integrals of type

A¼
Z2p

0

dw
a� bcosw

; Bn ¼
Z2p

0

cosn wdw

ða� bcoswÞ2
; n¼ 0;1;2; C0 ¼

Z2p

0

sinwcoswdw

ða� bcoswÞ2
;

since the potential VðqÞ does not depend on an azimuthal angle. Evidently the
last integral is equal to zero due to oddness of integrand. The others are easily
calculated according to the residue theory:
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A ¼ 2p

Q1=2
; B0 ¼

2pa

Q3=2
; B1 ¼

2pb

Q3=2
; B2 ¼

2p
b2

1� a

Q1=2
þ ab2

Q3=2

� �
:

Here a ¼ 1þ u2 þ q2
t ; b ¼ 2uqt; Q ¼ a2 � b2 ¼ ð1þ u2Þ2 þ 2 1� u2ð Þ � q2

t þ q4
t :

Thus, after reducing of expression (4.1.4) to a common denominator and azi-
muthal integration we have

Z2p

0

J2
1dw2 ¼

4peV qð Þð Þ2

�h2x2
q2

t 1þ u2
� �2

B0 � B2ð Þ þ q2
t cos2 w1

n

� 2 1þ u4
� �

B2 � 1þ u2
� �2

B0 þ 2uqt 1� u2
� �

B1 þ q2
t u2B0

h io

¼ 4peV qð Þð Þ2

�h2x2
xþ yu2 cos2 w1

� �
; ð4:1:5Þ

where

x q2
t

� �
¼ 2p

4u2

1þ u2 þ q2
t

Q1=2
� 1

� �
;

y q2
t

� �
¼ 2p

u2 1þ u2ð Þ2
1þ u4

2u2

	
1� 1þ u2 þ q2

t

Q1=2

� �

þ q2
t

1� u2ð Þ2 1þ u2ð Þ þ q2
t 1þ 3u2 � 2u4ð Þ þ u2q4

t

Q3=2

)

:

During integration of expression (4.1.5) over the recoil momentum with taking
into account a dependence of potential on qt the following integrals appear:

X
Y



¼ C

Z 1
2 dq2

t

q2
t þ q2

l þ �h2=q0

� �2
xðqtÞ
yðqlÞ


	
; ð4:1:6Þ

where C ¼ ð4pZe2=e2xÞ2: It is well-known that a longitudinal component of recoil
momentum is satisfied the inequality: ql ¼ qn� d� �h=q0 (here d ¼ qlmin ¼
�hx=ð2c1e2Þ is the minimal longitudinal recoil momentum), therefore the value q2

l

in a denominator can be neglected in comparison with �h2=q2
0. Integrals over the

transverse recoil momentum q2
t can be calculated in limits from 0 up to 1, since

integrand at big qt decreases as q�3
t or more prompt. Thus for simplification of

calculations the region of integration will be divided into two parts: I: 0	 q2
t \q2

0;

and II: q2
0	 q2

t \1; where �h2=q2
0 � q2

0 � 1; in each of which the integrals are
reduced to the tabulated integrals after simplification of integrand. In region I
q2

t � 1, therefore we shall expand the values x, y into a series in terms of qt

degrees leaving terms not above q2
t :
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xI ¼
2p
4u2

1þ u2 þ q2
t

1þ u2
1� 1� u2

1þ u2ð Þ2
q2

t

 !

� 1

" #

¼ pq2
t

1þ u2ð Þ2
;

yI ¼
2p

u2 1þ u2ð Þ2
�q2

t

1þ u4

1þ u2ð Þ2
þ q2

t

1� u2ð Þ2

1þ u2ð Þ2

" #

¼ � 4pq2
t

1þ u2ð Þ4
:

9
>>>>>=

>>>>>;

ð4:1:7Þ

The results of integration in region I:

XI ¼
pC

1þ u2ð Þ2
ln

q0

�h=q0
� 1

2

� �
; YI ¼ �

4pC

1þ u2ð Þ4
ln

q0

�h=q0
� 1

2

� �
:

In region II of the integrand we neglect the value �h2=q2
0 in comparison with q2 then

integrals are easily calculated:

XII ¼ �
pC

1þ u2ð Þ2
ln

q0

1þ u2
þ 1

2

� �
; YII ¼

4pC

1þ u2ð Þ4
ln

q0

1þ u2
þ 3

2

� �
:

Finally we have (in the system of units �h ¼ m ¼ c ¼ 1):

X ¼ XI þ XII ¼
pC

1þ u2ð Þ2
ln 1þ u2
� �

q2
0 � 1

� �
;

Y ¼ YI þ YII ¼ �
4pC

1þ u2ð Þ2
ln 1þ u2
� �

q2
0 � 2

� �
;

Z
I2
1dX2 ¼ X þ Yu2 cos2 w1:

ð4:1:8Þ

As expected the result, does not depend on q0.
Other integrals are similarly calculated as well:

Z
J2

2dX2 ¼ X þ Yu2 sin2 w1;

Z
J2

3dX2 ¼ X þ Y
1� u2

2

� �2

;

Z
J1J2dX2 ¼ Yu2 sin w1 cos w1:

9
>>>>>>>=

>>>>>>>;

ð4:1:9Þ

Further, from (4.1.9) it is possible to obtain

Z
J2dX2 ¼

Z
J2

1 þ J2
2 þ J2

3

� �
dX2 ¼ 3X þ Y

1þ u2ð Þ2

4

¼ 4pZe2

e2x

� �2
p

1þ u2ð Þ2
2Cþ 3ð Þ ð4:1:10Þ
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where

C u2
� �

¼ ln
1þ u2ð Þ111

Z1=3
� 2: ð4:1:11Þ

From (4.1.2) and (4.1.9) we find the integrated cross-section over unobservable
variables (i.e. angular distribution of the radiation):

dr ¼ e2

2pð Þ4
�hxd �hxd X1e

2
2

Z
F0 þ n1F1 þ n3F3f gdX2

¼ 4Z2e6 d�hx
�hx

udu

1þ u2ð Þ4
dw1

2p
e2

1 þ e2
2

e2
1

	
1þ u2
� �2

2Cþ 3ð Þ

� 2
e2

e1
1þ u2
� �2� 8

e2

e1
u2C� n18

e2

e1
u2Csin 2w1ð Þ

�n38
e2

e1
u2Ccos 2w1ð Þ



: ð4:1:12Þ

In order to go on to the dimensional variables, it is necessary to replace in the last
formula e6 on ar2

0, where r0 is the classical radius of electron.
It should be noted that using a nucleus potential with more exact account of

screening the cross-section (4.1.12) remains the same, only the values of X, Y and
C (see (4.1.8), (4.1.11)) have been changed.

Stokes parameters for photons, emitted at angles u ¼ e1h1 and w1 averaged over
unobservable variables need to be defined:

�ni ¼
Z

Fi dX2

�Z
F0 dX2: ð4:1:13Þ

Then the linear polarization of BS is described by the following parameters:

�n1 ¼ �
8e1e2 u2C

�
1þ u2ð Þ2

h i
sin 2w1ð Þ

e2
1 þ e2

2

� �
2þ 3ð Þ � 2e1e2 1þ 4u2C= 1þ u2ð Þ2

h i;

�n2 ¼ �
8e1e2 u2C= 1þ u2ð Þ2

h i
cos 2w1ð Þ

e2
1 þ e2

2

� �
2Cþ 3ð Þ � 2e1e2 1þ 4u2C= 1þ u2ð Þ2

h i:

ð4:1:14Þ

As follows from (4.1.14), the plane of the maximal polarization is perpendicular to
the plane of radiation (at w1 ¼ 0; �n1 ¼ 0; �n3\0). From (4.1.14) it is easy to obtain
the maximal linear polarization of a photon beam

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n2

1 þ �n3
2

q

¼ 8 1� xð Þu2C u2ð Þ
1þ u2ð Þ2 2Cþ 3ð Þ 1þ 1� xð Þ2

h i
� 2 1� xð Þ 1þ u2ð Þ2þ4u2C

h i: ð4:1:15Þ

Here it is introduced variable x ¼ �hx=e1, which is the photon relative energy.
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It should be noted that expression (4.1.15) does not depend directly on the
energy of initial electron e1. Evidently, the expression (4.1.15) is inapplicable for
energy of electrons e1
 1, since it is obtained in ultra-relativistic approximation.
Cross-section (4.1.12) allows to get the spectral-angular distribution of brems-
strahlung intensity after an integration over an azimuth:

d2I

�h dxu du
¼
Z

�hx dr
�h dxu du dw1

dw1 ¼ 4Z2ar2
0

1

1þ u2ð Þ4

� 1þ 1� xð Þ2
h i

1þ u2
� �2

2Cþ 3ð Þ
n

� 2 1� xð Þ 1þ u2
� �

2� 8 1� xð Þu2C
o
: ð4:1:16Þ

The dimensionless variable x ¼ �hx=e1 and condition �hxþ e2 ¼ e1 are used again
in the formula (4.1.16).

The spectrum of BS intensity is presented in Fig. 4.2 after integration over a
solid angle 0\u	 1 (the bottom curve) and 0	 u	 5 (the top curve). As follows
from the figure, the spectrum shape practically does not change. This fact is a
consequence of one of important BS characteristics, i.e. a weak dependence of
angular distribution of BS on energy of photons (a variable x) (see Fig. 4.3).

Neglecting the dependence on u in the logarithm in (4.1.16), it is possible to
obtain spectral distribution of BS:

dI

dx
¼ 4Z2ar2

0

Z1

0

1
2 du2

�
1þ u2

�4 �
(
h
1þ

�
1� x

�2
i�

1þ u2
�2

 

2 ln
111

Z1=3
� 1

!

�2
�
1� x

��
1þ u2

�2 � 8
�
1� x

�
u2

 

ln
111

Z1=3
� 2

!)

¼ 4Z2ar2
0

 
4
3
� 4

3
xþ x2

! 

ln
111

Z1=3
� 1

2

!

: ð4:1:17Þ

Fig. 4.2 Spectral
dependence of BS intensity:
curve 1 for angle of
collimation uc ¼ 5;
curve 2—for uc ¼ 1
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Integration over photon energy from (4.1.17) leads to the radiation losses con-
nected with BS process of the relativistic electron in the screened nucleus field:

I ¼
Ze1

0

�hdx
dI

�hdx
¼ 4Z2ar2

0e1 ln
111

Z1=3
� 1

2

� �
: ð4:1:18Þ

From (4.1.18) it follows that radiation losses in the BS process are proportional to
the initial electron energy e1. If n is nuclei concentration in a target, then it is
possible to obtain the radiation losses of relativistic electron on unit of the path
from (4.1.18):

dErad

dx
� 4nZ2ar2

0e1 ln
111

Z1=3
� 1

2

� �
; ð4:1:19Þ

where n ¼ NAðq=AÞ; NA ¼ 6:02 � 1023 is the Avogadro number; q is density of a
target matter; A is an atomic weight. Equation (4.1.19) in term of energy e1 is
usually written as:

dErad

dx
¼ � e1

X0
;

1
X0
¼ 4nZ2ar2

0 ln
137

Z1=3
� 1

2

� �
; ð4:1:20Þ

with the known solution for the electron energy in output from a thin target:

e1ðxÞ ¼ e1 exp � x

X0

� �
: ð4:1:21Þ

The parameter X0 refers to as radiation length. More exact formula for X0, taking
into account the BS on the atomic electrons, is given by expression [6]:

1
X0
¼ 4ar2

0nZðZ þ 1Þ ln 183

Z1=3

� �
1þ 0:12

Z

82

� �2
" #

: ð4:1:22Þ

Fig. 4.3 Angular
distribution of BS in a thin
target, calculated by the
formula (4.1.16) for x = 0.2
(the top curve) and for
x = 0.8 (the bottom curve)
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Often the ‘‘engineering’’ formula is used:

X0 ¼
716A

ZðZ þ 1Þ ln 287ffiffiffi
Z
p
� � g

�
cm2

 �
: ð4:1:23Þ

The values of radiation lengths for some materials are given in Table 4.1.
Definitely the spectra presented on Fig. 4.2 as well as formulae (4.1.20),

(4.1.21), describe the radiation from thin targets, where the root-mean-square
(rms) angle of multiple scattering of the initial electrons does not exceed c�1.

The multiple scattering angle of relativistic electrons with energy e1, passing a
layer of thickness t, is calculated by the formula

ffiffiffiffiffiffiffiffiffiffiffi
hh2

msi
q

� 21
e1 MeV½ �

ffiffiffiffiffiffi
t

X0

r
: ð4:1:24Þ

Hence we have a criterion for a ‘‘thin’’ target:

c�1
 21
cmc2

ffiffiffiffiffiffi
t

X0

r
; or t	 0:0006 X0 ð4:1:25Þ

Radiation losses in a thin target are found directly from (4.1.20), since BS
absorption in a target is insignificant:

DErad ¼
x

X0
e1: ð4:1:26Þ

As follows from (4.1.17), the photon spectrum of BS may be written as

dN

�h dx
� dr

�h dx
¼ 1

�hx
dI

�h dx
: ð4:1:27Þ

Evidently, it is diverged at �hx! 0 (so-called infrared catastrophe).
As has been shown by Ter-Mikaelyan [7], in a soft part of BS spectrum for

energy of photons �hx\c�hxp (�hxp is energy of the target material plazmon) the
process of BS is suppressed due to polarization of a medium. Energy of plazmon is
defined by concentration of electrons in a target material nZ:

�hxp ¼ �h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnZr0c2

q
: ð4:1:28Þ

Table 4.1 Values of radiation lengths for some substances

Substance z A X0, cm

Air 7.4 14.3 2.9 9 104

C 6 12 19.8
Al 13 27 9.1
Cu 29 63.6 1.52
Pb 82 207.2 0.58
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In a soft part of BS spectrum (�hx� e1) for a thin target the angular distribution is
approximated by expression:

dI

�h dxu du du
¼ 2

p
x

X0

1þ u4

1þ u2ð Þ4
: ð4:1:29Þ

However the polarization of medium leads to the modification of the formula
(4.1.29) (see [7]):

dIm

�h dxu du du
¼ 2

p
x

X0

1þ u4

1þ u2ð Þ2 1þ u2 þ c2x2
p

x2

� �2: ð4:1:30Þ

Taking into account this effect (so-called effect of density in BS) results in a strong
suppression of BS yield in the range �hx	 �hcxp.

The intensity spectra of BS with taking into account a medium polarization and
without this effect are given on Fig. 4.4:

dIm

�h dx
¼ 2

x

X0

Zuc

0

du2 1þ u4ð Þ

1þ u2ð Þ2 1þ u2 þ c2x2
p

x2

� �2: ð4:1:31Þ

The upper limit in (4.1.31) is defined by a collimation angle of radiation. The
photon spectrum can be obtained from (4.1.31):

dNm

�h dx
¼ 1

�hx
dIm

�h dx

and is shown on Fig. 4.5 (the bottom curve).
The ‘‘divergent’’ spectrum calculated according to the formula (4.1.17), i.e.

neglecting the Ter-Mikaelyan’s effect, is shown just here for comparison. It is
necessary to note, that Ter-Mikaelyan’s theory was developed about 50 years ago,
whereas the experimental proof of this effect was obtained in 1995 in experiments
at the Stanford electron accelerator [8].

Fig. 4.4 A spectrum of BS
intensity with taking into
account the density effect
(the bottom curve) and
without this effect
(the upper one) for the
collimation angle uc ¼ 1

48 4 Coherent Bremsstrahlung



The intensity spectrum of BS (4.1.17) is obtained for ultra-relativistic electrons
in approximation of full screening, in other words, when the effective impact
parameter of the initial electron trajectory exceeds the atom sizes well. For not so
large electron energies c ¼ e1

mc2	 111
Z1=3 (i.e. for moderately relativistic electrons) BS

from trajectories with smaller impact parameters gives the significant contribution
as well. In this case the logarithm in (4.1.17) will depend not only on a screening
radius, but also from the minimal recoil momentum qlmin ¼ mc

2c
x

1�x:

dI

�h dx
¼ 4Z2ar2

0

4
3
� 4

3
xþ x2

� �
� ln

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qlmin

mc

� �2þ Z1=3

137

� �2
r � 1

2

2

664

3

775: ð4:1:32Þ

The spectra of BS intensity in lead (Z = 82) for electrons with e1 ¼ 20 MeV,
calculated according to (4.1.17) and (4.1.32), are shown on Fig. 4.6. As follows
from the figure, for photons with energy �hx\0:5e1 a difference does not exceed
10%, whereas with increase of �hx it grows.

Fig. 4.5 The photon BS
spectrum with taking into
account the density effect (the
bottom curve) and without
one (the top curve)

Fig. 4.6 Spectrum of BS
intensity with taking into
account of effect of recoil (the
bottom curve) and without
one (the top) for
e1 ¼ 20 MeV and Z = 82
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From (4.1.15) it is possible to find the angle of photon emission, for which the
polarization is maximal. Making a derivative equal to zero, oP

�
ou2 ¼ 0 we shall

find the equation for required u2
0.

Having done all calculations (neglecting a dependence from u2 in argument of the
logarithm, which is included in C), we shall conclude that for any photon energies
0	 x\1 the maximal value of polarization corresponds to the angle u0 ¼ 1:

Pmax ¼
2 1�xð ÞCð1Þ

2Cð1Þ þ 3ð Þ 1þ 1� xð Þ2
h i

� 2 1� xð Þ 1þ Cð1Þð Þ
: ð4:1:33Þ

From the expression (4.1.33) it follows that at increase of photon energy a value
Pmax decreases and goes to zero for the maximal photon (x! 1). In the opposite
case for low-energy photons (x� 1) the most achievable value of polarization is

Pmax x! 0ð Þ ¼ Cð1Þ= Cð1Þ þ 2ð Þ: ð4:1:34Þ

It is obvious that for producing of polarized c-quanta by this method the usage
of targets with small Z is more preferable, since a polarization degree in this
case is higher. So, for beryllium Cð1Þ ¼ 2:49 i.e. Pmax ¼ 0:60, whereas for lead
Cð1Þ ¼ 1:94 and, hence consequently, Pmax ¼ 0:49 (see Fig. 4.7).

4.2 The Bases of the Theory of Coherent Bremsstrahlung

The process of BS from ultrarelativistic electrons is drastically changed if instead
an amorphous target there is used a crystalline one [7, 9]. This process is named as
coherent bremsstrahlung (CBS) (see, for instance [10]).

The expressions for calculation of intensity and polarization obtained in the first
Born approximation and being true for a thin crystal (for which it is possible to
neglect the multiple scattering) are presented in a couple of the works (see for
example, [10–12]).

Fig. 4.7 The linear
polarization of BS photons
for electrons at the angle of
radiation u0 = ch = 1. The
curve 1 corresponds to
calculation using the
formula (4.1.33) for lead; the
curve 2—for beryllium
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In the same approximation these formulae can be obtained from expression
(4.1.2), in which the vector J (see Eq. 4.1.1) is defined through Fourier-transform
of the crystal lattice potential Vcry as follows:

J ¼ 4pe

x
VcryðqÞI: ð4:2:1Þ

If we consider a homogeneous lattice, consisting of nuclei with screened Coulomb
potential, then

VcryðqÞ ¼
X

m

Ze

q2 þ ð�h=q0Þ2
exp iqmLmð Þ: ð4:2:2Þ

In Eq. (4.2.2) Lv is the radius-vector of the lattice node; summation is carried
out over all nuclei of a lattice. After substitution Eq. (4.2.1) into Eq. (4.1.2) we
have (see, for instance, [13]):

drcry ¼
e2

2pð Þ4
1

�hx
F0cry þ niFi cry

� �
�hxð Þ2d�hx dX1 dqt;

F0 cry ¼
16p2e2

�hxð Þ2
VcryðqÞ
�� ��2 2 �hxð Þ2I2 þ 4e1e2I2

t

n o
;

F1 cry ¼
16p2e2

�hxð Þ2
VcryðqÞ
�� ��28e1e2I1I2;

F2 cry ¼ 0;

F3 cry ¼
16p2e2

x2
VcryðqÞ
�� ��2 4e1e2 I2

1 � I2
2

� �� �
;

ð4:2:3Þ

where the vector I remains the same, as for ordinary bremsstrahlung on a single
nucleus (see the formula (4.1.1). The obtained cross-section is proportional to a
square of the lattice potential of Fourier-transform module. Carrying out a standard
procedure of averaging over the lattice temperature (see, for example, [7]),
we shall get:

VcryðqÞ
�� ��2 ¼ DðgaÞ exp ��r2q2

� �
d q� gað Þ

�
þN 1� exp ��r2q2

� � ��
V2 qð Þ: ð4:2:4Þ

Here ga is a radius-vector of a reciprocal crystal lattice; D gað Þ is the diffraction
factor, which takes into account the 3D periodicity of atoms in an elementary cell,
type of a cell etc.; expð��r2q2Þ is a Debye–Waller factor); �r2 is the root-mean-
square amplitude of temperature vibrations of lattice atoms; N is a number of
atoms of monocrystal.

For complex lattice (in which the number of atoms in an elementary cell
n is more than 1) we use the expression:

D gað Þ ¼
N

n

2pð Þ3

a3
S gað Þj j2: ð4:2:5Þ
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Here a3 is a volume of an elementary cell; S gað Þ is the structure factor. For sim-
plicity of the description further everywhere it is meant, that a lattice is a cubic one.

For a diamond-type lattice

S gað Þ ¼ 1þ exp i
p
2

h1 þ h2 þ h3ð Þ
� �h i

� 1þ exp ip h1 þ h2ð Þð Þ þ exp ip h2 þ h3ð Þð Þ þ exp ip h3 þ h1ð Þð Þ½ �;

where hiði ¼ 1; 2; 3Þ are the Miller indices of the reciprocal lattice vector
ga ¼ h1; h2; �h3f gð Þ:. Hence it follows that

S g
a

� �
¼

64� for even hi; and h1 þ h2 þ h3ð Þ=4� integer;
32� for odd hi;
0� for remaining cases:

8
<

:

It is possible to show that for the tungsten crystal

S gað Þ ¼
16� for even hi;
0� for remaining cases:

	

Proceeding from (4.2.3), (4.2.4), let’s write the CBS cross-sections in Born
approximation on a lattice potential:

drcry ¼ D gað Þf exp ��r2q2
� �

d q� gað Þ þ N 1� exp �r2q2
� � ��

dr

¼ drcoh þ drinc:
ð4:2:6Þ

Here drcoh and drinc are the parts of cross-section, first of which (coherent) depends
on orientation of a crystal, but the second (incoherent) does not depend on it.

Since the cross-section for the lattice potential (4.2.6) is proportional to N—the
number of atoms of a lattice, further we shall use the cross-section drcry ¼
drcoh þ drinc; per single atom:

drcoh ¼
1
n

2p
a

� �3

S gað Þj j2exp ��r2q2
� �

d q� gað Þdr;

drinc ¼ 1� exp ��r2q2
� � �

dr:

ð4:2:7Þ

The cross-section on an isolated nucleus dr enters into both parts of cross-section
(coherent and incoherent) (see the formula (4.1.2)). Polarization characteristics of
CBS are defined as follows [13]:

ni cry ¼
Fi cry

F0 cry

¼ Fi coh þ Fi inc

F0coh þ F 0 inc

;

F0;i coh ¼
1
n

2p
a

� �3

S gað Þj j2exp ��r2q2
� �

d q� gað ÞF0;i;

F0;i inc ¼ 1� exp ��r2q2
� � �

F0;i:

ð4:2:8Þ

Here for F0;i the expressions are the same, as for an ordinary BS (see 4.1.2).
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For convenience we shall carry out integration over the transverse recoil
momentum of expressions (4.2.3) separately for coherent and incoherent parts of
cross-section using the coordinate system shown in Fig. 4.8.

As it follows from (4.2.6), (4.2.8), the dominant contribution to a coherent part
of cross-section gives the region of the recoil momenta q2\�r�2. The root-mean-
square amplitude of thermal vibrations is defined by parameters of a crystal
(Debye temperature H and mass of atom M) and temperature of crystal T:

�r2 ¼ 3
4MkH

1þ 4
T

H

� �2 ZH=T

0

t

et � 1
dt

2

64

3

75;

where k is Boltzmann’s constant. At the temperature 20�C �r2 has the following
value for different crystals (in electron Compton lengths squared): diamond—101;
silicon—290; tungsten—110. Hence, the coherent effect is significant in range
qt � 1, therefore for calculation of a coherent part of cross-section we’ll keep
terms not more than q2

t . In this approximation

I ¼ qt

1þ u2
� 2uqt u� nð Þ

1þ u2ð Þ2
; I2 ¼ q2

t

1þ u2ð Þ2
: ð4:2:9Þ

As basis vectors it is convenient to choose the followings:

e1 ¼
b1; k½ �
b1k½ �j j; e2 ¼

ke1½ �
x

: ð4:2:10Þ

Here b1 is a crystallographic axis, at small angle to which there is propagated an
electron (see Fig. 4.8). Then we have

I1 ¼ Ie1 ¼ �
qt sin w2

1þ u2
þ 2uqtu sin w1

1þ u2ð Þ2
;

I2 ¼ Ie2 ¼
qt cos w2

1þ u2
� 2uqtu cos w1

1þ u2ð Þ2
:

ð4:2:11Þ

Fig. 4.8 The coordinate
system for calculation of CBS
characteristics
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In (4.2.11), as before, w1 is an azimuthal angle of an outgoing photon; w2 is an
azimuthal angle of a recoil momentum. After substitution (4.2.11) in (4.2.3) we get

drcoh ¼
1
n

2p
a

� �3

g S gað Þj j2exp ��r2q2
� �

d q� gað Þ

� 2Z2e6

p2 q2 þ 1=q2
0

� �2 G0 coh þ niGi cohf gd�hx
�hx

dX1 dqt;

where

G0 coh ¼ e2
1 þ e2

2

� � q2
t

1þ u2ð Þ2
� 8e1e2

u2q2
t cos2 w1 � w2ð Þ

1þ u2ð Þ4
;

G1 coh ¼ 2e1e2
q2

t

1þ u2ð Þ4
�u4 sin 2 2w1 � w2ð Þð Þþ


2u2 sin 2w1ð Þ � sin 2w2ð Þ
�
;

G2 coh ¼ 0;

G3 coh ¼ 2e1e2
q2

t

1þ u2ð Þ4
�u4


cos 2 2w1 � w2ð Þð Þ þ 2u2 sin 2w1ð Þ � cos 2w2ð Þ
�
:

ð4:2:12Þ

One-dimensional d-function d ql � galð Þ remains instead of three-dimensional one
after integration over transverse recoil momentum. For its elimination we’ll take
the kinematic correlation between the photon angle u and the longitudinal recoil
component ql:

ql ¼ p1l � p2l � x ¼ 1
2

1þ m2

e2
� 1þ u2

e1

� �
:

This expression was deduced in ultra-relativistic approximation ei � 1; hi � 1ð Þ
with taking into account the law of energy conservation. Having expressed m2

through u; qt; we’ll deduce:

ql ¼
x 1þ u2ð Þ

2e1e2
� 2uqt � q2

t

2e2
� d 1þ u2
� �

: ð4:2:13Þ

It is possible to neglect terms, which are proportional to qt, (all the more q2
t ), since

it was noted before qt � 1.
Thus, dX1 ¼ 1

2e2
1
du2dw1 ¼ 1

2de1e2
dqldw1:

The region of integration in momentum space is defined in a longitudinal
direction by collimation angle of radiation uc ¼ e1h1c (see the formula (4.2.13)),
and in transverse one—by Debye–Waller factor (range q2

t [ 4�h2=�r2 in dimension
units gives the contribution to the cross-section, not exceeding several percents):

d	 ql	 d 1þ u2
c

� �
; 0	 qt 	 2=

ffiffiffiffi
�r2
p

: ð4:2:14Þ
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In momentum space the conditions (4.2.14) describe a disc, which radius is much
larger, than its thickness, and which is located perpendicularly to a momentum of
the initial electron (since photons are emitted in a cone with an opening angle
hc � 1, which axis coincides with an electron momentum)—so-called Uberall’s
‘‘pancake’’ [9].

The cross-section (4.2.12) is obtained in coordinate system connected to the
photon momentum. For calculations it is more convenient to pass in the system
connected to initial electron momentum. Because of that these two systems are
rotated relative to each other trough an angle h1� c�1 � 1, the expression (4.2.12)
in new system remains unchanged within accuracy up to terms c�2. Herewith
the variables ql; qt will designate the longitudinal and transverse projections of
recoil momentum relative to a direction of the initial electron.

Proceeding from (4.2.12) (taking into account the relationship 4.2.13), we
obtain the following expression for the coherent contribution to intensity of
radiation:

dIcoh

d�hx
¼ �hx

drcoh

d�hx
¼ 2Z2e6

p2

1
n

2p
a

� �3

� 1

2de2
1

Z
dw1 dqt dql S gað Þj j2�d q� gað Þ exp ��r2q2ð Þ

q2 þ 1=q2
0

� �2

� e2
1 þ e2

2

� �q2
t d

2

q2
l

�
�

8� e1e2
ql � dð Þd3q2

t cos2 w1 � w2ð Þ
q4

l

�

¼ 2Z
2
e6

p
1
n

2p
a

� �3X

ga

S gað Þj j
2 exp ��r2g2

a

� �

g2
a þ 1=q2

0

� �2

dg2
al

g2
al

� 1þ 1� xð Þ2�4ð1� xÞd gal � dð Þ
g2

al

� �
: ð4:2:15Þ

For obtaining of the formula (4.2.15), the integration over an azimuthal angle of
outgoing photon w1 is carried out. The integration over 3-dimensional recoil
momentum is removed by d-function and replaced with summation over the
reciprocal lattice vectors getting into Uberall’s pancake:

d	 gal	 d 1þ u2
c

� �
; 0	 gat 	 2=

ffiffiffiffi
�r2
p

: ð4:2:16Þ

The dependence of the coherent part of cross-section on orientation of a single-
crystal target «is incorporated» just in the last two inequalities. Really, the Uberall
pancake, as it was already mentioned above, is perpendicular to the electron
momentum, and in case of crystal target rotation relative to electron beam the
different reciprocal lattice vectors enter into pancake and leave one, resulting,
finally, in the orientation dependence of the radiation yield. Direction of electron
beam p1 relative to a crystallographic axis is possible to set by two angles,
for example polar angle h between the electron momentum and crystallographic
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axis b1 and azimuthal angle a between a plane p1b1ð Þ and crystallographic
plane b1b2ð Þ (see Fig. 4.8). In this case the longitudinal and transverse components
of reciprocal lattice vector ga (which is characterized by three projections
ga1 ¼ 2p

a h; ga2 ¼ 2p
a k; ga3 ¼ 2p

a l; h, k, l are the integers) are defined as follows:

gal ¼
2p
a

h cos hþ k sin h cos aþ l sin h sin að Þ;

gat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

a � g2
al

q
:

ð4:2:17Þ

The incoherent contribution to intensity is calculated by integration of cross-
section drinc (4.2.7) over transverse recoil and over the photon outgoing angles.
The first integration of the first summand (dr) is carried out already (see the
formula (4.1.12)). We’ll carry out the similar integration for the second term:

exp ��r2q2
� �

dr ¼ 2Z2e6

p
dx
x

sin h dh
dw1

2p
qt dqt dw2

� exp ��r2q2ð Þ
q2 þ 1=q2

0

� �2 2 e2
1 þ e2

2

� �
I2 � 4e1e2I2

3

 �
: ð4:2:18Þ

The integration over azimuth is carried out in the same way as earlier. As it was
mentioned above, the exponential multiplier

exp ��r2q2
� �

¼ exp ��r2q2
t

� �
exp ��r2q2

l

� �� �
� exp ��r2q2

t

� �

differs from zero in region q2
t 	 4=�r2 � 1, in which the result of azimuthal

integration can be written in the following form (see (4.1.5), (4.1.6), (4.1.9)):

Z
I2dw2 ¼ 3x qtð Þ þ y qtð Þ

1þ u2ð Þ2

4
� 2p

q2
t

1þ u2ð Þ2
;

Z
I2
3dw2 ¼ x qtð Þ þ y qtð Þ

1� u2ð Þ2

4
� 4p

u2q2
t

1þ u2ð Þ4
:

Thus, after integration of the right part of expression (4.2.18) over transverse recoil
momentum we have

4Z2e6 dx
x

u du

1þ u2ð Þ2
dw1

2p
2
e2

1 þ e2
2

e2
1

� 8
e2

e1

u2

1þ u2ð Þ2

" #

R �r2
� �

;

where R �r2ð Þ ¼
R 4=�r2

0
ð1=2Þdq2

t q2
t expð��r2q2

t Þ
ðq2

tþ1=q2
0Þ

2 :

Summarizing the received result with expression (4.1.12), it is possible to get
the formula for the incoherent contribution to intensity
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dIinc

�hdx
¼ �hx

drinc

�hdx
¼ 4Z2e6 u du

1þ u2ð Þ2
dw1

2p

� e2
1 þ e2

2

e2
1

2Cinc þ 3ð Þ � 2
e2

e1
� 8

e2

e1

u2

1þ u2ð Þ2
Cinc

( )

: ð4:2:19Þ

The last expression coincides with expression for intensity of an ordinary
bremsstrahlung, when replacing C uð Þ ! Cinc uð Þ; where

Cinc uð Þ¼C uð Þ � R �r2
� �
¼ ln 1þ u2

� �
q0 � 2� R �r2

� �
: ð4:2:20Þ

From the proceeding (4.2.19) and (4.2.20), it is possible to calculate the incoherent

contribution for any choice of screening function 1� F q2ð Þ½ �2
.

q4, since the value

C uð Þ is calculated by formulae (4.1.6) and (4.1.10), and for the function R �r2ð Þ we
have the expression

R �r2
� �
¼
Z4=�r2

0

1
2

d q2
t exp ��r2q2

t

� �
q2

t

1� F q2ð Þ½ �2

q4
:

Herewith it is necessary to mean, that q2 ¼ q2
t þ d2ð1þ u2Þ2 and, generally

speaking, Rð�r2Þ ¼ Rð�r2; uÞ. In some cases the function R can be calculated ana-
lytically. Let’s divide the integration region into two parts as before: 0	 q2

t 	 q2
0

and q2
0	 q2

t \1; and 1=q2
0 � q2

0 � 1=�r2.
The last double inequality is not always fulfilled, however, for crystals repre-

senting interest, for example, diamond and silicon, it is true. The screening radius
q0 for these crystals considerably exceeds the amplitude of thermal vibrations �r.
In the first region we use the expansion of the exponent

RI ¼
Zq2

0

0

ð1=2Þq2
t 1� �r2q2

t

� �
dq2

t

q2
t þ 1=q2

0

� �2 � 1
2

lnðq2
0 q2

0Þ � 1� �r2q2
0

� �
:

The integration through the second region can be spread up to 1, since the
integrand decreases exponentially:

RII ¼
Z1

q2
0

ð1=2Þ exp ��r2q2
t

� �
dq2

t

q2
t

¼ � 1
2

Ei ��r2q2
0

� �
:

Here EiðxÞ is an integral exponential function. For the values of argument x� 1 it
is possible to use the expansion Eið�xÞ ¼ ln x� xþ 0:577. . .. The boundary
between two regions q2

0 is chosen in this way that in our case this expression is
applicable ð�r2q2

0 � 1Þ. Thus, we have the following expression for required
integral: R ¼ RI þ RII ¼ �ð1=2Þ½ln �r2=q2

0

� �
þ 1:577�: Subsequently, the quantity
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Cinc ¼ lnð1þ u2Þq0 � 2� R ¼ 1
2 ln½�r2ð1þ uÞ2� � 1:212 does not depend on

screening radius, i.e. the incoherent contribution is defined only by root-mean-
square radius of thermal fluctuations for crystals with small Z and Debye
temperature.

During calculation of the coherent contribution (see 4.2.14), the integration
over photon outgoing angles 0	 u	 uc was made, which is necessary to carry out
for the incoherent contribution also:

dIinc

dx
¼ 4Z2e6

(

1þ 1� xð Þ2
h iln�r2 þ 0:577

2
1� 1

1þ u2
c

� �

� 1� xð Þ 1� 1
1þ u2

c

� �
� 1

3
1� xð Þ ln�r2 � 2:523

� �
� 1� 1þ 3u2

c

1þ u2
c

� �

 !)

:

ð4:2:21Þ

During calculation (4.2.21), as before, it is neglected by the dependence on u2 in
the logarithm argument. Thus, the intensity of BS in a crystal is defined by the sum
of two expressions (4.2.15) and (4.2.21):

dIcry ¼ dIinc þ dIcoh: ð4:2:22Þ

Let’s calculate Stokes parameters n1; n3, which correspond to the linear polari-
zation, in case of axial collimation of c-radiation. For this purpose it is necessary to
integrate numerator in (4.2.8) over unobservable variables, since the denominator
is already calculated, see (4.2.15), (4.2.21), (4.2.22). We’ll note at once that after
averaging on the photon azimuthal angle �Finc ¼ 0 as well as in a case of an
amorphous target. After the procedure of averaging which is similar to applied one
for calculation (4.2.14) we have

�F1 coh ¼
2Z2e6

p
1
n

2p
a

� �3X

ga

S gað Þj j2

�
exp ��r2g2

a

� �

g2
a þ 1=q2

0

� �
dg2

at

g2
al

�2 1� xð Þd
2

g2
al

sin 2w2að Þ
� �

: ð4:2:23Þ

The expression for �F3 coh turns out from (4.2.23), when replacing sinð2w2Þ !
cosð2w2Þ:

The azimuthal angle w2a in (4.2.23) is counted from the plane p1b2. As a rule,
the angle h between axis b1 and the electron momentum p1 (see Fig. 4.2) is small
enough h� 1, therefore in a good approximation

w2a ¼ arctg g3a=g2a

� �
;

sin 2w2að Þ ¼ 2g2ag3a

g2
2a þ g2

3a

; cos 2w2að Þ ¼ g2
2a � g2

3a

g2
2a þ g2

3a

:
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The expression (4.2.15) with taking into account (4.2.14) can be classified as
follows:

(a) the whole set of the reciprocal lattice vectors in the Uberall’s pancake arranges
a plane;

(b) the set of the reciprocal lattice vectors in the Uberall’s pancake arranges a
form of row;

(c) there is only one single reciprocal lattice vector in a pancake;
(d) the reciprocal lattice vectors are absent in a pancake.

In cases (a) and (b), which are named ‘‘effect of a plane and row’’, the coherent
contribution to the radiation intensity is defined by the sum of contributions from all
vectors getting in the pancake, and achieves values, several times as much exceeding
the incoherent part, however the polarization degree is not too high (because of
averaging over a set of reciprocal lattice vectors with various azimuthal angles w2a).

The case (c), so-called ‘‘point effect’’, corresponds to orientation, when in the
sum (4.2.14) the single reciprocal lattice vector gives the contribution. In this case
the coherent part of the radiation intensity not so much differs from the incoherent
part, but polarization is much higher, than in the previous case (since does not
occur averaging over an angle w2a.

In a case (d) the coherent effect is absent and all characteristics of radiation are
defined by the incoherent part.

From (4.2.23) it follows that in a case of ‘‘point effect’’ the plane of the
maximal polarization is perpendicular to the plane, in which the recoil momentum
and electron momentum p1 are placed.

The orientations of a single crystal, which correspond to described effects, are
illustrated in Fig. 4.9. Note that the case of a plane effect corresponds to orien-
tation, when the beam of electrons goes along any crystallographic axes, and the

Fig. 4.9 The orientation of
the Uberall’s pancake relative
to the reciprocal lattice in
case of a plane effect (a), a
row effect (b) and a point
effect (c)
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row effect corresponds to orientation, when the beam of electrons goes along the
crystallographic plane. Really, the family of crystallographic reciprocal lattices
h1�1�1i getting in the pancake (Fig. 4.9b), corresponds to family of crystallographic
planes, which are perpendicular to the reciprocal lattice vector (1�1�1). The same
vector is perpendicular to the electron momentum. It means this orientation cor-
responds to the channeling in a plane (1�1�1).

The orientation corresponding to the point effects is achieved in case of increase
of disorientation angle h with regard to the crystallographic axes and in case the
electron momentum lies outside the crystallographic plane.

The plane effect, otherwise named coherent radiation of B-type [14] will be
considered in the next paragraph.

The CBS process can be described also in the coordinate space (see, for
example, the book [15]). To show the connection between the described approach
and the approach developed in [15], let’s consider the elementary case of a point
effect, when the coherent effect is caused by the lattice vector h010i for angles of
orientation h� 1; a � 0. In this case from (4.2.17) we have

gl �
2p
a

sin h cos a � 2p
a

h:

For CBS in the straightforward direction (uc ¼ 0) from (4.2.14) it is possible to
derive the expression for relative energy of CBS photons:

2p
a

h ¼ 1
2c

x

1� x
;

from which directly follows

x ¼ �hx
e1
¼

4pc�ke

a h

1þ 4pc�ke

a h
: ð4:2:24Þ

In the last expression the lattice parameter a is substituted in dimensional units.
The second summand in a denominator (4.2.24) is caused by the recoil effect. With
the increase of the electron Lorentz-factor the value x grows and, generally
speaking, if the following condition is satisfied

c�ke

a
h� 1

4p
ð4:2:25Þ

it can achieve the values close to unity (i.e. �hx! e1). For relatively small

values of c and h, when the condition opposite to (4.2.25) 4pc�ke

a h� 1 is satisfied,
then the relative energy of photon is calculated from the simple elementary
formula

�hx ¼ 4pc2mc2 �ke

a
h: ð4:2:26Þ
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It is easy to deduce the expression for the photon wavelength from the last
formula:

k ¼ 1
2c2

a

h
ð4:2:27Þ

which can be rewritten as ‘f ¼ dCBS:
Here dCBS ¼ a=h designates the ‘‘perturbation’’ period of the electron trajectory

by the crystalline lattice, and the value 2c2k is none other than CBS formation
length in straightforward direction.

Let’s estimate the maximum available linear polarization Pmax of CBS beam.
We’ll consider, first of all, the point effect (since in this case the polarization is
higher) and, secondly, the case of ‘‘hard’’ collimation of radiation. As it is shown
in [16], the hard collimation (uc\1) results in the effective suppression of the
incoherent part of cross-section and, as a consequence, to increase of photon beam
polarization. The influence of collimation on the coherent part comes to the
monochromatization of maxima without their reduction. In case of collimation
u2

c 	 1 the incoherent part is much less than coherent one, therefore calculating
Pmax, the former one can be neglected. Since in the sums (4.2.15), (4.2.23) only
one summand remains, it is easy to see that Stokes parameters are defined as
follows: �ni ¼ �Gi coh=�G0 coh:

A line designates here the result of integration of expressions (4.2.12) over the
azimuthal angle of photon:

�G0 coh ¼
2pd2q2

t
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1þ 1� xð Þ2� 4 1� xð Þd ql � dð Þ
q2

l
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;
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q2
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2 1� xð Þd
2

q2
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sin 2w2ð Þ;

�G3 coh ¼ �
2pd2q2

t
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l

2 1� xð Þd
2

q2
l

cos 2w2ð Þ:

Hence we have

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n2

1 þ �n2
3

q
¼ 2ð1� xÞd2=q2

l

1þ 1� xð Þ � 4 1� xð Þd ql � dð Þ=q2
l

:

It is clear that the polarization achieves the maximal value at ql ¼ d:

Pmax ¼
2 1� xð Þ

1þ 1� xð Þ2
: ð4:2:28Þ

The expression (4.2.28) gives the limiting value of polarization (for example, for
x = 0.3 the linear polarization is equal to Pmax ¼ 0:94), whereas the effect of real
conditions of experiment (the contribution of incoherent part, divergence of
electron beam, influence of target thickness etc.) results in the essential reduction
of a linear polarization degree.
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4.3 Coherent Bremsstrahlung of B-type

For electrons moving along the crystallographic axis (i.e. for h ¼ 0), the pancake
in the space of reciprocal lattice is oriented perpendicularly to the crystallographic
axes and, consequently, into one will get the whole set of reciprocal vectors, which
satisfy to following condition

1
2c�ke

x

1� x
¼ 2p

a
n; n ¼ 1; 2; 3. . . ð4:3:1Þ

In other words, the whole plane of reciprocal vectors, i.e. a set of ones with any
h; k (the plane effect) gets into the Uberall’s pancake. The expression for energy of
coherent maxima follows from (4.3.1)

xn ¼
�hxn

e1
¼

4pc�ke

a n

1þ 4pc�ke

a n
: ð4:3:2Þ

For energy e1� 1000 MeV, as follows from (4.3.2), the first maximum for a
diamond single crystal corresponds to the relative energy of photons x � 0.97 and
it is positioned in an energy range near to the end of a spectrum, where the
coherent effects are expressed very weakly.

However for electrons with energy e1� 100 MeV the situation is sharply
changed. The dependence of the first coherent maximum position in a spectrum is
shown in Fig. 4.10 depending on electron energy for a single diamond crystal and
silicon one [17].

The monochromaticity of a peak is defined by a collimation angle hc deter-
mining the lower bound of coherent maximum:

1
2c�ke

xmin

1� xminð Þ 1þ c2h2
c

� �
¼ 2p

a
n; ð4:3:3Þ

For the energy of photons with x\xmin the pancake shifts towards the origin of
coordinates in reciprocal lattice in such manner that a whole plane of reciprocal

Fig. 4.10 Energy
dependence of the first
coherent peak in radiation
spectrum on the electron
energy for different crystals
and different orientations
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vectors escapes the pancake and the radiation spectrum will be determined by the
incoherent part only.

The CBS spectrum of B-type is shown in Fig. 4.11, which is calculated for
electrons with energy e1 ¼ 150 MeV, moving in a thin diamond crystal along an
axis h110i, for the collimation angle hc ¼ 0:6 mrad (chc ¼ 0.18). From (4.4.1) and
(4.4.2) it is possible to obtain an estimation of the spectrum monochromaticity of
CBS beam (neglecting the multiple scattering):

�hDx
�hxn

¼ Dx

xn
¼ 1� xnð Þc2h2

c: ð4:3:4Þ

As follows from (4.3.4), the monochromaticity for collimation angles hc � c�1

can achieve *1%.
The estimation using the formula (4.3.4) for chc ¼ 0:18 gives the value

Dx=x � 0:5%, what well agrees with the result of calculation by the exact
formulae (see Fig. 4.11).

4.4 Coherent Bremsstrahlung Beams and its Applications

Due to such characteristics of CBS as polarization, quasimonochromaticity, tun-
ability, etc., coherent bremsstrahlung beams are widely used at various facilities to
produce photon beams for investigations in nuclear physics and high energy
physics [18–20]. It is evidently the advantages of such beams are defined by the
relation between drcoh and drinc. Very roughly this relation is determined by the
ratio exp ��r2g2ð Þ

�
1� exp ��r2g2ð Þð Þ calculated for the minimal reciprocal vector

g coming to the Uberall pancake (see Eq. (4.2.7)). Also the coherent effect is the
highest for the shortest crystal lattice constant. From these criteria the diamond is
the best crystalline radiator. The diamond possesses other important feature—a
high thermal conductivity, much higher than ones for such crystals, as Si, Ge, W
[21]. A high energy intense electron beam passing through a crystalline target
results in significant energy deposition in a volume around the beam axis, which
leads to the local temperature rise. This local heating can change crystalline

Fig. 4.11 The spectrum of
CBS intensity of B-type for
collimation hc = 0.6 mrad.
Arrows mark the positions of
coherent peaks for n ¼ 1, 2, 3
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properties of a target or even destroy it. The main part of experiments with the
coherent bremsstrahlung beams have been carried out using diamond targets. The
main part of experiments with the coherent bremsstrahlung beams have been
carried out using diamond targets.

Using crystals as targets is inevitably connected with the procedure of orien-
tation of a crystal, which essence consists in the repeated carrying out the fol-
lowing operations:

(a) investigation of an orientation of crystallographic planes relative to the elec-
tron beam and their identification, i.e. reconstruction of a ‘‘map’’ of planes;

(b) maximum exact matching chosen crystallographic axis or plane with the
direction of electron beam (for example, with accuracy not worse than
0.1 mrad for e1 = 1 GeV);

(c) crystal rotation in order to achieve the chosen orientation.

Since the orientation of crystal relative to the electron beam is defined by two
angles (for example, h and a), for an achievement of any given orientation it is
enough to have the goniometric device with two axes of rotation. As a rule, there is
used a goniometer with two perpendicular axes of rotation, one of which is per-
pendicular to an electron beam (see Fig. 4.12).

The relationship between angles of rotation around of horizontal and vertical
axes (wH and wV) with angles of orientation is given by the following formulae:

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

H þ w2
V

q
; a ¼ arctgðwH=wVÞ � b: ð4:4:1Þ

In (4.4.1) b is the angle between the vertical axis of rotation and crystallographic
axis b3 (in case of coincidence of the electron momentum p1 with an axis b1). The
obtained expression is valid for goniometric angles wH;wV; which is counted off
from angles w0

H;w
0
V corresponding to the zero orientation of a crystal, when the

crystallographic axis coincides with direction of electron beam.
It is possible to show that the longitudinal projection of the reciprocal vector is

expressed through goniometric angles and Miller indices as follows (in case of
orientation of the electron momentum close to the axis h100i):

gl ¼ 2p=að Þ hþ kwV cos bþ lwH sin b½ �; ð4:4:2Þ

a) b)Fig. 4.12 The orientation of
single crystal: Angles h, a
being determined in respect
to crystallographic axes (a);
angles wH;wV; being
determined in respect to
goniometric axes (b)
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where h, k, l are the Miller’s indices in the cubic basis. The expression (4.4.2) is
convenient for using during calculations of different orientation dependences
which are measured during rotation of a crystal in the goniometer.

If the crystal is oriented in such a manner that the electron momentum is
directed, for example, close to the axes h111i, the similar formula can be easily
obtained, using the known trigonometric transformations in case of initial basis
turn on the given angle.

The simplest technique of preliminary orientation was proposed in the work
[22], were the orientation dependence (OD) of the current from a thin-walled
ionization chamber was measured, which is sensitive to a low-energy part of
radiation spectrum. The measured OD and the map of the crystalographic planes
are given on Fig. 4.13, on which ‘‘the turn routes’’ of crystal relative to the
electron beam direction are shown. Maxima in OD correspond to an orientation,
when electrons move along crystallographic plane. In case of route closing to the
axis, the intense maxima occur and finally merge in one global maximum corre-
sponding to the zeroth orientation. These maxima (plane and axial) are caused by
the low-energy radiation appearing in moving electrons in conditions of the plane
or axial channeling. After finding of the zeroth orientation of crystal the obtaining
of the chosen orientation does not represent particular difficulties.

The single-crystal target orientation is chosen depending on the requirements
needed for operation with a photon beam (position of maximum, intensity,
polarization degree, monochromaticity, ratio Icoh=Iinc etc.) during experiment.

All formulae given in the present chapter are obtained for the monodirected
electron beam and thin single-crystal. The crystals used in experiment, as a rule,
have thickness far higher than condition (4.1.25). Consequently, in calculations of
CBS characteristics it is necessary to take into account the angular distribution of
electron beam in process of its passage through a single crystal.

In the experiment [23] the linearly polarized CBS beam was used for mea-
surements of an asymmetry of the deuteron photodisintegration. In order to per-
form similar measurements there was a necessity to change polarization plane

Fig. 4.13 Graphical interpretation of the procedure of identification of crystallographic axis: the
dependence of the radiation intensity from a single crystals in respect to the rotation angles
around the vertical (wV) and horizontal (wH) axes accordingly (a); definition of the
crystallographic axis position by the positions of maxima of orientation dependences on a plane
of angles wV and wH (‘‘map’’) (b)
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periodically during the experiment. In Fig. 4.14 it is shown the crystallographic
‘‘map’’ of the used diamond crystal [24], where No. 1 and No. 2 denote the crystal
orientations, each of them provided the CBS beams obtaining with identical
spectral characteristics but the inclination angle of the polarization plane was
rotated for 90 � without the polarization degree changing. In other words, passing
from the orientation No. 1 to No. 2 the sign of Stokes parameter n3 is changed to

opposite ðnð1Þ3 ¼ �nð2Þ3 Þ.
The orientation No. 1 was chosen in order to provide the ‘‘point effect’’ from the

contribution of (0,4,0), reciprocal vector but for orientation No. 2—from the vector
(4,0,0). The diamond target with thickness 0.5 mm and transverse sizes
6 9 10 mm has been cut in such a manner when axes h100i, h010i, h001i were
perpendicular to sample surfaces. The electron beam with energy e1 ¼ 900 MeV
passed through a target close to the axis h001i.

To obtain the polarized photons with energy �hx = 100 MeV for the asymmetry
cd measurements [23] the orientations were following:

No: 1: wV ¼ 40 mrad; wH ¼ 1:5 mrad

No: 2: wV ¼ 1:5 mrad; wH ¼ 40 mrad

In Fig. 4.14b two CBS spectra for orientations No. 1 and No. 2 measured by a
pair magnet spectrometer are shown. Within accuracy of the experiment both
spectra were equal. The result of simulation with taking into account the effect of
CBS beam collimation (hc ¼ 0:6 mrad) and multiple electron scattering is shown

a)

b)

Fig. 4.14 Crystallographic
planes chosen orientations
(No. 1 and No. 2) (a);
CBS spectra measured
for two crystal orientations
(No. 1—dots,
No. 2—crosses) (b)
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in Fig. 4.15 (top) [25]. The bottom curve describes the dependence of Stokes
parameter n3 on a photon energy. The measured values of Stokes parameter n3

confirmed the simulation results (nð1Þ3 ¼ þ0:70; nð2Þ3 ¼ �0:73, see [24]).
As a rule, there are ‘‘thick’’ crystals used, for which the r.m.s. angle of multiple

scattering is much more than characteristic angle c�1. But due to the hard colli-
mation of the CBS beam a contribution from incoherent part can be diminished
significantly and, as a result, the CBS beam gets a high polarization degree and
acceptable monochromaticity (see, for instance, [26–28]).

To study the dependence of a cross-section of some photoprocess on a photon
energy it is possible to utilize such the characteristic of a collimated CBS beam as
a quasimonochromaticity. In case of hard collimation of CBS beam, besides the
suppression of incoherent part, the monochromatization of CBS spectral maxima
(on the full analogy of the undulator radiation) occurs. Changing an energy of the
collimated CBS peak (rotating a crystalline target or changing an incident electron
energy) and measuring the yield of a process it is possible to reconstruct a cross-
section. In the experiment [29] this technique was used to investigate the process
cp! pX.

Electrons with energy 20 GeV passed through the diamond target with thick-
ness 80 l in order to produce a quasimonochromatic photon peak in the energy
range 8–14 GeV by a collimation hc ¼ 0:011 mrad. Note that during the exper-
iment approximately 2 � 1019 electrons passed through the diamond crystal without
a significant radiation damage.

The same technique may be used in the nuclear physics for a photon energy
�hx	 100 MeV. In this case it is possible to use a beam produced by the CBS-B
mechanism.

Fig. 4.15 Comparison of the
measured spectrum (dots) and
simulation results for
wV ¼ 40 mrad;
wH ¼ 1:5 mrad (top) and
CBS simulations for the
Stokes parameter n3 (bottom)
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The results of measurement of CBS spectrum of B-type for the energy of
electrons e1 = 300 MeV at passage through the diamond crystal with the thickness
of 0.35 mm along h110i axis [30] are shown in Fig. 4.16.

The calculations of CBS spectrum of B-type with taking into account the
electron multiple scattering in a diamond target are given here as well. It is
possible to specify the good coincidence of experimental data with results of
calculations, having in mind that the ratio ‘‘peak/background’’ in this experiment is
appreciably lower, than theoretical ones for the ideal case (see Fig. 4.11). Such
reduction of the coherent contribution in comparison with incoherent one is caused
by the effect of multiple scattering in target, which thickness wittingly does not
satisfy to the criterion of a ‘‘thin’’ target (see expression (4.1.25)). During multiple
scattering the electrons of initial beam change the entering angle in respect to the
initial direction (along the crystallographic axis) and leave CBS mode of B-type
passing to the mode of ordinary CBS (i.e. the plane effect is replaced with the point
effect). In this case the radiation spectrum will be defined only by the angle h
between electron momentum and crystallographic axis (one may expect the
electron scattering has azimuthal symmetry, what results in averaging in respect to
an angle a).

The evolution of CBS spectra in case of orientation angle h changing in the
interval 0	 h	 1:8 mrad for diamond crystallographic axis h100i and energy of
electrons 4.5 GeV [31] is shown in Fig. 4.17. As distinct from CBS spectra of
B-type, the essential enrichment of spectrum in the soft part is observed in this
case.

When an electron beam moves through a crystalline target nearly a crystallo-
graphic axis (the disorientation is less than the so-called channeling critical angle
or Lindhard’s angle wL [32]), electrons can be captured in the mode of axial
channeling and generate the intense radiation at channeling in the range of relative
energies of photons x	 0.1. The estimation of the Lindhard’s angle for h111i axis
of tungsten and electron energy e1 ¼ 1 GeV gives a value wL� 1 mrad [3].

However, because of multiple scattering in the crystalline target only the small
part of initial electrons moves in the channeling mode, whereas the main part of

Fig. 4.16 Experimental CBS
spectrum of B-type for
e1 = 300 MeV
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the electron beam moves at the angles h
wL, that results in CBS generation in the
soft part of spectrum.

This effect is used in a case of creation of the positron sources on the basis of
oriented crystalline converters. The beam of high-energy electrons passing through
the ‘‘thick’’ crystal gets the angular divergence, which determined, on the average,
by the angle of multiple scattering (4.1.24). The divergent electron beam gener-
ates, mainly, the coherent bremsstrahlung (the except for a small part of the beam,
which moves at the angle h	wL in respect to axis, remaining in a mode of axial
channeling). CBS beam enriched with photons in the ‘‘soft’’ part of spectrum,
generates the electron–positron pairs, positron component of which is separated
and accelerated in the subsequent sections of the accelerator. As distinct from
traditional positron sources, where the amorphous converters are used, in which
the electron–positron pairs are formed by photons with ordinary bremsstrahlung
spectrum, the crystalline converters can provide the increase of pairs yield. It is
clear, both the total number of photons in CBS spectrum, and the number of
photons in the ‘‘soft’’ part of CBS spectrum exceeds the similar characteristics in
the Bethe–Heitler spectrum, therefore the positron yield from the oriented crys-
talline converter will exceed one from an amorphous converter of the same
thickness. Increasing of the yield of ‘‘soft’’ CBS photons has been shown in the
experiment [33] in case of interaction of electrons with the energy e1 ¼ 0.9 GeV
with the single crystal tungsten target with thickness 0.64 mm being oriented by
axis h111i along the momentum of electrons (see Figs. 4.18, 4.19). These figures
present the results of measurements of a photon yield with a fixed energy when an
electron beam passes close to the plane (00�1) (Fig. 4.18) and the axis h111i
(Fig. 4.19).

Fig. 4.17 The radiation
spectra of electrons at various
entering angles of electrons
with e1 ¼ 4:7 GeV in the
diamond crystal. Orientation
angles h = 0.4 mrad (1),
h = 0.6 mrad (2),
h = 0.8 mrad (3),
h = 1.2 mrad (4),
h = 1.4 mrad (5)
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One of the first experiments, devoted to investigations of positron production
via CBS mechanism was carried out using electron beam with energy
e1 ¼ 1 GeV [34]. The results of measurements of an efficiency of positron pro-
duction with the momentum 20 MeV/c generated in tungsten crystals with ori-
entation h111i and different thicknesses (t1 ¼ 0:4 mm and t2 ¼ 1:2 mm) are
presented in Fig. 4.20.

As one may see the results of simulations where a contribution from CBS
mechanism only was taken into account agree with experiment good. Parameters
FWHM of the measured curves are defined, mainly, by the multiple scattering
processes. In the approximation where this process is the same as for an amorphous
target �h1

ms ¼ 4:9 mrad and �h2
ms ¼ 8:8 which are closed to quantities FWHM/2.

It is necessary to specify that for not too ‘‘thick’’ crystals (t	 L0) the
agreement between the experiment and calculations is rather good. With the
increase of crystal thickness for improvement of fit it is necessary to take into
account the contribution of the cascade processes, in which the radiation spec-
trum is defined by a varied angle of movement of electrons in respect to the
crystallographic axis.

Fig. 4.18 Orientation
dependence of the photon
yield with energy
�hx ¼ 40 MeV for the
electron beam with energy
e1 ¼ 900 MeV crossing the
(110) plane (for wV ¼ 0) of
the tungsten target with
thickness 0.64 mm.
Experiment—dots; CBS
simulation—solid curve

Fig. 4.19 Orientation
dependence of the photon
yield with energy
�hx ¼ 40 MeV and 60 MeV
for the electron beam with
energy e1 ¼ 900 MeV
crossing the (111) axis
(for wV ¼ 0) for the same
conditions
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It can be pointed that the positron source realized according to described
principle, was used at the linear accelerator-injector of the electron–positron
collider KEKB [35], which has provided the increase of stored up positron current
on 25 % in comparison with the traditional positron source.
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Chapter 5
Resonant Transition Radiation

5.1 The Basic Characteristics of Transition Radiation

Transition radiation (TR) arises in case, when a moving charge is crossing a
boundary of two media. Ginzburg and Frank predicted this effect in the work [1],
considering a problem within the framework of classical electrodynamics. Later,
the theory of transition radiation was generalized and was investigated in details in
many experimental works.

The detailed description of TR characteristics can be found in books and papers
[2–6]. Following the approach of [3], let’s consider the geometry shown in
Fig. 5.1, when the charged particle with velocity m ¼ bc comes out from a medium
with the permittivity e in vacuum (e ¼ 1) through tilted boundary.

In coordinate system, in which the axis z is directed along a perpendicular to a
boundary, and the axis y is located in a plane passing through this perpendicular
and particle velocity, the components of radiation field E ¼ fEx;Ey;Ezg are
written in the form [3]

Ex ¼ �Pznxnz �Pynxny;

Ey ¼ �Pznynz þPy 1� n2
y

� �
;

Ez ¼ Pz 1� n2
z

� �
�Pynynz:

ð5:1:1Þ

There are the projections of a unit wavevector introduced in (5.1.1)

n ¼ k

x
¼ nx; ny; nz

� �
¼ cos hx; cos hy; cos hz

� �
¼ sin h cos u; sin h sin u; cos hf g

and vector b = {0, by, bz} = b{0, sinw, cosw}. Components of the Hertz vector
Py, Pz, which are used in (5.1.1), were found in the work [3]

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_5,
� Springer-Verlag Berlin Heidelberg 2011
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Py ¼ �
e

pc

bz 1� eð Þnz

e nz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1� n2

z

� �q� �

�
bybz 1� n2

z þ nz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1� n2

z

� �qh i

1� byny

� �2�b2
z n2

z

h i
1� byny � bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1� n2

z

� �q� �;

Pz ¼
e

pc

bz 1� eð Þnz

enz þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1� n2

z

� �q� �

�
1� byny

� �
1� nz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1� n2

z

� �q� �
� b2

z � bybznynz

1� byny

� �2�b2
z n2

z

h i
1� byny � bz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� 1� n2

z

� �q� �:

ð5:1:2Þ

The factors exp(ixR/c)/R describing a spherical wave with frequency x at the
distance R from a source are omitted in expressions (5.1.2). Dependence of the TR
characteristics on frequency is defined by behaviour of dielectric permittivity e(x).

Let’s start with consideration of TR characteristics for the simplest case, when
the charged particle passes from an ideal conductor into a vacuum (i.e. in case
jej ! 1). It should be noted that this approximation works well for metals in the
range of frequencies from optical and lower ones.

In this case instead of (5.1.1) and (5.1.2) we have

Ex ¼ C1nxnz; Ey ¼ C1 nynz � bynz

� �
;

Ez ¼ C1 �1þ n2
z þ byny

� �
;

C1 ¼
e

pc

bz

1� byny

� �2�b2
z n2

z

¼ e

pc

b cos w

1� b ny sin wþ nz cos w
� �	 


1� b ny sin w� nz cos w
� �	 
:

ð5:1:3Þ

Fig. 5.1 The kinematic
variables describing the
‘‘forward transition
radiation’’
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From (5.1.3) it is easy to get the spectral-angular distribution of TR using the
known relationships:

dW

dx dX
¼ cR2 Exj j2þ Ey

�� ��2þ Ezj j2
� �

¼ e2

p2c

b2
z 1� n2

z � 2byny þ b2
y 1� n2

x

� �h i

1� byny

� �2�b2
z n2

z

h i2 : ð5:1:4Þ

As it follows from (5.1.3) and (5.1.4), the TR intensity in this approximation
(jej ! 1) does not depend on frequency (the spectral density remains constant for
any frequency).

Let’s consider the radiation in a cone of angles near particle velocity direction.
In a plane specified by equation nx ¼ 0, the direction cosines ny, nz are expressed
through a polar angle h: ny ¼ sin h; nz ¼ cos h: In this case the denominator in
(5.1.4) can be rewritten in the following form:

1� b sin w sin h� cos w cos hð Þ½ �2� 1� b sin w sin hþ cos w cos hð Þ½ �2

¼ 1þ b cos wþ hð Þ½ �2 1� b cos w� hð Þ½ �2: ð5:1:5Þ

It is clear, that in the range of angles h � w the second factor in (5.1.5) achieves
the minimal values, i.e. the spectral-angular distribution of TR (5.1.4) reaches the
maximal values just for this range of TR photon outgoing angles (see Fig. 5.2):

As it follows from the figure, the minimal value of the TR yield coincides with
a direction of charge velocity. The angular distributions of TR for various values
of the Lorentz-factor (and accordingly b) in dependence of the direction cosines,
which can change from -1 up to +1 are shown in the presented figure. An
appreciable asymmetry in angular distribution (for example, for c = 10, see
Fig. 5.2a) is observed for relatively small values of the Lorentz-factor, what
practically disappears for c� 100 (see Fig. 5.2b). Further, as it is shown above, the
range of angles near velocity vector direction, where the main part of TR intensity

Fig. 5.2 Two-dimensional angular distributions of TR for various values of the Lorentz-factor:
c = 10 (a) and c = 100 (b)

5.1 The Basic Characteristics of Transition Radiation 75



is concentrated, is characterized by a scale *c�1. Therefore, the description of TR
characteristics of ultrarelativistic particles is convenient to carry out in the coor-
dinate system x0, y0, z0, where the axis z0 is directed along the initial particle
velocity and which is obtained from the initial one via rotation around x-axis at an
angle w.

In the new (primed) system the unit wavevector D ¼ ðDx;Dy;DzÞ will be
expressed through initial direction cosines by the known rules:

Dx ¼ nx;

Dy ¼ ny cos w� nz sin w;

Dz ¼ ny sin wþ nz cos w:

ð5:1:6Þ

It is clear, that in the rotated system the values Dx;Dy take values of order c�1,
and Dz� 1. The inverse transformation is following:

nx ¼ Dx;

ny ¼ Dy cos wþ Dz sin w;

nz ¼ �Dy sin wþ Dz cos w:

ð5:1:7Þ

Substituting (5.1.7) in (5.1.4), taking into account a relationship Dz ¼ 1� D2
yþD2

x

2
and using ultrarelativistic approximation

b ¼ 1� c�2

2
: ð5:1:8Þ

neglecting the terms � c�4 both in numerator and denominator we get

dW

dx dX
¼ e2

p2c

D2
x þ D2

y þ Dy tan w c�2 þ D2
x þ D2

y

� �

c�2 þ D2
x þ D2

y

� �2 : ð5:1:9Þ

For perpendicular flight of a particle through a target ðby ¼ 0; bz ¼ b;
nz ¼ cos hÞ instead of (5.1.4) we have the Ginzburg-Frank formula [1]:

dW

dx dX
¼ e2

p2c

b2 sin2 h

1� b2 cos2 h
� �2; ð5:1:10Þ

or, in ultrarelativistic approximation:

dW

dx dX
¼ e2

p2c

D2
x þ D2

y

c�2 þ D2
x þ D2

y

� �2: ð5:1:11Þ
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Having replaced the signs of a particle velocity components (by;z ! �by;z) in
the formula (5.1.4) we obtain the formula describing TR from a charge, incident
from vacuum onto an ideal conductor. As it is easy to see from the formula (5.1.4),
in this case the minimum of a denominator corresponds to a direction
ny ¼ �sin w; nz ¼ cos w; i.e. TR is concentrated near direction of the specular
reflection.

It is easy to show that angular distribution of TR for this geometry, referring to
‘‘backward transition radiation’’ (see Fig. 5.3), is described by the same formula
(5.1.9) with replacement of an angle ðDy ! �DyÞ, where angles Dx;Dy are counted
off from a direction of the specular reflection.

Two-dimensional angular distributions of backward TR calculated by formula
(5.1.9) with substitution (5.1.7) Dx ? -Dy are shown in Fig. 5.4.

One may see that for small values of the Lorentz-factor the maximum in
asymmetric angular distribution of ‘‘forward TR’’ in a plane Dx = 0 is located
between the distribution axis and a target surface. The same law is kept for
‘‘backward TR’’ as well (see Fig. 5.5).

Fig. 5.3 The variables
describing a process of
backward transition radiation,
i.e. when the charge is
moving from vacuum into a
medium

Fig. 5.4 Angular distributions of ‘‘backward TR’’ for different angles of a target inclination
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5.2 Transition Radiation in the X-ray Range

The medium dielectric permittivity being far from the frequencies corresponding
to the absorption edges, in the X-ray range is described by simple expression [7]

e xð Þ ¼ 1� x2
p

.
x2 ¼ 1� v; ð5:2:1Þ

where xp is a plasmon frequency of a target material, which is defined by con-
centration of electrons ne in the target material:

xp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pner0c2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p
Z

A
N0qr0c2

r

: ð5:2:2Þ

In the last formula r0 is the classical radius of electron, Z is a charge and A is
atomic mass of the target atoms, N0 is the Avogadro number, q is density. Instead
of (5.2.2) the ‘‘engineering’’ formula is often used.

hxp � 21

ffiffiffiffiffiffi
2Z

A

r

q eV½ � ð5:2:3Þ

where density is substituted in units g/cm3.
For such typical target materials as aluminum and silicon, the plasmon energy

of target is close to 30 eV. It is clear that in the X-ray range (�hx� 1 keV) the
dielectric permittivity (5.2.1) a little bit differs from 1: v ¼ j1� ej � 1; that

allows having expanded the value e in power of ðxp=xÞ2; to keep in the final result
only the main term.

For calculation of polarization characteristics of TR we will use the system of
unit vectors, determined through a normal to an interface b ¼ f0; 0; 1g:

e1 ¼
n; b½ �
n; b½ �j j; e2 ¼ n; e1½ �: ð5:2:4Þ

Fig. 5.5 Diagrams of
directivity for forward TR
and backward TR
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The unit vectors (5.2.4) are written through direction cosines of a wavevector as
follows:

e1 ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

z

p ny;�nx; 0
� �

;

e2 ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

z

p nxnz; nynz;� 1� n2
z

� �� �
:

ð5:2:5Þ

The Hertz vector in the considered approximation has the following
components:

Py ¼
e

pc
C2 �bybz 1� n2

z þ nz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

z � v
q� �h i

;

Pz ¼
e

pc
C2 1� byny � bznz � b2

z

	 

;

ð5:2:6Þ

where

C2 ¼ v
bznz

nz 1� vð Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

z � v
p	 


� 1

1� byny

� �2�b2
z n2

z

h i
1� byny � bz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

z � v
p	 
: ð5:2:7Þ

After substitution of expression (5.2.6) in (5.1.1) it is possible to find all three
components of TR field in the coordinate system connected with a wavevector,
which characterize the TR polarization.

E1 ¼ e1Eð Þ ¼ e

pc
C2

bybznxffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

z

p 1� n2
z þ nz

ffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

z � v
q� �

;

E2 ¼ e2Eð Þ ¼ e

pc
C2

1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

z

p

� bybznynz � 1� n2
z

� �	
� 1þ byny þ bznz � b2

z

� �

;

E3 ¼ nEð Þ ¼ 0:

ð5:2:8Þ

As before, let’s pass on the system connected with an electron momentum via
transformation (5.1.7) taking into account the ultrarelativistic approximation
ðDx;Dy� c�1Þ. Keeping the main terms, we get

C2 �
v

cos w c�2 þ D2
x þ D2

y

� �
c�2 þ D2

x þ D2
y þ v

� �;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

z

q
� sin w:

ð5:2:9Þ
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Then, instead of (5.2.8) we have

E1 �
e

pc

C2

sin w
b2 sin w cos wDx

¼ e

pc

vDx

c�2 þ D2
x þ D2

y

� �
c�2 þ D2

x þ D2
y þ v

� �;

E2 �
e

pc

C2

sin w
b2 sin w cos wDy

¼ e

pc

vDy

c�2 þ D2
x þ D2

y

� �
c�2 þ D2

x þ D2
y þ v

� �:

ð5:2:10Þ

In the last expressions it is omitted, as before, a factor describing a spherical
wave.

Thus, the spectral-angular distribution of the ‘‘forward TR’’ intensity in the
X-ray range is calculated on the basis of formulae (5.2.10):

dW

dx dX
¼ cR2 E1j j2þ E2j j2

� �

¼ e2

p2c

v2 D2
x þ D2

y

� �

c�2 þ D2
x þ D2

y

� �2
c�2 þ D2

x þ D2
y þ v

� �2 ð5:2:11Þ

and, as follows from the derived expression, it does not depend on the target tilt
angle w (it is necessary to emphasize that this conclusion concerns the relativistic
energies of the charged particle).

The angular distributions of the ‘‘forward TR’’ intensity in X-ray range for
beryllium target are given in Fig. 5.6a–c for various values of the Lorentz-factor,
from which follows that asymmetry in the angular distribution is observed for
c\100.

It is necessary to specify that in the ultrarelativistic limit the values

dW?;jj
dx dX

¼ cR2 E1;2

�� ��2¼ e2

p2c

xp

x

� �4

�
D2

x;y

c�2 þ D2
x þ D2

y

� �2
c�2 þ D2

x þ D2
y þ x2

p=x
2

� �2 ð5:2:12Þ

with accuracy to the terms �c�1 characterize the TR intensity components in a
plane, which is perpendicular (parallel) to the ‘‘reflection’’ plane, i.e. containing
both the vector of particle velocity and the normal vector to the target surface. As
follows from the above-mentioned formula, a parallel component is proportional
to a projection angle Dx and perpendicular component is proportional to Dy. In
other words, in ultrarelativistic approximation the position of linear polarization
plane is defined only by an azimuthal angle of an outgoing TR photon
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arctanu ¼ Dx=Dy ¼ E1j j= E2j j
� �

, i.e. the linear polarization is radial one and
practically does not depend on frequency.

The deviation from the radial polarization can be found, having calculated a
degree of polarization in a plane, which passes through a wavevector and a
momentum of initial electron. In other words, it is necessary to calculate the
Stokes parameter n3 in the basis

e1b ¼
n; b½ �
n; b½ �j j; e2b ¼ n; e1½ �: ð5:2:13Þ

In this basis it is possible to get the expressions similar to (5.2.8), which are
written through the angular variables Dx;Dy:

E1b ¼ e1bE
� �

¼ e

pc
C2

Dx sin w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
c�2 þ D2

x þ D2
y � v cos2 w

2

 !

;

E2b ¼ e2bE
� �

¼ e

pc
C2

D2
x þ D2

y

� �
cos w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q :

ð5:2:14Þ

Only the main summands have been kept in the last formulae. As it follows
from the obtained expressions, the ratio of polarization components

a) b)

c)

Fig. 5.6 The angular distributions of the ‘‘forward TR’’ for electrons with different energies in a
beryllium target
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E1b

�� ��

E2b

�� �� � c�1; v
� �

� 1 ð5:2:15Þ

shows that a polarization TR component intensity jE2bj2 (along a plane ðnbÞ
essentially exceeds the intensity of component � jE1bj2 in a perpendicular plane
and within accuracy � c�2 coincides with total intensity of X-ray transition
radiation (see formula (5.2.11)).

The calculation results of the Stokes parameter depending on an azimuthal
angle of photon output ubðub ¼ arctanDx=DyÞ are given in Fig. 5.7. Calculations
were carried out for a polar angle of a photon in the primed system

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
¼ c�1 for an aluminum target. The upper curve (nearly the con-

stant) describes the parameter n3 for c ¼ 100, whereas the lower one—for c ¼ 10.
In the last case it is possible to say that in case of oblique incidence of a charge on
a target (w � p=4) the linear polarization remains radial one with accuracy of a
few percent. The approximation n3 ¼ aþ b cos 2u is shown here also.

5.3 Spectrum of the Transition Radiation

The ‘‘forward TR’’ spectrum is calculated by means of integration of expression
(5.1.4) over angular variables for chosen dielectric permittivity eðxÞ, generally
speaking, for the complex one. Approximation jej ! 1, which is used for the
description of TR characteristics from a metal target in an optical and infrared
range, gives the spectral distribution as constant.

In X-ray range the spectral-angular distribution is given by the sum of
expressions (5.2.8), which we write down as

dW

h dx dX
¼ a

p2
c2 c�hxp

�hx

� 4 c2h2

1þ c2h2� �2
1þ c2h2 þ c2x2

p=x
2

� �2: ð5:3:1Þ

Fig. 5.7 Dependence of the
Stokes parameter n3 on an
azimuthal angle of TR photon
with �hx ¼ 3 keV relative to
a plane ðn; bÞ. The upper
curve corresponds c ¼ 100,
the lower c ¼ 10
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After integration of the received expression over a solid angle ðdX ¼
dDxdDy ¼ 1

2 du dh2Þ it is possible to obtain the TR spectrum

dW

�h dx
¼ a

p
1þ 2

�hx
c�hxp

� 2
" #

ln 1þ c�hxp

�hx

� 2
" #

� 2

( )

: ð5:3:2Þ

The spectrum (5.3.2) (the upper curve) is given in Fig. 5.8. The spectrum of TR
intensity for the fixed collimation angle of photons chc ¼ 1 is shown here for
comparison, as well. As follows from figure, the spectrum of TR intensity is
rapidly going down function with an increase of energy of TR photons. With
increasing of energy �hx from the value c�hxp to 10 c�hxp the yield of radiation
decreases approximately by three orders of magnitude.

As a whole, the used approximation for spectral-angular distribution of TR is
valid for small outgoing angles of a photon (h� c�1) and in the range of fre-
quencies of photons x� 2xp.

Integrating a spectrum (5.3.2) over energy of emitted photons from certain
minimal value �hx0 � c�hxp to the upper boundary of the spectrum, which may
tend to infinity, energy losses on the transition radiation may be estimated:

W ¼
Z1

�h x0

dW

�h dx
�h dx � 1

3
a c�hxp �

6�hxp

p
ln

c�hxp

�hx0

� �
� 1

3
ac�hxp: ð5:3:3Þ

From the calculated result follows that total losses depend linearly on energy of
the charged particle. Just this characteristic of TR is widely used in detectors of
elementary particles, where the measurements of particle total radiation losses
allow to define its Lorentz-factor.

Let’s note that the last result is valid for one boundary only. In the real
experiment, when the charged particle crosses a target, where TR is generated on
the entrance and exit surfaces of target, then for a rather thick target the result
(5.3.3) must be double.

Fig. 5.8 Spectrum of TR
intensity in a total cone (the
upper curve) and in a cone
hc ¼ 1=c (the lower curve)
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5.4 X-ray Transition Radiation of Ultrarelativistic Particles
in Layered Targets

As it is shown above, forward TR has a continuous spectrum in the range of
frequencies from xmin� 1011 s-1 (a millimeter wave region) to the X-ray range
(for c� 50). However, the spectrum of resonant transition radiation (RTR) arising
in case of flight of a charged particle through a layered target (for example, through
a periodic set of the foils, see Fig. 5.9), becomes quasimonochromatic.

The nonrelativistic particle with velocity m ¼ bc moving through the similar
periodic structure will mainly emit at a frequency being proportional to frequency
of the passing of periodic structure:

xk ¼ kX ¼ k
2pv

d
; k ¼ 1; 2; . . .; d ¼ ‘1 þ ‘2: ð5:4:1Þ

For the ultrarelativistic particle, in full analogy with the undulator radiation,
position of a monochromatic line in a spectrum of radiation is shifted in a hard part
proportionally to value 2c2, what allows to use RTR for generation of mono-
chromatic X-ray radiation [8].

The resonance condition for RTR, which is generated in the periodic stack,
consisting of layers of a various material, was obtained by Ter-Mikaelyan [2]:

cos h ¼
d � 2pk

x
v
c

ffiffiffiffi
e1
p

‘1 þ
ffiffiffiffi
e2
p

‘2
� �; k ¼ 1; 2; . . .: ð5:4:2Þ

The dielectric permittivity of layers with an index 1, 2 and thickness ‘1 and ‘2

(see Fig. 5.9) is designated in (5.4.2) through e1, e2, accordingly. Further we’ll
consider RTR in a X-ray range, where

en xð Þ ¼ 1�
x2

pn

x2
; ð5:4:3Þ

where xpn is plasmon frequency of medium with number n ¼ 1; 2.
As in the case considered in Sect. 5.2, X-ray transition radiation of ultrarela-

tivistic particle from the infinite boundary between two media, is mainly

Fig. 5.9 The producing of
RTR when an electron
crosses a layered target
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concentrated in a cone with opening angle equal to h� c�1 � 1 along a particle
momentum direction. The radiation intensity can be calculated in the following
manner (see, for instance, [6]):

d2WTR

dX dx
¼ e2

4p2c3
x2 sin2 h Z1 � Z2ð Þ2: ð5:4:4Þ

In (5.4.4) Zð1;2Þ is a value, which differs from the radiation formation length
with frequency x in medium 1 (2) on the value p:

Z1 2ð Þ ¼
4c

x c�2 þ h2 þ
x2

p1 2ð Þ
x2

� �: ð5:4:5Þ

The formula (5.4.4) can be expressed through the field ETR

d2WTR

dX dx
¼ 4p2

c
jETRj2;

which for the infinite boundary between two media is given by the formula:

ETR ¼
ie

2p2

h

c�2 þ h2 þ x2
p1

x2

� h

c�2 þ h2 þ x2
p2

x2

0

@

1

A: ð5:4:6Þ

It is easy to show that TR field at the exit surface of a layer will have an
opposite sign in comparison with field, which is generated on the entrance surface:
E2 ¼ �E1:

Then, taking into account a phase difference for radiation at an angle h between
points of particle entrance and exit in the first layer, it is possible to write down:

Elayer ¼ E1 þ E2 ¼ E1 1� exp �iu1ð Þ½ �; ð5:4:7Þ

where

u1 ¼
x‘1

v
� k1‘1 cos h

c
¼ x‘1

bc
1� b

ffiffiffiffi
e1
p

cos hð Þ

� x‘1

2c
c�2 þ h2 þ

x2
p1

x2

 !

¼ ‘1

Z1
: ð5:4:8Þ

Finally, let’s introduce absorption of emitted photons in material of a layer:

Elayer ¼ E1 1� exp þiu1 �
1
2
r1

� � �
; ð5:4:9Þ

where r1 ¼ l1‘1; l1 is a linear factor of absorption of photons with frequency x.
In full analogy one may deduce a TR field, which is generated by a particle while it
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is passing the first period of a layered target (i.e. the first and second layers, see
Fig. 5.9):

Eper ¼ E1 1� exp iu1 þ iu2 �
1
2

r1 �
1
2

r2

� � �
: ð5:4:10Þ

From (5.4.10) it is easy to obtain the spectral-angular distribution of TR from a
target consisting of N periods:

d2W

dx dX

� 

N

¼ d2W

dx dX

� 

TR

F2F3; ð5:4:11Þ

where the factor

F2 ¼ 1þ exp �r2ð Þ � 2 exp
r1

2

� �
cos u1 ð5:4:12Þ

takes into account the interference and absorption of radiation in the first period,
whereas the factor

F3 ¼
1þ exp �Nrð Þ � 2 exp � 1

2 Nr
� �

cos N u1 þ u2ð Þ½ �
1þ exp �rð Þ � 2 exp �r

2

� �
cos u1 þ u2ð Þ

; ð5:4:13Þ

is essentially the interference coefficient, which, in case of a constructive inter-
ference, defines the range of angles and frequencies, where the resonant transition
radiation is generated effectively. In (5.4.13) r ¼ r1 þ r2. It is easy to show that
neglecting absorption, the factor F3 reaches its maximal values under the
conditions:

u12 ¼ u1 þ u2 ¼ 2kp; k ¼ 1; 2; . . . ð5:4:14Þ

Having substituted the used approximations in (5.4.14), we get

‘1x
v

c�2 þ h2 þ
x2

p1

x2

" #

þ ‘2x
v

c�2 þ h2 þ
x2

p2

x2

" #

¼ 2kp: ð5:4:15Þ

The last relationship is often written in the following form:

u12

2
¼ u1 þ u2

2
¼ ‘1

Z1
þ ‘2

Z2
¼ kp: ð5:4:16Þ

By analogy with (5.4.8), a phase u2 is expressed as follows:

u2 ¼
‘2

Z2
: ð5:4:17Þ

One may see that the resonance condition (5.4.14) (or (5.4.16)) coincides with
the condition of a resonance (5.4.2) obtained by Ter-Mikaelyan.
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Neglecting absorption (r! 0) the coefficient F3 transforms to a form

F3 ¼
sin2 Nu12

2

� �

sin2 u12
2

� � : ð5:4:18Þ

Then under fulfillment of the resonance conditions (5.4.14) we obtain F3 ¼ N2,
and, consequently, from (5.4.11) we get

d2W

dx dX

� 

N

¼ 4N2 sin2 u1

2

� � d2W

dx dX

� 

TR

: ð5:4:19Þ

As follows from (5.4.19), the maximal yield of radiation has been reached
under fulfillment of the following condition:

sin2 u1

2

� �
! 1; i.e. u1 ¼ 2m� 1ð Þp

2
; m ¼ 1; 2; . . . ð5:4:20Þ

It should be noted that abovementioned formulae were deduced in classical
approximation, however the quantum approach gives the identical results, that
allows to use the received formulas for calculation of an yield of photons with
energy �hx:

d2NTR

�h dx dX
¼ 1

�hx
	 d2WTR

�h dx dX
; ð5:4:21Þ

where d2WTR

�h dx dX ¼ a
16p2c2x2jZ1 � Z2j2 sin2 h; a ¼ 1=137 is the fine structure constant.

Further, the formula (5.4.19) gives the quadratic dependence on the number of
the periods for the fixed frequency of radiation (energy of photons) and an angle of
outgoing TR photon. However, in the real case with usage of collimator with the
finite aperture, the photon yield will be proportional to N only (a linear dependence
occurs).

The spectra of RTR intensity for the fixed angle of radiation h ¼ 5 mrad and
energy of electron beam E ¼ 100 MeV in the stacks of the beryllium foils sepa-
rated by vacuum gaps, with thickness ‘1 ¼ 10 lm and the period d ¼ 60 lm for
N = 10 (the curve 1) and N = 5 (the curve 2) without taking into account the
absorption are given in Fig. 5.10. Calculation was carried out by formulas
(5.4.11)–(5.4.13).

The maximum position in a spectrum is defined by the relationship (5.4.16). For
the fixed angle h the dependence of a phase u1 2 on the photon energy is nonlinear
(see formula (5.4.15)).

The dependence of the value u12=2p on the energy of photons is shown in
Fig. 5.11. As follows from the diagram, in the energy interval 0.5 keV 
x
 5 keV,
the peaks corresponding to k = 4, 5, 6 appear in the spectrum. Two peaks correspond
to each order of diffraction due to the nonlinear dependence of u12ðxÞ:

It follows from the nonlinear equation of a resonance (5.4.16), which can be
rewritten as the quadratic equation for resonance frequency xk (k ¼ 1; 2; 3; . . . is
the diffraction order)
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x2
k

x0
1þ c2h2� �

� kxk þ xT ¼ 0: ð5:4:22Þ

In the Eq. (5.4.22) designations [9] are used:

x0 ¼ c24pbc

d
; xT ¼ x2

p

‘1

4pc
: ð5:4:23Þ

Frequency x0 corresponds to the ‘‘vacuum’’ frequency of radiation in
‘‘straightforward direction’’ for the charged particle with the Lorentz-factor c and
trajectory of such a particle perturbs with the period d. The frequency xT

characterizes a target with thickness ‘1, made of a material with the plasma
frequency xp.

It is obviously that the Eq. (5.4.22) has solutions for diffraction orders

k2 [ 4
xT

x0
1þ c2h2� �

; ð5:4:24Þ

Fig. 5.11 Dependence of a
phase u12ðh;xÞ on energy of
photons for the same target

Fig. 5.10 Spectrum of RTR
generated by an electron
beam with energy
E ¼ 100 MeV in a stack
from N ¼ 10 beryllium foils
(the curve 1), separated by
vacuum gaps
(‘1 ¼ 10 l; ‘2 ¼ 50 l), and in
the stack with N ¼ 5 foils
(the curve 2). The angle of
observation h ¼ 5 mrad
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which are written in the form

xk min ¼
x0

2 1þ c2h2� � k �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4

xT

x0
1þ c2h2� �r� �

;

xk max ¼
x0

2 1þ c2h2� � k þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � 4

xT

x0
1þ c2h2� �r� �

:

ð5:4:25Þ

So, for k ¼ 4 the positions of peaks �hxmin
4 � 1:2 keV; �hxmax

4 � 2:3 keV. Fur-
ther for k ¼ 5 we have �hxmin

5 � 0.7 keV; �hxmax
5 � 3.6 keV; for k = 6 -

�hxmin
6 � 0.5 keV; �hxmax

6 � 4.5 keV (see Fig. 5.11).
Comparing the widths of RTR lines in the hard part of a spectrum (at

�hxk [ 2 keV, see Fig. 5.10) we can note that the relative spectral width is
determined by the number of periods Dx

xk
� 1

N :

For the further calculations the linear coefficient of absorption of photons in
beryllium (in inverse micrometers) was approximated by expression

l xð Þ l�1
	 


¼ 1:85
0:0542

x3
þ 0:0013

x2
� 0:0006

x

� 
; ð5:4:26Þ

where the energy of photons x is substituted in keV. The plasmon energy in the
beryllium target calculated by the formula (5.4.4), reaches the value
�hxp1

¼ 26 eV. For the lithium targets �hxp1
¼ 13.8 eV.

The phase diagram for layered targets from Be (the upper curve) and Li (lower
one) is shown in Fig. 5.12. Calculations were carried out for the Lorentz-factor
c ¼ 100 for a target consisting of 10 layers with ‘1 ¼ 10 lm, ‘2 ¼ 50 lm and the
observation angle h ¼ 1 mrad.

The RTR spectra for considered targets, which are given in the same units for
comparison, are given in Fig. 5.13a, b. As follows from the figure, the RTR yield
from a beryllium target is much higher than from a lithium one, for other identical
parameters. First of all, such increasing of the yield is determined by the depen-

dence v2 ¼ ðxp=xÞ4 (see formula (5.2.11)), which provides an increase of RTR

Fig. 5.12 The phase diagram
for targets from Be (the upper
curve) and Li (lower one).
Calculation parameters:
c ¼ 300; ‘1 ¼ 10 lm;
‘2 ¼ 50 lm; N = 10;
h ¼ 0.001
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yield of photons with increasing of charge Z of the target atoms. Certainly, the
absorption of RTR photons will grow up just in a target material with increase of
Z. This effect will be considered later.

Let’s consider a collimation effect of RTR in more detail.
Two dependences u12ð�hxÞ for various outgoing angles h of the photon are

given in Fig. 5.14. Calculation was carried out for energy of electrons
E ¼ 50 MeV, a periodic beryllium target from foils with thickness ‘1 ¼ 10 lm
and the period 20 lm (‘2 = 10 lm). The upper curve is received for h1 ¼ 5 mrad,
the lower one—for h2 ¼ 0 mrad. As follows from the diagram, in case of radiation
collimation for outgoing angles of photons h2
 h
 h1, a relatively broad line
3 keV 
 �hx4 max
 4 keV will appear in the energy range �hx[ 3 keV. The left
and right boundaries of maxima corresponding to k = 4 are calculated from
intersection of lines u12=p ¼ k ¼ 4 with two dependences 1=2pð Þ 	 u12
(h ¼ 0 mrad, x) and 1=2pð Þ 	 u12 (h = 5 mrad, x). Results of integration of the
formula (5.4.11) over a solid angle DX ¼ hDhDu are given in Fig. 5.15.

As mentioned above, the width of a spectral line is inversely proportional to the
number of periods, if resonance conditions are fulfilled, therefore the total number
of photons under a RTR peak will be defined by number of periods:

b)

a)Fig. 5.13 The RTR spectra
for layered targets from
different materials
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DNph�
dW

�h dx dX
D�hx
�hx
�N2 	 1

N
� N:

V.N. Baier and V.M. Katkov in their work [9] have estimated the number of
RTR photons, which are emitted in the given cone hc from a target containing
N layers (neglecting the absorption of photons in the target):

DNk min � 2aNp
1
k3

‘2

d

� 3

c2h2
c

xM

x0

� 2

:

This estimation is obtained for the peak with the energy close to xk min. The
number of photons, with taking into account of absorption, can be found via inte-
grating the expression (5.4.21) (after multiplying by functions F2 and F3 (see for-
mulas (5.4.12), (5.4.13)) over the given solid angle and energy interval as well. The
dependence of RTR photon yield on a number of layers N for the spectrum presented
in the Fig. 5.15 is shown in the Fig. 5.16. The number of photons was calculated for
the energy range 3
 �hx
 4 keV. As follows from the figure, for a relatively small
number of layers (N\50) the linear increase of yield of RTR photons concerns with
N is observed, whereas for N� 100 the ‘‘saturation’’ is observed and the further
growth of number of layers N does not result in increase of RTR yield.

Fig. 5.15 The RTR photon
spectrum in a layered Be
target

Fig. 5.14 The phase diagram
for the outgoing angles of
RTR photons h = 0 (the
lower curve) and h = 5 mrad
for E = 50 MeV; Be—
‘1 ¼ 10 lm, ‘2 ¼ 10 lm
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It should be noted that efficiency of RTR generation by the electron beam with
energy E� 50 MeV in a cone of angles h
 hc ¼ 5 mrad is not too high
(Nph� 10�5 photons/electrons). However, with the increase of the initial electron
energy the yield of photons in the same solid angle grows quadratically. Besides,
with increase of the Lorentz-factor the boundary of ‘‘cutting’’ of TR spectrum
(�hxmax� c�hxp) is ‘‘shifted’’ in the hard part. The authors of work [9] have esti-
mated a yield of RTR photons for a lithium target with 50 layers (‘1 ¼ 26 lm,
‘2 ¼ 52 lm) and have shown that for electrons with energy E� 1 GeV the number
of photons in a cone h
 5 mrad reaches the value Nph� 0:05 photons/electrons.

5.5 Resonant Transition Radiation in the Layered Targets
(Experiment)

As it follows from expression (5.4.5), the yield of TR photons depends on
dielectric permittivity of materials of layers, in the following form:

Nph� Z1 � Z2ð Þ2� x2
p1
� x2

p2

� �2
: ð5:5:1Þ

It is clear that if one of layers represents a vacuum gap (xp2 ¼ 0) the difference
in brackets (5.5.1) will reach the maximal value. For this reason targets for gen-
eration of RTR as a periodic stack of foils separated by vacuum gaps have been
widely used.

The target consisting of 10 mylar foils with thickness ‘1 ¼ 1 2 lm having
vacuum gaps ‘2 ¼ 24 lm, in which RTR in X-ray range x� xp1 was generated
by a beam of electrons with energy E ¼ 900 MeV (see Fig. 5.17), was used in one
of the first experiments [10]. In the ultrarelativistic case for the considered target
the condition of a resonance (5.4.22) is written as

Fig. 5.16 Dependence of the
RTR photon yield on the
number of the target layers
with account of the
absorption
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h2
k ¼ k

2k
d
� c�2 � ‘1

d

x2
p1

x2

 !

; k ¼ 1; 2. . .: ð5:5:2Þ

For the mylar �hxp1
¼ 24 eV, therefore the first order resonance (k = 1) for

energy of RTR photons �hx � 20 keV corresponds to a radiation angle
h1 � 1.7 mrad, which is approximately three times as much as the typical value of
an angle of ordinary transition radiation hTR � c�1 � 0:6 mrad.

The angular distribution of RTR for the energy interval �hx ¼ 10–30 keV was
measured in the experiment [10] using a NaI-detector during moving the Compton
scatterer in respect to a beam axis (see Fig. 5.17).

The experimental results (the upper curve) are given in Fig. 5.18. The maxi-
mum position in the measured distribution coincides with the estimation
hexp ¼ 1.7 mrad.

The angular distribution of hard photons (�hx [ 60 keV), which are generated
due to the bremsstrahlung mechanism is shown in the same figure by the curve 2.
In the energy range of photons �hx� c�hxp the RTR yield is suppressed as

ðcxp=xÞ4. As expected, the BS maximum for h ¼ 0 with angular width � c�1 is
observed in this case.

The similar experiment was carried out at the MAMIB microtron electron beam
with energy E ¼ 855 MeV [11]. The scheme of the experimental setup is shown in
Fig. 5.19. Unlike the previous experiment, the radiation was directly detected

Fig. 5.17 The scheme of the
experiment [10]
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under the fixed angle h. As a target a set of four polyamide foils with thickness
7.2 lm with a vacuum gap 162 lm was used.

The results of measurements of the spectral-angular distribution of RTR
intensity in comparison with the results of calculation are given in Fig. 5.20.

It should be noted that the experiment corresponds with theory. The resonances
with k ¼ 1, 2, 3 were observed in experiment. As follows from the theory, with the
increase of a resonance order, the RTR photons are emitted at the large angles with

Fig. 5.18 Angular
distribution of RTR with
energy of photons
10 keV 
 �hx
 30 keV in a
target consisting of 10 mylar
foils with thickness 12 lm
and period 36 lm

Fig. 5.19 The scheme of
experiment for measurement
of RTR spectrum [11] for the
fixed angle of outgoing
photons
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an essential reduction of the intensity. The beam of monochromatic X-ray radia-
tion is usually formed by a collimator with finite aperture hc, located coaxially
with a direction of the initial electron beam. In order to calculate the RTR spec-
trum, it is necessary to integrate the expression (5.4.11) over the polar angle in the
interval 0
 h
 hc (the azimuthal integration reduces to the multiplier 2p). The
important characteristic of the X-ray radiation beams is the number of photons in
the given solid angle, which is calculated basing on RTR spectrum (so-called
photon spectrum):

dN

�h dx

� 

N

¼ 2p
�hx

Zhc

0

sin h dh
d2W

�h dx dX

� 

TR

F2F3: ð5:5:3Þ

The photon spectrum of RTR in a case of the axial collimation of radiation is
shown on the Fig. 5.21 for an illustration. The calculation results for a target from
16 beryllium foils with thickness 32 lm and the period 100 lm for electrons with

Fig. 5.20 The angular
distribution of RTR measured
for �hx ¼ 3:5 keV (on the
left) and spectrum of RTR for
radiation angles
hx ¼ 1:3 mrad; hy ¼ 0 (from
the experiment [11])
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energy 855 MeV and collimation hc ¼ 1 mrad are given here. It may be noted that
the quasimonochromatic peak in the photon spectrum is observed for the appro-
priate choice of target characteristics. As follows from the figure, the peak width in
a spectrum is equal to D�hx � 1 keV (in other words, the monochromaticity of
radiation D�hx=�hx � 20%). The yield of RTR photons for the given case reaches
0.003 photon/e-.

The RTR spectrum generated by the electron beam with energy 1 GeV in the
layered targets from 1, 4 and 8 layers of mylar with thickness of 50 lm with the
vacuum gaps of 200 lm was measured in experiment [12]. The experimental setup
is shown in Fig. 5.22.

The RTR beam was collimated by a slit (parallel or perpendicular to the
reflection plane) with the adjustable sizes. The radiation spectrum was measured
by a crystal-diffractometer. The results of measurements in comparison with
measured and calculated dependences are given in Fig. 5.23. It can be noted the
satisfactory agreement between the experiment and calculation.

It should be noted that the improvement of RTR monochromaticity can be
achieved using the well-known technique of the X-ray radiation monochromati-
zation applied for synchrotron radiation beams.

The scheme of RTR beam monochromatization with a help of monochromator
from pyrolytic graphite is shown in Fig. 5.24.

The experimental spectrum measured by a semiconductor spectrometer [13] is
shown in Fig. 5.25. In view of the finite resolution of the used spectrometer
(*0.3 keV) the real width of an X-ray radiation line is much less than 1 keV.

Fig. 5.22 Experimental
setup [12]

Fig. 5.21 The photon
spectrum of RTR for
E ¼ 855 MeV, 16-layered
beryllium target
(‘1 = 32 lm, ‘2 ¼ 61 lm) in
case of the axial collimation
of radiation (hc ¼ 1 mrad)
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Fig. 5.24 The scheme of
experiment for RTR beam
monochromatization with a
help of a pyrolytic graphite
crystal

Fig. 5.25 The
monochromatized RTR
spectrum, which is measured
using Ge (Li)-spectrometer
with the resolution
D�hx ¼ 265 eV. A spectral
line �hx ¼ 32:9 keV
corresponds with an angle of
diffraction 6.5�. Weak lines
for �hx ¼ 22:0 and 23.3 keV
correspond to the Ka and Kb

germanium lines

Fig. 5.23 Comparison of
measured and calculated RTR
spectra of electrons with
energy 1 GeV in a target
from mylar of 1, 4, 8 layers,
with thickness ‘1 ¼ 50 lm
and period
d ¼ ‘1 þ ‘2 ¼ 250 lm
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As it follows from the formulae (5.4.7) and (5.4.14), the position of peaks in
RTR spectrum is defined by two conditions, for which factors F2 and F3 reach the
maximum (neglecting absorption of photons in a target):

u1 ¼ 2m� 1ð Þp=2; m is integer; u1 þ u2 ¼ 2kp; k is integer: ð5:5:4Þ

To obtain a single peak in the radiation spectrum, under the conditions (5.5.4) it
is necessary to choose m = k = 1. In other words, the phases in both layers should
be equal to p=2:

u1 ¼
‘1

Z1
¼ p

2
; u1 ¼

‘2

Z2
¼ p

2
: ð5:5:5Þ

It is clear that if the second medium is a vacuum, the second ratio can be
satisfied for very small gaps ‘2, which is hardly feasible.

The periodic heterogeneous target consisting of nickel layers separated by
layers of carbon is suggested in the work [14] to use for RTR generation. The
thickness of nickel layer was 176 nm, the one of carbon layer was 221 nm, with
total number of the periods equal 10. The target was produced by layer deposition
level-by-level sputtering. The technology guaranteed a constancy of layer thick-
ness of nickel and carbon with 3% accuracy.

The RTR spectra calculated and measured for the given target, for electron
energy E = 15 MeV and for various angles of observation are shown in Fig. 5.26.
The position of single peak in a radiation spectrum is determined by the obser-
vation angle:

h2
k ¼ 2k

k
d
� c�2 �

‘1x2
p1
þ ‘2x2

p2

dx2
: ð5:5:6Þ

The results of measurement of RTR spectrum at an angle h ¼ 25:5 mrad using
the 15 MeV electron beam with the divergence less than 6 mrad are given in
Fig. 5.27. The background spectrum measured for a target consisting of the nickel
foils with thickness 2 lm and a carbon foil of the same thickness is shown in
Fig. 5.27. Intensity of the background spectrum in this energy range is caused
mainly by bremsstrahlung, the intensity of which is significantly lower than RTR.

The possibility of peak position tuning in a radiation spectrum in case of target
rotation for an angle w around an axis perpendicular to the electron beam (see the
scheme in Fig. 5.28) was investigated in the same experiment. In this case the
thickness of layers ‘1 and ‘2 grows according to the law ‘1ð2Þ= cos w, which will
result in a shift of the line toward a spectrum soft part at a fixed angle of obser-
vation. The calculations results are presented in Fig. 5.29. The experimental
results confirm the conclusions of the theory.

So, the process of resonant transition radiation can be used for generation of
quasimonochromatic radiation toward the energy range x� 10 keV even using
electron beams with energy E\20 MeV.
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Using the device shown in Fig. 5.22, it is possible to investigate the polarization
characteristics of RTR, since the coefficient of reflection of X-ray radiation
polarized in a plane perpendicular to the reflection plane, is equal to one (P? ¼ 1),
whereas for the opposite component Pjj ¼ cos2 2hB, where hB is the Bragg angle of

Fig. 5.27 Comparison of
experimentally measured
RTR spectrum and
bremsstrahlung spectrum
from a target of the identical
thickness

Fig. 5.26 The measured
RTR spectra in experiment
[14] in comparison with
calculated ones
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crystal orientation. Thus, for hB ¼ 45� we have the zeroth former one Pk ¼ 0.
Consequently, the intensity of reflected component of RTR W|| will be close to zero.

The authors of the experiment [15] investigated RTR polarization character-
istics using a LiF-crystal as a polarimeter. The LiF orientation was hB = 45� in
respect to the RTR beam axis that corresponds to the energy of the reflected
photons 4.3 keV.

The calculated angular distribution of the RTR photon yield for a layered target
(8 beryllium targets) with thickness ‘1 = 7.5 lm and vacuum gaps ‘2 ¼ 400 lm
for the energy of RTR photons �hx ¼ 4.3 keV is shown in Fig. 5.30.

The lines of level of angular distributions of RTR components polarized in a
reflection plane and in a perpendicular plane are presented in Fig. 5.31. Calcula-
tions were carried out by the formula (5.4.11):

dWjj;?
�h dx dX

� 

N

¼
dWjj;?

�h dx dX
F2F3; ð5:5:7Þ

Fig. 5.29 Calculation of
RTR-spectra in case of
normal flight through a
layered target and for rotation
of a target at an angle
p
2�w ¼ 65�

Fig. 5.28 The scheme of
RTR generation in a
multilayered target rotated at
an angle w
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Fig. 5.31 The lines of level
of polarized RTR
components for angular
distribution presented in
Fig. 5.30

Fig. 5.30 Angular
distribution of a RTR yield in
a layered target from eight
beryllium foils with thickness
7.5 lm and a vacuum gap
400 lm
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where

dWjj;?
�h dx dX

¼ a
p2

c2 c�hxp

�hx

� 4

�
c2D2

x;y

1þ c2D2
x þ c2D2

y

� �2
1þ c2D2

x þ c2D2
y þ c2x2

p=x
2

� �:

The positioning of the polarimeter slit with angular sizes 3 9 0.2 mrad is
shown in Fig. 5.32. For RTR averaged on a vertical slit the calculated value of the
Stokes parameter n3 measured with the help a crystal-diffractometer:

�n3 ¼

R
dDxdDy

dWjj
d�hx dX �

dW?
d�hx dX

� �

R
dDxdDy

dWjj
d�hx dX þ

dW?
d�hx dX

� � ¼ 0:993: ð5:5:8Þ

The experimental value �n3 exp ¼ 0:88, what corresponds to 94%-contribution of

component
dWk

d�hx dX into the total intensity. For the horizontal position of the slit the
measured value of dWjj contribution in the total intensity was equal to 40 %

(in other words, �n3 ¼ �0:20), what was explained by the authors of the experiment
as displacement of the slit center from the axis of RTR beam (see Fig. 5.32). It can
be shown that shift of the slit center on the value of D0

y ¼ 0:45 mrad leads to the
values measured in experiment.

Summarizing the results of the experiment [15], it can be noted that by means
of slit collimator, one of sizes of which (for example, Dy) corresponds to the

Fig. 5.32 A positioning of
the slit collimators relative to
RTR cone in the experiment
[15]

102 5 Resonant Transition Radiation



angular capture Dy � c�1, it is possible to produce the linearly-polarized quasi-
monochromatic beam of X-ray radiation with a polarization degree close to 100%.
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Chapter 6
Parametric X-ray Radiation

6.1 The Parametric X-ray Radiation Process as a Diffraction
of Virtual Photons

As it was noted in the previous chapter, at the incidence of a charged particle from
a vacuum on an oblique conducting target the backward TR is generated with
frequencies in an optical range and lower close to the direction of a specular
reflection. Such a radiation mechanism can be interpreted as a process of the
relativistic charge electric field scattering by a surface of the conducting target in a
full analogy with a process of electromagnetic wave scattering by a perfect mirror.

Figure 6.1 schematically shows the deformation of the Coulomb field of a rest
particle in case of its uniform motion with velocity m along the axis z. It is clear
that for relativistic particles in case of v! c the electric field will be more and
more ‘‘flattened’’ and transverse components of the field are c times as much than
the longitudinal component [1]:

Ez

Ex;y
� c�1: ð6:1:1Þ

The approximation, which neglect the longitudinal component of the field, cor-
responds to the transition to an exactly transverse field, i.e. to the electromagnetic
wave. In this approximation, the interaction of a moving charge field with elec-
trons of the matter comes to reflection and refraction of the electromagnetic wave
packet describing the field of the initial particle.

The parametric X-ray radiation (PXR) in such interpretation is nothing else than
the diffraction of X-ray part of the spectrum, describing the field of an ultrarelati-
vistic charge in the crystalline target. In other words, the interaction of a real
electron with the crystal is replaced by the interaction of the field of virtual
photons with the target.

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_6,
� Springer-Verlag Berlin Heidelberg 2011
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Let’s write down the expression for the field of an electron moving with
velocity m ¼ bc in a medium with permittivity e:

E k0;xð Þ ¼ ie

2p2
xb� k0

e

� �
d x� ck0bð Þ

k02 � x2e
; ð6:1:2Þ

where x; k0 are the energy and momentum of a virtual photon. The argument of
d-function gives the relationship between the momentum and energy of the virtual
photon:

x ¼ ck0b; ð6:1:3aÞ

whereas a similar relationship for real photons in a vacuum is given by the known
expression:

x ¼ c kj j: ð6:1:3bÞ

The intensity of real photons reflected from the medium is determined in a usual
way [2]:

dW

dx dX
¼ 4p2

c
x2 E?R?j j2þ EjjRjj

�� ��2
n o

: ð6:1:4Þ

In (6.1.4) by means of R?;Rjj, the Fresnel reflection coefficients are designated,
Ejj;E? are determined from (6.1.2) for a diffraction plane and for a perpendicular
plane. The diffraction plane is perpendicular to the crystallographic plane and
passes through the vector b (Fig. 6.2).

In the X-ray range the permittivity is usually approximated by the expression
(see 5.2.1)

e ¼ 1� v ¼ 1�
x2

p

x2
; vj j ¼

x2
p

x2
� 1: ð6:1:5Þ

The diffraction on a set of crystallographic planes with the interplanar distance a is
most simply described by terms of reciprocal lattice vectors, each of which is
perpendicular to the crystallographic plane:

Fig. 6.1 The force lines of the electric field from a charge at rest (on the left) and moving with
velocity m ¼ 0.94 c (on the right)
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gnj j ¼
2p�h

a
n; n ¼ 1; 2; 3; . . . ð6:1:6Þ

In (6.1.6) n denotes the order of diffraction. In case of the diffraction in a crystal, as
well as in any periodic structure, the function v in (6.1.5) can be expanded into a
Fourier series in reciprocal lattice vectors. The intensity of a diffracted wave on the
plane, which is characterized by the vector g, will be determined by this expansion
factor of vg:

vg

�� ��2¼ SðgÞj j2exp �2Wð Þ �
x2

p

x2

FðgÞ
Z

 !2

; ð6:1:7Þ

where SðgÞj j2 is a structure factor; exp �2Wð Þ is the Debye-Waller factor (see
Chap. 4); F gð Þ is the Fourier-transform of the electron density distribution of the
atom with the charge Z. The same characteristic for a screened Coulomb field of
nucleus and atomic shells is considered in Chap. 4.

The periodicity of a crystallographic target leads to the occurrence of a reso-
nance factor in the expression (6.1.4)

FN ¼ 2p Nd k0 � k� gð Þ; ð6:1:8Þ

where N ¼ La=ða= sin hBÞ is a number of crystallographic planes intersected by a
particle on the absorption length La (see Fig. 6.2b), hB denotes the angle between
the electron momentum and the crystallographic plane (so-called the Bragg angle).
In (6.1.8) by k a momentum of the real PXR photon is designated.

Fig. 6.2 The scheme of
virtual photons scattering (a);
the scheme of PXR process
for the Bragg geometry (b)
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The reflection coefficients in (6.1.4) are defined by the scattering geometry and
a crystal type [3]:

R? ¼
vg

2
1

2 sin2 hB

; Rk ¼
vg

2
cos 2hB

2 sin2 hB

: ð6:1:9Þ

After the substitution of (6.1.7) in (6.1.4) and taking the delta function (6.1.8) into
account, the considered model makes it easy to obtain the angular distribution of
PXR [4]:

dW

dX
¼ a�h

2p2c

x2
B vg

�� ��2

sin2 hB

h2
x cos2 2hB þ h2

y

c�2 þ h2
x þ h2

y þ x2
p=x

2
� �2 La

¼ a�h

2p2c

x2
B vg

�� ��2

sin2 hB
LaK hx; hy

� �
: ð6:1:10Þ

In the last expression xB is the frequency of PXR photons in the direction of the
Bragg reflection nB (see Fig. 6.2):

xB ¼
gbc

1�
ffiffi
e
p

nBg
:

The angles hx and hy in (6.1.10) are defined relative to the Bragg direction in the
plane of diffraction and in the perpendicular plane, respectively.

Thus, it is possible to say that in the PXR process the virtual photons with a
continuous spectrum, being scattered by the crystallographic lattice, transform into a
beam of real quasimonochromatic photons, which are detected by physical devices.

It should be noted that formula (6.1.10) is obtained by the usage of the simplest
model. However, as it will be shown in the following paragraphs, the received
expression (6.1.10) satisfactorily agrees with the so-called kinematic theory of
PXR [5], which is much more exact. The detailed theory of PXR, including
so-called the ‘‘dynamical effects’’ can be found in the book [6].

6.2 The Kinematics of the PXR Process

To begin with, let’s consider the process of real photons scattering by the crys-
talline lattice. The relationship between the energy of the scattered photon (which
coincides with the energy of the initial photon) and the angle of orientation
(the Bragg angle) is found from the conservation laws:

k0 � k� g ¼ 0; k0j j ¼ kj j ¼ x: ð6:2:1Þ

Hence we receive k2 ¼ k2
0 � 2k0gþ g2 and, consequently, x ¼ g2

2n0g: Substituting

instead of g its expressions from (6.1.6), we receive the energy of the scattered
photon at an angle hB:
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�hx0
B ¼ �hc

pn

a sin hB

: ð6:2:2Þ

The kinematics of the PXR process is determined by the argument of d-function
in (6.1.8):

k0 � k� g ¼ 0: ð6:2:3Þ

Hence after multiplying by b we find:

bk0 ¼ bkþ bg: ð6:2:4Þ

Using (6.1.3a) and (6.1.3b), we have:

�hx ¼
ffiffi
e
p

xnbþ bg: ð6:2:5Þ

Here the momentum of a real photon propagating in a medium differs from the
momentum of a photon in a vacuum by the factor

ffiffi
e
p

. From (6.2.5) it follows the
so-called dispersion relation for PXR:

�hx ¼ gb
1�

ffiffi
e
p

nb
¼ 2p

a
�hcn

b sin hB

1�
ffiffi
e
p

b cos 2hB þ hxð Þ: ð6:2:6Þ

In the last expression hx corresponds the angle of an outgoing photon (see
Fig. 6.2b) with respect to the Bragg direction. In contrast to the diffraction of real
photons, in the PXR process the photons can be emitted at angles that differ from
the Bragg angle hB. We calculate the energy shift of the PXR photons emitted at
the angle hB relative to the energy of the scattered real photons (6.2.2). In the
ultrarelativistic approximation and taking (6.1.5) into account, from (6.2.6)
we obtain

R ¼ x h ¼ hBð Þ
x0

B

¼ 1� c�2

4
1

sin2 hB

�
x2

p

4x2
B

cos 2hB

sin2 hB

" #

: ð6:2:7Þ

Here x0
B is the Bragg frequency in the scattering of real photons.

As it follows from (6.2.7), for particles with the Lorentz-factor c[ 102 for
h ¼ hB the dispersion relation (6.2.6) coincides with (6.2.2), which is valid for real
photons, with an accuracy better than *10-2. It is easy to estimate the shift of a
PXR line in case of changing the orientation angle h. In case of a slight difference
of h from the Bragg angle, which is measured relative to the crystallographic plane
(see Fig. 6.2b) h ¼ hB � Dh; Dh� hB, and neglecting the terms of order c�2, we
receive from (6.2.6)

x ¼ xBð1� Dh cot hBÞ: ð6:2:8Þ

From (6.2.8) it follows that the PXR line is shifted in a more hard range in case of
decreasing the photon outgoing angle h. And quite on the contrary, in case of

6.2 The Kinematics of the PXR Process 109



increasing the angle h, the energy of the PXR line becomes smaller than the Bragg
one (6.2.2).

If we fix the observation angle of PXR, for example, h ¼ hB (see Fig. 6.2b), and
change a little the orientation of the crystal DhB � hB, then we can obtain again
the formula (6.2.8): x ¼ xBð1� DhB cot hBÞ:

Figure 6.3 shows the ratio R ¼ xPXR h ¼ hBð Þ=x0
B depending on the Lorentz-

factor of an electron for two different angles hB of the plane (220) of Si. From this
figure, one can see the difference between the quantities x0

B and xPXR h ¼ hBð Þ
which is negligible for ultrarelativistic particles.

6.3 The Angular Distribution of PXR and the Orientation
Dependence of the PXR Yield

In the work [5], H. Nitta has developed a model of PXR in the kinematic
approximation. The built model is applicable to relatively thin crystals, and allows
to calculate not only the spectral-angular distribution of PXR but also its polari-
zation characteristics. Following this work, we write down the angular distribu-
tion of PXR photons (without taking into account an absorption in the target
material)

dN

dz dX
¼

a x=cð Þ vg

�� ��2

2pe3=2b 1�
ffiffi
e
p

bnð Þ

�
X

a

x=cb� gð Þea

k? þ g?ð Þ2þ x2

c2b2 c�2 þ b2 1� eð Þ

 �

2

4

3

5

2

: ð6:3:1Þ

Here the index ? denotes the projection of a vector onto the plane, which is
perpendicular to the velocity of the initial particle v ¼ cbn0.

Fig. 6.3 The ratio of the
energy of PXR lines in
respect to the energy of the
Bragg scattered real photons
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Let’s introduce the polarization unit vectors associated with the diffraction
plane:

e1 ¼
n; n0


 �

n; n0


 ��� ��; e2 ¼ e1; n½ �: ð6:3:2Þ

Then, keeping the second order terms, we obtain instead of (6.3.1):

dN

dz dX
¼

axB vg

�� ��2

4pc sin2 hB

~E2
1 þ ~E2

2

� �

h2
x þ h2

y þ c�2 þ x2
p=x

2
� �2;

~E1 ¼
hy cos hB

sin 2hB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2hxctg2hB
p cg

x
;

~E2 ¼
1

sin 2hB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2hxctg2hB
p � 1� 1

2c2

� �
sin2 2hB 1þ 2hxctg2hBð Þ

�

� cg

x
sin 2hB cos hB þ hx cos 3hBð Þ


;

cg

x
¼

1� cos 2hB þ hx sin 2hB þ 1
2 h2

x þ h2
y

� �
cos 2hB þ c�2

2 þ
x2

p

2x2 cos 2hB

sin hB
:

ð6:3:3Þ

If keeping in (6.3.3) only the first order terms, one may obtain

~E1 � hy; ~E2 � �hx cos 2hB: ð6:3:4Þ

In this case, for a thin crystal (L� La) in the ultrarelativistic approximation the
expression (6.3.3) is reduced to the relatively simple expression:

dN

dX
¼ a

4pc

LxB vg

�� ��2

sin2 hB

h2
x cos2 2hB þ h2

y

h2
x þ h2

y þ c�2 þ x2
p

x2

� �2

¼ a
4pc

LxB vg

�� ��2

sin2 hB

K hx; hy

� �
: ð6:3:5Þ

As a rule, the geometry of PXR generation is such one that the path which the
emitted photon passes in the target material does not coincide with its thickness
L. In order to take such geometry into account, in the form (6.3.5) the following
value is often substituted instead of thickness L [7]

Lgeo ¼ La
rmj j
rm0j j 1� exp � L

La
rmj j

� �� 
: ð6:3:6Þ

Here r denotes a unit vector which is perpendicular to the crystal surface. As it
follows from expression (6.3.5), the angular distribution of PXR photons is
described by the universal angular distribution K(hx, hy) [6], which is often written
in terms of angular variables tx = chx, ty = chy
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K tx; ty
� �

¼
t2
x cos2 2hB þ t2

y

1þ t2
x þ t2

y þ
cxp

xB

� �2
� 2: ð6:3:7Þ

As it follows from (6.3.7), the angular distribution of PXR is defined by a

parameter tph ¼ chph ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2 þ x2

p=x
2
B

q
; which depends on the particle energy,

crystal type and orientation angle.
Figure 6.4 shows the typical angular distribution of PXR. It is clear that in case

of tph � 1 (cxp � xB, i.e. for moderately relativistic particles) the angular dis-
tribution of PXR is determined by the Lorentz-factor (Dtx;y� 1;Dh� c�1),
whereas in the ultrarelativistic case (cxp � xB) the angular distribution will be
considerably wider than the angle c�1ðDt� tph;Dh� xp

xB
� c�1Þ. Besides, as it

follows from the figure, the angular distribution of PXR strongly depends on the
angle hB.

In the first experiments held at the Tomsk synchrotron (see works [8, 9]),
measurements of the PXR angular distributions were carried out by a technique of
scanning of PXR reflections by means of collimated X-ray spectrometer, which is
moved in two mutually perpendicular directions, and which measured the PXR
yield behind the slit collimator.

Figure 6.5 shows the geometry of experiment for the case of incidence of the
electron beam at an angle hB ¼ 45	 to the diamond crystal plane (100). The
registration of photons in this case was carried out at the angle hD ¼ 2hB ¼ 90	 to
the beam of electrons. The slit collimator installed in front of the detector, which is
the proportional counter, had sizes 2.5 9 16 mm, which corresponds to the
angular aperture Dhx ¼ 
2.5 mrad and Dhy ¼ 
16 mrad. Moving the counter
with a collimator was made along two mutually perpendicular directions X and Y.

Figure 6.6 shows the angular distributions for reflections (400), (220), (440) of
X-rays generated by electrons with an energy E ¼ 900 MeV in the diamond single
crystal with thickness of 350 lm. The photon energies for these peaks are,
respectively, �hx400 ¼ 9:8 keV, �hx220 ¼ 6:9 keV, �hx440 ¼ 13:8 keV. The solid
curves show the results of calculations based on the kinematic PXR theory.

Influence of the sizes of the rectangular detector entrance window and its
position relative to the center of the PXR cone on the shape of the measured
angular distribution of PXR was taken into account by integrating of the expres-
sion (6.3.6) over the detector aperture.

As can be seen from Fig. 6.6, there is a good coincidence of the mea-
sured angular distributions with the calculations. The full width at half maximum
of the angular distribution of the reflection (400) in case of detector scanning along
the direction X is equal to Dhx ¼ 9
 0:5 mrad, and for the reflection (220) the
similar value is equal to Dhx ¼ 12
 0:5 mrad, and for the reflection (440)
Dhx ¼ 7
 0:5 mrad. Thus, the increase of PXR photon energy leads to a signif-
icant decrease in the width of the PXR angular distribution in correct accordance
with the theory. The vertical distribution of such a distribution consists of two
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maxima separated in space (see Fig. 6.4), the angular spread between which also
decreases with increasing the photon energy. The calculated curve is slightly
narrower than the experimental one, and the depth of the central dip obtained in
the experiment is less than the calculated one. Small discrepancies are connected
with the influence of the angular divergence of the electron beam due to multiple
scattering.

It should be noted that the obtained results are well described by formulae
(6.3.6) and (6.3.7) due to the fact that the measurements were performed for

Fig. 6.4 Angular
distribution of PXR, which
depends on the universal
variables tx, ty
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Fig. 6.5 The geometry of the
experiment [9]: 1—(001)
plane; 2—(110) plane of a
diamond; 3—electron beam;
4—PXR reflection;
5—detector with a slit
collimator

Fig. 6.6 The angular distribution of PXR for a diamond crystal in the horizontal direction (black
dots) and vertical (light dots) for reflections (400) (a); (220) (b) and (440) (c, d). The full curves
are the results of calculations with taking into account the slit aperture of the detector
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ultrarelativistic Lorentz-factor (c * 1800). For low energies of the initial elec-
trons from the expression (6.3.3) follows the asymmetric distribution of the
angular distribution of PXR in the plane of diffraction (see Fig. 6.7a).

The dependence of yield of the PXR photons generated by an electron beam
with energy of 25 MeV in the silicon crystal, in case of changing the orientation
angle hB at a fixed observation angle (orientation dependence) is measured in the
experiment [10]. The orientation dependence on a small angle D near hB can also
be calculated in a first approximation by the formulas (6.3.3) by substituting

hB ! hB þ Dx; hx ! �2Dx: ð6:3:8Þ

In the last expression the angle doubling comes because of the ‘‘effect of the light
spot’’, when the angle of the reflected ray is twice the angle of the mirror rotation.

Figure 6.7b, c shows both the calculated orientation dependence of the PXR
yield and the measurement results. As follows from the figure, there is a satis-
factory agreement of experimental data with the results of calculations based on
the kinematic model, despite the fact that, generally speaking, the used target
thickness exceeded the criterion of applicability of the model.

(a)

(b) (c)

Fig. 6.7 The angular distribution of PXR intensity for c ¼ 50 and for the angle of orientation of
the plane (220) Si hB ¼ 150 mrad (a) and orientation dependences of the PXR yield in case of
changing the angle hB, calculation (b); experiment (c)
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6.4 The Spectral Characteristics and Yield of PXR Photons

The first experiment, in which the effect of PXR was found, was carried out at the
Tomsk synchrotron using a beam of electrons with energy E ¼ 900 MeV in 1985
[8]. The experimental arrangement is shown in Fig. 6.8, and the measured radi-
ation spectrum—in Fig. 6.9. A natural diamond with the thickness of 0.35 mm
was used as a target, which was oriented at the Bragg angle hB = 45�.

To measure spectra of PXR a xenon proportional counter with an aperture
Dh ¼ 6 mrad was used. In case of the diffraction of virtual photons on the (110)
planes with interplanar distance d = 2.52 Å, from the formula (6.2.6) for h ¼ hB

the PXR line width is found:

Dx
xB

¼ x� xB

xB

¼ Dh ¼ 0:006: ð6:4:1Þ

The line width in this experiment (Fig. 6.9) significantly exceeds the value (6.4.1),
since it is determined by the energy resolution of the used detector (*10%). The
yield of PXR photons measured for the electron energy 900 MeV for (220)
reflexes of diamond with the thickness 0.35 mm (Fig. 6.9), is given in Table 6.1.

The shift of PXR line depending on the change of orientation angle hB, as well
as in case of changing the observation angle hD was investigated in the experiment
[11]. The experiment used a silicon crystal, the plane (110) of which was oriented
at an angle hB ¼ 9	150 ¼ 162 mrad relative to the electron beam with the energy
of 900 MeV.

Fig. 6.8 The experimental setup for the PXR registration: 1—detector; 2—orientation system;
3—diamond crystal; orientation for the registration of PXR reflexes: (400), (800)—on the left,
(220), (440), (660)—on the right

116 6 Parametric X-ray Radiation



Figure 6.10 shows the shift of the PXR line, which corresponds to a reflex
(220), in case of changing of hB for a fixed position of the detector at
hD = 18.5� = 324 mrad.

The dependence of the line position on the angle hB agrees well with the linear
dependence (6.2.8). Figure 6.11a shows a similar characteristic measured for
different angles of observation hD in case of the fixed orientation hB ¼ 9	150. As in
the previous case, the line shift in the spectrum is observed, which is in reasonable
agreement with the model.

Using the PXR line shift depending on the angle of the crystal rotation
(Fig. 6.11b) it is possible to carry out a precision measurement of PXR line width

Fig. 6.9 The registered PXR spectra

Table 6.1 The characteristics of PXR for a diamond target and electron energy E ¼ 900 MeV

Plane Energy of photons �hx, keV Yield of photons DN ph. /e-

(220) 6.9 1:0
 0:4ð Þ � 10�6

(440) 13.8 5:4
 1:0ð Þ � 10�8

(660) 20.7 8:5
 2:0ð Þ � 10�9

Fig. 6.10 The spectra
measured at 2hB ¼ 312 mrad
(the curve) and
2hB ¼ 324 mrad (the points)
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with accuracy much better than the energy resolution of the spectrometer. The PXR
line while changing its position in the spectrum can cross the edge of photoab-
sorption of the crystalline target material [12]. In this case, the yield of PXR
photons is determined by the level of PXR line ‘‘cutoff’’ by the edge of photoab-
sorption (see Fig. 6.12).

Thus, by measuring experimentally the dependence of the number of PXR
photons at a given solid angle NPXR on the angle of the target orientation, it is
possible to investigate the shape of line f �hxð Þ:

f �hxð Þ ¼ oNPXR

o �hxð Þ ¼ const
oNPXR

oDhB

: ð6:4:2Þ

The crystalline (111) germanium target, for which the energy corresponding to the
K-edge, was equal to 11.16 keV, was used in the experiment [13]. For the plane

Fig. 6.11 Dependence of the
PXR line energy both on the
observation angle hD in case
of hB = const (a) and on the
angle of orientation hB (b).
The solid curve is the
theoretical model

Fig. 6.12 History of a shape
of the spectral PXR line in
case of changing the
orientation angle hB
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(111) and hB ¼ 8	450 the PXR line energy coincides with the absorption K-edge.
Figure 6.13 shows the orientation dependence of the PXR photon yield on the
disorientation angle DhB. As can be seen from the figure, the PXR line width at
half maximum D�hxexp ¼ 50
 5 eV, which agrees well with the calculated value
D�hxtheor ¼ 65 eV for the aperture of the forming collimator Dhx � Dhy ¼
0:9� 7:3 mrad.

6.5 Influence of the Beam Divergence and the Crystal
Mosaicity on the PXR Characteristics Features

Let us assume the beam angular distribution is described by the function
Fe Dx;Dy

� �
relative to an average direction of the beam, for which the normali-

zation condition is fulfilled
Z

dDx dDy Fe Dx;Dy

� �
¼ 1: ð6:5:1Þ

If the angular distribution of electrons is ‘‘narrow’’ enough in comparison with the
angular distribution of PXR,

hDx;yi� hph ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c�2 þ
x2

p

x2

s

; ð6:5:2Þ

then a shape of the angular distribution of PXR reflex can be calculated from the
convolution:

Ke hx; hy

� �
¼
Z

dDx dDy Fe Dx;Dy

� �
K hx � Dx; hy þ Dy

� �
: ð6:5:3Þ

Fig. 6.13 Orientation
dependence of the PXR
photon yield (the circles) and
the resulting shape of the
spectral line
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The simplest model describing the beam divergence is given by the uniform
azimuthally symmetrical distribution

Fe Dx;Dy

� �
¼

1
pr2; 0�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
� r

0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

x þ D2
y

q
[ r

8
<

:
ð6:5:4Þ

In this case the convolution (6.5.3) is calculated analytically [14]:

Ke hx; hy

� �
¼ 1

4r2
2
h2

x cos2 2hB þ h2
y

h2
x þ h2

y

h2
x þ h2

y þ h2
ph � r2

ffiffiffiffi
D
p � 1

" #(

� h2
x � h2

y

� �
sin2 2hB

h2
x þ h2

y þ h2
ph þ r�

ffiffiffiffi
D
p

h2
x þ h2

y

� �2

þ 2 1þ cos2 2hB

� �
ln

h2
ph � h2

x � h2
y þ r2 �

ffiffiffiffi
D
p

2h2
ph

)

;

D ¼ h2
x þ h2

y

� �2
þ2r2 h2

ph � h2
x � h2

y

� �
þ r4:

ð6:5:5Þ

For a small beam divergence r2 � h2
ph

� �
we can obtain the following expansion

(keeping the terms not higher than r2=h2
ph) from (6.5.5):

Ke hx; hy

� �
�

h2
x cos2 2hB þ h2

y

h2
x þ h2

y þ h2
ph

� �2 þ
r2

h2
x þ h2

y þ h2
ph

� �2

� 1þ cos2 2hB

4
�

3h2
ph h2

x cos2 2hB þ h2
y

� �

h2
x þ h2

y þ h2
ph

� �2

2

64

3

75; ð6:5:6Þ

when r2 ! 0, the last expression coincides with the ideal case (6.3.7).
Figure 6.14a shows the 3D distribution (6.5.5) for r ¼ 0:5hph. As expected, the

zero maximum for hx ¼ hy ¼ 0 becomes smoothed, and moreover with increasing
the beam divergence r this minimum can disappear at all.

The expression (6.5.5) allows us to evaluate ‘‘semi-quantitatively’’ the effect of
multiple scattering of the beam in a target and calculate the shape of the PXR
angular distribution, if instead of parameter r we use the root-mean-square angle
of multiple scattering (4.1.24), which is calculated for the half-thickness of a
crystal.

Similarly, it is possible to take into account the effect of the mosaicity of a
crystal. If the normalized distribution of mosaicity Fm ax; ay

� �
, which, generally
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speaking, can be measured by the broadening of the ‘‘rocking curve’’, is deter-
mined relative to the maximum of the rocking curve, then for the crystals with a
low mosaicity ax;y

� �
� hph the resulting angular distribution of PXR is obtained

from the following convolution:

KMðhx; hyÞ ¼
Z

dax day FM ax; ay

� �
K hx � 2ax; hy þ 2ay sin hB

� �
: ð6:5:7Þ

Comparing (6.5.3) and (6.5.7), we can conclude that the mosaicity ‘‘broadens’’ the
PXR reflex in a diffraction plane twice as much as than the beam divergence.

It is well known that X-ray scattering can occur not only in the perfect crystals
possessing a periodicity in all the three axes, but also in one-dimensional crys-
talline structures, such as pyrolytic graphite with a periodicity a ¼ 3:4Å along only
one axis. Considering the PXR process as a diffraction of virtual photons on the
crystallographic planes, we should expect that for a pyrolytic graphite target the
line spectrum of PXR will also be observed. The spectral distribution of PXR from
the pyrolytic graphite having thickness 1.5 mm and mosaicity 3.4 mrad was
investigated in experiments [15, 16] using 900 MeV electrons. PXR at an angle
hD � 18	 (hB � 9	) was registered by the semiconductor detector. For the chosen
geometry the PXR photon energy, which corresponds to the (200) plane, was equal
to �hx200 = 11.2 keV.

Figure 6.15 shows the measured PXR spectrum, where the first five diffraction
orders are observed clearly.

As is well known, the pyrolytic graphite possesses a high reflectivity for X-rays
in the energy range up to *100 keV. With the decreasing of the Bragg angle the
PXR lines should be shifted to a harder range. It is interesting to clarify the
mechanism of PXR generation in quite a hard range of photon energies. This
situation was investigated in experiment [16], where the PXR spectrum was
measured at the Bragg angle hB ¼ 1o580 ¼ 34 mrad for the same crystal of

Fig. 6.14 The influence of the electron beam divergence on the angular distribution of PXR: for
the same conditions as in Fig. 6.4 (a); the angular distribution of PXR for r ¼ hph (the solid
curve) and r ¼ 0:5hph (dots) (b)
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pyrolytic graphite. As follows from the measurement results (see Fig. 6.16), the 5
diffraction orders are observed in this case as well, although for the (1000) reflex
the energy of PXR photons achieves the value: �hx 1000ð Þ ¼ 5�hx 200ð Þ � 270 keV.

It is also worth noting a high spectral-angular brightness of PXR, which is
generated in the mosaic pyrolytic graphite by electrons with energy 900 MeV, in
comparison with PXR in nearly perfect crystals (see Table 6.2).

In conclusion, it should be noted that for small angles of orientation hB, where
the relation c�hxp� �hxPXR is fulfilled, alongside with the PXR generation
may occur a diffraction of real photons of bremsstrahlung with an energy

Fig. 6.15 The PXR
spectrum generated in the
crystal of pyrolytic graphite
for orientation hB � 9	

Fig. 6.16 The PXR
spectrum for the graphite
target orientation hB ¼ 1o580.
Curve 1 presents the
experimental spectrum; curve
2—the background; curve
3—approximation of the
spectrum after the subtraction
of the background
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cxBS� �hxPXR� c�hxp, which are generated in a crystalline target. This leads to the
appreciable increasing of the yield of monochromatic photons near the Bragg
direction [16].

6.6 The Linear Polarization of Parametric X-ray Radiation

Considering the mechanism of PXR generation as a diffraction of Coulomb field of
electrons on the crystallographic planes of a target, we should expect that the PXR
photons, corresponding to the Bragg reflex as a whole (i.e. after integration over a
cone of angles close to the Bragg direction) will have a linear polarization

P � sin2 2hB

2� sin2 2hB

; ð6:6:1Þ

in a plane being perpendicular to the diffraction plane.
If we consider PXR photons emitted at a fixed angle close to the Bragg

direction, the polarization degree will be close to 100%. For the energy range of
PXR photons, which is located outside of the anomalous dispersion region (far
from the photoabsorption edges), the components of the PXR field E1 ¼ e1E;E2 ¼
e2E will be real (see formulas 6.3.3) and, consequently, the polarization of PXR
photons will be linear.

The first experimental investigation of PXR polarization was carried out in
work [17], where the (220) reflex on a silicon crystal, which was oriented at an
angle hB ¼ 9	 concerning to the beam with an energy of 900 MeV, was studied.
The analyzed beam of PXR photons is formed by the collimator with aperture
hc ¼ 1 mrad. The Compton polarimeter was used to measure the degree of linear
polarization, in which the photons are scattered at an angle � 90	, which provides
a high analyzing power R in this energy range (�hx� 20 keV) R � 0:96. Scattered
photons were detected by two NaI detectors placed at azimuthal angle Du ¼ 90	

relative to each other. During the displacement of a collimator (together with the
polarimeter) relative to the Bragg direction, in the experiment [17] the Stokes
parameter n3 was measured for a given direction of outgoing PXR photons
(Fig. 6.17).

The positions of the forming collimator are indicated in Figs. 6.17 and 6.18 by
Roman numerals I, II, III. Position I corresponds to the Bragg direction, positions

Table 6.2 Yield of PXR photon from pyrolytic graphite

Plane hB �hxB; keV DNPXR=e�; phot/sterad

(200) *9� 11.2 0.45
(200) *2� 55 4.4
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II, III correspond the polar angle 4 mrad and are shifted at the azimuth angle
u ¼ p=2 (see Fig. 6.18).

The Stokes parameter n3 relative to the plane bkBð Þ in the ultrarelativistic
approximation is calculated as follows:

hn3i ¼
DNk � DN?
DNk þ DN?

; ð6:6:2Þ

Fig. 6.17 The geometry of
an experiment aimed at the
investigation of the linear
polarization of PXR [17]

Fig. 6.18 The positions of
forming collimators relative
to the Bragg direction
(hx ¼ hy ¼ 0) of the (220)
reflex
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where (see formulas 6.3.3, 6.3.4):

DNk ¼
axB vg

�� ��2

4pc sin2 hB

Z

DX

dX
~E2

2

h2
x þ h2

y þ c�2 þ x2
p=x

2
� �2

� const
Z

h2
x cos2 2hB

h2
x þ h2

y þ c�2 þ x2
p=x

2
� �2dX;

DN? ¼
axB vg

�� ��2

4pc sin2 hB

Z

DX

dX
~E2

1

h2
x þ h2

y þ c�2 þ x2
p=x

2
� �2

� const
Z

h2
y

h2
x þ h2

y þ c�2 þ x2
p=x

2
� �2dX: ð6:6:3Þ

The integration in (6.6.3) is carried out over the aperture of the forming collimator.
Table 6.3 shows the results of measurement of parameters n3 in comparison

with calculated values.
As follows from the table, there is an agreement observed between the

experimental and calculated data in general, since the calculation was performed
for the perfect conditions (neglecting the divergence of the electron beam as well
as multiple scattering, etc.). The polarization in the center of reflex (along the
Bragg direction), as expected, takes rather small values due to averaging over the
solid angle.

It should be noted that the tilt angle of the polarization plane is determined from
(6.3.3) and (6.3.4):

tan u ¼
~E1

~E2
� � hy

hx cos 2hB

: ð6:6:4Þ

In contrast to the polarization plane slope of X-ray transition radiation, which is
described by the expression

tan uTR �
hy

hx
ð6:6:5Þ

the behavior of the slope angle of the linear polarization plane of PXR in the front
hemisphere, where cos 2hB [ 0 has so-called ‘‘hyperbolic’’ nature. A detailed
study of polarization characteristics of PXR was carried out in experiment [18]
using the beam of electrons with energy E = 80.5 MeV and the silicon crystal
(220), which was oriented at an angle hB � 10	.

Figure 6.19 shows the calculated values of the polarization plane slope angle
for the reflex (220) for various orientation angles. As can be seen from the figure
for 2hB\90	; the behavior of the polarization is hyperbolic. In this case all the
PXR photons are polarized in the plane, which is perpendicular to the plane of
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Fig. 6.19 The scheme of the
PXR linear polarization plane
slope for various angles of
observation 2hB

Table 6.3 Polarization characteristics of PXR

Reflex region Angular coordinates of the collimator center, mrad n3 exp n3 theor

hx hy

I 0 0 -0.14 ± 0.06 -0.04
II 4.0 0 0.80 ± 0.08 0.95
III 0 -4.0 -(0.83 ± 0.05) -0.96

Fig. 6.20 The results of
measurements of polarization
characteristics of PXR: the
layout of the strip polarimeter
(a); the slope angle of the
polarization plane (b) and the
degree of polarization (c)
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diffraction ð\n3 [ � �1Þ, whereas for 2hB [ 90	 the distribution comes nearer
to the radial one in the process of increasing angle 2hB.

In the top left picture the rectangle marks the angular region where the
polarization in 8 points on the coordinate hx during averaged over the angle hy was
investigated. The measurement results are shown in Fig. 6.20.

So, using the ‘‘off-axis’’ PXR beam collimation, it is possible to receive a
source of monochromatic X-ray radiation with high degree of a linear polarization
and with specified slope angle of the polarization plane. In contrast to X-ray
diffraction, where the Bragg angle uniquely determines the energy of scattered
photons and their polarization, in case of PXR such a strong correlation is absent.
Choosing the certain area of the reflex in case of small hB, we can obtain the hard
X-rays radiation with a high degree of linear polarization, which is impossible for
X-ray diffraction (see Eq. (6.6.1)).

6.7 PXR in a Layered Crystalline Target

In the previous chapter it was shown that a choice of parameters of a layered target
for a specified Lorentz-factor of a particle allows receiving a peak in the emission
spectrum of X-ray transition radiation in the required range of energies. If we
consider a layered target, which consists of a set of periodic crystalline targets with
parallel orientation of the crystallographic axes but not amorphous foils (see
Fig. 6.21), then a transition radiation generated at the exit from the previous layer,
will diffract on the subsequent crystalline target. Moreover, the characteristics of
real scattered photons (the angle and energy) will be close to the characteristics of
PXR photons, which are generated in a crystal target directly (see Sect. 6.2).

In article [19] where both specified processes (as well as the interference
between them) were considered in a perfectly oriented target consisting of
N crystalline layers with thickness ‘1, it was shown that in case of the detection of
resulting radiation in the angle cone hc� c�1 the yield of the diffracted transition
radiation is proportional to N2, whereas the yield of PXR photons is pro-
portional to N.

Fig. 6.21 The scheme of
generation of PXR and
diffraction of resonant
transition radiation (DRTR)
on the layered crystalline
target
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It is clear that for the real layered target due to such causes as the random
disorientation of crystalline targets relative to each other, the violation of strict
periodicity as well as a spread in values of thickness of the used crystals,
destructive interference between the two considered mechanisms, the resulting
yield of X-rays close to the Bragg direction is described by dependence �Nd,
where 1 \d\ 2. If the exponent d is close to one, this means that the quality of a
layered crystalline target is low and the target operates as a crystal with thickness
N‘1. In the opposite case, the diffraction of transition radiation will provide a
substantial contribution to the total yield of the resulting monochromatic radiation.

For experimental study of the possibility of increasing the radiation generation
efficiency in such targets, the silicon micromachining technique was developed by
Toshiba Corporation and the layered crystalline targets were made [20] (see
Fig. 6.22).

The thickness of an original silicon wafer with axis h001i, which is perpen-
dicular to the target surface, was 164 microns ±5%. In the central part of the wafer
with a size 6.8 9 6.8 mm2, a workspace having thickness 16.4 mm ±5% was
created. The assemblies of 1, 3, 10 and 100 of such elements are used in exper-
iment [20]. The period of 164 lm was chosen due to conditions of generation of
monochromatic X-rays with energy �hx � 14 keV by the electron beam of the INS
synchrotron (Tokyo, Japan) with energy 900 MeV.

Figure 6.23 shows the dependence of a yield of resonant transition radiation
photons with energies �hx � 14.4 and 35.5 keV from the layered target with the
abovementioned parameters on the angle of outgoing photons in the plane of dif-
fraction. Since the first maximum corresponds to the angles hx� c�1, it is expected
that part of the TR photons will diffract on the subsequent crystalline plates.

The emission spectrum at the angles 2hB ¼ 25	80 (for �hx ¼ 14.4 keV) and
2hB ¼ 10:4	 (�hx ¼ 35 keV) was registered in the experiment by a semiconductor
Si(Li) detector, in front of which there was a slit collimator with an angular aperture
hx ¼ 1 mrad in case of 2hB ¼ 25	80 (Dhx ¼ 1.16 mrad in case of 2hB ¼ 10:4o).

Fig. 6.22 Element of the
layered crystalline target
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Figure 6.24 shows the emission spectra measured for a layered target consisting of
10 silicon wafers (Fig. 6.24a) as well as 100 wafers (Fig. 6.24b). The full width at
half maximum (FWHM) of the peaks was *500 eV in the first case and *810 eV—
in the second one, and was mainly caused by the spectrometer energy resolution.

Figure 6.25 shows the experimental orientation dependences of a photon yield
for both orientations. The calculated characteristics for these cases are shown in
Fig. 6.26.

It should be noted that despite uncontrolled disorientation of plates relative to
each other (which can be called as ‘‘macromosaicity’’), FWHM of the experi-
mental orientation dependence practically coincides with the calculated value
obtained for the perfect crystal. This fact indirectly proves the presence of the
appreciable contribution of diffracted transition radiation in the registered spec-
trum, since the angular distribution of diffracted transition radiation is concen-
trated in a narrower cone than in case of PXR.

From the data presented in Fig. 6.25 we can estimate the parameter FWHM. In
case of �hx ¼ 14.4 keV it is equal to 0:25	, whereas for the energy �hx ¼ 35.5 keV
we have 0.13�. The calculated values of these quantities (see Fig. 6.26) are equal
to 0.3 and 0.1� respectively (calculations were performed for the pure PXR
mechanism in the crystal with thickness N‘1).

Fig. 6.23 The angular
distribution of the resonant
transition radiation photons
after passing half of the
elements of a layered
crystalline target
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Fig. 6.25 Orientation
dependence of the PXR
photon yield from the layered
crystal target for
�hx = 14.4 keV (a) and
�hx = 35.5 keV (b)

Fig. 6.24 The emission
radiation spectrum of a
layered crystalline target at
the angle 2hBðN ¼ 10Þ
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The dependence of the photon yield on the number of crystalline plates is
shown in Fig. 6.27.

The yield of photons with energy �hx ¼ 14.4 keV is well approximated by the
dependence �N1:4, which testifies to the generation of radiation via both con-
sidered mechanisms. The same figure shows the dependence of the yield of PXR
photons with energy �hx ¼ 14.4 keV from a single-crystal with appropriate
thicknesses. The comparison shows that the radiation yield from a layered target

.

Fig. 6.27 The dependence of
the yield of monochromatic
radiation from a layered
crystalline target (1, 3) and
from the crystal with the
equivalent thickness (2)

Fig. 6.26 Orientation
dependence of the PXR
photon yield from a single-
crystal with the equivalent
thickness
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with N = 10 approximately 4 times higher than the PXR yield from a single-
crystal of the same thickness.

However, N-dependence of the photon yield with energy 35.5 keV is linear
with a good accuracy. This can probably be explained by the fact that the accuracy
of the layered crystalline target manufacturing was insufficient for such energies of
scattered photons.

Summarizing, we can say that this kind of layered crystalline targets in case of
further improvement of the manufacturing techniques can provide a significant
increase in the efficiency of generation of monochromatic X-rays compared to both
RTR and PXR.
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Chapter 7
Smith–Purcell Radiation

7.1 The Smith–Purcell Effect

As it was noted before, the transition radiation is a manifestation of so-called
‘‘polarization mechanism of radiation’’, in which the field of a charged particle
passing through the medium deforms (polarizes) the electron shells of the medium
atoms. It is the dynamic polarization of the medium atoms that becomes a cause
for electromagnetic radiation. If a relativistic charged particle flies in a vacuum
close to any medium at the distance h, then in this case the particle motion also
will be accompanied by a dynamic polarization of the medium atoms and as a
consequence by the electromagnetic radiation in the k� 2ph=c wavelength range,
since the effective transverse ‘‘size’’ of the Coulomb field of a moving charge
reaches the value *ck [1]. Such a type of radiation is called diffraction radiation.

By analogy with the resonant transition radiation, it can be expected that the
resonant diffraction radiation, appearing at a charge passage near the periodic
target, will also be quasimonochromatic.

Such a radiation process is illustrated in Fig. 7.1. The charge, flying at a small
distance from the continuously deformed surface target, induces the changing
current on the surface, which can be described as a movement of the charge
‘‘image’’ on the periodically deformed surface if the depth of ‘‘grooves’’ is not too
large. It is evident that a charge moving by such a periodic trajectory will generate
a monochromatic electromagnetic radiation.

In 1953, Smith and Purcell [2] for the first time observed such radiation in the
light range by passing an electron beam with energy *300 keV close to a periodic
target (standard optical grating) with a period of d = 1.67 lm. The diameter of
electron beam, which passed practically along the optical grating with length
48 mm, was approximately 150 lm. The radiation was detected at an angle
h � 20o by means of a simple optical scheme (collimators, lens, analyzing grating)
via photographic method. The line with wavelength k � 0:56 lm was observed in
a spectrum of radiation for electrons with energy 309 keV.

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_7,
� Springer-Verlag Berlin Heidelberg 2011
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In the cited work Smith and Purcell derived the formula that connected the
radiation wavelength with the grating period, the observation angle and velocity of
the charge v ¼ bc:

kn ¼
d

n

1
b
� cos h

� �
; ð7:1:1Þ

based on the Huygens’ principle (Fig. 7.2).
Electromagnetic radiation is excited by the field of a flying particle in each cell

of the grating. To be easy understood, we consider the plane waves emitted at an
angle h from two successive rulings of the grating initiated by the same charged
particle passing along the grating with velocity bc. These waves will have
the same phase (i.e. they will interfere constructively), if the time, during
which a plane wave emitted from point A (see Fig. 7.2) reaches the point B
t1 ¼ d cos h=cð Þ; will be connected with the time needed for a particle to pass a

distance d and to excite a plane wave in the point C (t2 ¼ d=bc), as follows:
c t1 � t2ð Þ ¼ nk; n ¼ �1; �2; . . ..

The so-called ‘‘dispersion’’ relation follows from here

kn ¼
d

n
cos h� 1

b

� �
;

where n is the order of diffraction.

Fig. 7.2 Illustration of
derivation of the Smith–
Purcell relation

Fig. 7.1 Periodically
changing current J induced
by a flying charge above the
deformed conducting surface
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The last relation for n = -1 (‘‘fundamental’’ harmonic) Smith and Purcell

wrote down as the following formula k ¼ d 1
b� cos h
� �

:

In a ultrarelativistic case, the last relationship coincides with the resonant
condition (2.4.9), which does not depend on the specific mechanism of generation.

Formula (7.1.1) for the order of diffraction n = 1 gives a value of
k = 0.566 lm for b = 0.782 (E = 309 keV), which is in accordance with the
experiment. With an increase of electron energy up to E = 340 keV, the shift of
the emission line to the region of smaller wavelengths was observed in the
experiment. The experimental data [2] confirmed the formula (7.1.1) within the
experimental errors accuracy.

After this first observation of the monochromatic radiation appearing during the
rectilinear and uniform movement of a charge in a vacuum close to a periodic
target (a grating), this effect is called as the Smith–Purcell effect.

In the recent experiment [3], the authors studied in details the Smith–Purcell
radiation (SPR) in the optical range, generated by an electron beam with energy
E \ 60 keV and current I \ 10 mA. The beam diameter did not exceed 200 lm,
the radiation generated from a grating with period 0.556 lm was detected by a
photomultiplier at an angle of h = 80�. The emission spectrum was investigated
by means of a monochromator with resolution of (FWHM, full width at half
maximum) Dk = 20 nm.

Figure 7.3 shows the measured Smith–Purcell radiation spectra for an optical
grating with a triangle profile and the period of d = 0.556 lm. As follows from
the figure, the orders of radiation up to |n| = 5 are experimentally observed.

Figure 7.4 shows the dependence of the positions of different order spectral
lines upon the electron energy [3]. The solid lines show the results of calculations
using Eq. (7.1.1). It is possible to note a good agreement between experimental
data and the Smith–Purcell formula. The following paragraphs describe the main
models quantitatively explaining the mechanism of the Smith–Purcell radiation
(SPR).

Fig. 7.3 The Smith–Purcell
radiation spectra for the
electron energy 35 keV (dark
circles) and 60 keV (open
circles). The measured
emission spectrum of the
He–Ne laser (rectangles) is
shown here as well
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7.2 The Scalar Theory of the Diffraction of the Electron
Coulomb Field from a Flat Semi-Transparent Grating

One of the first models proposed for the calculation of the spectral–angular dis-
tribution of the SPR, was developed in the work [4] (see also the review [5]). This
model considered the grating with a period d and a number of elements N � 1,
made from perfectly conducting infinitely thin strips having the width a (Fig. 7.5)
and located within a plane.

A charge q with velocity m ¼ bc flies above the grating at the distance h (impact
parameter). Characteristics of radiation were calculated in half-space under the
grating (that is why, the authors called such a grating as flat semi-transparent). The
authors assumed that, in accordance with the Huygens–Kirchhoff theorem, a field

Fig. 7.4 Comparison of the
calculated position of the
Smith–Purcell radiation lines
(full lines) with the
experiment (points)

Fig. 7.5 The scheme of
generation of the Smith–
Purcell radiation from a flat
semi-transparent grating
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magnitude in a half-space under the grating is determined by its values on the gaps
(in the plane of the grating):

gðx; y; zÞ ¼
Z

kg0 x0; 0; z0ð Þ
2p i R

eikRdSn; ð7:2:1Þ

where k = 2p/k is the wave vector modulus, g0, g are the components of the field
describing the radiation with frequency x = 2pc/k, from a flat grating at a dis-
tance R; dSn is the projection of the grating area element on the direction of the
wave vector. Except for the Kirchhoff approximation, the authors neglected the
influence of grating itself on the field characteristics on the gaps.

Let the charge moves with velocity m ¼ bc along the axis z. Then, according to
[5], its field on the grating plane is possible to describe by a scalar function

g0 x; 0; zð Þ ¼ iq

2pc

Z
dkx

r kx;xð Þ e
i rhþkxjþw

vzð Þ;

r kx;xð Þ ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� b2� �x2

V2
þ k2

x

r

:

ð7:2:2Þ

After calculating the integral (7.2.1) with taking into account the grating period-
icity, the squared modulus of the function g(x, y, z) gives the spectral–angular
distribution of the SPR:

d2W

dx dX
¼ q2 d � að Þ2

2pc

V T

d

sin2 d�a
2

x
V 1� b cos hð Þ

	 


d�a
2

x
V 1� b cos hð Þ

	 
2 sin2 h

� exp �2h
x
V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 1� sin2 h sin2 n

� �q� �

�
X

n

d
x
V

1� b cos hð Þd � 2pn
h i

: ð7:2:3Þ

Here T ¼ Nd=b c is the flight time of a charge above the grating; n is the order of
diffraction; h, n are the polar and azimuthal angles of a wave vector. To obtain the
angular distribution of radiated energy for the nth order of diffraction, it is nec-
essary to integrate the last expression over the frequency, which is easily carried
out using the d-function:

dWn h; nð Þ
dX

¼ 2pq2 d � að Þ2

c3
N

V

d

� �
sin2 npd�a

d

	 


pd�a
d

	 
2

� sin2 h

1� b cos h½ �3
exp � 4pn h

d 1� b cos hð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2 þ b2 sin2 h sin2 n

q� �
:

ð7:2:4Þ

As it follows from the last formula for the first-order diffraction (fundamental
harmonic), the maximum radiation yield is achieved for the strip width a = d/2.
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In this case (n = 1), formula (7.2.4) for the radiation of an electron (q2 ¼ e2 ¼
a�hc) is written as

dW1 h; nð Þ
dX

¼ 2a
p

b3�hc

d
N

sin2 h

1� b cos h½ �3

� exp � 4ph

cd 1� b cos hð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 h sin2 n

q� �
: ð7:2:5Þ

The simple obvious model has allowed receiving an analytical formula, from
which important physical consequences follow. The exponent may be written as

exp �4ph
c b k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 h sin2 n

pn o
, which implies a rigid restriction on the

effective impact parameter h:

h	 heff � c b k=4p: ð7:2:6Þ

It is clear that in the nonrelativistic case (c * 1) condition (7.2.6) is practically
impossible to be fulfilled in the optical range (k B 1 lm). As a rule, in experi-
ments the inequality h� heff is valid, which leads to an exponential suppression
of the SPR yield. With the growth of the electron energy (increasing of Lorentz-
factor), or with the shift from the optical range to the infrared one (or submilli-
meter range), the condition (7.2.6) becomes less rigid.

If the impact parameter satisfies the condition h	 heff ; then SPR in the rela-
tivistic case is concentrated in the plane, which is perpendicular to the grating, i.e.
in the range of azimuthal angles n B c-1, since for large azimuthal angles an
exponential suppression of the yield occurs (because of the increase of the root in
the exponent).

More rigorous models for the description of the Smith–Purcell effect for rela-
tivistic particles have been proposed in recent years [6–9], but the received results
(including those obtained by numerical methods), qualitatively confirm the given
conclusions based on the formula derived by Bolotovskii and Burtsev more than
40 years ago.

7.3 Diffraction of the Coulomb Electron
Field at the Optical Grating

This model was established in [10], where authors used the Van den Berg’s
approach [6], allowing the calculation of the Smith–Purcell radiation character-
istics by analogy with the process of electromagnetic wave scattering by a grating
with an arbitrary profile. This model for a lamellar grating (see Fig. 7.6) is
described below.

The space outside the grating is divided into two areas: the region above the
grating (y C 0, region I) and the area inside the grating grooves (-b B y B 0,

140 7 Smith–Purcell Radiation



region II). Hereinafter we shall use the following Fourier-components of electric
and magnetic fields:

E x; y; z; tð Þ ¼
ZZ

Ex y; z; g;xð Þ exp i gx� xtð Þ½ �dg dx;

H x; y; z; tð Þ ¼
ZZ

Hx y; z; g;xð Þ exp i gx� xtð Þ½ �dg dx:
ð7:3:1Þ

The current associated with a passage of the charge e above the grating has the
following form:

Jx y; z; g;xð Þ ¼ e

2p

� �2
exp ia0zð Þd y� hð Þiz:

For the y-components of the field in the plane of the grating Maxwell’s equations
are reduced to the Helmholtz equations:

o2Exx

o2y
þ o2Exx

o2z
þ k2 � g2
� �

Exx ¼ i
e

4p2

ffiffiffiffiffi
l0

e0

r
g
b
� d y� hð Þ exp ia0zð Þ;

o2Hxx

o2y
þ o2Hxx

o2z
þ k2 � g2
� �

Hxx ¼ i
e

4p2

d

ox
d y� hð Þ exp ia0zð Þ;

ð7:3:2Þ

where a0 = x/v. The solution of Helmholtz equation in region I is written as:

EI
x x ¼ E0

x x þ Er
x x; HI

x x ¼ H0
x x þ Hr

x x: ð7:3:3Þ

Here Er
x x;H

r
x x are the solutions of homogeneous equations describing the field of

a real electromagnetic wave being ‘‘reflected’’ by the grating, whereas E0
x x; H0

x x,
are the solutions of inhomogeneous equations describing the field of moving
charge, which have the form

E0
xx ¼

e

8p2

ffiffiffiffiffi
l0

e0

r
ga0

bc0
exp i a0zþ c0 y� hj jð Þ½ �;

H0
xx ¼

e

8p2
sgn y� hð Þ exp i a0zþ c0 y� hj jð Þ½ �;

ð7:3:4Þ

where c0 ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

0 þ g2 þ k2
� �q

:

Fig. 7.6 The scheme of the
Smith–Purcell radiation
generation in the Van den
Berg model. The
electromagnetic wave
propagates in area I; in area II
the radiation is considered as
a set of modes
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The value y0 is pure imaginary and, accordingly, formulae (7.3.4) describe the
fields propagating along the z axis with the velocity m and exponentially decreasing
with the distance from the trajectory of charge (evanescent waves).

The fields Er
x x; Hr

x xare represented in the form of infinite series:

Er
xx ¼

X
Er

x;n ¼
X1

n¼�1
En exp i anzþ cnyð Þ½ �;

Hr
xx ¼

X
Hr

x;n ¼
X1

n¼�1
Hn exp i anzþ cnyð Þ½ �;

ð7:3:5Þ

where

an ¼ a0 þ
2pn

d
; cn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � a2

n � g2
� �q

: ð7:3:6Þ

For the real values of the parameter cn, the fields (7.3.5) correspond to the Smith–
Purcell radiation with diffraction order n. In this case, the quantities in the
exponent in (7.3.5) are associated with the components of the wave vector
(see Fig. 7.1) as follows: cn ¼ k sin h cos n; g ¼ k sin h sin n; an ¼ k cos h:

The solutions of the Helmholtz equation in the II region are expressed as a
summation with respect to the modes:

EII
x x ¼ exp ia0J dð Þ

X1

m¼1

Gm sin
m pz0

d � a

� �
exp �ikmyð Þ � Cm exp ikmyð Þ½ �;

HII
x x ¼ exp ia0J dð Þ

X1

m¼1

Fm cos
m pz0

d � a

� �
exp �ikmyð Þ þ Cm exp ikmyð Þ½ �:

ð7:3:7Þ

Here the coordinate z0 corresponds to the coordinate ‘‘inside’’ the groove

0	 z0 	 d � a; z ¼ j d þ z0;ð j ¼ 0; �1; �2; . . .Þ;

km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � g2 � mp
d � a

� �2
r

; Cm ¼ exp i 2kmdð Þ:

From the boundary conditions on the grating surface and fields continuity con-
dition on the boundary between the I and II areas it is possible to get a system of
algebraic equations for the unknown coefficients En and Hn in expressions (7.3.5).

After finding the fields En and Hn, the Smith–Purcell radiation intensity of nth
order is calculated in the standard way (per period of an infinitely long grating)

dWn

dX
¼ a �h c

d

sin2 h cos2 u

1=b� cos hð Þ3
Rn h; nð Þj j2 exp �h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cb sin nð Þ

p

hint

( )

; ð7:3:8Þ

where hint ¼ c bkn=4p;
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Rn h; nð Þj j2¼ 4
e2

exp 2 c0j jhf g
1� sin2 h sin2 n
� � E2

x;n



2
þ H2

x;n




� �
: ð7:3:9Þ

The value of (7.3.9) is called the radiation factor and corresponds to the
classical coefficient of radiation reflection by a grating [11]. The multiplier
exp 2 c0j jhf g is introduced to compensate the dependence on impact-parameter h in
expressions Er

x;n; Hr
x;n. As it is shown in [10], the radiation factor for the consid-

ered grating depends only on the ratios a/d and b/d, as well as on the energy of an
initial electron.

So, for the given grating parameters and observation angles, the calculation of
angular distributions of the SPR is reduced to finding the radiation factor.
Figure 7.7 shows the calculation results of the radiation factor |R1(h, 0)| for
electron energies from 1 up to 100 MeV for the grating parameters a/d = 0.1 and
b/d = 0.5 [10]. Using the relation (7.1.1) from (7.3.8) and (7.3.9), we can obtain
the angular density of SPR depending on the wavelength.

The model described in the article [9] was used for calculations of SPR char-
acteristics from the grating made of strips with width a and thickness b, separated
by vacuum gaps. In this case, apart from the radiation emitted in the half-space
through which the electron flies (i.e. in the region with y C 0, see Fig. 7.6), there
can be an emission of the radiation in the half-space with y B -b. The author [9]
has developed an approach which allows calculating not only the radiation factor
|Rn|2, but the transmission coefficient |Tn|2 as well, by means of which it is possible
to calculate the Smith–Purcell radiation intensity in the half-space y B -b after
the substitution it into the formula (7.3.8) instead of |Rn|2.

Figure 7.8 shows the results of calculation of both factors for the gratings of
different thickness for the electron energy of E = 855 MeV.

It should be noted that to find the fields Er
x; n; Hr

x;n at small polar angles h it is
necessary to solve the system of algebraic equations of high order, which cannot
always provide the demanded accuracy.

Fig. 7.7 The radiation factor
|R1|2 according to the Van den
Berg model for a lamellar
grating at different energies
of the initial electron (a/
d = 0.5; b/d = 0.1; n = 0)
[10]
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Besides, the singularities similar to the Rayleigh–Woods anomalies in ordinary
optics may appear for the certain wavelengths in a spectrum. Thus, the described
method hasn’t a wide versatility.

7.4 Radiation of Induced Surface Currents
as a Smith–Purcell Effect

One of the simple models describing the Smith–Purcell effect is a model of surface
currents [7]. In this model, a charge uniformly moving near periodically deformed
surface (grating) induces a current on the surface changing in space and in time,
which generates the Smith–Purcell radiation.

According to known rules of electrodynamics [1], the spectral–angular distri-
bution of radiation is determined by the density of induced current J(r, t) by the
following expression:

d2W

dx dX
¼ x2

4p2c3

Z
dt

Z
d r n nJ r; tð Þ½ �ei xt�krð Þ
h i



2

; ð7:4:1Þ

where k ¼ n 
 x=c is the photon wave vector, n ¼ sin h sin n; sin h cos n; cos hf g is
a unit vector along the wave vector. Since the current Jðr; tÞ induced on the peri-
odically arranged elements of the grating is a periodic function of variables z and t

Jðr; tÞ ¼
XN

m¼1

J0 x; y; z� md; t � md

v

� �
; ð7:4:2Þ

then the integral (7.4.1) is reduced to the following:

d2W

dx dX
¼ x2

4p2c3

XN

m¼1

eimdx 1
v�

nz
cð Þ





2 Z
dt

Z
dx dy dz J0ðr; tÞei xt�krð Þ





2

: ð7:4:3Þ

In (7.4.2), (7.4.3) the subscript ‘‘0’’ at the vector J indicates that the integration
is carried out in respect of both the volume occupied by one element and the time
interval corresponding to the flight of a particle above one period of the grating.

Fig. 7.8 The calculation
results of factors R1j j2 (solid

line) and T1j j2 (dashed line)
for a grating with parameters
a/d = 0.5; b/d = 0.01 (left)
and b/d = 0.001 (right)
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In (7.4.3) the sum squared reduces to the standard expression [which is similar to
the formula (2.4.15)]:

F3 ¼
XN

m¼1

eimdx 1
v�

nz
cð Þ





2

¼
sin2 1

b� cos h
� �

Nxd
2c

h i

sin2 1
b� cos h
� �

xd
2c

h i

�
X

n 6¼0

Nx
nj j d x� xnð Þ: ð7:4:4Þ

Here, as before, the integer index n defines the so-called ‘‘order of diffraction’’.
The argument of d-function is defined the Smith–Purcell dispersion relationship:

xn ¼
2p nj j c

d 1=b� cos hð Þ: ð7:4:5Þ

In such a formulation the problem is most simply solved, when the grating is a set
of N(N � 1) parallel perfectly conducting strips separated by vacuum gaps, and
neglecting the distortion of a moving charge field, which is caused by the presence
of a conducting surface near the charge.

Figure 7.9 shows schematically the effective area on the strip surface, where a
surface charge is induced (figure corresponds to a fixed time). It is clear that the
effective size of this region in the direction of motion becomes much smaller than
the impact parameter (h/c � h, if c � 1). A field distortion of the initial charge is
negligible in this case. As it is known, the surface density of a charge induced on a
perfectly conducting plane, is proportional to the perpendicular component of the
electric field intensity. In a system of units used in this chapter the coefficient of
proportionality is equal to 1/2p:

r x; y; zð Þ ¼ 2� Eyðx; y; zÞ
4p

¼ qc
2p

y� y0

x� x0ð Þ2þ y� y0ð Þ2þc2 z� z0 � vtð Þ2
h i3=2

d y� y1ð Þ : ð7:4:6Þ

Fig. 7.9 The effective area
on a target, where the surface
charge is induced by a
moving charge q (for the
fixed moment of time)
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Here r0 ¼ x0; y0; z0f g designates coordinates of the charge at the time t = 0.
The delta function describes the fact that the conducting plane is located in parallel
to the coordinate plane at a distance y1 from the origin of coordinates. If a charged
particle moves with constant velocity m ¼ 0; 0; cbf g along the axis z (above the
conducting strip z1 B z B z2), then the induced current is defined as follows:

J0ðr; tÞ ¼ r cb: ð7:4:7Þ

The Fourier’s component of the induced current is found by the standard way:

J0 x; n~ð Þ ¼
Z1

�1

dt

Zz2

z1

dz

Z1

�1

dy

Z1

�1

dx 
 qc
2p

� �

� ðy� y0Þ dðy� y1Þ

x� x0ð Þ2þ y� y0ð Þ2þc2 z� z0 � vtð Þ2
h i3=2

cb iz ei xt�krð Þ:

Here iz denotes a unit vector along the axis z. The delta function allows to carry out
the integration over y. To calculate the remaining integrals, we will introduce new
variables:

u ¼ c vt � zþ z0ð Þ; �x ¼ x0 � x; h ¼ y0 � y1ð Þ; j ¼ x
v
� kz:

Thus, it is necessary to calculate the triple integral

J0 x; nð Þ ¼ iz
q

2p

Zz2

z1

dz

Z1

�1

d �x

Z1

�1

du
h

h2 þ x2 þ u2½ �3=2

� exp i
xu

cv
� xz0

v
þ kx �x� x0ð Þ þ jz� kyy1

� �� �
: ð7:4:9Þ

The inner double integral (with respect to d�x du) is reduced to the tabulated one,
which is written in polar coordinates as follows:

I ¼
Z1

�1

d�x

Z1

�1

du
exp i xu

cv þ kxx
h in o

h2þ�x2þ u2½ �3=2
¼
Z2p

0

dn
Z1

0

qdq
exp ilq cosnf g
ðh2þq2Þ3=2

; ð7:4:10Þ

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
cv

� �2
þk2

x

r

.

The azimuthal integral in (7.4.10) is expressed in terms of Bessel’s function of
zeroth order, and hence,

I ¼ 2p
Z1

0

q dq
J0 lqð Þ
½h2 þ q2�3=2

¼ 2p

exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x
cv

� �2
þk2

x

r

h

" #

h
:
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For radiation in a vacuum ky ¼ x sin h cos n=c (see Fig. 7.1). Thus, for the
Fourier’s component of the induced current we have

J0 x; nð Þ ¼ izq exp �xh

cbc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin h sin2 n

q� �
� exp �ikyy1

� � 1
ij

ei jzjz2
z1
:

ð7:4:11Þ

After calculating the double vector product we obtain the formula for n = 1:

d2W

dx dX
¼ q2 x3

4p2c3
Nd x� x1ð Þsin2 h

� exp �2x1h

c b c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 h sin2 n

q� �
1
j2

eijz2 � eijz1
 2: ð7:4:12Þ

The last factor in (7.4.12) coincides with the standard multiplier F2 [see for-
mulas (5.4.12) for r1 = r2 = 0]. We can obtain from (7.4.12) the angular dis-
tribution of the Smith–Purcell radiation of single electron (q = -e) for a width
strip a(z2 - z1 = a) and n = 1:

dW1

dX
¼ a

2p
N

�hc

d

sin2 h

1
b� cos h
� �3

� exp � 4ph

cbd 1
b� cos h
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 h sin2 n

q
2

4

3

54 sin2 pa

d

� �
: ð7:4:13Þ

The constant a ¼ e2=�hc is used in the last formula. It should be noted that deri-
vation of the obtained formula (7.4.13) is based on the approach developed in [7],
where the concept of induced current on the surface of a flat ideal grating is
consistently used. For a grating with a/d = 1/2 the formula (7.4.13) completely
coincides with formula (7.2.5) found on the basis of the scalar theory of diffraction
of relativistic charge field, what indicates the identity of the initial assumptions in
both approaches.

The developed model allows to find the characteristics of SPR not only for a flat
grating but for one formed by tilted strips (Fig. 7.10).

For strips tilted at an angle h0 the model is valid for angles

hmin	 h	 hmax;

hmin ¼ arctan
a sin h0

d þ a cos h0
;

hmax ¼
p
2
� arctan

d � a cos h0

a sin h0
;

where it is possible to neglect the re-scattering of the emitted radiation in sub-
sequent elements of the grating.
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For such a grating the authors [12] have obtained a formula for the angular
distribution of SPR:

dWn

dX
¼ a

2p�hc

d
n2N exp � 4ph

cbkn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 h sin2 n

q� �

� n nGn½ �½ �j j2

1=b� cos hð Þ3
: ð7:4:14Þ

Here, as before n ¼ k=x is the unit vector, the vector Gn is determined by the
surface current induced on the surface of a tilted strip:

Gn ¼ Gx;Gy;Gz

� �
¼ A tan h0; 2ikyke tan h0; 1

� �
;

A ¼
2ke exp a sin h0

2ke
þ iva cos h0

h i
� 1

� �

tan h0 þ 2ivkeð Þd :
ð7:4:15Þ

In formulae (7.4.14) and (7.4.15) the following designations are used:

ke ¼
cbkn

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 h sin2 n

p ;

v ¼ 2p
kn

1
b
� cos h� sin h sin ntanh0

� �
:

ð7:4:16Þ

Introducing, as before, the radiation factor Rnj j2, the formula (7.4.14) can be
rewritten in the form similar to (7.3.8) with the following replacement:

Rnj j2¼
2pn2

sin2 h cos2 n
n n Gn½ �½ �j j2: ð7:4:17Þ

For the case of flat grating, i.e. in case of h0 = 0 and n = 0 instead of (7.4.15) we
have

Gn ¼ i
1� exp i2pna

d

	 


2pn
0; 0; 1f g: ð7:4:18Þ

Fig. 7.10 Volume grating made from tilted strips
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Having in mind the relation n n Gn½ �½ �j j2¼ G2
n � Gnnð Þ2 for a considered case we

obtain

n n Gn½ �½ �j j2¼ 1
p2n2

sin2 pn
a

d

� �
sin2 h: ð7:4:19Þ

As it follows from (7.4.19), for the strip width a = d/2 in the Smith–Purcell
radiation spectrum only the odd orders remain.

It should also be noted that in the case of a flat grating the direct dependence of
expression (7.4.14) on the diffraction order n disappears after the substitution
(7.4.15) in the initial formula. We shall also note that for a flat grating the radiation
factor (7.4.17) in the model of surface currents does not depend on the electron
energy as well as on outgoing angle of the SPR photon (at n = 0) as well:

Rnj j2¼
2
p

sin2 pn
a

d

� �
: ð7:4:20Þ

Figure 7.11 shows the SPR angular distribution calculated by the described model.
The calculations were carried out for a flat grating (h0 = 0) and grating with tilted
strips (h0 ¼ 30o) for the following parameters: n = 1, c = 12, d = 8 mm, a = d/2,
n = 0�. As it follows from Fig. 7.11, in the latter case for observation angle
h = 30�, the SPR intensity vanishes (radiation along the surface of a tilted strip is
absent). Figure 7.12 shows similar curves for a flat grating with the same param-
eters for the values c = 20 and c = 50.

As it follows from the presented results, according to the model of surface
currents, with growing of the initial electron energy, the SPR yield is increased in
the whole range of polar angles. Finally, Fig. 7.13 shows the azimuthal depen-
dence of the SPR yield for a flat grating (curve 1) and for the grating with tilted
strips (curve 2). As it can be seen from the figure, the two-modal distribution is
observed in the latter case.

Fig. 7.11 The angular
distribution of the Smith–
Purcell radiation intensity
according to the model of
surface currents for a flat
grating (h0 ¼ 0o; curve 1), for
the three-dimensional grating
(h0 ¼ 30o; curve 2)
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7.5 Smith–Purcell Effect as a Resonant Diffraction Radiation

The relationship between the Smith–Purcell radiation and the resonant diffraction
radiation (RDR) is easy to see considering the same grating formed from the
perfectly conducting strips, which was studied in the previous paragraph [8]. The
diffraction radiation with a wavelength k occurs during the flight of a charged
particle in vacuum near a conducting medium, i.e. if the condition h B ck/2p is
satisfied. In contrast to transition radiation, in case of generation of the diff-
raction radiation a charged particle does not interact with a material of target
directly.

One of the known models of diffraction radiation (DR) is the model of
Kazantsev–Surdutovich [13], which describes the DR generation during the flight
of a charged particle near a perfectly conducting tilted half-plane. It should be
noted that such a description with good accuracy can be used for wavelengths
range k C 1 lm, for targets with polished metallic surface.

In a full analogy with the resonant transition radiation (see Chap. 5) the
spectral–angular distribution of the RDR from a flat grating can be written as
follows:

Fig. 7.12 The same as in
Fig. 7.11 for a flat grating and
various values of Lorentz-
factor

Fig. 7.13 The azimuthal
dependence of the SPR yield
according to the model of
surface currents for a flat
grating (curve 1) and for the
volume grating (h0 ¼ 30o;
curve 2)
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d2WRDR

�h dx dX
¼ d2WDR

�h dx dX
F2F3 ; ð7:5:1Þ

where the first factor describes the spectral–angular distribution of the elementary
processes (diffraction radiation at edge of the half-plane), the second—the inter-
ference of radiation on one period (from both edges of the strip), and the third—the
interference of N periodically arranged sources. Multipliers F2, F3 have the same
form as in the X-ray RTR theory:

F2 ¼ 4 sin2 uc

2
;

F3 ¼
sin2 Nu0=2ð Þ
sin2 u0=2ð Þ

� 2pNd u0 � 2kpð Þ:

Here, as usually, N is the number of periods of target (N � 1), the phases uc, u0

are defined as follows:

uc ¼
2p
k

a cos h� 1
b

� �
; u0 ¼

2p
k

d cos h� 1
b

� �
: ð7:5:2Þ

As was to be expected, from the argument of d-function and the second equation
(7.5.2) follows the Smith–Purcell dispersion relation. So, if we have the spectral–
angular distribution of diffraction radiation from the edge of the half-plane, it is
possible to find all the characteristics of the Smith–Purcell radiation, which is
considered as RDR.

The formula for the spectral–angular distribution of diffraction radiation of
a charge, moving in parallel to the perfectly conducting half-plane, was found
in [13]:

d2WDR

�h dx dX
¼ a

2p2

exp �4ph
cbk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2c2 cos2 w

q� �

b sin w

�
cos2 w cos2 u

2 1� b sin wð Þ þ c�2 þ b2 cos2 w
� �

sin2 u
2 1þ b sin wð Þ

c�2 þ b2 cos2 w
� �

sin w cos u� 1
b

� �2 :

ð7:5:3Þ

Angular variables u, w are shown in Fig. 7.14.
For ultrarelativistic particles DR is concentrated near the plane, which is per-

pendicular to the plane of the target (it means in the range of azimutal angles
*c-1).

Going to the angular variables hx, hy, which are connected with a geometry of
the problem (Fig. 7.14b)

w ¼ p
2
� hx; u ¼ hy; ð7:5:4Þ
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the expression (7.5.3) is essentially simplified:

d2WDR

�h dx dX
¼ a

4p2

exp �4ph
cbk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 hx

p� �

b cos hx 1þ b2c2 sin2 hx

� �
1
b� cos hx cos hy

� �2

� c2 sin2 hx 1þ cos hy

� �
1� b cos hxð Þ

	

þ 1þ c2b2 sin2 hx

� �
1� cos hy

� �
1þ b cos hxð Þ



: ð7:5:3aÞ

Neglecting the terms *c-2, h2
x instead of expression (7.5.3a) we will have

d2WDR

�h dx dhx dhy
¼ a

2p2

exp �4ph
ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2h2

x

q� �

1� cos hy
: ð7:5:5Þ

The last expression is valid for outgoing angles hy � c-1, whereas for angles
hy * c-1 we obtain from (7.5.3)

d2WDR

�h dx dhx dhy
¼ a

p2
exp �4ph

ck

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2h2

x

q� �
h2

x þ h2
y

ðc�2 þ h2
x þ h2

yÞ
2: ð7:5:6Þ

It can be noted that the formula (7.5.6) is similar in structure to the formula
describing the spectral-angular distribution of transition radiation in case of
crossing the boundary ‘‘vacuum-perfectly conducting medium’’, if h � ck/4p.

Let us also write down the relationship between frequently used photon outgoing
angles h, n in the coordinate system connected with electron velocity (see Fig. 7.14):

cos w ¼ sin hx ¼ sin h sin n;

tan u ¼ tan hy ¼ tan h cos n;
ð7:5:7Þ

Fig. 7.14 The angular variables for the description of diffraction radiation in case of the parallel
passing of a charge above the conducting strip
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as well as the reverse formulae

cos h ¼ cos hx cos hy ¼ sin w cos u ;

tan n ¼ sin hx

cos hx sin hy
¼ cos w

sin w sin u
:

ð7:5:8Þ

Integrating (7.5.1) using the d-function, it is easy to obtain the angular density of
energy emitted on a wavelength corresponding to the kth order of diffraction:

dWk

dhxdhy
¼ 4a�hc

p
N

1

kk 1� cos hy

� � exp �4ph

ckk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2h2

x

q� �
: ð7:5:9Þ

The formula (7.5.9) is written for the ratio a = d/2, which is maximizing factor F2.
For |k| = 1 from (7.5.9) we can obtain the angular density of energy in the

ultrarelativistic case:

dW1

dX
¼ 4a�h c

p
N

1

d 1� cos hð Þ2
� exp �4ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2 sin2 h sin2 n

p

cd 1� cos hð Þ

( )

: ð7:5:10Þ

Comparing the last formula with (7.4.13) at a = d/2, we can see that after multi-
plying the expression (7.5.10) by (1 ? cos h)/2 the result coincides with formula
(7.4.13). Hence, it follows that the different approaches give a close result for the
photon outgoing angle h B p/4, whereas for large values of the angle h the diff-
raction scalar theory, as well as a model of induced current, gives a little bit
smaller value for the spectral–angular density of RDR.

In the recent work [14] the authors showed that the analytical solution of the
diffraction radiation problem in case of flying near the tilted perfectly conducting
half-plane [13] (solution of Kazantsev–Surdutovich) has the limited range of
applicability. In the cited work the following solution was found, which noticeably
differs from the Kazantsev–Surdutovich formula for the parallel flight:

dWk

dx dX
¼ e2

4p2c

exp � 4ph
cbk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cb sin h sin nð Þ2

q� �

1þ cb sin h sin nð Þ2
h i

1=b� cos hð Þ2

� 1

c2b2 þ c sin h sin nð Þ2� sin h sin nð Þ2 1
cb
� c cos h

� �2
( )

¼ e2

4p2c

exp �4ph
cbk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cb sin hxð Þ2

q� �

1þ cb sin hxð Þ2
h i

1=b� cos hx cos hy

	 
2

� 1

c2b2 þ c2 sin2 hx � sin2 hx
1
cb
� c cos hx cos hy

� �� �
: ð7:5:11Þ
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After substitution of (7.5.11) in (7.5.1) and subsequent integration over frequen-
cies, it is possible to get a formula describing the angular distribution of the SPR
intensity:

dW1

dX
¼ 2a

p
N

�hc

d 1=b� cos hð Þ3
exp �4ph

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cb sin h sin nð Þ2
p
cbd 1=b�cos hð Þ

� �

1þ cb sin h sin nð Þ2

� 1

c2b2 þ c sin h sin nð Þ2� sin h sin nð Þ2 1
cb
� c cos h

� �2
" #

: ð7:5:12Þ

Comparing the derived expression with formula (7.3.8), it is possible to obtain an
expression for the radiation factor in the model of the resonant diffraction
radiation:

R1j j2¼
2
p

c�2b�2 þ c sin h sin nð Þ2� sin h sin nð Þ2 1=cb� c cos hð Þ2
h i

sin2 h cos2 n 1þ cb sin h sin nð Þ2
h i : ð7:5:13Þ

In contrast to the Smith–Purcell radiation models based on a model of induced
currents and the RDR, following from the solution of Kazantsev–Surdutovich [13],
the radiation factor (7.5.13) depends on the Lorentz-factor, and as it follows from
the obtained formula for radiation in the plane being perpendicular to the grating

(n = 0), with increase of energy of initial particle the value of R1j j2 decreases as
c-2.

With particle energy increasing, the maximum in the angular distribution of
SPR is shifted to the range of small polar angles (Fig. 7.15). As can be seen from
the figure, in the range of angles, greatly exceeding the value corresponding to the
maximum of the distribution, the SPR yield decreases with increasing of c. Such a
dependence gives the Van den Berg model [10] in contrast to the model of surface
currents.

It should be noted that, generally speaking, the dependence of the distribution
(7.5.12) on the azimuth angle n has a ‘‘lobe-shape’’ character.

Fig. 7.15 The angular
distribution of SPR for a flat
grating with the same
parameters as in Fig. 7.12
(c = 20, 50) calculated by the
model [14]
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Figure 7.16a, b shows the two-dimensional angular distributions of SPR
dW1=dX for the grating with the same parameters as in Fig. 7.15. As follows from
the presented results, the Smith–Purcell radiation intensity for angles tx = 0
(azimuthal angles n = 0) can be quite high, see Fig. 7.16c.

Comparing Fig. 7.16a and b, it is possible to note that the radiation intensity in
the global maxima grows with the increase of Lorentz-factor, which, as a result,
can ‘‘overlap’’ the intensity reduction in the plane being perpendicular to the
grating with increasing of c.

The analytical dependence of the total energy radiated by a particle (radiation
losses) cannot be derive even for the simplest flat grating.

The formula for the SPR radiation losses in case of k = 1 can be written as

W1 ¼
Z

dW1

dX
dX ¼ N

�hc

d
Q h=d; cð Þ; ð7:5:14Þ

where Q(h/d, c) is a function, which depends only on the ratio h/d and the Lorentz-
factor.

Figure 7.17 shows the results of calculations of W1(c) for two values of
h/d = 1/4, 1/8. One may see this dependence with accuracy of a few percent may
be described by a function

W1 cð Þ c1=2:

Fig. 7.16 The angular distributions of SPR intensity for various different values of the Lorentz-
factor according to the model [14], c = 20 (a); c = 50 (b); and azimuthal distribution for both
cases (b) at h = 18�
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It should be noted that the model of surface currents gives a stronger dependence
W1(c) * c3/2 [12].

7.6 Resonant Diffraction Radiation from Charge Moving
Near the Volume Strip Grating

RDR from a charged particle moving near a flat grating consisting of a periodic set
of strips, located in a plane was considered in the previous paragraph. A formula
for the spectral–angular distribution of diffraction radiation in case of flying near
the inclined plane was derived in [14]. In full analogy with the developed
approach, so-called volume strip grating, strips of which are inclined relative to the
central plane of the grating at an angle h0, can be considered. RDR characteristics
for such a grating can be calculated by the formula (7.5.1) as well, where the first
factor d2WDR=�h dx dX describes the spectral–angular distribution of the DR from
the inclined half-plane. The second factor F2 is determined from the simple
scheme (Fig. 7.18).

The electric field of DR from the inclined strip may be found using the principle
of superposition of DR fields from the lower and upper edges of the strip with the
corresponding phase factor:

Fig. 7.17 The dependence of
the radiation losses through
the mechanism of SPR for
k = 1 depending on the
Lorentz-factor for various
impact-parameters

Fig. 7.18 The scheme of
diffraction radiation from the
inclined strip
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Estrip ¼ Elow þ Eup ei D u;

Elow ¼ EDR hþ a sin h0

2
; hy

� �
;

Eup ¼ �EDR h� a sin h0

2
; hy

� �
:

ð7:6:1Þ

For simplicity, we consider the emission process in the simplest geometry, when
the wave vector is placed in a plane which is perpendicular to the strip (hx = 0).

The phase Du is determined by the time difference between the fronts of the
radiation emitted at an angle hy from the edges of the strip, taking into account the
time Dte = a cos h0/bc required for passage of an electron from the point 1 up to
the point 2 (Fig. 7.18):

D t ¼ a cosðhy � h0Þ
c

� a cos h0

bc
: ð7:6:2Þ

A phase shift is found from here [15]:

Du ¼ 2p
c D t

k
¼ 2p a

k
cos hy � h0
� �

� cos h0

b

� �
: ð7:6:3Þ

Let us write down the expression for the DR in the form:

EDR hþ a sin h0

2

� �
¼ EDR hð Þ exp �pa sin h0

kb?

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

? sin2 w
q� �

:

Using the last formula, the expression (7.6.1) can be written in a more symmetrical
form:

Estrip ¼ EDRðhÞ ei D/
2 exp �pa sin h0

kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 sin2 w

q� �
e�iD/

2

�

� exp
pa sin h0

kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 sin2 w

q� �
eiD/

2

�
: ð7:6:4Þ

The squared modulus expression (7.6.4) can give the spectral–angular distribution
of DR from the tilted strip:

d2Wstrip

dX dx
¼ d2WDR

dX dx
F2: ð7:6:5Þ

Here d2WDR

�
dX dx is the spectral–angular distribution of DR from a perfect

inclined half-plane, which has the following form [14]:

d2W

�h dx dX
¼ a

4p2

cos2 h0 þ c2 sin2 h0
� �

exp �4ph
cbk

n o

c2 cos h0 � b cos h� h0ð Þ½ �2þ sin2 h0

: ð7:6:6Þ
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The formula (7.6.6) is given for the case n = 0, i.e. for DR emitted in the plane
being perpendicular to the tilted target. The factor F2 is written as:

F2 ¼ exp �v� i
Du
2

� � � exp vþ i
Du
2

� � 

2

¼ 4 sinh2vþ sin2 Du
2

� �
: ð7:6:7Þ

In the general case, when a DR photon is emitted at angles hx, hy (or, using
standard angular variables h, n) the quantities v, Du/2 in expression (7.6.7) are
written as follows:

v ¼ pa sin h0

kb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2 sin2 w

q
¼ pa sin h0

kbc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2b2 sin2 h sin2 n

q
;

Du
2
¼ pa

k
cos h cos h0 þ sin h sin h0 cos n� cos h0

b

� �
:

ð7:6:8Þ

For the volume strip grating, an element of which is a tilted strip and a vacuum gap
with a period d, the interference factor F3 is again approximated by a d-function
(if the number of periods N � 1), the argument of which is determined by a period
d, a particle velocity b and polar angle of a photon emission h. It should be noted
that unlike the first two factors (d2W=dx dX and F2) the factor F3 does not depend
on the azimuthal angle n. As well as in the previous cases, the d-function again
removes the integration over one variable. For angles of radiation hmin B h B hmax

(see Fig. 7.10) it is possible to neglect the effects of wave ‘‘re-scattering’’ by
subsequent strips.

Figure 7.19 shows the SPR angular distributions, calculated by formula (7.6.6)
for a flat grating (the lower curve) and for the grating with tilted strips h0 ¼ 30o

(the upper curve). For convenience of comparison, the lower curve is multiplied
by 10. The figure shows that the model [14] does not lead to a SPR yield vanish-
ing along the surface of the strip.

Figure 7.20 shows the results of calculations for h0 = 0 (the lower curve) and
h0 = p/2, (the upper one) for c = 200. It can be noted, firstly, that the radiation
intensity from the ‘‘flat’’ grating is much lower than from the volume strip one,

Fig. 7.19 The same, as in
Fig. 7.11 according to the
model [14]
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and, secondly, for the latter grating the sharp minima of the radiation intensity for
certain values of the polar angle are observed.

For the strip inclination angle h0 = p/2 the angles corresponding to a SPR yield
minima are calculated analytically from the requirement of the zeroth second term in
F2 [see formula (7.6.7)]: Du/2 = mp, m is integer. Hence we have a sin h/k = m.

Substituting the Smith–Purcell ratio kn ¼ d
n

1
b� cos h
� �

in the last expression, it

is possible to find the values of the photon emission angles, for which the radiation
intensity is minimal (for the first diffraction order, k = 1):

tan
hmin

1

2
� a

md
; m ¼ 1; 2; 3. . . ð7:6:9Þ

The terms *c-2 are omitted in the formula (7.6.9).
The dependence of the SPR yield on the ratio a/d is shown in Fig. 7.21 for a flat

grating and a perpendicular volume strip one (h0 = p/2). As was to be expected, in
the first case the maximal yield corresponds to the value a/d = 1/2, whereas for
the second one this dependence has a more complicated form.

For a flat grating the ratio a/d = 1/2, providing the maximal SPR yield, is
universal, whereas for the volume strip grating this ratio will be determined by the
polar angle h and by the order of diffraction in analogy with the derivation of
formula (7.6.9).

For the considered case (h0 = p/2, n = 0) it follows from (7.6.8):

a

d
� m

1� cos h
sin h

¼ m

2
tan h=2; m¼ 1; 2; 3. . . ð7:6:10Þ

7.7 Experimental Studies of Smith–Purcell Radiation

Many experimental studies of the characteristics of the SPR with electron energies
from 20 keV to 28 GeV in the interval of wavelengths from the millimeter
range up to optical one have been carried out since the first observation of the

Fig. 7.20 Comparison of
angular distributions of SPR
for a flat grating (h0 = 0) and
a volume strip one (h0 = p/2)
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Smith–Purcell effect. This interest is connected, firstly, with the possibility of
using of the Smith–Purcell effect for the creation of compact sources of radiation
with tunable wavelength, including free-electron lasers, and, secondly, for non-
invasive diagnostics of the accelerated beams parameters.

One of the first experiments [16] was carried out with a beam of electrons with
energies less than 100 keV and diameter of 200 lm, where the optical grating with
a lamellar profile and period of 1.4 lm was used as a target. In this experiment it
was shown that the azimuthal distribution of the Smith–Purcell radiation is two-
modal with a pronounced minimum in the plane being perpendicular to the grating
(at n ¼ 0o). The measurement results are shown in Fig. 7.22.

The results presented in Fig. 7.22 were obtained for a beam with energy
100 keV, with divergence less than 1 mrad and current I = 0.22 lA with the
aperture of the detector DX = 0.005 steradian.

As it can be seen from the figure, in the distribution maximum at h ¼ 106o;
n = 55� the brightness of radiation per 1 lA accelerated current reaches the value

DY
DX
¼ P

DXI
¼ 2:7� 10�9 W

lA� sterad
¼ 2:7� 10�3 eV

e� � sterad
:

a

b

Fig. 7.21 The dependence
of the SPR yield on ratio
a/d for the flat grating a and
volume strip one b for
h0 = p/2 (curve 1) and
h0 = p/4 (curve 2)
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As it was noted above, the beam diameter was around 200 lm, i.e. the average
distance between an axis of a beam and a grating was about 100 lm. For the
radiation wavelength less than 1 lm (the optical range) this distance significantly
reduced the transformation efficiency of beam energy into the radiation energy.

As it follows from (7.2.4), the electrons flying above a grating at a distance
h� hint; where

hint ¼
bk

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c�2 þ b2 sin2 h sin2 n

p ; ð7:7:1Þ

practically ‘‘do not see’’ the grating, i.e. there is no radiation.
In the experiment [17] for the first time there was observed the Smith–Purcell

radiation from the relativistic electrons. The beam of electrons with energy
3.6 MeV was generated by the Van de Graaff accelerator with the following
parameters:

– beam sizes: 3 9 6 mm2 (3 mm in a direction being perpendicular to the
grating);

– accelerated current: 50–200 mA.

In the experiment there was used the grating with a triangle profile and a period
of 760 lm. The radiation emission spectrum was measured by a monochromator
and a helium-cooled InSb-bolometer (see Fig. 7.23).

The measured spectrum for the angle h ¼ 115o is shown in Fig. 7.24. It follows
from the Smith–Purcell formula that an expected value of the wavelength for
|n = 1| is k = 1,088 lm, which is consistent with experiment.

The absolute measurements of the Smith–Purcell radiation power in the far
infrared range were carried out in [18] using a beam of electron microscope with
energy of 40 keV, current of *100 lA and with various gratings (with the period
from 100 up to 250 lm). The maximal brightness of the Smith–Purcell radiation
has been obtained for the wavelength k * 500 lm, where it achieves a value
DY=DX 10�10 W=lA� sterad, what is much lower than the Smith–Purcell
radiation brightness in the optical range.

Fig. 7.22 The azimuthal
distribution of the
Smith–Purcell radiation for
various polar angles of
observation [16]
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The Smith–Purcell radiation in the optical range generated by a beam of
ultrarelativistic electrons with energy of E = 855 MeV was studied in the recent
experiment [19]. The experimental set-up is shown in Fig. 7.25.

It should be noted that in this experiment the vertical size of a beam (in the
direction being perpendicular to the grating) did not exceed 20 lm, which allows
to exclude completely the interaction of the peripheral part of the beam (halo) with
the material of the grating. Figure 7.26 shows the measurement results of the
Smith–Purcell radiation yield for two wavelength ranges 546 ± 15 nm (above)
and 360 ± 15 nm (below). The measurements were carried out for the beam
passing above the grating with a period of 0.833 lm, at a distance of 127 lm at the
angle of observation h (see Fig. 7.25). The expected positions of the Smith–Purcell
radiation peaks are marked by the dashed lines for the different orders of diff-
raction. The experiment is consistent with the Smith–Purcell formula very well.

Fig. 7.23 The scheme of the
experiment for studying the
Smith–Purcell radiation in
mm-range

Fig. 7.24 The measured
shape of line in the Smith–
Purcell radiation spectrum in
the experiment [17]
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Fig. 7.25 The scheme of the
experiment [19] for study of
the Smith–Purcell optical
radiation from a beam of
electrons with energy
855 MeV

Fig. 7.26 The Smith–Purcell
radiation yield for the fixed
wavelength of
k = 546 ± 15 nm (above)
and k = 360 ± 15 nm
(below) depending on an
angle of observation h
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The measured photon yield of the Smith–Purcell radiation with wavelength of
k = 0.36 lm (�hx ¼ 3:5 eV) was DN=DX � 10�3ph/e� � sterad, or going to the
radiation brightness,

DY

DX
¼ 3:5� 10�3 eV

e� � sterad
:

As it was noted by the authors of the experiment [19], the measured value is well
consistent with the Van den Berg theoretical model [6].
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Chapter 8
Radiation of Electrons in the Field
of Intense Laser Wave

8.1 Scattering of a Weak Electromagnetic Wave on a Rest
Electron (Non-Relativistic Approximation)

In the late nineteenth century J. Thomson considered the problem of electro-
magnetic wave scattering with frequency x0 by a free rest particle with mass
m and charge e. Thomson solved the task neglecting the influence of the magnetic
field of the wave on the movement of particle (in modern terminology—neglecting
terms �m=c, i.e. in the nonrelativistic case). If an initial linearly polarized wave
propagates along the axis z and the electric vector oscillation plane coincides with
the plane x0z, then the free charge e also oscillates in this plane under the influence
of an oscillating force F = eE0 cos x0t (Fig. 8.1).

If the influence of wave on the electron is weak enough (the amplitude of
oscillations is much smaller than the wavelength), then acceleration may be
written directly from the Newton’s law

_t ¼ e

m
E0; E0 ¼ E0 cos x0 t; 0; 0f g: ð8:1:1Þ

In this approximation, the particle oscillates in the plane z = const, i.e. without
moving along the wave vector of the incident wave. The oscillation amplitude is
easily found from the Eq. (8.1.1):

xm ¼
eE0

mx2
0

: ð8:1:2Þ

The intensity of the wave is characterized by the dimensionless parameter of the
field strength [see Eq. (2.1.14)]:

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2hA2i

mc2ð Þ2

s

¼ eE0

mcx0
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2r0Ik2

0

p m c3

s

: ð8:1:3Þ
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In (8.1.3) the symbol h i denotes the averaging over time, which is significantly
greater than the period of wave T0 = 2p/x0, r0 is the classical radius of electron,
k0 is a wavelength, I is concentration of power of electromagnetic radiation per
unit area. If the parameter a0 satisfies a condition

a0� 1; ð8:1:4Þ

it refers to the intense wave.
The amplitude of the oscillations in the field of linearly polarized wave (8.1.2)

in the nonrelativistic approximation is expressed through the parameter a0 and
wavelength:

xm ¼ a0
k0

2p
: ð8:1:5Þ

It is clear that in a field of the ‘‘weak’’ wave (a0 � 1) the amplitude
of oscillations is much less than the wavelength, and velocity of a particle
vx ¼ _x� eE0=mx0 ¼ a0c is much smaller than the light speed. For a circularly
polarized wave the electric vector of a field can be written as

EðtÞ ¼ E0 cos x0 t � 1
ffiffiffi
2
p ; � i

ffiffiffi
2
p ; 0

� �
: ð8:1:6Þ

Solving the Eq. (8.1.1) for the field (8.1.6), we can obtain the following
equations describing the trajectory of a particle in a parametric form:

x ¼ � eE0ffiffiffiffi
2
p

mx2
0

cos x0 t þ x0;

y ¼ eE0ffiffiffiffi
2
p

mx2
0

sin x0 t þ y0;

z ¼ z0:

ð8:1:7Þ

Fig. 8.1 Scattering of a
linearly polarized
electromagnetic wave on a
rest electron. The wave vector
of the scattered wave is
characterized by the polar
angle h and azimuthal angle u
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From (8.1.7) implies that the trajectory is nothing else than a circle of radius
R centered at a point r ¼ x0; y0; z0f g and it is located in the plane being perpen-
dicular to the wave vector k:

x� x0ð Þ2þ y� y0ð Þ2¼ R2; R ¼ a0 c
ffiffiffi
2
p

x0
¼ a0ffiffiffi

2
p

2p
k0: ð8:1:8Þ

The power emitted per unit solid angle in the direction n ¼ sin h cos u; sin hf
sin u ; cos hg is found according to a known charge acceleration _m :

dP

dX
¼ e2

4p c3
n n _m½ �½ �j j2¼ e2

4pc3
_mj j2� n _mð Þj j2

n o
: ð8:1:9Þ

For a linearly polarized wave from (8.1.9) one may obtain

dP

dX
¼ e2

4pc3

e2

m2
E2

0 1� sin2 h cos2 u
� �

cos2 x0t

¼ e4

4pm2c3
E2

0 cos2 hþ sin2 h sin2 u
� �

cos2 x0t: ð8:1:10Þ

For the unpolarized initial wave the expression (8.1.10) must be averaged over

the two polarization states E2
0 ¼ E2

0x þ E2
0y

� �.
2

� �
. The same result can be

obtained by averaging over the azimuthal angle u, since there is no a chosen plane
of oscillations in the initial state. In addition the expression (8.1.10) must be
averaged over time T 	 T0. So, we have

dP

dX

	 

¼ e4

8p m2 c3
E2

0 �
1
2

1þ cos2 h
� �

: ð8:1:11Þ

The scattering processes are described by an effective cross-section, which is
determined as the ratio of power per unit solid angle (8.1.11) to the density of
power flux, i.e. power per unit area in the plane being perpendicular to the wave
vector:

dP

dS

	 

¼ cE2

0

8p
:

Hence,

dr
dX
¼ dP

dX

	 
�
dP

dS

	 

¼ e2

mc2

� 2
1
2

1þ cos2 h
� �

¼ r2
0

1
2

1þ cos2 h
� �

: ð8:1:12Þ

Integrating (8.1.12) over the solid angle, it is possible to find the total cross-section
of scattering, which is named as the Thomson scattering cross-section:

rT ¼
8
3
p r2

0:
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For a circularly polarized wave from (8.1.6) and (8.1.9) it can be obtained

dP

dX
¼ e2

8p c3

eE0

m

� 2

2� sin2 h
� �

cos2 x0 t: ð8:1:13Þ

After time averaging, we have

dP

dX

	 

¼ e4E2

0

8p m2c3

1
2

1þ cos2 h
� �

:

Thus, for a circularly polarized wave the scattering cross-section is given by the
same formula (8.1.12).

8.2 The Motion of Electron in a Field of Intense
Electromagnetic Wave

In a field of intense wave the electron velocity can be comparable to the light
speed. Therefore the characteristics of particle motion are determined by the rel-
ativistic equation:

dP

dt
¼ e Eþ m

c
H

h in o
; ð8:2:1Þ

which has an analytical solution for a plane wave (see, for example, [1]). If the
wave field is described by the vector potential AðgÞ (g = x0t - k0r is an invariant
phase), then the solution of Eq. (8.2.1) is written as

PðgÞ ¼ e

c
A gð Þ þ n0 � mc

1
2

eA gð Þ
mc2

� 
: ð8:2:2Þ

The unit vector n0 ¼ k0= k0j j in (8.2.2) is directed along the wave vector of an
initial wave, i.e. along the axis z (see Fig. 8.1). In other words, the second term of
(8.2.2) shows that under the influence of intense wave the electron acquires a
momentum component along a wave vector. Motion of electron in a field of wave in
this direction (being perpendicular to E and H) is characterized by velocity of drift

mD ¼ cbD ¼ c2hPi
hEi; ð8:2:3Þ

where hEi denotes the result of averaging of electron energy moving in a field of
‘‘strong’’ electromagnetic wave. After performing the procedure of averaging for
the initial rest electron, it is possible to receive

bD ¼
a2

0

4þ a2
0

: ð8:2:4Þ
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In a system, which moves along z axis with velocity mD, the electron, on
average, is at rest. Namely in this system (so-called R-system) the equation of the
trajectory is written rather simply. Coming back to the laboratory system
(L-system) is carried out by a standard Lorentz’s transformation.

For a linearly polarized wave in the R-system the trajectory defined by the
following equations:

xR gð Þ ¼ x0R �
kR

2p
2a sin g;

yR gð Þ ¼ y0R;

zR gð Þ ¼ z0R þ
1
2

kR

2p
a2 sin 2g:

ð8:2:5Þ

In (8.2.5) kR indicates the wavelength in R-system, a2 ¼ a2
0

�
4þ 2a2

0

� �
Without

loss of generality, we can put x0R ¼ y0R ¼ z0R ¼ 0. Then the equation of a tra-

jectory is expressed by a closed formula: 16 kRzRð Þ2¼ kRxRð Þ2 4a2�
�

kRxRð Þ2g;
where kR ¼ 2p=kR is the wave vector in R-system.

Figure 8.2 shows the changing of the electron trajectory character in the
xz-plane with increasing of parameter a0 [2]. It should be noted that in case of
a0 = 0.2 (see Fig. 8.2) an electron oscillates slightly deviating from the plane
z ¼ const, while with growth of this parameter oscillations become larger both
along axes x and z. The particle gets the maximal velocity near a point
xR ¼ yR ¼ 0; g ¼ 0ð Þ:

Fig. 8.2 The trajectory of an
electron in the R-system
under the influence of
‘‘strong’’ linearly polarized
wave (the parameter of the
field strength a0 = 0.2—on
the left; a0 = 1 and 5—on the
right)
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vmax
R ¼ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=4

p

1þ a2
c: ð8:2:6Þ

For a circularly polarized wave, the trajectory of an electron in R-system rep-
resents a circle with a radius

R ¼ a0
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0=2

� �q
kR

2p
: ð8:2:7Þ

For a0 � 1 the expression (8.2.7) with accuracy of order a0
2 coincides with the

formula (8.1.8). However, for the intense wave (a0
2 C 1) the trajectory radius

increases. In case of moving in a circle the linear velocity of a particle remains
constant:

vR ¼
a0ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0=2

p c: ð8:2:8Þ

It is clear that in case of a0 C 1 the particle motion becomes relativistic.

8.3 Radiation from Electrons in a Field of the Intense Wave
(Classical Consideration)

In the R-system an electron performs the periodic motion in the area with the
characteristic size ‘
 k0. The characteristics of electromagnetic radiation in the
wave zone (at distances L	 ‘� k0 from the area of movement of charges) can be
obtained according to the classical electrodynamics. Since the particle motion is
relativistic, even for uniform circular motion with a frequency xR (in the case of a
circularly polarized wave) a lot of harmonics will be present in the spectrum. In
this case, the angular distribution of radiation power on the nth harmonic is cal-
culated in analogy with the synchrotron radiation.

The Schott formula for the angular distribution of the radiation power of a
charge moving in a circular orbit with velocity m = cb, with a frequency x, can be
written as the sum of squares of Bessel’s functions and their derivatives (see
Eq. (3.6.3)):

dP

dX
¼ e2x2

4pc

X

n

n2 cot2 hJ2
n nb sin hð Þ þ b2J02n nb sin hð Þ

� �
: ð8:3:1Þ

In the formula (8.3.1) h designates an angle between the wave vector and the
axis z passing through the center of the orbit perpendicular to its plane. In
R-system the frequency xR is connected with the frequency x0 of the initial wave
in L-system by Lorentz’s transformation:

xR ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bD

1þ bD

s

: ð8:3:2Þ
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For the drift velocity (8.2.4) from (8.3.2) we have

xR ¼
x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0=2

p : ð8:3:3Þ

Since the electron being at the initial moment at rest is carried away by a wave
in the direction of its propagation (a drift velocity is directed along the wave
vector), the frequency in R-system decreases in comparison with the initial one in
case of increasing of a0. Substituting the dependence of circulation velocity on
field strength (8.2.8) into (8.3.1), we obtain the angular distribution of radiation
power on the nth harmonic:

dP nð Þ
R

dXR

¼ e2x2
R

4pc

a2
0

1þ a2
0=2

n2 2
cot2 hR

a2
0= 1þ a2

0=2
� �

(

� J2
n

a0ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0=2

p n sin hR

 !

þ J 02n
a0ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0=2

p n sin hR

 !)

:

ð8:3:4Þ

Knowing the power of radiation in R-system, we will find the emitted energy
for the case, when the wave packet consisting of the N0 periods (for example,
a wave train of laser flash by length N0kR) falls on the electron:

dW nð Þ
R

dXR
¼ dP nð Þ

R

dXR
DtR; DtR ¼

N0kR

c
¼ N0 � 2p

xR
:

Hence, the energy loss on the nth harmonic

dW nð Þ
R

dXR
¼ e2xRN0

2c

a2
0

1þ a2
0=2
� n2 2

cot2 hR

a2
0= 1þ a2

0=2
� �

(

� J2
n

a0ffiffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0=2
p n sin hR

 !

þ J02n
a0ffiffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0=2

p n sin hR

 !)

:

ð8:3:5Þ

To obtain a similar radiation characteristic in the laboratory system it is nec-
essary to apply the Lorentz’s transformation separately to the emitted energy and
solid angle:

dWn
L

dXL

¼ dWn
R

dXR

cD 1þ bD cos hRð Þ dXR

dXL

: ð8:3:6Þ

Here and hereinafter cD denotes the Lorentz-factor, which describes the motion
of R-system [see formula (8.2.4)]:

cD ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

D

q
¼ 1þ a2

0=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

0=2
p : ð8:3:7Þ
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Expressions (8.3.4) and (8.3.5) depend on the angle hR in R-system. Let us write
the relationship between the polar angles in the R- and L-systems:

cos hR ¼
cos hL � bD

1� bD cos hL
; sin hR ¼

sin hL

cD 1� bD cos hLð Þ: ð8:3:8Þ

Then a multiplier in (8.3.6), received as a result of transformation of energy WR,
reduces to the following:

cD 1þ bD cos hRð Þ ¼ 1
cD 1� bD cos hLð Þ:

Bearing in mind that dXR=dXL ¼ d cos hRð Þ=d cos hLð Þ, from (8.3.8) it is pos-
sible to obtain

dXR

dXL
¼ 1

c2
D 1� bD cos hLð Þ2

: ð8:3:9Þ

It should be noted that all the quantities in dW nð Þ
R =dXR, concern to R-system,

so they should be expressed in terms of variables in the L-system:

xR ¼
x0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0=2

p ;

cot2 hR ¼
1

1þ a2
0=2

� �
cos hL � a2

0
2 sin2 hL

2

h i

sin2 hL

2 : ð8:3:10Þ

After all substitutions from (8.3.5) with the account of (8.3.6) we obtain

dW nð Þ
L

dXL
¼ e2x0N0

2c

a2
0

1þ a2
0

2 sin2 hL
2

h i3 n2

�
2 cos hL � a2

0
2 sin2 hL

2

h i2

a2
0 sin2 hL

J2
n n zð Þ þ J02n n zð Þ

8
><

>:

9
>=

>;
; ð8:3:11Þ

where

z ¼ a0ffiffiffi
2
p sin hL

1þ a2
0

2 sin2 hL
2

: ð8:3:12Þ

As it was noted above, the electron motion in the R-system for the values a0 [ 1
becomes relativistic, which leads to the appearance of higher harmonics with n [ 1
in a spectrum. Due to the fact that in a field of intense wave in case of n	 1 the
dependence of the emitted energy on the initial wave field intensity a0 ¼ eE0=m c x0

is more complex than the trivial quadratic dependence (see Eq. (8.3.11)),
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the considered process often referred to as nonlinear Thomson scattering. After
appropriate Lorentz transformation in the L-system the frequency of harmonic will
depend on the angle of observation:

x nð Þ
L ¼ nx0

1� bD

1� bD cos hL
¼ nx0

1

1þ a2
0

2 sin2 hL
2

: ð8:3:13Þ

Quantum characteristics (for instance, number of photons DN) can be obtained
using the Planck formula: DW ¼ �hxDN:

Thereby, from (8.3.11) the angular distribution of scattered photons is written in
the form (index L is omitted):

dN nð Þ

dX
¼ 1

hx nð Þ
dW nð Þ

dX
¼ e2a2

0N0

2�h c

n

1þ a2
0

2 sin2 hL
2

h i2

�
2 cos hL � a2

0
2 sin2 hL

2

h i

a2
0 sin2 hL

J2
n n zð Þ þ J

02
n n zð Þ

8
<

:

9
=

;
: ð8:3:14Þ

Besides the angular distribution of scattered photons, the process of radiation is
often characterized by the scattering cross-section, which is defined from the
relationship:

dN

dX
¼ Nph

Sph

dr
dX
:

Here Nph is the total number of photons in the wave train (which is expressed
through energy of flash A and energy of photon �hx0), Sph is the area of the focal
‘‘spot’’. Their ratio depends on the parameter a0 and ‘‘length’’ of the train N0:

Nph

Sph

¼ A

�hx0Sph

¼ 1
�hx0

A

s
s

Sph

¼ I

2p�hc=k0

N0k0

c
¼ Ik2

0
N0

2p �hc2
¼ a a2

0N0

4 r2
0

:

Then, from the distribution (8.3.14) the cross-section corresponding to radiation
on the nth harmonic can be obtained:

dr nð Þ

dX
¼ 2 r2

0
n

1þ a2
0

2 sin2 h
2

h i2

�
2 cos h� a2

0
2 sin2 h

2

h i2

a2
0 sin2 h

J2
n n zð Þ þ J 02n n zð Þ

8
><

>:

9
>=

>;
: ð8:3:15Þ

Here and hereinafter, the index L is omitted, since the consideration is per-
formed in the laboratory system only. The cross-section summed over all the
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harmonics, characterizes the process as a whole, and, generally speaking, differs
from the linear Thomson cross-section:

dr
dX
¼
X1

n¼1

dr nð Þ

dX
: ð8:3:16Þ

In the ‘‘weak’’ field limit (a2
0 ! 0; z! 0), formula (8.3.16) turns to the

Thomson formula:

dr 1ð Þ a2
0 ! 0

� �

dX
¼ r2

0

2
1þ cos2 h
� �

;
dr nð Þ a2

0 ! 0
� �

dX
¼ 0; n� 2:

Figure 8.3 shows the angular distribution for the first harmonic (n = 1) for
various parameters of the field a0 = 0.2; 1; 5 [see formula (8.3.15)]. As can be seen
from the figure, for the weak field the angular distribution practically coincides with
the Thomson one, which is given in the same figure, i.e. it is close to isotropic one.
One can see, first, the narrowing of the radiation cone, and, secondly, the maximal
value of the cross-section dr 1ð Þ=dXL achieves for hL = 0 with increase of param-
eter a0.

Figure 8.4a shows the similar distributions for harmonics with n = 2, 3, in case
of a0 = 0.2. It can be noted that in case a2

0 � 1 a contribution of higher harmonics
is suppressed (i.e. the contribution of harmonics with n [ 1 can be neglected).
With increasing the intensity of wave the relative contribution of higher harmonics
increases (see Fig. 8.4b, c). Besides, as for the fundamental harmonic (n = 1),
there is narrowing of the angular distribution, but the angle corresponding to the
maximum of the distribution differs from zero.

Figure 8.5 shows the dependences of ‘‘partial’’ cross-sections

r nð Þ a0ð Þ ¼
Z

dr nð Þ a0ð Þ
dX

dX

on the harmonic number in case of different values of the parameter a0. The
numbers of harmonics n, for which the cross-section decreases by about two orders
of magnitude compared with r(1), are marked here as well. So, for a0 = 0.3
(Fig. 8.5a) such suppression is achieved already on the third harmonic, whereas for
a0 = 1 (Fig. 8.5b)—only on the seventh one. It is clear that with increasing of the

Fig. 8.3 The angular
distribution of a scattered
radiation on the first
harmonic for different values
of parameter a0
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(a)

(b)

(c)

Fig. 8.4 The angular
distribution of a scattered
radiation on the higher
harmonics for various values
of parameter a0

(a) (b)

Fig. 8.5 Dependence of the ‘‘partial’’ cross-sections of intense wave scattering by a rest electron
for the parameter a0 = 0.3 (a) and a0 = 1 (b)
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initial wave field strength it is necessary to take into account the contribution of a
large number of harmonics for the correct calculation of the scattered radiation
characteristics.

Dependence of the total cross-section

r a0ð Þ ¼
X1

n¼1

r nð Þ a0ð Þ �
Xnmax

n¼1

r nð Þ a0ð Þ

on the parameter a0 is shown in Fig. 8.6. For values a0 ! 0 the cross-section
coincides with the Thomson one, as it should be. It is necessary to specify that the
cross-section r (for a0 = 5) was calculated taking into account of the harmonics
contributions up to nmax = 120. As can be seen from the figure, the total cross-
section decreases with an increase of a0.

For further estimations we will use the angular distributions of energy losses
and the number of emitted photons on each harmonic (8.3.11) and (8.3.14). In the
analyzed case (radiation of an electron in a field of a circularly polarized wave),
the summation over all the harmonics in Eq. (8.3.11) can be carried out analyti-
cally using the known relationships [3]:

X1

n¼1

n2J2
n nzð Þ ¼ z2 4þ z2ð Þ

16 1� z2ð Þ7=2
;

X1

n¼1

n2J02n nzð Þ ¼ 4þ 3z2

16 1� z2ð Þ5=2
:

ð8:3:17Þ

Then, the angular distribution of total energy losses can be written as

dW

dX
¼
X1

n¼1

dW nð Þ

dX
¼ 1

2
aN0 � �hx0

a2
0

1þ a2
0

2 sin2 hL
2

h i3

1

16 1� z2ð Þ7=2

�
cos hL � a2

0
2 sin2 hL

2

h i2

1þ a2
0

2 sin2 hL
2

h i2 4þ z2
� �

þ 1� z2
� �

4þ 3z2
� �

8
><

>:

9
>=

>;
; ð8:3:18Þ

where z is given by formula (8.3.12).

Fig. 8.6 Dependence of the
total scattering cross-section,
being summed over 120
harmonics, on the parameter a0
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The distribution (8.3.18) is shown in Fig. 8.7 for different values of a0. It can be
noted that the distribution becomes narrower with growth of a0 and, for example,
in case of a0 = 5 it is concentrated along the conical surface with an apex angle
hm � 0:5 rad � c�1

D .
Integrating the expression (8.3.18) over the solid angle, we can obtain the

dependence of the total energy losses on the field strength a0, which is shown in
Fig. 8.8

As it follows from the figure, the dependence of the energy losses on the
strength parameter a0 may be approximated by the polynom

W ¼ 0:193paN0 �h x0a4
0 ¼ 0:00443 N0 �h x0a4

0

(see the solid curve in the Fig. 8.8).
Figure 8.9 shows the distributions dW nð Þ�dX for the fixed observation angles

(in vicinity of hL � c�1
D ) for a0 = 5. The angular distributions have maxima for

nm� 30–80 (depending on the observation angle), and the harmonics with n	 nm

are observed in the spectrum also. An estimation of the harmonic number nm, which
corresponds to the maximum of dW nð Þ�dX, can be obtained from the analogy
between the nonlinear Thomson scattering and synchrotron radiation of electron

moving in the R-system in a circular orbit with radius R ¼ a0 c=x0 2þ a2
0

� �1=2
[see

equation (8.2.7)]. For a0 	 1 the orbital motion becomes relativistic one, and the
characteristic frequency of radiation is given by the formula:

Fig. 8.7 The angular
distributions of energy losses
for various values of the
parameter a0 (the curve
corresponding to a0 = 1 is
multiplied by 1,000, the curve
for a0 = 2 is multiplied by
100)

Fig. 8.8 Dependence of the
total energy losses on the
parameter a0
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xR
c ¼

3
2

1

1� b2
R

� �3=2

c

R
¼ 3

ffiffiffi
2
p

2a0
1þ a2

0

2

� 3=2

�x0:

[see expression (8.2.7) for the relative velocity of the electron bR ¼ vR=c in orbit].
In case of going from R- to the L-system, the typical frequency is calculated taking
into account the transformation of angles:

xL
c ¼ xR

c cD 1þ bD cos hLð Þ; cos hL ¼
cos hR þ bD

1þ bD cos hR
:

In the R-system, the maximum of synchrotron radiation intensity is directed
along the tangent to the orbit, i.e. for hR ¼ p=2. Thus, from the previous formulae,
we obtain

xL
c ¼ xR

c cD 1þ bD cos hLð Þ;

cos hL ¼
cos hR þ bD

1þ bD cos hR
:

For the considered case (a0 	 1)

xR
c �

3
4

a2
0 x0;

therefore, in L-system

xL
c �

3

4
ffiffiffi
2
p a3

0 x0:

In other words, the characteristic frequency in the radiation spectrum corre-
sponds to the harmonic number nm:

xL
c ¼ nm x0; nm ¼

3

4
ffiffiffi
2
p a3

0 	 1;

whereas the emission spectrum becomes practically continuous. For the case
a0 = 5 the obtained approximate formula gives a value of nm � 66.

Fig. 8.9 Dependence of
energy losses dW(n)/dX in
case of a0 = 5 for the fixed
polar angles hL on the
harmonic number n
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The same value can be evaluated in another way. Let’s calculate the number of
photons Nph emitted by an electron in case of interaction of electron with the wave
train by N0kR length [see expression (8.3.14)]:

Nph ¼
Xnmax

n¼1

N nð Þ ¼
Xnmax

n¼1

Z
dX

dN nð Þ

dX
: ð8:3:19Þ

Knowing the total energy losses, it is possible to find the average energy of the
emitted photons:

h�hxi ¼ W

Nph

:

This value is associated with the characteristic energy of photons, which cor-
responds to the maximum of SR spectrum using the well known relation

h�hxi ¼ 0:308 h�hxci:

From here it is possible to find the appropriate harmonic number:

nc ¼
h�hxci
�hx0

¼ W

0:308Nph�hx0
:

Figure 8.10 shows the distribution of the emitted number of photons on each
harmonic N(n) (i.e. the result of integration of expression (8.3.14) over the solid
angle) for the parameter a0 = 5. As it can be seen from the figure, the photon yield
decreases monotonically, but rather slowly, with the increase of the harmonic
number. Choosing the harmonic maximal number nmax = 150, it is possible to
calculate by the formula (8.3.19) the number of photons Nph, which will differ
slightly from the ‘‘true’’ total number of photons (i.e. from the result of summing
of the series (8.3.19) up to nmax = ?):

Nph � 0:17: ð8:3:20Þ

Knowing the value of the total energy W a0 ¼ 5ð Þ ¼ 2:79 �h x0 (see Fig. 8.8),
we find the required harmonic number:

Fig. 8.10 The dependence of
the number of scattered
photons Nph on the harmonic
number per one period of the
incident wave for a0 = 5
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nm ¼
2:79

0:308� 0:17
¼ 53;

which agrees with the previously obtained estimation satisfactorily.
In other words, if the frequency of an initial wave corresponds to the energy of

photons �hx0 � 2 eV, the peak in the spectrum will correspond to the energy
�hxc � nm�hx0 � 130 eV, whereas the maximal energy of the emitted photons can
reach values �hxmax� 0.5 keV.

The spectral–angular distribution of the radiation of the helium atom electrons
in the field of Ti:Sa-laser with power P = 50 9 1012 W and the duration of the
flash s = 30 9 10-15 s was investigated in the experiment [4]. The achieved
intensity of the laser flash was 7 9 1019 W/cm2, which corresponds to the
parameter of strength a0 = 5.6. They observed photons with the energy of max-
imum �hx ¼ 150 eV in the measured spectrum of scattered radiation for the
observation angle h = 0�, but the boundary energy in the spectrum exceeded
*1,000 eV. The authors of this experiment have estimated the yield Nph ¼
5� 1010 photons per flash (after integrating over the angular distribution and over
the radiation spectrum). The estimation of the photon number emitted by one
electron under the influence of electromagnetic field with a0 = 5 per period of the
primary wave was derived in the previous section: Nph � 0:17: For the Ti:Sa laser
wavelength k� 1 lm and the flash duration s� 3� 10�14 s the number of periods
is Nph� cs=k� 10. The number of electrons Ne in the area of interaction of laser
flash with a gas jet may be estimated as

Ne � ne V ¼ ne

pd2
ph

4
D � 1011; for ne ¼ 1018 cm�3:

Thereby the estimation of a photon yield per shot may be obtained using the
quantity (8.3.20):

Ntot ’ Nph � Ne � N0 ’ 1:7� 1011� 1011 phot=flash;

which agrees with experiment good.
The obtained experimental results demonstrate the possibility of creating a new

type of X-ray source based on the process of nonlinear Thomson scattering.

8.4 Scattering of a Weak Electromagnetic Wave
on a Moving Electron (the Linear Compton Effect)

In the previous paragraph we considered the scattering of electromagnetic wave by
the rest electron. In case of the wave scattering by a relativistic electron, the scattered
photon frequency shifts to a hard part of spectrum due to the Doppler effect, i.e. the
frequency of visible laser photons can be transformed into radiation of the X-ray or
c-range. This effect can be used for creation of sources of a hard radiation.
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For certainty, we shall consider the laser photon scattering (�hx0
 3 eV) by a
relativistic electron. In the most interesting case, when the electron momentum and
the wave vector are antiparallel (the backward Compton scattering, BCS), in the
R-system, where an initial electron is at rest, the photon energy is about c times
higher than in the laboratory system.

Indeed, from (8.3.2) it follows xR ¼ x0

ffiffiffiffiffiffiffiffiffi
1�bD

1þbD

q
:

In the considered case (head-on-collision) there should be substituted the
negative value—b0 instead of the velocity bD, because the electron momentum
and its velocity are directed along a negative direction of z-axis (Fig. 8.11).

Thus, we have the formula for the photon energy:

�hx0R ¼ �hx0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b0

1� b0

s

¼ �hc0x0 1þ b0ð Þ;

where c0 denotes the Lorentz-factor of the initial electron

c0 ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

0

q :

For the electron energy E B 5 GeV (c B 104), the photon energy in R-system
will satisfy the condition �hx0R � mc2; which, in case of a weak field, allows to
consider this process as the Thomson scattering (neglecting the energy transfer to
electron and the frequency changing of the scattered photon). In this approxima-
tion, turning again in the L-system result is:

xL ¼ c0xR 1� b0 cos hRð Þ ¼ c2
0x0 1þ b0ð Þ

� 1� b0
cos hL þ b0

1þ b0 cos hL

� 
¼ x0

1þ b0

1þ b0 cos hL
: ð8:4:1Þ

In ultrarelativistic case (b0 ! 1; c0 	 1), instead of the angle hL it is more
convenient to use the angle h, which is measured in L-system from the direction of
the electron momentum (see Fig. 8.11):

h ¼ p� hL:

Fig. 8.11 Kinematics of the
backward Compton scattering
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Then, the frequency of the scattered photon in L-system is given by the relation:

xL ¼ x0
1þ b0

1� b0 cos h
� 4c2

0x0
1

1þ c2
0h

2: ð8:4:2Þ

In (8.4.2) the terms proportional to c-3, h3 and higher are omitted.
The maximal energy of the scattered photon [at an angle h = 0 (hL = p), i.e. in

the direction of the electron momentum] is 4c2 times as higher than the energy of
the initial photon:

�hxL max ¼ �hx0
1þ b0

1� b0
� 4c2

0�hx0; c0 	 1 ð8:4:3Þ

The angular distribution of scattered photons is obtained by transformation of
cross-section (8.1.12) in L-system (the indices L are omitted here again):

dr
dX
¼ r2

0

2

1� b2
0

� �

1� b0 cos hð Þ2
1þ cos h� b0ð Þ2

1� b0 cos hð Þ2

" #

: ð8:4:4Þ

Since the expression (8.4.2) gives the relationship connected the scattered
photon energy and the scattering angle, the cross-section (8.4.4) can be rewritten as

dr
dX
¼ r2

0

2
x
x0

� 2 1� b0

� �

1þ b0ð Þ 1þ 1

b2
0

x
x0

1� b0ð Þ � 1

� �2
( )

: ð8:4:5Þ

Let us introduce a new dimensionless variable

S ¼ x
xmax

¼ 1� b0

1� b0 cos h
� 1

1þ c2
0h

2; ð8:4:6Þ

through which the cross-sections (8.4.5) can be expressed in a simpler way. After a
trivial integration of this cross-section over the azimuthal angle, and bearing in
mind the relation

d cos hð Þ ¼ 1� b0

b0S2
dS;

we obtain the spectrum of scattered photons (because the variable S is nothing else
than the energy of the scattered photon in units �hxmax):

dr
dS
¼ pr2

0

1þ b0

b3
0

1þ b2
0 � 2S 1þ b0ð Þ þ S2 1þ b0

� �2
n o

: ð8:4:7Þ

In the ultrarelativistic limit (b0 ! 1), it follows from (8.4.7) that the radiation
spectrum is described by the universal function, which describes the spectrum of
radiation in a helical undulator also [5]:
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dr=dS ¼ 4pr2
0 1� 2Sþ 2S2
� �

; 0\S
 1: ð8:4:8Þ

In this approximation, neglecting the terms � c�2
0 we have

x=x0 ¼ 4c2
0

�
1þ c2h2� �

;

and the cross-section (8.4.5) can be written in the form

dr=dX ¼ 4r2
0 c2

0 1þ c4
0h

4� �.
1þ c2

0h
2� �4
: ð8:4:9Þ

The cross-section (8.4.9) is a rapidly decreasing function of the variable c0h.
Writing an element of solid angle as

dX ¼ d c2
0h

2� �
du
�

2c2
0;

the cross-section (8.4.9) can be integrated over the variable c0h between the limits
from zero to infinity: r = 8pr0

2/3. Because of the used approximations the cal-
culated result coincides with the classical Thomson cross-section as expected.

A more correct description of the considered process (the linear Compton effect
on a free electron) is carried out in the framework of quantum electrodynamics.
This approach takes into account the quantum recoil effect, i.e. a transfer of the
momentum to the scattered electron, what leads to the modification of the formula
(8.4.2):

�hx ¼ �hx0
1þ b0

1� b0 cos hþ �hx
c0mc2 1þ cos hð Þ

: ð8:4:10Þ

The differential cross-section of the Compton scattering on a moving electron
for any energy of particle and any geometry may be written through so-called
invariant variables [6]. The following set of invariant variables, which are deter-
mined by the kinematics of the scattering process is used often:

x ¼ 2pk0

mc2ð Þ2
; y ¼ pk0 � pk

pk0
: ð8:4:11Þ

Here p, k0, k denote four-momentum of the initial electron and photon as well as
scattered photon, respectively (p ¼ c0mc2; p

�
g; k0 ¼ �hx0; �hk0f g; k ¼ �hx; �hkf g).

For the head-on collision of laser photon with ultrarelativistic electron we have

x ¼ 2c0�hx0 1þ b0ð Þ
mc2

� 4c0�hx0

mc2
;

y � �hx
c0b0mc2

:
ð8:4:12Þ

In a system, where the initial electron is at rest, the frequency of the initial
photon is

x�0R ¼ c0x0 1þ b0ð Þ: ð8:4:13Þ
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In other words, the parameter x characterizes the initial photon energy (in units
mc2) in the considered system. If x� 1, then the process of Compton scattering in
a good approximation can be regarded as Thomson scattering.

The variable y coincides with the ratio of the scattered photon energy to the
energy of the initial electron with high accuracy. It is easy to obtain the interval of
variation of this parameter from the kinematics of the process:

0
 y
 ymax ¼
x

1þ x
: ð8:4:14Þ

The spectrum of scattered photons in the invariant variables can be written as
follows:

dr
dy
¼ 2pr2

0

x

1
1� y

þ 1� y� 4
y x� xy� yð Þ

x2 1� yð Þ2

( )

: ð8:4:15Þ

After integrating the cross-section (8.4.15) over the variable y in the limits
(8.4.14), which is easily carried out analytically, we can obtain the dependence of
the BCS total cross-section on the parameter x:

r xð Þ ¼ 2pr2
0

x
1� 4

x
� 8

x2

� 
ln 1þ xð Þ þ 8

x
þ 1

2
� 1

2 1þ xð Þ2

( )

: ð8:4:16Þ

The expansion follows from the obtained cross-sections for values x� 1

r � 8
3
p r2

0 1� xþ 13
10

x2

� 
:

It is clear that for Compton scattering on a rest electron c0 ¼ 1; b0 ¼ 0ð Þ
x ¼ 2�hx0

mc2; the cross-section (8.4.16) describes the standard behavior of the scat-
tering cross-section, which decreases with the growth of the initial photon energy.
The exact cross-section in the discussed case of a head-on collision with ultra-
relativistic electron can be written through the traditional variables as

dr
dX
¼ r2

0

2

1� b0

� �

1þ b0ð Þ
x
x0

� 2

� 1� b0 cos h
1þ b0

x
x0
þ 1þ b0

1� b0 cos h
x0

x
�

1� b2
0

� �
1� cos2 hð Þ

1� b0 cos hð Þ2

" #

: ð8:4:17Þ

If the initial beam of photons is polarized, the scattered photons will be also
polarized. Let us consider the polarization characteristics of a scattered c-radiation
in detail. The cross-section of polarized photons scattered by an unpolarized
electrons was obtained in the invariant variables in [6], from which the needed
expressions can be easily derived. Since the process involves two photons, then,
generally speaking, the polarization characteristics of the initial and final photons
have to be described in two different coordinate systems. However, since we are
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interested in the scattering of photons into the small range of angles h� c�1 � 1
(i.e. momenta of the initial and final photons are practically antiparallel to each
other), it is possible to use one system of coordinates for polarization of both
photons. Further, since the averaging of a yield of scattered photons over the
azimuthal angles takes place during experiment, for obtaining of useful expres-
sions it is necessary to choose a fixed frame of reference. The most important
frame is defined by the experimental setup, but not by the scattering plane. If

through n 1ð Þ
i and n 2ð Þ

i we define the Stokes parameters of the initial and scattered
photons, respectively, then for the cross-section it is possible to obtain the fol-
lowing expression:

dr ¼ 2r2
0
dydu

x
F0f þ n 1ð Þ

3 þ n 2ð Þ
3

� �
F03 þ n 1ð Þ

1 n 2ð Þ
1 F11

þ n 1ð Þ
2 n 2ð Þ

2 F22 þ n 1ð Þ
3 n 2ð Þ

3 F33

o
; ð8:4:18Þ

where

F0 ¼
1
x
� 1

x 1� yð Þ

� 2

þ 1
x
� 1

x 1� yð Þ þ
1
4

1� yþ 1
1� y

� 
;

F0 3 ¼ �
1
x
� 1

x 1� yð Þ

� 2

� 1
x
þ 1

x 1� yð Þ;

F1 1 ¼
1
x
� 1

xð1� yÞ �
1
2
;

F2 2 ¼
1
4

1� yþ 1
1� y

� 
1þ 2

x
� 2

x 1� yð Þ

� 
;

F3 3 ¼
1
x
� 1

x 1� yð Þ

� 2

þ 1
x
� 1

x 1� yð Þ þ
1
2
:

For a correct averaging of the obtained expression over the azimuthal angle, let
us introduce an explicit dependence on the azimuthal angle u (the angle between
the scattering plane and the plane of reference).

The Stokes parameters n 1;2ð Þ
i introduced in (8.4.18) are defined in the system

related to the scattering plane, so instead of them we substitute the expressions

n 1ð Þ
1 � n 1ð Þ

1 cosð2uÞ � n 1ð Þ
3 sinð2uÞ;

n 1ð Þ
2 ! exp iuð Þn 1ð Þ

2 ;

n1
3 ! n 1ð Þ

1 sin 2uð Þ þ n 1ð Þ
3 cos 2uð Þ;

ð8:4:19Þ

which connect the Stokes parameters of the initial photon in the system, rotated at
an angle u with the initial values.

The Stokes parameters of scattered photons n2
i are transformed by the for-

mulae similar to (8.4.19) by replacing u! �u (which corresponds to a return to
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the initial reference plane). After substitution of obtained expressions and inte-
grating over the azimuthal angle we obtain

dr ¼ 4pr2
0

dy

x
F0 þ n 1ð Þ

1 n 2ð Þ
1 F1 þ n 1ð Þ

2 n 2ð Þ
2 F2 þ n 1ð Þ

3 n 2ð Þ
3 F3

n o
;

F1 ¼ �
1
2

1
x
� 1

x 1� yð Þ

� 2

;

F2 ¼
1
4

1� yþ 1
1� y

� 
1þ 2

x
� 2

xð1� yÞ

� 
;

F3 ¼
1
2

1
x
� 1

x 1� yð Þ

� 
:

ð8:4:20Þ

As in the case of undulator radiation, the spectral and polarization character-
istics of the beam of scattered photons are determined by an aperture of the beam
collimation.

For the collimation angle hc 	 c�1 the minimal value of the variable y (see
Eq. (8.4.12)) is ymin � 0; whereas ymax h ¼ 0ð Þ ¼ x= 1þ xð Þ: Figure 8.12 shows the
spectrum of scattered photons and the dependence of circular polarization on the
photon energy for this case, which was calculated from the expression

n 2ð Þ
2 x; yð Þ ¼ F2 x; yð Þ

F0 x; yð Þn
1ð Þ

2 : ð8:4:21Þ

The results shown in Fig. 8.12 are obtained for n 1ð Þ
2 ¼ þ1. As it follows from

the figure, for photons scattered strictly backwards and having the maximal
energy, a circular polarization will be 100%, but opposite in sign (for example,
the right-circular polarization of the laser photon is transformed into the left-
circular one).

Figure 8.13 illustrates the possibility of monochromatization of photon beam in
case of choosing of the collimation angle hc\c�1. The emission spectrum and the
degree of circular polarization are calculated for the collimation angle
hc ¼ 0:7c�1. As it can be seen from the figure, a ‘‘hard’’ collimation allows to
produce a scattered photon beam with a high circular polarization.

Fig. 8.12 The BCS spectrum
for x = 0.2 (left scale) and
circular polarization of
scattered photons for n2

(1) = 1
(right scale) for the total cone
of radiation
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For such a beam it is possible to determine the average value of circular
polarization:

hn 2ð Þ
2 tcð Þi ¼

Zymax

ymin

dy

x
F2 x; yð Þ

, Zymax

ymin

dy

x
F0 x; yð Þ; ð8:4:22Þ

where ymin ¼ x
1þxþt2

c
; ymax ¼ x

1þx: For values x� 1 the expression (8.4.22) can be

written as

hn 2ð Þ
2 tcð Þi � �

1þ t2
c

1þ t2
c þ 2

3 t4
c

; ð8:4:23Þ

The average circular polarization is noticeably reduced with increasing of the
collimator aperture.

Figure 8.14 shows the dependence of average polarization on the collimation
angle, where the solid curve corresponds to the exact calculation by the formula
(8.4.22) for x = 0.5, while the dashed line refers to calculation by formula
(8.4.23).

The technique described was used to produce monochromatic gamma beams for
investigation of photonuclear processes [7–9]. For some purposes parameters of
available lasers (or accelerators) do not allow to achieve needful gamma beam

(a)

(b)

Fig. 8.13 The same for the
collimator aperture chc = 0.7
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characteristics (photon energy, tunability, intensity and so on). Authors of the work
[9] have carried out the BCS experiment at the electron–positron collider VEPP-
2M with energy of electrons (positrons) 650 MeV. The initial photon beam with
energy of photons *100 eV was generated by positrons passing through a helical
undulator and then scattered by a counter propagating electrons. As a result they
have obtained circularly-polarized c-quanta with energy *300 MeV which were
used to measure a polarization of the stored electron beam.

Other scheme has been realized in the experiment [10] where authors used
infrared photons generated by a free-electron laser (FEL) instead photons from an
ordinary laser. In the such FEL an undulator was placed into an optical resonator
(cavity) to provide a feedback. FEL photons circulated in this cavity and scattered
by the same electron beam which was produced the FEL radiation. During head-
on-collisions the intense X-ray beam there was obtained.

Photons are emitted in a FEL with wavelength (see Eq. (3.3.5)):

kFEL ¼
ku

2c2
1þ K2

2

� 
; ð8:4:24Þ

and, consequently, as a result of intracavity BCS process a photon wavelength
becomes shorter:

kBCS ¼
kFEL

4c2
1þ c2h2� �

¼ ku

8c4
1þ K2

2

� 
1þ c2h2� �

: ð8:4:25Þ

In the cited work electrons with Lorentz-factor c � 100 were used to produce
FEL radiation in the wavelength range kFEL ¼ 3:5–7 lm. The FEL spectral line
shift in this range was performed by changing an undulator gap. Consequently,
energy of X-ray photons can be changed in the interval �hxBCS ¼ 7–14 keV with
small step (see Eq. (8.4.25)).

Formulas (8.4.18) and (8.4.20) are valid for any values of x0 and b0. However,
with growing of intensity of the laser field (in other words, with increasing of
concentration of photons in the interaction region) the probability of interaction of
one electron with a few photons increases, i.e. process becomes nonlinear:

e� þ nc! e�0 þ c0; n ¼ 2; 3; 4; . . .

Fig. 8.14 Dependence of the
averaged degree of the
circular polarization on the
collimator aperture [curve 1
the exact calculation; curve 2
the approximation of
(8.4.23)]
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In the next paragraphs the peculiarities of the nonlinear Thomson and Compton
scattering processes on the ultra-relativistic electrons are considered.

8.5 Radiation of a Relativistic Electron in a Field of Strong
Electromagnetic Wave

Let us consider, as in the previous paragraph, the head-on collision of laser
photons and the ultrarelativistic electron with the energy, at which the change in
frequency of the photon scattering in the R-system can be neglected [11]. If the
laser ‘‘flash’’ contains a train of N0 periods, the periodic trajectory of electron
passing through this wave train contains 2N0 oscillations. In this case, as usual, the
interference factor FN can be approximated by a d-function, whose argument
determines the dispersion relation connecting the frequency of the emitted photon
and the photon outgoing angle. In the L-system this relation is given as follows:

xn ¼
nx0 1þ b0ð Þ

1� b0 cos hþ a2
0

4 1� b0ð Þ 1þ cos hð Þ
� n

4c2
0x0

1þ a2
0

2 þ c2
0h

2
: ð8:5:1Þ

The angular distribution of energy losses in the L-system of relativistic elec-
trons on the nth harmonic can again be obtained from the expression (8.3.5) with
the account of (8.3.6) and (8.3.9):

dW nð Þ
L

dXL
¼ e2x0N0

4c

a2
0

1þ a2
0

� �
1� bDð Þ

c2
D 1� bD cos hLð Þ3

� n2 cos hL � bDð Þ2c2
D

sin2 hL
J2

n nzð Þ þ J02n nzð Þ
( )

; ð8:5:2Þ

where z ¼ a0ffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffi

1þa2
0=2

p sin hL

cD 1�bD cos hLð Þ:

Here, as before, bD indicates the drift velocity, i.e. the velocity of a system,
where the electron, on average, is at rest. It is clear that the drift velocity will
depend not only on the initial electron velocity b0, but also on the field strength
parameter a0. In a system, which moves parallel to the trajectory of an electron
with velocity b0, the electron at the initial moment is at rest, and under the
influence of intense wave it acquires the velocity of drift [see formula (8.2.4):
b0D ¼ a2

0

�
4þ a2

0

� �
].

Then, using the relativistic law of addition of velocities when returning to the
initial L-system, we get

bD ¼
�b0 þ b0D
1� b0b

0
D

¼ �4b0 þ a2
0 1� b0ð Þ

4þ a2
0 1� b0ð Þ : ð8:5:3Þ
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For the most interesting relativistic case it follows from (8.5.3) that bD \ 0,
since the axis z of L-system is directed along the wave vector. The polar angle hL

in (8.5.2) is measured namely from this direction.
In the ultrarelativistic limit c2

0 	 a2
0

� �
from (8.5.3) we obtain

bD � �b0 þ
a2

0

4c2
0

;

c2
D �

c2
0

1þ a2
0=2

: ð8:5:4Þ

The relativistic particle emits photons in a narrow cone along the particle
velocity, and therefore, by analogy with the case considered in paragraph 8.4,
instead of the angle hL we will use the angle h in respect to the vector b0 :

h ¼ p� hL; h
 c�1;

and accordingly

1� bD cos hL ¼
1

2c2
0

1þ a2
0

2
þ c2

0h
2

� 
;

z ¼
ffiffiffi
2
p

a0c0h

1þ c2
0h

2 þ a2
0=2

:

For calculations it is convenient to use a variable t = c0
2h2, through which the

element of the solid angle dX = dt du/2c0
2 is expressed.

The angular distribution of energy losses on the nth harmonic is written as
follows:

dW nð Þ

dt du
¼ e2x0N0

c

4a2
0c

2
0

1þ a2
0=2þ t

� �3n2 1þ a2
0=2� t

� �2

2a2
0t

J2
n nzð Þ þ J02n nzð Þ

( )

: ð8:5:5Þ

As before, the angular distribution of the total energy losses can be obtained
carrying out the summation over all the harmonics [see (8.3.17)]:

dW

dt du
¼
X1

n¼1

dW nð Þ

dt du
¼ a �h xmaxN0

a2
0

1þ a2
0=2þ t

� �� 1

16 1� z2ð Þ7=2

� 1þ a2
0=2� t

1þ a2
0=2þ t

� 2

4þ z2
� �

þ 1� z2
� �

4þ 3z2
� �

( )

: ð8:5:6Þ

Here �hxmax ¼ 4c2
0�hx0 is the maximal energy of the scattered photon [see

expression (8.4.2)]. As it will be shown below, in case of interaction of intense
wave with ultrarelativistic electron (a0 C 1), the maximal energy of the scattered
photon will decrease.
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Figure 8.15 shows the angular distributions of energy losses for several values
of the parameter a0 = 1, 3, 5. As it can be seen from the figure, with increasing of
the wave intensity, the cone of radiation angles grows. The maximum in the
distribution corresponds to the angle tm ¼ c hm � a2

0

�
2:

Figure 8.16 shows the dependence of total energy on the parameter a0:

W a0ð Þ ¼
Z1

0

dt

Z2p

0

dW a0ð Þ
dt du

du:

As it follows from the figure, the calculated curve is well approximated by a
quadratic dependence W ¼ 0:33 pa�hxmaxN0a2

0: It should be noted that a similar
dependence for a rest electron (W � a4

0, see Fig. 8.8) differs from the quadratic one
due to the fact that the Lorentz-factor of a rest electron, which is drifting under the
action of a strong wave, is proportional to a0

2. It means the dependence shown in
Fig. 8.8, can be written as W ¼ const � a4

0 � const � c2
D a2

0. This dependence is
consistent with the result for the scattering on the relativistic electron (see
Fig. 8.16), where the dependence on c0

2 is included into the expression for �hxmax.
In order to calculate the number of emitted photons and the cross-section, we use
the relationship between the scattering angle and the frequency of nth harmonic in
the L-system (8.4.1):

Fig. 8.15 The angular
distribution of energy losses
for the nonlinear Thomson
scattering on a moving
electron, depending on
the variable t = c0

2h2 for
a0 = 1, 3, 5

Fig. 8.16 Dependence of the
total energy losses of the
nonlinear Thomson scattering
as a function of the parameter
a0 (per one period of the
incident wave)
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xL ¼ nx0
1� bD

1� bD cos hL
� nx0

1þ b0
c2

0
2 þ

a2
0

4c2
0
þ h2

2

¼ 4c2
0nx0

1þ a2
0

2 þ t
: ð8:5:7Þ

The last formula is obtained using the approximate expressions (8.3.13). Then
from (8.3.14) we obtain

dN nð Þ

dt du
¼ 1

�hxL

dW nð Þ

dt du
¼ a N0 a2

0

1þ a2
0

2 þ t
� �2

� n
1þ a2

0=2� t
� �3

2a2
0 t

J2
n nzð Þ þ J02n nzð Þ

( )

: ð8:5:8Þ

Note that formula (8.5.8) completely coincides with the expression for the
spectral photon density of the nth harmonic, which is radiated by an electron in a
helical undulator with a period k0/2, the number of periods N0 and undulator
parameter K ¼ a0=

ffiffiffi
2
p

:
In order to obtain the spectral distribution of photons from the angular one, we

use the relationship (8.5.7) again, and for the energy of the emitted photon we will
use, as before, the dimensionless variable �hxlin

max � 4c2
0�hx0

� �
:

S ¼ �hx
�hxlin

max

¼ n

1þ a2
0=2þ t

:

Then, after integrating over the azimuth, from (8.5.8) we obtain the spectral
distribution of the emitted photons on each harmonic:

dN nð Þ

dS
¼ 2paN0a2

0

n� S 2þ a2
0

� �� �2

2Sa2
0 n� S 1þ a2

0
2

� �h iJ2
n nzð Þ þ J 02n nzð Þ

8
<

:

9
=

;
; ð8:5:9Þ

where

z ¼
ffiffiffi
2
p

a0

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sn� S2 1þ a2

0=2
� �q

;

0
 S
 n

1þ a2
0=2

:
ð8:5:10Þ

The total photon spectrum is determined by the sum of ‘‘partial’’ spectra:

dN

dS
¼
X

n¼1

dN nð Þ

dS
:

Having integrated the expression (8.5.9), we can get the ‘‘partial’’ photon yield
on the nth harmonic, which is proportional to the length of the train N0 and has a
complicated dependence on the harmonic number and the field intensity and,
generally speaking, depends on the Lorentz-factor of the initial electron indirectly.
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For a weak field (a2
0 � 1) the expression in braces will be proportional to

(a0
2)n-1, which, obviously, leads to a strong suppression of radiation on the higher

harmonics. Figure 8.17a, b shows the photon spectra for a0 = 0.3 and a0 = 2. In
the first case, the main part of radiation is concentrated on the first harmonic,
whereas in the second case a significant contribution is observed in the spectrum,
at least from 7 harmonics [Smax � 2:4, which corresponds to nmax � 7, see
expression (8.5.9)]. Expanding the expression placed in braces in (8.5.5), for small
values of the parameter a2

0 � 1 we obtain:

dN 1ð Þ

dS
� p aN0a2

0 1� 2Sþ 2S2
� �

;

0
 S
 Smax ¼
1

1þ a2
0=2

:

ð8:5:11Þ

After elementary integration we get an estimation of the number of emitted
photons: N � N 1ð Þ ¼ 2

3 p a N0a2
0:

(a)

(b)

Fig. 8.17 The photon
spectrum of the nonlinear
Thomson scattering: for the
weak field (a0 = 0.3) (a), for
the strong one (a0 = 2)
(b) per one period of the
incident wave
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The average energy of the emitted photons is found from the spectrum (8.5.11):

hSi � S

ZSmax

0

S
dN 1ð Þ

dS
d

,ZSmax

0

dN 1ð Þ

ds
ds � 1

2
;

h�hxi ¼ hSi �hxmax ¼
1
2

�h xmax:

The same value can be calculated, knowing the total radiation losses.
In approximation of a2

0 � 1 from (8.5.6) it follows the expansion:

dW

dt
� p a �hxmaxN0a2

0
1þ t2

1þ tð Þ5
;

and, consequently,

W ¼
Z1

0

dt
dW

dt
¼ p

3
a�hxmaxN0a2

0:

Hence it follows that the average energy of the photon is determined as

h�hxi ¼ W

N
¼ 1

2
�hxmax; ð8:5:12Þ

in complete analogy with the characteristics of the undulator radiation in case of
K2 � 1.

For the radiation in the intense wave field the number of emitted photons can be
estimated in R-system (because the number of emitted photons is the invariant, only
their average energy is changing). In R-system the electron emits per one turn the
number of photons, which is proportional to the Lorentz-factor of the orbital motion:

nph �
5
ffiffiffi
3
p p a c ¼ 5

ffiffiffi
3
p p a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

R

q ¼ 5
ffiffiffi
3
p p a

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
0

2

r

� 5
ffiffiffi
6
p p a a0:

Then, the estimation of the photon average energy is calculated similarly to
(8.5.12):

h�hxi ¼ W

N0nph

¼ 0:31 p a �hxmaxN0a2
0

5ffiffi
6
p p a a0N0

� 0:15 �h xmaxa0:

Unlike the linear regime (a0 ! 0), the average energy of photons in the con-
sidered case depends linearly on the field parameter a0, and for a0 [ 7 exceeds the
value �h xmax ¼ 4c2

0x0, which is typical for the linear case (see Fig. 8.17a). From
the distribution of photons (8.5.9) it is easy to go over to the cross-section of the
process, using the relationship (8.3.15) again:
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dr nð Þ

dS
¼ 4r2

0

a a2
0N0

dN nð Þ

dS

¼ 8p r2
0

n� S 2þ a2
0

� �� �2

2S a2
0 n� S 1þ a2

0=2
� �� �J2

n nzð Þ þ J02n nzð Þ
( )

;

where z and S are defined by (8.5.10).
Figure 8.18 shows the dependence of ‘‘partial’’ cross-sections on the harmonic

number

r nð Þ ¼
Zn= 1þa2

0=2ð Þ

0

dS
dr nð Þ

dS
; ð8:5:13Þ

which are calculated for parameters of the wave strength a0 = 1 and a0 ¼
ffiffiffi
2
p

. As
it follows from a comparison of the obtained dependence for a0 = 1 with the
similar one calculated for a rest electron (see Fig. 8.5b), the cross-section (8.5.13)
does not depend on the Lorentz-factor, as was to be expected, since both for
moving and for a rest electron the approximation 2cD �hx0 � mc2 is used which
allows to neglect the recoil effects.

8.6 Nonlinear Compton Scattering

The correct account of recoil effects in a field of strong electromagnetic wave is
carried out within framework of quantum electrodynamics. One of the important
consequences of the strict theory of effects being nonlinear in respect of the field

 

Fig. 8.18 Dependence of the
‘‘partial’’ cross-sections of
the nonlinear Thomson
scattering on the harmonic
number for a0 ¼

ffiffiffi
2
p

; a0 = 1
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strength (including the nonlinear Compton scattering) is the increase of ‘‘effec-
tive’’ mass of electron (positron) [12]:

m2
eff ¼ m2 1þ a2

0

2

� 
:

Another important consequence is a ‘‘broadening’’ of the BCS-spectra due to
nonlinear effects. Following [13], the cross-section of the BCS nonlinear process with
the absorption of n photons using the invariant variables (8.4.11) can be written as:

dr nð Þ

dy
¼ 4pr2

0

xa2
0

�4J2
n þ

a2
0

2
1� yþ 1

1� y

� 
J2

n�1 þ J2
nþ1 � 2J2

n

� �� �
: ð8:6:1Þ

It should worth noting that the non-linearity parameter n2 introduced in work
[14] [see Eq. (3) there] is connected with the laser strength parameter a0

2 which is
used in this book (see Eq. (2.1.14)) as following n2 ¼ a2

0

�
2.

In (8.6.1) Jm
2 are the Bessel’s functions of the order m = n - 1, n, n ? 1 in

respect to the same argument

zn ¼
ffiffiffi
2
p

na0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y

1� yð Þnx
1� y

1� y

1þ a2
0=2

� �

nx

� �s

: ð8:6:2Þ

The spectral variable y varies within the limits

0
 y
 y nð Þ
max ¼

nx

1þ nxþ a2
0=2

: ð8:6:3Þ

The number of ‘‘absorbed’’ photons n in quantum electrodynamics can be
compared with the number of harmonics of the scattered radiation in the classical
electrodynamics.

Apparently, the maximum possible photon energy for the first harmonic
(n = 1) will be less than for a linear BCS process because of the effective
increasing of the electron mass in a wave field:

yð1Þmax ¼
x

1þ xþ a2
0=2

\ymax ¼
x

1þ x

(see Eq. (8.4.14)).
For a weak field a0 � 1 and, hence zn � 1. Having written instead the Bessel’s

functions their expansions for zn � 1 and keeping the first-order terms, we obtain

J2
n znð Þ �

1

n!ð Þ2
zn

2

� �2n
;

J2
n�1 znð Þ � n2 zn

2

� ��2 1

n!ð Þ2
zn

2

� �2n
;

J2
nþ1 znð Þ �

1

nþ 1ð Þ2
zn

2

� �2 1

n!ð Þ2
zn

2

� �2n
:

ð8:6:4Þ
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Then, it is possible to write down the cross-section of nonlinear BCS for
n = 1, 2 in case of a0 � 1 in explicit form:

dr 1ð Þ

dy
¼ 2pr2

0

x
�4f1 þ 1� yþ 1

1� y

� !

1� a2
0 f1 þ

a4
0f 2

1

4

� ( )

;

dr 2ð Þ

dy
¼ 2pr2

0

x
a2

0
y

1� yð Þ2x2

� �4f2 þ 1� yþ 1
1� y

� �
1� a2

0 f2 þ
1
9

a4
0f 2

2

� �
:

ð8:6:5Þ

In formulae (8.6.5) the following designations are used

f1 ¼
y x� xy� y� 1

2 y a2
0

� �

x2 1� yð Þ2
; f2 ¼

y 2x� 2xy� y� 1
2 y a2

0

� �

4x2 1� yð Þ2
:

We can show that dr nð Þ�dy� a2
0

� �n�1
; from which it follows that in case of

a0 ! 0 the cross-section dr 1ð Þ�dy coincides with the linear BCS one, whereas

dr nð Þ�dy! 0 for all n C 2.
Generally, the cross-section of nonlinear BCS process is calculated by means of

summation of expressions (8.6.1) over all possible numbers of the absorbed
photons:

dr
dy
¼
X1

n¼1

dr nð Þ

dy
�
Xnmax

n¼1

dr nð Þ

dy
: ð8:6:6Þ

Figure 8.19 shows the dependence of cross-section of linear BCS process on the
variable y (the spectral distribution of scattered photons) for x = 0.2; 0.4.

The similar distributions for the nonlinear BCS process (a2
0=2 = 1) are shown

in Fig. 8.20 for x = 0.2 (solid curve) and x = 0.4 (dashed line), where the sum-
mation in formula (8.6.6) was carried out up to nmax = 20.

Fig. 8.19 Dependence of the
cross-section of the linear
BCS process on the relative
energy of the scattered
photon y for various values of
parameter x
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Figure 8.21 shows the behavior of the ‘‘partial’’ cross-sections r nð Þ ¼
R

dr nð Þ

dy dy

for x = 0.2 in case of increasing n (number of absorbed photons). The lower curve
was obtained for a2

0=2 ¼ 1, from which it follows that for n = 8 the cross-section
drops by two orders of magnitude, whereas the upper curve is calculated for
a2

0=2 ¼ 2, which decreases more smoothly.
Comparing the spectra of linear and nonlinear BCS processes (see Figs. 8.19,

8.20), it is possible to note that the total cross-section of the nonlinear process

r ¼
X1

n¼1

r nð Þ ¼
Xnmax

n¼1

r nð Þ

(in other words, the number of scattered photons) decreases as compared with the
linear case (about 24% for x = 0.2 and 16% for x = 0.4 in case of a2

0=2 ¼ 1).
However the average energy in the spectrum

hyi ¼
Z

y
dr
dy

�Z
dr
dy

dy

does not vary practically.

Fig. 8.20 Dependence of the
cross-section of the nonlinear
BCS process on the relative
energy of the scattered
photon y for various values of
parameter x

Fig. 8.21 Dependence of the
‘‘partial’’ cross-sections of
the nonlinear BCS process on
the harmonic number in case
of x = 0.2 for various values
of parameter a0
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The experiment devoted to observation the nonlinear Compton scattering
process was carried out in 1996, at the Stanford linear accelerator (SLAC) using
electrons with energy E0 = 46.6 GeV [14]. The experimental setup is shown in
Fig. 8.22. A laser beam with a wavelength k0 = 1.054 lm overlaps with the
electron beam at the interaction point at the angle a ¼ 17. The energy of laser
flash was equal to 0.8 J, that for the focal spot with area S ¼ 60 lm2 and duration

of flash t ¼ 1:5� 10�12 s provided the field intensity up to Imax � 1018 W=cm
2 (i.e.

a0
� ffiffiffi

2
p
¼ 0:6).

The scattered electrons are detected in this experiment and their energy is
measured as well. For the chosen geometry

x ¼ 2c0
�hx0

mc2
1þ cos að Þ ¼ 0:83:

Thus, the maximal energy of photons in the linear BCS process

�hxmax ¼ E0ylin
max ¼ E0

x

1þ x
:

Otherwise, the minimal energy of the scattered electrons in this case was
Emin ¼ E0 � �hxmax ¼ E0= 1þ xð Þ ¼ 25:5 GeV:

The presence of scattered electrons with energy lower than Emin indicates the
appearing of the significant nonlinearity of the BCS process, since

y nð Þ
max ¼

nx

1þ nxþ a2
0=2

\ylin
max:

Figure 8.23 shows the spectra of scattered electrons for the considered
parameters, calculated in accordance with formulae (8.6.1), i.e. for the ideal case.
The experimental spectra should differ slightly.

The scattered electrons with energies from 12.5 up to 20.5 GeV, i.e. in the
forbidden energy range for the kinematics of a linear BCS process, were registered
in the experiment. Figure 8.24 shows the experimental yield of scattered electrons
with energy corresponding to the left part (‘‘tail’’) of distribution dN/dE (Fig. 8.23)
for n = 2, 3, 4; in case of changes in field intensity of laser flash in comparison
with results of numerical simulation.

As it follows from the figure, the experiment agrees with theory well.

Fig. 8.22 The experimental
setup for the nonlinear
Compton scattering detection
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8.7 The Laser-Synchrotron X-ray Source

The authors of works [15, 16] have proposed the concept of a tunable mono-
chromatic X-ray source, based on the process of scattering of intense laser radi-
ation by the electron beam from a compact storage ring with energy about
100 MeV. The term ‘‘laser-synchrotron source’’ is suggested in these studies, since
in this case the resulting radiation is considered from the point of view of emission
in the ‘‘light undulator’’.

Figure 8.25 shows the proposed scheme. The electron bunches are circulating
in a storage ring with a diameter of *2 m (i.e. the orbit circumference is *6 m,
that corresponds to the passage frequency of bunches *5 9 107 Hz). The laser
radiation is ‘‘injected’’ into the optical resonator, being reflected from the mirrors
of which the laser photons can repeatedly collide with the electron bunches. The
duration of laser flashes and their frequency, as well as the parameters of the
optical resonator should be matched with the characteristics of the storage ring. So,
for example, for the Fabry–Perot’s resonator with reflection coefficient of mirrors

Fig. 8.23 Dependence of the
‘‘partial’’ cross-sections
(n = 1, 2, 3, 4) of the
nonlinear BCS-process on the
energy of the scattered
electron for conditions of
experiment [14]. Here is also
shown the cross-section
of a linear BCS process
(dashed line)

Fig. 8.24 Comparison of
dependence of the
experimentally measured
yields of scattered electrons
on the intensity of laser flash
with theoretical estimations
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R = 0.999 the optical laser with average power of *400 W, can provide a yield of
the scattered photons up to *1014 phot./s for the current circulating in an orbit
*0.1 A [17]. For electron energy E0 = 100 MeV and laser photons with a
wavelength k0� 1 l the maximal energy of scattered photons is �hxmax � 160 keV.

However, the calculations of the spectral–angular characteristics of radiation,
which is generated by the collision of electron and photon beams with the specified
distributions in space and time, is more convenient to carry out considering this
process as the backward Compton scattering.

As it was already noted, the spectral distribution of scattered photons is
described by cross-section (8.4.15), which completely coincides with the spectrum
of undulator radiation in case of x! 0. In the considered case x � 1:6� 10�3 � 1.
Consequently, in a good approximation we may use the variable:

y ¼ �hx
c0mc2

� x

1þ c2h2 �
1
2
:

It should be noted that the ‘‘soft’’ part of the spectrum (y \ x/2) is formed due
to photons scattered at the angles h[ c�1. It is clear, if we introduce a hard
collimation of the radiation beam, it is possible to achieve significant mono-
chromatization of X-ray beam radiation (at the cost of some loss of intensity).

Figure 8.26b shows the BCS spectrum obtained for collimation angle
hc ¼ c�1

�
2 ymin ¼ 0:8ð Þ. As can be seen from the figure, in the last case the

monochromaticity Dx=xmax achieves *20%.
The electron–photon interaction, which leads to generation of a beam of hard

scattered photons, occurs in case of collision of accelerated electron bunches, with
the focused laser radiation, which also represents a sequence of photon bunches.

As a result, the intensity of the scattered photons is determined not only by the
number of electrons and photons in the colliding bunches, but also by their
‘‘overlap’’ in the space and time. A special characteristic, which takes into account
all these factors, is introduced for the colliding bunches—the so-called luminosity
L [18]. By definition for head-on-collisions,

L ¼ 2cNphNe

Z
dV

Z
dt fph x; y; zþ ctð Þfe x; y; z� bctð Þ; ð8:7:1Þ

Fig. 8.25 The scheme of
laser-synchrotron X-ray
source
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where Nph, Ne are the number of particles in the photon and electron bunches;
fph, fe are the normalized distributions of photons and electrons in the bunches.

To perform the analytical evaluation we shall consider the monodirected
electron and photon bunches with a Gaussian distribution in the transverse and
longitudinal directions (along the axis z):

fe ¼
2

2pð Þ3=2r2
e‘e

exp �r2

r2
e

� z� bctð Þ2

2‘2
e

( )

;

fph ¼
2

2pð Þ3=2r2
ph‘ph

exp � r2

r2
ph

� zþ ctð Þ2

2‘ph

( )

;

r2 ¼ x2 þ y2:

ð8:7:2Þ

In (8.7.2) the transverse sizes of the bunches are characterized by the variances
rph; re, whereas the length of the bunches—by the values ‘ph; ‘e: The luminosity
for the distributions (8.7.2) is calculated analytically

L ¼ 2NeNph

1

p r2
e þ r2

ph

� � ð8:7:3Þ

As one can see from here the luminosity does not depend on the bunch lengths
‘ph; ‘e for a head-on collision (in other words, on the interaction time). The
number of scattered photons is determined by the luminosity and the cross-section
r:

N2 ¼ Lr ¼ 2NeNph

r

p r2
e þ r2

ph

� �: ð8:7:4Þ

 (a) (b)

Fig. 8.26 The spectrum of scattered photons: in the total cone under the condition
2c�hx0

�
mc2 � 1 (a); in case of collimation hc ¼ 0:5c (b)
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Let us express the number of photons in the laser flash Nph through the power
density of the focused laser radiation I:

I ¼ P
�

Sph W/cm2
� �

;

where P is the power of laser flash, Sph is an area of the laser flash focus. If A is the
total energy of the flash, then

Pph ¼
A

‘ph=c
¼ A

x0

cx0

‘ph

¼ Nph

�h c x0

‘ph

: ð8:7:5Þ

As a rule, the radius of the accelerated electron beam re in the modern electron
accelerators considerably exceeds the minimal attainable radius of laser focus rph,
therefore from (8.7.4) we obtain:

N2 ¼ 2Ne
P

pr2
e

‘phr
cx0
¼ 2NeI

‘phr
cx0

ð8:7:6Þ

The one of the first experiments concerning the generation of monochromatic
X-ray in case of scattering of laser radiation on the accelerated electron bunches
was carried out at the linear accelerator at the Accelerator Center in Idaho (USA)
with electron energy of 20 MeV [19]. There was used the solid-state laser
Nd:YAG with a peak power of 100 MW. The wavelength of the first harmonic was
equal to 1.064 lm, and of the second one—0.532 lm. During the head-on colli-
sion with 20 MeV electrons in a spectrum of the scattered radiation the lines with

energy �hx 1ð Þ
2 � 7:5 keV; �hx 2ð Þ

2 � 15 keV should be observed. The spectrum of
photons emitted within the collimation angle hc � c�1 was measured in the
experiment.

The experimental results are shown in Fig. 8.27, demonstrating two narrow
lines which energy corresponds to the calculation. The small peaks in the range of
photon energies �hx[ 20 keV are caused by overlapping of signals in the detector
(pile-up effect).

Fig. 8.27 The spectrum of
scattered photons by the
electrons with energy E = 20
MeV [19]. Peak at 7.35 keV
corresponds to the scattering
of the first harmonic of a laser
with k1 ¼ 1:064 lm, peak at
14.8 keV—the second
harmonic (k2 ¼ 0:53 lm)
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In order to estimate the yield of photons, formula (8.7.4) can be used. The
charge of each bunch in the accelerator was equal to 8 nC (i.e. Ne ¼ 5� 1010).
The transverse dimensions of the electron bunch at the interaction point were equal
to Dx = 4.8 mm and Dy = 2.8 mm, what corresponds to the electron beam area
S = pDxDy/4 = 10.5 mm2. The number of photons can be estimated from the

energy of the laser flash (0.75 J for the first harmonic and N 1ð Þ
ph ¼ 4� 1018 pho-

tons). The laser radiation was focused with a spot with diameter of 0.24 mm for
the first harmonic and 0.12 mm for the second one.

For the cross-section calculation we shall integrate the expression (8.4.9) over
the polar angle in the range 0 B hc B 0.3c-1:

rc ¼ 8 p r2
0c

2
Z0:3=c

0

1þ chð Þ4

1þ chð Þ2
h i4 hd h ¼ 0:28 p r2

0 ¼ 0:07� 10�24 cm2:

Substituting the obtained value in the numerator of the formula (8.7.4) and
replacing the transverse area of a cylindrical electron bunch pre

2 with the area of

elliptic one pDxDy/4, we have N 1ð Þ
2 � 0:3� 106 photon/bunch. The experimental

value of the yield for both lines N2
(1) ? N2

(2) is equal to 3� 105 photons/bunch.
The usage of a storage ring together with an optical resonator instead of a linear

accelerator to provide the multiple interaction between the electron and photon
bunches, as proposed in [16], will allow to increase the efficiency of X-rays
generation by several orders of magnitude. So, for example, the estimations [17]
show that it is possible to obtain the operational beam of monochromatic X-rays
with energy �hx � 33 keV using the storage ring with an electron energy
E * 100 MeV and current 100 mA and a commercial solid-state laser. Such a
system can provide the yield of X-ray photons in the form of a train of subpico-
second duration with the number of photons up to 1011/s.

It should be expected that advancements in the accelerator and laser technology
in the near future allow to develop and create a qualitatively new sources of
monochromatic X-rays with tunable energy.
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Chapter 9
Conclusion

As it was shown above, the radiation in periodic structures posesses a quasi-
monochromatic spectrum, and a monochromaticity degree (spectral line width at
half maximum) depends on the number of periods N0; an angle hc of radiation
collimation and a degree of nonlinearity of the process. Position of a line in a
spectrum is determined by the period of structure, the photon emission angle and
energy of the initial electron.

During the interaction of modulated electron beam (the distance between
bunches is about 1 cm) with a 1 cm period grating, the Smith–Purcell mono-
chromatic radiation is generated in the terahertz range [1], which can be used in
biology, medicine, etc. In the process of backward Compton scattering of laser
photons by ultrarelativistic electrons with an energy 2 GeV, the energy of scat-
tered photons achieves hundreds of MeV [2]. The characteristics of photon beams
from such different sources can be calculated using rather simple approaches
described in the book presented.

Alongside with the creation of such beams aimed at various purposes, the
monochromatic radiation generated by electrons in periodic structures, ‘‘carries’’ the
information about the parameters of the initial electron beam. Electrons moving in a
vacuum close to an optical grating or trough the laser flash, have lost an energy only
through the radiative mechanisms (in this case through the Smith–Purcell radiation
or BCS process), whereas other dissipative mechanisms, which occur during the
passage of electrons through the solid-state targets, do not exist. Since the radiation
losses via considered mechanisms are insignificant, then, as a rule, the parameters of
the initial electron beam do not be practically distorted. By measuring the radiation
characteristics such as monochromaticity, angular distribution, polarization,
parameters of an initial electron beam can be determined. This approach is called
non-perturbative diagnostics and it acquires the particular importance in designing
X-ray free electron lasers or electron–positron colliders, where the low-emittance
beams are used and methods of traditional diagnostics are practically inapplicable.

In the experiment [3] in order to measure the transverse sizes of electron beam
there was used the BCS process, where the laser beam with a diameter smaller than

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures,
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_9,
� Springer-Verlag Berlin Heidelberg 2011
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the electron beam was directed perpendicularly to the electron momentum. By
analogy with the diagnostics, where a thin wire is used, which is intersected by the
electron beam, the described method was named ‘‘laser wire technique’’. Recently,
there have been appeared proposals on usage the Smith–Purcell radiation for
measuring of longitudinal sizes of the electron bunches of accelerators and such
experiments have already begun [4].

Beams of circularly-polarized c-rays will be used to generate the longitudinally
polarized positrons for their acceleration in the designed electron–positron col-
lider. As a source of circularly-polarized c-quanta there is suggested to use either
the backward Compton scattering of circularly-polarized laser photons by the
beam of ultrarelativistic electrons or beam of undulator radiation from a helical
undulator.

The beam of circularly-polarized laser radiation with a wavelength of
k = 532 nm scattered by the 1.28 GeV electrons in experiment [5], allowed to
produce the circularly-polarized photon beam with maximal energy �hx ¼
56 MeV, which was used then to produce e+e- pairs in an amorphous target.
Measurements of longitudinal polarization of positrons with energy in the range
28–44 MeV have shown that the average longitudinal polarization of positrons P‘
was 73%.

The first experiment [6] concerning a generation of polarized positrons using
undulator radiation was performed in 2006 on the 46.6 GeV electron beam, which
passed through the helical undulator with a period of 2.54 mm, length 1 m and a
parameter K = 0.17. The circularly-polarized undulator radiation with energy of
the first harmonic �hx ¼ 7:9 MeV was generated. Positrons were generated by
such a beam in the amorphous tungsten target with thickness of 0.2 rad. lengths.
Authors of the experiment [6] have measured the longitudinal polarization of
positrons with energy 4.6–7.4 MeV and obtained the value P‘ ¼ 66�76 %:

Recently the Lyncean Technologies, Inc (USA) has established the new facil-
ity—Compact Light Source, based on BCS process using a commercial laser and
miniature storage ring (room size scale), see [7]. They have obtained a hard X-ray
beam which allow to use one for applications to new methods of imaging in
biology and medicine [8].

Undoubted progress of the accelerator and laser technology allowing to receive
the operational beams (including the polarized ones) with unattainable earlier
parameters has led to the fact that an up-to-date scientist in the field of accelerator
physics should know much wider range of the questions from the classical and
quantum electrodynamics, laser physics, solid state physics, etc. This book may be
considered as the attempt to give the such basis.
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