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Foreword

The sources of quasimonochromatic radiation of electrons, which are based on
their passing through various periodic structures (undulator, crystal, field of laser
flash), as well as close to the optical gratings (Smith-Purcell radiation) are con-
sidered in this monograph. Alongside with such traditional radiation mechanisms,
as the coherent bremsstrahlung and undulator radiation, which properties have
been investigated in details in the last 50-60 years, relatively new radiation
mechanisms (parametric X-ray radiation, Smith-Purcell radiation, radiation of
electrons in the field of laser flash) have been significantly attended in this book.

The theory bases of the considered effects are stated, as well as the recent
experimental results are described in this book.

Tomsk, 2010 Alexander Petrovich Potylitsyn






Preface

In the existing literature there are a number of monographs, with sufficient com-
pleteness describing such traditional radiation mechanisms, as undulator radiation,
bremsstrahlung, coherent bremsstrahlung, transition radiation. However, the
interest has appreciably increased in recent years to such effects, as parametric X-
ray radiation, Smith-Purcell radiation, Compton-effect on the relativistic electrons
(which can be treated as radiation in a “light” undulator).

These new mechanisms of radiation, as well as some others (for example, the
resonant transition radiation) have the common characteristic i.e. the radiation is
quasimonochromatic one because of the constructive interference of radiation
fields from each element of periodic structure.

An attempt to assemble the results of the numerous theoretical and experi-
mental works devoted to investigation of radiation, which is generated by rela-
tivistic electrons in different periodic structures with the period from ~ 10~ cm
(the crystals) up to ~1 cm (undulators) is made in this book. Author tried to
present the book contents in the form being available for researchers planning the
usage of radiation beams for applied purposes, as well as for beginning scientists.
So, the list of quoted literature does not claim to be exhaustive.

The author is very much obliged to colleagues B.N. Kalinin, V.N. Zabaeyv,
LE. Vnukov, Yu.N. Adischev, G.A. Naumenko, V.V. Kaplin, S.R. Uglov, A.S.
Gogolev, V.A. Verzilov, D.V. Karlovets, L.G. Sukhikh (Tomsk Polytechnic
University), prof. I. Endo (Hiroshima University, Japan), prof. K. Yoshida, prof.
H. Okuno (the Institute of Nuclear Studies, Tokyo University, Japan), Dr.
T. Suwada (the National Accelerating Center KEK, Japan), who are his co-
authors in numerous experimental studies, in a varying level reflected in the
book.

The author is also grateful to prof. B.M. Bolotovsky, prof. N.F. Shul’ga,
prof. N.N. Nasonov, prof. E.G. Bessonov, prof. V.M. Katkov, prof. V.M.
Strakhovenko, prof. V.G. Serbo, prof. M.N. Strikhanov, prof. M.I. Ryazanov,
prof. K.A. Ispiryan, prof. H. Backe, Dr. G. Kube, Dr. A.V. Shchagin, Dr. A.A.
Tishchenko for stimulating discussions, which certainly have influenced upon
the content of the book.

vii
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Author expresses the special thanks to L.V. Puzyrevich, E.A. Babakhanyan for
the invaluable help in preparing the manuscript for publication.
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Chapter 1
Introduction

The periodic magnetic structures (undulators) are widely used in many accelerator
centers for generation of the monochromatic radiation in the wavelength range
from the far infrared up to the y-range. The emission spectrum in such a periodic
structure is quasimonochromatic due to a constructive interference of radiation
fields generated by a charged particle on each element of the structure.

The trajectory of a particle in such a magnetic system is either a periodic plane
curve (close to a sinusoidal one) in the plane undulator, or spiral one in the helical
undulator. The period of a trajectory d in both cases is defined by the period of
undulator and, as a rule, due to the technical reasons it cannot be chosen much less
than 1 cm.

The resonance condition, connecting an emission frequency @ and the photon
outgoing angle 6 (along the unit vector m), can be written in the form:

kQ kQ
W= = k=123, (1.1)
1—n-¥ 1 -Lcosh

c c

where Q denotes the frequency of a trajectory disturbance, (V|)—an average
longitudinal velocity of the electron. For ultrarelativistic particles with Lorentz-
factor 7 > 1 and emission angles of photons 0~7~! < 1 this expression is
written as [1]:

2kQy?
w = 202 2/02\’°
1+920° +92(B7)

(1.2)

where (ﬁi> is a mean square velocity of electron in transverse direction in units of
the speed of light.
In the case of undulator radiation (UR)

2nc
Q~""~10"s"! (1.3)
d
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2 1 Introduction

It should be pointed out that relationship (1.2) does not depend on the determined
mechanism of radiation. During the passing of relativistic electron through a
crystal the straight trajectory of a particle has been disturbed with a period d sin
(d is a period of crystalline lattice, i is the angle between crystalline axis and
particle momentum), which is just the reason of the quasimonochromatic radiation
occurrence named the coherent bremsstrahlung (CBS).

In pioneering works devoted to the bremsstrahlung process in an oriented
monocrystaline target [2, 3] authors used the term “interference effect of brems-
strahlung” and only a few years later in the work of Diambrini [4] the term
“coherent bremsstrahlung” was introduced.

Nowadays one understands “coherent radiation™ as a radiation from a charged
particle ensemble (bunch) if the emission wavelength is greater than a bunch
length. Authors of the works [5, 6] used the term “coherent bremsstrahlung”
considering the process of radiation of a charged particles bunch caused by the
collective electromagnetic field of the counterpropagating bunch.

In order to keep the traditional terminology the process of bremsstrahlung in a
crystal will be described as the coherent bremsstrahlung. But a reader should have
in mind that this process is the resonant bremsstrahlung only.

In the CBS case (d ~5 A, y~1072rad), and, therefore, Q ~ 2ncy//d =
4 x 10571,

However despite such a big difference of natural frequencies (five orders of
magnitude), the main characteristics of the radiation have been described by the
similar formulae just because of the fact that spectral-angular distribution of both
types of radiation is defined by the formula (1.2), so, as a rule, the typical energy of
CBS photons is such that it is possible to neglect their absorption in crystal.

At present the UR and CBS generated by the beams of ultrarelativistic electrons
in the modern accelerators are widely used both in the applied, and in the basic
investigations (see, for example, the books [1, 7-9]) in many respects due to such
characteristics, as monochromaticity, polarization, tunability, which are the result
of radiation generation in the periodic structure.

In recent years the great interest has been attracted to such types of radiation
generated by the electron beams, as the resonant transition radiation, Smith—
Purcell radiation, Compton scattering of laser photons by a counterpropagated
relativistic electron beam. In spite of the difference in mechanisms, the main
characteristics of the radiation are defined by periodicity of the structure, through
which (or close to which, as in the case of the Smith—Purcell radiation) the beam of
electrons passes. From this point of view the process of Compton scattering of the
laser photons on the beam of electrons can be considered as the radiation of
electrons in the “light” undulator.

The theoretical approaches describing the different radiation mechanisms from
the unified point of view are described in presented monograph, as well as the most
interesting experimental results received last years are given here.

In conclusion it should be noted that all radiation mechanisms may be divided
in two classes [1]:
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e Radiation from the accelerated charge;
e Radiation from polarization currents induced in the condensed media through

which (or close to) the relativistic charge passes.

The first class is more known (synchrotron and undulator radiation, brems-

strahlung, radiation from electrons interacting with intense laser field), and the
second one called polarization bremsstrahlung includes such kinds of emission as
Cherenkov radiation, transition radiation [10], Smith—Purcell radiation [11] and

SO

on. Despite such a big distinction in origin of radiation mechanisms mostly

important features of radiation from different periodic structures are common and
may be calculated using the unified approach.
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Chapter 2
Basic Characteristics of Electromagnetic
Radiation

2.1 Radiation Characteristics in the Classical and Quantum
Electrodynamics

In case of charged particle motion in an external field, one of the most fruitful
approaches allowing to calculate the characteristics of radiation, generated by a
particle with charge e, is an approach, where a trajectory r(¢) of the particle in the
given field has been found at first, and then the electric and magnetic components
of the electromagnetic field are defined according to the rules of classical elec-
trodynamics [1]:

_e(1-F)m—p) +€[ﬂ[(ﬂ—ﬁ)ﬁ”

E®) R>(1 —np)’ cR(1 —np)’

(2.1.1a)

H(r) = [n(/)E(r)]. (2.1.1b)

In these expressions ¢ff = #(¢), m is a unit vector in direction connecting the
observation point with a charge at the retarded moment of time 7,

,_R—x(/)
0]

t—t (2.1.2)
Here R is a radius-vector of the observation point.

It is clear, the similar approach gives the reasonable results in a case when it is
possible to neglect the particle energy losses due to photon emission (radiation
losses), i.e. when the process of radiation has no influence upon a trajectory of the
particle.

The first summand term in the formula (2.1.1a) being proportional to R~2 does
not depend on acceleration of the charge B and characterizes the quasi-stationary
Coulomb field of the moving charge itself (so called “velocity field”) while the

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures, 5
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6 2 Basic Characteristics of Electromagnetic Radiation

second summand being inversely proportional to the distance R and depending on
the charge acceleration, characterizes the radiation wave field (“acceleration
field”) [1]. The range of the distances R, where the contribution of the first
summand is negligible in comparison with the contribution of the second one,
refers to the wave (or far-field) zone. In the wave zone both components of the
field (2.1.1a) and (2.1.1b) are perpendicular to the vector n that allows to introduce
the Poynting’s vector S = [EH], directed along a wave vector and describing the
density of the energy flow of the electromagnetic wave.

The angular distribution of an energy flow (intensity) in a solid angle dQ (the
value defined in the observation point) is determined through the Poynting’s
vector:

dl  cR? cR2
0= 4—| | = |E| (2.1.3)
The angular distribution of the power of particle radiation losses (with a value

determined in a particle position) is connected with intensity (2.1.3) as follows:

dpP

dl
o5 = (1—np) s (2.1.4)

Going over to Fourier-components of a field, it is possible to get the expressions

—e ikR [l’l[(E—B)B” i(wt—kr
B =[5 s
H(w) = [nE(w)].

Substituting the received expressions in (2.1.3), it is possible to receive the
spectral-angular distributions:

dl cR?

2

As a rule, the radiation is formed by a source with a finite area S, moreover, this
source can emit the electromagnetic waves (the photons) anisotropically. In this
case the radiation is characterized by brightness

dp W
=—|— 2.1.
dQ ds [sr X m2} (2.17)
and spectral brightness:
dL dp w
— = . 2.1.8
do dodQdS |:S1 X Sr X mz} ( )

For the radiation with frequencies from optical and above ones the spectral
brightness is often assigned through the number of photons. Using the Planck’s
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law & = how in semi-classical approach, the energy characteristics are expressed
through the number of photons N:

dN
dP =¢—. 2.1.9
e (2.1.9)

Then instead the spectral brightness one may use the brilliance

=B

dL dN photon
— = . 2.1.10
de dt dQ des/e{ } ( )

s x st x m? x defe

The spectral-angular density of radiation is got after the integration on the
source area

I(Q,Iﬂ,s)_/dedy{ photon ] (2.1.11)
N

s X 5T X Ag/e

The spectral flux (spectral density) is calculated after the integration over a
solid angle

h
photon } (2.1.12)

And finally, the radiation flux is received via the integration over a spectrum:

(2.1.13)

®— /CDs (&) de /e [phoston}

The field strength of the monochromatic electromagnetic wave (for example, the
laser radiation) is characterized by the dimensionless parameter:

2e2(A2)  ¢E
ao = |24 2>= il (2.1.14)
(mCZ) mc w

In the last formula by <A2> a mean-square value of an electromagnetic vector
potential is designated, Ey is an amplitude of a wave.

In the majority of experiments the beams of the electromagnetic radiation,
formed by means of different optical systems, including, for instance, mirrors,
apertures, lenses, etc. are used. In this case, the radiation power can be distributed
on the area of the target according to an arbitrary law. Then after the integration
with respect to the beam cross-section, we can receive:

dP
PZ/d—SdGZIGeff, (2.1.15)
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where I = (dP/dS) is an averaged value of the power flux density, ges is an
effective area of the beam. In the laser physics, the parameter laser field strength
[2] is often used

[=—, [I]=Wlm? (2.1.16)
Oeff

which can be expressed through the density of the energy of the laser flash p:

P x w
1= X (2.1.17)
Oeff X CT \%
In the last expression through t is designated the flash duration, V is a volume,
occupied with laser photons. Then instead of (2.1.14), it is possible to receive a
more evident formula:

) 2rol )2 B 2ro? 0
ag =

=— 2.1.18
nmc3 nmc?’ ( )
where ryp = 2.82 x 10~"3 is the classical radius of an electron, as well as the
“engineering” formula:

ao = 0.85 x 1072 [u] I'/*[W/em?]. (2.1.19)

In formulas (2.1.18) and (2.1.19), 4 is a length of a monochromatic wave.

Going from the energy density to the concentration of photons per volume unit
n:n = p/ho, it is possible to receive the estimation of (2.1.18) through the number
of photons in a volume 4« ii A, i.e. in a parallelepiped with transverse cross section
}’{z (% is the Compton wavelength of the electron) and length 4o/

ai =40il in, (2.1.20)

o= 1/137 is the fine structure constant.

For a field strength parameter ay > 1, it is spoken about the “strong” elec-
tromagnetic wave, whereas the “linear” model of the classical electrodynamics
remains valid for ay < 1.

2.2 Polarization Characteristics of Radiation

Hereinafter, the usage of the term “the photon beam” supposes that it concerns the
electromagnetic radiation propagating along the fixed direction with a negligibly
small angular divergence, the characteristics of which (intensity, polarization,
position of maximum in spectrum, temporal modulation, etc.) are possible to
adjust in a rather large range.
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A single photon, i.e. an elementary particle with a spin equal to 1, definitionally
exists in a pure spin state (just as the flat monochromatic electromagnetic wave—a
classical analogue of a photon—is always completely polarized). There is a whole
ensemble of photons in a real beam, therefore, for the description of a beam
polarization as a whole (after averaging on ensemble), the matrix of the density p;;
(Hermitian tensor of the second rank determined in a plane, which is perpendicular
to a direction of photon beam propagation) is used:

L1+ G- L
p"f_5<.fl+i¢2 1—53>_2(5"+§“)’ (221

where 6 = { g1, 02,03} are the Pauli matrices.

Three real-valued parameters &; (i = 1, 2, 3)—so-called Stokes parameters
completely describe a polarization state of a photon beam. The Stokes parameters
£, &5 characterize the linear polarization of a beam, and &, the circular one. The
values é% + é% and &, are the Lorentz-invariants. Parameters £, &5 are scalars, and
&, is pseudo-scalar.

In case when none of Stokes parameters is equal to zero, it is spoken about
elliptic polarization, and when ¢, = O—about linear polarization of the radiation.

In the last case, the following values are often used instead of the Stokes

parameters:
P=\/8+8 (2.2.2)

po = (1/2)arctg (&1/&3) (2:2.3)

is a degree of polarization;

—the inclination angle of a plane of the maximal linear polarization concerning
the chosen system of basis vectors (for instance, concerning a plane XZ, if Z-axis is
directed along a photon beam direction).

The degree of linear polarization P can be determined as follows:

P= (Nj—N.)/(Nj+Ny), (2.2.4)
where N1 ) is the number of the photons polarized parallel (perpendicularly) to a

plane of the maximal linear polarization.
Reverse transition to the Stokes parameters follows from (2.2.2), (2.2.3):

& =Psin(2ey); & = P cos(2¢). (2.2.5)
An unpolarized beam can be always presented as superposition of two non-

interacting completely polarized beams of photons with identical intensity and
with mutually perpendicular planes of polarization. Similarly, it is possible to
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present a partly polarized photon beam (for which O<f%+§§—|—é§<l) as
superposition of completely polarized and non-polarized beams with various
intensities.

In the classical electrodynamics, the Stokes parameters are calculated as
follows:

_ ETEZ + E]Eé
Er|* + | B

E P - B

_ EE —EE _ .
E1|* + B

52 - )
E1|* + B

< (2.2.6)

>1

The components of the field are calculated in a system, where the third axis
coincides with the direction of a wave vector. If the task has any chosen plane, the
coordinate system is assigned via basis vectors. If in problem there is a chosen
plane, then the coordinate system is

€ = [n7 b]v € = [elan]v n= k/(/), (227)

where b is the vector, perpendicular to the chosen plane; k is a wave vector; w is a
frequency; ¢, is a normalization factor.

For the radiation of ultrarelativistic particles the cone of outgoing photons has
an opening of order y~' (y is the Lorentz-factor) relative to the average value of the
electron momentum. Therefore, it is possible to speak about the mean polarization
of a beam (with accuracy to y~?) if the radiation cone is formed by the aperture
with opening AQ ~ 772, In this case, for calculation of average Stokes parameters
in (2.2.6), it is necessary to use the bilinear combinations of fields <Ei*Ek>, aver-
aged on the given angular interval:

(E; Ex) = /dQEjEk, ik=1,2. (2.2.8)
AQ

Generally speaking, the averaging similar to (2.2.8) can be carried out not only by the
angular variables but also by any other non-observable kinematic ones. Thus, during
the calculation of polarization characteristics of coherent bremsstrahlung, the
averaging similar to (2.2.8) is carried out by the momentum of a final electron [3].

2.3 The Formation Length of Radiation by a Charged Particle

Ter-Mikaelyan in his monograph [4] considering the spatial region, in which the
bremsstrahlung is generated by ultrarelativistic electron moving in a medium, has
shown that the longitudinal size of this region (along the direction of the initial
electron) sharply increases with the growth of the electron Lorentz-factor and with
decrease of the photon energy. This spatial scale, which was named “formation
length” ¢ can have macroscopic sizes greatly exceeding the wavelength of the
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bremsstrahlung photon. After the passage of the length /, the electron and emitted
photon can be considered as independent particles.

The estimation of this spatial scale can be found from classical electrodynamics
(see, for example, [5]). In this approach, the charge, which passes through a rather
small area and where external fields are concentrated, is emitted an electromag-
netic wave with the length 4 without appreciable distortion of a charge trajectory
and the change of its energy (see Fig. 2.1).

The determination of the formation length follows from the phase relationships:
on the length ¢, which a charge passes after the area of a field at velocity f, the
front of a wave, emitted in angle 6, should “lag behind”a charge for a wave length:

14
L lrcos =4, (2.3.1)
p
and (2.3.1) directly results in the formula for the formation length:
A
b = ——. 232
T /P —cos0 ( )

In the ultrarelativistic approach (1/8 = 1+ y72/2)for the “straightforward”
radiation we have

by = 29%). (2.3.3)

If the following area of a field concentration is located along a trajectory on the
distance L </ (see Fig. 2.1), then in this case the electromagnetic waves, emitted
by a charge in two areas of an external field, will interfere in a destructive manner,
i.e. the intensity of resulting radiation will be less than the sum of intensities from
two independent sources.

Let carry out the quantum consideration of the formation length problem on an
example of bremsstrahlung, following to Ter-Mikaelyan [4].

We shall estimate the minimal value of a longitudinal recoil momentum g,
which is transferred to a nucleus, during the process of bremsstrahlung of the
ultrarelativistic electron with energy ¢;. Such situation is realized for collinear
geometry, when the final electron with energy &, and a photon with energy Zm
move along the direction of the initial electron:

ql min = P1 — P2 — k. (234)

Fig. 2.1 The scheme Wave front
illustrates the concept of the y
formation length

ph = 1/ —cos O
L
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Here py, p,, k are momenta of initial and final electrons and photons, accordingly.
Neglecting the energy transferred to a nucleus (i.e. in case of fulfillment of a
condition & = & + hw), momentum p; in the ultrarelativistic approach becomes

& 1 1 _sl—ha)l 1
pl—c 27)% y P2 = c 2)& ’

and (2.3.4) results in

mc how
min = ——. 2.3.5
q T (23.5)

From the uncertainty principle it follows that the last expression defines the length:

= 2?11627

f =
4! min ho

(2.3.6)

where 7, is the Compton wavelength of an electron. It is clear that for the case
ho < g1,¢& (1.e. & =~ &) from the formula (2.3.6) follows the expression (2.3.3):

4 :2))2/1:&

that illustrates the generality of the concept of the formation length both for
quantum consideration, where recoil effects are important, and for classical one.

The concept of the formation length plays an important role in considering of
various physical effects (see in detail the review [6]). With regard to the radiation
in periodic structures, where a constructive interference is the reason of mono-
chromaticity of the radiation spectrum (for the fixed radiation angle ), the
wavelength corresponding to the spectral line with minimal frequency (so-called
“fundamental” harmonic), is defined from the relationship

b =d, (23.7)

where d is a period of the structure.

Expression (2.3.7) does not depend on the radiation mechanism and is appli-
cable both in classical electrodynamics (for instance, for undulator radiation or
Smith—Purcell radiation), and in quantum one (the typical example is the coherent
bremsstrahlung). The mentioned mechanisms, as well as some others, are con-
sidered in the following chapters of this book.

2.4 Interference Factor and the Resonance Condition

Let us consider the electromagnetic radiation of the charge moving on a flat
periodic trajectory (Fig. 2.2). Let us designate through E, (k) the radiation field on
the first period, where k is a wave vector; Az, = d/ BHC is time of the electron
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Fig. 2.2 Constructive
interference of the
electromagnetic radiation in
the periodic structure

passing with velocity f§c through the first period; Aty = d cos 0/c is time of the
wave front passing from the first period till identical position on the second period.

The phase difference of two wave packages generated by electron on the first
and second periods are the follows:

® = o(At, — Atg) = —ﬁ”c<— -

7 = 271;(1 — By cos 6). (24.1)

Thus, the field of radiation on the second period is defined by the expression
E;(k) = Ei(k) exp(i®). (2.4.2)

Reasoning by analogy, it is possible to express the radiation field for the nth
period as:

E,(k) = E; (k) exp(i(n — 1)®). (2.4.3)

Then the total field from the periodic structure containing N elements is repre-
sented as the sum

Ex(k) = Ei(k) + Ez(k) + E3(k) + - - - + En(k)
=E;(k){1 +exp(i®) +exp(i2®) +--- +exp(i(N — 1)@)}. (2.4.4)

Having designated (exp(i®) = ¢), we shall receive an expression for the total
intensity of the field:

Es(k) = E(k) {1+q+‘12+"'+qN’1}
1—4" 1 — exp(iND)

=E(k) 4 :El(k)ma

(2.4.5)

using the well-known formula for a geometric progression.
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The spectral-angular distribution of the radiation intensity can be calculated,
knowing the field intensity:

d*Ws

_ 2
Jaodo const |Ex (k)|

2|1 —exp (iN®)?  &*W

= const |E;(k = Fy. 24.6
2w
dwdQ
Here ddaj—du;! = const |E; (k)| describes the radiation “collected” from one period of

a trajectory, and a multiplier

1 - exp(iNCI))’2 (2.4.7)

F =
N ’ 1 — exp(i®)
refers to as an interference factor, since it describes the interference from
N identical radiators.

Using known trigonometric rules, the last formula can be rewritten as

_ sin*(N®/2)
— a0 (2.4.8)

The function Fy has a set of sharp maxima for the values of an argument, which
makes a denominator zeroth:

() d
7= n7<l — By cos 6) =mm, mis an integer.

The last formula is reduced to the following expression for the case ff ~ f

A d (1 — Bcos0), (2.4.9)

m —
m

which was received regardless to any fixed radiation mechanism and can be
applied to any type of radiation, which is characterized by the periodic disturbance
of a trajectory. The received relationship is generalization of the resonance con-
dition (2.3.7) for m # 1.

Frequently, the index m = 1,2, 3, ... refers to harmonic number. The harmonic
m =1 for ultrarelativistic particles with frequency
4my’c 272w

W) = = 2.4.10
" aA(1 4207 T 1420 ( )
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Fig. 2.3 An interference 120

factor for periods N = 5, 10
100 - N=10
80

60 -

Fy(®)

40+

20 N=5

O, rad

is identified as fundamental. The resonance condition brings to the following
conclusion: the frequencies of the higher harmonics in m time differ from fun-
damental ones:

Oy =Moj. (2.4.11)

The diagram of the function Fy is presented in Fig. 2.3 for 6 = 0 at N = 5 and 10.
As expected, the function Fy differs from zero in a small range of frequencies
close by w,,, and the width of this range is defined by a number of the periods:
Aw,, 1

~—. 2.4.12
W, N ( )

As it follows from the picture, the maximal value of the function is
FN max = N°. (2.4.13)

From (2.4.12) and (2.4.13) it follows that the area under the peak is
S~Awy X Fy max = Noy, (2.4.14)

and linearly increases with a number of periods.
For big values N > 10 the function Fy (2.4.7) is approximated well by
o-function:

(0]

(1 —fcosf) — l>. (2.4.15)

N
FNz27rN5((I)—2m7t)——5( o
m n g
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Chapter 3
Undulator Radiation

3.1 Moving of Charged Particle in Periodic Magnetic Field

Let us consider a case, when the magnetic field is directed along x-axis and is
periodic with the period 4, along z-axis (so-called plane undulator, see Fig. 3.1a,
and the law of magnetic field change is described by a sinusoid [1]:

2
H = {H, 0,0}, H{z)=Hsin )”Z. (3.1.1)

‘u

The equation of a charge ¢ movement in an external electromagnetic field is
given by expression:
dp e
— =¢E +-|v x H], 3.1.2
P —eE+SoxH] (3.12)
where p = ymcv/c is a particle momentum.
The relativistic electron (y > 1) flies into the undulator along z-axis. It is clear
that a trajectory of the electron is flat and lies in the yz-plane.
From (3.1.2) we can obtain a system of equations for two components of the
electron velocity:

dv, e

— =——H,(z(t

dt  ymc? (2(2))vy, (3.13)
oy _ e B

= H,(z(t))v,.
e AL OIS

Considering a magnetic field being weak enough (or, in other words,
‘vy‘ < v, & ¢), it is possible to obtain an approximate solution of system (3.1.3).
The second equation in this approach (z = ct) gives the following dependence
for vy(1):

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures, 17
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_3,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 3.1 a The scheme of
plane magnetic undulator; (@)

b the scheme of helical T C - [ ] [ ]
magnetic undulator (%] =II-II=II-II=II-

) s~

cf, = v.(r) = v = const,

vy (1) eH 2, 2nz (3.1.4)
ﬁ)’ = = _

c 2mymc? A

1

717(03_%3)/& = const

The velocity v, is easy to derive from a condition y =

(the particle energy does not change in magnetic field).
Hence in the same approach, as before,

() =c\/1—92 - B~ c{l - % («/*2 + ﬁﬁ(r))} . (3.1.5)

From (3.1.4) it is possible to obtain the equation:

() = % (2;1;],;62)2 (3.1.6)

Let us estimate this quantity for typical values: H = 1 T; A, = 5cm; y = 10%.
Using the “engineering” formula: eH = 3 x 10° (eV/cm) H [T], we obtain
</5§> —0.021 < 1.

This value characterizes an average deflection of trajectory from a straight line.
Often instead of (3.1.6) the so-called deflection parameter (undulator parameter)
is used:

K? eH,

(B

The physical meaning of parameter K is connected with the maximal angle
between the line tangent to a trajectory and average velocity of a the particle (f):
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K =yy = y(Z/R).

Having substituted to the expression for radius R of the trajectory of electron
with energy E in a constant magnetic field H in the previous formula, we receive

K =y(eH),/PE) =~ y(eHA,/E).
Then from (3.1.5) follows

oy = (va(8)) = c[l —zlyz(l +I§2>} (3.1.8)

Reasoning by analogy to the usual Lorentz-factor, the so-called longitudinal
Lorentz-factor is often used:

1 yz

'72: = .
LR Y O

(3.1.9)

In the next approximation the longitudinal velocity v,(r) = cf_(¢) will depend
on time:

K2 2n V)t K2 A Vit
cf(1) = C\/ﬁz _FCOSZZ—MH = c\/l —y72 = 272(1 —i—cos—niu” )

From here we have

1 K*\ K* Anmypr
B.(t) =1 ——(1 +—> — 2 cos
, ¥ : ]

2,2 2 ) a2 Py
K? 4n ot
= ﬁH 47/2C0S iu (3110)

That is to say the longitudinal velocity is modulated with the double frequency
in comparison with transversal one. From (3.1.4) and (3.1.10) it is easy to derive
the equations of the motion:

Au

Y 2m

K%,
z=cfjt ———_sin2wot, (3.1.11)
4y°m

y=— sin wyt,

Wy = 27TCﬁ||//lu

The Eqgs. (3.1.11) describe the electron trajectory in a yz-plane, being repre-
sented parametrically. In the system, where electron is at rest on the average, i.e. in
the system moving with velocity ¢f in parallel with z-axis (further we shall
designate it as R), after standard Lorentz-transformations we receive
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B = —(K*/4) cos 2mp tr; Br = —K cos wr g,

where Wr = Wy '})H = (27'CC/)LM)'VH.
In this system the equation of trajectory is easily found after integration of the
equations and exception of parameter fg:

(M)z [K2 _ (M)z} = 16(ZR:)R)2, (3.1.12)

C C

Evolution of a particle trajectory depending on parameter K is shown in
Fig. 3.2. It is easy to see that for values of parameter K < 0.1 the trajectory comes
nearer to a straight-line one (i.e. the particle makes along y-axis harmonious
oscillations with small amplitude).

If the source moving with velocity f8; emits on frequency wg, then in the

laboratory system a frequency (0) is registered under the angle 0

() = Or 0

- = : 3.1.13
il (1 — B cos 0) 1 —pjcost ( )

The formula (3.1.13) can be rewritten as 4, = 4/1 — 8 cos 0, where in the right

part there is the formation length that coincides with a condition (2.3.7). For the
ultrarelativistic case

Fig. 3.2 An electron YR @R VR WR
trajectory in R-system in ¢ c
yz-plane for various values (

of parameter K (@) (b)

K=0.25

ZR WR
1 -
-0.1 0.1 c
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o 2y2w0

“O=1 (1-252)(1-%) TR /24207

(3.1.14)

The typical wavelength of an undulator radiation (UR) in straightforward
direction (0 = 0) is defined by the Lorentz-factor and the undulator parameter:

d =2 (K> +2) /4%

Relativistic electron (y > 100), when moving on a sinusoid with macroscopic
period 4,, radiates on the wavelength more than by four order shorter, than the
period of trajectory (at K < 1).

3.2 Radiation of Harmonically Oscillating Charge

Let consider the radiation of a charge in magnetic field of undulator at K < 1.
In this case in R-system the radiation of a charge, which oscillates according to the
harmonious law with non-relativistic velocity, is described by the known formulae
of classical electrodynamics. In this paragraph we shall omit the index R for
simplification of formulae. Further we shall use the unit vectors e, e;, which are
perpendicular to a wave vector k:

e, =Cyn,b], e, =]en] (3.2.1)
Here n = k/|k| = {sin 0sin ¢, sinfcos ¢, cos}, b ={1,0,0} is the unit vec-

tor, perpendicular to the charge oscillation plane, C, = 1 / \/ cos? 0 + sin® 0 cos? pisa

normalization factor.
Following [1, 2], we shall write the radiation field E in the observation point
R = Rn, bearing in mind, that the observation point is located in a wave zone
(R> A):
e [n[(n—p)p]] e

E:a W%ﬁ[n[nV]]. (3.2.2)

The obtained expression (3.2.2) is valid for a case B || p under condition of
|B| < 1. Using the known formulae of the vector analysis, we shall calculate the
components Ej, E;:

\ cos 6
)
V/cos2 0 + sin 0 cos? ¢
sin® 0'sin @ cos @

sinwt,

E = —iR(K
C.
(3.2.3)

E2 = —i(Ku)\

) =3 sin w?.
cR V/cos? 0 + sin® O cos? ¢
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The radiating power in a solid angle unit is found from the last formulae:

dP ¢ c
F_ Cppr _ Cppr g2
dQ  4n 4 (B + E2)
2
= 4e—K2w2 (cos® 0 + sin® Osin® @) sin® w 1. (3.2.4)
nc

The physical meaning has a power averaged on the period of oscillations. If
we are interested in radiation intensity, which is not dependent on azimuthal angle
of a wave vector, the expression (3.2.4) is necessary to integrate over azimuthal
angle ¢:

dP é? 1
= K0’ =(1 20
<dcos 0> ac ¥ 2 (14 cos™0)

2
1
= e—Cszﬁ w(z)i(l + cos? 0). (3.2.5)

Further the symbol of averaging will be omitted. As it was to be expected, the
expression for radiation power in R-system in used approximation coincides with
the formula describing radiation of an electric dipole. Therefore, the approxima-
tion v = const, K < 1 is frequently called the dipole one.

3.3 Characteristics of Undulator Radiation in Dipole
Approximation

Let us remind that all formulae in the previous paragraph are obtained in R-system.
To get the expression for UR power in laboratory system, it is necessary to carry
out the corresponding Lorentz-transformations. UR power in laboratory system
is defined as P = AW/At, where AW is energy, radiated by charge during
time At. We are using following Lorentz transformations:

A
AW = ¢’
V) (1 — pj cos 0)
At = il A[R,
cosf — f (3.3.1)
cos Og = 1 — B cos 0
dcosOr 1

dcos® z
yﬁ(l — By cos 0)
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Therefore, the resulting formula is written as

P dPg AW % d cos Og
dcost  dcosOr AWg At dcosb
&2 1 1
- %szﬁwéi (1 + cos® Og) . (3.3.2)

yﬁ(l — B cos (J)‘

In ultrarelativistic approximation 6 ~ yﬁl, therefore the derived formula can be
simplified, using relations:

I (3.3.3)

Further, to pass from the radiation power to the energy W, emitted by one
electron during passage through undulator with the length Ny /,,, we shall multiply
(3.3.2) by the time Az = Nylo/c = 2 Ny/wo:

dW 1+ 9207
— s = 2maNoKh g . (3.3.4)
d("/ug ) (1 + “/ﬁ92>
Here o = & = L is the fine structure constant.

he — 137
As follows from the obtained equation, the energy lost due to undulator radi-

ation in a weak sinusoidal field, is proportional to deflection parameter squared and
to the longitudinal Lorentz-factor squared. In the considered approach the energy
of a photon is determined by polar angle 6:

hwg 292 g

hw(0) = ~ .
() 1= BycosO 1+ K22+ 207

(3.3.5)

Hence a maximal energy of UR photon, occurs in a radiation spectrum proper to
a radiation angle 6 = 0:

Zyzh o
hoy, = ———. 3.3.6
On =TT K )2 (3:36)
Introducing a relative variable:
1+K?%/2
5:2 +—/ Ogiﬁl, (3_3_7)

On 1+ K22+ 207

which characterizes the UR spectral distribution, instead of Eq. (3.3.4) it is
possible to write the formula:
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Fig. 3.3 Spectrum of UR dw _
intensity in plane undulator in E’ arb. units

dipole approximation n

0.8
0.6
0.4
0.2
0 0.2 0.4 0.6 0.8 1 1‘.2 d
W VoK haoyi E(1 =28 +28%), (3.3.8)

d¢

which is presented in Fig. 3.3.

The spectrum is concentrated in area ¢ < 1 (in other words, iw < hw,,), i.e. only
a first (fundamental) harmonic exists in a spectrum, what is a consequence of the
used approximation.

By integration of the last expression it is possible to obtain radiation losses in
undulator:

2 2
W= ?nozNoszH oo ~ ;ocNoszz K wy. (3.3.9)

In quantum consideration with spectral distribution of emitted energy the
so-called photon spectrum is frequently considered:
dNur 1 dW
hdo — ho hdo’

(3.3.10)

or, through a variable ¢

dNge 1 1dW
dé oy & dé

= maNoK? (1 — 2¢ +2&7). (3.3.11)

From the last formula it is possible to obtain the total number of emitted
photons
1
dN 2
Nur = /dé g“ = 3TNk (3.3.12)

0

and average energy of photons in UR spectrum: (hw) = (&)hw,,, where

w 1
(hw) =——= yﬁ hawg = =h w,,,
Nur 2
fg’d’jw* 1 (3.3.13)
(&) = —dé =

Nyr 2



3.3 Characteristics of Undulator Radiation in Dipole Approximation 25

Once again we shall note that all obtained results refer to a case of ultrarela-
tivistic electron radiation in the dipole approximation.

3.4 Undulator Radiation Spectrum in a Weak Sinusoidal
Magnetic Field (K < 1)

Rigorous theory of UR in a plane undulator for arbitrary value of deflection
parameter K is presented, for instance, in the monograph [3]. Omitting details of
calculations, we will bring the result for a Fourier-transform of the field for one
period of undulator:

T

B(o) ~ S 22 / in[nplJe g | (34.1)
0

where integration is carried out over the particle passage time through one
undulator period.

It is necessary to note that the modulated longitudinal velocity (3.1.10) in a
similar undulator results in rather cumbersome calculations. The term kr in
expression (3.4.1) contains the trajectory of a particle (3.1.11) in the exponent,
which depends on parameter K. The higher harmonics will give significant con-
tribution in the integral (3.4.1) for values K > 1.

Using formulae (1.4.6) and (3.4.1) it is possible to get an expression for
spectral-angular distribution of UR intensity:

2
dw cR?

dQdo  4nlc

T

2.2

Zn(fc / nple’ X dr| Fy. (3.4.2)
0

|E(0)*Fy =

The spectral-angular distribution of the first three harmonics for K <1 was
investigated in works [4, 5]. Using the same basis vectors (3.2.1), written down in
laboratory system, we will bring expressions for both polarization components of
the first harmonic intensity:

dwi ey’ (K*/2) 202 2
= Fy 1 —y76“cos2¢p),
dQdw nic (1+V292)3( )

2.2 K2/2
dWy :232/ Fy (K”/2) . 0% sin? 2.
dQ dw T%C (1 —|—y292)‘

(3.4.3)

Here the azimuthal angle ¢ is counted from the plane of oscillations. The first
index in the left part of expression corresponds to the linear polarization along
vectors e[, e;, whereas the second one—to the number of harmonic. According to



26 3 Undulator Radiation

determination of basis vectors ej,e,, the radiation polarization is defined in a
system connected with a wave vector. In the ultrarelativistic case practically
almost all radiation is concentrated in an angle cone ~ 1/y < 1, what allows to
carry out averaging of expressions (3.4.3) over an azimuthal angle ¢. In this case
the system of basis vectors (e;), (e;) will be defined only by a plane, in which the
particle trajectory is located. It is easy to show that for a flat trajectory of electron
with the symmetry corresponding for a plane undulator, the radiation will have
only a linear polarization. Using approximation of the “long” undulator (N — o0)
we will carry out integration in (3.4.3) with respect to frequencies and azimuthal
angle:

dw, y2ha K2(1+3 5%0%)
Pdcos 0 - 6: T oN- o) > 3
y=dcos (L+720°+ K2/2) (144207

dw. 7*h K230t
%:2759{1\7 ;sz > 2’)) g
72d cos 0 (1+920° + K2/2) (144207

(3.4.4)

Carrying out the similar integration of expressions for the second and the third
harmonics, formulae for which are given in [5], it is possible to get the following
expressions:

AW - 292 hag 3K 7267 (5- 2,26 + “/494)

yidcosf (1+720° + K2/2) (1+726%)° 7

AWy, 2y’ 1oy K207 (1 — 920 + 50%0%)

I (P T N T
aw 5 3y?hay

—————=2maN
72d cos 0 (1+20° + K2/2)
SLKO (1 — 14920 + 183 940 — 419°0° + 10y%0°)
X
(1+ y202)8
_IWas gy 3%hoy  GKO V05— 1820° + 18)*0")
y2d cos 0 (142207 + K2/2) (1+7260%)" '

)

(3.4.5)

Going again from a polar angle to a relative spectral variable ¢ = hw / 2y*hawy

for the first harmonic: ¢~ 1/(1 4 920* + K?/2) and summarizing with respect to
polarizations, from (3.4.4) and (3.4.5) we will get the spectral distributions of
intensity for the first three harmonics:
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dd—v?:ZnochzhwoKzf(l—2<§+2§2), 0<E<1/(1+K?)2),
dW, 2 J1 /¢ g & ; 2
2 =2rnaN K= (2) (1=2) (15 —22¢ + 148%);
i 7 o Ny~ hwg 4<2 5 (5 E+ f),
0<&<2/(1+K/2);
3
d;? =2n Ny hw0K6694 <§> (252 — 513& + 4418 — 1658 + 22¢&%);

0<E<3/(1+K2)2). (3.4.6)

As follows from the obtained expressions, the intensity of nth harmonic is
defined by a factor K>, therefore in a weak field of the plane undulator the main
part of energy is emitted on the first harmonic. From (3.4.4) and (3.4.5) it is
possible to get the intensities of each polarization components dW;/d¢&, dW,/d&
after summation over the second index:

dW1 ZdWll de Zde, (3.4.7)

The last formulae allow to calculate the linear polarization of UR in plane
undulator.

The spectra of UR intensity for various values of parameter K are shown in
Figs. 3.4 and 3.5.

It is necessary to note, that connection between frequency of emitted photon
and the polar angle 0 allows to achieve the so-called “monochromatization” of UR
using hard angular collimation:

0<0.<1/y. (3.4.8)

In this case in the spectrum corresponding to the first harmonic, there will be
frequencies in the interval 1/1+ (yzé)g) <E<Z1 and 2/1+ (y293) <EL2,
3/1+ (y20§) < &< 3 for the second and the third accordingly.

Monochromatized spectrum for a collimation angle in the case of 0, = 0.5 y~!
is shown in Fig. 3.6. As follows from the figure, in this case the first harmonic
monochromaticity will be defined by value 70.:Aw/w;~Aé= y29’j /
(1+17%02) ~ 20%

As it was mentioned above, the UR polarization in a plane undulator will be
linear. In an ultrarelativistic case the polarization characteristics of UR beam as a
whole are defined after averaging over azimuthal angle:
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Fig. 3.4 A spectrum of UR
intensity in undulator with a
finite number of periods for
K =0.05 (a) and

K =025 (b)

Fig. 3.5 A spectrum of UR
intensity in plane undulator
with K = 0.4 with taking into
account the contribution of
the first three harmonics

(&) = /dq)(ElE; + ETEZ)//dq)(|E12+E2|2)7
) = [ao(P- 1) [ do 1 +E:P).

3 Undulator Radiation

(@) aw o i
—, aro. units —
s N =50

0.06

0.04

0.02

(b) aw

——, arb. units
dé

K=0.25

dw .
——, arb. units

(3.4.9)

For a flat trajectory of electron in undulator the parameter (¢;) becomes zero
after this averaging, and for linear polarization in a plane of oscillations instead of

(3.4.9) we have
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Fig. 3.6 A spectrum of UR dw )
intensity with the > . units
contribution of three
harmonics in case of hard K=025
collimation (y0, = 0.5) 5L N =50
v6.=0.5
2 =

Fig. 3.7 The degree of linear Piiy
polarizati.on qf UR in c_ase of 1r Ve \/ K=025
hard collimation (y 0. = 0.5) _
70,=0.5
0.8
0.6 -
0.4+
02r
| L 1 1 L f

fd(/)( dw, _ dW, )
Pin = (&) = ddo dddo, (3.4.10)
Jdo(Gads + dads)

The Fig. 3.7 presents the calculation results of polarization of UR beam
obtained for the case of hard collimation of radiation. It is possible to note
that the radiation collimated on the first harmonic possesses practically
100%-polarization.

3.5 Radiation Along an Undulator Axis in a Strong Magnetic
Field (K 2 1)

For a plane undulator with arbitrary value of parameter K [6] one can obtain the
analytical formula for intensity of radiation along an undulator axis:

=—2) [1—(=1)"|FynK*/(1+K?/2)

X [%(”{fz/(lﬂd/z)) —@("T/(lﬂ(z/z))r. (3.5.1)
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As follows from this formula, the contribution of even harmonics at 6 = 0
becomes zeroth.

We again use the approximation of “long” undulator for integration with
respect to frequency. Going to a variable 70, after integration over azimuth, we
will have

dw, . K> Y th 2
d(y20%) 0:0_2 e (1+K2/2) 32
< [ (0K7) /(14 K2/2)) — des (oK) (14 K2/2))| . (352)

For the case K> < 1 we will write an expression for intensity of the first
harmonic, keeping summands, which are proportional to KZ:

dWl,l

=2naNK*y* hay. (3.5.3)
d(y26%) 0=0

Comparing the obtained formula with expression (3.3.4), one may see a good
coincidence for K? < 1.

From (3.5.1), using approximation of a “long” undulator, it is possible to derive
the spectral distribution of UR in the range of maxima in the radiation spectrum
(radiation in a straightforward direction corresponds to these maxima, 6 = 0):

2%h 2K?/2
= 2w TN T /2
=0y, On n (1 + Kzz)

nk?/4 nk?/4 :
X |:Jnl/2 (ﬁ) .]n+1/2( —|—Ké/2>:| . (354)
To compare the obtained expressions (valid for any K) with formulas (3.4.6),
which are true for K < 1, we’ll use in (3.5.4) a variable ¢ (3.4.6): dw, =~
292 wondé.
Having written down through new variable the maximal value of UR intensity
for n = 1, 3 and keeping the main term of expansion in square brackets:

hdw

aw, :

= 21 Ny Ay~
3 (Y JP)
: (3.5.5)
dWs 81 K®
—_— =2n :xNy hawoy— P EEe—
dé |._ 64 (14 K2/2)

one can see the coincidence of obtained quantities with (3.4.6) for K> < 1.

Calculations of maximal values of odd harmonics according to (3.5.4) are
given in Fig. 3.8 for various values of deflection parameter K. As follows from
Fig. 3.8c, for parameter K > 1 the maximum in a spectrum corresponds to higher
harmonics (n = 11 for K = 3). Undulators with a field providing value K > 1
refer to wigglers.
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Fig. 3.8 UR intensity in (a)
plane undulator in a dw .
straightforward direction for E'f:fn’ arb. units
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Spectral-angular distribution of radiation in a plane wiggler can be calculated
with usage of extremely bulky formulas. However, for large enough values of
K (see Fig. 3.8c) the spectral distribution for UR in a straightforward direction
(60 = 0) is described by expression [6]

dw 2¢\71°
= const [% K3 <§ %)} , (3.5.6)

dé

P
C=¢n

— Wy n
where &, = 5 = TIRTE
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Fig. 3.9 Approximation of (a)
distributions, presented in the .
previous figure, for K=3 (a) Ek:fn’ arb. units
and K=5 (b) by dependence

(3.5.6)

0 2 4 6 8 10 12

n

‘ b=
0 2 4 6 8 10 12 1+K%/2

Expression (3.5.6) achieves its maximum at &, ~ 0.625K.

The comparison of exact distribution and approximation (3.5.6) for various values
of parameter K is shown in Fig. 3.9a, b. As follows from the figure, at K >3 the
wiggler radiation in straightforward direction is well described by expression (3.5.6).

3.6 Radiation in a Helical Undulator

In a helical undulator the magnetic field is created, for instance, by a solenoidal
current, which describes by the formula

2 2
H = e, H,sin i—’% + ey H, cos =z, (3.6.1)
u /L‘M
Electron with velocity fic, entering in the undulator field in an initial point with
coordinate ryp = {R, 0, 0}, moves in a “right” helix:
r(t) = exRcoswot — eyRsinwo t +kfj ct, (3.6.2)

where
1/2

2
Y} 2
R:ﬁLC/wO’ﬁL:;ﬂ?"l;lé)z:%’ﬁ“ :ﬁ|:l— (%) :| zl_lz’}g?(j)o:i—fﬂn C.

By means of the Lorentz-transformation with parameters f3 | and y = ﬁ it is

possible to go to a system, where electron rotates in a circular orbit (R-system).
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In R-system the electron rotation velocity on the orbit of radius R achieves the
value f§; = K.

The angular distribution of a power in this system is given by the Schott
formula:

dPr _ ¢*cfy
dQr 27 R?

Z n? [ﬁi]:f(n B sin Og) + ctg?0g J*(n By sin GR)] . (3.6.3)
For non-relativistic movement fi; < 1, what allows, keeping in the sum (3.6.3)

the term with n = 1, to get the Larmor formula

e _eefy 1
dQr  2nR2 4

202 2
(14 cos®Og) = e;;%w,e . % (14 cos® Og). (3.6.4)

Integrating with respect to azimuthal angle and expressing fiz and wg through
parameters in laboratory system, we’ll obtain

dPR 62

dcosOg %szﬁ g (1 + cos® Og). (3.6.5)

Comparing the obtained expression with similar one for a plane undulator
(3.2.5), it is possible to note that they coincide in the case of

2
ki, — %. (3.6.6)
That is all formulae describing UR in a plane undulator in dipole approx-
imation in Sects. 3.2 and 3.3, remain true for the helical undulator in the case
of substitution (3.6.6) as well. Using the exact expression for radiation power in
R-system (3.6.3) and the procedure of transition to the laboratory system (see
the formula (3.3.2)), we’ll get the following expression for angular distribution
of UR:

dW _ 8aliawoNy*
dQ (1 4+ K2+ 207

o0 . 2
)3 K? an l]f(nx) + (%} — é) ],f(nx)] . (3.6.7)

The ultrarelativistic approximation is used here again (sin 0~0,x = %) .
/

Expression (3.6.7) allows to carry out the analytical summation over n, using
known formulae [2]:

= 4+ 3x%
Z"Z Jl/qz(”x) = s
16(1 — x?)

00 2 4 2
> P a2 (nx) = ”;’67)2
16(1 — x2)"/
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In this case instead of the sum (3.6.7) we have

AP0 (1+k2+200) 161227
4_|_x2 <1+K2_,V202)2
=2 (14 K2 4+920°))

aw 8amy i wyN e 1

X {4+3x2 + (3.6.8)

The angular distributions of UR intensity (3.6.8) for various values of parameter
K are shown in Fig. 3.10a, b.

As follows from Fig. 3.10a, the intensity of radiation for values K <0.5
achieves a maximum in the straightforward direction, whereas for K >1 the
radiation maximum is generated at the angle 6,, ~ K/y (see Fig. 3.10b). Radiation
losses by an electron passing through one period of undulator are calculated by
integration of expression (3.6.8):

2
Wo =§ot7ry2hwoK2 (3.6.9)
Fig. 3.10 Angular (a)
distribution of UR intensity in aw .
the helical undulator for o’ arb. units
various values of parameter 0.08
K:K<0.75aand K >1b
0.06
0.04
0.02
y0
b
(b) oW

——, arb. units
dQ
0.15

0.1

0.05

v0
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and depend in the square-law on the parameter K. The exact UR theory in a helical
undulator with arbitrary number of periods is developed, for example, in the work
[6]. The spectral-angular distribution on nth harmonic in the ultrarelativistic
approximation is written as
dw, ) 4y? ;
hdwdQ (14 K2 +20%)

1 KZ ) 02 2
G, = (M> J2(nx) +J*(nx).

FN nan,

(3.6.10)
2Ky 0

The other designations in (3.6.10) are the same, as before.

An intensity spectrum of undulator radiation in a helical undulator for K = 0.25
and N = 10 is shown in Fig. 3.11 in case of summation with respect to three
lowest harmonics:

hdw / Zhdw (3.6.11)

Integration in (3.6.11) will be carried out over angles 0 < ¢ <2m; 0<y0<4.

Only the two first harmonics give the observable contribution to a radiation
spectrum for the specified value of parameter K. For value K < 1, the intensity of
the higher harmonics is proportional to K** (n is a number of harmonic), what is
completely similar to a case of plane undulator. The following relative variable is
used again: ¢ = fiw /2y*hwo.

The maximal values of variable ¢ for the first and second harmonics for a
“long” undulator are:

1

2
T 09 & =———5=188. (3.6.12)

él: 1+K2

For an undulator of finite length (N = 10, as in this case) a drop of intensity in
UR spectrum near values (3.6.12) will be slightly “smearing”.

Fig. 3.11 A spectrum of UR dw

intensity in a helical g 2rb- units
undulator for K = 0.25 with
taking inFo account the 0.021- K=025
contribution of the first three ’ N=10
harmonics

0.015F

0.01F
0.005
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Fig. 3.12 The same, as in dw )
Fig. 3.11 for K = 0.5 with g - units
taking into account the 0 081
contribution of the first ten ' K=0.
harmonics N=10
0.06
0.04
0.02
| | | 1 L E
0 0.5 1 1.5 2 2.5 3 i
Fig. 3.13 The same, as in dw b, units
Fig. 3.11 for K = 1 with g Ao
taking into account the “
contribution of the first ten
harmonics 02 K=1
N=10
0.15-
0.1F
0.05-
| | L
0 1 2 3 4 d

The spectra of UR intensity for K = 0.5 and K = 1 with taking into account
contribution of ten harmonics are shown in Figs. 3.12 and 3.13. In the first case the
main contribution to a spectrum are given by harmonics with n = 1, 2, 3 and
& =1m =24

An appreciable shift of harmonics into a soft part of a spectrum occurs with
increase of parameter K (up to K = 1, as in this case). So, for example, the
maximum of the seventh harmonic corresponds to a value &; = 1477 =3.5.

For this case ten summands were kept in the sum (3.6.11) during calculation
of spectrum, however, only the first seven harmonics give the main contribution
(see Fig. 3.13).

As it was noted before, in the ultrarelativistic case it is possible to consider
polarization of UR beam as a whole. For a helical undulator, where the electron
trajectory represents the right or left helix, from the common reasons one may
expect that UR polarization will be elliptic (with the large contribution of a
circular one).
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Fig. 3.14 A spectral & _
dependence of a degree of Ir K B 0-25
. . N=10
circular polarization for
helical undulator with 0.5
K=025and N =10
1 1 1 1
5 1 1.5 2 ¢

Spectral dependence of circular polarization can be found from the general
formula (2.2.6), where basis vectors are chosen as:

e] = %(ex + iey), e = %(ex — iey). (3.6.13)

Then, the required dependence &, (hw) may be found after integration of the
following expression over a solid angle

4y?
(1+K2+726°)°

(1+ K2 — 26%) aw,
], (nx)J! dQ . 3.6.14

sy )| /a0 ey
As follows from (3.6.14), for a radiation angle

70 =1+K2 (3.6.15)

& (hw) = / dQd 2uK*
=1

n=

XFNI’Z2

circular polarization changes the sign regardless of harmonic number (in other
words, for the angle (3.6.15) UR polarization becomes linear, and the polarization
plane will be perpendicular to the radiation plane, which passes through the
undulator axis and a wave vector k).

Dependence of circular polarization on a spectral variable ¢ for K = 0.25 and
N = 10 is shown in Fig. 3.14. The integration over a solid angle was carried out
practically over a full cone: 0 < ¢ <2x, 0<y60<4.

Expectedly, in the range ¢ < & = 555 = 0.485 polarization becomes “left-

circular” due to the contribution of radiation at angles y 6 > +/1 + K2, whereas in
more hard part of a spectrum the polarization is “right-circular” one.
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Fig. 3.15 UR spectrum for

hard collimation (y0, = 0.5)
with taking into account the
contribution of the first three
harmonics

3 Undulator Radiation

dw )
——, arb. units

0.02 - K=0.25

N=10

0.015}- 0. =05

0.01F
0.005 -

h B | f
0 0.5 1 1.5 2

In case of hard collimation of UR alongside with improvement of monochro-
matization it is possible to get a beam, for which the degree of circular polarization

will be close to one.

Thus, the UR spectrum for K = 0.25 and N = 10 is shown in Fig. 3.15 in the
case of collimation y0,. = 0.5. In this case the calculated value of average circular
polarization in the first maximum achieves <E> ~ 0.96.
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Chapter 4
Coherent Bremsstrahlung

4.1 The Main Characteristics of Bremsstrahlung in the Screened
Coulomb Field

The quantum theory of bremsstrahlung (BS) in the Coulomb field of nucleus was
developed more than 60 years ago [1]. Later the development of bremsstrahlung
theory has allowed to take into account such corrections as screening effect, BS on
electron shells of target atoms [2, 3].

The formulae for calculation of characteristics of bremsstrahlung in the Born
approximation are written most simply in the coordinate system connected with
emitted photon (Fig. 4.1). The projections of momenta of initial and scattered
electron on a plane, which is perpendicular to the photon momentum k are des-
ignated in this system of coordinates in dimensionless units through vectors u and
v. The system of units m = ¢ = 1, (i.e. dimensionless variables), where energy is
measured in units of mc2, momentum—in terms of mc, length—in the Compton
electron wave lengths, is used in this chapter everywhere, where it is not stipulated
especially, for simplification of calculations and formulae. Let’s put a designation

4neV
J= T@I, (4.1.1)
where
I_u_v+n<1_1>
L+u? 142 l+u? 1+12)°
n =X V(q) is a Fourier-transform of a field of nucleus V(r), and cross-section

of BS by non-polarized electron is written as follows:

62

do = 3 Fo-+ &P Yo ) a0,
Y
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Fig. 4.1 The kinematic
variables describing the
bremsstrahlung process

k
\5
where &; are the Stokes parameters,
Fo = 2(ho)* I + dereal i) = 2(&F + &3) (I[P —deyealJ3],
Fy = 8¢183J1J3,
F, =0, (4.1.2)

F3 = 48182(|J1|2—|J2‘2).

The following designations are made here: J; = Je;,Jo =Jer, J3 = Jn,
J: =Jie; + J,e,, through ¢, &, i are designated the energy of initial electron,
scattered electron and photon.

As it is shown, for instance in [4], a linear polarization of BS does not depend
on polarization of electron, i.e. it has a “classical” origin, whereas a circular
polarization of BS appears only from polarized electrons.

We’ll consider the linear polarization of photons relative to the plane defined by a
geometry, i.e. a plane, which passes through momentum of initial electron p; and
emits photon k. To designate a normal to this plane through b, then as basis vectors it
is possible to choose the followings: e; = [n, b]/|[n, b]|, e, = [e|, n], which together
with a vector n form the right system of coordinates (see Fig. 4.1). We choose

screening for a nucleus field according to the Thomas—Fermi model [4, 5]:

V(r) =Zexp(—r/py), po = 251 ~ 1L A, (where 7. is Compton wavelength of an

electron). Fourier-transform of potential will become V(q) = Ze/(q* + h*/p}) and
integration in (4.1.2) with respect to an unobservable kinematic variables (i.e.
over angles of scattered electrons) will be easily carried out analytically. However
the other approach for a generality of description with the following material (with
the theory of coherent bremsstrahlung) will be used here.

Let’s introduce a variable q, as a transverse nucleus recoil momentum, which is
perpendicular to a photon momentum. There is the relationship from the law of
momentum conservation of ¢, = u — v. It is easy to show that an element of a
solid angle d€Q, is connected with differential of the introduced variable as follows:

1 1
dQy = 5dq, = 5q,dq, dy,.
& &

Here , is an azimuthal angle of momentum q, (see Fig. 4.1).
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In new variables the vector I and its projections /; are written in the form:

[ q, B (u —n)(2ug, cosy — ¢?) .
1+u?+q? —2ugcosy (1 +u?)(1+u?+ g — 2ug, cosyy)’
I = q:cos iy, a ucosy, (2uq, cosy — qtz) )
1+ 4+ g2 — 2ug,cosyy (1 +u?)(1+u® + g2 — 2ug, cos )’ (4.13)
I — q: siny, B u sin wl(Zuq, cosy — qtz) .
1+ + g —2ugq,cosy (14 u?) (14 u? + g — 2ug, cos )’
2ug, cos  — q?
I; =

(1+ ) (1 4+ u? + g2 — 2ug, cos )’

An angle =, — s, entered in expressions (4.1.3) is the angle between two
vectors: u and ;.

Integration of expression (4.1.2) over unobservable kinematic variables reduces
to integration with respect to the two-dimensional transverse recoil q,. Herewith in
the integrand there are combinations of the type J; - Jz,le etc. We’ll illustrate the
calculation of integrals on the following example:

1
/ J2dQ, = 52 / JEdg? dip,.
2

Everywhere in the integrand

J? = <4”6V(‘1)> 2 q; cos” Y,
! ho (1 + u?+ g7 — 2ug, cos )

u* cos? Y, (4u*q} cos®  — dug; cosy + g})
(1+u2)* (1 + u? + ¢? — 2ug, cos xp)z

2ugq, cos | cos iy, (qtz — 2ug, cos zﬁ)

(1+u?)(1 +u? + ¢? — 2ug; cos lﬂ)z}

(4.1.4)

it is expressed an angle iy, through , and y for simplification of azimuthal
integrals:

COs i, = cos || cos Y + siny; sini;
cos’ v, = sin’ v+ cos’ Y cos(2y,) + siny cos ¥ sin(2y,).

Since, di/, = dy it is necessary to calculate the azimuthal integrals of type

2n 2n 2n

B dyr B cos"ydy n=0.1.2: _ siny cos Ydyr
A_/i B /7 0,1,2; Co O/

/ a—bcosy’ n_o (a—bcosy)” (a—beosy)”

since the potential V(g) does not depend on an azimuthal angle. Evidently the
last integral is equal to zero due to oddness of integrand. The others are easily
calculated according to the residue theory:
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2n 2na 2nb 27 a ab?
:QI/Z’ 0:Q3/2’ By :Q3/2’ 27 _Q1/2+Q3/2

Here a = 1 4+ 1> 4+ g% b = 2uq; Q = a* — b* = (1 + u®)* +2(1 — ) x ¢* + ¢
Thus, after reducing of expression (4.1.4) to a common denominator and azi-
muthal integration we have

2n
4neV(q 2 2
/ Jidy, = %{q?(l +u*)"(By — B2) + g} cos” Y,
0
X [2(1 + u4)Bz — (1 + uz)zBo + 2uq,(1 — uz)Bl + qtzuzBo] }
4meV(q))*
:%(xqtyuz cos® ), (4.1.5)
where

2n (1 +u* +¢?
2\ .
x(%) —m <4Ql/2 r_ 1

(@) = 21 1+ut . 1+ + ¢
Y (1 +u2)* | 2u? 0'/?
w?) +

(17u) (1+ q>(1+ 3u* — )Jruzq;‘}.

+q,

Q%/2

During integration of expression (4.1.5) over the recoil momentum with taking
into account a dependence of potential on ¢, the following integrals appear:

X\ _ %dqzz x(‘]t)
Y}C/(q?+q?+h2/po)2{y(ql)}7 e

where C = (41Ze%/e,0)>. Tt is well-known that a longitudinal component of recoil
momentum is satisfied the inequality: ¢; = qn~0 < li/p, (here 6 = Gimin =
fio/(2y &) is the minimal longitudinal recoil momentum), therefore the value g7

in a denominator can be neglected in comparison with A*/ p%. Integrals over the
transverse recoil momentum ¢> can be calculated in limits from O up to oo, since
integrand at big g, decreases as ¢, or more prompt. Thus for simplification of
calculations the region of integration will be divided into two parts: I: 0 < ¢? <g3;
and II: g3 < ¢? <oo, where i*/p? < g3 < 1, in each of which the integrals are
reduced to the tabulated integrals after simplification of integrand. In region I
6112 < 1, therefore we shall expand the values x, y into a series in terms of ¢,
degrees leaving terms not above ¢
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2n |1+ u? +¢? 11— ng?
M=13 2 - 3 | | =
wel b (1) () 1)
2n , l+u , (11— u2)2 4ng? -
= —q q :
e’ e e ()

The results of integration in region I:

C 1 4nC 1
XIZ T 3 (ln 9o ——), Y[: T 7 (ln %o ——>.
(1+u2)’ \ h/py 2 (1+u2)* \ h/py 2
In region II of the integrand we neglect the value #*/ p3 in comparison with ¢* then
integrals are easily calculated:

nC 1 4nC 3
XII = 3 In 0 5 + — ; YII = 7 In o ) +—-].

Finally we have (in the system of units i =m =c = 1):

_ __nC 2y 2
X—XI+XI[ 7m(ln(l +u )po — 1),

_ _ 4nC N 2
Y—YI—i-YHf—m(ln(l—ku )rg—2), (4.1.8)

/Ildez =X + Yu® cos® .

As expected the result, does not depend on gy.
Other integrals are similarly calculated as well:

/ J3dQy = X + Yl sin®

2 1 —u? 2
J3dH =X +Y 5 : (4.1.9)

/Jngdﬂz = Yu?sin Wcosy,

Further, from (4.1.9) it is possible to obtain

1+12)°
/szgz = / (J7 +J5 +J3)dQ = 3x+y%
4nze?\
— ( T "’) T_(2r+3) (4.1.10)
&0 (1+u?)
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where

(1+u?)111
Z1/3 o

From (4.1.2) and (4.1.9) we find the integrated cross-section over unobservable

variables (i.e. angular distribution of the radiation):

I'(«?) =1In 2. (4.1.11)

e2

(2m)*
dho  udu  dy, (& + &3 2
=477 ———— LT 2 (14 0P) (20 43
’ hw<1+u2>42n{ () T 3)

€
—22(142)° - 82T - 6,822 Tsin 20,
1 1 !

do hwdﬁwdQﬁ%/{Fo—l—é]Fl +§3F3}d92

—53822u2rcos(2¢1)}. (4.1.12)
1

In order to go on to the dimensional variables, it is necessary to replace in the last
formula ¢°® on ocr%, where ry is the classical radius of electron.

It should be noted that using a nucleus potential with more exact account of
screening the cross-section (4.1.12) remains the same, only the values of X, Y and
I' (see (4.1.8), (4.1.11)) have been changed.

Stokes parameters for photons, emitted at angles u = €0, and \, averaged over
unobservable variables need to be defined:

& :/Fidgz//Fodﬁz. (4.1.13)

Then the linear polarization of BS is described by the following parameters:
8e16 {u2l"/(1 + uz)z} sin(2y,)

(22 + 2) (2 + 3) — 26122 [1 F42T/(1 + MZ)Z} ’

&=

(4.1.14)
8s162 [MZF/(l + Mz)z} cos(2y)

(24 ) (2I +3) — 2¢18 {1 + 4T /(1 + uz)z} '

As follows from (4.1.14), the plane of the maximal polarization is perpendicular to
the plane of radiation (at Y, = 0, & =0,& <0). From (4.1.14) it is easy to obtain
the maximal linear polarization of a photon beam

P=\/&+8
8(1 —x)u’T (u?)

T (1 war 4 3) [14 (1= 2] =201 = 9 [(1 + w2 +4T|

(4.1.15)

Here it is introduced variable x = hw/¢;, which is the photon relative energy.



4.1 The Main Characteristics of Bremsstrahlung in the Screened Coulomb Field 45

It should be noted that expression (4.1.15) does not depend directly on the
energy of initial electron ¢;. Evidently, the expression (4.1.15) is inapplicable for
energy of electrons &, > 1, since it is obtained in ultra-relativistic approximation.
Cross-section (4.1.12) allows to get the spectral-angular distribution of brems-
strahlung intensity after an integration over an azimuth:

P21 ho do
= Ay, = 47%r2 —
h dou du /hdwududtﬁ] 4 “’0(1+u2)4

X { [1 +(1— x)z] (1+ u2)2(21“ +3)
—2(1 —x)(1+u?)2-8(1 —x)uzr}. (4.1.16)

The dimensionless variable x = hiw/¢; and condition 7w + ¢, = ¢ are used again
in the formula (4.1.16).

The spectrum of BS intensity is presented in Fig. 4.2 after integration over a
solid angle 0 <u <1 (the bottom curve) and 0 <u <5 (the top curve). As follows
from the figure, the spectrum shape practically does not change. This fact is a
consequence of one of important BS characteristics, i.e. a weak dependence of
angular distribution of BS on energy of photons (a variable x) (see Fig. 4.3).

Neglecting the dependence on u in the logarithm in (4.1.16), it is possible to
obtain spectral distribution of BS:

[ law > 111
_ 2
- 4Zocr/ —|—u2 {[l—i—(l—x)}(lJru) 2lnﬁ—l
0
2 111
=2(1=x)(14+u*)" —8(1 —x)u <lnzl/3 2)}
4 4 111 1
_ 2.,.2 2
Fig. 4.2 Spectral di

———, arb. unit
dependence of BS intensity: hdw’ b. unis

curve 1 for angle of r
collimation u. = 5;
curve 2—for u, = 1
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Fig. 4.3 Angular a2
distribution of BS in a thin
target, calculated by the
formula (4.1.16) for x = 0.2
(the top curve) and for

x = 0.8 (the bottom curve)

, arb. units

fidw udu

u=y0

3

Integration over photon energy from (4.1.17) leads to the radiation losses con-
nected with BS process of the relativistic electron in the screened nucleus field:

&1

dI ) 111
I= /hda)% = 4Z%arge (lnzm 5) (4.1.18)
0

From (4.1.18) it follows that radiation losses in the BS process are proportional to
the initial electron energy ¢;. If n is nuclei concentration in a target, then it is
possible to obtain the radiation losses of relativistic electron on unit of the path
from (4.1.18):

dErad
X

11
~4nzzocr081<lnzl/3 5), (4.1.19)

where n = Nj(p/A); Ny = 6.02 - 10?2 is the Avogadro number; p is density of a
target matter; A is an atomic weight. Equation (4.1.19) in term of energy ¢; is
usually written as:

dErad _ &1 1

137 1
- p—— 2 —
i mx x W7 ocr()(lnzl 3 2), (4.1.20)

with the known solution for the electron energy in output from a thin target:

0

e1(x) = & exp (—Xi> (4.1.21)

The parameter X refers to as radiation length. More exact formula for X, taking
into account the BS on the atomic electrons, is given by expression [6]:

L 4o Z(Z+1)In 183 +0.12 i (4.1.22)
- = doaryn — 1.
Xo 0 Z\/3 82
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Table 4.1 Values of radiation lengths for some substances

Substance z A Xop, cm
Air 7.4 14.3 2.9 x 10*
C 6 12 19.8

Al 13 27 9.1

Cu 29 63.6 1.52

Pb 82 207.2 0.58

Often the “engineering” formula is used:

716A
Xo = 2—[g/cm2]. (4.1.23)
Z(Z+1)In (%)
The values of radiation lengths for some materials are given in Table 4.1.

Definitely the spectra presented on Fig. 4.2 as well as formulae (4.1.20),
(4.1.21), describe the radiation from thin targets, where the root-mean-square

(rms) angle of multiple scattering of the initial electrons does not exceed y~!.
The multiple scattering angle of relativistic electrons with energy ¢;, passing a

layer of thickness ¢, is calculated by the formula

21 t
Y () ~ m\/x:o~ (4.1.24)

Hence we have a criterion for a “thin” target:

21 t
- — <0. X 4.1.2
Y _ymcw/XO’ or t<0.0006 X, ( 5)

Radiation losses in a thin target are found directly from (4.1.20), since BS
absorption in a target is insignificant:

AEpg = %el. (4.1.26)
0

As follows from (4.1.17), the photon spectrum of BS may be written as

N do 1 dI
hido hdo hohdo

(4.1.27)

Evidently, it is diverged at ic» — O (so-called infrared catastrophe).

As has been shown by Ter-Mikaelyan [7], in a soft part of BS spectrum for
energy of photons fiw <yhiw, (hw, is energy of the target material plazmon) the
process of BS is suppressed due to polarization of a medium. Energy of plazmon is
defined by concentration of electrons in a target material nZ:

hw, = hy/4nnZr,c?. (4.1.28)
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In a soft part of BS spectrum (o < &) for a thin target the angular distribution is
approximated by expression:

dl _2x 1+u?

_ = 4.1.29
hdoududp X (1 +u2)4 ( )

However the polarization of medium leads to the modification of the formula
(4.1.29) (see [7)):
dl, 2 x 1+ u*
Fdondudo  wX- 2\ 2
hdwudude 7TX0(1 —|—u2)2(1 +u2+,2 %)

w2

(4.1.30)

Taking into account this effect (so-called effect of density in BS) results in a strong
suppression of BS yield in the range fiow < hyw,.

The intensity spectra of BS with taking into account a medium polarization and
without this effect are given on Fig. 4.4:

dly ) i du (1 + u*)
= 22\ 2
hdw XO() (1 +I/t2)2<1 L2 ué)

w?

(4.1.31)

The upper limit in (4.1.31) is defined by a collimation angle of radiation. The
photon spectrum can be obtained from (4.1.31):

dNy i dl,
hdo hohdo

and is shown on Fig. 4.5 (the bottom curve).

The “divergent” spectrum calculated according to the formula (4.1.17), i.e.
neglecting the Ter-Mikaelyan’s effect, is shown just here for comparison. It is
necessary to note, that Ter-Mikaelyan’s theory was developed about 50 years ago,
whereas the experimental proof of this effect was obtained in 1995 in experiments
at the Stanford electron accelerator [8].

Fig. 4.4 A spectrum of BS dl

. ; . . ——, arb. units
intensity with taking into thdw’ arb. u
account the density effect

(the bottom curve) and 0.3

without this effect
(the upper one) for the
collimation angle u, = 1 0.2

0.1

hw/yhw,
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Fig. 4.5 The photon BS dN b. unit
spectrum with taking into W arb. units
account the density effect (the 10! -
bottom curve) and without ‘\ u =35
one (the top curve) 1k AN
~ ~
'ty === =
1 0—2 L

‘ ! = hw/yhw,
3

The intensity spectrum of BS (4.1.17) is obtained for ultra-relativistic electrons
in approximation of full screening, in other words, when the effective impact
parameter of the initial electron trajectory exceeds the atom sizes well. For not so
large electron energies y = -1, < % (i.e. for moderately relativistic electrons) BS
from trajectories with smaller impact parameters gives the significant contribution
as well. In this case the logarithm in (4.1.17) will depend not only on a screening

radius, but also from the minimal recoil momentum gmin = 5 1%
7

dl
hdw

4 4 1 1
:4erxr§<§—§x+x2> X |In -—5|- (4.1.32)
(1) + (%)

The spectra of BS intensity in lead (Z = 82) for electrons with ¢ = 20 MeV,
calculated according to (4.1.17) and (4.1.32), are shown on Fig. 4.6. As follows
from the figure, for photons with energy hicw <0.5¢; a difference does not exceed
10%, whereas with increase of fw it grows.

Fig. 4.6 Spectrum of BS
intensity with taking into
account of effect of recoil (the
bottom curve) and without
one (the top) for

g =20 MeV and Z = 82 -~

e ——

xX= hw/a,
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Fig. 4.7 The linear P
polarization of BS photons
for electrons at the angle of
radiation ug = y0 = 1. The
curve 1 corresponds to
calculation using the

formula (4.1.33) for lead; the
curve 2—for beryllium

X = hw/al

0 0.2 04 0.6 0.8 1

From (4.1.15) it is possible to find the angle of photon emission, for which the
polarization is maximal. Making a derivative equal to zero, OP / du? = 0 we shall
find the equation for required u3.

Having done all calculations (neglecting a dependence from u” in argument of the
logarithm, which is included in I'), we shall conclude that for any photon energies
0 <x <1 the maximal value of polarization corresponds to the angle uy = 1:

2(1-x)I(1)

Pmax = .
(2T (1) +3)[1+ (1 = 2] = 2(1 = x)(1 +T(1))

(4.1.33)

From the expression (4.1.33) it follows that at increase of photon energy a value
Prax decreases and goes to zero for the maximal photon (x — 1). In the opposite
case for low-energy photons (x < 1) the most achievable value of polarization is

Prax(x — 0) = T'(1)/(T'(1) +2). (4.1.34)

It is obvious that for producing of polarized y-quanta by this method the usage
of targets with small Z is more preferable, since a polarization degree in this
case is higher. So, for beryllium I'(1) = 2.49 i.e. Pyax = 0.60, whereas for lead
I'(1) = 1.94 and, hence consequently, Ppy.x = 0.49 (see Fig. 4.7).

4.2 The Bases of the Theory of Coherent Bremsstrahlung

The process of BS from ultrarelativistic electrons is drastically changed if instead
an amorphous target there is used a crystalline one [7, 9]. This process is named as
coherent bremsstrahlung (CBS) (see, for instance [10]).

The expressions for calculation of intensity and polarization obtained in the first
Born approximation and being true for a thin crystal (for which it is possible to
neglect the multiple scattering) are presented in a couple of the works (see for
example, [10-12]).
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In the same approximation these formulae can be obtained from expression
(4.1.2), in which the vector J (see Eq. 4.1.1) is defined through Fourier-transform
of the crystal lattice potential V., as follows:

1= (4.2.1)

If we consider a homogeneous lattice, consisting of nuclei with screened Coulomb
potential, then

Ze .
Vary (@) = Z mexp(lqvh). (4.2.2)

In Eq. (4.2.2) L, is the radius-vector of the lattice node; summation is carried
out over all nuclei of a lattice. After substitution Eq. (4.2.1) into Eq. (4.1.2) we
have (see, for instance, [13]):

&2

1
dacry = W_{Fbcry + giFicry}(hw)zdhwa'QI dqt;
16m%¢? 2 2
Fosy =~ T Ve(q)| {2(;1@) o 481821,2};
16m%e? 2
(ho)? ——| Very(@)| 818211 In;

F2cry = 0;

1672
F3cry :%| cry | {45182<12 I%)}v

(4.2.3)

lery =

where the vector I remains the same, as for ordinary bremsstrahlung on a single
nucleus (see the formula (4.1.1). The obtained cross-section is proportional to a
square of the lattice potential of Fourier-transform module. Carrying out a standard
procedure of averaging over the lattice temperature (see, for example, [7]),
we shall get:

Vey(@)|* = {D(g,) exp(—7¢*)(q — g,)+ N[1 — exp(—7¢>) | }V?(q). (4.2.4)

Here g, is a radius-vector of a reciprocal crystal lattice; D(g,) is the diffraction
factor, which takes into account the 3D periodicity of atoms in an elementary cell,
type of a cell etc.; exp(—72¢*) is a Debye—Waller factor); 7> is the root-mean-
square amplitude of temperature vibrations of lattice atoms; N is a number of
atoms of monocrystal.

For complex lattice (in which the number of atoms in an elementary cell
n is more than 1) we use the expression:

3
D(g,) = % <l

—1S(g)I" (4.2.5)
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Here a® is a volume of an elementary cell; S(g,) is the structure factor. For sim-
plicity of the description further everywhere it is meant, that a lattice is a cubic one.
For a diamond-type lattice

S(e) = [1+exp(i5(h + 1+ h3) )|
x [1 + exp(in(hy + hy)) + exp(in(hy + h3)) + exp(in(hs + h1))],

where h;(i =1,2,3) are the Miller indices of the reciprocal lattice vector
(g, = {h1,h2,h3}).. Hence it follows that

64 — for even h;, and (h; + hy + h3) /4 — integer;
S(g,) = 32— for odd h;;
0 — for remaining cases.

It is possible to show that for the tungsten crystal

S(g,) = 16 — for even h;;
8=\ 0—for remaining cases.

Proceeding from (4.2.3), (4.2.4), let’s write the CBS cross-sections in Born
approximation on a lattice potential:

do_cry = {D(ga) exp(_?2q2)5(q - gx) + N[l - exp(—rzqz)} }dO’

(4.2.6)
= d0ocon + dojnc.

Here do .., and doj,, are the parts of cross-section, first of which (coherent) depends
on orientation of a crystal, but the second (incoherent) does not depend on it.

Since the cross-section for the lattice potential (4.2.6) is proportional to N—the
number of atoms of a lattice, further we shall use the cross-section do.y, =
docon + doine, per single atom:

1 /2= _
do—coh = Z < > |S(g1)| exp(_rzqz)é(q - ga)d0§

doin. = [l — exp(—? q )]d(f.

(4.2.7)

The cross-section on an isolated nucleus do enters into both parts of cross-section
(coherent and incoherent) (see the formula (4.1.2)). Polarization characteristics of
CBS are defined as follows [13]:

cmry FlCOh +Fllnc

glC
i FOcry FOcoh + FOll’lC
1 2xn _
P = (25 It Pexn () ota o

Foiinc :[1 — exp(—? q )]Fo_,,-.

(4.2.8)

Here for F; the expressions are the same, as for an ordinary BS (see 4.1.2).
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Fig. 4.8 The coordinate
system for calculation of CBS
characteristics

y-radiation cone

0 V41

b,

€ b2

For convenience we shall carry out integration over the transverse recoil
momentum of expressions (4.2.3) separately for coherent and incoherent parts of
cross-section using the coordinate system shown in Fig. 4.8.

As it follows from (4.2.6), (4.2.8), the dominant contribution to a coherent part
of cross-section gives the region of the recoil momenta ¢g*> <7 2. The root-mean-
square amplitude of thermal vibrations is defined by parameters of a crystal
(Debye temperature ® and mass of atom M) and temperature of crystal T:

,©/T
3 T i
)
S Y
TS ame| T (@) / o1
0

where k is Boltzmann’s constant. At the temperature 20°C 72 has the following
value for different crystals (in electron Compton lengths squared): diamond—101;
silicon—290; tungsten—110. Hence, the coherent effect is significant in range
q, < 1, therefore for calculation of a coherent part of cross-section we’ll keep
terms not more than ¢?. In this approximation

2 _ 2
. ug;(u ;‘);  C [ (4.2.9)
I +u (14 u?) (1+u?)
As basis vectors it is convenient to choose the followings:
[by, K] ke ]
= ; = 4.2.10
“TbE 0T 210

Here b, is a crystallographic axis, at small angle to which there is propagated an
electron (see Fig. 4.8). Then we have

q:siny, | 2uqusinyy;
1—|—M2 (1 +M2>2 )

qrcosyy,  2uqucosy,
12 = Ie2 = R 7 -
1+u (14 u?)

11 = Ie1 =
(4.2.11)
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In (4.2.11), as before, ¥/, is an azimuthal angle of an outgoing photon; y, is an
azimuthal angle of a recoil momentum. After substitution (4.2.11) in (4.2.3) we get

1 (21’ _
o =1 () siste)Pero(-r?)ola — )
27%0

X ——————3{Gocon + ¢iGi h} dQldq,
5 (q2 " 1/,0 ) col col t

where

A w'q; cos® (Y1 — ).
i
2
Gicon = 28182(1f#)4[ wsin(2(2y, — ) 420 sin(24) — sin(2y,)];

Gocoh = (?% + 8%)

Gacon = 0;
G3con = 28]82#[ u cos( 2y — ) + 2u? sin(2y,) — cos(2l//2)].
(4.2.12)
One-dimensional J-function d(g; — g,,;) remains instead of three-dimensional one

after integration over transverse recoil momentum. For its elimination we’ll take
the kinematic correlation between the photon angle u and the longitudinal recoil

component g;:
1 (1 +v: 1+ u2>
qi=pu—pu—0=7 - .
2 & €]

This expression was deduced in ultra-relativistic approximation (g > 1,6, < 1)
with taking into account the law of energy conservation. Having expressed 2
through u, g;, we’ll deduce:

o(l +u*) 2uq,—q
28182 282

q = 3@(3(1 +u?). (4.2.13)
It is possible to neglect terms, which are proportional to g;, (all the more g?), since
it was noted before g, < 1.

Thus, dQ; = 7du dy, = 2&319 s=—dqidy,.

The region of integration in momentum space is defined in a longitudinal
direction by collimation angle of radiation u. = &0}, (see the formula (4.2.13)),

and in transverse one—by Debye-Waller factor (range g7 > 4h% /7% in dimension
units gives the contribution to the cross-section, not exceeding several percents):

S<q<o(l+ul); 0<q <2/VP (4.2.14)
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In momentum space the conditions (4.2.14) describe a disc, which radius is much
larger, than its thickness, and which is located perpendicularly to a momentum of
the initial electron (since photons are emitted in a cone with an opening angle
0. < 1, which axis coincides with an electron momentum)—so-called Uberall’s
“pancake” [9].

The cross-section (4.2.12) is obtained in coordinate system connected to the
photon momentum. For calculations it is more convenient to pass in the system
connected to initial electron momentum. Because of that these two systems are
rotated relative to each other trough an angle 0; ~7~! < 1, the expression (4.2.12)
in new system remains unchanged within accuracy up to terms 2. Herewith
the variables g, g, will designate the longitudinal and transverse projections of
recoil momentum relative to a direction of the initial electron.

Proceeding from (4.2.12) (taking into account the relationship 4.2.13), we
obtain the following expression for the coherent contribution to intensity of
radiation:

dleoh _ . dOeon _ 2220 1 (27)°

dhoo ~ dho  w n \a

1 exp(—2¢?)

X 5e 2/dwldqquzlS(ga)\ X5((1*25%)—
( 1/:00)

y [(ﬁ RS O R L wzq

€182
q; ql
2Ze 1 (27:) Z| 2 exp(—7g2) dg2
7—2
1/.00) 8u
x [1+(1—x)2—4(1— )M} (4.2.15)
gazl

For obtaining of the formula (4.2.15), the integration over an azimuthal angle of
outgoing photon , is carried out. The integration over 3-dimensional recoil
momentum is removed by J-function and replaced with summation over the
reciprocal lattice vectors getting into Uberall’s pancake:

0<g,<o(1+ul); 0<g,<2/VP. (4.2.16)

The dependence of the coherent part of cross-section on orientation of a single-
crystal target «is incorporated» just in the last two inequalities. Really, the Uberall
pancake, as it was already mentioned above, is perpendicular to the electron
momentum, and in case of crystal target rotation relative to electron beam the
different reciprocal lattice vectors enter into pancake and leave one, resulting,
finally, in the orientation dependence of the radiation yield. Direction of electron
beam p, relative to a crystallographic axis is possible to set by two angles,
for example polar angle 6 between the electron momentum and crystallographic
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axis by and azimuthal angle o between a plane (p;b;) and crystallographic
plane (b;b,) (see Fig. 4.8). In this case the longitudinal and transverse components
of reciprocal lattice vector g, (which is characterized by three projections
g1 = 27“}1, g0 = k g, =2 “I; h, k, | are the integers) are defined as follows:

2
g = —n(hcosﬁ + ksin 0 cos o + Isin O sin o),
a (4.2.17)

— 2
2=\ & — &
The incoherent contribution to intensity is calculated by integration of cross-
section doj,. (4.2.7) over transverse recoil and over the photon outgoing angles.

The first integration of the first summand (do) is carried out already (see the
formula (4.1.12)). We’ll carry out the similar integration for the second term:

27%¢ 6d(u

eXP( Pq )d i 0d0 ud Qrd%d%

exp(—7 ‘1) 2 2\ 12 2
X ———12(e7 +&5)IF — de, 8,15 |. 4.2.18
(q2 + l/p(z))Z[ ( 1 2) 192 3] ( )

The integration over azimuth is carried out in the same way as earlier. As it was
mentioned above, the exponential multiplier

exp(—7°q") = exp(—7°q;) (exp(—7q;)) = exp(—#q})

differs from zero in region qlz §4/7’2 < 1, in which the result of azimuthal
integration can be written in the following form (see (4.1.5), (4.1.6), (4.1.9)):

(e @
4 (1+u2)”

/ Pdy, = 3x(q:) + y(q)

1 —u2)? w2 q?
s = a4ty

Thus, after integration of the right part of expression (4.2.18) over transverse recoil
momentum we have

2

472,699 do udu di, &+ & _gt2_ U )
o (1 —|—u2)2 2n |7 & &1 (1 +u2)?
/7 (1/2) dq,q, exp(=7*q;)
where R(F f EaRyR: ) .

Summarlzmg the recelved result with expression (4.1.12), it is possible to get
the formula for the incoherent contribution to intensity
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dI, da; udu dy
inc K inc 422 6 1
hdo ~ "Chdo ~ 7 (1w 2n
2 2 2
& +& & & u
X 2T 3) —2—=—-8———1T; . 4.2.19
{ 6% ( inc + ) e el (1 + u2)2 mc} ( )

The last expression coincides with expression for intensity of an ordinary
bremsstrahlung, when replacing I'(u) — I'ipc(u), where

Fine (0)=T(u) = R(¥*) = In(1 + u*)py — 2 — R(#). (4.2.20)

From the proceeding (4.2.19) and (4.2.20), it is possible to calculate the incoherent
contribution for any choice of screening function [1 — F (q2)]2 / q*, since the value

['(u) is calculated by formulae (4.1.6) and (4.1.10), and for the function R(7*) we
have the expression

4/7 )

1 1 —-F(g?
R) = [ Jagen(-ra)et =Lk
0

Herewith it is necessary to mean, that ¢> = g> + 0°(1 + u?)* and, generally
speaking, R(7?) = R(7*,u). In some cases the function R can be calculated ana-
lytically. Let’s divide the integration region into two parts as before: 0 < g> < g3
and g3 < ¢? <oo, and 1/p3 < ¢ < 1/7.

The last double inequality is not always fulfilled, however, for crystals repre-
senting interest, for example, diamond and silicon, it is true. The screening radius
po for these crystals considerably exceeds the amplitude of thermal vibrations 7.
In the first region we use the expansion of the exponent

%

[ (1)2)q; (1 = Pq;)dq;
. _/ (g2 +1/p3)°

1 _
~ L (g3 }) 1 - 7).
0

The integration through the second region can be spread up to oo, since the
integrand decreases exponentially:

[ (1/2) exp(—Pg?)dg?
Ry = 7
t

1., _
= — EEl(—rzqé) .
@

Here Ei(x) is an integral exponential function. For the values of argument x < 1 it
is possible to use the expansion Ei(—x) =Inx —x+ 0.577.... The boundary
between two regions q% is chosen in this way that in our case this expression is
applicable (7g} < 1). Thus, we have the following expression for required
integral: R = Ry + Ry = —(1/2)[In(7*/p§) + 1.577]. Subsequently, the quantity
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Dine = In(1 +u?)py — 2 — R =1In[f>(1 + u)’] — 1.212 does not depend on
screening radius, i.e. the incoherent contribution is defined only by root-mean-
square radius of thermal fluctuations for crystals with small Z and Debye
temperature.

During calculation of the coherent contribution (see 4.2.14), the integration
over photon outgoing angles 0 <u < u. was made, which is necessary to carry out
for the incoherent contribution also:

dline 5 6 »1In 7 +0.577 1
me 1 1— —
kIR U e 1+ 2

1 1 1+ 3u2
—(1 —x)(l _Tug) -5 —x)(In7* —2.523) - (1 —(117”5>}

(4.2.21)

During calculation (4.2.21), as before, it is neglected by the dependence on u” in

the logarithm argument. Thus, the intensity of BS in a crystal is defined by the sum
of two expressions (4.2.15) and (4.2.21):

dlery = dline + dlcop. (4.2.22)

Let’s calculate Stokes parameters ¢, &3, which correspond to the linear polari-
zation, in case of axial collimation of y-radiation. For this purpose it is necessary to
integrate numerator in (4.2.8) over unobservable variables, since the denominator
is already calculated, see (4.2.15), (4.2.21), (4.2.22). We’ll note at once that after
averaging on the photon azimuthal angle Fi,. = 0 as well as in a case of an
amorphous target. After the procedure of averaging which is similar to applied one
for calculation (4.2.14) we have

_ 272651 (2m\° 5
Ficon = - ;(z) Z|S(gm)|
gi

exp(—g2) 5g2t[ 5 .
X ————L =M (1 — x)—-sin(2y,,) | . 4.2.23
(e2+1/m5) gu ( gz, S (2V2n) ( )

ol

The expression for Fs turns out from (4.2.23), when replacing sin(2yr,) —

cos(2y,).

The azimuthal angle V,, in (4.2.23) is counted from the plane p;b,. As a rule,
the angle 6 between axis b; and the electron momentum p, (see Fig. 4.2) is small
enough 0 < 1, therefore in a good approximation

WZ« = arctg (g3a/g2a);

. 28,,8; 2, — 23,
sin(2s,) = 2228 cos(2,) = 2 S
g, +a, 2, + &,
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The expression (4.2.15) with taking into account (4.2.14) can be classified as
follows:

(a) the whole set of the reciprocal lattice vectors in the Uberall’s pancake arranges
a plane;

(b) the set of the reciprocal lattice vectors in the Uberall’s pancake arranges a
form of row;

(c) there is only one single reciprocal lattice vector in a pancake;

(d) the reciprocal lattice vectors are absent in a pancake.

In cases (a) and (b), which are named “effect of a plane and row”, the coherent
contribution to the radiation intensity is defined by the sum of contributions from all
vectors getting in the pancake, and achieves values, several times as much exceeding
the incoherent part, however the polarization degree is not too high (because of
averaging over a set of reciprocal lattice vectors with various azimuthal angles v/, ,,).

The case (c), so-called “point effect”, corresponds to orientation, when in the
sum (4.2.14) the single reciprocal lattice vector gives the contribution. In this case
the coherent part of the radiation intensity not so much differs from the incoherent
part, but polarization is much higher, than in the previous case (since does not
occur averaging over an angle V/,,.

In a case (d) the coherent effect is absent and all characteristics of radiation are
defined by the incoherent part.

From (4.2.23) it follows that in a case of “point effect” the plane of the
maximal polarization is perpendicular to the plane, in which the recoil momentum
and electron momentum p; are placed.

The orientations of a single crystal, which correspond to described effects, are
illustrated in Fig. 4.9. Note that the case of a plane effect corresponds to orien-
tation, when the beam of electrons goes along any crystallographic axes, and the

Fig. 4.9 The orientation of a)
the Uberall’s pancake relative
to the reciprocal lattice in
case of a plane effect (a), a
row effect (b) and a point
effect (c¢)
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row effect corresponds to orientation, when the beam of electrons goes along the
crystallographic plane. Really, the family of crystallographic reciprocal lattices
(111) getting in the pancake (Fig. 4.9b), corresponds to family of crystallographic
planes, which are perpendicular to the reciprocal lattice vector (111). The same
vector is perpendicular to the electron momentum. It means this orientation cor-
responds to the channeling in a plane (111).

The orientation corresponding to the point effects is achieved in case of increase
of disorientation angle 0 with regard to the crystallographic axes and in case the
electron momentum lies outside the crystallographic plane.

The plane effect, otherwise named coherent radiation of B-type [14] will be
considered in the next paragraph.

The CBS process can be described also in the coordinate space (see, for
example, the book [15]). To show the connection between the described approach
and the approach developed in [15], let’s consider the elementary case of a point
effect, when the coherent effect is caused by the lattice vector (010) for angles of
orientation 6 < 1, ~ 0. In this case from (4.2.17) we have

2 2
g~ “T Gin 0 cos o ~ 220
a a

For CBS in the straightforward direction (4. = 0) from (4.2.14) it is possible to
derive the expression for relative energy of CBS photons:

my 1 x
a 291 —x
from which directly follows
h AmlZ
= e (4.2.24)
& 14 4nZ0

In the last expression the lattice parameter a is substituted in dimensional units.
The second summand in a denominator (4.2.24) is caused by the recoil effect. With
the increase of the electron Lorentz-factor the value x grows and, generally
speaking, if the following condition is satisfied

Ve 1

—0> — 4.2.25

a > 47 ( )
it can achieve the values close to unity (i.e. icw — ¢;). For relatively small
values of y and 6, when the condition opposite to (4.2.25) 4n%9 < 1 is satisfied,
then the relative energy of photon is calculated from the simple elementary
formula

7
ho = 4ny*mc? ;9 (4.2.26)
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It is easy to deduce the expression for the photon wavelength from the last
formula:
1

a
1_2“/25

(4.2.27)

which can be rewritten as ¢ = dcgs.

Here dcps = a/6 designates the “perturbation” period of the electron trajectory
by the crystalline lattice, and the value 2y?1 is none other than CBS formation
length in straightforward direction.

Let’s estimate the maximum available linear polarization P, of CBS beam.
We’ll consider, first of all, the point effect (since in this case the polarization is
higher) and, secondly, the case of “hard” collimation of radiation. As it is shown
in [16], the hard collimation (u. <1) results in the effective suppression of the
incoherent part of cross-section and, as a consequence, to increase of photon beam
polarization. The influence of collimation on the coherent part comes to the
monochromatization of maxima without their reduction. In case of collimation
u? <1 the incoherent part is much less than coherent one, therefore calculating
Prax, the former one can be neglected. Since in the sums (4.2.15), (4.2.23) only
one summand remains, it is easy to see that Stokes parameters are defined as
follows: &; = Gicon/Gocon-

A line designates here the result of integration of expressions (4.2.12) over the
azimuthal angle of photon:

p 271'52 2 5 _5
Gocon = 72% 1+ (1—x)*—4(1 fx)w :
q; q
~ 2n0%g? 52
Greon = = 22(1 = ) sin(20);
q; q;
= 2716%¢? 52
G3coh = — zqt 2(1 _x)TCOS(lez),
q; q7

Hence we have

_ 2 = 2(1 — x)0%/q}
P= m_ 1+ (1—x)—4(1 —x)d(q — 8)/q>

It is clear that the polarization achieves the maximal value at g; = :

2(1 —x)

“Tr i (4.2.28)

max

The expression (4.2.28) gives the limiting value of polarization (for example, for
x = 0.3 the linear polarization is equal to Py,x = 0.94), whereas the effect of real
conditions of experiment (the contribution of incoherent part, divergence of
electron beam, influence of target thickness etc.) results in the essential reduction
of a linear polarization degree.
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4.3 Coherent Bremsstrahlung of B-type

For electrons moving along the crystallographic axis (i.e. for 0 = 0), the pancake
in the space of reciprocal lattice is oriented perpendicularly to the crystallographic
axes and, consequently, into one will get the whole set of reciprocal vectors, which
satisfy to following condition

1 x 2n

== =1,2,3... 43.1
2"/261—)6 Lln, n Pt ( )

In other words, the whole plane of reciprocal vectors, i.e. a set of ones with any
h, k (the plane effect) gets into the Uberall’s pancake. The expression for energy of
coherent maxima follows from (4.3.1)
fiw, Anle
Npmmm a4 T (4.3.2)
& 1 +Tep

For energy & ~ 1000 MeV, as follows from (4.3.2), the first maximum for a
diamond single crystal corresponds to the relative energy of photons x ~ 0.97 and
it is positioned in an energy range near to the end of a spectrum, where the
coherent effects are expressed very weakly.

However for electrons with energy & ~ 100 MeV the situation is sharply
changed. The dependence of the first coherent maximum position in a spectrum is
shown in Fig. 4.10 depending on electron energy for a single diamond crystal and
silicon one [17].

The monochromaticity of a peak is defined by a collimation angle 0. deter-
mining the lower bound of coherent maximum:

1 Xmin
2'))26 (1 - xmin)

22y _ 271
(142765 = —n. (43.3)

For the energy of photons with x <xpi, the pancake shifts towards the origin of
coordinates in reciprocal lattice in such manner that a whole plane of reciprocal

Fig. 4.10 Energy ho, MeV
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Fig. 4.11 The spectrum of 3
CBS intensity of B-type for A
collimation 0, = 0.6 mrad. "
Arrows mark the positions of  Z )
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vectors escapes the pancake and the radiation spectrum will be determined by the
incoherent part only.

The CBS spectrum of B-type is shown in Fig. 4.11, which is calculated for
electrons with energy ¢ = 150 MeV, moving in a thin diamond crystal along an
axis (110), for the collimation angle 6, = 0.6 mrad (yf. = 0.18). From (4.4.1) and
(4.4.2) it is possible to obtain an estimation of the spectrum monochromaticity of
CBS beam (neglecting the multiple scattering):

Ao Ax

po=—=(1- x,)7%02. (4.3.4)

As follows from (4.3.4), the monochromaticity for collimation angles 0. < 77!
can achieve ~1%.

The estimation using the formula (4.3.4) for y0. = 0.18 gives the value
Aw/ow =~ 0.5%, what well agrees with the result of calculation by the exact
formulae (see Fig. 4.11).

4.4 Coherent Bremsstrahlung Beams and its Applications

Due to such characteristics of CBS as polarization, quasimonochromaticity, tun-
ability, etc., coherent bremsstrahlung beams are widely used at various facilities to
produce photon beams for investigations in nuclear physics and high energy
physics [18-20]. It is evidently the advantages of such beams are defined by the
relation between do,;, and do;,.. Very roughly this relation is determined by the
ratio exp(—72g*) /(1 — exp(—7g?)) calculated for the minimal reciprocal vector
g coming to the Uberall pancake (see Eq. (4.2.7)). Also the coherent effect is the
highest for the shortest crystal lattice constant. From these criteria the diamond is
the best crystalline radiator. The diamond possesses other important feature—a
high thermal conductivity, much higher than ones for such crystals, as Si, Ge, W
[21]. A high energy intense electron beam passing through a crystalline target
results in significant energy deposition in a volume around the beam axis, which
leads to the local temperature rise. This local heating can change crystalline
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properties of a target or even destroy it. The main part of experiments with the
coherent bremsstrahlung beams have been carried out using diamond targets. The
main part of experiments with the coherent bremsstrahlung beams have been
carried out using diamond targets.

Using crystals as targets is inevitably connected with the procedure of orien-
tation of a crystal, which essence consists in the repeated carrying out the fol-
lowing operations:

(a) investigation of an orientation of crystallographic planes relative to the elec-
tron beam and their identification, i.e. reconstruction of a “map” of planes;

(b) maximum exact matching chosen crystallographic axis or plane with the
direction of electron beam (for example, with accuracy not worse than
0.1 mrad for ¢; = 1 GeV);

(c) crystal rotation in order to achieve the chosen orientation.

Since the orientation of crystal relative to the electron beam is defined by two
angles (for example, 0 and o), for an achievement of any given orientation it is
enough to have the goniometric device with two axes of rotation. As a rule, there is
used a goniometer with two perpendicular axes of rotation, one of which is per-
pendicular to an electron beam (see Fig. 4.12).

The relationship between angles of rotation around of horizontal and vertical
axes (Y and yy) with angles of orientation is given by the following formulae:

0=\ + 5, o=acctg(Yy/vy) - B (4.4.1)

In (4.4.1) B is the angle between the vertical axis of rotation and crystallographic
axis bj (in case of coincidence of the electron momentum p,; with an axis b;). The
obtained expression is valid for goniometric angles V4, Yy, which is counted off
from angles lﬁ%, 1//3, corresponding to the zero orientation of a crystal, when the
crystallographic axis coincides with direction of electron beam.

It is possible to show that the longitudinal projection of the reciprocal vector is
expressed through goniometric angles and Miller indices as follows (in case of
orientation of the electron momentum close to the axis (100)):

g = (2n/a)[h + kyry, cos p + Iy sin f], (4.4.2)
Fig. 4.12 The orientation of b)
single crystal: Angles 0, o “
being determined in respect
to crystallographic axes (a);
angles Yy, Yy, being .

determined in respect to
goniometric axes (b)
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1, arh., umats

Fig. 4.13 Graphical interpretation of the procedure of identification of crystallographic axis: the
dependence of the radiation intensity from a single crystals in respect to the rotation angles
around the vertical () and horizontal (Y;) axes accordingly (a); definition of the
crystallographic axis position by the positions of maxima of orientation dependences on a plane
of angles ¥y and Yy (“map”) (b)

where h, k, [ are the Miller’s indices in the cubic basis. The expression (4.4.2) is
convenient for using during calculations of different orientation dependences
which are measured during rotation of a crystal in the goniometer.

If the crystal is oriented in such a manner that the electron momentum is
directed, for example, close to the axes (111), the similar formula can be easily
obtained, using the known trigonometric transformations in case of initial basis
turn on the given angle.

The simplest technique of preliminary orientation was proposed in the work
[22], were the orientation dependence (OD) of the current from a thin-walled
ionization chamber was measured, which is sensitive to a low-energy part of
radiation spectrum. The measured OD and the map of the crystalographic planes
are given on Fig. 4.13, on which “the turn routes” of crystal relative to the
electron beam direction are shown. Maxima in OD correspond to an orientation,
when electrons move along crystallographic plane. In case of route closing to the
axis, the intense maxima occur and finally merge in one global maximum corre-
sponding to the zeroth orientation. These maxima (plane and axial) are caused by
the low-energy radiation appearing in moving electrons in conditions of the plane
or axial channeling. After finding of the zeroth orientation of crystal the obtaining
of the chosen orientation does not represent particular difficulties.

The single-crystal target orientation is chosen depending on the requirements
needed for operation with a photon beam (position of maximum, intensity,
polarization degree, monochromaticity, ratio Ieon/finc etc.) during experiment.

All formulae given in the present chapter are obtained for the monodirected
electron beam and thin single-crystal. The crystals used in experiment, as a rule,
have thickness far higher than condition (4.1.25). Consequently, in calculations of
CBS characteristics it is necessary to take into account the angular distribution of
electron beam in process of its passage through a single crystal.

In the experiment [23] the linearly polarized CBS beam was used for mea-
surements of an asymmetry of the deuteron photodisintegration. In order to per-
form similar measurements there was a necessity to change polarization plane
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periodically during the experiment. In Fig. 4.14 it is shown the crystallographic
“map” of the used diamond crystal [24], where No. 1 and No. 2 denote the crystal
orientations, each of them provided the CBS beams obtaining with identical
spectral characteristics but the inclination angle of the polarization plane was
rotated for 90 ° without the polarization degree changing. In other words, passing
from the orientation No. 1 to No. 2 the sign of Stokes parameter &5 is changed to
opposite (fg1> = —gg”).

The orientation No. 1 was chosen in order to provide the “point effect” from the
contribution of (0,4,0), reciprocal vector but for orientation No. 2—from the vector
(4,0,0). The diamond target with thickness 0.5 mm and transverse sizes
6 x 10 mm has been cut in such a manner when axes (100), (010), (001) were
perpendicular to sample surfaces. The electron beam with energy ¢, = 900 MeV
passed through a target close to the axis (001).

To obtain the polarized photons with energy icv = 100 MeV for the asymmetry
yd measurements [23] the orientations were following:

No. 1: Yy =40mrad, Yy = 1.5mrad
No. 2: Yy = 1.5mrad, Yy = 40mrad

In Fig. 4.14b two CBS spectra for orientations No. 1 and No. 2 measured by a
pair magnet spectrometer are shown. Within accuracy of the experiment both
spectra were equal. The result of simulation with taking into account the effect of
CBS beam collimation (0, = 0.6 mrad) and multiple electron scattering is shown
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Fig. 4.15 Comparison of the
measured spectrum (dots) and
simulation results for

Wy = 40 mrad; g1 = 900 MeV
Yy = 1.5 mrad (fop) and
CBS simulations for the
Stokes parameter &3 (bottom)
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in Fig. 4.15 (top) [25]. The bottom curve describes the dependence of Stokes
parameter ¢; on a photon energy. The measured values of Stokes parameter &3

confirmed the simulation results (5§” = +40.70; gg” = —0.73, see [24]).

As arule, there are “thick” crystals used, for which the r.m.s. angle of multiple
scattering is much more than characteristic angle y~'. But due to the hard colli-
mation of the CBS beam a contribution from incoherent part can be diminished
significantly and, as a result, the CBS beam gets a high polarization degree and
acceptable monochromaticity (see, for instance, [26-28]).

To study the dependence of a cross-section of some photoprocess on a photon
energy it is possible to utilize such the characteristic of a collimated CBS beam as
a quasimonochromaticity. In case of hard collimation of CBS beam, besides the
suppression of incoherent part, the monochromatization of CBS spectral maxima
(on the full analogy of the undulator radiation) occurs. Changing an energy of the
collimated CBS peak (rotating a crystalline target or changing an incident electron
energy) and measuring the yield of a process it is possible to reconstruct a cross-
section. In the experiment [29] this technique was used to investigate the process
p — ntX.

Electrons with energy 20 GeV passed through the diamond target with thick-
ness 80 u in order to produce a quasimonochromatic photon peak in the energy
range 8—14 GeV by a collimation 0, = 0.011 mrad. Note that during the exper-
iment approximately 2 - 10'® electrons passed through the diamond crystal without
a significant radiation damage.

The same technique may be used in the nuclear physics for a photon energy
ho <100 MeV. In this case it is possible to use a beam produced by the CBS-B
mechanism.
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Fig. 4.16 Experimental CBS di .
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The results of measurement of CBS spectrum of B-type for the energy of
electrons ¢; = 300 MeV at passage through the diamond crystal with the thickness
of 0.35 mm along (110) axis [30] are shown in Fig. 4.16.

The calculations of CBS spectrum of B-type with taking into account the
electron multiple scattering in a diamond target are given here as well. It is
possible to specify the good coincidence of experimental data with results of
calculations, having in mind that the ratio “peak/background” in this experiment is
appreciably lower, than theoretical ones for the ideal case (see Fig. 4.11). Such
reduction of the coherent contribution in comparison with incoherent one is caused
by the effect of multiple scattering in target, which thickness wittingly does not
satisfy to the criterion of a “thin” target (see expression (4.1.25)). During multiple
scattering the electrons of initial beam change the entering angle in respect to the
initial direction (along the crystallographic axis) and leave CBS mode of B-type
passing to the mode of ordinary CBS (i.e. the plane effect is replaced with the point
effect). In this case the radiation spectrum will be defined only by the angle 0
between electron momentum and crystallographic axis (one may expect the
electron scattering has azimuthal symmetry, what results in averaging in respect to
an angle o).

The evolution of CBS spectra in case of orientation angle 0 changing in the
interval 0 <0< 1.8 mrad for diamond crystallographic axis (100) and energy of
electrons 4.5 GeV [31] is shown in Fig. 4.17. As distinct from CBS spectra of
B-type, the essential enrichment of spectrum in the soft part is observed in this
case.

When an electron beam moves through a crystalline target nearly a crystallo-
graphic axis (the disorientation is less than the so-called channeling critical angle
or Lindhard’s angle , [32]), electrons can be captured in the mode of axial
channeling and generate the intense radiation at channeling in the range of relative
energies of photons x <0.1. The estimation of the Lindhard’s angle for (111) axis
of tungsten and electron energy ¢ = 1 GeV gives a value y; ~ 1 mrad [3].

However, because of multiple scattering in the crystalline target only the small
part of initial electrons moves in the channeling mode, whereas the main part of
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the electron beam moves at the angles 6 > i, , that results in CBS generation in the
soft part of spectrum.

This effect is used in a case of creation of the positron sources on the basis of
oriented crystalline converters. The beam of high-energy electrons passing through
the “thick” crystal gets the angular divergence, which determined, on the average,
by the angle of multiple scattering (4.1.24). The divergent electron beam gener-
ates, mainly, the coherent bremsstrahlung (the except for a small part of the beam,
which moves at the angle 0 <, in respect to axis, remaining in a mode of axial
channeling). CBS beam enriched with photons in the “soft” part of spectrum,
generates the electron—positron pairs, positron component of which is separated
and accelerated in the subsequent sections of the accelerator. As distinct from
traditional positron sources, where the amorphous converters are used, in which
the electron—positron pairs are formed by photons with ordinary bremsstrahlung
spectrum, the crystalline converters can provide the increase of pairs yield. It is
clear, both the total number of photons in CBS spectrum, and the number of
photons in the “soft” part of CBS spectrum exceeds the similar characteristics in
the Bethe—Heitler spectrum, therefore the positron yield from the oriented crys-
talline converter will exceed one from an amorphous converter of the same
thickness. Increasing of the yield of “soft” CBS photons has been shown in the
experiment [33] in case of interaction of electrons with the energy ¢; = 0.9 GeV
with the single crystal tungsten target with thickness 0.64 mm being oriented by
axis (111) along the momentum of electrons (see Figs. 4.18, 4.19). These figures
present the results of measurements of a photon yield with a fixed energy when an
electron beam passes close to the plane (001) (Fig. 4.18) and the axis (111)
(Fig. 4.19).
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Fig. 4.18 Orientation

dependence of the photon 2.0
yield with energy fio = 40 MeV
how = 40 MeV for the
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One of the first experiments, devoted to investigations of positron production
via CBS mechanism was carried out using electron beam with energy
&1 = 1 GeV [34]. The results of measurements of an efficiency of positron pro-
duction with the momentum 20 MeV/c generated in tungsten crystals with ori-
entation (111) and different thicknesses (f; = 0.4 mm and # = 1.2 mm) are
presented in Fig. 4.20.

As one may see the results of simulations where a contribution from CBS
mechanism only was taken into account agree with experiment good. Parameters
FWHM of the measured curves are defined, mainly, by the multiple scattering
processes. In the approximation where this process is the same as for an amorphous
target 0} = 4.9 mrad and 02, = 8.8 which are closed to quantities FWHM/2.

It is necessary to specify that for not too “thick” crystals (#<Lj) the
agreement between the experiment and calculations is rather good. With the
increase of crystal thickness for improvement of fit it is necessary to take into
account the contribution of the cascade processes, in which the radiation spec-
trum is defined by a varied angle of movement of electrons in respect to the
crystallographic axis.
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generated at the outgoing positron angle 0 = 0. Experiment—dots; CBS simulation—solid curves

It can be pointed that the positron source realized according to described
principle, was used at the linear accelerator-injector of the electron—positron
collider KEKB [35], which has provided the increase of stored up positron current
on 25 % in comparison with the traditional positron source.
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Chapter 5
Resonant Transition Radiation

5.1 The Basic Characteristics of Transition Radiation

Transition radiation (TR) arises in case, when a moving charge is crossing a
boundary of two media. Ginzburg and Frank predicted this effect in the work [1],
considering a problem within the framework of classical electrodynamics. Later,
the theory of transition radiation was generalized and was investigated in details in
many experimental works.

The detailed description of TR characteristics can be found in books and papers
[2-6]. Following the approach of [3], let’s consider the geometry shown in
Fig. 5.1, when the charged particle with velocity v = fc comes out from a medium
with the permittivity ¢ in vacuum (¢ = 1) through tilted boundary.

In coordinate system, in which the axis z is directed along a perpendicular to a
boundary, and the axis y is located in a plane passing through this perpendicular
and particle velocity, the components of radiation field E = {E,,E,,E.} are
written in the form [3]

—Il nwn, — Iyneny;

E, =
E, = —Hznynz—i-l_ly(l —ni); (5.1.1)
E, = Hz(l — nf) — Iynyn..

There are the projections of a unit wavevector introduced in (5.1.1)

k
n =— = {n,ny,n;} = {cos 0y, cos0,,cos 0.} = {sin0cos ¢,sin Osin @, cos O}
o )

and vector B = {0, f, B,} = B{0, siny, cosy}. Components of the Hertz vector
I1,, I1,, which are used in (5.1.1), were found in the work [3]

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures, 73
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_5,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 5.1 The kinematic
variables describing the
“forward transition

radiation”
z>0
vacuum
g =
z<0
medium
g+ 1
I, = e B.(1 —é&)n,
e (snZ +4/e—(1 —nf))
ﬁyﬂz{l —nt4nfe— (1 —nf)}
X
2 )

{(1 - ﬂyny) —53”3] (l - ﬁyny - ﬁz &— (1 - n%))

(5.1.2)

_ e Bz(l — 8)1’11
°ome (snz +4/e— (1 7’12))

(1= o) (1= neyfe— (1=n2)) = B2 — B, Bnyn.
X )
[(1 — ﬁyny)z—ﬁing] (l — Py — By/e— (1 — n?))

The factors exp(iwR/c)/R describing a spherical wave with frequency o at the
distance R from a source are omitted in expressions (5.1.2). Dependence of the TR
characteristics on frequency is defined by behaviour of dielectric permittivity &(w).

Let’s start with consideration of TR characteristics for the simplest case, when
the charged particle passes from an ideal conductor into a vacuum (i.e. in case
|e] — o0). It should be noted that this approximation works well for metals in the
range of frequencies from optical and lower ones.

In this case instead of (5.1.1) and (5.1.2) we have

E,=Cnn; Ey,=C (nynz - ﬂynz)§
E= G142 4 )

c =< b 5.1.3
R (T e o
e Bcosy

e [1— B(ny singy +n, cos )] [1 — B(ny singy — n cos )]
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From (5.1.3) it is easy to get the spectral-angular distribution of TR using the
known relationships:

aw
= R (B E [ HE)

dw dQ
_ e_zﬁf[l —n2 = 2B+ Br(1 - nﬁ)}
= e [(1 _ ﬂyny)z_ﬁing}z

As it follows from (5.1.3) and (5.1.4), the TR intensity in this approximation
(|&] — o0) does not depend on frequency (the spectral density remains constant for
any frequency).

Let’s consider the radiation in a cone of angles near particle velocity direction.
In a plane specified by equation n, = 0, the direction cosines n,, n, are expressed
through a polar angle 0: n, = sin8; n, = cos 0. In this case the denominator in
(5.1.4) can be rewritten in the following form:

(5.1.4)

[1 — B(siny sin 0 — cos y cos 0)]*x[1 — B(siny sin 0 + cos y cos 0)]*
= [1 4 Beos(iy + 0))*[1 — Bcos(y — 0)]*. (5.1.5)

It is clear, that in the range of angles & ~ i the second factor in (5.1.5) achieves
the minimal values, i.e. the spectral-angular distribution of TR (5.1.4) reaches the
maximal values just for this range of TR photon outgoing angles (see Fig. 5.2):

As it follows from the figure, the minimal value of the TR yield coincides with
a direction of charge velocity. The angular distributions of TR for various values
of the Lorentz-factor (and accordingly f) in dependence of the direction cosines,
which can change from —1 up to +1 are shown in the presented figure. An
appreciable asymmetry in angular distribution (for example, for y = 10, see
Fig. 5.2a) is observed for relatively small values of the Lorentz-factor, what
practically disappears for y > 100 (see Fig. 5.2b). Further, as it is shown above, the
range of angles near velocity vector direction, where the main part of TR intensity

b)

dw
duwdft”
arb. units

Fig. 5.2 Two-dimensional angular distributions of TR for various values of the Lorentz-factor:
y = 10 (a) and y = 100 (b)
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is concentrated, is characterized by a scale ~y~!. Therefore, the description of TR
characteristics of ultrarelativistic particles is convenient to carry out in the coor-
dinate system X/, y/, 7/, where the axis 7’ is directed along the initial particle
velocity and which is obtained from the initial one via rotation around x-axis at an
angle .

In the new (primed) system the unit wavevector A = (A, A, A;) will be
expressed through initial direction cosines by the known rules:

Ax = Ny,
Ay = nycosy — ngsiny, (5.1.6)
A; =nysiny + n;cos .

It is clear, that in the rotated system the values A,, Ay take values of order y’l,
and A, ~ 1. The inverse transformation is following:

nx = AX7
ny = Aycosyy + A siny, (5.1.7)
n, = —Aysiny + A, cos .

2 2
Substituting (5.1.7) in (5.1.4), taking into account a relationship A, = 1 — A-“;A”

and using ultrarelativistic approximation

2
=1-—. 5.1.8
p=1-1 (5.18)
neglecting the terms ~ y’4 both in numerator and denominator we get

aw 2 A A +A, tan lp(yfz +AL+ Aﬁ)
=— : 5.1.9)
2 2 (
do dQ 7w?c (y‘z +A)2C +A)2,)

For perpendicular flight of a particle through a target (8, =0, f, = f,
n, = cos 0) instead of (5.1.4) we have the Ginzburg-Frank formula [1]:

aw e? B*sin® 0

= — , 5.1.10
dw dQ 7’c (1 — 2 cos? 9)2 ( )
or, in ultrarelativistic approximation:
2 2
dw e AT+ A (5.1.11)

2 2
dodQ = C(V‘2+A§+A§)
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Fig. 5.3 The variables
describing a process of
backward transition radiation,
i.e. when the charge is
moving from vacuum into a
medium

z>0
vacuum
&=

Having replaced the signs of a particle velocity components (f,, — —f, ) in
the formula (5.1.4) we obtain the formula describing TR from a charge, incident
from vacuum onto an ideal conductor. As it is easy to see from the formula (5.1.4),
in this case the minimum of a denominator corresponds to a direction
ny = —siny; n, = cosy, i.e. TR is concentrated near direction of the specular
reflection.

It is easy to show that angular distribution of TR for this geometry, referring to
“backward transition radiation” (see Fig. 5.3), is described by the same formula
(5.1.9) with replacement of an angle (A, — —A,), where angles A,, A, are counted
off from a direction of the specular reflection.

Two-dimensional angular distributions of backward TR calculated by formula
(5.1.9) with substitution (5.1.7) A, - —A, are shown in Fig. 5.4.

One may see that for small values of the Lorentz-factor the maximum in
asymmetric angular distribution of “forward TR” in a plane A, = 0 is located
between the distribution axis and a target surface. The same law is kept for
“backward TR as well (see Fig. 5.5).

Fig. 5.4 Angular distributions of “backward TR” for different angles of a target inclination
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Fig. 5.5 Diagrams of  DBackward TR
directivity for forward TR
and backward TR

5.2 Transition Radiation in the X-ray Range

The medium dielectric permittivity being far from the frequencies corresponding
to the absorption edges, in the X-ray range is described by simple expression [7]

g(w)=1- wlz,/co2 =1-—y, (5.2.1)

where w), is a plasmon frequency of a target material, which is defined by con-
centration of electrons n, in the target material:

| Z
Wy = \/47‘5}’[6}"()62 = 47'L'ZN()p}"()Cz. (522)

In the last formula ry is the classical radius of electron, Z is a charge and A is
atomic mass of the target atoms, N, is the Avogadro number, p is density. Instead
of (5.2.2) the “engineering” formula is often used.

2Z
hay % 21/ ~=pleV] (5.2.3)

where density is substituted in units g/cm’.

For such typical target materials as aluminum and silicon, the plasmon energy
of target is close to 30 eV. It is clear that in the X-ray range (how > 1 keV) the
dielectric permittivity (5.2.1) a little bit differs from 1: y =|1 —¢| < 1, that
allows having expanded the value ¢ in power of (w,/ ), to keep in the final result
only the main term.

For calculation of polarization characteristics of TR we will use the system of
unit vectors, determined through a normal to an interface b = {0,0, 1}:

e; = [n,e]. (5.2.4)
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The unit vectors (5.2.4) are written through direction cosines of a wavevector as
follows:

1

el :7{’1 7_n.x’0}7
VI (5.2.5)
| 2.
e = ﬁ{nxnz,n),nz, 7(1 — ng)}

The Hertz vector in the considered approximation has the following

components:
- Sl
where
C =1y ﬁ e
2 [nz 1— + \/—}
. (5.2.7)

{(1 - ﬁyn)') _ﬂzng} [1 - ﬂyny - ﬂz V ”g - X].

After substitution of expression (5.2.6) in (5.1.1) it is possible to find all three
components of TR field in the coordinate system connected with a wavevector,
which characterize the TR polarization.

ﬁyﬁ nx 2 2
El (elE) e \/m(l_nz +nz\/nzf)()a
e 1
2 (e2 ) e ZM (528)
X [ﬂ)'ﬂznynz - (1 - I’l?) X (1 + ﬁy”y + ﬂznz - ﬁ?)}a
E3 = (IIE) =0.
As before, let’s pass on the system connected with an electron momentum via

transformation (5.1.7) taking into account the ultrarelativistic approximation
(A, Ay ~y~1). Keeping the main terms, we get

X
Cosw( 2+A2+A2)( *2+A2+A2+7>

\/ 1 —n2=~siny.

G~

(5.2.9)
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Then, instead of (5.2.8) we have

C
~ & 2 B siny cos YA,
ncsmlp

_ e 1Ax
”C<r2+A2+A2)( *2+A2+A2+y)

(5.2.10)

E, ~ ;ﬁﬁz siny cos YA,

e 1Ay
ﬂc(y*2+A2+A2)( *2+A2+A2+y)

In the last expressions it is omitted, as before, a factor describing a spherical
wave.

Thus, the spectral-angular distribution of the “forward TR” intensity in the
X-ray range is calculated on the basis of formulae (5.2.10):

aw
dow dQ

R (|E+E>[)
. 2 2
e e

KL “(rr+al+n) (y*2+A§+A)%+x)2

(5.2.11)

and, as follows from the derived expression, it does not depend on the target tilt
angle W (it is necessary to emphasize that this conclusion concerns the relativistic
energies of the charged particle).

The angular distributions of the “forward TR” intensity in X-ray range for
beryllium target are given in Fig. 5.6a—c for various values of the Lorentz-factor,
from which follows that asymmetry in the angular distribution is observed for
1< 100.

It is necessary to specify that in the ultrarelativistic limit the values

aw, e 2 € (O
el 52
dow dQ ¢ | ]’2| m2c\ w

2
x — R (5.2.12)
) 2 2\ (-2 2 2 2 /2
)2 HATHAY) (V2P HAT AT oo

with accuracy to the terms ~7~! characterize the TR intensity components in a

plane, which is perpendicular (parallel) to the “reflection” plane, i.e. containing
both the vector of particle velocity and the normal vector to the target surface. As
follows from the above-mentioned formula, a parallel component is proportional
to a projection angle A, and perpendicular component is proportional to A,. In
other words, in ultrarelativistic approximation the position of linear polarization
plane is defined only by an azimuthal angle of an outgoing TR photon
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Fig. 5.6 The angular distributions of the “forward TR” for electrons with different energies in a
beryllium target

(arctang = A /A, = |Ey|/|Ez|), i.e. the linear polarization is radial one and
practically does not depend on frequency.

The deviation from the radial polarization can be found, having calculated a
degree of polarization in a plane, which passes through a wavevector and a
momentum of initial electron. In other words, it is necessary to calculate the
Stokes parameter &3 in the basis

e = n.B) ey = [n,e]. (5.2.13)

[, BII

In this basis it is possible to get the expressions similar to (5.2.8), which are
written through the angular variables A,, A,:

e . A;sin 924 A2+ A2 — ycos?y
Eyp = (eyE) =—C v -

/A2 2 2 ’
T AX + Ay
A’ + Az) cos Y
e (&
Ey = (eyE) = Son "

Tc 2 2
A2+ A2

Only the main summands have been kept in the last formulae. As it follows
from the obtained expressions, the ratio of polarization components

(5.2.14)
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Fig. 5.7 Dependence of the &
Stokes parameter ¢; on an -

azimuthal angle of TR photon y =100,y =m/4,A,=0

with fiw = 3 keV relative to 11— — —_—
a plane (n, B). The upper a+bcos 29
curve corresponds y = 100, 0.99
the lower y = 10

0.98

=10
097 !
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Ep _

LTI (< (5.2.15)

|Eay

shows that a polarization TR component intensity |E2ﬁ|2 (along a plane (nf)
essentially exceeds the intensity of component ~ |E| /g|2 in a perpendicular plane
and within accuracy ~7~2 coincides with total intensity of X-ray transition
radiation (see formula (5.2.11)).

The calculation results of the Stokes parameter depending on an azimuthal
angle of photon output @;(¢ = arctanA /A, ) are given in Fig. 5.7. Calculations
were carried out for a polar angle of a photon in the primed system

A= ,/Ai + Ai =71 for an aluminum target. The upper curve (nearly the con-

stant) describes the parameter {3 for y = 100, whereas the lower one—for y = 10.
In the last case it is possible to say that in case of oblique incidence of a charge on
a target (f =~ n/4) the linear polarization remains radial one with accuracy of a
few percent. The approximation {3 = a + bcos2¢ is shown here also.

5.3 Spectrum of the Transition Radiation

The “forward TR” spectrum is calculated by means of integration of expression
(5.1.4) over angular variables for chosen dielectric permittivity &(w), generally
speaking, for the complex one. Approximation |¢| — oo, which is used for the
description of TR characteristics from a metal target in an optical and infrared
range, gives the spectral distribution as constant.

In X-ray range the spectral-angular distribution is given by the sum of
expressions (5.2.8), which we write down as

aw o« 2(thp>4 720°
—N 2
O (14 V202)2(1 +926° + vzwﬁ/wz)

hdow dQ 2 (5.3.1)
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After integration of the received expression over a solid angle (dQ =
dAdA, = %dqo d0?) it is possible to obtain the TR spectrum

aw  « iw \? yho 2
—— == [1+2 Inf1+(5=2) | —2¢. 3.2
hdw n{lJr (thp)]n +<hw>] } (532)

The spectrum (5.3.2) (the upper curve) is given in Fig. 5.8. The spectrum of TR
intensity for the fixed collimation angle of photons y0. = 1 is shown here for
comparison, as well. As follows from figure, the spectrum of TR intensity is
rapidly going down function with an increase of energy of TR photons. With
increasing of energy 7w from the value yhiw, to 10 yhiw, the yield of radiation
decreases approximately by three orders of magnitude.

As a whole, the used approximation for spectral-angular distribution of TR is
valid for small outgoing angles of a photon (0~ 7y~!) and in the range of fre-
quencies of photons w > 2w,.

Integrating a spectrum (5.3.2) over energy of emitted photons from certain
minimal value %wy < yfiw, to the upper boundary of the spectrum, which may
tend to infinity, energy losses on the transition radiation may be estimated:

6l 7 1
D% & oo, (5.3.3)

[ aw |
W= | Zlhdo~o|yho, - N
/hdw @A hoo | 3

3

h o

From the calculated result follows that total losses depend linearly on energy of
the charged particle. Just this characteristic of TR is widely used in detectors of
elementary particles, where the measurements of particle total radiation losses
allow to define its Lorentz-factor.

Let’s note that the last result is valid for one boundary only. In the real
experiment, when the charged particle crosses a target, where TR is generated on
the entrance and exit surfaces of target, then for a rather thick target the result
(5.3.3) must be double.

Fig. 5.8 Spectrum of TR dW  «
intensity in a total cone (the
upper curve) and in a cone -
0. = 1/y (the lower curve)

\
1 1 1 1 1 ) hw/th
102 1075 1071 107°5 10° 10%5 10! g
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5.4 X-ray Transition Radiation of Ultrarelativistic Particles
in Layered Targets

As it is shown above, forward TR has a continuous spectrum in the range of
frequencies from @iy ~ 10" s™' (a millimeter wave region) to the X-ray range
(for y > 50). However, the spectrum of resonant transition radiation (RTR) arising
in case of flight of a charged particle through a layered target (for example, through
a periodic set of the foils, see Fig. 5.9), becomes quasimonochromatic.

The nonrelativistic particle with velocity v = fc moving through the similar
periodic structure will mainly emit at a frequency being proportional to frequency
of the passing of periodic structure:

2ny
wk:kQ:kT, k=1,2,..., d=4+4. (5.4.1)

For the ultrarelativistic particle, in full analogy with the undulator radiation,
position of a monochromatic line in a spectrum of radiation is shifted in a hard part
proportionally to value 2y?, what allows to use RTR for generation of mono-
chromatic X-ray radiation [8].

The resonance condition for RTR, which is generated in the periodic stack,
consisting of layers of a various material, was obtained by Ter-Mikaelyan [2]:

d — 2k

. = , k=1,2,....
L (Ve + Varl)

The dielectric permittivity of layers with an index 1, 2 and thickness ¢; and ¢,
(see Fig. 5.9) is designated in (5.4.2) through ¢;, ¢, accordingly. Further we’ll
consider RTR in a X-ray range, where

cosf = (5.4.2)

en(w)=1-— ozt (5.4.3)

w?’

where w), is plasmon frequency of medium with number n = 1,2.
As in the case considered in Sect. 5.2, X-ray transition radiation of ultrarela-
tivistic particle from the infinite boundary between two media, is mainly

Fig. 5.9 The producing of d
RTR when an electron
crosses a layered target

RTR photons

N

I ts

SN I

i 1
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concentrated in a cone with opening angle equal to 0 ~y~! <« 1 along a particle
momentum direction. The radiation intensity can be calculated in the following
manner (see, for instance, [6]):

dZWTR 6‘2 2 2 2
= in” 0(Z, — Z»)". 544
dQdo  42a” *M (%= 2) ( )
In (5.4.4) Z(; ) is a value, which differs from the radiation formation length
with frequency o in medium 1 (2) on the value n:

4c

|: 5 2 U)%I(Z):| '
oy ?+0"+—+

w?

Zip) = (5.4.5)

The formula (5.4.4) can be expressed through the field Etg

d2WTR _ ﬁ|E |2
dQ dow c TR

which for the infinite boundary between two media is given by the formula:

ie 0 0

pra (5.4.6)

Emr = - — >
p2H P+ 246+

It is easy to show that TR field at the exit surface of a layer will have an
opposite sign in comparison with field, which is generated on the entrance surface:
E, = -E;.

Then, taking into account a phase difference for radiation at an angle 6 between
points of particle entrance and exit in the first layer, it is possible to write down:

Eiayer = E1 + E; = E([1 — exp(—ig,)], (5.4.7)
where

a)_él B kilycos0  wl,

P = 7*@(1*5\/50059)
Lol 5 Wy, 4
~ 5 (y HE N =2 (54.8)

Finally, let’s introduce absorption of emitted photons in material of a layer:

1
Eiayer = E [1 — exp <+i(p1 — 20])} , (5.4.9)

where o1 = p,¢;, 1, is a linear factor of absorption of photons with frequency .
In full analogy one may deduce a TR field, which is generated by a particle while it
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is passing the first period of a layered target (i.e. the first and second layers, see
Fig. 5.9):

. . 1 1
E,.. = E [1 — exp(tq)l +ip, — EO-I —502)]. (5.4.10)

From (5.4.10) it is easy to obtain the spectral-angular distribution of TR from a
target consisting of N periods:

a*w a*w
2P ) (22 RBF 411
<dw dQ)N <dw dQ>TR S (54.11)

where the factor

01

> ) COS ¢ (5.4.12)

F,=1+4+exp(—a,) — 2€xp(

takes into account the interference and absorption of radiation in the first period,
whereas the factor

_ l+exp(—No) — 2exp(—1Na) cos[N(¢, + ¢,)]
3 1 +exp(—a) — 2exp(—5) cos(¢; + @)

: (5.4.13)

is essentially the interference coefficient, which, in case of a constructive inter-
ference, defines the range of angles and frequencies, where the resonant transition
radiation is generated effectively. In (5.4.13) ¢ = 0| + 0. It is easy to show that
neglecting absorption, the factor F3 reaches its maximal values under the
conditions:

(p12:(p1+(p2:2kﬂ, k: 1,2,... (5414)

Having substituted the used approximations in (5.4.14), we get

¢ o8 »?
e y*2+02+w—"2' +27w y*2+92+w—’f = 2k (5.4.15)

The last relationship is often written in the following form:

b 0
Po_P1te_H 2,0 (5.4.16)
2 2 Z 7
By analogy with (5.4.8), a phase ¢, is expressed as follows:

%
== 5.4.17

®2 7 ( )

One may see that the resonance condition (5.4.14) (or (5.4.16)) coincides with

the condition of a resonance (5.4.2) obtained by Ter-Mikaelyan.
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Neglecting absorption (¢ — 0) the coefficient F3 transforms to a form

sin? (N‘/%)
= 2/ 5.4.18
BT sin? (%) ( )

Then under fulfillment of the resonance conditions (5.4.14) we obtain F5 = N2,
and, consequently, from (5.4.11) we get

a*w ¢ d*w
= 4N?sin® (=L . 4.1
(da) dQ)N - ( 2 ) (dw dQ) - (5.4.19)

As follows from (5.4.19), the maximal yield of radiation has been reached
under fulfillment of the following condition:

sin’ (%) -1, ie.p =02m- 1);,

It should be noted that abovementioned formulae were deduced in classical
approximation, however the quantum approach gives the identical results, that
allows to use the received formulas for calculation of an yield of photons with
energy hw:

m=1,2,... (5.4.20)

d*N1r 1 d*Wr
= — 5.4.21
hdodQ ho hdodQ ( )

2 . .
Al Tee=w*|Z) — Z,|*sin> 0, o = 1/137 is the fine structure constant.

Further, the formula (5.4.19) gives the quadratic dependence on the number of
the periods for the fixed frequency of radiation (energy of photons) and an angle of
outgoing TR photon. However, in the real case with usage of collimator with the
finite aperture, the photon yield will be proportional to N only (a linear dependence
occurs).

The spectra of RTR intensity for the fixed angle of radiation 0 = 5 mrad and
energy of electron beam E = 100 MeV in the stacks of the beryllium foils sepa-
rated by vacuum gaps, with thickness ¢; = 10 um and the period d = 60 pm for
N = 10 (the curve 1) and N = 5 (the curve 2) without taking into account the
absorption are given in Fig. 5.10. Calculation was carried out by formulas
(5.4.11)—(5.4.13).

The maximum position in a spectrum is defined by the relationship (5.4.16). For
the fixed angle 0 the dependence of a phase ¢, on the photon energy is nonlinear
(see formula (5.4.15)).

The dependence of the value ¢,/2n on the energy of photons is shown in
Fig. 5.11. As follows from the diagram, in the energy interval 0.5 keV <w < 5 keV,
the peaks corresponding to k = 4, 5, 6 appear in the spectrum. Two peaks correspond
to each order of diffraction due to the nonlinear dependence of ¢, (w).

It follows from the nonlinear equation of a resonance (5.4.16), which can be
rewritten as the quadratic equation for resonance frequency wy (k= 1,2,3,...is
the diffraction order)

where
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Fig. 5.10 Spectrum of RTR
generated by an electron
beam with energy

E = 100 MeV in a stack
from N = 10 beryllium foils
(the curve 1), separated by
vacuum gaps

0y =10p, ¢, =50p), and in
the stack with N = 5 foils
(the curve 2). The angle of
observation 0 = 5 mrad

Fig. 5.11 Dependence of a
phase ¢,,(0,®) on energy of
photons for the same target

5 Resonant Transition Radiation

In the Eq. (5.4.22) designations [9] are used:

a>w )
, arb. units
dhw dQ vy =200
[ Be
250+ 1 0 =5 mrad
200+
150+
100+ |
501 J 2
— A : hw, keV
0 1 2 3 4 5
o2
2m
6\ -
s o, l\ /l ho™
4 hwsmm hw;nz\x
3L el vhe™
2 [
l [
I I I I J fw, keV
0 1 2 3 4 5
2
)
w—"(l +7920%) — koy + o1 = 0. (5.4.22)
0
4nfic 4
2 _ a2 b
wo =7 4 or = Op (5.4.23)

Frequency o corresponds to the “vacuum” frequency of radiation in
“straightforward direction” for the charged particle with the Lorentz-factor y and
trajectory of such a particle perturbs with the period d. The frequency wr
characterizes a target with thickness ¢;, made of a material with the plasma

frequency w,.

It is obviously that the Eq. (5.4.22) has solutions for diffraction orders

K> 470 (1 4 26%),

(5.4.24)

o
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which are written in the form

o) Q4 2
in =————5 |k — [k —4—(1 +926) |,
(| L)
(5.4.25)
o (200 2
max = —————— |k k2 —4—(1+926%)|.
ok 2(1—1—)}292)[ +\,/ a)o( M )

So, for k = 4 the positions of peaks hwf{‘i“ ~ 1.2 keV; hof™ ~ 2.3 keV. Fur-
ther for k=5 we have hw’j“i“ ~ 0.7 keV; Hws™ ~ 3.6 keV; for k=6 —
o™ ~ 0.5 keV; hol™ ~ 4.5 keV (see Fig. 5.11).

Comparing the widths of RTR lines in the hard part of a spectrum (at
hoy > 2 keV, see Fig. 5.10) we can note that the relative spectral width is
determined by the number of periods ﬁ)—f ~ %

For the further calculations the linear coefficient of absorption of photons in
beryllium (in inverse micrometers) was approximated by expression

0.0542 0.0013 0.0006
,u(w)[,ul]zl.SS( T - ),

o7 > (5.4.26)
where the energy of photons w is substituted in keV. The plasmon energy in the
beryllium target calculated by the formula (5.4.4), reaches the value
haw,, = 26 eV. For the lithium targets /i, = 13.8 eV.

The phase diagram for layered targets from Be (the upper curve) and Li (lower
one) is shown in Fig. 5.12. Calculations were carried out for the Lorentz-factor
y = 100 for a target consisting of 10 layers with ¢; = 10 pm, ¢, = 50 um and the
observation angle 0 = 1 mrad.

The RTR spectra for considered targets, which are given in the same units for
comparison, are given in Fig. 5.13a, b. As follows from the figure, the RTR yield
from a beryllium target is much higher than from a lithium one, for other identical
parameters. First of all, such increasing of the yield is determined by the depen-

dence x> = (op/ w)4 (see formula (5.2.11)), which provides an increase of RTR

Fig. 5.12 The phase diagram ¢,
for targets from Be (the upper 5

curve) and Li (lower one). 4% ZT Be
Calculation parameters: y =300
y = 300; ¢ = 10 pum; ho,™ 0 =1 mrad

0, =50 pm; N = 10; 3
0 = 0.001
hoo,™ ho,™
2
\

-
-
-
-

I I I I | i, keV
5
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Fig. 5.13 The RTR spectra a)
for layered targets from

different materials W .
, arb. units
dhw dQ
200
150+ y=200
Be
100+ 0=0.001
N=10
50
Y, A
0 1 2 3 4 5
b)
aw ,
, arb. units
dAw dQ
30r H ¥ =200
r Li
20+ 6=0.001
H N=10
10+
,44_AAAAA1_LQ.__‘_.A_L hw, keV
5

yield of photons with increasing of charge Z of the target atoms. Certainly, the
absorption of RTR photons will grow up just in a target material with increase of
Z. This effect will be considered later.

Let’s consider a collimation effect of RTR in more detail.

Two dependences ¢, (i) for various outgoing angles 0 of the photon are
given in Fig. 5.14. Calculation was carried out for energy of electrons
E =50 MeV, a periodic beryllium target from foils with thickness ¢; = 10 pm
and the period 20 pm (¢, = 10 pm). The upper curve is received for §; = 5 mrad,
the lower one—for 6, = 0 mrad. As follows from the diagram, in case of radiation
collimation for outgoing angles of photons 0, <0 <#6,, a relatively broad line
3keV <hwgimax < 4 keV will appear in the energy range /i > 3 keV. The left
and right boundaries of maxima corresponding to k = 4 are calculated from
intersection of lines ¢,/mr =k =4 with two dependences (1/27)- ¢,
(6 =0 mrad, w) and (1/27) - @, (0 = 5 mrad, w). Results of integration of the
formula (5.4.11) over a solid angle AQ = 6AOA¢ are given in Fig. 5.15.

As mentioned above, the width of a spectral line is inversely proportional to the
number of periods, if resonance conditions are fulfilled, therefore the total number
of photons under a RTR peak will be defined by number of periods:
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Fig. 5.14 The phase diagram (2%

for the outgoing angles of o
RTR photons 6 = 0 (the 100 Be .
lower curve) and 0 = 5 mrad y =100 0= 0.005,/’
for E = 50 MeV; Be— sl -
¢y =10 pm, £, = 10 um

6 L

4

2 [

: ; ; : ' how, keV
0 2 4 6 10

Fig. 5.15 The RTR photon deh photon
spectrum in a layered Be >
dhw  keV

target
3-107°

2-1073

1-107°

dw Ao , 1
———~N"-—=N.
hdodQ ho N

V.N. Baier and V.M. Katkov in their work [9] have estimated the number of
RTR photons, which are emitted in the given cone 0. from a target containing

N layers (neglecting the absorption of photons in the target):

AN ~ 280 - (2) (222’
kmin ~ k3 d y CUJO .

This estimation is obtained for the peak with the energy close to @y min. The
number of photons, with taking into account of absorption, can be found via inte-
grating the expression (5.4.21) (after multiplying by functions F, and F;5 (see for-
mulas (5.4.12), (5.4.13)) over the given solid angle and energy interval as well. The
dependence of RTR photon yield on a number of layers N for the spectrum presented
in the Fig. 5.15 is shown in the Fig. 5.16. The number of photons was calculated for
the energy range 3 < hw <4 keV. As follows from the figure, for a relatively small
number of layers (N < 50) the linear increase of yield of RTR photons concerns with
N is observed, whereas for N > 100 the “saturation” is observed and the further
growth of number of layers N does not result in increase of RTR yield.

AN, ph ™



92 5 Resonant Transition Radiation

Fig. 5.16 Dependence of the Npn
RTR photon yield on the e s 0o 0@
number of the target layers 2107 e’
with ac.count of the . y= 100
absorption 1.51073 F . Be
. [, =10 um
5 . lz =10 um
1107 3keV < ho < 4keV
0, =5 mrad
0.5107 »
1 1 1 1 N
0 50 100 150 200

It should be noted that efficiency of RTR generation by the electron beam with
energy E~50 MeV in a cone of angles <60, =5 mrad is not too high
(Npp ~ 1073 photons/electrons). However, with the increase of the initial electron
energy the yield of photons in the same solid angle grows quadratically. Besides,
with increase of the Lorentz-factor the boundary of “cutting” of TR spectrum
(iwmax ~ yhiwp) is “shifted” in the hard part. The authors of work [9] have esti-
mated a yield of RTR photons for a lithium target with 50 layers (¢/; = 26 um,
¢, = 52 pm) and have shown that for electrons with energy E ~ 1 GeV the number
of photons in a cone 6 <5 mrad reaches the value N,;, ~ 0.05 photons/electrons.

5.5 Resonant Transition Radiation in the Layered Targets
(Experiment)

As it follows from expression (5.4.5), the yield of TR photons depends on
dielectric permittivity of materials of layers, in the following form:

2 2 2\
Nop~ (Z1 — Z5)7 ~ (cup] - a)pz) . (5.5.1)

It is clear that if one of layers represents a vacuum gap (w,, = 0) the difference
in brackets (5.5.1) will reach the maximal value. For this reason targets for gen-
eration of RTR as a periodic stack of foils separated by vacuum gaps have been
widely used.

The target consisting of 10 mylar foils with thickness ¢; = 12 pm having
vacuum gaps ¢, = 24 pm, in which RTR in X-ray range o > w),, was generated
by a beam of electrons with energy £ = 900 MeV (see Fig. 5.17), was used in one
of the first experiments [10]. In the ultrarelativistic case for the considered target
the condition of a resonance (5.4.22) is written as
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Fig. 5.17 The scheme of the
experiment [10]

27 b (3
eikwl(”‘), k=1,2... (5.5.2)

For the mylar /i, = 24 eV, therefore the first order resonance (k = 1) for
energy of RTR photons hw =~ 20 keV corresponds to a radiation angle
0, ~ 1.7 mrad, which is approximately three times as much as the typical value of
an angle of ordinary transition radiation Otg ~ 7' ~ 0.6 mrad.

The angular distribution of RTR for the energy interval iw = 10-30 keV was
measured in the experiment [10] using a Nal-detector during moving the Compton
scatterer in respect to a beam axis (see Fig. 5.17).

The experimental results (the upper curve) are given in Fig. 5.18. The maxi-
mum position in the measured distribution coincides with the estimation
Oexp = 1.7 mrad.

The angular distribution of hard photons (Zw > 60 keV), which are generated
due to the bremsstrahlung mechanism is shown in the same figure by the curve 2.

In the energy range of photons %w >7hw, the RTR yield is suppressed as

(ywp/co)4. As expected, the BS maximum for 0 = 0 with angular width ~ 77! is

observed in this case.

The similar experiment was carried out at the MAMIB microtron electron beam
with energy E = 855 MeV [11]. The scheme of the experimental setup is shown in
Fig. 5.19. Unlike the previous experiment, the radiation was directly detected
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Fig. 5.18 Angular ANJ, .
. . . . Yo = »
distribution of RTR with arb. units * s .-°,
energy of photons .., . .
10 keV <hw< 30 keV in a . "
target consisting of 10 mylar ] - . .
foils with thickness 12 pm . '. *
and period 36 um . * * RTR
- . : .
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Fig. 5.19 The scheme of
experiment for measurement
of RTR spectrum [11] for the

Beam dump

Semi-conductor
detector

fixed angle of outgoing
photons

162 pm

b m —=

under the fixed angle 6. As a target a set of four polyamide foils with thickness
7.2 pm with a vacuum gap 162 pum was used.

The results of measurements of the spectral-angular distribution of RTR
intensity in comparison with the results of calculation are given in Fig. 5.20.

It should be noted that the experiment corresponds with theory. The resonances
with k = 1, 2, 3 were observed in experiment. As follows from the theory, with the
increase of a resonance order, the RTR photons are emitted at the large angles with
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Fig. 5.20 The angular a) 1.6 v v r T r
distribution of RTR measured ho=3.5keV -- - - Theory
for i = 3.5 keV (on the ) — Experiment

left) and spectrum of RTR for
radiation angles

0 = 1.3 mrad; 0, = 0 (from
the experiment [11])

—
b
"
i»
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it ‘
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1 ---- Theory
1 2-. =~ — Experiment ]
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an essential reduction of the intensity. The beam of monochromatic X-ray radia-
tion is usually formed by a collimator with finite aperture 6., located coaxially
with a direction of the initial electron beam. In order to calculate the RTR spec-
trum, it is necessary to integrate the expression (5.4.11) over the polar angle in the
interval 0 <0 <0, (the azimuthal integration reduces to the multiplier 27). The
important characteristic of the X-ray radiation beams is the number of photons in
the given solid angle, which is calculated basing on RTR spectrum (so-called
photon spectrum):

0
dN 2n d*w
) B NN s.
(mm)N hw/smedg(hdwdQ>TR 23 (5:5.3)
0

The photon spectrum of RTR in a case of the axial collimation of radiation is
shown on the Fig. 5.21 for an illustration. The calculation results for a target from
16 beryllium foils with thickness 32 pm and the period 100 pm for electrons with
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Fig. 5.21 The photon 0.004

spectrum of RTR for 0.0035

E = 855 MeV, 16-layered E=855 MeV
beryllium target 0.003 6,=1 mrad
(¢; =32 um, £, = 61 pm) in 0.0025 N=16

case of the axial collimation
of radiation (0, = 1 mrad)

0.002
0.0015

0.001
0.0005 \

2 5 6 7 8 9 0 okeV

dN,,/do, arb. units

energy 855 MeV and collimation 0, = 1 mrad are given here. It may be noted that
the quasimonochromatic peak in the photon spectrum is observed for the appro-
priate choice of target characteristics. As follows from the figure, the peak width in
a spectrum is equal to Afiw =~ 1 keV (in other words, the monochromaticity of
radiation Ahw/how =~ 20%). The yield of RTR photons for the given case reaches
0.003 photon/e™.

The RTR spectrum generated by the electron beam with energy 1 GeV in the
layered targets from 1, 4 and 8 layers of mylar with thickness of 50 pm with the
vacuum gaps of 200 um was measured in experiment [12]. The experimental setup
is shown in Fig. 5.22.

The RTR beam was collimated by a slit (parallel or perpendicular to the
reflection plane) with the adjustable sizes. The radiation spectrum was measured
by a crystal-diffractometer. The results of measurements in comparison with
measured and calculated dependences are given in Fig. 5.23. It can be noted the
satisfactory agreement between the experiment and calculation.

It should be noted that the improvement of RTR monochromaticity can be
achieved using the well-known technique of the X-ray radiation monochromati-
zation applied for synchrotron radiation beams.

The scheme of RTR beam monochromatization with a help of monochromator
from pyrolytic graphite is shown in Fig. 5.24.

The experimental spectrum measured by a semiconductor spectrometer [13] is
shown in Fig. 5.25. In view of the finite resolution of the used spectrometer
(~0.3 keV) the real width of an X-ray radiation line is much less than 1 keV.

Fig. 5.22 Experimental lenization chamber
setup [12]

Magnet

Eleetron beam

Ry 2
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Fig. 5.23 Comparison of
measured and calculated RTR
spectra of electrons with
energy 1 GeV in a target
from mylar of 1, 4, 8 layers,
with thickness ¢; = 50 pum
and period

d=1/{+ ¥, =250 pm

Fig. 5.24 The scheme of
experiment for RTR beam
monochromatization with a
help of a pyrolytic graphite
crystal

Fig. 5.25 The
monochromatized RTR
spectrum, which is measured
using Ge (Li)-spectrometer
with the resolution

Ahw = 265 eV. A spectral
line /iw = 32.9 keV
corresponds with an angle of
diffraction 6.5°. Weak lines
for i = 22.0 and 23.3 keV
correspond to the K, and Kg
germanium lines
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As it follows from the formulae (5.4.7) and (5.4.14), the position of peaks in
RTR spectrum is defined by two conditions, for which factors F, and F3 reach the
maximum (neglecting absorption of photons in a target):

¢, = (2m—1)n/2, misinteger; ¢+ @, =2kn, kisinteger. (5.5.4)

To obtain a single peak in the radiation spectrum, under the conditions (5.5.4) it
is necessary to choose m = k = 1. In other words, the phases in both layers should
be equal to 7/2:

P B A (5.5.5)

It is clear that if the second medium is a vacuum, the second ratio can be
satisfied for very small gaps ¢, which is hardly feasible.

The periodic heterogeneous target consisting of nickel layers separated by
layers of carbon is suggested in the work [14] to use for RTR generation. The
thickness of nickel layer was 176 nm, the one of carbon layer was 221 nm, with
total number of the periods equal 10. The target was produced by layer deposition
level-by-level sputtering. The technology guaranteed a constancy of layer thick-
ness of nickel and carbon with 3% accuracy.

The RTR spectra calculated and measured for the given target, for electron
energy E = 15 MeV and for various angles of observation are shown in Fig. 5.26.
The position of single peak in a radiation spectrum is determined by the obser-
vation angle:

2 2
_ glw]’l + £2wﬁz

5 (5.5.6)

A
02 = 2]{3 — '))72
The results of measurement of RTR spectrum at an angle 6 = 25.5 mrad using
the 15 MeV electron beam with the divergence less than 6 mrad are given in
Fig. 5.27. The background spectrum measured for a target consisting of the nickel
foils with thickness 2 um and a carbon foil of the same thickness is shown in
Fig. 5.27. Intensity of the background spectrum in this energy range is caused
mainly by bremsstrahlung, the intensity of which is significantly lower than RTR.
The possibility of peak position tuning in a radiation spectrum in case of target
rotation for an angle y around an axis perpendicular to the electron beam (see the
scheme in Fig. 5.28) was investigated in the same experiment. In this case the
thickness of layers ¢; and ¢, grows according to the law /;(5)/ cos s, which will
result in a shift of the line toward a spectrum soft part at a fixed angle of obser-
vation. The calculations results are presented in Fig. 5.29. The experimental
results confirm the conclusions of the theory.
So, the process of resonant transition radiation can be used for generation of
quasimonochromatic radiation toward the energy range o~ 10 keV even using
electron beams with energy E <20 MeV.
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Fig. 5.26 The measured
RTR spectra in experiment
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Using the device shown in Fig. 5.22, it is possible to investigate the polarization
characteristics of RTR, since the coefficient of reflection of X-ray radiation
polarized in a plane perpendicular to the reflection plane, is equal to one (P, = 1),
whereas for the opposite component P = cos? 20, where 03 is the Bragg angle of
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Fig. 5.28 The scheme of
RTR generation in a
multilayered target rotated at

Target
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crystal orientation. Thus, for 0p = 45° we have the zeroth former one P = 0.
Consequently, the intensity of reflected component of RTR W, will be close to zero.

The authors of the experiment [15] investigated RTR polarization character-
istics using a LiF-crystal as a polarimeter. The LiF orientation was 0 = 45° in
respect to the RTR beam axis that corresponds to the energy of the reflected
photons 4.3 keV.

The calculated angular distribution of the RTR photon yield for a layered target
(8 beryllium targets) with thickness ¢; = 7.5 pm and vacuum gaps ¢, = 400 pm
for the energy of RTR photons Ziw = 4.3 keV is shown in Fig. 5.30.

The lines of level of angular distributions of RTR components polarized in a
reflection plane and in a perpendicular plane are presented in Fig. 5.31. Calcula-
tions were carried out by the formula (5.4.11):

aw aw
=) = = pF 55.7
(hda)dQ v hdwdQ > (5:5.7)
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Fig. 5.30 Angular
distribution of a RTR yield in
a layered target from eight
beryllium foils with thickness
7.5 pm and a vacuum gap
400 pm

Fig. 5.31 The lines of level
of polarized RTR
components for angular
distribution presented in
Fig. 5.30
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Fig. 5.32 A positioning of
the slit collimators relative to
RTR cone in the experiment
[15]
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AL,

X 3 .
(1 +72A2 + y2A§) (1 + 247 + 724 + yzwg/aﬂ)

The positioning of the polarimeter slit with angular sizes 3 x 0.2 mrad is
shown in Fig. 5.32. For RTR averaged on a vertical slit the calculated value of the
Stokes parameter ¢; measured with the help a crystal-diffractometer:

dw,
fdAdi (dh(u EQ + dho 2Q>

The experimental value &, exp = 0.88, what corresponds to 94%-contribution of

component dh dQ into the total intensity. For the horizontal position of the slit the
measured value of dW) contribution in the total intensity was equal to 40 %
(in other words, &; = —0.20), what was explained by the authors of the experiment
as displacement of the slit center from the axis of RTR beam (see Fig. 5.32). It can
be shown that shift of the slit center on the value of A;), = 0.45 mrad leads to the
values measured in experiment.

Summarizing the results of the experiment [15], it can be noted that by means
of slit collimator, one of sizes of which (for example, A,) corresponds to the
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angular capture A, < 7~

I, it is possible to produce the linearly-polarized quasi-

monochromatic beam of X-ray radiation with a polarization degree close to 100%.
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Chapter 6
Parametric X-ray Radiation

6.1 The Parametric X-ray Radiation Process as a Diffraction
of Virtual Photons

As it was noted in the previous chapter, at the incidence of a charged particle from
a vacuum on an oblique conducting target the backward TR is generated with
frequencies in an optical range and lower close to the direction of a specular
reflection. Such a radiation mechanism can be interpreted as a process of the
relativistic charge electric field scattering by a surface of the conducting target in a
full analogy with a process of electromagnetic wave scattering by a perfect mirror.

Figure 6.1 schematically shows the deformation of the Coulomb field of a rest
particle in case of its uniform motion with velocity v along the axis z. It is clear
that for relativistic particles in case of v — ¢ the electric field will be more and
more “flattened” and transverse components of the field are y times as much than
the longitudinal component [1]:

E.
~y L 6.1.1
E. y (6.1.1)

The approximation, which neglect the longitudinal component of the field, cor-
responds to the transition to an exactly transverse field, i.e. to the electromagnetic
wave. In this approximation, the interaction of a moving charge field with elec-
trons of the matter comes to reflection and refraction of the electromagnetic wave
packet describing the field of the initial particle.

The parametric X-ray radiation (PXR) in such interpretation is nothing else than
the diffraction of X-ray part of the spectrum, describing the field of an ultrarelati-
vistic charge in the crystalline target. In other words, the interaction of a real
electron with the crystal is replaced by the interaction of the field of virtual
photons with the target.

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures, 105
Springer Tracts in Modern Physics, 243, DOI: 10.1007/978-3-642-19248-7_6,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 6.1 The force lines of the electric field from a charge at rest (on the leff) and moving with
velocity v = 0.94 ¢ (on the right)

Let’s write down the expression for the field of an electron moving with
velocity v = Bc in a medium with permittivity e:

E(K, o) = 2’—22((03 - 5/) Olo = ck'p) (6.1.2)

e) kK?—ow?’

where w, k' are the energy and momentum of a virtual photon. The argument of
o-function gives the relationship between the momentum and energy of the virtual
photon:

o = ckK'B, (6.1.3a)

whereas a similar relationship for real photons in a vacuum is given by the known
expression:

w = c|K|. (6.1.3b)

The intensity of real photons reflected from the medium is determined in a usual
way [2]:

aw 472 ) 5 )
doda ¢ © {IER[+]E R} (6.1.4)

In (6.1.4) by means of R LRy, the Fresnel reflection coefficients are designated,
E|, E, are determined from (6.1.2) for a diffraction plane and for a perpendicular
plane. The diffraction plane is perpendicular to the crystallographic plane and
passes through the vector p (Fig. 6.2).
In the X-ray range the permittivity is usually approximated by the expression
(see 5.2.1)
w? 2
szl—le—w—g, |x|=w—‘2’<<1. (6.1.5)

The diffraction on a set of crystallographic planes with the interplanar distance a is
most simply described by terms of reciprocal lattice vectors, each of which is
perpendicular to the crystallographic plane:
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Fig. 6.2 The scheme of (a)
virtual photons scattering (a);

the scheme of PXR process

for the Bragg geometry (b)

(b)

p=pa,

2nh
g =0, n=1,2,3,... (6.1.6)
a

In (6.1.6) n denotes the order of diffraction. In case of the diffraction in a crystal, as
well as in any periodic structure, the function y in (6.1.5) can be expanded into a
Fourier series in reciprocal lattice vectors. The intensity of a diffracted wave on the
plane, which is characterized by the vector g, will be determined by this expansion
factor of y,:

2

2
0}
1, = IS(@)exp(~2W) (—;@) 7 (6.1.7)
where |S(g)|* is a structure factor; exp(—2W) is the Debye-Waller factor (see
Chap. 4); F(g) is the Fourier-transform of the electron density distribution of the
atom with the charge Z. The same characteristic for a screened Coulomb field of
nucleus and atomic shells is considered in Chap. 4.
The periodicity of a crystallographic target leads to the occurrence of a reso-
nance factor in the expression (6.1.4)

Fy=2nNo(K —k—g), (6.1.8)

where N = L,/(a/ sin 0g) is a number of crystallographic planes intersected by a
particle on the absorption length L, (see Fig. 6.2b), 0 denotes the angle between
the electron momentum and the crystallographic plane (so-called the Bragg angle).
In (6.1.8) by k a momentum of the real PXR photon is designated.
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The reflection coefficients in (6.1.4) are defined by the scattering geometry and
a crystal type [3]:

X 1 _ Xg cOS 20p

R, =%~ R =le77B
T2 25in? 0g 1™~ 2 25in? 0s

(6.1.9)
After the substitution of (6.1.7) in (6.1.4) and taking the delta function (6.1.8) into
account, the considered model makes it easy to obtain the angular distribution of
PXR [4]:

AW ok sz|Xg|2 0 cos? 20 + (95
dQ  2m2c sin? 0p (

2 a
2024 02+ 02 /wz)
2
_oh sz |7g|
2n2¢ sin® Op

LA (0., 0,). (6.1.10)

In the last expression wg is the frequency of PXR photons in the direction of the
Bragg reflection ng (see Fig. 6.2):

o 8Bc
BT = Venpg'

The angles 0, and 0, in (6.1.10) are defined relative to the Bragg direction in the
plane of diffraction and in the perpendicular plane, respectively.

Thus, it is possible to say that in the PXR process the virtual photons with a
continuous spectrum, being scattered by the crystallographic lattice, transform into a
beam of real quasimonochromatic photons, which are detected by physical devices.

It should be noted that formula (6.1.10) is obtained by the usage of the simplest
model. However, as it will be shown in the following paragraphs, the received
expression (6.1.10) satisfactorily agrees with the so-called kinematic theory of
PXR [5], which is much more exact. The detailed theory of PXR, including
so-called the “dynamical effects” can be found in the book [6].

6.2 The Kinematics of the PXR Process

To begin with, let’s consider the process of real photons scattering by the crys-
talline lattice. The relationship between the energy of the scattered photon (which
coincides with the energy of the initial photon) and the angle of orientation
(the Bragg angle) is found from the conservation laws:

ko—k—g=0; [ko|=[kl=o. (6.2.1)

. 2 . .
Hence we receive k> = k% — 2Kkog + g* and, consequently, » = zﬁ—og. Substituting

instead of g its expressions from (6.1.6), we receive the energy of the scattered
photon at an angle 0g:
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n

hoy = he (6.2.2)

asin 0y’

The kinematics of the PXR process is determined by the argument of é-function
in (6.1.8):

K-—k—g=0. (6.2.3)

Hence after multiplying by p we find:

Bk’ = Bk + Pg. (6.2.4)
Using (6.1.3a) and (6.1.3b), we have:
how = /e onP + Pg. (6.2.5)

Here the momentum of a real photon propagating in a medium differs from the
momentum of a photon in a vacuum by the factor 1/¢. From (6.2.5) it follows the
so-called dispersion relation for PXR:

gp

2 in 0
ho = ——nhcn fsin O

1—yenp a 1 —/efcos(20g + 6,)

In the last expression 0, corresponds the angle of an outgoing photon (see
Fig. 6.2b) with respect to the Bragg direction. In contrast to the diffraction of real
photons, in the PXR process the photons can be emitted at angles that differ from
the Bragg angle 0g. We calculate the energy shift of the PXR photons emitted at
the angle g relative to the energy of the scattered real photons (6.2.2). In the
ultrarelativistic approximation and taking (6.1.5) into account, from (6.2.6)
we obtain

(6.2.6)

R:w(O:OB): ]_E 1 _60_3005203 (62.7)
ol 4 sin’ g 4of sin’0g | o

Here w% is the Bragg frequency in the scattering of real photons.

As it follows from (6.2.7), for particles with the Lorentz-factor y > 10% for
0 = 0p the dispersion relation (6.2.6) coincides with (6.2.2), which is valid for real
photons, with an accuracy better than ~ 1072, It is easy to estimate the shift of a
PXR line in case of changing the orientation angle 6. In case of a slight difference
of 0 from the Bragg angle, which is measured relative to the crystallographic plane
(see Fig. 6.2b) 0 = 0 — A0, A0 < 0Oy, and neglecting the terms of order y~2, we
receive from (6.2.6)

o = wp(l — AfcotOp). (6.2.8)

From (6.2.8) it follows that the PXR line is shifted in a more hard range in case of
decreasing the photon outgoing angle 0. And quite on the contrary, in case of
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increasing the angle 0, the energy of the PXR line becomes smaller than the Bragg

one (6.2.2).

If we fix the observation angle of PXR, for example, 6 = 05 (see Fig. 6.2b), and
change a little the orientation of the crystal Afg < 0p, then we can obtain again
the formula (6.2.8): w = wg(1 — Afg cot 0g).

Figure 6.3 shows the ratio R = wpxr(0 = 0g)/ w% depending on the Lorentz-
factor of an electron for two different angles 0y of the plane (220) of Si. From this
figure, one can see the difference between the quantities w% and wpxgr (0 = 0p)

which is negligible for ultrarelativistic particles.

6.3 The Angular Distribution of PXR and the Orientation
Dependence of the PXR Yield

In the work [5], H. Nitta has developed a model of PXR in the kinematic
approximation. The built model is applicable to relatively thin crystals, and allows
to calculate not only the spectral-angular distribution of PXR but also its polari-
zation characteristics. Following this work, we write down the angular distribu-
tion of PXR photons (without taking into account an absorption in the target

material)
dN _ OC((U/C)|Xg|2
dzdQ  2me3/2B(1 — \/epn)
2
(w/cP — g)e,
. 6.3.1
Xza: (ki +g.)*+ z[v*2+ﬁ2(1—8)] (031

Here the index L denotes the projection of a vector onto the plane, which is
perpendicular to the velocity of the initial particle v = cfny.
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Let’s introduce the polarization unit vectors associated with the diffraction
plane:
[,

T Tnmg[

e; = [er,n]. (6.3.2)

Then, keeping the second order terms, we obtain instead of (6.3.1):
dN__ aogly|’ (E} + E3)

— s
dzdQ  4mncsin® Og (9)25 4 Gi

27

+972+ a)g/a)z)
. 0 cos Op cg

E = =,
' sin 20p+/1 + 20,ctg20p @

5 1 1
E, = x |1 === sin?205(1 + 20,ctg26
27 §in 2051 1 20.c1g20, K 2y2) sin”205(1 4 20,c1205)

_ %(sin 205 cos 0 + 0, cos 303)} ,

— U)z
1 — cos20p + 0, sin20g + 1 (0)2r + 0}2) cos20g + % + 5.5 c0s 20

cg
o sin 0p
(6.3.3)
If keeping in (6.3.3) only the first order terms, one may obtain
E =0, E,~—0,cos20g. (6.3.4)

In this case, for a thin crystal (L < L,) in the ultrarelativistic approximation the
expression (6.3.3) is reduced to the relatively simple expression:

07 cos? 205 + 0

w2\ 2
0§+0§+y*2+—")

w?

dN o Loy Lg ?
dQ  4nc sin? 0 (

2

o L(UB ;{g

=——A(0,,0,). 6.3.5

4me sin’ O (0:,0) ( )
As a rule, the geometry of PXR generation is such one that the path which the
emitted photon passes in the target material does not coincide with its thickness
L. In order to take such geometry into account, in the form (6.3.5) the following
value is often substituted instead of thickness L [7]

v

L
Leeo = Ly [ov] {1 — exp (LGVO} . (6.3.6)

Here & denotes a unit vector which is perpendicular to the crystal surface. As it
follows from expression (6.3.5), the angular distribution of PXR photons is
described by the universal angular distribution A(6,, 0,) [6], which is often written
in terms of angular variables ¢, = 70,, t, = 70,



112 6 Parametric X-ray Radiation
2 2 2
f; cos”20p + 1,
2%
2 2 70
l:l +tx +ty + (T;) :l

As it follows from (6.3.7), the angular distribution of PXR is defined by a

parameter fph = y0pn = 74/77> + @2 /wg, which depends on the particle energy,

crystal type and orientation angle.

Figure 6.4 shows the typical angular distribution of PXR. It is clear that in case
of ton < 1 (ywp <K wg, i.e. for moderately relativistic particles) the angular dis-
tribution of PXR is determined by the Lorentz-factor (At,,~1,A0~77"),
whereas in the ultrarelativistic case (ywp > wg) the angular distribution will be

[

considerably wider than the angle 77! (At~ tyh, AO ~ 22> 77!). Besides, as it

wR

Aty 1) = (6.3.7)

follows from the figure, the angular distribution of PXR strongly depends on the
angle Og.

In the first experiments held at the Tomsk synchrotron (see works [8, 9]),
measurements of the PXR angular distributions were carried out by a technique of
scanning of PXR reflections by means of collimated X-ray spectrometer, which is
moved in two mutually perpendicular directions, and which measured the PXR
yield behind the slit collimator.

Figure 6.5 shows the geometry of experiment for the case of incidence of the
electron beam at an angle 0 = 45° to the diamond crystal plane (100). The
registration of photons in this case was carried out at the angle 0p = 205 = 90° to
the beam of electrons. The slit collimator installed in front of the detector, which is
the proportional counter, had sizes 2.5 x 16 mm, which corresponds to the
angular aperture Af = 2.5 mrad and Af, = +16 mrad. Moving the counter
with a collimator was made along two mutually perpendicular directions X and Y.

Figure 6.6 shows the angular distributions for reflections (400), (220), (440) of
X-rays generated by electrons with an energy E = 900 MeV in the diamond single
crystal with thickness of 350 um. The photon energies for these peaks are,
respectively, hwion = 9.8 keV, hwayg = 6.9 keV, hwyqy = 13.8 keV. The solid
curves show the results of calculations based on the kinematic PXR theory.

Influence of the sizes of the rectangular detector entrance window and its
position relative to the center of the PXR cone on the shape of the measured
angular distribution of PXR was taken into account by integrating of the expres-
sion (6.3.6) over the detector aperture.

As can be seen from Fig. 6.6, there is a good coincidence of the mea-
sured angular distributions with the calculations. The full width at half maximum
of the angular distribution of the reflection (400) in case of detector scanning along
the direction X is equal to Af, =9 4+ 0.5 mrad, and for the reflection (220) the
similar value is equal to A0, =12+ 0.5 mrad, and for the reflection (440)
A0, =7+ 0.5 mrad. Thus, the increase of PXR photon energy leads to a signif-
icant decrease in the width of the PXR angular distribution in correct accordance
with the theory. The vertical distribution of such a distribution consists of two
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Fig. 6.4 Angular
distribution of PXR, which
depends on the universal
variables t,, t,

Altty)y

maxima separated in space (see Fig. 6.4), the angular spread between which also
decreases with increasing the photon energy. The calculated curve is slightly
narrower than the experimental one, and the depth of the central dip obtained in
the experiment is less than the calculated one. Small discrepancies are connected
with the influence of the angular divergence of the electron beam due to multiple
scattering.

It should be noted that the obtained results are well described by formulae
(6.3.6) and (6.3.7) due to the fact that the measurements were performed for
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Fig. 6.5 The geometry of the
experiment [9]: 1—(001)
plane; 2—(110) plane of a
diamond; 3—electron beam;
4—PXR reflection;
5—detector with a slit
collimator
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Fig. 6.6 The angular distribution of PXR for a diamond crystal in the horizontal direction (black
dots) and vertical (light dots) for reflections (400) (a); (220) (b) and (440) (c, d). The full curves
are the results of calculations with taking into account the slit aperture of the detector
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Fig. 6.7 The angular distribution of PXR intensity for y = 50 and for the angle of orientation of
the plane (220) Si 6 = 150 mrad (a) and orientation dependences of the PXR yield in case of
changing the angle 0y, calculation (b); experiment (c)

ultrarelativistic Lorentz-factor (y ~ 1800). For low energies of the initial elec-
trons from the expression (6.3.3) follows the asymmetric distribution of the
angular distribution of PXR in the plane of diffraction (see Fig. 6.7a).

The dependence of yield of the PXR photons generated by an electron beam
with energy of 25 MeV in the silicon crystal, in case of changing the orientation
angle 0 at a fixed observation angle (orientation dependence) is measured in the
experiment [10]. The orientation dependence on a small angle A near 0y can also
be calculated in a first approximation by the formulas (6.3.3) by substituting

93 — 03 + A)m Ox — —ZAX. (638)

In the last expression the angle doubling comes because of the “effect of the light
spot”, when the angle of the reflected ray is twice the angle of the mirror rotation.

Figure 6.7b, ¢ shows both the calculated orientation dependence of the PXR
yield and the measurement results. As follows from the figure, there is a satis-
factory agreement of experimental data with the results of calculations based on
the kinematic model, despite the fact that, generally speaking, the used target
thickness exceeded the criterion of applicability of the model.
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6.4 The Spectral Characteristics and Yield of PXR Photons

The first experiment, in which the effect of PXR was found, was carried out at the
Tomsk synchrotron using a beam of electrons with energy £ = 900 MeV in 1985
[8]. The experimental arrangement is shown in Fig. 6.8, and the measured radi-
ation spectrum—in Fig. 6.9. A natural diamond with the thickness of 0.35 mm
was used as a target, which was oriented at the Bragg angle 0z = 45°.

To measure spectra of PXR a xenon proportional counter with an aperture
A0 = 6 mrad was used. In case of the diffraction of virtual photons on the (110)
planes with interplanar distance d = 2.52 A, from the formula (6.2.6) for 0 = 05
the PXR line width is found:

Aw o — wp

= A0 = 0.006. (6.4.1)
B wp
The line width in this experiment (Fig. 6.9) significantly exceeds the value (6.4.1),
since it is determined by the energy resolution of the used detector (~10%). The
yield of PXR photons measured for the electron energy 900 MeV for (220)
reflexes of diamond with the thickness 0.35 mm (Fig. 6.9), is given in Table 6.1.
The shift of PXR line depending on the change of orientation angle 0, as well
as in case of changing the observation angle 0 was investigated in the experiment
[11]. The experiment used a silicon crystal, the plane (110) of which was oriented
at an angle 0 = 9°15’ = 162 mrad relative to the electron beam with the energy
of 900 MeV.

(109\) % . a10)
(77
__ Y <l10> ’?/2 3 ¥ & vB
2 7 GBQ45°///// _‘BBT—45‘° ¢
é 5-// ) Ny \ 3
7 e=293=g91 0=20p=90°
JPXR PXR
////l | X
| ? H
I g ! 1;
NG T Y |
L] : (/] 4L
I

Fig. 6.8 The experimental setup for the PXR registration: 1—detector; 2—orientation system;
3—diamond crystal; orientation for the registration of PXR reflexes: (400), (800)—on the left,
(220), (440), (660)—on the right
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Fig. 6.9 The registered PXR spectra

Table 6.1 The characteristics of PXR for a diamond target and electron energy E = 900 MeV

Plane Energy of photons Ziw, keV Yield of photons AN ph. /e~
(220) 6.9 (1.0£0.4) x 107°
(440) 13.8 (54+1.0) x 1078
(660) 20.7 (8.5+2.0) x 107°

Figure 6.10 shows the shift of the PXR line, which corresponds to a reflex
(220), in case of changing of 0 for a fixed position of the detector at
Op = 18.5° = 324 mrad.

The dependence of the line position on the angle 0 agrees well with the linear
dependence (6.2.8). Figure 6.11a shows a similar characteristic measured for
different angles of observation 0p in case of the fixed orientation 0y = 9°15’. As in
the previous case, the line shift in the spectrum is observed, which is in reasonable
agreement with the model.

Using the PXR line shift depending on the angle of the crystal rotation
(Fig. 6.11b) it is possible to carry out a precision measurement of PXR line width

Fig. 6.10 The spectra anN
measured at 20g = 312 mrad dhm
(the curve) and

20p = 324 mrad (the points)
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Fig. 6.11 Dependence of the (a) (b)
PXR line energy both on the
observation angle fp in case ho, ha,
of Og = const (a) and on the kev \ keV
angle of orientation 6 (b).
The solid curve is the 21
theoretical model

208 .

1oL, _l fp2

153 181 209

Op, mrad

with accuracy much better than the energy resolution of the spectrometer. The PXR
line while changing its position in the spectrum can cross the edge of photoab-
sorption of the crystalline target material [12]. In this case, the yield of PXR
photons is determined by the level of PXR line “cutoff” by the edge of photoab-
sorption (see Fig. 6.12).

Thus, by measuring experimentally the dependence of the number of PXR
photons at a given solid angle Npxgr on the angle of the target orientation, it is
possible to investigate the shape of line f(iw):

ONBXR _ sy ONPXR (6.4.2)

D R

f(ho) =

The crystalline (111) germanium target, for which the energy corresponding to the
K-edge, was equal to 11.16 keV, was used in the experiment [13]. For the plane

Fig. 6.12 History of a shape N(6g)

_-—- T TN
of the spectral PXR line in . ABp
case of changing the ~N
orientation angle 0g \ - L
&

Nio) . %8
Kedge ARGegt = Aapxgete(Gp — Bp)Adg
7\\
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Fig. 6.13 Orientation Afp, mrad
dependence of the PXR ) 0 1 2
photon yield (the circles) and T T v T
the resulting shape of the = 6l
spectral line g
Fg Al I'ip=50+53B
8 4| n= 3|
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(111) and g = 8°45' the PXR line energy coincides with the absorption K-edge.
Figure 6.13 shows the orientation dependence of the PXR photon yield on the
disorientation angle Afg. As can be seen from the figure, the PXR line width at
half maximum AZwex, = 50 £ 5 eV, which agrees well with the calculated value
Ahwpeor = 65 €V for the aperture of the forming collimator A0, x Af, =
0.9 x 7.3 mrad.

6.5 Influence of the Beam Divergence and the Crystal
Mosaicity on the PXR Characteristics Features

Let us assume the beam angular distribution is described by the function
F, (Ax, Ay) relative to an average direction of the beam, for which the normali-
zation condition is fulfilled

/dAx dA, F, (A, A) = 1. (6.5.1)

If the angular distribution of electrons is “narrow” enough in comparison with the
angular distribution of PXR,

(Auy) < Opp =\ +—5 (6.5.2)

then a shape of the angular distribution of PXR reflex can be calculated from the
convolution:

A(0,,0,) = / dA dAy Fo(Ay, A)A (0, — Ay, 0, + A). (65.3)
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The simplest model describing the beam divergence is given by the uniform
azimuthally symmetrical distribution

L 0<\/AL+A <o
Fo(Ag, A) = R (6.5.4)
0, JAT+A >0

In this case the convolution (6.5.3) is calculated analytically [14]:

N 0 cos? 205 + 6] 0; + 0, + 0, — o |
e(xa y)_@ 0§+93 \/5 —
2 2 2
- (92 - 92) sin’ ZQBHX 0 O o vD
o > )2
(Hx + Qy) (6.5.5)
0> — 0> — 0>+ o> — /D
+2(1 +cosz293)ln ph al }2 vD ,
20ph

D= (02+ 93)2+2oz(9§h — 02— 02) + 0"

For a small beam divergence (02 < Gﬁh) we can obtain the following expansion

(keeping the terms not higher than ¢/ 0,23}1) from (6.5.5):

9)26 cos? 20g + Gi o2

(02 02+ e;hf ! (02 02+ egh)z

A, (ex,ey) ~

1 + cos® 205 307, (Hf cos® 20p + 95)

4 <0§ +0; + 0§h>2

. (65.6)

when ¢ — 0, the last expression coincides with the ideal case (6.3.7).

Figure 6.14a shows the 3D distribution (6.5.5) for ¢ = 0.50,;,. As expected, the
zero maximum for 0, = 0, = 0 becomes smoothed, and moreover with increasing
the beam divergence ¢ this minimum can disappear at all.

The expression (6.5.5) allows us to evaluate “semi-quantitatively” the effect of
multiple scattering of the beam in a target and calculate the shape of the PXR
angular distribution, if instead of parameter ¢ we use the root-mean-square angle
of multiple scattering (4.1.24), which is calculated for the half-thickness of a
crystal.

Similarly, it is possible to take into account the effect of the mosaicity of a
crystal. If the normalized distribution of mosaicity F, (ocx,ocy), which, generally
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Fig. 6.14 The influence of the electron beam divergence on the angular distribution of PXR: for
the same conditions as in Fig. 6.4 (a); the angular distribution of PXR for ¢ = 0, (the solid
curve) and ¢ = 0.50,, (dots) (b)

speaking, can be measured by the broadening of the “rocking curve”, is deter-
mined relative to the maximum of the rocking curve, then for the crystals with a
low mosaicity (ay) < 0p, the resulting angular distribution of PXR is obtained
from the following convolution:

Am(0y,0y) = /docx dow, Fy (ocx, ocy)A(Hx — 201, 0y + 201, sin QB). (6.5.7)

Comparing (6.5.3) and (6.5.7), we can conclude that the mosaicity “broadens” the
PXR reflex in a diffraction plane twice as much as than the beam divergence.

It is well known that X-ray scattering can occur not only in the perfect crystals
possessing a periodicity in all the three axes, but also in one-dimensional crys-
talline structures, such as pyrolytic graphite with a periodicity a = 3.4A along only
one axis. Considering the PXR process as a diffraction of virtual photons on the
crystallographic planes, we should expect that for a pyrolytic graphite target the
line spectrum of PXR will also be observed. The spectral distribution of PXR from
the pyrolytic graphite having thickness 1.5 mm and mosaicity 3.4 mrad was
investigated in experiments [15, 16] using 900 MeV electrons. PXR at an angle
Op ~ 18° (0 =~ 9°) was registered by the semiconductor detector. For the chosen
geometry the PXR photon energy, which corresponds to the (200) plane, was equal
to Aiawagy = 11.2 keV.

Figure 6.15 shows the measured PXR spectrum, where the first five diffraction
orders are observed clearly.

As is well known, the pyrolytic graphite possesses a high reflectivity for X-rays
in the energy range up to ~ 100 keV. With the decreasing of the Bragg angle the
PXR lines should be shifted to a harder range. It is interesting to clarify the
mechanism of PXR generation in quite a hard range of photon energies. This
situation was investigated in experiment [16], where the PXR spectrum was
measured at the Bragg angle 0p = 1°58’ = 34 mrad for the same crystal of
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Fig. 6.15 The PXR
spectrum generated in the
crystal of pyrolytic graphite
for orientation 0y ~ 9°

Fig. 6.16 The PXR
spectrum for the graphite
target orientation 0z = 1°58'.
Curve 1 presents the
experimental spectrum; curve
2—the background; curve
3—approximation of the
spectrum after the subtraction
of the background
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pyrolytic graphite. As follows from the measurement results (see Fig. 6.16), the 5
diffraction orders are observed in this case as well, although for the (1000) reflex
the energy of PXR photons achieves the value: fiwjo00) = Shw(200) = 270 keV.

It is also worth noting a high spectral-angular brightness of PXR, which is
generated in the mosaic pyrolytic graphite by electrons with energy 900 MeV, in
comparison with PXR in nearly perfect crystals (see Table 6.2).

In conclusion, it should be noted that for small angles of orientation fg, where
the relation yhw, <hwpxr is fulfilled, alongside with the PXR generation
may occur a diffraction of real photons of bremsstrahlung with an energy
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Table 6.2 Yield of PXR photon from pyrolytic graphite

Plane O hiwg, keV ANpxr /e~ , phot/sterad
(200) ~9° 11.2 0.45
(200) ~2° 55 4.4

ywgs ~ Awpxr > yhw,, which are generated in a crystalline target. This leads to the
appreciable increasing of the yield of monochromatic photons near the Bragg
direction [16].

6.6 The Linear Polarization of Parametric X-ray Radiation

Considering the mechanism of PXR generation as a diffraction of Coulomb field of
electrons on the crystallographic planes of a target, we should expect that the PXR
photons, corresponding to the Bragg reflex as a whole (i.e. after integration over a
cone of angles close to the Bragg direction) will have a linear polarization

sin® 20g

N ———, 6.6.1
2 — sin® 20p ( )

in a plane being perpendicular to the diffraction plane.

If we consider PXR photons emitted at a fixed angle close to the Bragg
direction, the polarization degree will be close to 100%. For the energy range of
PXR photons, which is located outside of the anomalous dispersion region (far
from the photoabsorption edges), the components of the PXR field £, = e|E, E, =
e;E will be real (see formulas 6.3.3) and, consequently, the polarization of PXR
photons will be linear.

The first experimental investigation of PXR polarization was carried out in
work [17], where the (220) reflex on a silicon crystal, which was oriented at an
angle 0g = 9° concerning to the beam with an energy of 900 MeV, was studied.
The analyzed beam of PXR photons is formed by the collimator with aperture
0. = 1 mrad. The Compton polarimeter was used to measure the degree of linear
polarization, in which the photons are scattered at an angle ~ 90°, which provides
a high analyzing power R in this energy range (iw ~ 20 keV) R ~ 0.96. Scattered
photons were detected by two Nal detectors placed at azimuthal angle Ap = 90°
relative to each other. During the displacement of a collimator (together with the
polarimeter) relative to the Bragg direction, in the experiment [17] the Stokes
parameter £; was measured for a given direction of outgoing PXR photons
(Fig. 6.17).

The positions of the forming collimator are indicated in Figs. 6.17 and 6.18 by
Roman numerals I, II, III. Position I corresponds to the Bragg direction, positions
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Fig. 6.17 The geometry of
an experiment aimed at the
investigation of the linear
polarization of PXR [17]

Fig. 6.18 The positions of ~g
forming collimators relative

to the Bragg direction
(0, = 0, = 0) of the (220) 0.010
reflex
0.005
0.000 S
6,
—-0.005
-0.010+

-0.010 -0.005 0.000  0.005 0.010

II, I correspond the polar angle 4 mrad and are shifted at the azimuth angle
¢ = /2 (see Fig. 6.18).

The Stokes parameter &; relative to the plane (Pkg) in the ultrarelativistic
approximation is calculated as follows:

ANH — ANJ_

(&) = m, (6.6.2)
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where (see formulas 6.3.3, 6.3.4):

2 .
v E
AN” B 4dnc sin2 QB / > 2 2 _2 2 2 2
o (B+0 492+ 0f/0?)
02 cos? 20
~ const/ x 008 “Up 5dQ,
(ei +07+972 4 wg/aﬂ)
xwp |Xg’2 E?
AN, = 47c sin’ O > 2 2 2 5 0\?
o (4024924 0f/o?)

02
S const/ Y 5dQ. (6.6.3)
(93( +0;+y2+ wg/aﬂ)

The integration in (6.6.3) is carried out over the aperture of the forming collimator.

Table 6.3 shows the results of measurement of parameters ¢; in comparison
with calculated values.

As follows from the table, there is an agreement observed between the
experimental and calculated data in general, since the calculation was performed
for the perfect conditions (neglecting the divergence of the electron beam as well
as multiple scattering, etc.). The polarization in the center of reflex (along the
Bragg direction), as expected, takes rather small values due to averaging over the
solid angle.

It should be noted that the tilt angle of the polarization plane is determined from
(6.3.3) and (6.3.4):

E 0
tan ¢ = — ~ J

~N—— .6.4
E, 0, cos 20 (6.6.4)

In contrast to the polarization plane slope of X-ray transition radiation, which is
described by the expression

tan Qg ~ (6.6.5)

==

the behavior of the slope angle of the linear polarization plane of PXR in the front
hemisphere, where cos260g > 0 has so-called “hyperbolic” nature. A detailed
study of polarization characteristics of PXR was carried out in experiment [18]
using the beam of electrons with energy E = 80.5 MeV and the silicon crystal
(220), which was oriented at an angle 0g ~ 10°.

Figure 6.19 shows the calculated values of the polarization plane slope angle
for the reflex (220) for various orientation angles. As can be seen from the figure
for 205 <90°, the behavior of the polarization is hyperbolic. In this case all the
PXR photons are polarized in the plane, which is perpendicular to the plane of
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Fig. 6.19 The scheme of the 1°F
PXR linear polarization plane
slope for various angles of
observation 20y 8, 0°
_1°%
10
8, 0°
—-1°

Table 6.3 Polarization characteristics of PXR

Reflex region Angular coordinates of the collimator center, mrad &3 oxp &3 theor
0, 0y
I 0 0 —0.14 £ 0.06 —0.04
1I 4.0 0 0.80 + 0.08 0.95
I 0 —4.0 —(0.83 £ 0.05) —-0.96
Fig. 6.20 The results of (a) 6 T [ 3 I - -
measurements of polarization 10j 1:2143 1 4151617
characteristics of PXR: the 4 : H Yol N . “ae
. . I i S : heS k
layout of the strip polarimeter y AN
3 1

(a); the slope angle of the
polarization plane (b) and the
degree of polarization (c)
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diffraction (<&; > ~ —1), whereas for 20 > 90° the distribution comes nearer
to the radial one in the process of increasing angle 20g.

In the top left picture the rectangle marks the angular region where the
polarization in 8 points on the coordinate 0, during averaged over the angle 0, was
investigated. The measurement results are shown in Fig. 6.20.

So, using the “off-axis” PXR beam collimation, it is possible to receive a
source of monochromatic X-ray radiation with high degree of a linear polarization
and with specified slope angle of the polarization plane. In contrast to X-ray
diffraction, where the Bragg angle uniquely determines the energy of scattered
photons and their polarization, in case of PXR such a strong correlation is absent.
Choosing the certain area of the reflex in case of small fg, we can obtain the hard
X-rays radiation with a high degree of linear polarization, which is impossible for
X-ray diffraction (see Eq. (6.6.1)).

6.7 PXR in a Layered Crystalline Target

In the previous chapter it was shown that a choice of parameters of a layered target
for a specified Lorentz-factor of a particle allows receiving a peak in the emission
spectrum of X-ray transition radiation in the required range of energies. If we
consider a layered target, which consists of a set of periodic crystalline targets with
parallel orientation of the crystallographic axes but not amorphous foils (see
Fig. 6.21), then a transition radiation generated at the exit from the previous layer,
will diffract on the subsequent crystalline target. Moreover, the characteristics of
real scattered photons (the angle and energy) will be close to the characteristics of
PXR photons, which are generated in a crystal target directly (see Sect. 6.2).

In article [19] where both specified processes (as well as the interference
between them) were considered in a perfectly oriented target consisting of
N crystalline layers with thickness ¢}, it was shown that in case of the detection of
resulting radiation in the angle cone 0, <7~' the yield of the diffracted transition
radiation is proportional to N2, whereas the yield of PXR photons is pro-
portional to N.

Fig. 6.21 The scheme of DRTR PXR
generation of PXR and
diffraction of resonant
transition radiation (DRTR)
on the layered crystalline z
target TR /
‘H“ -
N N s
- P
A g i
2 1




128 6 Parametric X-ray Radiation

Fig. 6.22 Element of the (a) (©)
layered crystalline target 15 mm

Si layer
011> 7 mm

-

7 mm
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Al holder
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<100> 16.4 pm 1164 um
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It is clear that for the real layered target due to such causes as the random
disorientation of crystalline targets relative to each other, the violation of strict
periodicity as well as a spread in values of thickness of the used crystals,
destructive interference between the two considered mechanisms, the resulting
yield of X-rays close to the Bragg direction is described by dependence ~ N,
where 1 <0< 2. If the exponent ¢ is close to one, this means that the quality of a
layered crystalline target is low and the target operates as a crystal with thickness
N/;. In the opposite case, the diffraction of transition radiation will provide a
substantial contribution to the total yield of the resulting monochromatic radiation.

For experimental study of the possibility of increasing the radiation generation
efficiency in such targets, the silicon micromachining technique was developed by
Toshiba Corporation and the layered crystalline targets were made [20] (see
Fig. 6.22).

The thickness of an original silicon wafer with axis (001), which is perpen-
dicular to the target surface, was 164 microns £5%. In the central part of the wafer
with a size 6.8 x 6.8 mm?, a workspace having thickness 16.4 mm +5% was
created. The assemblies of 1, 3, 10 and 100 of such elements are used in exper-
iment [20]. The period of 164 um was chosen due to conditions of generation of
monochromatic X-rays with energy iiw = 14 keV by the electron beam of the INS
synchrotron (Tokyo, Japan) with energy 900 MeV.

Figure 6.23 shows the dependence of a yield of resonant transition radiation
photons with energies ow ~ 14.4 and 35.5 keV from the layered target with the
abovementioned parameters on the angle of outgoing photons in the plane of dif-
fraction. Since the first maximum corresponds to the angles 0, < y~!, it is expected
that part of the TR photons will diffract on the subsequent crystalline plates.

The emission spectrum at the angles 20g = 25°8' (for hw = 14.4 keV) and
20g = 10.4° (hw = 35 keV) was registered in the experiment by a semiconductor
Si(Li) detector, in front of which there was a slit collimator with an angular aperture
0, = 1 mrad in case of 20g = 25°8’ (A0, = 1.16 mrad in case of 20g = 10.4°).
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Fig. 6.23 The angular (a)
distribution of the resonant N, arb. units
transition radiation photons
after passing half of the heo = 14.4 keV
elements of a layered N=3

crystalline target
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Figure 6.24 shows the emission spectra measured for a layered target consisting of
10 silicon wafers (Fig. 6.24a) as well as 100 wafers (Fig. 6.24b). The full width at
half maximum (FWHM) of the peaks was ~ 500 eV in the first case and ~ 810 eV—
in the second one, and was mainly caused by the spectrometer energy resolution.

Figure 6.25 shows the experimental orientation dependences of a photon yield
for both orientations. The calculated characteristics for these cases are shown in
Fig. 6.26.

It should be noted that despite uncontrolled disorientation of plates relative to
each other (which can be called as “macromosaicity”), FWHM of the experi-
mental orientation dependence practically coincides with the calculated value
obtained for the perfect crystal. This fact indirectly proves the presence of the
appreciable contribution of diffracted transition radiation in the registered spec-
trum, since the angular distribution of diffracted transition radiation is concen-
trated in a narrower cone than in case of PXR.

From the data presented in Fig. 6.25 we can estimate the parameter FWHM. In
case of i = 14.4 keV it is equal to 0.25°, whereas for the energy hicw = 35.5 keV
we have 0.13°. The calculated values of these quantities (see Fig. 6.26) are equal
to 0.3 and 0.1° respectively (calculations were performed for the pure PXR
mechanism in the crystal with thickness N¢;).
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Fig. 6.24 The emission
radiation spectrum of a
layered crystalline target at
the angle 205 (N = 10)

Fig. 6.25 Orientation
dependence of the PXR
photon yield from the layered
crystal target for

how = 14.4 keV (a) and

hw = 35.5 keV (b)
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Fig. 6.26 Orientation
dependence of the PXR
photon yield from a single-
crystal with the equivalent
thickness
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The dependence of the photon yield on the number of crystalline plates is

shown in Fig. 6.27.

The yield of photons with energy i = 14.4 keV is well approximated by the
dependence ~ N 14 which testifies to the generation of radiation via both con-
sidered mechanisms. The same figure shows the dependence of the yield of PXR
photons with energy hw = 14.4 keV from a single-crystal with appropriate
thicknesses. The comparison shows that the radiation yield from a layered target

Fig. 6.27 The dependence of
the yield of monochromatic
radiation from a layered
crystalline target (1, 3) and
from the crystal with the
equivalent thickness (2)
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with N = 10 approximately 4 times higher than the PXR yield from a single-
crystal of the same thickness.

However, N-dependence of the photon yield with energy 35.5 keV is linear
with a good accuracy. This can probably be explained by the fact that the accuracy
of the layered crystalline target manufacturing was insufficient for such energies of
scattered photons.

Summarizing, we can say that this kind of layered crystalline targets in case of
further improvement of the manufacturing techniques can provide a significant
increase in the efficiency of generation of monochromatic X-rays compared to both
RTR and PXR.
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Chapter 7
Smith—Purcell Radiation

7.1 The Smith—Purcell Effect

As it was noted before, the transition radiation is a manifestation of so-called
“polarization mechanism of radiation”, in which the field of a charged particle
passing through the medium deforms (polarizes) the electron shells of the medium
atoms. It is the dynamic polarization of the medium atoms that becomes a cause
for electromagnetic radiation. If a relativistic charged particle flies in a vacuum
close to any medium at the distance 4, then in this case the particle motion also
will be accompanied by a dynamic polarization of the medium atoms and as a
consequence by the electromagnetic radiation in the A > 2mh/y wavelength range,
since the effective transverse “size” of the Coulomb field of a moving charge
reaches the value ~yA [1]. Such a type of radiation is called diffraction radiation.

By analogy with the resonant transition radiation, it can be expected that the
resonant diffraction radiation, appearing at a charge passage near the periodic
target, will also be quasimonochromatic.

Such a radiation process is illustrated in Fig. 7.1. The charge, flying at a small
distance from the continuously deformed surface target, induces the changing
current on the surface, which can be described as a movement of the charge
“image” on the periodically deformed surface if the depth of “grooves” is not too
large. It is evident that a charge moving by such a periodic trajectory will generate
a monochromatic electromagnetic radiation.

In 1953, Smith and Purcell [2] for the first time observed such radiation in the
light range by passing an electron beam with energy ~ 300 keV close to a periodic
target (standard optical grating) with a period of d = 1.67 pm. The diameter of
electron beam, which passed practically along the optical grating with length
48 mm, was approximately 150 pm. The radiation was detected at an angle
0 ~ 20° by means of a simple optical scheme (collimators, lens, analyzing grating)
via photographic method. The line with wavelength 4 ~ 0.56 um was observed in
a spectrum of radiation for electrons with energy 309 keV.

A. P. Potylitsyn, Electromagnetic Radiation of Electrons in Periodic Structures, 135
Springer Tracts in Modern Physics, 243, DOIL: 10.1007/978-3-642-19248-7_7,
© Springer-Verlag Berlin Heidelberg 2011
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Fig. 7.1 Periodically ¥
changing current J induced

by a flying charge above the
deformed conducting surface

Fig. 7.2 Illustration of
derivation of the Smith—
Purcell relation

In the cited work Smith and Purcell derived the formula that connected the
radiation wavelength with the grating period, the observation angle and velocity of

the charge v = fic:

d (1

in:—(——cos9>, (7.1.1)
n\p

based on the Huygens’ principle (Fig. 7.2).

Electromagnetic radiation is excited by the field of a flying particle in each cell
of the grating. To be easy understood, we consider the plane waves emitted at an
angle 0 from two successive rulings of the grating initiated by the same charged
particle passing along the grating with velocity fic. These waves will have
the same phase (i.e. they will interfere constructively), if the time, during
which a plane wave emitted from point A (see Fig. 7.2) reaches the point B
(tj =dcos0/c), will be connected with the time needed for a particle to pass a
distance d and to excite a plane wave in the point C (#, = d/fc), as follows:
ety — ) =nid, n==%1, £2, ...

The so-called “dispersion” relation follows from here

d 1
I =" (cos0——),
n <COS ﬂ)

where n is the order of diffraction.
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Fig. 7.3 The Smith—Purcell 025 n=_3 l 7
radiation spectra for the K n=-_2
electron energy 35 keV (dark 0.20 - 2
circles) and 60 keV (open L
circles). The measured L
.15 ¢

emission spectrum of the
He—Ne laser (rectangles) is
shown here as well

=
=)

0.05 |

Photomultiplayer signal, V

The last relation for n = —1 (“fundamental” harmonic) Smith and Purcell
wrote down as the following formula A = d (lﬁ — cos 9).

In a ultrarelativistic case, the last relationship coincides with the resonant
condition (2.4.9), which does not depend on the specific mechanism of generation.

Formula (7.1.1) for the order of diffraction n =1 gives a value of
A =0.566 pym for f§ = 0.782 (E = 309 keV), which is in accordance with the
experiment. With an increase of electron energy up to E = 340 keV, the shift of
the emission line to the region of smaller wavelengths was observed in the
experiment. The experimental data [2] confirmed the formula (7.1.1) within the
experimental errors accuracy.

After this first observation of the monochromatic radiation appearing during the
rectilinear and uniform movement of a charge in a vacuum close to a periodic
target (a grating), this effect is called as the Smith—Purcell effect.

In the recent experiment [3], the authors studied in details the Smith—Purcell
radiation (SPR) in the optical range, generated by an electron beam with energy
E < 60 keV and current I < 10 mA. The beam diameter did not exceed 200 pum,
the radiation generated from a grating with period 0.556 um was detected by a
photomultiplier at an angle of 6 = 80°. The emission spectrum was investigated
by means of a monochromator with resolution of (FWHM, full width at half
maximum) A4 = 20 nm.

Figure 7.3 shows the measured Smith—Purcell radiation spectra for an optical
grating with a triangle profile and the period of d = 0.556 pm. As follows from
the figure, the orders of radiation up to Inl = 5 are experimentally observed.

Figure 7.4 shows the dependence of the positions of different order spectral
lines upon the electron energy [3]. The solid lines show the results of calculations
using Eq. (7.1.1). It is possible to note a good agreement between experimental
data and the Smith—Purcell formula. The following paragraphs describe the main
models quantitatively explaining the mechanism of the Smith—Purcell radiation
(SPR).
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Fig. 7.4 Comparison of the 600 .
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7.2 The Scalar Theory of the Diffraction of the Electron
Coulomb Field from a Flat Semi-Transparent Grating

One of the first models proposed for the calculation of the spectral-angular dis-
tribution of the SPR, was developed in the work [4] (see also the review [5]). This
model considered the grating with a period d and a number of elements N > 1,
made from perfectly conducting infinitely thin strips having the width a (Fig. 7.5)
and located within a plane.

A charge g with velocity v = Pc flies above the grating at the distance A (impact
parameter). Characteristics of radiation were calculated in half-space under the
grating (that is why, the authors called such a grating as flat semi-transparent). The
authors assumed that, in accordance with the Huygens—Kirchhoff theorem, a field

Fig. 7.5 The scheme of v=fic
generation of the Smith—
Purcell radiation from a flat
semi-transparent grating

Field

of moving
charge
L]
Scattered
wave P
0
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magnitude in a half-space under the grating is determined by its values on the gaps
(in the plane of the grating):

kg xlvovz, i
g(x,y,z) :/%Ekledsn, (721)

where k = 27// is the wave vector modulus, g, g are the components of the field
describing the radiation with frequency w = 2nc/A, from a flat grating at a dis-
tance R; dS, is the projection of the grating area element on the direction of the
wave vector. Except for the Kirchhoff approximation, the authors neglected the
influence of grating itself on the field characteristics on the gaps.

Let the charge moves with velocity v = Bc along the axis z. Then, according to
[5], its field on the grating plane is possible to describe by a scalar function

i dkx i w,
s0(x,0,2) :Z—:rlc/a(k w)e(g“kxw”),

ok, 0) =iy/ (1 - ﬁz)c‘;’—i + k2.

After calculating the integral (7.2.1) with taking into account the grating period-
icity, the squared modulus of the function g(x, y, z) gives the spectral-angular
distribution of the SPR:

(72.2)

W g(d—a)® VT sin’[42$(1 = Beosb)]

= sin® 0
dw dQ 2nc d [4599(1 — Beos )] g
X exp{—ﬂ%\/l — B*(1 — sin® O'sin? 5)}
x Y [%(1 — Beos0)d — 27m]. (7.2.3)

Here T = Nd/fi ¢ is the flight time of a charge above the grating; n is the order of
diffraction; 0, ¢ are the polar and azimuthal angles of a wave vector. To obtain the
angular distribution of radiated energy for the nth order of diffraction, it is nec-
essary to integrate the last expression over the frequency, which is easily carried
out using the J-function:

de(07 f) _ Zﬂqz(d _ a)2V<V> Sin2 [nn%]

3 2
. ¢ N [
Sinzg 47'Cl’lh 2 . .
“ —ﬁcosofexp{ d(1 —ﬁcOse)\/”/‘2+ﬁ smzesm%}.

(7.2.4)

As it follows from the last formula for the first-order diffraction (fundamental
harmonic), the maximum radiation yield is achieved for the strip width a = d/2.
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In this case (n = 1), formula (7.2.4) for the radiation of an electron (¢> = ¢ =
afic) is written as

dWl (07 é)

200 shc sin® 0
=—f =N
dQ nﬂ d

[1 — Bcos O]

47mh PN
XeXp{—m\/lerZﬁ sin” 0 sin f} (7.2.5)

The simple obvious model has allowed receiving an analytical formula, from
which important physical consequences follow. The exponent may be written as

exp{—%\/ 1 4 92 % sin” O sin” é}, which implies a rigid restriction on the

effective impact parameter h:
h<heg =7y A/4n. (7.2.6)

It is clear that in the nonrelativistic case (y ~ 1) condition (7.2.6) is practically
impossible to be fulfilled in the optical range (1 < 1 pm). As a rule, in experi-
ments the inequality & > heg is valid, which leads to an exponential suppression
of the SPR yield. With the growth of the electron energy (increasing of Lorentz-
factor), or with the shift from the optical range to the infrared one (or submilli-
meter range), the condition (7.2.6) becomes less rigid.

If the impact parameter satisfies the condition /. < hg, then SPR in the rela-
tivistic case is concentrated in the plane, which is perpendicular to the grating, i.e.
in the range of azimuthal angles ¢ < 7', since for large azimuthal angles an
exponential suppression of the yield occurs (because of the increase of the root in
the exponent).

More rigorous models for the description of the Smith—Purcell effect for rela-
tivistic particles have been proposed in recent years [6-9], but the received results
(including those obtained by numerical methods), qualitatively confirm the given
conclusions based on the formula derived by Bolotovskii and Burtsev more than
40 years ago.

7.3 Diffraction of the Coulomb Electron
Field at the Optical Grating

This model was established in [10], where authors used the Van den Berg’s
approach [6], allowing the calculation of the Smith—Purcell radiation character-
istics by analogy with the process of electromagnetic wave scattering by a grating
with an arbitrary profile. This model for a lamellar grating (see Fig. 7.6) is
described below.

The space outside the grating is divided into two areas: the region above the
grating (y > 0, region I) and the area inside the grating grooves (—b <y <0,
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Fig. 7.6 The scheme of the
Smith—Purcell radiation
generation in the Van den
Berg model. The
electromagnetic wave
propagates in area [; in area I/ h
the radiation is considered as

a set of modes

region II). Hereinafter we shall use the following Fourier-components of electric
and magnetic fields:

x ' Vs Za // [ yaz n, exp[ (”lx - wt)]d’?dw

(7.3.1)
X Y Za // ya 3,0, CXp[ (’7)‘ - wt)]d’? do.

The current associated with a passage of the charge e above the grating has the
following form:

e\? . .
Jo(vzm0) = (52) explinz)oly — h)iz

For the y-components of the field in the plane of the grating Maxwell’s equations
are reduced to the Helmholtz equations:

OEpy  OEgy

- E = — Fo ll o(v—h i .
azy aZZ + ( ’1 ) . l4n2 £ ﬂ X (y )exp(laoz)v (7 3 2)
aszx aszx 2 2 e d : -
& + o + (k -7 )wa = l_4n26_x5(y — h) exp(ioz),

where oy = w/v. The solution of Helmholtz equation in region I is written as:

=E), +E,.; =H,, +H,

(J)X wx wx’ (J))C wx wx*®

(7.3.3)

Here E}, ., H] , are the solutions of homogeneous equations describing the field of

a real electromagnetic wave being “reflected” by the grating, whereas E , HO .
are the solutions of inhomogeneous equations describing the field of moving
charge, which have the form

o Nt
0 *‘)fexp[ (toz + Y0ly — AI)];

. 8”2 7o (7.3.4)
Hgox 87 2sgn(y h) exp[ (a()Z + VO‘y - h|)]7

where 7, = iy/ (o3 + n? + k2).
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The value y, is pure imaginary and, accordingly, formulae (7.3.4) describe the
fields propagating along the z axis with the velocity v and exponentially decreasing
with the distance from the trajectory of charge (evanescent waves).

The fields E7 ., H; .are represented in the form of infinite series:

wx?

o0
E, =Y E,= > Eyexpli(tz+ 7).

. (7.3.5)
H(';Jx = ZH;,H = Z H” eXp[i(OﬁnZ + Vny)]’
where
2nn
=gt 7= (R =g =) (7.3.6)

For the real values of the parameter v,, the fields (7.3.5) correspond to the Smith—
Purcell radiation with diffraction order n. In this case, the quantities in the
exponent in (7.3.5) are associated with the components of the wave vector
(see Fig. 7.1) as follows: y, = ksinfOcos &, § = ksin0sin &, a, = kcos 0.

The solutions of the Helmholtz equation in the II region are expressed as a
summation with respect to the modes:

mnz

ED . = exp(iogJ d) mz::l G, sin (d

) [exp(—ikny) — T exp(ikny)],
(1.3.7)

mnz

HY = exp(ingJ d) ,; F,, cos (d

) [exp(—ikny) + T exp(ikny)].

Here the coordinate 7' corresponds to the coordinate “inside” the groove
0<Z<d—a, z=jd+7, j=0,=+1, £2,...),

2
ki = \/k2 - - (dmn ) . T, = exp(i2kyd).

—a

From the boundary conditions on the grating surface and fields continuity con-
dition on the boundary between the I and II areas it is possible to get a system of
algebraic equations for the unknown coefficients E,, and H,, in expressions (7.3.5).
After finding the fields E,, and H,, the Smith—Purcell radiation intensity of nth
order is calculated in the standard way (per period of an infinitely long grating)

dW,  ahc sin®0cos? ¢ 2 hy/1+ (yfsin¢)
— ——— IR, 67 ex s 7.3.8
dQ d (1/B—cos 9)3‘ (0, exp hine ( )

where hin = 7 i, /47,
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2

‘Rn(ea é)| ) +

S e? (1 — sin® Osin* ¢)

2
Ex,n

24 exp{2y|h} { i

}. (7.3.9)

The value of (7.3.9) is called the radiation factor and corresponds to the
classical coefficient of radiation reflection by a grating [11]. The multiplier
exp{2|yo|h} is introduced to compensate the dependence on impact-parameter 4 in
expressions E7 ,, Hy,. As it is shown in [10], the radiation factor for the consid-
ered grating depends only on the ratios a/d and b/d, as well as on the energy of an
initial electron.

So, for the given grating parameters and observation angles, the calculation of
angular distributions of the SPR is reduced to finding the radiation factor.
Figure 7.7 shows the calculation results of the radiation factor IR;(6, 0)I for
electron energies from 1 up to 100 MeV for the grating parameters a/d = 0.1 and
bld = 0.5 [10]. Using the relation (7.1.1) from (7.3.8) and (7.3.9), we can obtain
the angular density of SPR depending on the wavelength.

The model described in the article [9] was used for calculations of SPR char-
acteristics from the grating made of strips with width a and thickness b, separated
by vacuum gaps. In this case, apart from the radiation emitted in the half-space
through which the electron flies (i.e. in the region with y > 0, see Fig. 7.6), there
can be an emission of the radiation in the half-space with y < —b. The author [9]
has developed an approach which allows calculating not only the radiation factor
IR,I%, but the transmission coefficient I7,* as well, by means of which it is possible
to calculate the Smith—Purcell radiation intensity in the half-space y < —b after
the substitution it into the formula (7.3.8) instead of IR,,IZ.

Figure 7.8 shows the results of calculation of both factors for the gratings of
different thickness for the electron energy of E = 855 MeV.

It should be noted that to find the fields E7 ,, Hy, at small polar angles 0 it is
necessary to solve the system of algebraic equations of high order, which cannot
always provide the demanded accuracy.

Fig. 7.7 The radiation factor &2 T T T T & T T T T

IR, according to the Van den ) x10 10MeV

Berg model for a lamellar o - . 1o - 4
grating at different energies / 1 MeV,

of the initial electron (a/

B 109 - l - 102 'ﬂ[ 50 Mey -
d=0.5;bld=0.1; ¢ =0) 2MeV /
[10] f

\

3 MeV = 10
s — "\/ 100 MeV
=01
L
10 4 e fv f a
1 | | 1008 1 1
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Fig. 7.8 The calculation IR m| [RLITP
results of factors |R;|* (solid 410% T 4107
line) and |T\|* (dashed line) 3100
for a grating with parameters
ald = 0.5; bld = 0.01 (left)
and b/d = 0.001 (right) 110

3031

2102 PAnEL:

1105

0z 06 10 14 L8 0z 06 10 14 18
i Mt
Besides, the singularities similar to the Rayleigh—Woods anomalies in ordinary

optics may appear for the certain wavelengths in a spectrum. Thus, the described
method hasn’t a wide versatility.

7.4 Radiation of Induced Surface Currents
as a Smith-Purcell Effect

One of the simple models describing the Smith—Purcell effect is a model of surface
currents [7]. In this model, a charge uniformly moving near periodically deformed
surface (grating) induces a current on the surface changing in space and in time,
which generates the Smith—Purcell radiation.

According to known rules of electrodynamics [1], the spectral-angular distri-
bution of radiation is determined by the density of induced current J(r, t) by the

following expression:
/dt/dr [nJ(r, )]’ k’}

where k = n - @/c is the photon wave vector, n = {sin 0sin £, sin 0 cos £, cos 0 } is
a unit vector along the wave vector. Since the current J(r, 7) induced on the peri-
odically arranged elements of the grating is a periodic function of variables z and ¢

ZJO (x 2 z—m7d>, (7.4.2)

2, (7.4.1)

dw dQ 4n2c*

then the integral (7.4.1) is reduced to the following:

‘/dl/dxdydzJo (r, 1)@=k

In (7.4.2), (7.4.3) the subscript “0” at the vector J indicates that the integration
is carried out in respect of both the volume occupied by one element and the time
interval corresponding to the flight of a particle above one period of the grating.

&>w w?
do dQ 47‘[263

lmdw ———

(7.4.3)
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In (7.4.3) the sum squared reduces to the standard expression [which is similar to
the formula (2.4.15)]:

N 2 gin? Kl — cos 9) N‘—"d}
_ 2 : imdo(1-2) | _ ) p ) 2
Fs = i) = . 2[ (1 wd
m=1 sin [(B — COs 0) Z}
N
~ :‘—Té(a) — ). (7.4.4)

n#0 n

Here, as before, the integer index n defines the so-called “order of diffraction”.
The argument of J-function is defined the Smith—Purcell dispersion relationship:

o — 2n|n|c
" d(1/B —cos0)

In such a formulation the problem is most simply solved, when the grating is a set
of N(N > 1) parallel perfectly conducting strips separated by vacuum gaps, and
neglecting the distortion of a moving charge field, which is caused by the presence
of a conducting surface near the charge.

Figure 7.9 shows schematically the effective area on the strip surface, where a
surface charge is induced (figure corresponds to a fixed time). It is clear that the
effective size of this region in the direction of motion becomes much smaller than
the impact parameter (h/y < h, if y > 1). A field distortion of the initial charge is
negligible in this case. As it is known, the surface density of a charge induced on a
perfectly conducting plane, is proportional to the perpendicular component of the
electric field intensity. In a system of units used in this chapter the coefficient of
proportionality is equal to 1/2x:

(7.4.5)

E,
o(x,y,2) =2 % —y(z;ry’ J
_ @ Y —Xo _
=5 73 oy—y1). (7.4.6)

(v = x0)*+(y = 30) (2 — 20 — )|

Fig. 7.9 The effective area
on a target, where the surface
charge is induced by a
moving charge g (for the
fixed moment of time)
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Here ry = {x0,Y0,20} designates coordinates of the charge at the time ¢t = 0.
The delta function describes the fact that the conducting plane is located in parallel
to the coordinate plane at a distance y; from the origin of coordinates. If a charged
particle moves with constant velocity v = {0,0, ¢} along the axis z (above the
conducting strip z; < z < 2,), then the induced current is defined as follows:

Jo(r,1) = o cp. (7.4.7)

The Fourier’s component of the induced current is found by the standard way:

o0 22 oo o0
i) = (4
olw, i) = / dt/dz / dy / dx (2n)
—00 21 —00 —00

« (y —y0) 6(y — 1) — cBi. e

{(x — xo)2+(y — y0)2+“/2(2 — 20— vt)ﬂ

i(wt—kr)

Here i, denotes a unit vector along the axis z. The delta function allows to carry out
the integration over y. To calculate the remaining integrals, we will introduce new
variables:

_ (03]
u=y(vt—z+z), X=x0—x, h=o—y), K:;—kp

Thus, it is necessary to calculate the triple integral

22 oo o0 h
. q _
=i— [ dz d dp—————
Jo(w, ) 112n/ z/ x/ TR
z1 —00 —00

X exp{ [(j—: _ ey k(X — x0) + Kz — kyyl] } (7.4.9)

The inner double integral (with respect to dx du) is reduced to the tabulated one,
which is written in polar coordinates as follows:

[o.¢]

r exp . wu""kx exp{z,up cos &}
I= / dx / du h2+ - 23/2 —/df/ —an (7.4.10)
X% +u? 0?)

2
where u = (%) +k2.

The azimuthal integral in (7.4.10) is expressed in terms of Bessel’s function of
zeroth order, and hence,

0o exp [— (‘”) +kZh

Jolpp)
Zno/pdph2+p 5 =2r A
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For radiation in a vacuum k, = wsinfcos/c (see Fig. 7.1). Thus, for the
Fourier’s component of the induced current we have

. wh 2 ) . L i
Jo(w,n) = i,gexp {—%\/1 + 72 sin O sin f] X exp(—zkyyl)Qe 2.
(7.4.11)
After calculating the double vector product we obtain the formula for n = 1:
w0
dwdQ 1 4m2c

2m1h 1, . -
X exp (— yo;flc \/1 + 2% sin® 0 sin’ 5);‘6”‘“ — ™ |2. (7.4.12)

The last factor in (7.4.12) coincides with the standard multiplier F, [see for-
mulas (5.4.12) for o, = 0, = 0]. We can obtain from (7.4.12) the angular dis-
tribution of the Smith—Purcell radiation of single electron (¢ = —e) for a width
strip a(z; — z1 =a) and n = 1:

NO(w — w;)sin® 0

dw, o he  sin’6
= N—
dQ 2n d <% ~ cos 9)

4mh
vpd (% — cos 0)

X exp | — \/l + 722 sin” 0 sin? ¢ |4 sin’ (%?) (7.4.13)

The constant o = 2 /fic is used in the last formula. It should be noted that deri-
vation of the obtained formula (7.4.13) is based on the approach developed in [7],
where the concept of induced current on the surface of a flat ideal grating is
consistently used. For a grating with a/d = 1/2 the formula (7.4.13) completely
coincides with formula (7.2.5) found on the basis of the scalar theory of diffraction
of relativistic charge field, what indicates the identity of the initial assumptions in
both approaches.

The developed model allows to find the characteristics of SPR not only for a flat
grating but for one formed by tilted strips (Fig. 7.10).

For strips tilted at an angle 6, the model is valid for angles

Qmin S 9 S emax;
asin 0

d+ acosly

d — acos 0

Omin = arctan

T
Omax = = — arctan -
2 a sin 0y

where it is possible to neglect the re-scattering of the emitted radiation in sub-
sequent elements of the grating.
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A

Omin = ey “Omax

Fig. 7.10 Volume grating made from tilted strips

For such a grating the authors [12] have obtained a formula for the angular
distribution of SPR:

dw, 2nh
=0 T anN exp{—

dQ d
G
(1/B — cos )’

Here, as before n = k/w is the unit vector, the vector G, is determined by the
surface current induced on the surface of a tilted strip:

41h
n \/1 + 928 sin” 6 sin? g’}
.

(7.4.14)

G, = {G.,G,,G.} = A{tan by, 2ik,/, tan 0,1},
2 (exp [%—i— iyacos 90} - 1) (7.4.15)
A= (tan 6y + 2iy/.)d

In formulae (7.4.14) and (7.4.15) the following designations are used:

} — ’Vﬁ)"ﬂ
47\/1 + 72 % sin® Osin® &

2n (1
¥ = —n<— — cos 0 — sin O'sin g’tan90>.

(7.4.16)

dn \B

Introducing, as before, the radiation factor |Rn\2, the formula (7.4.14) can be
rewritten in the form similar to (7.3.8) with the following replacement:

27n?

R = ——0
al sin® 0 cos? &

InnG,]) (7.4.17)
For the case of flat grating, i.e. in case of 0y = 0 and ¢ = 0 instead of (7.4.15) we
have

1 —exp [l'2m1a
— L d 4

G, = d ]{0, 0, 1}. (7.4.18)

2nn
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Having in mind the relation |[n[nG,]]|>= G? — (G,n) for a considered case we
obtain

G, = #Sinz (nng) sin® 0. (7.4.19)

As it follows from (7.4.19), for the strip width a = d/2 in the Smith—Purcell
radiation spectrum only the odd orders remain.

It should also be noted that in the case of a flat grating the direct dependence of
expression (7.4.14) on the diffraction order n disappears after the substitution
(7.4.15) in the initial formula. We shall also note that for a flat grating the radiation
factor (7.4.17) in the model of surface currents does not depend on the electron
energy as well as on outgoing angle of the SPR photon (at & = 0) as well:

2 a
R[> = Zsi 2( —). 7.4.20
|Ry| —sin”{7n— ( )

Figure 7.11 shows the SPR angular distribution calculated by the described model.
The calculations were carried out for a flat grating (0, = 0) and grating with tilted
strips (0y = 30°) for the following parameters: n = 1,y = 12,d = 8 mm, a = d/2,
¢ =0° As it follows from Fig. 7.11, in the latter case for observation angle
0 = 30°, the SPR intensity vanishes (radiation along the surface of a tilted strip is
absent). Figure 7.12 shows similar curves for a flat grating with the same param-
eters for the values y = 20 and y = 50.

As it follows from the presented results, according to the model of surface
currents, with growing of the initial electron energy, the SPR yield is increased in
the whole range of polar angles. Finally, Fig. 7.13 shows the azimuthal depen-
dence of the SPR yield for a flat grating (curve 1) and for the grating with tilted
strips (curve 2). As it can be seen from the figure, the two-modal distribution is
observed in the latter case.

Fig. 7.11 The angular dw, .
distribution of the Smith- g 2. units b
Purcell radiation intensity r };; 2 mm
according to the model of a=4mm
surface currents for a flat 1.5-1073F - d=8mm
grating (0y = 0°, curve 1), for ! N n=1
the three-dimensional grating 1.10°3F ! \ E=0
(6o = 30°, curve 2) AN
051030 1\
m
: LT == - 0,deg

0 25 50 75 100 125 150
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Fig. 7.12 The same as in dw, .
Fig. 7.11 for a flat grating and 4’ arb. units h=2mm
various values of Lorentz- r a=4mm
factor _2 d=8 mm
2.5-10 n=
21072 £=0
1.5-1072
1-1072
0.5-1072
L Il g,de
125 150 &

Fig. 7.13 The azimuthal
dependence of the SPR yield
according to the model of
surface currents for a flat
grating (curve 1) and for the
volume grating (6p = 30°,
curve 2)

7.5 Smith—Purcell Effect as a Resonant Diffraction Radiation

The relationship between the Smith—Purcell radiation and the resonant diffraction
radiation (RDR) is easy to see considering the same grating formed from the
perfectly conducting strips, which was studied in the previous paragraph [8]. The
diffraction radiation with a wavelength 1 occurs during the flight of a charged
particle in vacuum near a conducting medium, i.e. if the condition A < yA/27 is
satisfied. In contrast to transition radiation, in case of generation of the diff-
raction radiation a charged particle does not interact with a material of target
directly.

One of the known models of diffraction radiation (DR) is the model of
Kazantsev—Surdutovich [13], which describes the DR generation during the flight
of a charged particle near a perfectly conducting tilted half-plane. It should be
noted that such a description with good accuracy can be used for wavelengths
range A > 1 pm, for targets with polished metallic surface.

In a full analogy with the resonant transition radiation (see Chap. 5) the
spectral-angular distribution of the RDR from a flat grating can be written as
follows:
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d*Wgpr  d*Wpr
hdwdQ  hdodQ

FyF;, (7.5.1)

where the first factor describes the spectral-angular distribution of the elementary
processes (diffraction radiation at edge of the half-plane), the second—the inter-
ference of radiation on one period (from both edges of the strip), and the third—the
interference of N periodically arranged sources. Multipliers F», F3 have the same
form as in the X-ray RTR theory:

.2 Q0
F, = 4s1n27°,

_sin’(Neo/2)
sin”(90/2)

Here, as usually, N is the number of periods of target (N > 1), the phases ¢., ¢q
are defined as follows:

2n 1 21 1
(R —7a<cos9—ﬁ>, o —7d<cost9—ﬁ>. (7.5.2)

As was to be expected, from the argument of J-function and the second equation
(7.5.2) follows the Smith—Purcell dispersion relation. So, if we have the spectral—
angular distribution of diffraction radiation from the edge of the half-plane, it is
possible to find all the characteristics of the Smith—Purcell radiation, which is
considered as RDR.

The formula for the spectral-angular distribution of diffraction radiation of
a charge, moving in parallel to the perfectly conducting half-plane, was found
in [13]:

PWor eXp<_%V th ZVZCOSW)

hdodQ  2n? fsiny
y cos? cos? 2(1 — Bsiny) + (y2 + B> cos? ) sin® 2(1 + Bsinyp)

(V*Z + /32 cos? lﬁ) (sin Ycosp— %) 2

~ 2nNo(@py — 2km).

(7.5.3)

Angular variables ¢,  are shown in Fig. 7.14.
For ultrarelativistic particles DR is concentrated near the plane, which is per-
pendicular to the plane of the target (it means in the range of azimutal angles
—1
~y )
Going to the angular variables 0,, 0,, which are connected with a geometry of
the problem (Fig. 7.14b)

W="—0y =0, (7.5.4)

[\
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Fig. 7.14 The angular variables for the description of diffraction radiation in case of the parallel
passing of a charge above the conducting strip

the expression (7.5.3) is essentially simplified:

PWor o exp(—%\/ 1 + 92 sin’ Hx)

hdwdQ — 4r?

Beos O (1 + p7y? sin® 0, (é — cos 0, cos Hy)z
x [y*sin® 0,(1 + cos 0,) (1 — Bcos Oy)
+ (1+ 2 B* sin? 0y) (1 — cos 0y) (1 + Bcos b,)]. (7.5.3a)

Neglecting the terms ~ 7y~ 2, 0)26 instead of expression (7.5.3a) we will have

d*Wpr o P <%” 1+y26§>

hdwd6,dd,  2m2 1 — cos 0,

(75.5)

The last expression is valid for outgoing angles 0, > 77!, whereas for angles
0, ~ y_l we obtain from (7.5.3)

d®Wpr % 4rh 0> + 6
= 5 12— 756
hdwdo,d), = T\ i I ) (72407 +03)° (7:56)

It can be noted that the formula (7.5.6) is similar in structure to the formula
describing the spectral-angular distribution of transition radiation in case of
crossing the boundary “vacuum-perfectly conducting medium”, if h < yi/4n.
Let us also write down the relationship between frequently used photon outgoing
angles 6, ¢ in the coordinate system connected with electron velocity (see Fig. 7.14):

costy = sinf, = sin0sin ¢,
4 : (7.5.7)
tan ¢ = tan 0, = tan 6 cos ¢,
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as well as the reverse formulae

cos 0 = cos 0, cos 0, = sinyy cos @,

sin 0, cos Y (7.5.8)
tan & = : = — —
cos 0,sinf,  siny sin¢

Integrating (7.5.1) using the J-function, it is easy to obtain the angular density of
energy emitted on a wavelength corresponding to the kth order of diffraction:

dW,  4ohc 1 dnh [ ’
do.do, m k(1 —cosby) CXP{ YAk T x} ( )

The formula (7.5.9) is written for the ratio a = d/2, which is maximizing factor F5.
For |kl = 1 from (7.5.9) we can obtain the angular density of energy in the
ultrarelativistic case:

4oh 1 47thy/1 + 2 sin? 0 sin®
AWy _ dahe, S X expd —— V1 -+ sin’ Bsin” ¢ . (7.5.10)
dQ n d(l —cos0) yd(1 — cos 6)

Comparing the last formula with (7.4.13) at a = d/2, we can see that after multi-
plying the expression (7.5.10) by (1 + cos 6)/2 the result coincides with formula
(7.4.13). Hence, it follows that the different approaches give a close result for the
photon outgoing angle 0 < n/4, whereas for large values of the angle 0 the diff-
raction scalar theory, as well as a model of induced current, gives a little bit
smaller value for the spectral-angular density of RDR.

In the recent work [14] the authors showed that the analytical solution of the
diffraction radiation problem in case of flying near the tilted perfectly conducting
half-plane [13] (solution of Kazantsev—Surdutovich) has the limited range of
applicability. In the cited work the following solution was found, which noticeably
differs from the Kazantsev—Surdutovich formula for the parallel flight:

4nh i 1 2
w2 exp{m\/1+(yﬂ51n051n§) }
dodQ4mc (1 4 (5 5in 0sin ¢)°] (1/8 — cos 0)’

2
X {V21ﬁ2+ (ysin 0sin €)*—(sin 0 sin £)* (ylﬁ — ycos 6) }

2 exp{% 1+ (yfsin Gx)z}

4n2c {1 + (yBsin gx)z] [1/B — cos 0, cos 9),]2

gt - s )}
X § —+y~sin”“ 0, —sin” 0, — — ycos O, cos O, | . 7.5.11
{yzﬂQ Y il : ( )
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After substitution of (7.5.11) in (7.5.1) and subsequent integration over frequen-
cies, it is possible to get a formula describing the angular distribution of the SPR
intensity:

4mth\/ 1+(yp sin O'sin £)°
dw,  2a fic eXP{ 7Ba(1/p—cos ) }

dQ d(1/p — cos 0)° 1+ (pBsinOsin &)

2
+ (ysin Osin &)*—(sin O sin &)* (# — ycos 0) 1 . (71.5.12)

2B

Comparing the derived expression with formula (7.3.8), it is possible to obtain an
expression for the radiation factor in the model of the resonant diffraction
radiation:

, 2 {y‘zﬁ_z + (ysin Osin &)*—(sin Osin &)*(1/98 — 7 cos 0)2}
e . (75.13)
T sin® 0 cos? & [1 + (yBsin O sin 5)2}

In contrast to the Smith—Purcell radiation models based on a model of induced
currents and the RDR, following from the solution of Kazantsev—Surdutovich [13],
the radiation factor (7.5.13) depends on the Lorentz-factor, and as it follows from
the obtained formula for radiation in the plane being perpendicular to the grating
(& 2: 0), with increase of energy of initial particle the value of |R; |2 decreases as
Y

With particle energy increasing, the maximum in the angular distribution of
SPR is shifted to the range of small polar angles (Fig. 7.15). As can be seen from
the figure, in the range of angles, greatly exceeding the value corresponding to the
maximum of the distribution, the SPR yield decreases with increasing of y. Such a
dependence gives the Van den Berg model [10] in contrast to the model of surface
currents.

It should be noted that, generally speaking, the dependence of the distribution
(7.5.12) on the azimuth angle ¢ has a “lobe-shape” character.

Fig. 7.15 The angular dW, 2«
distribution of SPR for a flat da 1
grating with the same

o* eV

5
Vs ST

oo h=2mm
parameters as in Fig. 7.12 a=4mm
(y = 20, 50) calculated by the d=8 mm
model [14] £=0

6,deg
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Fig. 7.16 The angular distributions of SPR intensity for various different values of the Lorentz-
factor according to the model [14], y = 20 (a); y = 50 (b); and azimuthal distribution for both
cases (b) at 0 = 18°

Figure 7.16a, b shows the two-dimensional angular distributions of SPR
dW, /dQ for the grating with the same parameters as in Fig. 7.15. As follows from
the presented results, the Smith—Purcell radiation intensity for angles f, # 0
(azimuthal angles ¢ # 0) can be quite high, see Fig. 7.16c.

Comparing Fig. 7.16a and b, it is possible to note that the radiation intensity in
the global maxima grows with the increase of Lorentz-factor, which, as a result,
can “overlap” the intensity reduction in the plane being perpendicular to the
grating with increasing of 7.

The analytical dependence of the total energy radiated by a particle (radiation
losses) cannot be derive even for the simplest flat grating.

The formula for the SPR radiation losses in case of k = 1 can be written as

dW] he
= [ ZLaa=N— 5.
Wi = [ d=Nsolh/d. ), (7:5.14)

where Q(h/d, y) is a function, which depends only on the ratio //d and the Lorentz-
factor.

Figure 7.17 shows the results of calculations of W;(y) for two values of
h/d = 1/4, 1/8. One may see this dependence with accuracy of a few percent may
be described by a function

Wi(y) ~y'/2.
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Fig. 7.17 The dependence of @

the radiation losses through Wi-—:10°, eV
the mechanism of SPR for T

k = 1 depending on the 15
Lorentz-factor for various

impact-parameters 1.25
1
0.75

0.5
0.25

Fig. 7.18 The scheme of " I 5
diffraction radiation from the —_ - +—> __________ o — ——

inclined strip

It should be noted that the model of surface currents gives a stronger dependence
wi() ~ 77 [12].

7.6 Resonant Diffraction Radiation from Charge Moving
Near the Volume Strip Grating

RDR from a charged particle moving near a flat grating consisting of a periodic set
of strips, located in a plane was considered in the previous paragraph. A formula
for the spectral-angular distribution of diffraction radiation in case of flying near
the inclined plane was derived in [14]. In full analogy with the developed
approach, so-called volume strip grating, strips of which are inclined relative to the
central plane of the grating at an angle 6, can be considered. RDR characteristics
for such a grating can be calculated by the formula (7.5.1) as well, where the first
factor d>Wpg /fi dw dQ describes the spectral-angular distribution of the DR from
the inclined half-plane. The second factor F, is determined from the simple
scheme (Fig. 7.18).

The electric field of DR from the inclined strip may be found using the principle
of superposition of DR fields from the lower and upper edges of the strip with the
corresponding phase factor:
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i A
Es[rip = Ejow + Eup e ((J’

asin Oy
Elow - EDR (h + Tv By) ) (761)
asin 0
Eyp = —Epr (h i 2, 9y>-

For simplicity, we consider the emission process in the simplest geometry, when
the wave vector is placed in a plane which is perpendicular to the strip (0, = 0).

The phase A is determined by the time difference between the fronts of the
radiation emitted at an angle 0, from the edges of the strip, taking into account the
time Az, = a cos 0y/fc required for passage of an electron from the point 1 up to
the point 2 (Fig. 7.18):

_acos(0y, —0p) acos by

A 6.2
t : B (7.6.2)

A phase shift is found from here [15]:
Ap = 27[CTAZ — 2ra [cos(ev 60) — CO;HO} . (7.6.3)

Let us write down the expression for the DR in the form:

Epr | 2 + asinfo = Epgr(h) exp —M\/ 1- ﬁi sin |
2 AL

Using the last formula, the expression (7.6.1) can be written in a more symmetrical

form:
Ap in 0 A
Eurip — Epr(h) e’%{exp [—”“ il;; 0\/1— psin? 14 o
0 ‘
—exp [%;0 \/1 — p*sin? 1//] e’AT(b}. (7.6.4)

The squared modulus expression (7.6.4) can give the spectral-angular distribution
of DR from the tilted strip:

d2 Witrip _ d2 WDR

Qdo ~ d0do’ (7.6.5)

Here d’Wpg / dQ dw is the spectral-angular distribution of DR from a perfect
inclined half-plane, which has the following form [14]:

LW x (0052 0o + 7* sin? 00) exp{f%}
hdwdQ 41 2[cos Oy — fcos(0 — 0)]*+ sin® Oy

(7.6.6)
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The formula (7.6.6) is given for the case & = 0, i.e. for DR emitted in the plane
being perpendicular to the tilted target. The factor F, is written as:

2
A A A
exp <—X — 17(;)) — exp <x + quJ) ‘ = 4(sinh2;( + sin’ 7¢> (7.6.7)

In the general case, when a DR photon is emitted at angles 0,, 0, (or, using
standard angular variables 0, £) the quantities y, A@/2 in expression (7.6.7) are
written as follows:

. 6 : 6
=200 fi g2y =T 1 g G psin? ¢,
p By

cos 90}
5|

For the volume strip grating, an element of which is a tilted strip and a vacuum gap
with a period d, the interference factor F; is again approximated by a d-function
(if the number of periods N > 1), the argument of which is determined by a period
d, a particle velocity f§ and polar angle of a photon emission 6. It should be noted
that unlike the first two factors (d*?W /dw dQ and F») the factor F3 does not depend
on the azimuthal angle £. As well as in the previous cases, the d-function again
removes the integration over one variable. For angles of radiation 0,,,;, < 0 < 0.«
(see Fig. 7.10) it is possible to neglect the effects of wave “re-scattering” by
subsequent strips.

Figure 7.19 shows the SPR angular distributions, calculated by formula (7.6.6)
for a flat grating (the lower curve) and for the grating with tilted strips 6y = 30°
(the upper curve). For convenience of comparison, the lower curve is multiplied
by 10. The figure shows that the model [14] does not lead to a SPR yield vanish-
ing along the surface of the strip.

Figure 7.20 shows the results of calculations for 0y = 0 (the lower curve) and
0o = m/2, (the upper one) for y = 200. It can be noted, firstly, that the radiation
intensity from the “flat” grating is much lower than from the volume strip one,

F, =

A . (7.6.8)
7(/) = 7|:COSHCOSB() + sin 0sin Oy cos & —

Fig. 7.19 The same, as in dw, 2« ; eV
Fig. 7.11 according to the - U, — y=12
model [14] d 5. T h=2mm
=4 mm
1.75+ . a
d=8 mm
1.5+

1.25F
1 L
0.75

05r
025

6.deg
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Fig. 7.20 Comparison of dW, 2a eV
angular distributions of SPR
for a flat grating (6, = 0) and 10 -
a volume strip one (6p = 7/2)

0.deg

and, secondly, for the latter grating the sharp minima of the radiation intensity for
certain values of the polar angle are observed.

For the strip inclination angle 6, = 7/2 the angles corresponding to a SPR yield
minima are calculated analytically from the requirement of the zeroth second term in
F, [see formula (7.6.7)]: A@/2 = mz, m is integer. Hence we have a sin 0/4 = m.

Substituting the Smith—Purcell ratio 4, = % (% — cos 0) in the last expression, it

is possible to find the values of the photon emission angles, for which the radiation
intensity is minimal (for the first diffraction order, & = 1):

[ _
tan TR m=1,2,3... (7.6.9)
The terms ~ 7~ > are omitted in the formula (7.6.9).

The dependence of the SPR yield on the ratio a/d is shown in Fig. 7.21 for a flat
grating and a perpendicular volume strip one (6, = 7/2). As was to be expected, in
the first case the maximal yield corresponds to the value a/d = 1/2, whereas for
the second one this dependence has a more complicated form.

For a flat grating the ratio a/d = 1/2, providing the maximal SPR yield, is
universal, whereas for the volume strip grating this ratio will be determined by the
polar angle 6 and by the order of diffraction in analogy with the derivation of
formula (7.6.9).

For the considered case (0y = n/2, ¢ = 0) it follows from (7.6.8):

1—cosl m

a
M — = 2 =1,2,3... .6.1
M 2tanH/ , m=1273 (7.6.10)

7.7 Experimental Studies of Smith—Purcell Radiation

Many experimental studies of the characteristics of the SPR with electron energies
from 20 keV to 28 GeV in the interval of wavelengths from the millimeter
range up to optical one have been carried out since the first observation of the
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Fig. 7.21 The dependence a

of the SPR yield on ratio dWs 200
ald for the flat grating a and do =
volume strip one b for 107

0y = n/2 (curve 1) and eVisr 5

0¢ = m/4 (curve 2)
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Smith—Purcell effect. This interest is connected, firstly, with the possibility of
using of the Smith—Purcell effect for the creation of compact sources of radiation
with tunable wavelength, including free-electron lasers, and, secondly, for non-
invasive diagnostics of the accelerated beams parameters.

One of the first experiments [16] was carried out with a beam of electrons with
energies less than 100 keV and diameter of 200 pm, where the optical grating with
a lamellar profile and period of 1.4 um was used as a target. In this experiment it
was shown that the azimuthal distribution of the Smith—Purcell radiation is two-
modal with a pronounced minimum in the plane being perpendicular to the grating
(at ¢ = 0°). The measurement results are shown in Fig. 7.22.

The results presented in Fig. 7.22 were obtained for a beam with energy
100 keV, with divergence less than 1 mrad and current / = 0.22 pA with the
aperture of the detector AQ = 0.005 steradian.

As it can be seen from the figure, in the distribution maximum at 0 = 106°,
£ = 55° the brightness of radiation per 1 pA accelerated current reaches the value

AY P

\\ 3 eV
0" A0l 2.7 x 10

27x107° ————M— = _
HA X sterad e~ X sterad



7.7 Experimental Studies of Smith—Purcell Radiation 161

Fig. 7.22 The azimuthal P, pW

distribution of the 3l

Smith—Purcell radiation for 1=0.22 uA
various polar angles of E =100 keV

observation [16] AQ =0.005

0 20 40 60 80
&, degrees

As it was noted above, the beam diameter was around 200 um, i.e. the average
distance between an axis of a beam and a grating was about 100 um. For the
radiation wavelength less than 1 um (the optical range) this distance significantly
reduced the transformation efficiency of beam energy into the radiation energy.

As it follows from (7.2.4), the electrons flying above a grating at a distance
h > hyn, where

- b2
" 4m\/y=2 + B sin? Osin® & ,

h (7.7.1)

practically “do not see” the grating, i.e. there is no radiation.

In the experiment [17] for the first time there was observed the Smith—Purcell
radiation from the relativistic electrons. The beam of electrons with energy
3.6 MeV was generated by the Van de Graaff accelerator with the following
parameters:

— beam sizes: 3 x 6 mm® (3 mm in a direction being perpendicular to the
grating);
— accelerated current: 50-200 mA.

In the experiment there was used the grating with a triangle profile and a period
of 760 um. The radiation emission spectrum was measured by a monochromator
and a helium-cooled InSb-bolometer (see Fig. 7.23).

The measured spectrum for the angle 6 = 115° is shown in Fig. 7.24. It follows
from the Smith—Purcell formula that an expected value of the wavelength for
ln = 1l'is A = 1,088 pm, which is consistent with experiment.

The absolute measurements of the Smith—Purcell radiation power in the far
infrared range were carried out in [18] using a beam of electron microscope with
energy of 40 keV, current of ~ 100 pA and with various gratings (with the period
from 100 up to 250 pm). The maximal brightness of the Smith—Purcell radiation
has been obtained for the wavelength 4 ~ 500 um, where it achieves a value
AY/AQ~10"1"W/pA x sterad, what is much lower than the Smith—Purcell
radiation brightness in the optical range.
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The Smith—Purcell radiation in the optical range generated by a beam of
ultrarelativistic electrons with energy of E = 855 MeV was studied in the recent
experiment [19]. The experimental set-up is shown in Fig. 7.25.

It should be noted that in this experiment the vertical size of a beam (in the
direction being perpendicular to the grating) did not exceed 20 um, which allows
to exclude completely the interaction of the peripheral part of the beam (halo) with
the material of the grating. Figure 7.26 shows the measurement results of the
Smith—Purcell radiation yield for two wavelength ranges 546 £+ 15 nm (above)
and 360 4 15 nm (below). The measurements were carried out for the beam
passing above the grating with a period of 0.833 pm, at a distance of 127 um at the
angle of observation 6 (see Fig. 7.25). The expected positions of the Smith—Purcell
radiation peaks are marked by the dashed lines for the different orders of diff-
raction. The experiment is consistent with the Smith—Purcell formula very well.
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Fig. 7.25 The scheme of the

experiment [19] for study of ;
the Smith—Purcell optical

radiation from a beam of

electrons with energy Optical filter
855 MeV A =360 nm, 546 nm
Al =30 { ™ PM
.. ke Slot 1 mm
N Lens
/=20 mm
\ 0
&

Fig. 7.26 The Smith—Purcell 100
radiation yield for the fixed
wavelength of

A = 546 + 15 nm (above)
and 4 =360 + 15 nm
(below) depending on an
angle of observation 0

Photon yicld, phot/scc

120

100

o0
<

Photon yicld, phot/sce
B
= =

3
=

]




164 7  Smith—Purcell Radiation

The measured photon yield of the Smith—Purcell radiation with wavelength of
/=036 um (o = 3.5 eV) was AN/AQ ~ 10~3ph/e” x sterad, or going to the
radiation brightness,

AY eV
— =3. 03—
AQ 3:5x10 e~ x sterad

As it was noted by the authors of the experiment [19], the measured value is well
consistent with the Van den Berg theoretical model [6].
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Chapter 8
Radiation of Electrons in the Field
of Intense Laser Wave

8.1 Scattering of a Weak Electromagnetic Wave on a Rest
Electron (Non-Relativistic Approximation)

In the late nineteenth century J. Thomson considered the problem of electro-
magnetic wave scattering with frequency w, by a free rest particle with mass
m and charge e. Thomson solved the task neglecting the influence of the magnetic
field of the wave on the movement of particle (in modern terminology—neglecting
terms ~v/c, i.e. in the nonrelativistic case). If an initial linearly polarized wave
propagates along the axis z and the electric vector oscillation plane coincides with
the plane x0z, then the free charge e also oscillates in this plane under the influence
of an oscillating force F = ¢E cos wyt (Fig. 8.1).

If the influence of wave on the electron is weak enough (the amplitude of
oscillations is much smaller than the wavelength), then acceleration may be
written directly from the Newton’s law

v="SEy, Eo={Escosmpt, 0, O}. (8.1.1)
m

In this approximation, the particle oscillates in the plane z = const, i.e. without
moving along the wave vector of the incident wave. The oscillation amplitude is
easily found from the Eq. (8.1.1):
eE()

. (8.1.2)

Xm =
ma,

The intensity of the wave is characterized by the dimensionless parameter of the
field strength [see Eq. (2.1.14)]:

2¢2(A? E 2rol 2
g = 1|2 2>: 20 [ (8.1.3)
(mcz) mcmg TmC’
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Fig. 8.1 Scattering of a
linearly polarized
electromagnetic wave on a
rest electron. The wave vector
of the scattered wave is
characterized by the polar
angle 0 and azimuthal angle ¢

\J

In (8.1.3) the symbol ( ) denotes the averaging over time, which is significantly
greater than the period of wave Ty = 2m/w,, ry is the classical radius of electron,
Ao is a wavelength, I is concentration of power of electromagnetic radiation per
unit area. If the parameter a, satisfies a condition

ap > 1, (8.1.4)

it refers to the intense wave.

The amplitude of the oscillations in the field of linearly polarized wave (8.1.2)
in the nonrelativistic approximation is expressed through the parameter ao and
wavelength:

o
m — do5 - 8.1.5
X = do5 ( )

It is clear that in a field of the “weak” wave (ap < 1) the amplitude
of oscillations is much less than the wavelength, and velocity of a particle
vy = X~ eEy/mwy = apc is much smaller than the light speed. For a circularly
polarized wave the electric vector of a field can be written as

E(t) = Eycoswg t X { (8.1.6)

1 i

—, +—, 0.

V2 V2 }
Solving the Eq. (8.1.1) for the field (8.1.6), we can obtain the following

equations describing the trajectory of a particle in a parametric form:

X = CcoS o t + Xxop,

_ eEo
V2 me?
(8.1.7)

Bo t+
= ———sin wy 0,
Y \/fmw% Y

Z=20-



8.1 Scattering of a Weak Electromagnetic Wave 167

From (8.1.7) implies that the trajectory is nothing else than a circle of radius
R centered at a point r = {xo, yo,20} and it is located in the plane being perpen-
dicular to the wave vector k:
apgcC o ap

= = 20.
Vo, V221

The power emitted per unit solid angle in the direction n = {sin 6 cos ¢, sin
sin ¢, cos 0} is found according to a known charge acceleration v:

(x —x0)*+(y — yo)’= R, (8.1.8)

%:JTH“[HVHIE T { [PV . (8.1.9)

For a linearly polarized wave from (8.1.9) one may obtain

dP 2 2
a0 46 3 €2E2(1 — sin? 0 cos? (p)cos wot
nedm
A
= 3E(2)(00529+sin2€)sin2 @)cos” wot. (8.1.10)
m

For the unpolarized initial wave the expression (8.1.10) must be averaged over
the two polarization states (Eg = (Eéx—f—Eéy) / 2). The same result can be

obtained by averaging over the azimuthal angle ¢, since there is no a chosen plane
of oscillations in the initial state. In addition the expression (8.1.10) must be
averaged over time 7 > Ty. So, we have

dP 64 2 1 2
<dQ>:8nmzc3E0X2(l+COS 0). (8.1.11)

The scattering processes are described by an effective cross-section, which is
determined as the ratio of power per unit solid angle (8.1.11) to the density of
power flux, i.e. power per unit area in the plane being perpendicular to the wave

vector:
dP\  cE}
ds/  8n’
Hence,

do _ /dP\ //dP 2\
0 <d_§2>/<$> = (m_c2> 2(1+cos 0) = r02(1+cos 0). (8.1.12)

Integrating (8.1.12) over the solid angle, it is possible to find the total cross-section
of scattering, which is named as the Thomson scattering cross-section:
8

oT =—-TF;.
3 0
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For a circularly polarized wave from (8.1.6) and (8.1.9) it can be obtained

dQ ~ 8nc3

ar & ek,
m

2
> (2 — sin® 0)cos® wy . (8.1.13)

After time averaging, we have

dP AE2 1
— ) =——"==(1 20).
<d§2> 8nm?c3 2 (14 cos™0)

Thus, for a circularly polarized wave the scattering cross-section is given by the
same formula (8.1.12).

8.2 The Motion of Electron in a Field of Intense
Electromagnetic Wave

In a field of intense wave the electron velocity can be comparable to the light
speed. Therefore the characteristics of particle motion are determined by the rel-
ativistic equation:

%:e{lw >ul}. (8.2.1)

which has an analytical solution for a plane wave (see, for example, [1]). If the
wave field is described by the vector potential A (1) (n = wot — Kor is an invariant
phase), then the solution of Eq. (8.2.1) is written as

e 1 (eA(n)
P(n) = cA(n) +ng X me > ( v > (8.2.2)
The unit vector ny = Ko /|Ko| in (8.2.2) is directed along the wave vector of an
initial wave, i.e. along the axis z (see Fig. 8.1). In other words, the second term of
(8.2.2) shows that under the influence of intense wave the electron acquires a
momentum component along a wave vector. Motion of electron in a field of wave in
this direction (being perpendicular to E and H) is characterized by velocity of drift

2(P)
= =L 823
VD CBD 4 < E>7 ( )
where (E) denotes the result of averaging of electron energy moving in a field of
“strong” electromagnetic wave. After performing the procedure of averaging for
the initial rest electron, it is possible to receive

@
I (8.2.4)
4+ad}
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In a system, which moves along z axis with velocity vp, the electron, on
average, is at rest. Namely in this system (so-called R-system) the equation of the
trajectory is written rather simply. Coming back to the laboratory system
(L-system) is carried out by a standard Lorentz’s transformation.

For a linearly polarized wave in the R-system the trajectory defined by the
following equations:

A .
xr(n) = xor — ﬁ2a sinn,

Yr(1) = Yor, (8.2.5)

A

1
ZR(’]) = Zor + 5;—2&12 sin 2}’].

In (8.2.5) /g indicates the wavelength in R-system, a* = a} /(4 + 2a3) Without
loss of generality, we can put xor = yor = Zog = 0. Then the equation of a tra-
jectory is expressed by a closed formula: 16(kRzR)2: (kaR)2{4a2—(kaR)2},
where kg = 2m//x is the wave vector in R-system.

Figure 8.2 shows the changing of the electron trajectory character in the
xz-plane with increasing of parameter aqy [2]. It should be noted that in case of
ap = 0.2 (see Fig. 8.2) an electron oscillates slightly deviating from the plane
z = const, while with growth of this parameter oscillations become larger both
along axes x and z. The particle gets the maximal velocity near a point

xg =yr =0, (n=0):

Fig. 8.2 The trajectory of an 150 kex,
electron in the R-system ks
under the influence of

“strong” linearly polarized

wave (the parameter of the

field strength ay = 0.2—on

the left; ap = 1 and 5—on the 0.1
right)

8,=0.2

e

0.010  -0.005 0005 0010 ~02 -0
kez,

-0.1
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max | 2a+/ 1+ a2 /4
VR =————5—C. (8.2.6)
1+a
For a circularly polarized wave, the trajectory of an electron in R-system rep-
resents a circle with a radius

ao /R

Vi J(L+a2) 2™

For ay < 1 the expression (8.2.7) with accuracy of order a? coincides with the
formula (8.1.8). However, for the intense wave (a§ > 1) the trajectory radius
increases. In case of moving in a circle the linear velocity of a particle remains
constant:

R= (8.2.7)

)
—FF——C.
V2,/1+d}/2

It is clear that in case of ay > 1 the particle motion becomes relativistic.

Vg = (8.2.8)

8.3 Radiation from Electrons in a Field of the Intense Wave
(Classical Consideration)

In the R-system an electron performs the periodic motion in the area with the
characteristic size ¢ < 9. The characteristics of electromagnetic radiation in the
wave zone (at distances L > £ ~ ]y from the area of movement of charges) can be
obtained according to the classical electrodynamics. Since the particle motion is
relativistic, even for uniform circular motion with a frequency wg (in the case of a
circularly polarized wave) a lot of harmonics will be present in the spectrum. In
this case, the angular distribution of radiation power on the nth harmonic is cal-
culated in analogy with the synchrotron radiation.

The Schott formula for the angular distribution of the radiation power of a
charge moving in a circular orbit with velocity v = ¢f3, with a frequency , can be
written as the sum of squares of Bessel’s functions and their derivatives (see
Eq. (3.6.3)):

dP &’
dQ  4rnc

> n*{cot? 013 (nfsin 0) + 2 (nBsin 0) }. (8.3.1)

n

In the formula (8.3.1) 0 designates an angle between the wave vector and the
axis z passing through the center of the orbit perpendicular to its plane. In
R-system the frequency wg is connected with the frequency wy of the initial wave
in L-system by Lorentz’s transformation:

1—fp
1+ Bp

WR = W . (832)



8.3 Radiation from Electrons in a Field of the Intense Wave 171

For the drift velocity (8.2.4) from (8.3.2) we have
Do

V1it+al/2

Since the electron being at the initial moment at rest is carried away by a wave
in the direction of its propagation (a drift velocity is directed along the wave
vector), the frequency in R-system decreases in comparison with the initial one in
case of increasing of a,. Substituting the dependence of circulation velocity on
field strength (8.2.8) into (8.3.1), we obtain the angular distribution of radiation
power on the nth harmonic:

WR =

(8.3.3)

dPy)  Pw}r & 5 cot? Og
= n
dQr  4nc 1+d3/2 ai/(1+d}/2)

xJ,% Lnsin@;; —i—J;,2 Lnsinf)lg .
V2y/1+ad}/2 V2y/1+a}/2
(8.3.4)

Knowing the power of radiation in R-system, we will find the emitted energy
for the case, when the wave packet consisting of the Ny periods (for example,
a wave train of laser flash by length NyAg) falls on the electron:

dwl  apW Noig  No x 2
= Al‘R7 Atp = = .
dQR dQR & WR

Hence, the energy loss on the nth harmonic

dW,({l) _ogNy  a . cot? Og
dQr  2c 1+a}/)2 a3/(1+a}/2)

P2 sinbg |+ —2 i )
"<ﬁﬁ+ag/z T\ viran
(8.3.5)

To obtain a similar radiation characteristic in the laboratory system it is nec-
essary to apply the Lorentz’s transformation separately to the emitted energy and
solid angle:

dwy  dwy
dQr  dOg

dQ
7p(1 + P cos Og) d—g‘i. (8.3.6)

Here and hereinafter y,, denotes the Lorentz-factor, which describes the motion
of R-system [see formula (8.2.4)]:

1+d}/4

Vi+d/2

o= 11— B = (8.3.7)
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Expressions (8.3.4) and (8.3.5) depend on the angle 0 in R-system. Let us write
the relationship between the polar angles in the R- and L-systems:

cosb, — fp Sin O — sin 0
1 — ppcost;’ (1= BpcosOy)

Then a multiplier in (8.3.6), received as a result of transformation of energy Wx,
reduces to the following:

cosOg = (8.3.8)

1
(1 — Bpcos 0)

Bearing in mind that dQg/dQ; = d(cos 0g)/d(cos 0), from (8.3.8) it is pos-
sible to obtain

7p(1 + BpcosOg) =

a1
a0 (1 - fpcosy)’

(8.3.9)

It should be noted that all the quantities in dW,(e")/dQR, concern to R-system,
so they should be expressed in terms of variables in the L-system:

(20
WR = ———,
NG +d3/2
2. 2, 8.3.10
1 [COS 0, —7051n2% ( )
cot? O =
(1+d3/2) sin® 0,

After all substitutions from (8.3.5) with the account of (8.3.6) we obtain
dWL(") ~ 2wyNy a3 2
- 3
d€y 2c {1 + %‘2’ sin? %L}

a . 2
2 {cos 0; — > sin? %}

X

— J(nz) +J%(nz) p,  (83.11)
agsin” 0,

where

in0
=0 S (8.3.12)

_ G0 SO _
V21 4 %sin?

As it was noted above, the electron motion in the R-system for the values ay > 1
becomes relativistic, which leads to the appearance of higher harmonics with n > 1
in a spectrum. Due to the fact that in a field of intense wave in case of n > 1 the
dependence of the emitted energy on the initial wave field intensity ag = eEy/m c wg
is more complex than the trivial quadratic dependence (see Eq. (8.3.11)),
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the considered process often referred to as nonlinear Thomson scattering. After
appropriate Lorentz transformation in the L-system the frequency of harmonic will
depend on the angle of observation:

1— 1
o = nwy bo  _ (8.3.13)

0 2 .
1 —fycosl a4 020,
Po 143 sin"3

Quantum characteristics (for instance, number of photons AN) can be obtained
using the Planck formula: AW = hw AN.

Thereby, from (8.3.11) the angular distribution of scattered photons is written in
the form (index L is omitted):

dN™ 1 aw™ 43N, n

2 . 29,
%@ O
{l—i—zsm 5

dQ  ho dQ  2nhc

2
ag
2 [cos O —= sin? %L

X

— }Jﬁ(nz) +J2(nz)p . (83.14)
agsin” 0y,
Besides the angular distribution of scattered photons, the process of radiation is
often characterized by the scattering cross-section, which is defined from the
relationship:
dN o Nph do

a0 Sy A9
Here Ny, is the total number of photons in the wave train (which is expressed

through energy of flash A and energy of photon 7iwy), Sy is the area of the focal

“spot”. Their ratio depends on the parameter ay and “length” of the train Nj:

Nph N A 1 A< 1 NO;\.O g2 N() o oca(%NO

Sph_hwoSph:h—wo?S_WZZnhc/io c 0 pne2 T 4’

Then, from the distribution (8.3.14) the cross-section corresponding to radiation
on the nth harmonic can be obtained:

n

= 2r§ - 5
1+ Fsing]

4@ ;20

0 v
2[0059 5 sin” 3
X

2
} J2(nz) +J?*(n2) y. 8.3.15
a%SiHZH n( ) n( ) ( )

Here and hereinafter, the index L is omitted, since the consideration is per-
formed in the laboratory system only. The cross-section summed over all the
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harmonics, characterizes the process as a whole, and, generally speaking, differs
from the linear Thomson cross-section:
do  do
dQ L= 40
n=1

(8.3.16)

In the “weak” field limit (a(z, — 0, z—0), formula (8.3.16) turns to the
Thomson formula:
da'l) (a§ —0)
dQ

2 do" (a2 — 0
:%O(lecoszH), %—0, n>2.

Figure 8.3 shows the angular distribution for the first harmonic (n = 1) for
various parameters of the field ay = 0.2; 1; 5 [see formula (8.3.15)]. As can be seen
from the figure, for the weak field the angular distribution practically coincides with
the Thomson one, which is given in the same figure, i.e. it is close to isotropic one.
One can see, first, the narrowing of the radiation cone, and, secondly, the maximal
value of the cross-section do'!) /dQy, achieves for 0; = 0 with increase of param-
eter agp.

Figure 8.4a shows the similar distributions for harmonics with n = 2, 3, in case
of ap = 0.2. It can be noted that in case aj < 1 a contribution of higher harmonics
is suppressed (i.e. the contribution of harmonics with n > 1 can be neglected).
With increasing the intensity of wave the relative contribution of higher harmonics
increases (see Fig. 8.4b, c). Besides, as for the fundamental harmonic (n = 1),
there is narrowing of the angular distribution, but the angle corresponding to the
maximum of the distribution differs from zero.

Figure 8.5 shows the dependences of “partial” cross-sections

do (a
) = [0 g

on the harmonic number in case of different values of the parameter ay. The
numbers of harmonics n, for which the cross-section decreases by about two orders
of magnitude compared with ¢'", are marked here as well. So, for ay = 0.3
(Fig. 8.5a) such suppression is achieved already on the third harmonic, whereas for
aop = 1 (Fig. 8.5b)—only on the seventh one. It is clear that with increasing of the

Fig. 8.3 The angular 1 do®
distribution of a scattered
radiation on the first
harmonic for different values
of parameter aj 0.8

Thomson
cross-section

I e S P - .

0 25 50 75 100 125 150 175

0r.deg
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Fig. 8.5 Dependence of the “partial” cross-sections of intense wave scattering by a rest electron

for the parameter ay, = 0.3 (a) and ap = 1 (b)
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initial wave field strength it is necessary to take into account the contribution of a
large number of harmonics for the correct calculation of the scattered radiation
characteristics.

Dependence of the total cross-section

Nmax

a(ap) = Z o (ag) ~ Z o (ap)

n=1 n=1

on the parameter ao is shown in Fig. 8.6. For values ay — O the cross-section
coincides with the Thomson one, as it should be. It is necessary to specify that the
cross-section ¢ (for ag = 5) was calculated taking into account of the harmonics
contributions up to n,,x = 120. As can be seen from the figure, the total cross-
section decreases with an increase of aj.

For further estimations we will use the angular distributions of energy losses
and the number of emitted photons on each harmonic (8.3.11) and (8.3.14). In the
analyzed case (radiation of an electron in a field of a circularly polarized wave),
the summation over all the harmonics in Eq. (8.3.11) can be carried out analyti-
cally using the known relationships [3]:

~ Z(4+72)
Y ni(nz) = —
1 16(1 — z2)
44372
n*J?(nz) = —Zs/z
16(1 — 22)

3
Il

(8.3.17)

NgE

n

Then, the angular distribution of total energy losses can be written as

AW Sdw ] a 1
— = ——— = —aNy X hwyg 0 3 -
a . : _ /2
Qi dQ 2 [1 +7°s1n2%} 16(1 — 22)
2
[cos 0y, —%gsin2 %L}
x (4+2)+(1-2)@+37) 3,  (83.18)

2 2
4 qin2 0L
{1+251n 2}

where z is given by formula (8.3.12).
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The distribution (8.3.18) is shown in Fig. 8.7 for different values of ay. It can be
noted that the distribution becomes narrower with growth of a, and, for example,
in case of ag = 5 it is concentrated along the conical surface with an apex angle
O ~ 0.5 rad ~ .

Integrating the expression (8.3.18) over the solid angle, we can obtain the
dependence of the total energy losses on the field strength ag, which is shown in
Fig. 8.8

As it follows from the figure, the dependence of the energy losses on the
strength parameter ay may be approximated by the polynom

W = 0.1937aNy i woagy = 0.00443 Ny i woa,

(see the solid curve in the Fig. 8.8).

Figure 8.9 shows the distributions dW /dQ for the fixed observation angles
(in vicinity of 0 ~ VSI) for ap = 5. The angular distributions have maxima for
n, ~ 30-80 (depending on the observation angle), and the harmonics with n > n,,
are observed in the spectrum also. An estimation of the harmonic number n,,, which
corresponds to the maximum of dW® / dQ, can be obtained from the analogy
between the nonlinear Thomson scattering and synchrotron radiation of electron
moving in the R-system in a circular orbit with radius R = a ¢/ wy (2 + ag) 172 [see
equation (8.2.7)]. For ap > 1 the orbital motion becomes relativistic one, and the
characteristic frequency of radiation is given by the formula:
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Fig. 8.9 Dependence of
energy losses dW"/dQ in
case of ap = 5 for the fixed
polar angles 6, on the
harmonic number n
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[see expression (8.2.7) for the relative velocity of the electron g = vr/c in orbit].
In case of going from R- to the L-system, the typical frequency is calculated taking
into account the transformation of angles:

cos Or + fp
1 + Bpcos O’

In the R-system, the maximum of synchrotron radiation intensity is directed
along the tangent to the orbit, i.e. for 0g = /2. Thus, from the previous formulae,
we obtain

ot = ofyp (1 + Bp cosO), costp =

wﬁ = ch”/D(l + Bp cos0),

cos 0
cos O = R7+[313.
1 + Bp cos O
For the considered case (ag > 1)
3
R 22
., = ZGO o,
therefore, in L-system
3
¢~ ay o

In other words, the characteristic frequency in the radiation spectrum corre-
sponds to the harmonic number n,,:

wf =Ny Wy, Ny = mag > 1,

whereas the emission spectrum becomes practically continuous. For the case
ap = 5 the obtained approximate formula gives a value of n,, ~ 66.
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The same value can be evaluated in another way. Let’s calculate the number of
photons Ny, emitted by an electron in case of interaction of electron with the wave
train by Noig length [see expression (8.3.14)]:

Tmax ; TMmax dN(n)
Nph:ZN<):Z/dQ I (8.3.19)

n=1 n=1

Knowing the total energy losses, it is possible to find the average energy of the
emitted photons:

w
hw) = —.
(ho) = 57

This value is associated with the characteristic energy of photons, which cor-
responds to the maximum of SR spectrum using the well known relation

(hw) = 0.308 (hw,).
From here it is possible to find the appropriate harmonic number:

(hooe) B w
ha)o o O.3O8Nphhw0'

ne =

Figure 8.10 shows the distribution of the emitted number of photons on each
harmonic N (i.e. the result of integration of expression (8.3.14) over the solid
angle) for the parameter ap = 5. As it can be seen from the figure, the photon yield
decreases monotonically, but rather slowly, with the increase of the harmonic
number. Choosing the harmonic maximal number n,,,, = 150, it is possible to
calculate by the formula (8.3.19) the number of photons N, which will differ
slightly from the “true” total number of photons (i.e. from the result of summing
of the series (8.3.19) up to ny.x = 0):

Ny ~ 0.17. (8.3.20)

Knowing the value of the total energy W(ap =5) = 2.79hwy (see Fig. 8.8),
we find the required harmonic number:

Fig. 8.10 The dependence of Noh
the number of scattered 0.021
photons Ny, on the harmonic
number per one period of the 0.015+ _
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2.79

0308 %017

Ny,
which agrees with the previously obtained estimation satisfactorily.

In other words, if the frequency of an initial wave corresponds to the energy of
photons hwy = 2 eV, the peak in the spectrum will correspond to the energy
ho. =~ n,hog =~ 130eV, whereas the maximal energy of the emitted photons can
reach values /i, ~ 0.5 keV.

The spectral-angular distribution of the radiation of the helium atom electrons
in the field of Ti:Sa-laser with power P = 50 x 10'> W and the duration of the
flash 7 =30 x 10~"° s was investigated in the experiment [4]. The achieved
intensity of the laser flash was 7 x 10" W/cm?, which corresponds to the
parameter of strength ay = 5.6. They observed photons with the energy of max-
imum /o = 150 eV in the measured spectrum of scattered radiation for the
observation angle 6 = 0°, but the boundary energy in the spectrum exceeded
~1,000 eV. The authors of this experiment have estimated the yield Ny, =
5 x 10'° photons per flash (after integrating over the angular distribution and over
the radiation spectrum). The estimation of the photon number emitted by one
electron under the influence of electromagnetic field with ag = 5 per period of the
primary wave was derived in the previous section: Ny, ~ 0.17. For the Ti:Sa laser
wavelength 4~ 1 um and the flash duration T~ 3 x 10~!# s the number of periods
is Npn ~ ¢t/A~10. The number of electrons N, in the area of interaction of laser
flash with a gas jet may be estimated as

2
N, ~n,V= ne% ~ 10", forn, = 10" cm™.

Thereby the estimation of a photon yield per shot may be obtained using the
quantity (8.3.20):

Niot =~ Npp X N, x No == 1.7 x 10" ~ 10" phot/flash,

which agrees with experiment good.
The obtained experimental results demonstrate the possibility of creating a new
type of X-ray source based on the process of nonlinear Thomson scattering.

8.4 Scattering of a Weak Electromagnetic Wave
on a Moving Electron (the Linear Compton Effect)

In the previous paragraph we considered the scattering of electromagnetic wave by
the rest electron. In case of the wave scattering by a relativistic electron, the scattered
photon frequency shifts to a hard part of spectrum due to the Doppler effect, i.e. the
frequency of visible laser photons can be transformed into radiation of the X-ray or
y-range. This effect can be used for creation of sources of a hard radiation.
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For certainty, we shall consider the laser photon scattering (hwo <3 eV) by a
relativistic electron. In the most interesting case, when the electron momentum and
the wave vector are antiparallel (the backward Compton scattering, BCS), in the
R-system, where an initial electron is at rest, the photon energy is about 7y times
higher than in the laboratory system.

Indeed, from (8.3.2) it follows wg = g/ };gﬁ

In the considered case (head-on-collision) there should be substituted the
negative value—p}, instead of the velocity fi,, because the electron momentum
and its velocity are directed along a negative direction of z-axis (Fig. 8.11).

Thus, we have the formula for the photon energy:

1+
hwor = hawy L+ h = hyowo(1 + By),

1 — B

where 7, denotes the Lorentz-factor of the initial electron

For the electron energy E < 5 GeV (7 < 10%), the photon energy in R-system
will satisfy the condition Awgg <K mc?, which, in case of a weak field, allows to
consider this process as the Thomson scattering (neglecting the energy transfer to
electron and the frequency changing of the scattered photon). In this approxima-
tion, turning again in the L-system result is:

wr = yo0r(1 = Bycos Or) = y5wo(1 + By)

cosOp+ By \ _ 1+ 5,
x (1 Pog + B, cos 0L> ~ T Bycos O (84.1)

In ultrarelativistic case (8, — 1, y,>> 1), instead of the angle 0, it is more
convenient to use the angle 0, which is measured in L-system from the direction of
the electron momentum (see Fig. 8.11):

0:7T—0L.

Fig. 8.11 Kinematics of the hk . ho
backward Compton scattering ’

B‘JE
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Then, the frequency of the scattered photon in L-system is given by the relation:

1+ By 2 !
wp = p——————— = dy;wp—————-
T o e

gy Ry (8.4.2)

In (8.4.2) the terms proportional to y_3, 0° and higher are omitted.

The maximal energy of the scattered photon [at an angle 6 = 0 (6, = =), i.e. in
the direction of the electron momentum] is 4y times as higher than the energy of
the initial photon:

1+ B
1 - B

The angular distribution of scattered photons is obtained by transformation of
cross-section (8.1.12) in L-system (the indices L are omitted here again):

do 3 (1-F) 14 (cos 0 — By)?
aQ 2 (1 — B, cos 0)* (1 — Bycos0)*|

hiop, max = hwg ~ 4y()hw0, Yo > 1 (8.4.3)

(8.4.4)

Since the expression (8.4.2) gives the relationship connected the scattered
photon energy and the scattering angle, the cross-section (8.4.4) can be rewritten as

A R ale ) e

Let us introduce a new dimensionless variable

wil—ﬁON 1

S = =
Wmax 1 - ﬁo cos 0 1+ V2027

(8.4.6)

through which the cross-sections (8.4.5) can be expressed in a simpler way. After a
trivial integration of this cross-section over the azimuthal angle, and bearing in
mind the relation

d(cos0) = B S'ljodS

we obtain the spectrum of scattered photons (because the variable S is nothing else
than the energy of the scattered photon in units /iwmax):

do 1+ By
d—S:TCI"O 3
Bo

{1 +/3(2)—25(1+/30)+52(1+ﬂ0)2}. (8.4.7)

In the ultrarelativistic limit (f, — 1), it follows from (8.4.7) that the radiation
spectrum is described by the universal function, which describes the spectrum of
radiation in a helical undulator also [5]:
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do/dS = 4nrg[1 — 25 +28%], 0<S<L. (8.4.8)
In this approximation, neglecting the terms ~ 7> we have
w/wy =495/ (1 + 70%),

and the cross-section (8.4.5) can be written in the form
da/dQ = 4r3 3 (1 +730°) /1 +2530%]" (8.4.9)

The cross-section (8.4.9) is a rapidly decreasing function of the variable y,0.
Writing an element of solid angle as

dQ = d(yé@z)d(p/Zy%,

the cross-section (8.4.9) can be integrated over the variable 7,0 between the limits
from zero to infinity: ¢ = 87r3/3. Because of the used approximations the cal-
culated result coincides with the classical Thomson cross-section as expected.

A more correct description of the considered process (the linear Compton effect
on a free electron) is carried out in the framework of quantum electrodynamics.
This approach takes into account the quantum recoil effect, i.e. a transfer of the
momentum to the scattered electron, what leads to the modification of the formula
(8.4.2):

1+ By
1 — Bycos 0+ 2(1 + cos 0)

yome?

ho = hay . (8.4.10)

The differential cross-section of the Compton scattering on a moving electron
for any energy of particle and any geometry may be written through so-called
invariant variables [6]. The following set of invariant variables, which are deter-
mined by the kinematics of the scattering process is used often:

_ 2pko _ Pko — pk

- 7 8.4.11
(mc?)? Y Pko ( )

Here p, ko, k denote four-momentum of the initial electron and photon as well as
scattered photon, respectively (p = {yomc?, p}, ko = {liwo, Ko}, k = {hw, 1k}).
For the head-on collision of laser photon with ultrarelativistic electron we have
2pohio(1 + By)  4vohoo

)

2 2
me me (8.4.12)

th

~ “/oﬁomCT

In a system, where the initial electron is at rest, the frequency of the initial
photon is

or = Y0@o(1 + o). (8.4.13)
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In other words, the parameter x characterizes the initial photon energy (in units
mc?) in the considered system. If x < 1, then the process of Compton scattering in
a good approximation can be regarded as Thomson scattering.

The variable y coincides with the ratio of the scattered photon energy to the
energy of the initial electron with high accuracy. It is easy to obtain the interval of
variation of this parameter from the kinematics of the process:

X

Ogygymax - 1 +)C'

(8.4.14)

The spectrum of scattered photons in the invariant variables can be written as
follows:

do 2n2 [ 1 — Xy —
do _ 2mry 7+1_y_4w . (8.4.15)
dy x |1—y ¥(1—y)

After integrating the cross-section (8.4.15) over the variable y in the limits
(8.4.14), which is easily carried out analytically, we can obtain the dependence of
the BCS total cross-section on the parameter x:

2nr2 4 8 8 1 1
O'(X)ZO{ <l——xz> 1H(1+X)+x+2—2(1+x>2}- (8.4.16)

The expansion follows from the obtained cross-sections for values x < 1

az%nré(l —x—i—%xz).
It is clear that for Compton scattering on a rest electron (y, =1, iy =0)
X = ZZ%, the cross-section (8.4.16) describes the standard behavior of the scat-
tering cross-section, which decreases with the growth of the initial photon energy.
The exact cross-section in the discussed case of a head-on collision with ultra-
relativistic electron can be written through the traditional variables as

do _ 15 (1= Fo) (2)2

dQ 2 (1+ ) \wo
B 2\ (1 — enc2
1= Bycos o L+By wo (151 C"Sz 0) (8.4.17)
1+B8y wo 1—pfycosl w (1 — Bycosb)

If the initial beam of photons is polarized, the scattered photons will be also
polarized. Let us consider the polarization characteristics of a scattered y-radiation
in detail. The cross-section of polarized photons scattered by an unpolarized
electrons was obtained in the invariant variables in [6], from which the needed
expressions can be easily derived. Since the process involves two photons, then,
generally speaking, the polarization characteristics of the initial and final photons
have to be described in two different coordinate systems. However, since we are
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interested in the scattering of photons into the small range of angles 0~y < 1
(i.e. momenta of the initial and final photons are practically antiparallel to each
other), it is possible to use one system of coordinates for polarization of both
photons. Further, since the averaging of a yield of scattered photons over the
azimuthal angles takes place during experiment, for obtaining of useful expres-
sions it is necessary to choose a fixed frame of reference. The most important
frame is defined by the experimental setup, but not by the scattering plane. If

through 551) and él@ we define the Stokes parameters of the initial and scattered
photons, respectively, then for the cross-section it is possible to obtain the fol-
lowing expression:

dyd
do = 282y + (&) + &Y ) Fou + &V ey

+ AP+ & (8.4.18)

b (] 1 2+1 S N AR,
O\ x(1—y) x x(1—-y) 4 Y 1—y)’
1 1 | 1
F = - _— _—
0 ( x<1—y>) x x(I—y)
1 1 1
Fry =11 + ! 1+2 2
227y Y 1—y x x(l—y))’

P 1 2+ 1 Lol
P x(1-y) x x(l—y) 2°
For a correct averaging of the obtained expression over the azimuthal angle, let

us introduce an explicit dependence on the azimuthal angle ¢ (the angle between
the scattering plane and the plane of reference).

where

The Stokes parameters 551’2) introduced in (8.4.18) are defined in the system
related to the scattering plane, so instead of them we substitute the expressions

gl — &V cos(20) — &1 sin(20);
& — explio)el; (8.4.19)
&l — éWsin(2g) + & cos(2¢),

which connect the Stokes parameters of the initial photon in the system, rotated at
an angle ¢ with the initial values.

The Stokes parameters of scattered photons 51.2 are transformed by the for-
mulae similar to (8.4.19) by replacing ¢ — —¢ (which corresponds to a return to
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Fig. 8.12 The BCS spectrum 1 do
for x = 0.2 (left scale) and d_
circular polarization of 21 rp 4y
scattered photons for & = 1 25
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the initial reference plane). After substitution of obtained expressions and inte-
grating over the azimuthal angle we obtain

d
do = 4nr3 > {Fo+ &8P+ V&R + VPR,

Fl:_1<1_;>2

2\x x(1—=y))

fel (e ) (1022 )
4 1—y x x(l—y))’

Pose st

As in the case of undulator radiation, the spectral and polarization character-
istics of the beam of scattered photons are determined by an aperture of the beam
collimation.

For the collimation angle 0. > 7~ the minimal value of the variable y (see
Eq. (8.4.12)) iS ymin ~ 0, whereas ymax (0 = 0) = x/(1 4 x). Figure 8.12 shows the
spectrum of scattered photons and the dependence of circular polarization on the
photon energy for this case, which was calculated from the expression

(8.4.20)

@) _Fxy).0
& (xy) = Fo(x,y)€2 : (8.4.21)

The results shown in Fig. 8.12 are obtained for ég” = +1. As it follows from
the figure, for photons scattered strictly backwards and having the maximal
energy, a circular polarization will be 100%, but opposite in sign (for example,
the right-circular polarization of the laser photon is transformed into the left-
circular one).

Figure 8.13 illustrates the possibility of monochromatization of photon beam in
case of choosing of the collimation angle 0. <y~!. The emission spectrum and the
degree of circular polarization are calculated for the collimation angle
0. = 0.7y~'. As it can be seen from the figure, a “hard” collimation allows to
produce a scattered photon beam with a high circular polarization.
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For such a beam it is possible to determine the average value of circular
polarization:

Ymax Ymax
d d
@) = [ Tra) [ [ Fro, (3422)
Ymin Ymin

where ynin = W, Vmax = ]"? For values x < 1 the expression (8.4.22) can be

written as

1+

£(2)
)~ e 8.4.23

The average circular polarization is noticeably reduced with increasing of the
collimator aperture.

Figure 8.14 shows the dependence of average polarization on the collimation
angle, where the solid curve corresponds to the exact calculation by the formula
(8.4.22) for x = 0.5, while the dashed line refers to calculation by formula
(8.4.23).

The technique described was used to produce monochromatic gamma beams for
investigation of photonuclear processes [7-9]. For some purposes parameters of
available lasers (or accelerators) do not allow to achieve needful gamma beam
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Fig. 8.14 Dependence of the &
averaged degree of the
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characteristics (photon energy, tunability, intensity and so on). Authors of the work
[9] have carried out the BCS experiment at the electron—positron collider VEPP-
2M with energy of electrons (positrons) 650 MeV. The initial photon beam with
energy of photons ~ 100 eV was generated by positrons passing through a helical
undulator and then scattered by a counter propagating electrons. As a result they
have obtained circularly-polarized y-quanta with energy ~300 MeV which were
used to measure a polarization of the stored electron beam.

Other scheme has been realized in the experiment [10] where authors used
infrared photons generated by a free-electron laser (FEL) instead photons from an
ordinary laser. In the such FEL an undulator was placed into an optical resonator
(cavity) to provide a feedback. FEL photons circulated in this cavity and scattered
by the same electron beam which was produced the FEL radiation. During head-
on-collisions the intense X-ray beam there was obtained.

Photons are emitted in a FEL with wavelength (see Eq. (3.3.5)):

) K?
IpEL = = ( 1 + — 8.4.24
AFEL 2})2( + 3 ), ( )

and, consequently, as a result of intracavity BCS process a photon wavelength
becomes shorter:

Jncs = T (1 4 207) = (1 + Kz) (1+7%6%). (8.4.25)
4y? 84 2

In the cited work electrons with Lorentz-factor y ~ 100 were used to produce
FEL radiation in the wavelength range Apgp = 3.5-7 pm. The FEL spectral line
shift in this range was performed by changing an undulator gap. Consequently,
energy of X-ray photons can be changed in the interval hwgcs = 7-14 keV with
small step (see Eq. (8.4.29)).

Formulas (8.4.18) and (8.4.20) are valid for any values of wq and f,. However,
with growing of intensity of the laser field (in other words, with increasing of
concentration of photons in the interaction region) the probability of interaction of
one electron with a few photons increases, i.e. process becomes nonlinear:

!

e +ny—e’'+9, n=273,4,...
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In the next paragraphs the peculiarities of the nonlinear Thomson and Compton
scattering processes on the ultra-relativistic electrons are considered.

8.5 Radiation of a Relativistic Electron in a Field of Strong
Electromagnetic Wave

Let us consider, as in the previous paragraph, the head-on collision of laser
photons and the ultrarelativistic electron with the energy, at which the change in
frequency of the photon scattering in the R-system can be neglected [11]. If the
laser “flash” contains a train of N, periods, the periodic trajectory of electron
passing through this wave train contains 2N, oscillations. In this case, as usual, the
interference factor Fy can be approximated by a o-function, whose argument
determines the dispersion relation connecting the frequency of the emitted photon
and the photon outgoing angle. In the L-system this relation is given as follows:

1 472
w, = nwo(1 + fy) ~n Yo@o

l—ﬂocose—ki—é(l—ﬁo)(l—kcosﬁ) 1—&—%—&—7}%02.

(8.5.1)

The angular distribution of energy losses in the L-system of relativistic elec-
trons on the nth harmonic can again be obtained from the expression (8.3.5) with
the account of (8.3.6) and (8.3.9):

dWén) _ ewoNy  af (1~ Av)
0~ dc (1+a3) 31— Prcost,)
0L — Po)’72
H{W“u“ﬂbmm+ﬁwﬁ, 852)
sin” 6,

ap sin O
V2 /143 /2 o1 =fp cos )’

Here, as before, f, indicates the drift velocity, i.e. the velocity of a system,
where the electron, on average, is at rest. It is clear that the drift velocity will
depend not only on the initial electron velocity f3,, but also on the field strength
parameter ay. In a system, which moves parallel to the trajectory of an electron
with velocity fo, the electron at the initial moment is at rest, and under the
influence of intense wave it acquires the velocity of drift [see formula (8.2.4):
By = a3/ (4+ @)l

Then, using the relativistic law of addition of velocities when returning to the
initial L-system, we get

where z =

 —Bo+ By —4Py+ai(1 - ﬁo)'

bo= L=BoBy 4+ a5(1—pBy)

(8.5.3)
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For the most interesting relativistic case it follows from (8.5.3) that fip < 0,
since the axis z of L-system is directed along the wave vector. The polar angle 6,
in (8.5.2) is measured namely from this direction.

In the ultrarelativistic limit (73 > a3) from (8.5.3) we obtain

2

a
Bp ~ =By +

2 V(2)

AN 8.5.4
DET 22 (8:54)

The relativistic particle emits photons in a narrow cone along the particle
velocity, and therefore, by analogy with the case considered in paragraph 8.4,
instead of the angle 0; we will use the angle 0 in respect to the vector By:

0:7‘57611, Hgyila
and accordingly
1 [)’cosﬁ—1 1+ +“92
D L= 27 2 70
_ V2agy,0
1+730° +a3/2

For calculations it is convenient to use a variable = y50°, through which the
element of the solid angle dQ = dr d¢p/2y% is expressed.

The angular distribution of energy losses on the nth harmonic is written as
follows:

AW® 2N, 4azy? 1+a3/2 1)
_ ¢ moNo A7 3nz ( 00/2 ) J2(nz) +J*(nz) o (8.5.5)
drde ¢ (1+a3/2+1) 2apt

As before, the angular distribution of the total energy losses can be obtained
carrying out the summation over all the harmonics [see (8.3.17)]:

a2 1
= 0t WmaxN 0
dtdq) Zdqu; PO RO @24 ) Te(1 - 2

" {(H%ifili) (4+2)+(1 —Zz><4+3z2)}~ (8.5.6)

Here hwgma = 4y(2)hw0 is the maximal energy of the scattered photon [see
expression (8.4.2)]. As it will be shown below, in case of interaction of intense
wave with ultrarelativistic electron (a¢ > 1), the maximal energy of the scattered
photon will decrease.
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Fig. 8.15 The angular
distribution of energy losses
for the nonlinear Thomson
scattering on a moving
electron, depending on

the variable t = 730° for
ap=13,5

Fig. 8.16 Dependence of the
total energy losses of the
nonlinear Thomson scattering
as a function of the parameter
ay (per one period of the
incident wave)
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Figure 8.15 shows the angular distributions of energy losses for several values
of the parameter ap = 1, 3, 5. As it can be seen from the figure, with increasing of
the wave intensity, the cone of radiation angles grows. The maximum in the
distribution corresponds to the angle t,, = 7 0,, ~ a} / 2.

Figure 8.16 shows the dependence of total energy on the parameter ag:

00
dW a()
W(ao) / / drdg

As it follows from the figure, the calculated curve is well approximated by a
quadratic dependence W = 0.33 nochwmaxNoa%. It should be noted that a similar
dependence for a rest electron (W ~ ag, see Fig. 8.8) differs from the quadratic one
due to the fact that the Lorentz-factor of a rest electron, which is drifting under the
action of a strong wave, is proportional to a3. It means the dependence shown in
Fig. 8.8, can be written as W = const x a¢ ~ const x 3 a3. This dependence is
consistent with the result for the scattering on the relativistic electron (see
Fig. 8.16), where the dependence on y% is included into the expression for Acyax.

In order to calculate the number of emitted photons and the cross-section, we use
the relationship between the scattering angle and the frequency of nth harmonic in

the L-system (8.4.1):
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1—Bp 1+B, 4y3nmy

1_ﬁDCOSGLM V75+a_5+9_2_1+§+t.

Wy, = nwy (857)

The last formula is obtained using the approximate expressions (8.3.13). Then
from (8.3.14) we obtain

dN®™ 1 dW"W  aNya]
- - 2
dtde Thoyp dtde (1 +%‘z’+t>

3
% n{WJz(nz) + Jf(nz)}, (8.5.8)

2
2agt

Note that formula (8.5.8) completely coincides with the expression for the
spectral photon density of the nth harmonic, which is radiated by an electron in a
helical undulator with a period A¢/2, the number of periods Ny and undulator
parameter K = ag/v/2.

In order to obtain the spectral distribution of photons from the angular one, we
use the relationship (8.5.7) again, and for the energy of the emitted photon we will
use, as before, the dimensionless variable (hw““ ~ 4y(2]hw0):

ho n
holin, — 1+ad/2+1

max

Then, after integrating over the azimuth, from (8.5.8) we obtain the spectral
distribution of the emitted photons on each harmonic:

dN™ —s(2+a)]’
aN" 2maNoa? Uk Chs ao)]2 JX(nz) + 2 (nz) ¢, (8.5.9)
ds 2563 [n - S(1+%)]
where
2
7= f”"\/Sn — 82(1+d3/2),
n . (8.5.10)
0<S<

“1+a}/2

The total photon spectrum is determined by the sum of “partial” spectra:

dN dN™
E’;dv

Having integrated the expression (8.5.9), we can get the “partial” photon yield
on the nth harmonic, which is proportional to the length of the train Ny and has a
complicated dependence on the harmonic number and the field intensity and,
generally speaking, depends on the Lorentz-factor of the initial electron indirectly.
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For a weak field (a3 < 1) the expression in braces will be proportional to
(ad)"™", which, obviously, leads to a strong suppression of radiation on the higher
harmonics. Figure 8.17a, b shows the photon spectra for ay = 0.3 and @y = 2. In
the first case, the main part of radiation is concentrated on the first harmonic,
whereas in the second case a significant contribution is observed in the spectrum,
at least from 7 harmonics [Syax = 2.4, which corresponds to nm.x =~ 7, see
expression (8.5.9)]. Expanding the expression placed in braces in (8.5.5), for small
values of the parameter a < 1 we obtain:

aN®
W ~ TCO(N()a(z)(l — 2S+ 2S2),
| (8.5.11)
OSSSSmax =7 2/
1+aj/2

After elementary integration we get an estimation of the number of emitted
photons: N ~ NV =27 Noad.



194 8 Radiation of Electrons

The average energy of the emitted photons is found from the spectrum (8.5.11):

dN(l)
(S) =~ S

<hw> < >hwmax = hwmax

The same value can be calculated, knowing the total radiation losses.
In approximation of a3 < 1 from (8.5.6) it follows the expansion:
aw , 1+7

— & o h®pmaxNoa
dt max{ V0t +t)5,

and, consequently,

[ aw
/ 7 = O(hwmaxN()ao.
0

Hence it follows that the average energy of the photon is determined as

w 1
<h60> *Nfihwmaxa (8512)

in complete analogy with the characteristics of the undulator radiation in case of
K* < 1.

For the radiation in the intense wave field the number of emitted photons can be
estimated in R-system (because the number of emitted photons is the invariant, only
their average energy is changing). In R-system the electron emits per one turn the
number of photons, which is proportional to the Lorentz-factor of the orbital motion:

5 5 na 5 14 a 5
Rph R —=T 0L = — = = —=TL — R —=Toda.
AR AV T
Then, the estimation of the photon average energy is calculated similarly to
(8.5.12):
w 031ma hwmaxNoa%

ho) = = ~ 0.15 h wpaxap.
(o) Nonpn %ncxaoNo max {70

Unlike the linear regime (ay — 0), the average energy of photons in the con-
sidered case depends linearly on the field parameter a,, and for a, > 7 exceeds the
value /i Opax = 4))%(00, which is typical for the linear case (see Fig. 8.17a). From
the distribution of photons (8.5.9) it is easy to go over to the cross-section of the
process, using the relationship (8.3.15) again:
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Fig. 8.18 Dependence of the o™
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where z and S are defined by (8.5.10).
Figure 8.18 shows the dependence of “partial” cross-sections on the harmonic
number

n/(l+at2)/2)

do™

() = ds—— 8.5.13

= [ as (85.13)
0

which are calculated for parameters of the wave strength ap = 1 and ag = /2. As
it follows from a comparison of the obtained dependence for a, = 1 with the
similar one calculated for a rest electron (see Fig. 8.5b), the cross-section (8.5.13)
does not depend on the Lorentz-factor, as was to be expected, since both for
moving and for a rest electron the approximation 2yp hiwmg < mc? is used which
allows to neglect the recoil effects.

8.6 Nonlinear Compton Scattering

The correct account of recoil effects in a field of strong electromagnetic wave is
carried out within framework of quantum electrodynamics. One of the important
consequences of the strict theory of effects being nonlinear in respect of the field
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strength (including the nonlinear Compton scattering) is the increase of “effec-
tive” mass of electron (positron) [12]:

2
me = m’ (1 +%>.

Another important consequence is a “broadening” of the BCS-spectra due to
nonlinear effects. Following [13], the cross-section of the BCS nonlinear process with
the absorption of n photons using the invariant variables (8.4.11) can be written as:

de™  4nr2 2 1
o _ nro{4J§+%<1—y+l—_y>(le+J5H21,3)}. (8.6.1)

dy xaj

It should worth noting that the non-linearity parameter & introduced in work
[14] [see Eq. (3) there] is connected with the laser strength parameter a% which is
used in this book (see Eq. (2.1.14)) as following 52 = a(z)/2.

In (8.6.1) J,zn are the Bessel’s functions of the order m =n — 1, n, n + 1 in
respect to the same argument

znzx/inao\/( Y e {1—1y (1+45/2)] (8.6.2)

1—y -y nx

The spectral variable y varies within the limits

(n _ o (8.6.3)

0<y< .
=Y= Ymax 1+ nx+d3/2

The number of “absorbed” photons n in quantum electrodynamics can be
compared with the number of harmonics of the scattered radiation in the classical
electrodynamics.

Apparently, the maximum possible photon energy for the first harmonic
(n =1) will be less than for a linear BCS process because of the effective
increasing of the electron mass in a wave field:

T
X px4ag/2 T 1 4x
(see Eq. (8.4.14)).

For a weak field gy < 1 and, hence z, < 1. Having written instead the Bessel’s

functions their expansions for z, < 1 and keeping the first-order terms, we obtain

1 7.\ 21
2 - n
Jn (Zn) ~ (n')z (E) 5

J,Z,—I(Zn)%n2<%)72 : (%)2 (8.6.4)

T () = (n+1 1)2(%)2 (n1!)2 (%)2
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Then, it is possible to write down the cross-section of nonlinear BCS for
n =1, 2 in case of gy < 1 in explicit form:

do)  2nr? 1 alf?
= —4 1— - 1—da? o
& e f1+< y+1_y ( agfi + 4) ,

de® 2mrg .,y (8.6.5)

a
dy — x V(1 -y

X {—4f2+ (1 —y+11fy) (1 —a3f2+1§agf§>}.

In formulae (8.6.5) the following designations are used

y(x—xy—y—%yag) :y(Zx—2xy—y—%ya(2))
21—y T

We can show that dg®) / dy~ (a%)nil, from which it follows that in case of
ap — 0 the cross-section do(V) / dy coincides with the linear BCS one, whereas
do™ /dy — 0 for all n > 2.

Generally, the cross-section of nonlinear BCS process is calculated by means of

summation of expressions (8.6.1) over all possible numbers of the absorbed
photons:

fi=

da:ZdJU do(). (8.6.6)
dy
Figure 8.19 shows the dependence of cross-section of linear BCS process on the
variable y (the spectral distribution of scattered photons) for x = 0.2; 0.4.
The similar distributions for the nonlinear BCS process (a% /2 = 1) are shown
in Fig. 8.20 for x = 0.2 (solid curve) and x = 0.4 (dashed line), where the sum-
mation in formula (8.6.6) was carried out up to n,,x = 20.

Fig. 8.19 Dependence of the 1 do
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Figure 8.21 shows the behavior of the “partial” cross-sections o) = Ik d;—;” dy
for x = 0.2 in case of increasing n (number of absorbed photons). The lower curve
was obtained for aj/2 = 1, from which it follows that for n = 8 the cross-section
drops by two orders of magnitude, whereas the upper curve is calculated for
a3/2 = 2, which decreases more smoothly.

Comparing the spectra of linear and nonlinear BCS processes (see Figs. 8.19,
8.20), it is possible to note that the total cross-section of the nonlinear process

o0
U:Zo(") =

n=1 n

Mmax

o)
=1

(in other words, the number of scattered photons) decreases as compared with the
linear case (about 24% for x = 0.2 and 16% for x = 0.4 in case of a%/z =1).
However the average energy in the spectrum

(y) = /yz—;//j—gdy

does not vary practically.
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Fig. 8.22 The experimental Laser Magnet
setup for the nonlinear -
Compton scattering detection
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The experiment devoted to observation the nonlinear Compton scattering
process was carried out in 1996, at the Stanford linear accelerator (SLAC) using
electrons with energy Ey = 46.6 GeV [14]. The experimental setup is shown in
Fig. 8.22. A laser beam with a wavelength 1y = 1.054 um overlaps with the
electron beam at the interaction point at the angle oo = 17°. The energy of laser
flash was equal to 0.8 J, that for the focal spot with area S = 60 wm? and duration
of flash t = 1.5 x 107'2 s provided the field intensity up to Iy, = 10'8 W/cm2 (i.e.
ay/V2 = 0.6).

The scattered electrons are detected in this experiment and their energy is
measured as well. For the chosen geometry

h(l)o

x =2y
Omc?

(1 4+ cosa) = 0.83.
Thus, the maximal energy of photons in the linear BCS process
lin

X
hwmax = E()ymax = EO 1+ X

Otherwise, the minimal energy of the scattered electrons in this case was
Emin = Eo — Nomax = Eo/(1 +x) = 25.5 GeV.

The presence of scattered electrons with energy lower than E,;, indicates the
appearing of the significant nonlinearity of the BCS process, since

o —_ "M
Tmax = 7 + nx + a3/2

lin

<ymax'

Figure 8.23 shows the spectra of scattered electrons for the considered
parameters, calculated in accordance with formulae (8.6.1), i.e. for the ideal case.
The experimental spectra should differ slightly.

The scattered electrons with energies from 12.5 up to 20.5 GeV, i.e. in the
forbidden energy range for the kinematics of a linear BCS process, were registered
in the experiment. Figure 8.24 shows the experimental yield of scattered electrons
with energy corresponding to the left part (“tail”) of distribution dN/dE (Fig. 8.23)
for n = 2, 3, 4; in case of changes in field intensity of laser flash in comparison
with results of numerical simulation.

As it follows from the figure, the experiment agrees with theory well.
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8.7 The Laser-Synchrotron X-ray Source

The authors of works [15, 16] have proposed the concept of a tunable mono-
chromatic X-ray source, based on the process of scattering of intense laser radi-
ation by the electron beam from a compact storage ring with energy about
100 MeV. The term “laser-synchrotron source” is suggested in these studies, since
in this case the resulting radiation is considered from the point of view of emission
in the “light undulator”.

Figure 8.25 shows the proposed scheme. The electron bunches are circulating
in a storage ring with a diameter of ~2 m (i.e. the orbit circumference is ~6 m,
that corresponds to the passage frequency of bunches ~5 x 10" Hz). The laser
radiation is “injected” into the optical resonator, being reflected from the mirrors
of which the laser photons can repeatedly collide with the electron bunches. The
duration of laser flashes and their frequency, as well as the parameters of the
optical resonator should be matched with the characteristics of the storage ring. So,
for example, for the Fabry—Perot’s resonator with reflection coefficient of mirrors
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laser-synchrotron X-ray RF-system
source

Fig. 8.25 The scheme of / Injector
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Electron beam

_—— Jmmm
Laser Resonator X-ray beam

R = 0.999 the optical laser with average power of ~400 W, can provide a yield of
the scattered photons up to ~ 10" phot./s for the current circulating in an orbit
~0.1 A [17]. For electron energy E; = 100 MeV and laser photons with a
wavelength /g ~ 1 p the maximal energy of scattered photons is Ziwy,x =~ 160 keV.

However, the calculations of the spectral-angular characteristics of radiation,
which is generated by the collision of electron and photon beams with the specified
distributions in space and time, is more convenient to carry out considering this
process as the backward Compton scattering.

As it was already noted, the spectral distribution of scattered photons is
described by cross-section (8.4.15), which completely coincides with the spectrum
of undulator radiation in case of x — 0. In the considered case x ~ 1.6 x 107> < 1.
Consequently, in a good approximation we may use the variable:

B hw N X xl
Toyem T 142022

It should be noted that the “soft” part of the spectrum (y < x/2) is formed due
to photons scattered at the angles 0 > y~!. It is clear, if we introduce a hard
collimation of the radiation beam, it is possible to achieve significant mono-
chromatization of X-ray beam radiation (at the cost of some loss of intensity).

Figure 8.26b shows the BCS spectrum obtained for collimation angle

.= V’I/Z (Ymin = 0.8). As can be seen from the figure, in the last case the
monochromaticity Aw/®max achieves ~20%.

The electron—photon interaction, which leads to generation of a beam of hard
scattered photons, occurs in case of collision of accelerated electron bunches, with
the focused laser radiation, which also represents a sequence of photon bunches.

As a result, the intensity of the scattered photons is determined not only by the
number of electrons and photons in the colliding bunches, but also by their
“overlap” in the space and time. A special characteristic, which takes into account
all these factors, is introduced for the colliding bunches—the so-called luminosity
L [18]. By definition for head-on-collisions,

L = 2cNynN, /dV /dtfph(x,y,z + et)fo(x,y,z — Pet), (8.7.1)
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Fig. 8.26 The spectrum of scattered photons: in the total cone under the condition
29k /me? < 1 (a); in case of collimation §, = 0.5y (b)

where Ny, N, are the number of particles in the photon and electron bunches;
Jon fe are the normalized distributions of photons and electrons in the bunches.

To perform the analytical evaluation we shall consider the monodirected
electron and photon bunches with a Gaussian distribution in the transverse and
longitudinal directions (along the axis z):

2 r? (z— er)’
f 2l eta) (8.72)
h = - )
P (27‘[)3/20'12)}14)11 O-gh 2Eph
rP=x"+ yz.

In (8.7.2) the transverse sizes of the bunches are characterized by the variances
Oph, O, Whereas the length of the bunches—by the values £y, £,. The luminosity
for the distributions (8.7.2) is calculated analytically

1
m (ag + Gf)h)

As one can see from here the luminosity does not depend on the bunch lengths
Lon, €. for a head-on collision (in other words, on the interaction time). The
number of scattered photons is determined by the luminosity and the cross-section
o

L = 2NNy, (8.7.3)

[

Ny = Lo = 2NNgy—— 20—,
n(ag + agh)

(8.7.4)
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Fig. 8.27 The spectrum of 700
scattered photons by the
electrons with energy E = 20
MeV [19]. Peak at 7.35 keV
corresponds to the scattering
of the first harmonic of a laser
with 1; = 1.064 pm, peak at
14.8 keV—the second
harmonic (4, = 0.53 pm)
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Let us express the number of photons in the laser flash Ny, through the power
density of the focused laser radiation I:

I =P/Sy[Wiem®]

where P is the power of laser flash, Sy, is an area of the laser flash focus. If A is the
total energy of the flash, then
A o A Ccg - hCCU()

Ppn = 5—~ 5 = Nph——

= = 8.7.5
Eph/c [ON)) Eph gph ( )

As a rule, the radius of the accelerated electron beam ¢, in the modern electron
accelerators considerably exceeds the minimal attainable radius of laser focus opp,
therefore from (8.7.4) we obtain:

N, = 2N, i/pﬂ = 2N61@ (8.7.6)
noZ cwyg cay

The one of the first experiments concerning the generation of monochromatic
X-ray in case of scattering of laser radiation on the accelerated electron bunches
was carried out at the linear accelerator at the Accelerator Center in Idaho (USA)
with electron energy of 20 MeV [19]. There was used the solid-state laser
Nd:YAG with a peak power of 100 MW. The wavelength of the first harmonic was
equal to 1.064 um, and of the second one—0.532 pm. During the head-on colli-
sion with 20 MeV electrons in a spectrum of the scattered radiation the lines with
energy ha)gl) ~7.5 keV,hcugz) ~ 15keV should be observed. The spectrum of
photons emitted within the collimation angle 0. < y~' was measured in the
experiment.

The experimental results are shown in Fig. 8.27, demonstrating two narrow
lines which energy corresponds to the calculation. The small peaks in the range of
photon energies /icw > 20 keV are caused by overlapping of signals in the detector
(pile-up effect).
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In order to estimate the yield of photons, formula (8.7.4) can be used. The
charge of each bunch in the accelerator was equal to 8 nC (i.e. N. =5 X 10'0).
The transverse dimensions of the electron bunch at the interaction point were equal
to Ax = 4.8 mm and Ay = 2.8 mm, what corresponds to the electron beam area
S = nAxAy/4 = 10.5 mm?. The number of photons can be estimated from the

energy of the laser flash (0.75 J for the first harmonic and NéL) =4 x 10"8 pho-

tons). The laser radiation was focused with a spot with diameter of 0.24 mm for
the first harmonic and 0.12 mm for the second one.

For the cross-section calculation we shall integrate the expression (8.4.9) over
the polar angle in the range 0 < 0, < 0.3y ":

0.3/y
1+ (0)*

o.=8mry)’ / L)“HdG =0.287r3 =0.07 x 1072 cm?.
b [1+607]

Substituting the obtained value in the numerator of the formula (8.7.4) and

replacing the transverse area of a cylindrical electron bunch ns? with the area of

elliptic one TAxAy/4, we have Nél) ~ 0.3 x 10° photon/bunch. The experimental

value of the yield for both lines NS 4+ N5 is equal to 3 x 10° photons/bunch.

The usage of a storage ring together with an optical resonator instead of a linear
accelerator to provide the multiple interaction between the electron and photon
bunches, as proposed in [16], will allow to increase the efficiency of X-rays
generation by several orders of magnitude. So, for example, the estimations [17]
show that it is possible to obtain the operational beam of monochromatic X-rays
with energy 7w ~ 33 keV using the storage ring with an electron energy
E ~ 100 MeV and current 100 mA and a commercial solid-state laser. Such a
system can provide the yield of X-ray photons in the form of a train of subpico-
second duration with the number of photons up to 10"!/s.

It should be expected that advancements in the accelerator and laser technology
in the near future allow to develop and create a qualitatively new sources of
monochromatic X-rays with tunable energy.
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Chapter 9
Conclusion

As it was shown above, the radiation in periodic structures posesses a quasi-
monochromatic spectrum, and a monochromaticity degree (spectral line width at
half maximum) depends on the number of periods Ny, an angle 0. of radiation
collimation and a degree of nonlinearity of the process. Position of a line in a
spectrum is determined by the period of structure, the photon emission angle and
energy of the initial electron.

During the interaction of modulated electron beam (the distance between
bunches is about 1 cm) with a 1 cm period grating, the Smith—Purcell mono-
chromatic radiation is generated in the terahertz range [1], which can be used in
biology, medicine, etc. In the process of backward Compton scattering of laser
photons by ultrarelativistic electrons with an energy 2 GeV, the energy of scat-
tered photons achieves hundreds of MeV [2]. The characteristics of photon beams
from such different sources can be calculated using rather simple approaches
described in the book presented.

Alongside with the creation of such beams aimed at various purposes, the
monochromatic radiation generated by electrons in periodic structures, “carries” the
information about the parameters of the initial electron beam. Electrons moving in a
vacuum close to an optical grating or trough the laser flash, have lost an energy only
through the radiative mechanisms (in this case through the Smith—Purcell radiation
or BCS process), whereas other dissipative mechanisms, which occur during the
passage of electrons through the solid-state targets, do not exist. Since the radiation
losses via considered mechanisms are insignificant, then, as a rule, the parameters of
the initial electron beam do not be practically distorted. By measuring the radiation
characteristics such as monochromaticity, angular distribution, polarization,
parameters of an initial electron beam can be determined. This approach is called
non-perturbative diagnostics and it acquires the particular importance in designing
X-ray free electron lasers or electron—positron colliders, where the low-emittance
beams are used and methods of traditional diagnostics are practically inapplicable.

In the experiment [3] in order to measure the transverse sizes of electron beam
there was used the BCS process, where the laser beam with a diameter smaller than
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208 9 Conclusion

the electron beam was directed perpendicularly to the electron momentum. By
analogy with the diagnostics, where a thin wire is used, which is intersected by the
electron beam, the described method was named “laser wire technique”. Recently,
there have been appeared proposals on usage the Smith—Purcell radiation for
measuring of longitudinal sizes of the electron bunches of accelerators and such
experiments have already begun [4].

Beams of circularly-polarized y-rays will be used to generate the longitudinally
polarized positrons for their acceleration in the designed electron—positron col-
lider. As a source of circularly-polarized y-quanta there is suggested to use either
the backward Compton scattering of circularly-polarized laser photons by the
beam of ultrarelativistic electrons or beam of undulator radiation from a helical
undulator.

The beam of circularly-polarized laser radiation with a wavelength of
A = 532 nm scattered by the 1.28 GeV electrons in experiment [5], allowed to
produce the circularly-polarized photon beam with maximal energy hw =
56 MeV, which was used then to produce e'e” pairs in an amorphous target.
Measurements of longitudinal polarization of positrons with energy in the range
28-44 MeV have shown that the average longitudinal polarization of positrons Py
was 73%.

The first experiment [6] concerning a generation of polarized positrons using
undulator radiation was performed in 2006 on the 46.6 GeV electron beam, which
passed through the helical undulator with a period of 2.54 mm, length 1 m and a
parameter K = 0.17. The circularly-polarized undulator radiation with energy of
the first harmonic 7iw = 7.9 MeV was generated. Positrons were generated by
such a beam in the amorphous tungsten target with thickness of 0.2 rad. lengths.
Authors of the experiment [6] have measured the longitudinal polarization of
positrons with energy 4.6-7.4 MeV and obtained the value P, = 66—76 %.

Recently the Lyncean Technologies, Inc (USA) has established the new facil-
ity—Compact Light Source, based on BCS process using a commercial laser and
miniature storage ring (room size scale), see [7]. They have obtained a hard X-ray
beam which allow to use one for applications to new methods of imaging in
biology and medicine [8].

Undoubted progress of the accelerator and laser technology allowing to receive
the operational beams (including the polarized ones) with unattainable earlier
parameters has led to the fact that an up-to-date scientist in the field of accelerator
physics should know much wider range of the questions from the classical and
quantum electrodynamics, laser physics, solid state physics, etc. This book may be
considered as the attempt to give the such basis.
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