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ABSTRACT  
 
Use of Global Navigation Satellite Systems (GNSS) in safety of life applications such as aircraft navigation, railway control 
and autonomous vehicles is increasing as these technologies become more necessary or mainstream. To serve these 
applications, GNSS must provide high integrity, even in the face of deliberate attacks such as spoofing. The Stanford dual 
polarization antenna (DPA) is a technology that uses a single patch antenna but with two feeds to examine both left and right 
hand circularly polarized (LHCP and RHCP, respectively) signals. Proper design and installation allows the DPA to use 
polarization of the incoming signal to determine direction of arrival (DOA) and elevation. These measures can be used to 
discriminate a genuine from a bogus broadcast. The technology can also null out some interference signals.  
 
This paper examines the continued development and field tests of our DPA. Test with genuine on-air signals have shown the 
ability to determine DOA and elevation. Field test in on-air spoofing and jamming conditions were also conducted. These 
scenarios allow us to demonstrate the performance of the DPA processing, DOA and elevation estimates. 
 

INTRODUCTION  
 
The openness of Global Navigation Satellite Systems (GNSS) satellite signals has enabled its rapid adoption worldwide. It 
allows a variety of manufacturers to develop and improve receiver designs enabling a variety of applications. However, this 
openness also makes GNSS vulnerable to attacks such as spoofing. This threat will only increase in the future. The means of 
conducting such an attack are becoming more obtainable. For example, security experts with basic GNSS knowhow were able 



to develop a low cost, flexible spoofer [1]. Furthermore, the incentives for such attacks increase due to increased economic and 
safety uses of GNSS. Indeed, deliberate GNSS spoofing attacks are no longer theoretical or purely in the military domain. In 
the past year, spoofing attacks have been seen in the Kremlin and Black Sea [2] [3]. 
 
Given the severity of spoofing on safety of life and economic activities, some anti-spoofing (A/S) mechanism is desirable in 
any critical GNSS receiver. One important A/S function is to detect the presence of spoofing. Such detection is usually based 
on finding telltale signatures left by a spoofing signal that differ from the genuine. Different categories of detection techniques 
have been devised [4][5][6]. In this paper, we develop and analyze detection using a dual polarization antenna (DPA) to 
examine the signal in space properties. Specifically the DPA provides right and left-hand circularly polarized (RHCP and 
LHCP, respectively) components of the received signals. For a good DPA design and installation and a ground-based (i.e. low 
elevation) spoofer, these properties will often differ between the genuine and spoofed signal. These differences allows for 
determining the direction of arrival (DOA) and the rough elevation of the incoming signal. A single antenna spoofer can thus 
be detected as all its spoofed satellite signals will come from the same direction. 
 
Miniaturized versions of our DPA suitable for field-testing were developed [7]. These are built on a printed circuit board (PCB) 
and utilize surface mount components to combine the signals from the two feeds to a hybrid coupler to create both a RHCP 
and LHCP output. The design provides a small form factor antenna, suitable for aircraft installation that has elevation dependent 
sensitivity to an incoming signal.  
 
To demonstrate and quantify performance, these antennas were tested in several on-air scenarios. Tests with nominal, genuine 
GNSS signals only as well as with on-air spoofing and jamming were conducted. The paper details the signal processing and 
algorithms used by our DPA to determine DOA for spoof detection system.  It also demonstrates the performance in various 
scenarios including on-air jamming and spoofing. Specifically, it shows the ability of the DPA in determining DOA. 
 

BACKGROUND 
 
One means to detect spoofing is to examine the physical properties of the incoming signal. Genuine GNSS signals have 
specified directions of arrival and specific polarizations (RHCP). Multi-antenna techniques have been suggested to examine 
DOA to detect spoofing [7][8][9]. Single spoofing antennas can only generate one DOA whereas the genuine satellite signals 
come from many DOAs. DOA-based spoof detection can be powerful but such techniques require either spatially separated 
antennas or multi-element antenna arrays. Large spatial separations require additional space and are more costly to install.  For 
aviation installations, each antenna would need a separate hole and cable run through the aircraft body. Multi-element arrays 
have similar drawbacks as well as being restricted by International Traffic in Arms Regulations (ITAR) should there be four 
or more elements. An antenna sensitive to polarization to detect non-RHCP signals as being not genuine or multipath. 
Mayflower communications proposed such a concept for aviation spoof detection in the 1990s. However a spoofer can, with a 
little more work, replicate the polarization. The Stanford DPA concept addresses these limitations. It is small, utilizes a patch 
antenna and may be installed like a standard GNSS antenna. While it measures polarization, it does not rely on the spoofer 
using non-RHCP signals. Instead, it uses the measurements to determine DOA for spoof detection. 
 
The Stanford DPA design generates and uses the RHCP and LHCP components of a signal to determine the presence of 
interference and spoofing. GNSS signals are RHCP and generally come from above the antenna. The spoofing signal needs to 
be also seen as RHCP to be consistent. However, just generating a RHCP signal is not enough to fool the Stanford DPA if 
installed properly. This is because signals that impact the antenna ground plane before entering the antenna becomes linearly 
polarized regardless of their initial polarization. A linearly polarized signal has equal RHCP and LHCP components; the 
antenna can use this to determine and cancel spoofing. So any spoofing signal that comes in from the level of the vehicle 
(automobile, aircraft) or below will impact on the ground plane first. Hence, their orientation from below the horizon will be 
detectable by the DPA and this information can be used to detect spoofing. The concept is detailed in [10] and shown in Figure 
1. This forces the attacker to take a position above the vehicle, perhaps using an unmanned aerial vehicle (UAV), which is 
much more challenging. Static spoofing placements such as on rooftops may be used but are limited in range. 



 
Figure 1. Dual Polarization Antenna Concept for Spoof Determination 

Having demonstrated the capabilities using discrete components [10], Stanford developed a DPA design on printed circuit 
board (PCB) using commercial off the shelf (COTS) components [7]. The PCB DPA is shown in Figure 2 and processes the 
incoming signal and generates RHCP and LHCP components. It also contains all the necessary circuitry to monitor the LHCP 
signal, find DOA and mitigate interference. The RHCP is provided to the nominal receiver/radio while a combined 
LHCP/RHCP signal is fed to a monitor receiver that is controlled by executive monitoring (EM).  The monitor receiver in our 
PCB is a u-blox receiver while the EM is implemented on an onboard microprocessor. In spoof detection mode, the EM 
examines the components to determine if there is interference or spoofing. One way this can be done through comparison of 
satellite carrier to noise ratio (C/No), DOA or both. Should an unwanted signal be present, the EM can change to mitigation 
mode where it can attempt to cancel the unwanted signal. The DPA has less than four elements and hence is suitable for export 
under current ITAR. 
 

 
Figure 2. Stanford PCB Dual Polarization Antenna 

 
Stanford PCB DPA 
 
The Stanford DPA is built using a standard COTS patch antenna with 2 feeds (x and y axis) along with COTS surface mount 
components. The feeds outputs go to a 90° hybrid coupler, which combines them to create both a RHCP and LHCP signal.  
 
With our DPA concept, the vehicle body performs an essential role as extended ground plane. A high elevation signal is not 
greatly affected, as it does not impinge on the body before entering the antenna. Hence its signal should be mostly RHCP. 
Incoming low elevation signals, such as from low elevation satellites and spoofing signals, impinge on the body before entering 
the antenna. The body causes the signal, regardless of transmitted polarization, to become linearly polarized (LP), thus having 
roughly equal RHCP and LHCP components. As our antenna can separate these components, it can use these components for 
spoof detection and interference mitigation. 
 
We see this sensitivity to LHCP signal in conventional RHCP antennas. When illuminated by a purely RHCP signal, these 
antennas will still have LHCP energy due to antenna imperfections, ground plane and other conductive elements. This is 
quantified by its cross polarization discrimination (XPD) which is the ratio of co-polarized to cross polarized energy and is 



dependent on the incoming direction of the signal (azimuth and elevation). For a RHCP antenna, co-polarized is RHCP and 
cross polarized is LHCP. XPD in decibels (dB) is given in Equation (1) where Gd is the gain of d polarization and θ, φ are 
elevation and azimuth of the incoming signal, respectively. Typically, the XPD for a GNSS antenna is high at high elevation 
and close to zero at low elevation showing how the ground plane and other components can produce in LHCP energy. It is this 
observation that help guide the development of the DPA. 
 

𝑋𝑃𝐷(𝜃, 𝜑) ≜ [𝐺ோு(𝜃, 𝜑) − 𝐺ு(𝜃, 𝜑)]𝑑𝐵 (1) 
 
The DPA with a large ground plane, by being able to measure the phenomena mentioned, can provide useful information about 
the incoming signal. First, its sensitivity to an incoming signal is elevation dependent because of the ground plane effect. An 
incoming RHCP signal from high elevation is mostly RHCP with little LHCP component. At lower elevation, the ratio of 
LHCP to RHCP energy increases such that they may be roughly equal around the horizon. Hence, a comparison of the energy 
of the components can provide rough elevation angle. One way to do this is by combining the signals in a destructive way. 
 

 
 
Figure 3. Basic design of the Stanford DPA with dual port patch antenna, low noise amplifier (LNA), 90° hybrid coupler, and variable phase 
shifter. The figure shows the DPA is set to spoof detection mode where the microprocessor steps through phase shifts to determine 
direction of signal arrival.   

Second, the DPA can provides DOA as the RHCP and LHCP signals are offset by a phase shift that is related to the azimuthal 
direction of the incoming signal. This happens are part of the process of the ground plane forcing signals that traverse it to be 
LP. This results in the signal having “RHCP and LHCP energy that is phase coherent and similar in magnitude [10].” Given 
coherence and roughly equal energy, we can cancel the signal components simply by choosing the correct phase. A phase shift 
is applied to one of the signals, in our case, the RHCP. Our DPA microprocessor commands the rotation of the RHCP signal 
throughout all phase shifts, ψ, via the variable phase shifter and generates a combined signal as seen in Equation (2).The phase 
shift required for best cancellation also indicates the relative DOA of the signal providing another signature to identify 
interference. The microprocessor in the Stanford DPA sets the amount of time required to step through an entire cycle (360 
degrees of azimuth scan). 
 

𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙(𝜓) = 𝐿𝐻𝐶𝑃 − 𝑝ℎ𝑎𝑠𝑒 𝑠ℎ𝑖𝑓𝑡𝑒𝑑(𝜓) 𝑅𝐻𝐶𝑃   (2) 
 
The phase shift angle is related to the DOA or azimuth angle of the incoming signal as shown in Table 1 and Equation (3) with 
ψ being the variable phase shifter value, φ0 being the azimuth angle of the x-axis feed and φ being the azimuth angle of the null 
[10]. Because φ0 is unknown, our measurements are relative DOA unless a known reference is used to determine φ0. The 
additional 90 degrees (°) is an artifact of creating the circularly polarized signals using x- and y-axis signals through the hybrid 
coupler. Rotating through 360° of phase shift tests 720° (two cycles) of incoming signal DOA. Another way to look at it is that 
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the combined DPA signal essentially has a dipole response to the direction of the incoming signal. Rotating through all phase 
shifts results in variations in C/No as it cycles through constructive and destructive combination of the LHCP with the RHCP. 
The phase shift, ψnull that results in a null or minimum C/No as determined by the signal tracking is used to estimate the DOA 
via Equation (2). The DPA was initially tested using live GNSS signals on static and vehicle platforms to verify its performance 
on low and high elevation satellites. Figure 4 shows such a test where the DPA provides cancellation of low elevation signals, 
in this case, GNSS satellites. Hence the antenna can both detect, by finding LHCP components, and cancel spoofing from low 
elevation. 
 
Table 1. Azimuth angle (relative to the top of the antenna) and corresponding phase shift 

Azimuth angles (DOA) (φ) Variable phase shifter value (ψ) 
0°   & 180° 90° 
45°  & 225° 180° 
90°  & 270° 270° 
135° & 315° 0° 

 
 

𝜓 = 2(𝜑 − 𝜑) + 90° = 𝑓(𝜑)  (3) 
 
 

 
Figure 4. C/No vs. Rotation of LHCP component for different satellites: high (top), low (bottom), very low (middle). At low and very low 
elevation, rotation of LHCP component to the correct angle can significantly cancel out RHCP, ~ 180 second to complete all rotations  

Determining DOA from Combined Signal 
 
Determining DOA means devising an algorithm to find the null or minimum C/No in our data. The algorithm is illustrated in 
Figure 5 which shows the variation of C/No of the Wide Area Augmentation System (WAAS) geostationary satellite, PRN 
138. The algorithm starts by finding a suitable period of time where reasonable C/No exist. The algorithm then selects a window 
of time where at least 360° of azimuth scan is made (the blue dotted line on the figure). This guarantees that at least one null 
exists within the window. For the window, a C/No threshold is determined and used to find a segment which contains the null 
and no peaks. The algorithm thus finds a segment that crosses over the threshold twice with samples between the crossings 
below the threshold. All the samples between two crossing points, indicated by the circles in the figure, are used to generate a 
curve fit. We use a third order polynomial to fit the curve for simplification and dealing with unbalanced or non-symmetrical 
curves. An unbalanced curve is one whose falling and rising edge are not similar (have different gradients), so a second-order 
polynomial does not adequately fit the curve. The curve should be balanced but because of receiver averaging, there is a lag in 
the results causing the asymmetry. This unbalanced curve can be seen in Figure 5. A second-order function may be used for 
some signals and has a lower computational load but it does not handle highly unbalanced curves well. The resulting fitted 
polynomial is then used find the minimum or null, indicated by a star (*) in the figure. The time associated with the null 
corresponds to a phase shift and a corresponding direction of arrival.  
 



 
Figure 5. Illustration of algorithm for determining time of minimum C/No (null) applied to captured data. Example shows on-air C/No of 
the WAAS Geostationary satellite pseudo random number (PRN) 138 over a period of 10 minutes (roughly 2 cycles of phase shift). The 
elements of the null finding algorithm is shown in the plot as well as the determined null 

 

EXPERIMENTAL EQUIPMENT & FIELD TESTING 
 
Several field tests were conducted to further evaluate the Stanford DPA performance. The first tests, utilizing only broadcast 
satellite signals, were conducted at Stanford University. Static test were conducted with the antenna installed on a metallic trash 
canister or a large metallic plate to simulate the ground plane provided by the body of an aircraft or other vehicle. These were 
tested on the roof top of the Stanford Aeronautics & Astronautics building, about 50 feet above the ground. This allows for 
good line of sight to low elevation satellites. The setup is shown in Figure 6. Tests in nominal conditions provide a good 
indication of performance for high, medium and low elevation signals. An example of the static test result is seen in Figure 4. 
 

 
Figure 6. Static testing at Stanford rooftop with flat ground plane 
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We also tested at a government sponsored exercise where different L1 spoofing test scenarios are conducted. Numerous 
scenarios were performed. Position and time spoofing, similar to those described or demonstrated in [6][11], were exercised 
both with ramps and jumps in deviation. Interference was often introduced prior to spoofing to knock off receivers under test. 
This also allowed us to test the interference detection and mitigation capabilities of the DPA. The tests were conducted statically 
with participants located such that the spoofing strength is slightly higher than the received GNSS signal strength. The C/No 
of the spoofed signals were kept the same so that participants can quickly confirm if their receivers are tracking the spoofed 
signal. 
 
The field tested DPA are typically installed on the roof of our test vehicle such as the sports utility vehicle (SUV) as on a box 
similar to that shown previously in Figure 6. The antenna is 3 in x 3 in with a 12 in x 12 in ground plane. Placement on the top 
of the vehicle was expected to extend its ground plane. The typical DPA setup, seen at the front of the vehicle, has the combined 
signal processed by a monitor receiver (u-blox). The receiver is single-frequency on L1 band and set to track GPS, GLONASS, 
Galileo, and Beidou satellites. The u-center software provided by u-blox logged the signal strength, positioning results and 
other measurements. The microprocessor was programmed so it cycled through all ψ every 256 seconds (4 minutes 16 seconds). 
We also fielded a second DPA, seen at the back of the vehicle, which utilizes an Ettus universal software radio peripheral 
(USRP) to record raw intermediate frequency (IF) data from the LHCP and RHCP ports rather than a monitor receiver 
processing the combined signal. This data is stored on a solid state drive (SSD) of an Intel Next Unit of Computing (NUC) 
within the plastic housing on the roof. This data is not discussed in this paper. 
 
For analysis, the monitor data is processed to determine DOA. The C/No result shows peaks and nulls with time due to the 
null-steering effect. We used the previously discussed curve-fitting technique on the C/No results to find the signal source 
DOA. Due to 256 sec/cycle scan rate, we have plenty of samples on each cycle for finding the optimal DOA. Different spoofing 
scenarios were investigated including time/position jump or walk. The jammer or spoofer was located at medium low elevation 
angle (15-20 degrees) respect to antenna. While these elevations result in the C/No null being not very deep (only around 10 
dB peak-to-null), it is still adequate for DOA determination and the antenna can still detect spoofer and jammer in this situation. 
Should the antenna finds a number of satellites pseudo random numbers (PRNs) from the same DOA, this is a strong indication 
that there is a spoofing transmission. This information thus can form the foundation of a spoof monitor along with null depth 
information which is correlated to elevation angle of the incoming signal. Furthermore, we could potentially excluding these 
PRNs to allow us to develop an unspoofed position from pseudo ranges that are genuine. For the jammer, we find an angle of 
direction has highest C/No which corresponds to null steered to jammer direction.  
 

FIELD RESULTS 
 
On-air (Stanford) Test Results 
 
Testing on GNSS signals allows us to study DOA performance as a function of elevation. The signal also can represent the 
effect of a sophisticated spoofing signal with the only difference being that each genuine signal comes from different directions 
while all spoofed satellite signals come from the same direction. Figure 4 shows results from static testing. For a low elevation 
satellite (< 10°, middle of the figure), the LHCP energy will be close in magnitude to RHCP energy resulting in deep fades in 
the combined signal. For a mid to low elevation satellite (< 30°, bottom of the figure), the LHCP energy is still reasonably 
close in magnitude to RHCP energy resulting in clear fades in the combined signal though one can see the fade getting weaker 
as the satellite goes up in elevation. The ground plane effect is less for higher elevation satellites and hence the signal becomes 
more purely RHCP. This is seen more clearly for a high elevation satellite (> 65°, top of the figure) where there are periodic 
dips but of only a few dB. So we can still get rough DOA and furthermore, from the three plots, the depth of the null provides 
a coarse indicator of elevation.  
 
Figure 7 shows the estimated azimuth angle results of the part of a low elevation satellite pass. Note that only relative angle is 
determined and so a reference using the WAAS geostationary satellite is used. This can result in a bias. It shows the ability to 
estimate DOA from C/No variations. The error at higher elevation seems a little worse.  Also, there are larger deviations at the 
horizon. This is not surprising as the gain pattern of the antenna is more disturbed. The results of Figure 4 suggest that the DOA 
estimates should get better with decreasing elevation, this is not clear in Figure 7. Aggregating data over several satellites, one 
can get the statistics of the variation as a function of elevation. Figure 8 shows the mean and standard deviation of estimated 
azimuth error as function of elevation. There is rising trend in standard deviation, especially after 50° of elevation. There is 
also greater variation at the horizon. These results depend on our phase step rate, which sets our dwell time at each phase, the 



ground plane effects, and the antenna. The phase shift cycled through 360 degrees of azimuth in 51.2 seconds. This is 5 times 
shorter dwell time per phase than used in the on-air spoofing tests. 
 

 
Figure 7.Estimated versus actual azimuth angle over part of a satellite pass. Elevation angle (from ephemeris) is shown for reference 

 

 
Figure 8.Mean and standard deviation of the error on estimated azimuth as a function of satellite elevation angle during static testing 

 
Spoofing Test Results 
 
The DPA operates on the physical properties of the signal to detect spoofing. Hence, it theoretically should not care what the 
spoofer is actually transmitting in terms of position and time. Indeed, as seen before, it is not detecting spoofing effects on 
ranges or position but 1) presence and coherence of LHCP and RHCP signals (as seen by the C/No variations) and 2) the 
azimuth of the incoming signal. Hence we get results with genuine GNSS signals as well as with live spoofing signals. These 
difference results between genuine and spoofed signals can be analyzed to help design robust detection monitors in the future. 
At the government test, many different spoofing scenarios were conducted. In general, the DPA behaved similarly in each 
scenario provided that the received spoof power was similar. An example of our results follows. 
 
Figure 9 shows the positioning error starting from Scenario 1. The spoof scenario is a position push like that described in texbat 
scenario 4 [11] and starts at 6th minute of the figure. There is no jamming prior to spoofing. The positioning results show the 



relative position to first fix. The position is spoofed 10 m to the east from true location. There are also larger variations in 
height after the spoofer is turned on. Figure 10 shows the C/No for all GPS satellites or pseudorandom numbers (PRNs). In the 
first 5 minutes when spoofer is off, the genuine signals have nulls at different times with different depth indicating a different 
azimuth directions, and hence locations. After the spoofer goes on during the 6th minute of the plot, all the C/No start to align 
together with similar nulls at the same time. While the similar signal strength is an artifact of the testing to help corroborate 
that the receiver is spoofed, having the null at the same location should occur regardless of the relative power of each spoofed 
satellite signal. Hence, even without doing DOA calculations, the system can see that something is amiss. Interestingly enough, 
going back to Figure 9, we see this also results in periodic positioning pattern in every 256 seconds when all PRN have similar 
signal strength. For example, the height error has peaks in the 6th, 11st, 15th, 19th, 23rd minutes.  
 

 
Figure 9. Positioning error with Dual Polarization Antenna during Spoofing for Scenario 1 

 
Figure 10. C/No for all GPS PRNs during Spoofing (starting at minute 6) for Scenario 1 



 
Figure 11. Signal strength (CN0) for GPS PRN 32 during Spoofing (starting at minute 6) for Scenario 1 

We next examine the effect on individual satellite signals. Figure 11 shows the C/No of GPS satellite PRN 32 during the same 
time interval as in the previous figure. It also shows the curve fit that is used for estimating the azimuth of null. Recall that 
spoofing starts at minute 6. Due to the test design, the spoofing signal has a 8 dB higher C/No than genuine one (45 dB-Hz vs. 
37 dB-Hz at peak). The null depth of spoofed signal, which is defined as highest to lowest signal strength, is 5 dB shallower 
than genuine one (15 dB vs. 20 dB). This is because that the spoofer on the tower is about 5 degree higher than satellite elevation 
(20 degree vs. 15 degree) and null depth should increase with decreasing elevation angle. 
 

 
Figure 12. True (Almanac) and Estimated (from DPA) Azimuth or DoA of PRN 32 for Scenario 1 

Figure 12 shows the signal direction of arrival estimation result over time for GPS PRN 32. Recall, that the DOA estimate is a 
relative estimate. So to get the absolute azimuth, the WAAS satellite, which is not spoofed, is used (see next paragraph). After 
the 6th minute when spoofer is turned on, the estimated azimuth changes from 90 to 30 degrees. As the azimuth is only estimated 
once every cycle, this change is a step transition. Even without an absolute reference, such a jump would tip us off to the start 
of spoofing. 



 
Figure 13. C/No of WAAS satellite PRN 138 for Scenario 1 

Figure 13 shows the C/No of WAAS satellite PRN 138, which is not spoofed, over the test interval and curve fit used for 
finding the nulls. The C/No and null location are unchanged when spoofer is turned on at the 6th minute.  
 

 
Figure 14. Direction of Arrival Estimate of WAAS satellite PRN 138 for Scenario 1 

Figure 14 shows the signal direction of arrival estimation result over time for WAAS PRN 138. The estimated azimuth is 
unchanged even when spoofer is on. The three WAAS signals PRN 133, 135 and 138 are all not spoofed in the scenarios and 
these are used to determine the absolute heading of antenna. The heading can then be used to calculate absolute azimuth of 
other PRNs. This is only for illustration purposes. In reality, the spoofing detector can be done by relative azimuth.  



 
Figure 15. Sky plot based on broadcast ephemeris for GPS satellites during spoofing (Scenario 1) 

Figure 15 shows the sky plot for GPS satellites with azimuths and elevations derived from the spoofed broadcast ephemeris. 
The spoofer broadcasts the same ephemeris from all available GPS satellite and only changes the pseudorange measurement in 
the receiver. Thus, we are using the true broadcast ephemeris but through the spoofing transmission. 

 
Figure 16. Sky plot for GPS satellites with estimated azimuth from the dual polarization antenna and elevation from ephemeris during 
spoofing transmission (Scenario 1) 

Figure 16 shows the estimated sky plot for GPS satellites from the dual polarization antenna. The azimuth is estimated using 
null location in C/No (along with the absolute reference from WAAS) and elevation is derived by broadcast ephemeris. While 
DPA null steering only finds a relative DOA, it is still useful. Even without having an absolute azimuth reference (as derived 
from WAAS), the DPA still would find that all the satellites are coming from around the same direction which should indicate 
something is amiss. Our dual polarization antenna has DOA ambiguity of 180 degrees in its null azimuth estimation - see 
Equation (3) or Table 1. For illustration purpose, the azimuth from Figure 15 is used to determine whether the azimuth on the 
right or left hand side of sky plot as due to the 180° ambiguity. The red triangle marks the estimated direction of broadcasting 



tower. All PRNs are aligned to a straight line from 45 degree and -135 degree which is quite different from the sky plot in 
Figure 15. This shows how DOA from multiple satellites can be used for spoofing detection. 
 
Of course, the technique is agnostic to what type of spoofing is used. It will work regardless of whether the spoof is of time or 
position or both. Indeed, it will work even if the spoof signal provides the true time and location.  An example of the 
performance under time spoofing is discussed next. 
 
The effect of the spoofing on position is shown in Figure 17 which plots the positioning error over time (39 minutes) starting 
for assessed Scenario 2. The scenario is a “time push”, like the one described in texbat scenario 2 and 3 [11], where time is 
gradually moved from the nominal time, starting from the 8th minute in the figure. The scenario ends at the 38th minute in the 
figure. The positioning results show the difference in position relative to first fix. The first fix was made prior to spoofing and 
is offset from the reference spoof location. The spoofing does cause a small position error as the reference location used for the 
spoofing is 10 m north and 10 m east of our true location. A user exactly at the reference location would only experience time 
spoofing. There are larger variations in height after the spoofer turned is on. This is due to the application of null-steering which 
results in all the spoofed PRNs having nulls at the same time.  This results in 256 second periodicity in the error pattern. For 
example, the height error has peaks in the 6th, 11st, 15th, 19th, 23rd minutes.  
 

 
Figure 17. Positioning error with Dual Polarization Antenna during Spoofing for Scenario 2 
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Figure 18. C/No for all GPS PRNs during Spoofing (starting at minute 6) for Scenario 2 

Figure 18 shows the C/No for all GPS PRNs. In the first 5 minutes when spoofer is off, each genuine signal has a null with 
different depth and location in different time compared to the other satellites. After spoofer is turned on in the 8th minute, all 
the C/No align together by the 15th minute with similar nulls in term of depth and location.  
 

 
Figure 19. Sky plot based on broadcast ephemeris for GPS satellites during spoofing (Scenario 2) 

Figure 19 shows the sky plot for GPS satellites with azimuth and elevation is derived by the broadcast ephemeris. This is 
derived from the spoofing rather than genuine signal. Again, the spoofer transmits the same ephemeris as that available from 
each of the genuine GPS satellite so either source provides the same information. The spoofer only affects the pseudorange 
measurement in the receiver.  
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Figure 20. Sky plot for GPS satellites with estimated azimuth from the dual polarization antenna and elevation from ephemeris during 
spoofing transmission (Scenario 2) 

Figure 20 shows the estimated sky plot for GPS satellites from the dual polarization antenna. The azimuth is estimated by null 
location in C/No and elevation is derived from the broadcast ephemeris (same as Figure 19). Due to our 180 degree azimuth 
ambiguity, for illustration purposes, we use the azimuth from Figure 19 determine the azimuth on the right or left hand side of 
sky plot. Again, the red triangle indicates the direction of broadcasting tower and its rough elevation. The alignment of the 
PRNs, though slightly offset from the true spoof direction, is a strong indication that we are receiving a spoofing signal. 
 
 
Interference Test Results 
 
As discussed in [10], the dual polarization antenna can provide mitigation against interference. However, given its DOA 
capabilities, can the DPA also help locate the interference source? The process of interference mitigation is similar to the phase 
offset search discussed for DOA. But for the DPA direction finding, we needed to track the signal. If the interference 
suppression allows for GNSS signals to poke through and be tracked, then we can find the direction of the interference source. 
As before, the microcontroller steps through each phase offset to create the combined signal. This will result in a null in the 
direction given by Equation (3). If that is the direction of the interference signal, then the interference signal will be suppressed, 
reducing noise. The suppression will perhaps allow the receiver to acquire and track GNSS signals that are also not greatly 
suppressed (i.e. not in the direction of the null) or even enhanced.  Signals about 90° offset in azimuth from the direction of the 
null are in the gain area of the signal combination. 
  



 
Figure 21. C/No for all GPS PRNs during jamming (starting at minute 1 and ending at minute 16) for Scenario 3 

Figure 21 shows the C/No for all GPS satellites or pseudorandom numbers (PRNs) during Scenario 3.  This scenario uses 
jamming and then spoofing as discussed in [6].  It is similar to what was believed to have happened in the Black Sea spoofing 
incident as the true GPS position was lost for a while before a new spoofed position is seen [12][13]. The jammer is on from 
about minute 1 to minute 16 and the resulting C/No of all GPS PRNs are lower by 20 dB-Hz or more. However, there are four 
peaks in this period when the null of gain pattern is steered towards the jammer. The effect of null suppresses the signal power 
of jammer, so the signal to noise ratio (SNR) of GPS satellites generally increases. Note that both the signal strength (S) and 
the noise (N) are a function of the steering of the null azimuth/phase offset. So, from Equation (4), if the null steering does not 
also significantly attenuate the GPS signal, then it may be possible to greatly increase SNR and possibly acquire the satellite. 
Four peaks correspond to four cycles in 15 minutes.  
 

𝑆𝑁𝑅 = 𝑆(𝜓) − 𝑁(𝜓) = 𝑆൫𝑓(𝜑)൯ − 𝑁൫𝑓(𝜑)൯  (4) 

 

 
Figure 22. C/No for GPS PRN 26 during jamming (starting at minute 1 and ending at minute 16) for Scenario 3 
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Figure 22 shows the C/No of GPS satellite PRN 26, which is jammed from minute 1 to minute 16, over test time interval seen 
before.  It also shows the curve fit used to form an estimate of the azimuth. Instead of using the null as it is very wide, the peak 
is used for azimuth determination. PRN 26 is used because it has highest signal-to-noise ratio during the jamming period. 
 

  
Figure 23. Estimated sky plot (DPA for azimuth, ephemeris for elevation) for GPS satellites from the dual polarization antenna during 
jamming test (Scenario 3). The red and blue triangles indicate the actual and estimated azimuth (DPA) of the jammer, respectively. The 
yellow G26 indicates the actual azimuth and elevation of PRN 26 (from ephemeris).  Estimated jammer elevation is not determined and a 
value is chosen to visually separate it from the true jammer location 

Figure 23 presents a sky plot showing the actual (red) and estimated (blue) azimuth of the jammer derived from a priori position 
measurements and the dual polarization antenna, respectively. Also shown is the location of GPS PRN 26 from its ephemeris. 
The estimated azimuth of the jammer is derived from the peak location of C/No as seen in Figure 22. The jammer elevation is 
not estimated and the plotted elevation is chosen to visually separate it from the true jammer location. This only provides a 
relative angle measurement so the direction of WAAS satellites prior to jamming was used as a reference. Notice that GPS 
PRN 26 is aligned approximately 90 degrees from the direction of jammer. Hence it is outside the null and likely in the high 
gain portion of the combined signal. These results show how DOA from the strongest satellite can be used for jammer direction 
finding or localization.  
 
 
CHALLENGES & NEXT STEPS 
 
There are still many challenges to overcome to make the DPA an effective and useful spoof detection method. The 256 second 
scan period is a limitation. We used 256 seconds in the field test to have high fidelity and to assure good direction determination. 
A fraction (half, a quarter or even less) of the dwell time should be adequate, especially for strong spoofing signals. However, 
a quarter of the dwell time still implies 64 second scans. We can also increase the steps between scan angle trading off some 
fidelity for speed. The scan time can also be reduced with architecture changes.  For example, if we can create parallel 
processing chains that scan each quadrant.  We could generate four different combined signals simultaneously if we split the 
RHCP signal through separate four phase shifters and process them through four different monitor receivers. This would further 
reduce the scan time by a factor of four. Overall, it seems reasonable to reduce the scan time by a factor of 16 to 64 using all 
of these techniques together. A 4-16 second scan time seems much more reasonable. The solution is reasonable for applications 
such as aviation as the components used are generally low cost, relative to avionics. This is shown in Figure 24. For automotive 
applications where more intense processing may be available, software processing can allow for parallel searches over many 
phases with the same digitized RHCP and LHCP signal. The tradeoff here is to have more powerful and power-consuming 
processing in place of dedicated hardware such as COTS receivers. We need to work on the optimal selection of these values 
to balance detection fidelity with speed. 
 
Another area of work is to develop robust spoof detection algorithms. This paper show that we can generate good indicators of 
spoofing, there is the further step of using this information to robustly detect spoofing. That means developing algorithms that 



use this information to find spoofing with low probability of false alerts and missed detection. The algorithm can combine both 
the elevation information derived from the null depth with the direction of arrival estimate. Another desirable quality is that 
the performance of the algorithm should be easy to analyze. We are currently developing such analyses and algorithms. 
 
Another challenge is to operating the monitor in aviation environment. A major concern for external equipment on a commercial 
aircraft is susceptibility to electrical discharge due to precipitation static (p-static). These high energy discharges can destroy 
electronics. While much of the hardware on our DPA are analog components that should handle p-static, the monitor receiver 
is not. It can be placed inside the aircraft but that would necessitate an additional cable which is not desirable as it means 
placing another hole in and running another cable through the aircraft body. It also means longer installation times reducing 
revenue generation for the aircraft. The DPA would then not be just another replacement antenna. Hence, another next step is 
to figure out how the DPA can work in the presence of p-static. 
 

 
Figure 24. DPA Architecture for Faster Spoof Detection using additional hardware 

  
CONCLUSIONS 
 
GNSS spoof detection is becoming increasing important due to the significant of GNSS in safety and economically critical 
applications. The dual polarization antenna can be a potentially powerful and effective part of a spoof detection solution. Its 
design, as demonstrated by the Stanford prototype, has the form factor of a GNSS patch antenna making it more suitable size-
wise than array antenna technologies. It is also ITAR compliant and can provide useful benefits including interference 
mitigation and even static heading using direction of arrival.  
 
This paper examines the ability of the DPA concept to determine direction of arrival, particularly for GNSS spoof detection. It 
discusses the hardware and software processing aspects of the DPA-based direction of arrival determination. Then we 
demonstrate its performance in field tests with GNSS signals and with spoofing/jamming scenarios. It is able to find the DOA 
of satellites, spoofers and even jammers under the right conditions. 
 
It is important to remember that the DPA should not be a stand-alone solution. Complementary spoof detection techniques such 
as those using redundancy checking, C/No and automatic gain control (AGC) are relatively easy to implement and the 
combination can make the GNSS receiver very difficult to attack. This is because each detection method examines on a specific 
and different signature left by a spoofing attack. Different spoofing attacks leave different types and levels of residual 
signatures. So having multiple techniques can help more comprehensively detect and more positively confirm the presence of 
spoofing. Multiple forms of detection is beneficial as that they can be layered to build an overall detection system that is 
sensitive to many attacks while not triggering during normal conditions. The DPA can form an important part of this overall 
system. 
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