Coherent Optical Systems

Οπτικά Δίκτυα Επικοινωνιών

Photonics Communications Research Laboratory

Digital Modulation

- Digital Modulation is the mapping of a digital (usually binary) sequence into a set of analog signals.
- A block of k bits is mapped into one of $M = 2^k$ signals $s_m(t)$ where $1 \le m \le 2^k$. M is the modulation order.
- In this way it is possible to transmit k bits of information every T_s sec and as a result to increase the transmitted bit rate.

Digital Modulation

Different modulation schemes ($s_m(t)$) can be used:

• PAM \rightarrow Pulse Amplitude Modulation

■ PSK → Phase Shift Keying

■ QAM \rightarrow Quadrature Amplitude Modulation

PAM: Pulse Amplitude Modulation

$$s_m(t) = A_m \cos(2\pi f_c t)$$
$$A_m = 0, 1, \dots (M - 1)$$

M = 2: On Off Keying (OOK)

PSK: Phase Shift Keying

$$s_{m}(t) = g(t) \cos\left(2\pi f_{c}t + \frac{2\pi}{M}(m-1)\right)$$

0

QAM: Quadrature Amplitude Modulation

$$s_m(t) = I_m g(t) \cos(2\pi f_c t) - \cdots$$
$$Q_m g(t) \sin(2\pi f_c t)$$

$$I_m, Q_m = \pm 1, \pm 3, \dots, (\pm M - 1)$$

QAM alternative representation

$$s_m(t) = Re[r_m(t) \exp(j\varphi_m(t))]$$
$$r_m(t) = g(t)\sqrt{I_m^2 + Q_m^2}$$
$$\varphi_m(t) = \tan^{-1}\left(\frac{Q_m}{I_m}\right)$$

Quadrature Amplitude Modulation (QAM)

- Quadrature Amplitude Modulation (QAM) is the most common advanced modulation scheme
- Depending on the multiplicity of the digital signals, m, the resulting QAM will have 2^m possible states

bits/symbol	QAM
m=2	QPSK
m=4	16 QAM
m=6	64 QAM
m=8	256 QAM

Optical Transmission Channel

Dual Polarization 16-QAM Coherent Transmission Link

Phase Modulation

- Phase modulation depends on the wavelength λ, electrode length (interaction length) I_{el}, and the change of the effective refractive index Δn_{eff} .
- Considering only the Pockels effect, the change of the refractive index can be assumed to be linear w.r.t. the applied external voltage u(t):

$$\varphi_{PM}(t) = \frac{2\pi}{\lambda} \cdot \Delta n_{eff}(t) \cdot l_{el} \sim u(t)$$

• The most important specification given is V_{π} : The voltage required to produce a phase shift of π .

Transfer Function:

$$E_{out}(t) = E_{in}(t) \cdot e^{j\varphi_{PM}(t)} = E_{in}(t) \cdot e^{j\frac{u(t)}{V_{\pi}}\pi}$$

- Two phase modulators can be placed in parallel using an interferometric structure.
- The incoming light is split into two branches, different phase shifts applies to each path, and then recombined.
- The output is a result of interference, ranging from constructive (the phase of the light in each branch is the same) to destructive (the phase in each branch differs by *π*).

Transfer Function:

$$\frac{E_{out}(t)}{E_{in}(t)} = \frac{1}{2} \cdot \left(e^{j\varphi_1(t)} + e^{j\varphi_2(t)} \right)$$

where: $\varphi_1(t) = \frac{u_1(t)}{V_{\pi_1}} \pi, \ \varphi_2(t) = \frac{u_2(t)}{V_{\pi_2}} \pi$

Push-Push Operation

- u1(t) = u2(t)
- Pure phase modulation
- Push-Pull Operation
 - □ *u*1(*t*) = -*u*2(*t*)
 - Pure amplitude modulation

Transfer Function:

$$\frac{E_{out}(t)}{E_{in}(t)} = \frac{1}{2} \cdot \left(e^{j\varphi_1(t)} + e^{j\varphi_2(t)} \right)$$

where: $\varphi_1(t) = \frac{u_1(t)}{V_{\pi_1}} \pi, \ \varphi_2(t) = \frac{u_2(t)}{V_{\pi_2}} \pi$

When operating in Push-Pull with u1(t) = -u2(t) = u(t)/2, the field (E) and power (P) transfer functions are (the power T.F. is obtained by squaring the field T.F.):

• Set bias voltage at **quadrature point** ($V_{\text{bias}} = -V_{\pi}/2$) and modulate with an input voltage swing of V_{π} peak-to-peak.

→ Pure amplitude modulation (**On-Off Keying**)

- Set bias voltage at **minimum transmission point** $(V_{\text{bias}} = -V_{\pi})$ and modulate with an input voltage swing of $2 \cdot V_{\pi}$ peak-to-peak.
 - \rightarrow In addition to amplitude modulation, a phase skip of π occurs every time the input, u(t), crosses the minimum transmission point (example: **BPSK**).

Optical IQ Modulator

Dual-Nested IQ (In-Phase, Quadrature) Mach-Zehnder Modulator (with each MZM biased at minimum transmission point).

Optical IQ Modulator

Dual-Nested IQ (In-Phase, Quadrature) Mach-Zehnder Modulator (with each MZM biased at minimum transmission point).

$$\frac{E_{out}(t)}{E_{in}(t)} = \frac{1}{2} \cos\left(\frac{\Delta\varphi_I(t)}{2}\right) + j \frac{1}{2} \cos\left(\frac{\Delta\varphi_Q(t)}{2}\right)$$
$$\Delta\varphi_I(t) = \frac{u_I(t)}{V_{\pi}}\pi, \ \Delta\varphi_Q(t) = \frac{u_Q(t)}{V_{\pi}}\pi.$$

Optical IQ Modulator

<u>Example</u>: If we apply 4-level Pulse Amplitude Modulation (4-PAM) signals on each MZM (*u_i* and *u_q*), the resulting output of the IQ modulator is 16-QAM.

Dual Polarization Transmitter

- A Polarization Beam Splitter (PBS) is used to split the light from the Tx laser into two orthogonal polarizations, each of which is modulated by an IQ-MZM.
- A Polarization Beam Combiner (PBC) recombines the two signals at the output.

Direct Detection

In intensity modulated formats the digital information is recovered through direct detection at the optical receiver, through a photodiode that converts the power of the optical carrier into electrical current. The photocurrent at the output of the photodiode is proportional to the square of the signal amplitude:

This results in loss of phase information, and is therefore unsuitable for advanced modulation formats that use the phase dimension to encode data information.

IQ Demodulation

- An IQ demodulator mixes the received modulated carrier with a Continuous Wave (CW) Local Oscillator (LO), and a 90-degree shifted version of the LO i.e. with cos(2πf_{LO}) and -sin(2πf_{LO})
- If f_{LO} = f_c, the signal is downconverted from the carrier frequency down to baseband, and the inphase and quadrature components can be recovered.
- Its functionality is to essentially obtain the complex envelope (and therefore, the data) of a modulated carrier.

I/Q Demodulator

90 degree hybrid

□ In optical communications, the IQ demodulator is called the **90 degree hybrid**. It is used to beat (mix) the signal (E_s) with the LO (E_{lo}), as well as the 90 degree shifted version of the LO.

90 degree hybrid

In optical communications, the IQ demodulator is called the **90 degree hybrid**. It is used to beat (mix) the signal (*E_s*) with the LO (*E_{lo}*), as well as the 90 degree shifted version of the LO.

Coherent Detection

After detection of the outputs in balanced photodiodes the in-phase and quadrature components of the data signal (referenced to the CW local oscillator) are recovered.

Coherent Detection

After detection of the outputs in balanced photodiodes the in-phase and quadrature components of the data signal (referenced to the CW local oscillator) are recovered.

Polarization Diversity Coherent Receiver

Two coherent receivers are employed to detect the two orthogonal polarizations of the received signal (the polarizations are separated using a Polarization Beam Splitter).

$$I_{1}(t) - I_{2}(t) \propto 2R \sqrt{P_{s}^{h} P_{lo}} \cdot a(t) \cdot \cos[\Delta \omega t + \varphi_{n}(t) + \varphi_{0} + \varphi(t)]$$
$$Q_{1}(t) - Q_{2}(t) \propto 2R \sqrt{P_{s}^{h} P_{lo}} \cdot a(t) \cdot \sin[\Delta \omega t + \varphi_{n}(t) + \varphi_{0} + \varphi(t)]$$

$$I_3(t) - I_4(t) \propto 2R\sqrt{P_s^{\nu}P_{lo}} \cdot a(t) \cdot \cos[\Delta\omega t + \varphi_n(t) + \varphi_0 + \varphi(t)]$$

$$Q_3(t) - Q_4(t) \propto 2R \sqrt{P_s^{\nu} P_{lo}} \cdot a(t) \cdot \sin[\Delta \omega t + \varphi_n(t) + \varphi_0 + \varphi(t)]$$

Carrier Frequency Offset and Phase Noise

- In coherent optical systems, intradyne reception is employed: The Tx and LO lasers are not phase locked with each other (c.f. with homodyne reception, where the Tx and LO oscillators are locked to each other, usually with a Phase-Locked Loop circuit).
- Thus, they can have slightly different wavelengths, and due to the laser linewidth, uncorrelated random phase noise.
- The resulting baseband constellations after the coherent receiver exhibit:
 - A constant (or slowly varying) rotation, proportional to the frequency offset of the two lasers.
 - **•** Rapidly varying, small rotations due to the **combined laser linewidths**.

Optical Fiber Transmission Impairments

Chromatic (Intramodal) Dispersion

- The refractive index, n(ω), is frequency dependent. Since the group velocity is v_g = c/n(ω), it depends on the refractive index, and therefore is also frequency-dependent.
- Lasers are not ideal monochromatic sources. Each information-carrying pulse contains a number of spectral components that travel at different group velocities through the fiber.
- The amount of the dispersion is proportional to the spectral width of the optical source.

- The digital pulses provide envelopes for the spectral content of the laser source.
- For a Tx containing a range of wavelengths Δλ, each spectral component propagates with different velocity through fiber length L, arriving at different times at the Rx and causing pulse broadening of Δt_q ps:

 $\Delta t_g = D \cdot L \cdot \Delta \lambda$

D is the chromatic dispersion coefficient (ps/nm-km)

Optical Fiber Transmission Impairments

Polarization Mode Dispersion (PMD)

- Polarization mode dispersion (PMD) appears due to variations in the material and the shape of the core along the fiber length. Deviations give rise to the birefringence effect and the creation of two distinct orthogonal polarization modes (principal states of polarization, PSP), causing singlemode fibers to effectively become bimodal.
- The two polarizations see different refractive indices, and therefore travel at different speeds, causing a differential group delay, DGD between the slow and fast axes.

Optical Fiber Transmission Impairments

Polarization Mode Dispersion (PMD)

- The two polarization modes exchange the energy through the mode-coupling process during fiber propagation, caused by the external perturbation due to bending, twisting, lateral stress, and temperature variations.
- The degree of birefringence ($B = |n_x n_y|$) changes randomly along the fiber, and we have a stochastic rotation of the polarization states and a stochastic distribution of energy among them.
- Thus PMD causes stochastic pulse spreading.
- Light polarization is analyzed using complex representation and the Jones matrix, which connects inputs and outputs carried over principal polarization states:

$$\begin{bmatrix} E_{x,out} \\ E_{y,out} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \cdot \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix} = \begin{bmatrix} \sqrt{\zeta} e^{\Delta \tau/2} & -\sqrt{1-\zeta} \\ \sqrt{1-\zeta} & \sqrt{\zeta} e^{-j\Delta \tau/2} \end{bmatrix} \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix}$$

Why Use DSP?

- We use lasers as oscillators for the Tx and the Local Oscillator in the Rx, with intradyne detection (Tx and Rx are not phase locked).
- Unlike typical RF oscillators, it is not easy to perfectly lock two lasers in frequency and phase (e.g. with an electro-optical PLL), which is needed to demodulate the signal.
- Digital implementation of the phase locking is possible (e.g. a digital PLL or other techniques), but the baudrates (10-32 GBaud) at which optical systems work require huge processing power in the digital electronics.
- Thus, even though coherent intradyne detection is an old concept (1992 paper by Derr), it has been impractical until now.

Coherent Optical QPSK Intradyne System: Concept and Digital Receiver Realization

Frowin Derr

Abstract—One major advantage of a coherent optical transmission system in relation to a direct system is the frequency selectivity which makes it suitable to coherent optical multichannel systems, e.g., for HDTV-broadcasting. In order to keep the subscriber front-end cheap, optical realization expense should be low and be replaced as far as possible by an electrical realization. Moreover, it should be aimed at a digitalization of the receiver functions to make an integration possible.

1290

The paper presents a receiver concept based on optical quaterary phase shift keying (QPSK) and a digital realization of synchronous demodulation including phase synchronization. To keep the signal processing bandwidth low a phase diversity receiver—in the following called an intradyne receiver—with an orthogonal electrical demodulation is proposed. Basic principles of the synchronous orthogonal and digital demodulation are described. After the evaluation of the shot noise limit some aspects of the digital phase-locked loop are presented. In a realized 100–Mb/s transmission system a receiver sensitivity of -5L6 dBm has been measured. The loss in relation to the shot noise limit of -66.3 dBm (18 photons/bit) is mostly due to the low local laser power and the influence of the receiver input noise.

I. INTRODUCTION

N robust and integratable realization will be one of the key features of future subscriber front-ends for use in coherent optical multi-channel systems [1]–[3]. The expense

TABLE 1 Coherent Optical Transmission Systems (IF = Intermediate Frequency; B = Bandwidth Of Baseband Signal)

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 10, NO. 9, SEPTEMBER 1992

seems to fit better in the usual scheme of homodyne and heterodyne systems (see Table I) as it implies the fact that the intermediate frequency (IF) lies within the bandwidth B of the baseband signal. According to Table I the respective IFspectrum consists of two overlapping spectra. The intermediate frequency may be any frequency—even zero—and should be small in relation to B to keep the processing bandwidth low. It is important to path this in batterodyne and intradyne receivers

Why Use DSP?

- Recent developments in high-speed ADCs and ASICs have enabled the use of real-time DSP algorithms to demodulate Gbit/s coherent optical signals.
- By DSP processing it is possible to compensate for the "incoherence" (frequency offset and phase noise) of the Tx and LO lasers.
- Advanced RF/wireless comms concepts finally applicable for ultra-high speed optical comms.
- State-of-the-art: 100 Gbits/s optical transceivers are a commercial reality and deployed by major telecom operators today (DP-QPSK at 25 Gbaud symbol rate).

Why Use DSP?

DSP can also be used to compensate for link impairments:

- Chromatic Dispersion (CD)
- Fiber nonlinearities
- Bandwidth limitations
- Higher rates and longer transmission distances
- Universal transceivers using the same hardware in all parts of the network; rate and format is determined by the software.
- More transparent and upgradable networks
- Lower cost

The received signals from the photodiodes of the coherent receiver need to first be sampled.

- According to Nyquist, we need to sample at *at least* twice the symbol rate of the signal. E.g. for 28 GBaud we need at least 56 GSamples/s (**2 samples/symbol**).
- **N.B.:** The sampling rate (Rx) clock is **asynchronous** to the Tx clock. We are *not* sampling at the optimum pulse height, and the two clocks are *not* phase locked.

Chromatic Dispersion is a linear phenomenon, and deterministic (a function of the fiber characteristics, and length).

$$\Delta t_g = D \cdot L \cdot \Delta \lambda$$

The fiber transfer function (considering only C.D.) is an all-pass filter (magnitude unchanged, while the phase is a function of ω).

Taking the inverse Fourier Transform of the frequency domain transfer function yields the time-domain transfer function.

$$G(l,\omega) = \exp(-jD\frac{\lambda^2}{2\pi c}\frac{\omega^2}{2}l)$$

$$g(z,t) = \sqrt{\frac{c}{jD\lambda^2 z}} \exp\left(j\frac{\pi c}{D\lambda^2 z}t^2\right)$$

This can then be easily approximated by a complex-coefficient FIR filter operating with 2 samples/symbol that reverses the effect of chromatic dispersion (needs a negative sign in the exp() expression above).

- After CD compensation (i.e. pulse dispersion is reversed), it is possible to acquire the clock of the data stream.
- The Tx and Rx symbol clocks are not synchronized. Since the ADC clock starts sampling at an arbitrary point in time, the samples it will obtain do not coincide with the optimum sampling point on the received waveform.
- The symbol clock recovery algorithm finds the symbol clock frequency, selects the optimum sampling point and resamples the data accordingly (normally outputs 2 samples/symbol).

Illustrating mis-timed ADC sampling (1 sample/symbol)

- The Tx and Rx symbol clocks are not synchronized. Since the ADC clock starts sampling at an arbitrary point in time, the samples it will obtain do not coincide with the optimum sampling point on the received waveform.
- The symbol clock recovery algorithm finds the symbol clock frequency, selects the optimum sampling point and resamples the data accordingly (normally outputs 2 samples/symbol).

After sampling time correction, we obtain samples at the optimum points (the middle of the pulses)

After acquiring the right symbol clock for each polarization, we have two signals (1 on each polarization), but with mixed data due to the rotated state of polarization (see PMD slide).

$$\begin{bmatrix} E_{x,out} \\ E_{y,out} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \cdot \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix} = \begin{bmatrix} \sqrt{\zeta} e^{j\Delta\tau/2} & -\sqrt{1-\zeta} \\ \sqrt{1-\zeta} & \sqrt{\zeta} e^{-j\Delta\tau/2} \end{bmatrix} \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix}$$

We need to estimate and reverse the effect of the Jones matrix.

$$\begin{bmatrix} E_{x,out} \\ E_{y,out} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \cdot \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix} = \begin{bmatrix} \sqrt{\zeta} e^{j\Delta\tau/2} & -\sqrt{1-\zeta} \\ \sqrt{1-\zeta} & \sqrt{\zeta} e^{-j\Delta\tau/2} \end{bmatrix} \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix}$$

- We achieve this using a so-called FIR butterfly structure.
- Adaptive equalization is used (the Constant Modulus Algorithm is common) to find the optimum FIR taps that will find invert the Jones matrix for our channel.
- Because PMD is stochastic, the FIR filter taps are constantly being updated with every received symbol, to mitigate the effects of dispersion.

$$\begin{bmatrix} E_{x,out} \\ E_{y,out} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \cdot \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix} = \begin{bmatrix} \sqrt{\zeta} e^{j\Delta\tau/2} & -\sqrt{1-\zeta} \\ \sqrt{1-\zeta} & \sqrt{\zeta} e^{-j\Delta\tau/2} \end{bmatrix} \begin{bmatrix} E_{x,in} \\ E_{y,in} \end{bmatrix}$$

The result: Two signals which are separated (but are rotating due to carrier frequency offset and phase noise!).

- Frequency offset estimation and carrier phase recovery rely on the same principle: The idea is to estimate the rate of rotation of the constellation diagram, and then remove it.
- For frequency offset, the rotation we are trying to estimate is (more or less) constant.
- For phase noise, it is more rapid and needs to be tracked on shorter time scales.

 $F_{offset} = \Delta \varphi / (2\pi T_s)$

- **•** For QPSK, the most common approach for carrier recovery is the **Viterbi-Viterbi 4th power algorithm**.
- It essentially removes the modulation from the signal, leaving us with the carrier alone (a single, rotating point in the IQ plane).
- It is then straightforward to remove this rotation.

 $F_{offset} = \Delta \varphi / (2\pi T_s)$

- **•** For QPSK, the most common approach for carrier recovery is the Viterbi-Viterbi 4th power algorithm.
- It essentially removes the modulation from the signal, leaving us with the carrier alone (a single, rotating point in the IQ plane).
- It is then straightforward to remove this rotation.

Finally, we can slice the received constellations using appropriate thresholds, and detect the symbols (and bits) transmitted through the fiber.

