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Abstract—We propose a novel technique to calculate a quasi-
optimal aperture excitation for finite size, ultrawideband arrays.
The approach is based on using the characteristic modes of the
array’s mutual impedance matrix. Unlike standard excitation ta-
pers, primarily used for beam shaping, the proposed character-
istic mode taper provides for wideband matching of all array el-
ements, including those at the edges of the finite array. As such,
it maximizes aperture efficiency and is particularly attractive for
finite size, tightly coupled antenna arrays. Our method solely re-
lies on the N X N mutual impedance matrix of the array which
is precomputed (or measured). We demonstrate this novel excita-
tion method for an 8 X 8 array of tightly coupled dipole elements.
When compared to uniform excitation, the characteristic mode ex-
citation achieves very low V. SW Rs for all elements over a large
bandwidth. Improvements in realized gain are also demonstrated.
Due to its simplicity, this new method can be incorporated into a
design process to optimize element and array geometries, leading
to further performance improvements.

Index Terms—Characteristic modes, current sheet array, finite
arrays, impedance matching, phased arrays, tightly coupled ar-
rays, ultrawideband arrays.

I. INTRODUCTION

EW generation communication devices and imaging
N radars require larger bandwidths to transmit high-data-
rates and obtain high quality images. Very often, these systems
must also operate at high power. These requirements imply
antennas that are ultrawideband, well matched, and of high
gain. Of equal importance is that the antenna size and thick-
ness remain relatively small compared to the wavelength for
conformal installations. To this end, arrays of tightly coupled
dipoles ([1], [2]) were recently shown to provide very wide
impedance bandwidth (>5:1) even when installed close to a
metallic surface. For this reason, tightly coupled arrays are very
attractive for application in the aforementioned systems.

An example of a tightly coupled array is the overlapping
dipole array shown in Fig. 1. This simple topology achieves a
continuous ~5:1 bandwidth coverage, even though its overall
thickness is only A/10 at the lowest operational frequency. As
depicted, the array consists of dipole elements coupled with
their nearest neighbors at their tips, via a capacitive overlap-
ping section. This capacitive coupling counteracts the inductive
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Fig. 1. (a) 8 x 8 element array of overlapping dipoles above a ground plane.
(b) A detail from its unit cell.

effects of the ground plane, realizing wideband operation [3].
In an infinite array setting, each element of this topology (i.e.,
unit cell) has a very simple circuit model that greatly facilitates
array design [1].

Although the infinite array approach provides for a compu-
tationally fast analysis (since only a single unit cell is mod-
eled using periodic boundary conditions), it does not account
for finite array edge effects. Specifically, for finite size arrays,
edge and corner diffraction effects render the outer periphery el-
ements mismatched. As a result, the impedance of the edge and
corner elements within a finite size array, usually differs signifi-
cantly from the intended design (infinite array). Thus, the finite
array bandwidth is degraded and several costly redesign steps
are required to achieve the intended operation.

A technique to alleviate this is to simply not excite (i.e. resis-
tively terminate as in [2], [4]-[6]) the periphery elements and
excite uniformly only the central portion of the array. This ap-
proach obviously reduces aperture efficiency significantly. An-
other approach to suppress edge effects is to redesign the ele-
ments close to the array edges. However, for medium to large
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size arrays, this approach is very costly as it requires large com-
putational resources. That is, achieving impedance matching for
all elements in a finite array and over a broad frequency range
is not a trivial task.

A straightforward approach to achieve good active-
impedance matching for all array elements is to employ
different excitation for each element. However, without a clear
guidance on how to choose each element’s excitation, this
method is impractical.

In this paper, we present a method to design the excitation
taper of finite size tightly coupled arrays for efficient matching
of all array elements. The proposed method is based on the char-
acteristic modes (CMs) associated with the mutual impedance
matrix of the finite array. It is shown that the characteristic mode
excitation leads to perfect impedance matching for all array
elements, albeit only at a single frequency. Nonetheless, the
impedance behavior over an extended frequency band is still fa-
vorable. Thus, the CM excitation can be considered as a quasi-
optimal solution to the /N-port wideband matching problem.
Further optimizations can, of course, be carried out starting with
the CM taper to improve impedance bandwidth.

The theory of characteristic modes was introduced by Gar-
bacz [7], [8] and Harrington [9]-[13] and the reader is referred
to any one of these papers for its basic principles. One of the im-
portant features of the CM technique is that it can incorporate
the platform effects on which the array is mounted on.

Different array excitation tapers have been previously de-
vised for side-lobe/beamwidth control [14] and for improving
the directivity of narrowband [15], [16] and broadband arrays
[17]. Also, characteristic modes and the similar Inagaki modes
[18] have previously been applied to synthesize array patterns
[19], [20]. Designs of reconfigurable antennas based on CMs
were reported [21] as well. However, this is the first time that the
CM theory is employed to design the excitation of broadband ar-
rays for near-optimal impedance matching and improved gain.

The paper is organized as follows: Section II reviews the key
aspects of the CM theory and its adoption to finite array exci-
tation design. Section III illustrates the proposed array excita-
tion technique applied to an 8 x 8 array of overlapping dipoles.
Section IV provides numerical results for the realized gain and
radiation patterns of the dipole array when excited with the
CM taper. Comparison to the uniformly excited aperture is also
given to assess the CM-based design.

II. CHARACTERISTIC MODE EXCITATION OF FINITE
TIGHTLY COUPLED ARRAYS
A. A Brief Review of Characteristic Mode Theory

As already noted, the theory of CMs is presented in [7]-[13],
[22] for conductive and dielectric bodies. For perfect electri-
cally conducting (PEC) bodies the CMs correspond to fields as-
sociated with the N eigenvectors (or eigencurrents) {7} of the
generalized eigenvalue problem

[XHI} = A[R{I} (1
where

(2] = [R] + 51X]; 2)
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is the NV x N moment method impedance matrix of the structure
at frequency f and X are the usual eigenvalues. We remark, that
throughout the paper, vector quantities are denoted by {-}, and
matrices by [].

Obviously, from (2), [R] and [X] correspond to the real and
imaginary parts of the impedance matrix, respectively. As the
impedance matrix [Z] is complex symmetric, both [R] and [X]
are also symmetric and real matrices. As a consequence, the
eigenvalues and eigenvectors of (1) are all real. Also, [R] is
positive definite for open-surfaces.

When an eigenvalue A, is near zero at a certain frequency f,
the CM {I}.} is said to be at resonance, implying [X]{I}} =~ 0.
The fact that [X]{I} = 0 for a CM close to resonance is key
to the proposed CM aperture excitation. However, before we go
into details, the following property of the CMs is noteworthy;
namely, the eigencurrents {7} obey the generalized orthogo-
nality relationship

I* [R)I,, = b6pun. (3)

Here, the asterisk denotes complex conjugate, the tilde denotes
transpose, and d.,,,, is Kronecker’s delta. This property is used
later on to numerically distinguish modes from each other.

As mentioned in [22], characteristic modes can also be de-
fined in terms of an N-port network using the N x N mu-
tual impedance matrix [Zs]. The CMs of the network can be
found from (1) by just replacing [Z] with [Zg]. For our antenna
study, the /N-port network is simply comprised of the NV ele-
ments of the tightly coupled array. Below, we illustrate how the
CM theory is applied to calculate the excitation taper for finite
size wideband arrays, resulting in a minimum reflection at all
ports.

B. Characteristic Mode Based Excitation of Finite Arrays

As noted above, the CMs for a general /N -port network are
simply the eigenvectors of the mutual impedance matrix. For a
finite array of V elements as the one shown in Fig. 2, the N -port
impedance matrix [Zs] can be used in (1) to extract { I }. Since
[Zs] is symmetric with [Rg] being positive definite, then {/;}
are real. Further, when the eigenmodes {/;} corresponding to
Ar = 0 are used to excite the array, the induced port voltages
{V3} are also real and in phase with the excitation. That is

Vit =[Zs]{Li}

(Rs[{Ir} + j[Xs]{Ix}
[

[

Rs|{1i} + jAn[Res]{1}
Rs|{Ix}. )

From (4) the active impedance {Z,} for the array elements
can then be expressed as

{Z.} = {Ve} Ik} — [Rsl{Ix}. /{11 }- (5)

Here, “./” denotes element-wise division between the two vec-
tors. We also note that since both { V4, } and { I}, } are real valued,
the resulting active port impedances are also real. Consequently,
all array ports can now be matched simultaneously, provided
each port is fed by a transmission line having a characteristic
impedance equal to the active port impedance.

~
~
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Although the above procedure leads to optimal current ex-
citation, it is more appropriate to calculate the incident power
excitation taper as the S-parameters are more appropriate for
evaluating matching performance. Before we proceed to do so,
we must first address the following subtleties.

So far, CMs were calculated and used at a single frequency.
However, for arrays, we are interested in wideband matching.
But as the eigenvalues are frequency dependent, purely resistive
active impedance may not be achieved over a wide bandwidth.
Thus, the frequency behavior of the CMs needs be assessed prior
to using the CM method as guidance for feed excitations.

With the above concerns in mind, we can proceed to introduce
the mode significance parameter cv [9]

1
o= .
1+ |A

Q)

This simple expression maps the range of CM eigenvalues A €
(0, 4+00) to the interval (0, 1), making it convenient for plotting.
It will be later demonstrated that the range of frequencies for
which 0.6 < « < 1 provides for an empirical way to estimate
the array bandwidth. Below we illustrate the relevance of the
modal significance parameter .

Consider a coupled dipole array of size D x D above a ground
plane as in Fig. 2(a). A typical plot of the mode significance «
vs. frequency for such an array is given in Fig. 2(b), for the first
5 dominant modes. As seen, each CM ceither resonates around
D = A/2 or D = A or both. Indeed, ordinary resonances occur
when the linear aperture size D is multiples of a half-wave-
length. The corresponding current distributions on the array at
resonance are also illustrated in Fig. 2(a), using the same color
and line style.

We observe that among the 5 CMs shown in Fig. 2(b), mode
1 (solid curve) is observed to exhibit the largest frequency
span, where o« > 0.6. Hence, the eigencurrent corresponding
to mode 1 is a good choice for guiding aperture excitation.
From Fig. 2(a)), we see that mode 1 has sinusoidal current
distributions along the dipole lengths and almost uniform in the
transverse direction.

The corresponding radiation patterns of modes 1 to 5 are
simply found by the 2D Fourier Transform of the mode currents
[23]. However, as the finite ground plane affects radiation, the
actual pattern must be computed after the final excitation is cal-
culated. Nonetheless, the CM radiation pattern (see Fig. 2(c)),
is an other criterion for selecting among the different CMs. In-
deed, from Fig. 2(c), we observe that mode 1 is associated with
a broadside radiation pattern. In contrast, modes 3—5 give end-
fire patterns. Also, mode 2 gives a more directive pattern than
mode 1. Thus, it terms of bandwidth and pattern mode 1 is the
best choice to guide the array excitation.

The next step in the procedure is to calculate the excitation
coefficients a, for the incident power waves, and the input line
impedances Z,, for each array element. As summarized below,
a; can be readily found using the standard definitions of the
S-parameters [24]. Namely we have

[Z0] =% {V1} = {a} + {b}, @)
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Fig. 2. (a) Tightly coupled dipole array over a ground plane and associated
mode current distributions at the resonance frequencies. (b) Typical modal sig-
nificance plots for the array in Fig. 2(a); modes resonate approximately at the
frequencies where aperture size D is multiples of half-wavelengths. (c) Radia-
tion patterns corresponding to modes 1 to 5 at ¢ = 0°, 90° and & = 90° cuts
(see Fig. 1 for axes).

and

[Zo]* {11} = {a} — {B}, ®)
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where {a} and {b} contain the coefficients «; and b; for the inci-
dent and reflected waves, respectively, at the it element. Also,
[Z0] is a diagonal matrix containing the characteristic imped-
ances of the feeding lines, {11} is the current associated with
mode 1 at the port location, and {V; } is calculated from (4). By
adding (7) and (8) we can obtain the CM excitation coefficients,
viz.

{a} = 0.5[Zo] **{WVi} +0.5[Z0]" {11 }. )
In addition, the entries of the diagonal matrix [Z] are found
from

[Zo] = {Vi}. AT} (10)

where, as before, “./”” denotes element-wise division between
the two vectors. These coefficients and line impedances form the
excitation taper that will be used to feed the array elements. Of
course, the above distribution is computed at a single frequency
(CM resonance frequency) within the operational bandwidth.
We will see later that the optimal choice of that frequency de-
pends on the final performance of the array when the computed
excitation taper is applied.

In general, the wave excitations a,; are complex. In our real-
ization though, we choose |{}|. Nevertheless, this choice does
not affect matching significantly since {¢} and [Z;] are com-
puted for CMs close to resonance. Indeed, as was shown in (4),
at resonance {V'} and {I} are real, as well as [Z;] and hence
{a@}. The computed coefficients |{a}| and line impedances [ Zg]
are used as constant for all frequencies.

The reflected wave coefficients {b} can be computed using
the N -port S-parameter matrix [Sg] of the array found from

[Ss] = [Zo] "* ([Zs] — [Z0]) ([Zs] +

Subsequently, the magnitude of the active reflection coefficient
I', and the active V.SW R at each port can readily be computed
via

[Zo]) " 1Z6]*5. (11)

{o} =1Ss] {a}l, (12)
{3 = {6}/ Rabll. (13)
{(VSWER} = (1+[{T})./ (1 = {T})- (14)

Given {a} and {b}, we can also evaluate the mismatch effi-
ciency of the system, e,,;s, from

12 ]/42
Z|(LL| Z|)L| 100%'
2 laif?

Below, we present an example of the excitation procedure out-
lined above. Specifically, an 8 x 8 element array of coupled
dipoles is employed. This array operates in the 200-600 MHz
band and is placed 6” above a ground plane.

€mis =

(15)

III. FINITE ARRAY OF OVERLAPPING DIPOLES
OVER A GROUND PLANE

To illustrate the CM excitation method for UWB arrays, an 8
x 8 array of overlapping dipoles, shown in Fig. 1, is considered.
The overall size of the planar array is 2’ x 2’ and is placed 6”
above a 2’ x 2’ ground plane.
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Frequency (MHz)
Fig. 3. Mode significance plot for the array depicted in Fig. 1(a).

i

+180°

(®)

Fig. 4. (a)Current distribution of mode 1 at 511 MHz (white refers to strongest
and dark to lowest values); element numbering is shown in Fig. 1. (b) Mode 1
radiation pattern at @ = 0°, 90° and ¢ = 90° cuts (see Fig. 1 for axes).

As first step to design the excitation, the entire array was an-
alyzed using HFSS ver.12. The 64 x 64 mutual impedance ma-
trix [Zs] of the array was obtained at a discrete set of frequen-
cies in the 200-600 MHz range. Subsequently, the eigenvalue
problem (1) was solved to obtain modal significance parameter
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Fig. 5. (left to right) Active V.SW R for all array elements, excitation coefficients, line impedances, and mismatch efficiency. (a) Excitation taper calculated
based on current distribution of mode 1 at 511 MHz. (b) Uniform excitation. (c) Excitation taper calculated based on current distribution of mode 1 at 343.5 MHz

(element numbering is shown in Fig. 1).

a. The latter is plotted in Fig. 3. As highlighted in Fig. 3, mode
1 becomes significant (@ > 0.6) above 325 MHz and resonates
at 511 MHz. The current distribution and radiation patterns cor-
responding to this mode are shown in Fig. 4. It is clear that this
mode is an excellent choice to guide the feed distribution for
broadband operation.

Using the CM excitation process described above, we pro-
ceeded to calculate the excitation coefficients |a|, characteristic
impedances 7 of feed lines, active V. SW IR, and mismatch effi-
ciency for each individual elements. Of particular interest is the
active VSW IR at each array element, depicted in the leftmost
column of Fig. 5(a). When the current associated with mode
1 at 511 MHz is used as the array’s excitation taper, all array
elements become matched at that frequency. This is clear from
Fig. 5(a). We also note that the efficiency drops at lower frequen-
cies. This was to be expected as the impedance mismatch in-
creases significantly as the aperture becomes smaller. For com-
parison, we also present the corresponding performance for a
uniformly aperture excitation {a} = {1}, with Z; = 200
for all elements. As seen, all array elements exhibit significant
mismatches across the band. This should be contrasted with the
original infinite array V.SW I? performance which is also given

iy
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co-pol, uniform
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400
Frequency (MHz)
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Fig. 6. Realized gain of the array shown in Fig. 1(a) for the excitations shown
in Fig. 5(c) and 5(b). The directivity of a uniformly illuminated rectangular aper-
ture of area A = 2’ X 2’ on an infinite PEC ground plane is also plotted.

in Fig. 5(b). The severe mismatch caused by the finite array trun-
cation is clearly demonstrated.
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Fig. 7. Radiation patterns of the array shown in Fig. 1(a) when excited using the mode 1 taper shown in Fig. 5(c) and the uniform excitation shown in Fig. 5(b).
(a) Pattern at 200 MHz, ¢ = 0° plane. (b) Pattern at 200 MHz, ¢ = 90° plane. (c) Pattern at 400 MHz, ¢ = 0° plane. (d) Pattern at 400 MHz, ¢ = 90° plane.

(e) Pattern at 600 MHz, ¢» = 0° plane. (f) Pattern at 600 MHz, ¢ = 90° plane.

The proposed CM excitation (Fig. 5(a)) results in simulta-
neous impedance match for all array elements at the CM reso-
nant frequency of 511 MHz. Nonetheless, the overall impedance
bandwidth for active V.SW It < 3 is not large enough to accom-
modate UWB operation.

This shortcoming can be alleviated if the CM resonance con-
dition v = 1 is relaxed to &« = 0.6. As mentioned above,
a = 1 corresponds to VSW IR = 1 for all elements, albeit for a
small bandwidth. Relaxing the modal significance parameter to
a = 0.6 corresponds to relaxing the impedance match condition
to VSW IR = 2 for all elements. In turn, greater bandwidth is
achieved. With this in mind, the excitation is calculated based
in the CM current at f/ = 343.5 MHvx. Indeed, a much better
V SW IR performance is achieved as depicted in Fig. 5(c). The
overall active impedance bandwidth (for VSW R < 3) can now
cover the entire 300-600 MHz for all elements (except 4 at the
top and bottom edges of the array, viz. elements (1, 4), (1, 5), (8,
4), and (8, 5) (see Fig. 1 for element enumeration). Reference
port impedances (i.e. characteristic impedances of feed lines)

shown in the third column of Fig. 5(c) are also found as a result
of the CM analysis.

Fig. 5 also shows are the mismatch efficiency for the cor-
responding excitation tapers. These curves are computed as-
suming an ideal power divider/combiner for all 64 ports. As
indicated, the overall mismatch efficiency is approximately the
same for all three excitation tapers. Thus, it might seem that the
benefit of using the proposed CM taper is inconsequential. How-
ever, in reality this plot simply accentuates the fact that a very
high system efficiency (even as much as 80% in the uniform ex-
citation case), can still hide the fact that a significant number of
elements may be mismatched.

Below, we present the performance of the array for the chosen
excitation using full-wave simulations.

IV. PERFORMANCE VALIDATION USING
FULL-WAVE SIMULATIONS

To further demonstrate the validity of the proposed excita-
tion design method, we present full-wave simulation data for the
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simple array shown in Fig. 1(a). The element geometry was ini-
tially designed for optimal performance within an infinite array
and then used to create an 8 x 8 finite array. As already noted
the finite array was excited using the CM taper and the feed-line
impedances given in Section III (see Fig. 5(¢c)). For comparison,
the same array was also excited uniformly using 200 € feed
lines.

The realized array gain (co-polarized component) at broad-
side (# = 0°) is shown in Fig. 6 for the CM taper and uniform
excitation. Also, the directivity of a uniformly excited rectan-
gular aperture of area A = 2’ x 2’ (situated on an infinite
PEC ground plane) is shown for [23]. As observed, the CM
taper provides an additional 1 dB gain over the uniform ex-
citation. This improvement is obviously due to the improved
impedance match of the array elements. We should also note
that the cross-polarized isolation for both excitations (uniform
and CM-based) is ~50 dB throughout the whole band.

The radiation patterns of the 8 x 8 array at 200, 400 and 600
MHz and at the ¢ = 0°, 90° planes are shown Fig. 7. Similar
radiation patterns are obtained for the two excitations.

We note that the simulated active V.SW I2s obtained from
HFSS, were found to be precisely equal to those given in
Fig. 5(b) and 5(c) for all elements and both excitation tapers
(uniform and CM-based). Therefore these plots were omitted.

V. CONCLUSIONS AND DISCUSSION

We proposed a simple, yet effective, aperture excitation
technique for finite size UWB tightly coupled antenna arrays.
To achieve much improved active impedance match at all N
array elements, we consider the CMs of the N X N mutual
coupling matrix. When CM current distributions are used as the
array excitation, the optimal feed-line impedances can also be
calculated. As compared with the standard uniform excitation,
the CM excitation technique provides optimum impedance
matching, simultaneously for all array elements over a broad
range of frequencies.

We remark that the CM excitation technique is more appli-
cable to arrays with strong mutual coupling. For weakly coupled
arrays, the mutual impedance matrix is almost diagonal and it
is therefore possible that the element resonances dominate. As
such, the CMs may no longer be associated with the radiating
aperture size. In contrast, in the case of strong mutual coupling,
the array behaves much like a single radiating aperture. There-
fore, the characteristic modes of the array’s mutual impedance
matrix will be associated with the whole aperture and not the
individual elements.

We demonstrated that this novel technique also improves re-
alized array gain. Specifically, a 0.5-1 dB additional gain was
obtained for a simple 8 x 8 coupled dipole array. Continuous
300-600 MHz bandwidth coverage was also demonstrated for
the VSWR.

This simple approach can also be implemented into exciting
array structures using the measured mutual impedance matrix.
Particularly for high power arrays, the simultaneous matching
of all array elements is of utmost importance.

VI. SYMBOLS

[Z] moment method impedance matrix

[R] real part of moment method impedance matrix

[X] imaginary part of moment method impedance
matrix

{I} eigencurrent associated with a characteristic
mode

A eigenvalue associated with a characteristic mode

[Z5] mutual impedance matrix of N x N array

[Rs] real part of mutual impedance matrix

[Xs] imaginary part of mutual impedance matrix

total current at dipoles’s feed points. This is the
eigencurrent of mode &

total voltage at dipoles’s feed points
corresponding to current {1y }

Ak eigenvalue associated with characteristic mode
k at a given frequency

active impedance of all array elements

o modal significance parameter associated with
mode eigenvalues

[Zo] diagonal matrix containing feed line
characteristic impedances

{a} incident waves at feed ports of array

{b} reflected waves at feed ports of array

[Ss] scattering matrix of N x N array

{T'} reflection coefficient at feed ports of array

{VSW IR} voltage standing wave ratio at feed lines of array

total mismatch efficiency of array

€miss

REFERENCES

[1] B. Munk, Finite Antenna Arrays and FSS. Piscataway-Hoboken, NJ:
Wiley-1EEE Press, 2005.

[2] M. Jones and J. Rawnick, “A new approach to broadband array design
using tightly coupled elements,” in Proc. IEEE MILCOM, Oct. 29-31,
2007, pp. 1-7.

[3] J. L. Volakis and K. Sertel, “Narrowband and wideband metamaterial
antennas based on degenerate band edge and magnetic photonic crys-
tals,” Proc. IEEE, vol. 99, no. 10, pp. 1732-1745, 2011.

[4] L. Tzanidis, K. Sertel, and J. Volakis, “Excitation and termination of
finite tightly coupled antenna arrays based on structural characteristic
modes,” presented at the Antenna Applications Symp., 2011.

[5] J. Lee, S. Livingston, and R. Koenig, “A low-profile wide-band (5:1)
dual-pol array,” IEEE Antennas Wireless Propag. Lett., vol. 2, pp.
46-49, 2003.

[6] H. Holter, “Dual-polarized broadband array antenna with BOR-ele-
ments, mechanical design and measurements,” IEEE Trans. Antennas
Propag., vol. 55, no. 2, pp. 305-312, Feb. 2007.

[7] R. Garbacz, “A Generalized Expansion for Radiated and Scattered
Fields,” Ph.D. dissertation, The Ohio State Univ., Columbus, 1968.

[8] R. Garbacz and R. Turpin, “A generalized expansion for radiated and
scattered fields,” /IEEE Trans. Antennas Propag., vol. 19, no. 3, pp.
348-358, May 1971.

[9] R. Harrington and J. Mautz, “Theory of characteristic modes for con-
ducting bodies,” IEEE Trans. Antennas Propag., vol. 19, no. 5, pp.
622-628, Sep 1971.



1784

[10] R. Harrington and J. Mautz, “Computation of characteristic modes for
conducting bodies,” IEEE Trans. Antennas Propag., vol. 19, no. 5, pp.
629-639, Sep 1971.

[11] R. Harrington, J. Mautz, and Y. Chang, “Characteristic modes for di-
electric and magnetic bodies,” IEEE Trans. Antennas Propag., vol. 20,
no. 2, pp. 194-198, Mar 1972.

[12] J. Mautz and R. Harrington, “Modal analysis of loaded n-port scat-
terers,” IEEE Trans. Antennas Propag., vol. 21, no. 2, pp. 188-199,
Mar 1973.

[13] R. Harrington and J. Mautz, “Control of radar scattering by reactive
loading,” IEEE Trans. Antennas Propag., vol. 20, no. 4, pp. 446-454,
July 1972.

[14] C. Dolph, “A current distribution for broadside arrays which optimizes
the relationship between beam width and side-lobe level,” Proc. IRE,
vol. 34, no. 6, pp. 335-348, 1946.

[15] D. Cheng and F. Tseng, “Gain optimization for arbitrary antenna ar-
rays,” IEEE Trans. Antennas Propag.,vol. 13, no. 6, pp. 973-974, Nov.
1965.

[16] C. Tai, “The optimum directivity of uniformly spaced broadside arrays
of dipoles,” IEEE Trans. Antennas Propag.,vol. 12,no. 4, pp. 447-454,
July 1964.

[17] C. Sharpe and R. Crane, “Optimization of linear arrays for broadband
signals,” IEEE Trans. Antennas Propag., vol. 14, no. 4, pp. 422427,
July 1966.

[18] N. Inagaki and R. Garbacz, “Eigenfunctions of composite hermitian
operators with application to discrete and continuous radiating sys-
tems,” [EEE Trans. Antennas Propag., vol. 30, no. 4, pp. 571-575, Jul.
1982.

[19] R. Harrington and J. Mautz, “Pattern synthesis for loaded n-port scat-
terers,” IEEE Trans. Antennas Propag., vol. 22, no. 2, pp. 184-190,
Mar. 1974.

[20] D. Pozar, “Antenna synthesis and optimization using weighted inagaki
modes,” IEEE Trans. Antennas Propag., vol. 32, no. 2, pp. 159-165,
Feb. 1984.

[21] K. Obeidat, B. Raines, R. Rojas, and B. Strojny, “Design of frequency
reconfigurable antennas using the theory of network character-
istic modes,” IEEE Trans. Antennas Propag., vol. 58, no. 10, pp.
3106-3113, 2010.

[22] , R. Mittra, Ed., Numerical and Asymptotic Techniques in Electromag-
netics, ser. Topics in Applied Physics. Berlin: Springer, 1975, vol. 3,
ch. 3, pp. 51-87.

[23] , C. Balanis, Ed., Antenna Theory: Analysis and Design, 3rd ed. New
York: Wiley-Interscience, 2005, ch. 12, pp. 653-738.

[24] P. Young, “Scattering coefficients and circuit analysis,” in Proc.
14th IEE Microwave Measurements Training Course, May 2005, pp.
2-2/11, (Ref. No. 2005/10870).

Ioannis Tzanidis (M’11) was born in 1983. He
received the Diploma in Electrical and Computer
Engineering from Democritus University of Thrace,
Xanthi, Greece and the M.Sc. and Ph.D. degrees
from the Ohio State University, Columbus, in 2010
and 2011, respectively.

He currently works as a Postdoctoral Researcher
at the ElectroScience Laboratory, Ohio State
University. His research interests include wideband
antennas, antenna miniaturization techniques,
UWB arrays, array feeding techniques, and MIMO

[ N

antennas.

Dr. Tzanidis received the Ist place in the student paper competition at the
2010 Antennas and Propagation Symposium, one of the most prestigious student
paper awards in the world.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 60, NO. 4, APRIL 2012

Kubilay Sertel (SM’07) received the Ph.D. degree
from the University of Michigan at Ann Arbor, in
2003.

He is currently a Research Scientist at the Electro-
Science Laboratory and an Adjunct Professor at the
Electrical and Computer Engineering Department,
Ohio State University, Columbus. His research
areas include analysis and design of ultra wideband
antennas and arrays, reconfigurable antennas and
arrays and miniaturization techniques, THz sensors
and sensor arrays for medical and non-destruc-
tive imaging, metamaterials and frequency selective surfaces/volumes, and
measurement and characterization of anisotropic and magneto-dielectric com-
posites, applied computational electromagnetics, integral equation methods,
fast and efficient modeling of large-scale, real-life electromagnetics problems
on massively parallel computing platforms. He coauthored the books Fre-
quency Domain Hybrid Finite Element Methods in Electromagnetics (Morgan
& Claypool, 2006), and Integral Equation Methods for Electromagnetics
(SciTech Publishing, 2012) and published over 40 journal papers and 170
conference articles.

Dr. Sertel an elected member of URSI Commission B, and a member of Ap-
plied Computational Electromagnetics Society.

John L. Volakis (S’77-M’82-SM’89-F’96) was
born on May 13, 1956 in Chios, Greece and immi-
grated to the U.S.A. in 1973. He received the B.E.
degree (summa cum laude) from Youngstown State
University, Youngstown, OH, in 1978, and the M.Sc.
and Ph.D. degrees from the Ohio State University,
Columbus, in 1979 and 1982, respectively.

He started his career at Rockwell International
(1982-1984), now Boeing Phantom Works. In
1984, he was appointed Assistant Professor at the
University of Michigan, Ann Arbor, becoming a full
Professor in 1994. He also served as the Director of the Radiation Laboratory
from 1998 to 2000. Since January 2003, he is the Roy and Lois Chope Chair
Professor of Engineering at the Ohio State University, Columbus, and also
serves as the Director of the ElectroScience Laboratory. His primary research
deals with antennas, computational methods, electromagnetic compatibility
and interference, propagation, design optimization, RF materials, multi-physics
engineering and bioelectromagnetics. He has published over 280 articles in
major refereed journals, nearly 500 conference papers and 20 book chapters.
He coauthored the following six books: Approximate Boundary Conditions in
Electromagnetics (Institution of Electrical Engineers, London, 1995), Finite El-
ement Method for Electromagnetics (IEEE Press, New York, 1998), Frequency
Domain Hybrid Finite Element Methods in Electromagnetics (Morgan &
Claypool, 2006), Computational Methods for High Frequency Electromagnetic
Interference (Verlag, 2009), Small Antennas (McGraw-Hill, 2010), and edited
the Antenna Engineering Handbook (McGraw-Hill, 2007). He has also written
several well-edited coursepacks on introductory and advanced numerical
methods for electromagnetics, and has delivered short courses on antennas,
numerical methods, and frequency selective surfaces.

Dr. Volakis was elected Fellow of the IEEE in 1996, and is a member of the
URSI Commissions B and E. In 1998 he received the University of Michigan
(UM) College of Engineering Research Excellence award, in 2001 he received
the UM, Dept. of Electrical Engineering and Computer Science Service Excel-
lence Award, and in 2010 he received the Ohio State Univ. Clara and Peter Scott
award for outstanding academic achievement. He was the 2004 President of the
IEEE Antennas and Propagation Society and served on the AdCom of the IEEE
Antennas and Propagation Society from 1995 to 1998. He also served as an As-
sociate Editor for the IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION
from 1988-1992, Radio Science from 1994-1997, and for the IEEE Antennas
and Propagation Magazine (1992-2006), the J. Electromagnetic Waves and Ap-
plications and the URSI Bulletin. He Chaired the 1993 IEEE Antennas and Prop-
agation Society Symposium and Radio Science Meeting in Ann Arbor, MI, and
Co-Chaired the same Symposium in 2003 at Columbus, OH. He is listed by
IST among the top 250 most referenced authors. He graduated/mentored nearly
60 Ph.D. students/post-docs, and coauthored with them 14 best paper awards at
conferences.




