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Non-reciprocal devices such as isolators and circulators are 
important components in modern microwave and photonic 
communication systems. The reciprocity breaking that is 

required with these devices can be accomplished using magnetic 
bias1,2, transistors biased by a direct current3,4, or spatiotemporal 
modulation5–14. An alternative approach, which can offer bias-free 
isolators for applications that do not require simultaneous excita-
tion from opposite directions, such as in pulsed lasers, involves 
using optical nonlinearities15–33. Most commonly this is based on 
resonant structures loaded with third-order nonlinear materials16–32, 
that is, materials with permittivity ε ε χ= + ∣ ∣Elin

(3) 2, where εlin is 
the linear permittivity, χ(3) the nonlinear susceptibility and E the 
electric field intensity. This type of nonlinearity is responsible for 
shifting the resonance frequency as a function of the input intensity. 
If the resonator is asymmetric from opposite sides, the frequency 
shift is different from opposite excitations, resulting in asymmetric 
transmission and a non-reciprocal response.

In this context, Fano resonators are particularly well suited for 
the design of nonlinear isolators27–32 because of their sharp fre-
quency response, which results in a fast transition from low to high 
transmission as the input intensity exceeds a certain threshold. 
Breaking spatial symmetry in Fano resonators leads to an inten-
sity scaling of the response of the resonator when the propagation 
direction is reversed, thus producing isolation. At any frequency, if 
the propagation direction is reversed, the intensity that leads to a 
certain transmission is scaled by the linear asymmetry factor of the 
resonator, κlin, defined as the ratio of the induced field intensity for 
excitation from opposite sides in the linear (low-intensity) regime. 
Based on this property, the isolation intensity range (IIR) can be 
defined as the ratio of input intensities from opposite propagation 
directions that lead to the same transmission coefficient. A large IIR 
corresponds to an isolator that exhibits significant isolation over a 
large range of input intensities. Because IIR =​ κlin, it is possible to 
design an isolator with a broad intensity response by increasing the 
asymmetry of the structure.

Fano nonlinear isolators are subject to a fundamental trade-off 
between transmission in the forward (allowed) direction (Tfw) and 
IIR (D. L. Sounas et al., manuscript in preparation). In particular, 
a large κlin implies a large separation between transmission from 
opposite sides, and therefore a large IIR. We have, however, previ-
ously shown34 that time-reversal symmetry imposes the following 
restriction between Tfw and κlin:
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Equation (1) shows that Tfw decreases as κlin increases, imply-
ing that either we select a narrowband and narrow intensity range 
to achieve low insertion loss, or we sacrifice forward transmis-
sion to operate over a broad range of input intensities and band-
widths. In the ideal case of unitary transmission and zero insertion 
loss (Tfw =​ 1), κlin =​ 1 and the resonator exhibits the same response 
from opposite sides, becoming reciprocal. In addition to the bound 
between IIR and Tfw, equation (1) implies a similar bound between 
the isolation bandwidth and Tfw. Considering that the operation 
of a Fano nonlinear isolator is based on an asymmetric shift of its 
resonance frequency when excited from opposite sides, the overall 
isolation bandwidth is proportional to the difference between the 
resonant frequencies of the resonator for excitation from opposite 
sides, determined by κlin. Therefore, a large isolation bandwidth 
requires a large κlin; however, according to equation (1), this comes 
at the expense of a reduced Tfw.

In this Article we show that these limitations of Fano isolators 
apply to any isolator with a single nonlinear resonator, and that 
they can be broken by using multiple nonlinear resonators. We then 
show that we can efficiently control the non-reciprocal response 
of the isolator, including forward transmission, isolation and IIR, 
by appropriately selecting the number and characteristics of the  
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Isolators are devices that transmit waves only in one direction, and are widely used to protect sensitive equipment from reflec-
tions and interference. These devices inherently require the breaking of Lorentz reciprocity, which can be achieved with an 
external bias, such as a magnetic field, that breaks time-reversal symmetry. Alternatively, nonlinear effects can be used, which 
offer a route to fully passive devices that do not require any form of external bias. However, the nonlinear isolators developed so 
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them, can provide unitary transmission, infinite isolation, broad bandwidth and broad isolation intensity range. We also show 
that a larger number of resonators can be used to further increase the isolation intensity range without diminishing the other 
metrics of the device.
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resonators. Finally, we provide an experimental validation of these 
concepts at microwave frequencies.

Limitations of isolators with a single nonlinear resonator
Consider a system of N resonators in which only one (resonator 1)  
is nonlinear and the rest are linear (Fig. 1). By using coupled-
mode theory (see Methods), the resonant amplitude in the non-
linear resonator (resonator 1) is given by
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where si
inc is the incident signal from the ith port; a i
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nant amplitude in resonator 1 in the linear regime for excitation with 
a signal of unitary amplitude from the ith port; Δ​ω1 is the shift of 
the resonance frequency of resonator 1 due to the nonlinear effect, 
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where ωΔ i
1
( ) is the resonance frequency shift of resonator 1 for exci-

tation from the ith port with a signal si
inc, and κ = ∣ ∣ ∕ ∣ ∣a alin 1,lin

(2) 2
1,lin
(1) 2 

is the linear asymmetry parameter in resonator 1. Equation (3) 
shows that the resonance frequency variation from port 2 is equal 
to the one from port 1, if the input power from port 1 is κlin times 
larger than that from port 2. Given that the same frequency varia-
tion from different ports implies the same transmission coefficient, 
we deduce that transmission from different ports is the same if the 
input power from port 1 is κlin times larger than from port 2, as in 
nonlinear Fano resonators. Then, from the definition of IIR it fol-
lows that IIR =​ κlin.

Assume now that the system is excited from port 1 with signal 
sinc. From equation (2) we find
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Furthermore, assuming that the nonlinear reflection and trans-
mission coefficients for this particular excitation intensity are rNL 

and tNL, respectively, the output signals at ports 1 and 2 are r sNL
inc 

and t sNL
inc, respectively. Performing a time-reversal operation, we 

obtain a scenario where the system is excited with signals r s( )* *
NL

inc  
and t s( )* *

NL
inc  from ports 1 and 2, respectively, and the resonant 

amplitude in resonator 1 is a *1 , with the asterisk denoting complex 
conjugation. Because Δ​ω1 depends only on ∣ ∣a1

2, it is the same as 
in the original excitation scenario (it is not affected by the time-
reversal operation), allowing equation (2) to be applied in the time-
reversed scenario as
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Inserting equation (4) into equation (5) yields
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same equation imposed by time-reversal symmetry on linear sys-
tems34. Observing that 
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 has a unitary amplitude, it is pos-

sible to show that the system in Fig. 1 is still subject to equation 
(1). This, combined with the fact that IIR =​ κlin, shows that, despite 
the arbitrary nature of the network in Fig. 1, systems with a single 
nonlinear resonator are subject to the same limitations as Fano reso-
nators in terms of trade-off between IIR and forward insertion loss.

Broadband isolators with multiple nonlinear resonators
To overcome equation (1) and realize broadband, highly efficient 
passive isolators, we need to consider, at a minimum, two coupled 
nonlinear resonators. This idea was explored in ref. 35 for a system 
of two Lorentzian resonators, but here we show that it is possible 
to achieve full control over forward transmission, isolation, band-
width and IIR by combining two or more nonlinear Lorentzian and 
Fano resonators, yielding unitary forward transmission, infinite iso-
lation, broad bandwidth and broad intensity range. Consider, for 
instance, a system consisting of a nonlinear Lorentzian resonator 
and a nonlinear Fano resonator (Fig. 2). Due to the nonlinearity, 
transmission through each of the resonators changes with input 
intensity up to a maximum value determined by equation (1), 
which for symmetric resonators is equal to unity. We designed the 
resonators to independently exhibit a unitary transmission peak 
for the same input intensity of interest (Fig. 2a). As expected, when 
the resonators are cascaded, they will also exhibit unitary trans-
mission at the same input intensity (Fig. 2b). For any other input 
intensity, the Lorentzian and Fano resonators exhibit non-unitary 
transmission, leading to an asymmetric system with non-zero IIR, 
despite the unitary transmission in the forward direction, thereby  
breaking equation (1).

To better understand the mechanism that produces asymmetry 
in the system in Fig. 2a, we studied the response of the system when 
excited from opposite directions with signals of increasing intensity. 
Consider first exciting the system from the side of the Fano resona-
tor. For low intensities the input signal is almost totally reflected by 
the Fano resonator, without having the chance to interact with the 
Lorentzian resonator. On the other hand, when the intensity is high 
enough for the signal to be transmitted through the Fano resonator 
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Fig. 1 | Nonlinear isolator based on a single nonlinear resonator. In 
addition to the nonlinear resonator (green), an arbitrary number of linear 
resonators (yellow) can be connected in an arbitrary way with one another.
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and subsequently interact with the Lorentzian resonator, reflection 
from the Lorentzian resonator is not significant enough to perturb 
the operation point of the Fano resonator. As a result, for excitation 
from the side of the Fano resonator, the response of the system is 
similar to that of the Fano resonator alone. The situation is different 
when the system is excited from the side of the Lorentzian resona-
tor. In this case, and for excitation of low intensity, the transmitted 
signal through the Lorentzian resonator is almost perfectly reflected 
by the Fano resonator and then partially reflected at the inner side 
of the Lorentzian resonator. As a result, the incident power that 
interacts with the Fano resonator is given by

φ
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+ −
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where ∣ ∣s1
inc 2 is the incident power at port 1, ∣ ∣sF

inc 2 is the incident 
power at the inner side of the Fano resonator, RL is the reflection coef-
ficient from the Lorentzian resonator, and φ is the sum of the reflec-
tion phases from the Lorentzian and Fano resonators. Depending on 
the values of RL and φ, ∣ ∣sF

inc 2 can be larger or smaller than ∣ ∣s1
inc 2,  

shifting the transmission transition threshold to lower or higher 
values compared to the Fano resonator. For example, in Fig. 2b the 
transition threshold is slightly shifted to higher values. If we now 
consider a delay line between the resonators, we can control φ and 
in turn the IIR of the system. This can be clearly seen in Fig. 2c, 
which presents the system’s response versus the input intensity and 
transmission line electrical length. A particularly interesting case 

occurs when the transmission zero is pushed to very large intensi-
ties, as shown with the dashed lines in Fig. 2c, resulting in very large 
isolation (larger than 30 dB) and a broad range of input intensities 
(larger than 10 dB). Another interesting scenario is observed when 
the transmission zero from one direction occurs at the same inten-
sity as the transmission peak from the other direction (dotted lines 
in Fig. 2c), leading to a nonlinear isolator with unitary transmission 
and infinite isolation at the same intensity. Such isolators largely 
overcome the limitations of nonlinear isolators presented so far in 
the literature, as well as the bound in equation (1). It is important to 
note that when the transmission is unitary from one direction it can 
also become unitary from the opposite direction as a consequence 
of time-reversal symmetry. However, for the backward direction, 
the point of unitary transmission belongs to the upper branch of 
a bistable region, and it is therefore inaccessible as we increase  
the input intensity.

A problem with the system described above is that forward 
transmission is close to unity only over a narrow range of input 
intensities, which, given the frequency dispersion of the resonators, 
translates into equally narrow bandwidths of operation, limiting the 
efficiency of the isolator under excitation with pulses. For example, 
for the system in Fig. 2c, the intensity range over which Tfw is larger 
than −​1 dB assuming the largest possible IIR (dashed line in Fig. 2c)  
is 3.6 dB. Although it is impossible to make a nonlinear isolator 
that exhibits unitary transmission for any input intensity—there 
will always be a range of intensities close to the linear regime 
where forward transmission is small—it is possible to extend the  
intensity range where transmission is above a certain level by  
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Fig. 2 | Nonlinear isolator based on a nonlinear Lorentzian resonator and a nonlinear Fano resonator. a, Nonlinear response for the two resonators 
when they are separated from each other. b, Nonlinear response when the resonators are back to back. Solid lines show the response for increasing input 
intensity. S21 is the transmission coefficient from port 1 to 2. S12 is the transmission coefficient from port 2 to 1. The dotted lines in a and b correspond 
to either unstable branches or branches that can be accessed only for decreasing input intensities. c, Nonlinear response versus input intensity and the 
electrical length θTL of a delay line between the resonators. Dotted lines correspond to systems that exhibit peak transmission from one direction and zero 
transmission from the other for the same intensity. The dashed line corresponds to a system with maximum IIR. In all cases, the intensity is presented on a 
normalized dB scale. Details of the modelling of the resonators and their parameters are provided in the Methods and Supplementary Table 1, respectively.
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combining a larger number of resonators. As an example, here we 
study a system consisting of two pairs of Lorentzian and Fano reso-
nators (Fig. 3). The main idea is to design each pair to exhibit quasi-
unitary transmission over a desired range of input intensities, so that 
when the two pairs are combined they also exhibit quasi-unitary 
transmission over the same intensity range. To this end we selected 
each pair to consist of two identical resonators. It is evident that the 
pair of resonators exhibits unitary transmission at the same intensity 
as its constituent resonators. However, adding a delay line between 
the resonators allows us to obtain unitary transmission at another 
input intensity, which can be efficiently controlled over a large 
range of values by changing the value of the phase delay (Fig. 3a,b).  
Furthermore, by connecting the two pairs with another delay line, 
we can control the transmission transition intensity associated with 
the Fano response as in the system of individual Lorentzian and 
Fano resonators, allowing a system to be obtained that exhibits very 
large isolation, large IIR and at the same time high quasi-flat for-
ward transmission over a large range of input intensities. Figure 3c  
shows the response of such a system based on the same Fano res-
onator as in Fig. 2. We can see that the range of input intensities 
where forward transmission is larger than −​1 dB has increased from 
3.6 dB to 6 dB. This approach can be further extended to arrays of 
nonlinear resonators, thereby opening and controlling continuous 
broad bandwidths of nonlinear isolation with large flexibility.

Experimental demonstration at microwave frequencies
To prove the feasibility of the theoretical results presented above, 
we experimentally realized the system of Fig. 2, consisting of a cas-
caded Lorentzian resonator and Fano resonator, using lumped-cir-
cuit elements over a printed circuit board (PCB) (Fig. 4a). For the 
Lorentzian resonator we used a parallel LC network connected to 
ground, which exhibits a symmetric response around its resonance 
frequency. To be able to control the linewidth of the resonator, the 
LC resonator was placed between two identical capacitors. For the 
Fano resonator we used a parallel combination of a series LC reso-
nator and a capacitor, both connected to ground. At its resonance, 
the LC network is a short circuit, resulting in zero transmission. On 
the other hand, at the resonance of the loop consisting of the LC 
network and the shunt capacitor, the effective impedance to ground 
is infinite, and transmission is unitary. The existence of both zero 
and unitary transmission is a signature of a Fano response. All the 
properties of this Fano response, including the positions of the zero, 
peak and background transmission, can be controlled through 
the design choice of the circuit elements. We also added a short 
transmission line between the resonators to enable control of the  
position of the transmission zero, as described in the section 

'Broadband isolators with multiple nonlinear resonators'. The reso-
nators were realized using varactors, which introduce nonlinearity 
into the system. In particular, to achieve a response similar to an 
instantaneous Kerr effect, for each nonlinear capacitor we used a 
parallel combination of identical varactors with opposite polarity, as 
explained in the Methods. A photograph of the fabricated circuit is 
presented in Fig. 4b.

Figure 4c presents the simulated response of the circuit, assum-
ing ideal (lossless) components. All the parameters in the simulation 
and experiment are provided in the Methods. The transmission line 
length was selected to align the transmission zero from one direc-
tion with the transmission peak from the other one and yield infi-
nite isolation. We can see that, for a certain intensity, the structure 
exhibits unitary transmission from one direction and zero trans-
mission from the other, and yields an overall large IIR. By tuning 
the transmission line length, we can push the transmission zero to 
higher intensities and realize an isolator with large isolation over an 
even broader intensity range, which may be interesting for several 
applications. Figure 4d presents measurement results for transmis-
sion from opposite sides versus the input intensity Pin for the real-
ized device. The excitation frequency is slightly different from that 
found in simulations due to the parasitic effects that exist in any 
PCB circuit. The peak transmission is −​2 dB (0.63 on a linear scale) 
with an IIR range larger than 12 dB. Notice that the measured IIR is 
even larger than in simulations, which we attribute to higher-order 
nonlinear effects that were not considered in our model. The trans-
mission is non-unitary due to losses of the components. However, 
even with this loss, the transmission is much larger than the maxi-
mum transmission predicted by equation (1) for an ideal lossless 
system based on a single nonlinear resonator and the same IIR. In 
particular, for a system based on a single nonlinear resonator, an IIR 
of 12 dB corresponds to a maximum peak transmission of −​6.5 dB 
(0.22 in linear scale) allowed by equation (1), assuming zero loss. In 
reality, this value would be even smaller due to the losses of all real-
istic components. We yield significantly larger transmission, which 
may be increased to unitary with better fabrication. In addition to 
the large transmission and broad IIR, the circuit in Fig. 4 exhibits 
very large isolation, larger than 30 dB over the entire measured IIR.

Figure 4e presents measurement results for transmission ver-
sus frequency at an input intensity of 21 dBm, which corresponds 
to the maximum forward transmission in Fig. 4d. The device fol-
lows a Fano dispersion, with transmission changing from low to 
high values as the input frequency is swept across the resonance 
frequency of the Fano resonator. Due to the nonlinearity and 
asymmetry of the structure, the resonance frequency of the Fano 
resonator, and consequently the transition frequency, is different 
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for opposite excitation directions. For a simple Fano isolator this 
frequency shift is determined by the asymmetry factor κlin and, as 
a result, it is subject to the bound in equation (1). A larger for-
ward transmission necessarily leads to a narrower isolation band-
width, and in the case of unitary forward transmission the isolation 
bandwidth would completely vanish. Figure 4e, on the other hand, 
shows that our isolator can achieve a large bandwidth (50 MHz in 
Fig. 3e), and at the same time a large forward transmission. Finally, 
Fig. 4f presents experimental results for the response of the system 
versus both input intensity and frequency. For excitation from port 
1, the transmission is smaller than −​25 dB for any input intensity 
if the frequency is smaller than 770 MHz, essentially following the 
linear response of the system. On the other hand, for excitation 
from the opposite side, there is always an input intensity at which 
the transmission experiences a fast transition from low to high val-
ues. Beyond this intensity, the structure operates as an isolator with 
large isolation and low loss. These measurements confirm that the 
proposed isolator not only has a broad IIR, but also a broad band-
width of operation.

Conclusions
We have reported an approach for the design of passive nonlinear 
isolators with full control over their forward transmission, isolation 
and isolation intensity range, based on the combination of nonlin-
ear Lorentzian and Fano resonators separated by suitably designed 
delay lines. We have also validated our general theoretical analy-
sis with an experimental demonstration at microwave frequencies. 
Increasing the number of resonators offers more flexibility in control-
ling transmission and isolation over a given intensity range, similar  

to the frequency response of linear filters based on multiple lin-
ear resonators36. Given that in these systems time-reversal symme-
try is broken by the signal itself, due to nonlinearity, isolation is 
not necessarily expected when the system is excited at the same 
time from opposite ports33. In this sense, our results shed light 
on the limitations of nonlinear isolators and clarify the condi-
tions for their optimum design and operation for pulsed signals. 
The design flexibility introduced by the use of multiple nonlinear 
resonators and delay lines with suitable dispersion, exploited here 
to realize broadband nonlinear isolators with large isolation and 
low insertion loss, may also enable countermeasures to reduce or 
eliminate the effect of interference from signals impinging from  
opposite ports.

Methods
Isolators with a single nonlinear resonator. Here, we generally prove equation (2) 
for nonlinear isolators with a single nonlinear resonator and an arbitrary number 
of linear resonators, as in Fig. 1, where resonator 1 is assumed to be nonlinear. The 
resonant frequency of the nonlinear resonator is given by
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with units of energy37. Equation (8) describes the response of a resonator with 
instantaneous Kerr-type nonlinearity. All the other resonators have constant 
(intensity-independent) resonant frequencies ωj, with j =​ 2, …​, N. Furthermore, 
because the nonlinear effect is only a perturbation of the material properties of 
resonator 1, we assume that it does not affect the coupling between the resonators 
and their decay rates.
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Fig. 4 | Microwave realization of a Lorentzian–Fano nonlinear isolator. a, Schematic of the circuit. The values of the circuit elements are provided in 
Supplementary Table 3. b, Photograph of the fabricated prototype. The d.c. ports are used to bias the varactors, which are used to implement the nonlinear 
capacitors. c, Numerical transmission results, assuming ideal elements (zero loss), at 900 MHz. The transmission line length was selected to achieve 
alignment of the transmission peak from one direction with the transmission zero from the other. The intensity is presented on a dB scale normalized with 
respect to ∕V Z(2 )0

2
0 , where V0 is the characteristic voltage of the varactor defined in Methods and Z0 is the transmission line impedance. The dotted lines 

correspond to either unstable branches or branches that can be accessed only for decreasing input intensities. d, Experimental results for transmission versus 
input intensity at 750 MHz. e, Experimental results for transmission versus frequency for an input power of 21 dBm. f, Experimental results for the S-parameters 
versus frequency and input intensity. Dashed lines correspond to the operating frequency in d. Dotted lines correspond to the input power in e.
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The system can be efficiently described through coupled-mode theory (CMT) as

Ω Γ= − + +
t

i s sa a k kd
d

( ) (9)1 1
inc

2 2
inc

where = …a aa [ ]T1 2  is the modal vector, Ω is the system’s frequency matrix,  
Γ is the system’s decay matrix, +sj  is the incident signal from the jth port, kj is the 
coupling vector between the system and the jth port, and sj

inc is the incident signal 
from the jth port38. The diagonal components of Ω are the resonance frequencies 
of the resonators, and the off-diagonal components provide the coupling between 
the resonators. Similar considerations also hold for Γ. For kj, the nth component 
describes the coupling between the nth resonator and the jth port. From the 
assumptions mentioned in the previous paragraph, nonlinearity affects only the 
11 component of Ω, which is equal to ω1. In particular, ω1 =​ ω1,lin +​ Δ​ω1, where 

ω ωΔ = − ∣ ∣ ∕ ∣ ∣a a1 1,lin 1
2

10
2. Then, it follows

Ω Ω Ω= + Δ (10)lin

where Ωlin is the frequency matrix in the linear regime and

Ω
ω

Δ =
Δ ⋯

⋯
⋮ ⋮ ⋱



















0
0 0 (11)

1

If the system is excited with harmonic signals with frequency ω, equation (9) can 
be written as

= +H s sa k k (12)1 1
inc

2 2
inc

where H =​ i(ωI −​ Ω) +​ Γ, where I is the identity matrix. Inserting equation (10) into 
equation (11) yields

Ω= Δ + +H i s sa a k k (13)lin 1 1
inc

2 2
inc

where Hlin =​ i(ωI −​ Ωlin) +​ Γ. Substituting Δ​Ω from equation (11) into equation (13) 
yields

ω= Δ + +H i a s sa e k k (14)lin 1 1 1 1 1
inc

2 2
inc

where = …e [1 0 0 0]T
1 . Multiplying equation (14) with −Hlin

1 and taking the first 
line of the resulting matrix equation gives

ω= Δ + +− − −a i H a H s H sk k( ) ( ) ( ) (15)1 1 lin
1

11 1 lin
1

1 1 1
inc

lin
1

2 1 2
inc

where −H( )lin
1

11
 is the 11 component of −Hlin

1, and −H k( )lin
1

1 1
 is the first component 

of −H klin
1

1. Note that −H k( )jlin
1

1
 is the mode amplitude in resonator 1 in the linear 

regime for excitation from the jth port with a signal of unitary amplitude. We will 
use the notation a j

1,lin
( )  for this quantity. Then, solving equation (15) for a1 gives

ω ω
=

− Δ
+

− Δ− −a
a

i H
s

a
i H

s
1 ( ) 1 ( )

(16)1
1,lin
(1)

1 lin
1

11
1
inc 2,lin

(2)

1 lin
1

11
2
inc

By defining = −G H( )11 lin
1

11
, we end up with equation (2).

CMT for Lorentzian and Fano resonators. Here, we provide details about the 
CMT models that were used to obtain the theoretical results in Figs. 2 and 3. A 
symmetric Fano resonator with two ports is described through the equations

ω γ κ= − + +a
t

i a s sd
d

( ) ( ) (17)0 1
inc

2
inc

and

κ

κ

= + +

= + +

s rs ts a

s rs ts a
(18)1

ref
1
inc

2
inc

2
ref

2
inc

1
inc

where a is the resonant amplitude, ω0 is the resonance frequency, γ is the decay 
rate, κ is the coupling coefficient from either port, si

inc is the incident signal at the 
ith port, si

ref  is the reflected signal at the ith port, and r and t are the background 
reflection and transmission coefficients between the ports, that is, the reflection 
and transmission coefficients for frequencies far from ω0. Power conservation leads 
to the following relations:

κ γ

∣ ∣ + ∣ ∣ =
=

= − +

r t
rt

r t

1
Re{ *} 0

( )
(19)

2 2

The case of Lorentzian resonators is recovered for t =​ 0. Equations (19) provide 
freedom in the selection of the phase of r or t, which physically corresponds to 
shifting the reference plane for the ports. In the results presented in the main 
text, we have assumed =rarg{ } 0 and = π∕targ{ } 2. If the resonator is nonlinear, ω0 
depends on the stored energy as

ω ω= − ∣ ∣
∣ ∣











a
a

1 (20)0 0,lin

2

0
2

where ω0,lin is the resonance frequency in the linear regime, and ∣ ∣a0
2 is a 

characteristic quantity of the resonator with units of energy.

Nonlinear isolator at microwave frequencies. To realize the instantaneous 
Kerr effect at microwave frequencies, we used an antiparallel connection of 
two varactors as shown in Supplementary Fig. 1. The varactors are identical, 
have opposite polarities, and are biased with the same d.c. signal. Varactors 
are nonlinear elements and their effective capacitance for the RF signal can be 
described through a polynomial expansion as

= + + + …C C C v C v (21)(0) (1)
RF

(2)
RF
2

where the terms C(j) with j =​ 0,1, …​ depend only on the d.c. voltage, and vRF is the 
radiofrequency (RF) signal in the time domain. Due to the antiparallel connection 
of the varactors, the RF signal at the two varactors has the same amplitude and 
opposite polarity; that is, v2,RF =​ −​v1,RF =​ vRF, where vj,RF is the RF voltage across 
the jth varactor, and vRF is the RF voltage between terminals 1 and 2. Then, the 
capacitances of the two varactors are

= + + + …

= − + + …

C C C v C v

C C C v C v
(22)1

(0) (1)
RF

(2)
RF
2

2
(0) (1)

RF
(2)

RF
2

The total capacitance of the system is C =​ C1 +​ C2. Inserting equation (22) into this 
equality yields

= + + …C C C v2 2 (23)(0) (2)
RF
2

which can also be written as = + ∕C C V V(1 ),Flin R
2

0
2 , where =C C2lin

(0) and 
= ∕V C C0

(0) (2) . The total capacitance of the circuit thus has the same form as the 
permittivity of instantaneous Kerr nonlinear materials in optics.

Data availability. The data that support the plots within this paper and other 
findings of this study are available from the corresponding author upon reasonable 
request.
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