21cm	n Circular_Patch_Feed	
	Plate_Director Yagi Antenna	
Ţ	Development	
	of an	
	Efficient Low_Noise	(555), 2555)
	Portable Economical	(1110, 1771) (1110, 1771)
	1cm Neutral Hydrogen	(TREASURE)
122220.00222	Radio Telescope	(2222) (2222) (2222)
	Antenna	
	b alex pettit jr June 24	

b alex pettit jr Jun24

Background

The development of this Circular Patch Feed (disk / plate) Yagi Antenna is based on the Design by **Dr Matjaz Vidmar**

Matjaz Vidmar S53MV

https://lea.hamradio.si/~s53mv/cigar/design.html https://s53mv.s56g.net/

I would like to thank Dr Vidmar for his many emails of assistance and for his NEC antenna model.

b alex pettit jr Jun24²

The initial structures fabricated were Circular Patch Feed Disk Director Yagis.

Their performance results were unexpectedly impressive.

An investigation into manufacturing components for a low cost *"scope_in_a_box"* variant was begun. The Goal : a **'\$50** Antenna'

The Problem : A large number of elements is required, but a low cost source for the aluminum disks was never identified. Quotes for fabrication via Water_Jet, Laser_Cutting, and Stamping were obtained, but in all cases, the cost was \$4-6 each for the Directors alone. This was beyond the intended budget.

Manual fabrication via band saw, drill press, and lathe machining operations was slow and tedious and required several hours of labor. Fine for a few prototypes, but not for even a small production lot : Thus, the idea was put on hold for several months.

Development

In examining the electrical current patterns on the circular elements via the NEC (numerical electromagnetics code) models, it seemed possible to replace the circular director elements with rectangular plates.

The analytical models and subsequent fabricated antennas validated this assumption.

What was Not anticipated : The circular disk directors could be replaced with rectangular plates with Virtually No Loss in Performance

Rectangular Plate Directors offered much simpler and lower cost fabrication. Result : the effort resumed.

21cm Circular_Patch_Feed Disk Yagi Antenna

Patch Feed Yagi with Circular Disk Directors works well, but difficult to fabricate disks

21cm Circular_Patch_Feed Disk vs Plate Yagi Antenna

Patch Feed Yagi with Circular Disk and Rectangular Plate Directors The model showed identical performance using rectangular plates

21cm Circular_Patch_Feed Plate Yagi Antenna

Patch Feed Yagi with Circular Disk and Rectangular Plate Directors Field Tests verified "identical" performance between the two designs

b alex pettit jr Jun24

Analytical Modeling

NEC Numerical Electromagnetics Code Overview

The NEC **Numerical Electromagnetics Code** is an antenna modeling program for wire and surface antennas.

It was originally written in FORTRAN during the 1970s by Lawrence Livermore National Laboratory.

During the development of the Final Design 132 NEC Model variations were evaluated to optimize the final configuration

Antenna Modeling via Arie Voors' 4NEC2

Version: 5.8. Windows -7 (64 bit) running on Intel Pentium Nov 2015 Physical memory : 24396 Mb, allocated : 8135 Mb Virtual memory : 2045 Mb, allocated : 70 Mb Help-file (F1)

An Overview of Numerical Electromagnetics Code Antenna Modeling

Many variations of the antennas were modeled to compare performance parameters.

The intent of the next few slides is to show what can be done with NEC Modeling highlighting some basic concepts

I recommend you gain experience in NEC Modeling : https://www.qsl.net/4nec2/

You can't *guess* and expect optimal results Learn to *use* a nanoVNA analyzer !

b alex pettit jr Jun24¹¹

Antenna Modeling via Arie Voors' 4NEC2

Version: 5.8. Windows -7 (64 bit) running on Intel Pentium Nov 2015 Physical memory : 24396 Mb, allocated : 8135 Mb Virtual memory : 2045 Mb, allocated : 70 Mb Help-file (F1)

The Numerical Electromagnetics Code is an antenna modeling program for wire and surface antennas. It was originally written in FORTRAN during the 1970s by Lawrence Livermore National Laboratory.

> The NEC-2 Engine used by the 4NEC2 software is the original (now public domain) Lawrence Livermore Code.

It performs an analysis of an antenna by Finite Element Analysis Techniques which divides wires into a number of small elements and computes their currents and resultant electric and magnetic fields

Antenna Modeling via Arie Voors' 4NEC2

Version: 5.8. Windows -7 (64 bit) running on Intel Pentium Nov 2015 Physical memory : 24396 Mb, allocated : 8135 Mb Virtual memory : 2045 Mb, allocated : 70 Mb NEC Modeling performs an antenna analysis by Finite Element Analysis techniques which divides wires into a number of small elements and computes their currents and resultant electric and magnetic fields

b alex pettit jr Jun24

Antenna Modeling via Arie Voors' 4NEC2

Version: 5.8. Windows -7 (64 bit) running on Intel Pentium Nov 2015 Physical memory : 24396 Mb, allocated : 8135 Mb Virtual memory : 2045 Mb, allocated : 70 Mb Help-file (F1) NEC Modeling performs an antenna analysis by Finite Element Analysis techniques which divides wires into a number of small elements and computes their currents and resultant electric and magnetic fields

b alex pettit jr Jun24¹⁴

Complex Structure Geometry Builder

Geometry Entry / Modification Editors Numerical Electromagnetics Code

Ø

File De

G

ŊΥ	21_11BARSS	/STEM_60MN	1.NEC -	4nec2 Edit						_				ture and ha
	Cell Rows	Selection	Options	5								l	Simple geome	ary can be
a	ult straight line	wire-element												-1-1
	Symb	ols	Geometry		Source/Load		Freq./Ground				defined in tables			
e	ometry (Sca	ling=Meters)										C	1 1	1.
r	Туре	Tag	Segs	X1	Y1	Z1	X2	Y2	Z2	Radius			omplex can be	combined
	Wire	801	1	5.52e-3 4.78032e-3	U 2.76e-3	0	5.52e-3 4.78032e-3	0 2.76e-3	00d	3.5e-4 3.5e-4			1	a a
	Wire	805	1	2.76e-3	4.78032e-3	0	2.76e-3	4.78032e-3	b00	3.5e-4			and modi	fied
	Wire	807	1	0 20- 0	5.52e-3	0	0	5.52e-3	b00	3.5e-4				1100
	Wire	811	1	-2.76e-3	4.70032e-3 2.76e-3	0	-2.76e-3	4.76032e-3 2.76e-3	000	3.5e-4			vio	
'	Wire	813	1	-5.52e-3	0	0	-5.52e-3	0	b00	3.5e-4			Vla	
	Wire	815	1	-4.7803e-3	-2.76e-3	0	-4.7803e-3	-2.76e-3	b00	3.5e-4				7 1'
1	Wire	817	1	-2.76e-3	-4.7803e-3	0	-2.768-3 N	-4.7803e-3 -5.52e-3	500 b00	3.5e-4 3.5e-4			NEC lext h	Editor
1	Wire	821	p- 1	2.76e-3	-4.7803e-3		2.76e-3	-4.7803e-3	600	3.5e-4			-	
2	Wire	823		DY21_11BarsSY	STEM_60mm.N	EC - Notepad			-			_	MS Notenad	Editor
3	Wire	596	Fi	ile Edit Forma	t View Help									Luitoi
5	Wire	598	[CI S'	f = 0.03	35								NEC 2D Hor	T ditor
ò	Wire	599	S	Y b00 =00 W 801	5 1	5.52e-3 0	0 5.52	e-3 0	b00 3.5e-4				NEC 3D VIEW	v Eallor
7	Wire	600	G	N 803	1	4.78032e-3 2.76e-3.4.78032e	2.76e-3 0	4.7803	2e-3 2.76e-3	b00	3.5e-4			
2 7	Wire	602	G	N 807	1	0 5.52e-3	0 0	5.52e-	3 b00 3.5e-4	4 78022	5.5C 4	2.5.4		
)	Wire	603	G	N 809 N 811	1	-4.7803e-3	2.76e-3 0	-4.780	3e-3 2.76e-3	4.780520 b00	3.5e-4	5.50-4		
1	Wire	604	GI	N 813 N 815	1 1	-5.52e-3 -4.7803e-3	0 0 -2.76e-3	-5.52e 0	-3 0 -4.7803e-3	b00 -2.76e-	3.5e-4 3 b00	3.5e-4		
2	Wire	605	GI	N 817 N 819	1	-2.76e-3 0 -5.52e-3	-4.7803e-3	0	-2.76e-3 -5.52e-3	-4.7803	e-3 b00 3.5e-4	3.5e-4		
4	Wire	607	G	N 821	ĩ	2.76e-3 -4.7803e	-3 0	2.76e-	3 -4.7803e-3	b00	3.5e-4	3 50-4		
5	Wire	5000	G	N 596	1	5.52e-3 0	0 4.78	032e-3	2.76e-3 0	3.77e-4	2 77 - 4	5.56-4		
ò	Wire	5001	GI	N 597 N 598	1	4.78032e-3 2.76e-3 4.78032e	2.76e-3 0 e-3 0	2.76e-: 0	4.78032e-3	U MMLNEC - Geor	3.//e-4 vetry Edit	1.1.01.01.01		
2	Wire	5002	GI	N 599 N 600	1 1	0 5.52e-3 -2.76e-3	0 -2.7 4.78032e-3	6e-3 0	File Options Edit Create	Show Nec S	egm-info			
,	14416	3003	G	N 601 N 602	1	-4.7803e-3	2.76e-3 0 0 0	-5.52e -4.780	-3 JD XZ YZ XY		FILT	T	Add C Def / 0 7 1/ / 10	Aus 0.05 mtr Pies
			G	N 603	ĩ	-4.7803e-3	-2.76e-3	0			H		1-1-1	Zoom x 1
			G	N 605	1	0 -5.52e-3	3 0	2.76e-	3		H-			E Seg's E Ends
			G	N 607	1	4.78032e-3	-2.76e-3	4.7805	-			1111		F Wrenr F Tagnr
			G	N 5000 N 5001	1	-0.034 -0.017 -0.034 -0.0136	0 -0.0	34 -0.0130 34 -0.0102	2					E Support
			G	N 5002 N 5003	1	-0.034 -0.0102 -0.034 -6.8e-3	0 -0.0	34 -6.8e- 34 -3.4e-	3		E-F-	I-I-IIIII	TH	Thefa Phi 40 275
			G	N 5004	1	-0.034 -3.4e-3	0 -0.0	34 0 34 3 4e-3			Et			
			G	N 5006	î	-0.034 3.4e-3	0 -0.0	34 6.8e-3			E I I			Wire data
			G	N 5008	1	-0.034 0.0102	0 -0.0	34 0.0102 34 0.0136						Nr: [1789 Teg [301 Segs [7
			G	N 5009 N 5010	1 1	-0.034 0.0136 -0.0306 -0.017	0 -0.0	34 0.017 306 -0.0130	5					Badas 035 V mm
											H	I THUR	TTH	End-1 (mit)
											Et -			5.52e-3 0 0.465
											H-F-		<u>+</u> -+ <u>∃</u>	5.52e-3 0 0.405
														F Keep connected
														C FIXE-1 @ FIXE-2
											H-F-	I TANK T	LIA	Length 0.05 mtr
											H-1-		1-	Theelo Par I 180
											H-F-			
														10

16

b alex pettit jr Jun24

Geometry Entry / Modification Editors

Simple geometry can be defined in tables Complex can be combined and modified via NEC Text Editor MS Notepad Editor NEC 3D view Editor

Screenshots of 4NEC2 Analysis Capability

Beam Pattern vs Director Spacing Study

an NEC Study was performed to optimize the Front/Back Gain 60mm Director Spacing was selected

40mm vs 60mm Plate Director Spacing Study

40mm and 60mm Director Spaced Antennas were modeled, fabricated, and tested to verify NEC model results

b alex pettit jr Jun24²⁰

Numerical Electromagnetics Code Beam Pattern / Gain Analysis

60mm Director Element Spaced Antenna Selected

Numerical Electromagnetics Code Model Data vs VNA Analysis

Field Tests

A series of tests was performed to physically

1) measure the beam-width of the antenna by incrementally rotating the antenna through a remote RF source and recording the Rx signal level

2) characterize the antenna's relative S/N by measuring the Hydrogen Spectra Peak at a reference point (declination + 40 dg right_assension 20:30 hrs) vs background 'Cold_Sky' signal level

0.75m Disk and Plate Yagi H-Line Data Milky Way Cygnus Region

The more easily fabricated Plate Director Antenna had Identical Performance to the Disk Director Antenna

b alex pettit jr Jun24²⁴

0.75m Plate Yagi H-Line Data Milky Way Cygnus Region

Plate Director Antenna NEC model and Fabricated Antenna

b alex pettit jr Jun24²⁵

Antenna Beam Pattern Characterization Tests

Test setup : using a nanoVNA

Antenna Beam Characterization Test Range

A Test Range was designed based on a nanoVNA to characterize the antenna's BEAM PATTERN

b alex pettit jr Jun24²⁶

Circ Patch Feed Plate Yagi Beam Pattern Field Testing Setup

The Explore Sci EQ3 mount can be positioned into Az / The manual vernier control allowed the antenna to be rotated through Azimuth in 2.5 degree increments

Circ Patch Feed Plate Yagi Beam Pattern Field Testing Setup

Antenna Beam Pattern Field Characterization Tests

29

Circ Patch Feed Plate Yagi Beam Pattern Field Test Data Results 0.75m long Yagi w/ 40mm vs 60mm Director Spacing Comparison

Performance 0.75m Cir Patch Feed Plate Yagi Antenna Final Design

Performance Specifications :

Fwd Gain : +14.9 dB Front-Back Ratio : +56.9 dB ½ Power Beam_width : 28 °

Max Signal to Cold Sky @ Declination + 40^o RA 20:30 Hrs Cygnus : +1.35 dB (using nooelec SAWbird H1 LNA)

Performance Specifications :Fwd Gain : +14.9 dB Front-Back Ratio: 56.9 dB ½ Power Beam_width : 28 °

b alex pettit jr Jun24 33

Performance Specifications : Max Signal to Cold Sky @ Declination + 40 ° RA 20:30 Hrs Cygnus 1.35 dB

Results

Data was acquired using AirSpy SDR# Studio and D.Kaminski IF_Average

Each Spectra was a 5 minute average of data = a sky drift of 1.25 dg

MS Excel was used to evaluate a few spectra. Custom Matlab scripts created the contour plots

Matlab pre-processing removed drift from electrical / environmental changes and corrected for Earth's Rotational and Orbital Velocity (VLSR correction)

b alex pettit jr Jun24 35

0.75m mini 13 disk CPY

AirSpy SDR# Studio and D.Kaminski IF_Average

Declination +40dg 24 hour drift scan spectrum set

Declination +40dg 24 hour drift scan Contour Plot

Fabrication

Fabrication Details of The 21cm Circular_Patch_Feed Rectangular_Director_Plate Yagi Antenna 0.75m long 13 Directors

Fabrication the processes

Cir Patch Feed Plate Yagi Component Dimensions

Cir Patch Feed Plate Yagi Element Spacer and Feed Components

Sleeving : 0.50" OD / 0.038" ID Aluminum Tube

Stainless Steel 3/8"- 16 Thread Threaded Rod 36" Length

b alex pettit jr Jun24 42

Patch Feed Plate Yagi

Alternate Designs

Simplified fabrications of the design should perform equally well Maintain the same physical area of the Patch Feed ..

For a Square, that would = 100mm x 100mm

I would NOT recommend rectangular shapes for these

3 components as this may increase 290K Ground Noise Reception

(= reduce S/N) by altering the antenna's Back (Reverse) Beam Pattern.

SS Nuts vs Aluminum Spacers Degrades the Cygnus performance spec from 1.35 dB to 1.10 dB

Cir Patch Feed Plate Yagi Reflector / Feed details

This pair of components has an Fn of 1380 MHz and can be tuned to 1420 MHz with the addition of the Director Elements

Cir Patch Feed Plate Yagi Reflector / Feed assembly CORRECT Feed <> Director Orientation

Cir Patch Feed Plate Yagi Dimensions

Cir Patch Feed Plate Yagi Antenna

Tuning via nano VNA

** Improving Weather Resistance **

Overnight Dew Shield : use a plastic polyethylene container

21cm Circular_Patch_Feed Plate_Director Yagi Antenna

