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ABSTRACT 
Most everyday electrical and electromechanical objects 
emit small amounts of electromagnetic (EM) noise during 
regular operation. When a user makes physical contact with 
such an object, this EM signal propagates through the user, 
owing to the conductivity of the human body. By modifying 
a small, low-cost, software-defined radio, we can detect and 
classify these signals in real-time, enabling robust on-touch 
object detection. Unlike prior work, our approach requires 
no instrumentation of objects or the environment; our sen-
sor is self-contained and can be worn unobtrusively on the 
body. We call our technique EM-Sense and built a proof-of-
concept smartwatch implementation. Our studies show that 
discrimination between dozens of objects is feasible, inde-
pendent of wearer, time and local environment.  

Author Keywords 
Context Sensitive; Object Detection; Smartwatch; EMI; 
Wearable Computing; Smart Clothes; Tags. 

ACM Classification Keywords 
H.5.2: [User interfaces] – Input devices and strategies. 

INTRODUCTION 
For years, intelligent systems have promised to improve 
people’s lives by inferring context and activities in diverse 

environments. In particular, people’s interactions with ob-
jects offer rich, contextual information closely reflecting 
one’s immediate activity. Yet practical detection and recog-
nition of object interactions remains an elusive research 
goal. For example, although RFIDs can provide object 
recognition capabilities, the technology requires all desired 
objects to be physically tagged and it is unknown if users 
are simply nearby or truly touching an object.  

We propose a novel sensing approach for object detection, 
triggered only when objects are physically touched. Our 
approach exploits unintentional EM noise emitted by many 
everyday electrical and electromechanical objects, such as 
kitchen appliances, computing devices, power tools and 
automobiles. These signals tend to be highly characteristic, 
owing to unique internal operations (e.g., brushless motors, 
capacitive touchscreens) and different enclosure designs, 
material composition and shielding. When a user makes 
physical contact with these objects, electrical signals propa-
gate through the user’s body, as it is conductive. By modi-
fying a commodity software-defined radio receiver, we can 
detect and classify these signals in real time, enabling ro-
bust, on-touch object detection. 

Our approach, which we call EM-Sense, utilizes low-cost, 
commodity hardware and is small enough to be worn on the 
wrist or, in the near future, integrated into smartwatches. 
We draw inspiration from the sensing principles introduced 
in Humantenna [8], and move beyond environment locali-
zation and gesture recognition, to focus instead on context 
and activity sensing made possible through object interac-
tion detection. Unlike existing approaches requiring object 
instrumentation (RFIDs, barcodes, BLE beacons, etc.), EM-
Sense can identify objects solely on their EM signatures. 
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Figure 1. Spectrogram of ambient electromagnetic noise (A). When a user operates an electrical or electromechanical object, 

such as a Dremel (B), it emits EM noise (C), which we classify (D) and use to enable rich contextual applications (E). 
 



 

Our work makes the following contributions: 
• A sensing approach utilizing low-cost, wearable hard-

ware for recognizing handled electrical and electrome-
chanical objects based on body-coupled EM signatures; 

• A novel hardware and software implementation, trans-
forming a low-cost software defined radio receiver into a 
fast, wideband, general purpose EM sensor;  

• A series of studies showing that our sensing approach is 
accurate, robust, and consistent across users, environ-
ments and time; and 

• A series of example applications illustrating powerful 
assistive, context-sensing, and communication applica-
tions across a wide range of activities and environments. 

BACKGROUND 
Electronic devices, especially those driven by motors (e.g., 
power drills) or switching power supplies (e.g., LCD 
screens), produce significant levels of electromagnetic 
noise. These unwanted signals propagate as radio frequency 
(RF) waves and can disrupt nearby devices operating with 
similar frequency bands. Beginning in the late 1970s, the 
US Federal Communications Commission (FCC) chartered 
mandates to regulate the susceptibility of consumer devices 
to EM noise [33, 43].  These were also established to pre-
vent EM noise from interfering with other electronics, utili-
ties, and purposeful broadcasts, such as TV and radio.  

Infrastructures and environments also produce EM noise. 
For example, AC electricity and devices connected to the 
power line contribute to majority of electrical noise at 
home. In general, EM noise propagates through conduction 
over circuits and power lines (1kHz - 30MHz) or through 
radiation in free space (30MHz to 10GHz). 

Additionally, a few classes of non-electromechanical ob-
jects can have unique EM signatures. Most notable among 
these are large, metallic objects, such as structural members 
in buildings, doors, ladders, furniture, and window frame-
work. These are sufficiently large that they act as antennas, 
capturing energy radiated by proximate noisy devices and 
wiring. The amalgamation of these signals, in our experi-
ences, is fairly unique and particular to a location.  

RELATED WORK 
Our work intersects with several bodies of research, and we 
now summarize key areas. 

Acitivity and Object Recognition 
Traditional activity recognition systems infer user state 
based on temporal data of physical movement (e.g., accel-
erometers). These require individuals to wear sensors or 
have a smartphone continuously monitoring data. Extensive 
prior work [2, 18, 38] has demonstrated promising results 
for determining e.g., running, walking and sitting. Howev-
er, motion-driven approaches by themselves lack context to 
infer higher-level activities.  

For this reason, we pursue a complimentary approach that 
recognizes handled objects. This provides relevant infor-

mation more closely reflecting a user’s immediate envi-
ronment and activity [13]. Many approaches have been 
considered for object recognition, though most methods 
require objects to be instrumented with some form of mark-
er or sensor [4, 23, 39, 42, 46, 47]. These can provide ro-
bust recognition, but as there are many objects in the world, 
installation and maintenance is troublesome and costly.  

Recent work from Maekawa and colleagues cleverly uti-
lized magnetic sensors [30] and hand-worn coils [31] to 
detect objects based on temporal changes in the magnetic 
field during an object’s operation. Although related, mag-
netic induction relies on proximate contact between objects 
and the sensing apparatus, which means object detection is 
strongly affected by hand posture and inherent magnetic 
noise in the body, or even diamagnetic properties of hands 
and fingers. Conversely, as we will show, our approach is 
robust across users, time and hand/body posture.  

Visual, Acoustic and RF-Based Approaches 
Early research into visual markers used 1D barcodes, and 
more recently, fiducial markers [26, 40] as unique identifi-
ers. Further, there is considerable work in the computer 
vision domain for object recognition in natural scenes with-
out artificial markers [9, 41, 49], as well as efforts that lev-
erage crowd workers [27, 28]. These schemes require cam-
eras, line of sight, and suitable lighting conditions.  

Acoustic-based object recognition has also been explored 
extensively [3, 6, 36, 45]. For example, Acoustic Barcodes 
[20] described tags with sound-producing physical notches 
that resolve to a binary ID. More related to our approach are 
acoustic methods that attempt to recognize objects from 
vibro-acoustic information generated by operation of a 
device. For example, Ward et al. [45] used worn accel-
erometers and microphones to classify workshop tools. 

Also popular are RFID-based approaches. Example systems 
include a wrist-worn, near-field RFID reading system that 
could identify objects affixed with tiny RFID tags [29,37]. 
Similarly, Buettner et al. [4] used the Wireless Identifica-
tion and Sensing Platform (WISP), which is a battery-free, 
long range RFID tag enhanced with an accelerometer to 
detect movement of a tagged object. Other object recogni-
tion efforts exist that use wifi sensing [44], NFCs [15], 
Bluetooth Low Energy [12], and body-area networks [32]. 

EM-Based Sensing 
There are two main classes of EM-based sensing tech-
niques: 1) infrastructure-mediated sensing and 2) using the 
human body as an antenna. The former instruments the in-
frastructure, while the second instruments the user. 

Infrastructure-Mediated Sensing. Early work by Abott [1] 
and Hart [21, 22] in the 1980s used metering devices at-
tached to a building’s electrical lines to detect “events” 
caused by home appliances. Because the electrical lines in a 
house are shared infrastructure, a single sensor can observe 
activity across the entire home. These pioneering efforts 
inspired infrastructure-mediated sensing (IMS), i.e., attach-



 

ing probes to a variety of utility infrastructures, including 
HVACs [34], plumbing [14], natural gas lines [7], lighting 
[16] and electrical wiring [10, 17, 25, 35].  

Using the Human Body as an Antenna. Because the hu-
man body is conductive, it has electrical properties that 
allow it to behave much like an antenna. Pioneering work in 
HCI has exploited this “body antenna effect.” For example, 
in DiamondTouch [11], the human body is used as an elec-
trical conductor, which allows the system to differentiate 
touches between users. More recently, in “Your Noise is 
My Command,” Cohn et al. [9] utilize the human body as 
an antenna for detecting EMI signals in the home. A small 
electrode is attached behind the neck of the user and con-
nected to a backpack-bounded A/D converter. As the user 
moves around the home, the system captures all recorded 
EM noise received by the human antenna. With this setup, 
they inferred user location within a home, as well as detect 
different gestures and continuous touch tracking along a 
wall. A later extension enabled free-space, whole body ges-
tures by utilizing EM Doppler shifts [8]. Unlike infrastruc-
ture-mediated sensing, body-antenna EM sensing requires 
no instrumentation of the environment. 

EM-SENSE IMPLEMENTATION 
As mentioned, EM-Sense exploits the unintentional elec-
tromagnetic noise emitted by everyday electrical and elec-
tromechanical objects during regular operation. In this sec-
tion, we describe our sensing technique and processing 
framework for real-time on-touch object detection. 

Proof-of-Concept Setup 
For our proof-of-concept hardware implementation (Figure 
3), we modified a software-defined radio receiver (RTL-
SDR) to function as an inexpensive, but extremely fast A/D 
converter (Figure 4). Originally, RTL-SDRs use a tuning 
chipset to listen for frequencies covering FM bands and 
beyond (25 – 1766 MHz). However, useful EM emissions 
for most objects fall well below this operating range. To 
address this limitation, we modified the RTL-SDR’s circuit-
ry by bypassing its tuner and routing raw antenna signals 
directly into the chipset’s main A/D converter. It has an 8-
bit resolution with ~2Vpp. 

As a result, this modification re-adjusts the device’s sensing 
range to 1Hz – 28.8MHz, making it possible to detect low-
band EM signals present in many electrical and electrome-
chanical objects. Figure 5 details three simple steps describ-
ing our modifications, which researchers and hobbyists can 
replicate. Our sensing setup costs under $10, two orders of 
magnitude cheaper than previous EM sensing approaches.  

To make the prototype wearable, we retrofitted the interior 
of an armband with copper tape, and connected it to the 
RTL-SDR’s antenna terminal. Data received from the RTL-
SDR is further processed through a software pipeline. First, 
we read from the RTL-SDR’s input channel through a 
physical USB connection. At the time of research, no 
smartwatch on the market was capable of hosting a USB-
OTG interface. In response, we offload USB-reading to a 
smartphone (Nexus 5), which is clipped to waist of the 
wearer, and uses an open source RTL-SDR driver (osmo-
com.org) we ported. In addition to reading the SDR, our 
smartwatch software also streams incoming data to a laptop 
computer over wifi, which in turn performs signal pro-
cessing and live classification. With this setup, we can 
wirelessly stream data sampled at 1MHz with minimal 
packet loss. All of the physical components of EM-Sense fit 
into a wrist-worn apparatus, which could be easily integrat-
ed into future smartwatches.  

Sensing Raw EM Signals 
Whenever a user makes physical contact with an electrical 
or electromechanical object, its EM signal propagates 

 
Figure 3. EM-Sense wrist-worn prototype. Body-coupled 

EM signals are captured through a modified SDR receiver. 
 

 
Figure 2. EM-Sense captures EM signals emitted by electrical and electromechanical objects. Raw EM signals are subtracted 
against an adaptive noise profile. Next, frequencies whose magnitudes are above a z-score threshold (e.g., 3.5 above the standard 
deviation) are filtered and amplified. Features are extracted from the resulting output signal for machine learning classification. 

 



 

through the body and is sensed by a conducting electrode 
worn on the user’s wrist (Figures 2 and 3). Connected to the 
electrode is our modified software-defined radio, which 
converts this analog signal into digital data. We sample 
incoming signals at 1MHz; thus our theoretical Nyquist 
limit is 500kHz.  

We note that neighboring objects and signals (e.g., objects 
proximate to the user, but not in direct physical contact) can 
introduce interference through capacitive coupling and the 
body antenna effect. However, these signals are compara-
tively weak compared to those transmitted by actual physi-
cal contact, and do not appear to affect detection. 

Baseband Shift 
To extend our effective bandwidth, we shift the SDR re-
ceiver’s baseband frequency to 500kHz. Without shifting, 
the frequency spectrum is symmetric because it is a real 
signal. In this mode, the effective bandwidth for a signal 
sampled at 1Ms/s is -0.5MHz to 0.5MHz (i.e., see Fig 6 raw 
FFT, where left half is redundant). Shifting to 500kHz 
moves the bandpass sampling window from 0 to 1MHz 
(0.5MHz and above will be undersampled, but still useful). 
As a result, the left-shifted spectrum contains no redundant 
information. We then apply a fast Fourier Transform (with 
an FFT size of 16384 bins i.e., 61 Hz per band), and the 
resulting frequency domain values become the primary in-
put for our sensing and classification pipeline.  

Enviornmental Noise Rejection 
To enable robust object detection, our sensing approach 
must differentiate between environmental EM noise and 
EM signals from objects. In addition to differences in am-
plitude (touched objects generally transmit more signal), we 
also take advantage of the fact that environmental EM noise 
tends to change at a slower rate, while EM signals change 
rapidly at the moment an object is touched or released (or 
the object is turned on/off). These events appear as as high 
delta, “spiking” events in the signal.  

We build a model of environmental EM noise using an 
adaptive background subtraction approach: an average fre-
quency spectrum derived from a six-second rolling window, 
updated every 100ms (Figures 2 and 6). This provides a 
baseline “noise profile” from which we can subtract the live 
signal, amplifying transitions in touch state. In this particu-
lar implementation, if an object is held for a few seconds, 
its EM signal is integrated into the noise profile. The re-
lease of an object thus generates a large negative change, 
which is interpreted as a “touch up” event, signifying the 
object is no longer held.  

Object Signal Extraction 
To extract EM signals generated from object on-touch 
events, we perform real-time statistical analysis between the 
modeled noise profile and all incoming EM readings. We 
compute a baseline threshold signal based on the statistical 
Z-score of the individual frequency bands in the noise pro-
file. Essentially, frequency bands whose values are above a 
specified Z-score (e.g., 3.5 standard deviations above the 
noise profile) are amplified, while frequencies below the 
threshold are set to zero. 

Thus, a frequency band at index n of the extracted EM sig-
nal, S, can be characterized as: 

 Sn = A×max(0,Fn - (Gn + zσ n ))   

where F is the incoming EM reading, G is the noise profile, 
σ holds the standard deviations for each frequency band at 
index n, A denotes the amplification factor, and z is a con-
stant that denotes a statistical z-score parameter. In our im-
plementation, we use an amplification factor of 18 and a z-
score of +3.5 (upper 0.1% of a normal distribution curve).  

Live Object Classification 
Once an object’s EM signature is decoupled from environ-
mental noise (Figure 2), we use it as input for live object 
classification. First, we downsample the EM signature’s 
FFT into 512 frequency bands. From this, we generate ~2K 
additional features based on: 1st and 2nd Derivatives (1021), 
min index, max index, RMS, center of mass, standard devi-
ation, area under the curve, pair-wise band ratios (496), 
spectral kurtosis, crest factor, and 2nd order FFT (512).  

These features are fed into a SMO-trained Support Vector 
Machine (c=1.0, ϵ=1-12, poly kernel) provided by the Weka 
Toolkit [19]. Feature selection analysis revealed that deriva-
tives, band ratios, 2nd order FFTs, and max index serve as 
the important distinguishing features (providing 80% mer-
it), but the remaining features nonetheless are important to 
fully capturing nuanced signal behaviors. Other machine 
learning techniques could potentially allow EM-Sense to 
scale to larger collections of objects. Object classification 
can be treated as an “information retrieval” problem, which 
means that techniques such as clustering, similarity metrics, 
and deep-learning methods are applicable.  

 
Figure 5. We modified an RTL2832U SDR receiver into a 
low-cost EMI sensor. First, we removed the IR receiver 
(left). Next, we removed C1 and C2 capacitors (mid), and 
attached a wideband transformer (right). 

 

 
Figure 4. The software-defined radio (SDR) receiver we 
used for our EM-Sense prototype. 8-bit resolution, 2Vpp. 

 



 

 

EXAMPLE USE SCENARIOS 
To demonstrate how EM-Sense can augment activities 
across a wide range of contexts and environments, we pro-
vide a usage narrative contextualized in a hypothetical us-
er’s day. Although meant to be illustrative, we built fully 
functional versions of every application described here (see 
Video Figure, filmed live, and Figures 7 through 9). This 
narrative includes five categories of objects: home, office, 
workshop, fixed structures, and transportation – a taxono-
my we employ in our subsequent evaluation. 

Home – At home, Julia wakes up and gets ready for another 
productive day at work. Her EM-Sense-capable smartwatch 
informs and augments her activities throughout the day. For 
instance, when Julia grabs her electric toothbrush, EM-
Sense automatically starts a timer (Figure 7A). When she 
steps on a scale, a scrollable history of her weight is dis-
played on her smartwatch automatically (Figure 7B). Down 
in the kitchen, EM-Sense detects patterns of appliance 
touches, such as the refrigerator and the stove. From this 
and the time of day, EM-Sense infers that Julia is cooking 
breakfast and fetches the morning news, which can be 
played from her smartwatch (Figure 7D).  

Fixed Structures – When Julia arrives at the office, EM-
Sense detects when she grasps the handle of her office door. 
She is then notified about imminent calendar events and 
waiting messages: "You have 12 messages and a meeting in 
8 minutes" (Figure 8A). Julia then leaves a reminder – 
tagged to the door handle – to be played at the end of the 
day: “Don’t forget to pick up milk on the way home.” 

Workshop – In the workshop, EM-Sense assists Julia in her 
fabrication project. First, Julia checks the remaining time of 
a 3D print by touching anywhere on the print bed – “five 
minutes left” (Figure 9A) – perfect timing to finish a com-
plementary wood base. Next, Julia uses a Dremel to cut a 
piece of wood. EM-Sense detects the tool and displays its 
rotatory speed on the smartwatch screen (Figure 9B). If it 
knows the task, it can even recommend the ideal speed. 
Similarly, as Julia uses other tools in the workshop, a tuto-
rial displayed on the smartwatch automatically advances 
(Figures 9C and 9D). Finally, the 3D print is done and the 
finished pieces are fitted together.  

Office – Back at her desk, Julia continues work on her lap-
top. By simply touching the trackpad, EM-Sense automati-
cally authenticates Julia without needing a password (Fig-
ure 8B). Later in the day, Julia meets with a colleague to 
work on a collaborative task. They use a large multitouch 
screen to brainstorm ideas. Their EM-Sense-capable 
smartwatches make it possible to know when each user 
makes contact with the screen. This information is then 
transmitted to the large touchscreen, allowing it to differen-
tiate their touch inputs. With this, both Julia and her col-
league can use distinct tools (e.g., pens with different col-
ors); their smartwatches provide personal color selection, 
tools, and settings (Figure 8C). 

Transportation – At the end of the day, Julia closes her 
office door and the reminder she left earlier is played back: 
“Don’t forget to pick up milk on the way home.” In the 
parking lot, Julia starts her motorcycle. EM-Sense detects 
her mode of transportation automatically (e.g., bus, car, 
bicycle) and provides her with a route overview: “You are 
10 minutes from home, with light traffic” (Figure 8D). 

EM-SENSE INTERACTIONS 
We built our example use scenario, described above, around 
six interaction categories, which we describe briefly. 

 
Figure 7. EM-Sense can augment activities in the home. For example, EM-Sense can launch a timer (inset) when the user is 
brushing his teeth (A), or display the user’s data when stepping on a scale (B).  Next, EM-Sense knows that the user is mak-
ing breakfast and fetches the morning news (C and D). 

 

 
Figure 6. EM signals coupled through the body are cap-
tured at 1M samples per second, and baseband shifted to 
500kHz. Next, it is compared against an adaptive noise 
profile using Z-score thresholding. The resulting signal is 
fed to a machine learning pipeline for object classification. 

 



 

Object-Specific Applications – When a user handles objects 
with known EM signatures, EM-Sense can launch object-
specific applications. For example, our electric toothbrush 
example launched a timer application.  

Object Sequence Applications – It is also possible to 
launch applications based on sequences and patterns of ob-
ject events. Combined with other readily accessible fea-
tures, such as time of day and rough geospatial location, 
activity and context recognition is possible. For example, a 
pattern of activation in the kitchen suggesting dinner prepa-
ration can launch music, recipe, and other applications. 

Object State Recognition – We can further extend object-
specific applications by utilizing changes in an object’s EM 
signature in different operational modes. We demonstrated 
this in our Dremel application depicting a “speedometer”. 

Authentication – A smartwatch with EM-Sense could al-
low users to authenticate across devices and applications, 
potentially without passwords. For example, to log in into a 
laptop, a user can simply touch the trackpad. Because the 
smartwatch knows that a trackpad is being touched, and the 
trackpad knows that it is being touched, a handshake medi-
ated by the cloud could proceed (using e.g., temporal co-
occurrence of events). For added security, a confirmation 
button can be displayed on the owner’s smartwatch. 

User Differentiation – Similar to the authentication interac-
tion above, knowledge of touchscreen events provided by 
EM-Sense could be used to differentiate users in groupware 
applications, which have many uses (see e.g., [11,24]). Spe-
cifically, a wearer’s smartwatch knows the time of touch 

contact, which can be paired (e.g., in the cloud) to a touch 
event registered on a shared screen. Because the smart-
watch knows its owner, touches can be attributed and pa-
rameterized to a specific user – in our example day, we 
used the watch display for a personalized color selector. 

Object-Tagged Messaging – Knowledge of which objects 
are being handled also enables tagging of items with media, 
such as text and voice messages. In our example day, Julia 
leaves a message for herself by tagging her office’s door 
handle. By using names, it would also be possible to leave 
messages for particular people.  

EVALUATION 
We ran multiple studies evaluating several facets of EM-
Sense. These studies serve several purposes: 1) to evaluate 
the accuracy and robustness of our sensing approach across 
different users, 2) to observe the longitudinal consistency of 
object EM signatures over time, and 3) to form a baseline 
understanding of the uniqueness of EM signatures across a 
wide range of objects. We also conducted several smaller 
supporting studies, which explore other important aspects 
of EM-Sense, including signal similarity across similar de-
vices and object state recognition. Overall, EM-Sense ena-
bles an expansive range of applications (see Applications 
section), and in our evaluation, we endeavored to select 
objects reflecting diverse contexts and environments. 

Accuracy and Longitudinal Consistency 
This study aims to evaluate the sensing accuracy of EM-
Sense across different users, and determine whether object 
EM signatures are consistent over time. Because our sens-
ing technique relies on the conductivity of the human body, 

 
Figure 8. In the office, the use cases for EM-Sense are diverse. EM-Sense can be used for context-based communication (A), 
and for password-less authentication (B). In collaborative tasks, users with EM-Sense-capable devices enable user differenti-
ation on touchscreens. When EM-Sense detects that the user is riding a motorcycle on the way home, a map is displayed (D). 

 

 
Figure 9. In the workshop, EM-Sense can assist in fabrication activities. Here, a tutorial is displayed on the watch. When the 
user grasps or operates a tool, the tutorial is automatically advanced (A, C, D). For some tools, EM-Sense can detect the 
operational state. For example, the speed of the Dremel is displayed on the watch (B). 

 



 

our approach can be sensitive to differences in anatomy. 
Thus, we recruited 12 adult participants (5 female, age 
range 22 – 40, 1 left-handed), encompassing different stat-
ures and body types (mean height = 67 in., mean weight = 
148 lbs., BMI range 20 – 28).  

To further test sensing robustness, each study session was 
split across two different buildings, and we used data col-

lected from a single user six weeks prior to the user study 
(i.e., no per user training or calibration). Nine objects were 
evaluated, dispersed across our two locations: MacBook Air 
trackpad, mouse sander, door handle with an electromag-
netic lock, fixed steel ladder, refrigerator, ArmorActive 
conference room touchscreen affixed to a wall, fluorescent 
desk lamp, power adapter, and a Dremel rotary tool. 

For logistical convenience, all experiments started in our 
first location. Participants were asked to wear our prototype 
on their preferred arm (anecdotally, we noticed participants 
preferred to wear the device on their non-dominant arm, as 
is the norm for watches). For each trial, an experimenter 
announced an object name (e.g., “Dremel”), and partici-
pants were asked to touch, grasp, or operate the object. The 
experimenter recorded the real-time prediction made by 
EM-Sense. Objects were requested in a random order, ap-
pearing five times each in total. Participants were free to 
interact with objects with either or both hands. Each session 
took approximately 45 minutes to complete, and partici-
pants were paid $15 for their time. 

Across nine objects, 12 users, two locations, and using data 
trained on one user collected six weeks prior, EM-Sense 
achieved an average overall accuracy of 96.1% (see Figure 
11, STDEV=4.9%, chance 11%). This result is promising 
given the strict constraints imposed on our training data. 
Some objects achieved an accuracy of 100% (lowest is 
85%, Sub-Zero Refrigerator). While not the focus of the 
study, we can report anecdotally that signal magnitudes 
appear stronger when the prototype is worn on the same 
arm as the hand touching the object (consistent with prior 
findings [9]). Overall, our results indicate that sensing is 
accurate and robust across different users and that object 
EM signatures are consistent over time. 

Signal Uniqueness Across Objects  
To more fully explore the uniqueness of EM Signatures 
across many objects, we ran a second study that collected 
data from 23 objects across four locations. This set was 
composed of our initial nine objects, plus fourteen new ob-
jects that spanned a wider range of contexts and environ-
ments, including the home, office, workshop, large struc-
tural features, and transportation (see Figure 10). We also 
included similar objects (same category, but different mod-
els) to see if this caused classification confusion. Specifical-
ly, we include two refrigerators, two Apple laptops, three 
lamps, and four devices where the LCD display is touched 
(ArmorActive conference room touchscreen, iPad, Sam-
sung TV, and Microsoft PPI display). 

Due to the large number of objects and locations, we per-
formed an offline analysis. Three rounds of data were col-
lected for each object, with at least 15 minutes between 
rounds. We utilized the first two rounds of data for training 
and the third and final round for testing. This procedure 
prevents the model from over-fitting on time-adjacent in-
stances (e.g., inherent similarities in touches when per-
formed back-to-back). For each object, a round consisted of 

 

Figure 10. EM spectrums (0Hz to 1MHz) for the objects in our 
study as captured by our sensor.  

 



 

collecting 250 instances with various hand poses to aid 
classifier generality. In total, we collected 17,250 data 
points (23 objects x 3 rounds x 250 instances). We also 
added a null, “no object touched” class, increasing the set to 
24. We then trained a single SVM model using the afore-
mentioned features and parameters. 

Across these 24 classes, our system achieved an overall 
accuracy of 97.9% (STDEV=4.3%, chance 4%), which 
suggests object EM signatures are reasonably unique and 
discriminable (see Figure 12). Note that the majority of 
objects (18 of the 24) reach an accuracy of 100%, while the 
lowest object accuracy is at 85.6% (Samsung Gas Range). 
These results are promising given the large number of clas-
ses and the low volume of training instances per object. 

EM Signatures of Similar Objects 
As noted previously, we purposely included multiple ob-
jects of the same category, but different models, to see if 
similar devices would produce similar EM signals, and thus 
result in classification confusion. For our two refrigerators 
(Figure 12, F and N), two Apple laptops (A and U), and 
four LCD devices (G, R, S and W), there was 0% confu-
sion. We found 1% confusion between the incandescent 
lamp (P) and the fluorescent lamp (H). These results strong-
ly suggest that objects within a common category still have 
their own unique EM signatures. 

EM Signatures of Identical Objects  
We ran a supplemental study to determine if EM signals are 
consistent across identical objects. For this, we used the 
ArmorActive touchscreens installed at four conference 
rooms in an office setting. We used the 24-object classifier 
from our second study, which was trained on one of these 
devices six weeks prior. We then evaluated real-time classi-
fication accuracy on all four units. We ran 10 randomized 
touch trials per device, for a total of 40 trials. Our EM-
Sense classifier correctly identified the object as the Armo-
rActive touchscreen 100% of the time (chance is 4%).  

We used the same procedure for five iMac 2014 computers. 
We gathered training data on one machine, and ran 10 ran-
domized classification trials on all five machines, for a total 
of 50 trials. Similarly, our classifier correctly classified 
these as iMacs with 98% accuracy (chance 4%).  

Overall, these results suggest that the EM signatures of 
identical devices are very similar, allowing for object 
recognition even when that particular instance of the object 
has never been touched before. This outcome is beneficial, 
as it means EM-Sense capable devices could be preloaded 

with an EM signature database of known objects (or e.g., 
use a database in the cloud, which could grow overtime as 
users and companies add newly encountered objects). 

Infering Object State 
For some objects, it is also possible to infer the operational 
state based on EM signature. For example, the magnitude of 
a power drill’s EM signal is generally proportional to the 
rotational speed of its motor. In response, we ran another 
supplemental study to determine whether EM-Sense can 
exploit this phenomenon.  

We trained an EM-Sense classifier to detect four operation-
al speeds of a Dremel 3000 rotary tool: OFF, LOW, MID, 
and HIGH. A total of 200 instances were collected per state. 
Of note, we tweaked our EM-Sense noise-detection pa-
rameters (e.g., from 6s to 60s) to delay the system from 
integrating EM signals into its background noise profile. 
Across 40 trials (10 trials per state), our system achieved a 
real-time classification accuracy of 92.5% across the four 
speeds, suggesting that variations in EM signal can also 
reveal object state.  

DISCUSSION AND LIMITATIONS 
Because we perform adaptive background subtraction, our 
technique is location independent. In fact, most portable 
objects in our study (Dremel, laptop, iPad, etc.) were 
trained in one location (again, 6 weeks prior), and tested in 
another location without issue. Throughout piloting, we 
never observed a location effect. However, large passive 
objects, like our ladder, which are an amalgamation of EM 
signals from their respective local environments, would 
change if relocated. 

 
Figure 11. Across 12 users and 9 objects, real-time accuracy 
was 96.1%. Data were trained on 1 user, 6 weeks prior.  
Objects were trained in one location and tested in another. 

 

 
Figure 12. Object confusion matrix. Accuracy is 100%, un-
less indicated otherwise. Across 24 classes (including null 
class), average prediction accuracy was 97.9%. Figure 10 
provides a key to the letters used on the axes. 

 



 

Our approach is passive, capturing noise, but not generating 
any signals itself. As we have discussed, this limits us to 
certain classes of objects. Indeed, most objects do not gen-
erate EM signals (e.g., chairs, cups, books). Thus, our sens-
ing scope is generally limited to electrical and electro-
mechanical objects (and some large static objects, as dis-
cussed previously). Even still, not all of these objects are 
detectable, as the strength of EM signals is subject to the 
physical design of objects (e.g., variations in electrical 
shielding and grounding). Moreover, some frequencies of 
noise may not be (faithfully) conducted through the human 
body and thus not reach our smartwatch-bound sensor. 

Additionally, high fidelity analog sensing requires a stable 
and strong electrical ground as a reference. In our proto-
type, we tried to faithfully replicate the grounding condi-
tions of a smartwatch, which contains a small battery. Addi-
tionally, our SDR receiver only provided 8-bit ADC resolu-
tion. With a superior ground reference and increased resolu-
tion (i.e., a commercial-level implementation), EM-Sense 
may support even larger sets of objects. 

Finally, we noticed in some cases that very strong environ-
ment noise (e.g., transmitters that broadcast in overlapping 
bands of interest, or a microwave oven in operation) raised 
the noise floor and overpowered local EM signals. Even 
when noise subtraction is applied, high intensity noise can 
blanket subtle but discriminative EM signals. Additionally, 
because our sensor is worn on the arm, it is subject to fre-
quent movements, which can cause unintended electrical 
effects (e.g., Doppler shifts). Movement information from 
e.g., accelerometers and gyroscopes could compensate for 
e.g., sudden arm movements, or simply pause classification. 
Anecdotally, however, these effects appear to be minor.  

CONCLUSION 
We have proposed a novel sensing approach for on-touch 
object detection that exploits the unintentional electromag-
netic noise generated by commonplace objects. By modify-
ing a small, low-cost, embedded software-defined radio 
receiver, we can detect and classify EM signals in real time, 
enabling quick and robust detection of when an object is 
touched and what that object is. Our experiments show that 
sensing can be accurate and robust. We also highlighted the 
wide variety of objects that EM-Sense can detect in several 
example contexts and environments, which point towards 
more powerful assistive, context sensing, and communica-
tion applications. 
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