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Preface

Array and phased array antennas are gaining in popularity. They seem no longer to
be of interest to military (radar) systems only, but are encountered today in many
civilian systems, like for example in mobile communications base stations. An array
antenna is a group of individual radiators, positioned in such a way as to produce a
maximum radiation into a forward direction. With a phased array antenna, we mean
an array antenna, wherein we change the phases between the array antenna elements
- added to the already existing phase differences due to the differences in position -
to create maximum radiation in a desired direction.

One should be aware that for some people all array antennas are phased array
antennas, due to the fact that the array antenna principle is also based on phase
differences. In this book we adopt the term phased array antenna for scanned beam
array antennas.

Over the decades many books have been written, dealing solely or partly with array
and phased array antenna theory. The books by Mailloux [1] and Hansen [2], are two
fine examples of the many excellent books available.

So, why another book on phased array antennas when there are already so many
books on the topic available? The reason for this book lies in the fact that more
and more engineers nowadays are getting involved in antenna and (phased) array
antenna technology. Not all of them are thoroughly trained in electromagnetics or
antennas and are easily scared away by texts that assume a basic understanding of
electromagnetics or antennas or both, even if this fear is not realistic.

Often the question arises if it is possible to teach antenna technology without
using equations. Although the answer to that question is negative, this book tries to
create a compromise, providing an easy-to-read text, explaining antennas in general,



xii PREFACE

based on historical development and physical characteristics rather than mathematics.
Chapters 1, 2 and 3 are dealing in this way with, respectively, radiation, antennas
and antenna parameters. The mathematics are introduced where and when necessary
and then it will appear that the mathematics are not that complicated at all.
The mathematical treatment starts in chapter 4, dealing with the broadside linear
array antenna. The next chapter, chapter 5, is a ‘how to’ chapter that will provide
the reader with detailed information on how to use the acquired knowledge in the
design of a microstrip patch array antenna. Chapter 6 deals with linear endfire array
antennas and will treat the Yagi–Uda array antenna in more detail. Chapter 7 is
concerned with the linear phased array antenna and is followed again by a ‘how to’
chapter, chapter 8, wherein the design of a frequency scanned, slotted waveguide array
antenna will be dealt with in detail. Chapter 9 then extends the acquired knowledge
of linear array and phased array antennas to planar array and phased array antennas
and in chapter 10 some special array antenna configurations will be discussed. These
configurations are conformal and volume array antennas, sequentially rotated and fed
arrays for the creation of circular polarisation and reactively loaded array antennas.
Finally, in chapter 11, antenna measurement techniques in general and phased array
antenna measurement techniques in particular, including the use of the scan element
pattern (also known as active element pattern), will be discussed.

As an additional resource, this book is supported by a companion website on
which instructors and lecturers can find electronic versions of the figures. Please go
to ftp://ftp.wiley.co.uk/pub/books/visser

The aim of Array and Phased Array Antenna Basics is to provide an introduction
to (phased) array antennas that will allow the reader to move onto specialist books
on the topic with a greater understanding.

Therefore, topics like beam synthesis, phased array antenna errors, beam switching,
digital beam forming, array thinning and adaptive array antennas will not be treated
in this book.

REFERENCES

1. Robert J. Mailloux, Phased Array Antenna Handbook, Artech House, Boston,
1994.

2. R.C. Hansen, Phased Array Antennas, John Wiley & Sons, New York, 1998.
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1
Radiation

The key to understanding phased array antennas is to understand antennas and the key to
understanding antennas is to understand electromagnetic radiation. In contrast to what is
widely believed, one does not need to be a specialist in integro-differential equations and
vector mathematics to grasp the mechanism of electromagnetic radiation. As in Faraday’s
time, a vast majority of educators prefers the rigor of a mathematical description to the
insight of a physical understanding for explaining the mechanism of radiation. It is the
author’s belief though that the latter is needed first to form the basic understanding and
once this understanding has been accomplished, the former may be used to develop this
understanding and put it to practical use.

For the basic understanding of electromagnetic radiation one only needs an
understanding of electricity and magnetism at a level as educated in secondary school.
By following the historical developments in the field of electricity and magnetism, the
interaction between the two - electromagnetism - and electromagnetic radiation follows
naturally.

1.1 THE EARLY HISTORY OF ELECTRICITY AND MAGNETISM

Research in the field of electricity and magnetism goes back a long way. Hundreds
of years BC, experiments dealing with these two phenomena have been described.
However, for nearly two thousand years experiments have been concentrated mainly on
static electricity. The absence of a source of continuous electrical energy posed a severe
limitation in the progress of understanding the underlying physics of the observed
electrical and magnetic phenomena. It lasted until the invention of the electric battery

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd



2 RADIATION

in 1800 by Alessandro Volta (1745–1827) - a logical next step to the famous ‘frog-
experiments’ of Aloys Galvani (1737–1798) nine years earlier - before research could
be conducted in a reproducible way.

In 1819, the Danish professor Johannis Ørsted (1777–1851) observed the change
in position of a compass needle, when brought into the vicinity of a current carrying
wire, see figure 1.1.

N

S

W

E

N

S

W

E

Fig. 1.1 The Ørsted experiment: a current-carrying wire deflects a compass needle such that
the needle positions itself perpendicularly to the wire.

This current originated from a voltaic pile. Although Ørsted did not fully
understand that the compass needle was not directly influenced by the electric current,
but rather indirectly through the induced magnetic field around the current, he
did notice the importance of his observation. It opened up the possibility to find
a relation between electricity and magnetism. A few months after the publication of
his experiences, Ørsted introduced the term electromagnetism.

In that same year (1819), the French professor André-Marie Ampère (1775–1836)
observed a reproduction of the Ørsted experiment at the Parisian Academy. Only
a week afterwards he produced a document, giving a theoretical explanation of the
experiment. He assumed - correctly - that an electrical current is capable of inducing
a magnetic field, see figure 1.2.

It is this magnetic field that explains why parallel currents attract and anti-parallel
currents repel. For two parallel currents, the compass needles, indicating the direction
of the magnetic induction, are positioned such that they will attract one another, see
figure 1.3. For two anti-parallel currents, the compass needles are positioned such that
they will repel one another (opposite poles attract, equal poles repel), see figure 1.4.

If we bend a current-carrying wire into a loop as shown in figure 1.5, the magnetic
inductions of all parts of the wire add up to form distinct poles at the top and bottom
of the loop.

Ampère (rightfully) assumed that in solid matter, microscopic parts contain a
circulating current and that in a magnet (like a piece of magnetised iron) all these
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II

Fig. 1.2 The findings of Ampère: a current-carrying wire creates a magnetic induction around
the wire. The direction of the magnetic field may be found by placing compass needles in the
vicinity of the wire.

I III II

Fig. 1.3 The findings of Ampère: parallel currents attract. The compass needles indicate that
the induced magnetic fields are such that the wires will attract. Opposite poles of the compass
needles are placed next to each other.

I III I

Fig. 1.4 The findings of Ampère: anti-parallel currents repel. The compass needles indicate
that the induced magnetic fields are such that the wires will repel. Equal poles of the compass
needles are placed next to each other.

microscopic current loops are lined up in the same direction, resulting in the forming
of distinct macroscopic magnetic poles. This process is schematically depicted in
figure 1.6.
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IIII

Fig. 1.5 The findings of Ampère: for a current-carrying wire bent into a loop, the magnetic
induction of all parts of the wire adds up to distinct poles at the top and bottom of the loop.

Fig. 1.6 The findings of Ampère: the forming of a macroscopic magnet by the lining up of
microscopic current loops.

While Ørsted was conducting his experiments in Denmark, Michael Faraday (1791–
1867) worked at the Royal Institution in London. Faraday was a remarkable ‘self-
made’ man. With nothing more than a primary school education, he has become
famous for his pioneering work in electromagnetism. Faraday is seen as one of the
world’s greatest experimenters. He succeeded in turning his limited knowledge of
mathematics into an advantage, by deducing concepts directly from observations.

In 1831, Faraday observed that a changing electrical current in a coil, induced
an electrical current into another coil. He had discovered electromagnetic induction.
This was an important discovery. Faraday’s ideas concerning conservation of energy
had convinced him that, while a (changing) electrical current can create a (changing)
magnetic field, the opposite must also be true: ‘a changing magnetic field must be
able to produce an electric field’. One of his experiments, following the discovery of
the electromagnetic induction, showed that a moving magnet induced an electrical
current, see figure 1.7.1

1In his first experiment, the changing electrical current applied to a coil took care of the changing
magnetic induction, created by moving the magnet in his second experiment.
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Fig. 1.7 The findings of Faraday: a moving magnet induces an electrical current in a loop.

The direction of the current in the loop is such that it opposes the change in
magnetic induction. If the north pole of the magnet is approaching the loop, the
current in the loop will be directed such that a north pole is formed in the direction
of the magnet to repel this magnet. If the north pole of the magnet is moving away
from the loop, the current in the loop will be directed such that a south pole is formed
in the direction of the magnet to attract the magnet. If the magnet remains static,
there will be no current in the loop.

To understand how a magnet influences a wire from some distance, Faraday
visualised a ‘magnetic field’. He saw this ‘magnetic field’ as magnetic force lines,
laying closer together at places where the field is stronger. These magnetic field lines
can be shown by placing compass needles in the vicinity of the magnet, as we have
done thus far. These compass needles will direct themselves tangential to the magnetic
field lines. More detail can be obtained by using iron filings that may be regarded
as very small compass needles. In fact, this is how Faraday constructed his magnetic
field lines. In his 1831 notes2 [1] he wrote,

By magnetic curves I mean lines of magnetic forces which would be depicted
by iron filings.

So, instead of visualising the magnetic field by placing compass needles, as we did
in figure 1.2 for a current-carrying wire, we may now draw the magnetic field lines as
shown in figure 1.8.

The electrical current, induced in a loop or a (piece of) wire at some distance from
the ‘source’, Faraday expressed in terms of the number of magnetic field lines cut by
the loop or wire (flux).

Now, let’s have a closer look at the first electromagnetic induction experiment of
Faraday, see figure 1.9.

Obviously, we can transport the changing electric field in one coil to an isolated
second coil. So, the question arises does this mean that we are dealing with
electromagnetic radiation? The answer to that question is: ‘No’ !

If we take away the changing electric field in the bottom coil, by keeping the switch
open or closed, the changing magnetic field vanishes everywhere and no current flows
in the top coil. If we had had an electromagnetic radiating system, the changing

2Read at the Royal Society on 24 November 1831.
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Fig. 1.8 The findings of Faraday: the magnetic field. The direction of the field relative to
the direction of the current is dictated by a right-hand screw in the direction of the current.
The separation between the field lines is inversely proportional to the magnitude of the field.

Fig. 1.9 The findings of Faraday: a changing electrical current in a coil, induces a changing
electrical current into another coil.

magnetic field would have induced a changing electric field, regardless of the presence
of the top coil. How the radiation mechanism works will be explained further on.

For the moment we will dwell on the bottom coil of figure 1.9 only. If we connect
an alternating current (AC) source to the coil, the current through the coil changes
continuously and because of that, the magnetic field lines change continuously too.
Because of these changing field lines, a current is recreated in this coil. Energy is thus
delivered to a magnetic field and this energy is returned to the circuit.

When the magnetic field is increasing, due to the current flowing through the coil,
a voltage over the coil is being created. When the current has reached its maximum
value and starts to decrease, the magnetic field strength decreases. The coil, however,
opposes this change and therefore tries to maintain a voltage over the coil, such that
the field remains static. Therefore the current flowing through a coil lags the voltage
over it.

Thus, because of this energy cycling, the current and voltage of the coil are out of
phase. For a radiating electromagnetic field to exist, the electric and magnetic field
need to be in phase. The field now is purely a storage field; the energy is stored in
the magnetic field surrounding the inductor. If we place a second coil in the vicinity
of the first coil, see figure 1.9, we can intercept some of the changing magnetic field
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lines and thereby create an electric current in the second coil. With the second coil
we can thus take energy from the storage field of the first coil.3

The field line concept may also be applied to electric fields. Electric field lines are
then imaginary lines for which the tangent vector at a given point is directed such
as to coincide with the direction in which a positively charged unit charge would
accelerate. As with magnetic field lines, the separation between adjacent field lines is
inversely proportional to the magnitude of the field. Tightly packed electric field lines
indicate a strong field; sparsely packed electric field lines a weak one.

Faraday observed that magnetic field lines (made visible by employing iron filings)
originate from one pole of a magnet and terminate on the other. So he imagined that
the lines of force of an electrical field would originate on a positive charge and end on a
negative charge. It appears that this is not completely true. Magnetised objects always
form poles in pairs. Magnetic field lines originate from the north pole of the object
and terminate on the south pole of the object. Electrically charged objects however
may exist as monopole (positively charged or negatively charged). The field lines are
always directed perpendicular to the surface of the charged object. The electric field
lines of an isolated, positively charged monopole, start on the monopole and extend
radially to infinity, those of an isolated, negatively charged monopole, start at infinity
and convert radially on the monopole, see figure 1.10.

+ -

+

-

a b

c

++ --

+

-

+

-

+

-

a b

c

Fig. 1.10 Electric field lines. a: isolated, positively charged point source monopole. b: isolated,
negatively charged point source monopole. c: system of one positively and one negatively
charged point source.

It was Faraday’s belief that the physical lines of force he envisaged were really
present everywhere in space, i.e. were an attribute of this space. Even though we
know now that this is not true, we do understand that a magnet or electric charge
brought into empty space, modifies this space. It is this understanding that formed
a breakthrough in the nineteenth century in explaining the action-at-a-distance

3Of course the battery has to replenish the energy taken from the storage field.
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which occurs between (magnetic, electrically charged or gravitational) objects. It was
Faraday’s genius that perceived the concept of a field to explain how e.g. a charged
object affects the surrounding space. When another charged object is brought into
this space, it becomes affected by the field of the object already present as opposed
to the object itself.

1.2 JAMES CLERK MAXWELL, THE UNION OF ELECTRICITY AND

MAGNETISM

In the year that Michael Faraday discovered electromagnetic induction (1831), James
Clerk Maxwell (1831–1879) was born in Edinburgh, Scotland. In contrast to Faraday,
Maxwell received an academic education and evolved not into a experimental scientist
but a brilliant thinker and mathematician.

Although Maxwell has performed monumental scientific work, like for example
proving that the rings of Saturn are made up of dense particles (1859) and
demonstrating the first ever colour photograph (1860)4 [2], he is best known for what
are currently called the Maxwell equations (1873).

The remarkable thing about the Maxwell equations is that he did not derive
all of them, but rather saw the connection between Ampère’s, Faraday’s and
Gauss’s law. By extending Ampère’s law with what he called a displacement current
term, electricity and magnetism became united into electromagnetism. With this
displacement current term added, the equations governing electricity and magnetism
allow electromagnetic waves to exist, light being one out of a spectrum of waves.
Maxwell predicted the existence of electromagnetic waves tens of years before he was
proven right by the generation and reception of radio waves.

Before we move on to the mechanism of electromagnetic radiation, we will first pay
some attention to electromagnetic waves. Therefore we will have to dwell a bit longer
on the displacement current.

The equations governing electricity and magnetism before Maxwell were
incomplete. This was evident in analysing a capacitor in a circuit supporting a
changing current, see figure 1.11.

Although the capacitor prevents a physical current flowing through the plates, the
circuit still supports a current. The explanation for this effect, Maxwell attributed
to what he called the displacement current, which turns out to be the time rate of
change of the electric field between the capacitor plates.

Let’s assume that we look at the capacitor in figure 1.11 at the moment that
the capacitor is fully charged. The charge on the right plate is Q, the charge on the
opposite plate is the negative of that, -Q. Because of these charges, the current in the
circuit will start flowing to the right. The electric field between the plates is directed
to the left. Since a current is flowing to the right, the strength of the electric field is
decreasing, so the direction of change of the electric field is to the right. Attached to
this changing electric field is a surrounding magnetic field, its direction connected to

4And - as the rumour goes and denied by Maxwell - at Trinity College, Cambridge, inventing a
method of throwing a cat out of a window in such a way that it cannot land on its feet.
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Fig. 1.11 Capacitor in a circuit supporting a changing current, i.e. before steady state.
a. A current is flowing through the transparent surface. b. No current is flowing through the
transparent surface.

the direction of change like a right-hand screw.5 Since this magnetic field could have
been due to a physical current - one cannot tell the source from the magnetic field
alone - Maxwell named the source, the changing electric field: displacement current.

It is this specialty - that a changing electric field creates a (changing) magnetic field
- that makes the existence of electromagnetic waves possible. It means that once you
create the ‘correct’6 changing electric field, this field will create a changing magnetic
field that in turn will create a changing electric field and so on. This expansion of the
disturbance in space will continue, even when the source has ceased to exist. This is
what we call wave propagation. This process is depicted in figure 1.12.

E
H
E
H

Fig. 1.12 The process of wave propagation. In reality the process is three dimensional and
waves expand spherically.

We have seen that a coil (an inductor), when connected to an AC current source,
produces an electromagnetic field. Energy is delivered to a magnetic field and this
energy is returned to the circuit. The field is purely a storage field; the energy is

5Just like the direction of the magnetic field attached to the current in the circuit.
6We will get to the definition of ‘correct’ later on.
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stored in the magnetic field surrounding the inductor. In a similar way a capacitor,
when connected to an AC voltage source, produces an electromagnetic field. Energy is
delivered to an electric field and this energy is returned to the circuit. When the AC
cycle starts on its down slope, the charge in the capacitor holds the voltage (opposing
the change) until the current leaves and then it starts to discharge, causing the voltage
to lag the current. Also for a capacitor the current and voltage are out of phase. Again
the field is purely a storage field; the energy is stored in the electric field surrounding
the capacitor.

The question that remains is how to create the correct changing electric field, i.e.
how to create the source of electromagnetic wave propagation; how to get changing
electric and magnetic fields to be in phase. The Maxwell equations reveal that the
source of electromagnetic radiation is accelerated charge. Rather than elaborating on
the Maxwell equations, we will discard the mathematics and explain the radiation of
accelerated charge by physical reasoning.

1.3 RADIATION BY ACCELERATED CHARGE

When looking at an electric charge, either positively or negatively charged, the electric
field lines extend radially from this charge to infinity, see figure 1.13a.

a b ca b c

Fig. 1.13 Electric charge and field lines. a. Static or slowly moving charge. b. Fast moving
charge. c. Accelerated charge.

The electric field lines for a slowly moving charge, i.e. having a velocity well below
that of light, behave identical to that of a non-moving or static charge, figure 1.13a.
This is a consequence of the principle of relativity in the restricted sense [3],

If, relative to K, K′ is a uniformly moving co-ordinate system devoid of
rotation, then natural phenomena run their course with respect to K′ according
to exactly the same general laws as with respect to K.

In other words: ‘An observer moving at the same speed as the charge still sees only
static fields.’

When the charge is moving fast, i.e. at velocities approaching the velocity of light,
the electric field lines tend to compress in the direction perpendicular to the direction
the charge is moving, see figure 1.13b. This is also a consequence of the principle of
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relativity [3]. Only when a charge is accelerated, that is acted upon by an external
force, can it radiate. The electric field lines will bend, see figure 1.13c, thus creating
a transversal component - next to the radial components - in the electric field that
propagates away from the charge at the speed of light. We will explain this by having
a closer look at figure 1.13c.

Let’s assume that a charged particle is uniformly moving along a horizontal line
as depicted in figure 1.14. At a certain moment of time the particle is accelerated
for a short period of time and, afterwards, it continues its uniform movement, see
figure 1.14.

uniform velocity uniform velocityaccel.uniform velocity uniform velocityaccel.

Fig. 1.14 A charged particle, uniformly moving along the horizontal axis is accelerated for a
brief moment of time.

In the figure we have indicated the position of the particle at the start and finish
of the acceleration. Some of the static electric field lines at the start position are
shown, those at the finish position are left out for the sake of clarity. Also indicated
in figure 1.14 is the position of an observer that has moved with the speed of light
along a static electric field line from the particle, for the duration of the acceleration.

In figure 1.15 we repeat figure 1.14, but now also indicate the static field lines
associated with the particle at the end of its acceleration.

If we now think of ourselves positioned anywhere on the ‘observer circle’ and
accepting the fact that nothing can move faster than the velocity of light, we see
that everywhere from the circle to infinity, the static field lines must follow those
from the initial particle position. Everywhere inside the circle, the static field lines
must follow those associated with the final particle position. Since electric field lines
must be continuous, so-called kinks must exist at the observer position to make the
field lines connect, see figure 1.16.

For a continuously accelerated charge, we would have found the field lines as shown
in figure 1.13.

Now that we know how to construct the electric field lines of an accelerated, charged
particle, we can take a look at these field lines for different times inside the time
interval of acceleration. This has been done in figure 1.17 for subsequent moments
within the acceleration time frame.
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Fig. 1.15 An accelerated charged particle. Static field lines are shown for the particle at the
beginning and at the end of the acceleration. The circle indicates the position of an observer
that travelled outward with the field lines at the start, for the duration of the acceleration,
with the speed of light.

Fig. 1.16 The electric field lines of a shortly accelerated particle must form kinks in order
to connect the field lines associated with the end and initial position of the particle to form
continuous field lines.

When we take the disturbances, i.e. the transverse components of the electric field,
taken at the subsequent moments and add them in one graph, see figure 1.17d, we see
that these disturbances move out from the accelerated charge at the speed of light.
Associated with this changing electric field is a changing magnetic field. Unlike the
situation as described for the coil or the capacitor, the electric and magnetic fields
are in phase now, due to the fact that they were produced by a single event, the
acceleration of charge. The electric and magnetic field travel along in phase, their
directions being perpendicular to one another, see also figure 1.12. This is what we
call an electromagnetic wave.

In real life we will find accelerating and decelerating7 charges in time-varying
currents. Charge acceleration or deceleration in an electrically conducting, wire object
may be found where the wire is curved, bent, discontinuous or terminated. All these
origins of radiation are shown in figure 1.18 [4].

7Deceleration is a negative acceleration and will therefore be treated as acceleration.
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a b

c d

a b

c d

Fig. 1.17 The electric field lines of an accelerated, charged particle at subsequent instances of
time. a. Time t1. b. Time t2 > t1. c. Time t3 > t2 > t1. c. Transverse electric field moving out
at the speed of light.
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Fig. 1.18 Several origins of radiation on a wire object.

Wire antennas, as well as non-wire antennas, are designed to support oscillating
currents. An oscillating current consists of charges accelerated back and forth.
These oscillating currents thus create a regular disturbance or continuous radiation.
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The most ‘natural’ form of an oscillating current is a sinusoidal oscillating current.
As function of the time, the amplitude of the current changes as a sine function, see
figure 1.19.

T

time t

current amplitude I

Imax

Imin
T

time t

current amplitude I

Imax

Imin

Fig. 1.19 Current changing with time as a sine function. After every period of time T, the
changing of the amplitude with time repeats itself. T is called the period of the current-
amplitude function.

We see that the current as function of time repeats itself every period T.
The amplitude of the current therefore is a periodic function. We call T the period of
the function.

We designated this sinusoidal alternating current (AC) the most ‘natural’, since
it is a periodic signal form most often encountered in nature. We have to remember
that the sine function is not just a mathematical frivolity, but rather a compact
description of observations stemming from nature. To illustrate this, let’s have a look
at an invention of Faraday: the dynamo.8 The principle of the dynamo is illustrated
in figure 1.20.

With two permanent magnets, a static magnetic field is introduced. In this static
magnetic field we place a wire-loop and rotate this loop around an axis, placed
perpendicular to the north-south direction of the magnets. When the loop is rotated,
the number of magnetic field lines going through the loop (this is called the magnetic
flux ), changes. The absolute flux is at maximum when the loop is directed vertical
and is at minimum with the loop being horizontal, see figure 1.20a. Because of the
changing flux, i.e. the changing magnetic field, a current is induced in the wire-loop.
The direction of the current is such, that a magnetic field is created through the loop
that opposes the source of the current, i.e. the changing magnetic field.

The snapshot of figure 1.20a shows the loop at an instant of time where the flux
is decreasing. Therefore a current in the wire-loop is created that has a direction

8Although Faraday discovered the principle of the dynamo, he never foresaw the economical potential
of it, being interested only in the physics of electricity and magnetism.
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Fig. 1.20 Principle of the dynamo. a. A wire-loop is rotated in a static magnetic field and
thus in the loop a changing magnetic field is created, inducing an electric current through the
wire of the loop. b. The number of magnetic field lines, cut by the loop (flux) whilst the loop
is rotating, changes with time as a sine function.

such that a north pole is created in the direction of the static north pole to oppose
the rotation and thereby to oppose the decrease of flux. When the loop is making
a complete turn, it subsequently forms north and south poles to oppose decreasing
and increasing fluxes. The direction of the current therefore changes while the loop
rotates. As Faraday already found (and as put into mathematical form by Ampère),
the change in flux is proportional to the induced current.

In figure 1.20b we see, on the left, the position of the loop when the loop is rotating.
When the loop is vertical, the flux is at maximum. When the loop is horizontal, the
flux is zero. Therefore, if we associate with the loop position also the direction of
maximum flux, i.e. we draw a circle with radius equal to the maximum flux, we can
obtain the amplitude of the flux by projecting the instantaneous maximum flux onto
the vertical axis. In the same figure we see how we can, from this figure, construct the
amplitude of the flux (and thus the amplitude of the induced current) as a function of
time. We see that this function is identical to the sine function as shown in figure 1.19.

The principle of the dynamo is still put into practice by power plants, where a
rotational motion, initiated by steam or water, is converted to AC electrical power
that is delivered to our homes. Also when AC electrical power is obtained from a
direct current (DC) source, like a battery, the most natural form, obtained by using
capacitors and inductors, is a sinusoidal one.

After this digression about oscillating currents, let’s return to the nature of
electromagnetic radiation by charges in oscillatory acceleration/deceleration.

To that purpose, consider two electrically conducting wires of infinitesimal length,
folded 90 degrees, and connected to an AC source as described before. We will look
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Fig. 1.21 Electromagnetic radiation by charges in oscillatory acceleration. a. t = 0+.
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(
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)
.

at the electric field around this structure at different instances of time within one half
of the period T, see figure 1.21.

Figure 1.21a shows the time t = 0+, meaning: a short while after t = 0. The source
has been turned on and charge is accelerated from the source to the wire ends. Because
of the accelerating charges at the feed point, a transverse electric field component is
travelling outward, in a direction perpendicular to the wire. Since field lines have to
be continuous and end and start perpendicular to a charged body, the electric field
line takes the form as shown in figure 1.21a. The direction and amplitude of the
current is indicated by the white arrows next to the dipole. Underneath the dipole
is the current shown as function of time; the time of the snapshot is indicated with
a black dot. Figure 1.21b shows the infinitesimal antenna at time t =

(
T
4

)
, where T

is the period, see figure 1.19. At this moment, the current has reached its maximum
value, its change with time has become zero. The electric field lines are as shown
in the figure. The transverse electric field component that was created at t = 0+

has travelled a distance of a quarter of a wavelength.9 New transverse electric field
components have been created after the creation of this first one. Shortly after this
moment, that is at t =

(
T
4

)+
, the current has become less than the maximum value

and the time change of the current has changed sign. This means that charges are

9A wavelength (λ) is the distance a ‘disturbance’ travels in the time frame of one period, moving at
the speed of light.
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accelerated into the opposite direction, leading to the creation of a new transversal
electric field component, also directed into the opposite direction, see figure 1.21c. In
figure 1.21d, we see the situation shortly before half a period has elapsed, that is at
t =

(
T
2

)−
. The current amplitude has become very small, the initial excess charges

(positive in the upper half of the dipole, negative in the lower half) are only present at
the tips and charge acceleration is directed downward. Additional, upward directed,
transverse electric field components have been created, the first one has travelled
nearly a quarter of a wavelength outward. At t =

(
T
2

)
, both halves of the dipole have

become neutral, see figure 1.21e, no excess charge is present anymore and the current
has become zero. The need for the electric field lines to be directed perpendicular
to the conductors is not longer present and consequently, the field lines form closed
loops and detach from the conductors.

We have shown this phenomenon in a plane and at one side of the antenna.
Of course, in this plane, the phenomenon exists on both sides of the antenna.
Furthermore, the phenomenon is three-dimensional and includes the existence of
magnetic field lines that are positioned perpendicular to the electric field lines and
form closed loops, as indicated in figure 1.12. For the sake of clarity we have not shown
these field lines in figure 1.21. Figure 1.22, finally, shows the detachment of electric
field lines from the infinitesimal (dipole) antenna at times t =

(
T
2

)+
and t = T+

within a plane.

a

b

a

b

Fig. 1.22 Detachment of electric field lines from an infinitesimal dipole antenna. a. t =
(

T
2

)+.
b. t = T+.

However, the radiating electromagnetic fields are not the only electromagnetic fields
present in the vicinity of our infinitesimal dipole antenna.
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1.4 REACTIVE AND RADIATING ELECTROMAGNETIC FIELDS

We have seen that the current from the source transports charges to the ends of
the dipole. The thus formed charge densities at the ends of the dipole will produce
a voltage between the ends and electric field lines may be envisaged between both
ends. Apart from the magnetic fields produced by the AC current flowing in the dipole
wires, magnetic fields are also produced by virtue of the electric field between the ends
increasing or decreasing. These particular electric and magnetic fields are not in phase.
The magnetic field reaches its maximum when the electric field is changing the fastest
and the electric field is at maximum when the magnetic field is changing the fastest
(i.e. when the current is changing direction). Therefore the antenna also behaves as a
capacitor.10 However, the radiating part dominates the storage or reactive part and
sufficiently far away from the antenna only the radiating part remains. What we mean
by sufficiently far away will be explained in the next chapter.

Similarly, the capacitor and inductor are not purely capacitive and inductive,
respectively. Since charge is being accelerated in the circuits containing the capacitor
or inductor, electromagnetic radiation will occur. However, if the capacitor or inductor
is designed well, this radiation will be of second-order importance and may be
neglected for most real-life applications.
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2
Antennas

The key to understanding phased array antennas is to understand antennas. It suffices,
however, to develop this understanding to a basic level where the antenna functioning
is understood on the basis of physical reasoning. It won’t hurt of course to develop a
thorough understanding of antennas, based on electromagnetic theory, but for acquiring
a basic knowledge of phased array antennas this is not considered as a prerequisite. Having
accepted this, we may limit the education to explaining antenna functioning by physical
reasoning. As in the previous chapter, following the course of history naturally brings us
to an understanding of antennas.

2.1 THE EARLY HISTORY OF ANTENNAS

The graphical representation of the electric field lines, detaching themselves from the
(dipole) antenna, was first shown by Heinrich Rudolf Hertz (1857–1894) in 1889 in
his paper ‘The forces of electric oscillations, treated according to Maxwell’s theory’.

Hertz, at the university of Karlsruhe, Germany, was working on the experimental
verification of Maxwell’s theory. He started out working with two coaxially mounted
flat induction coils,1 very much like the set-up shown in figure 1.9 of the previous
chapter [1] and shown here in figure 2.1.

When a Leyden jar (i.e. a charged capacitor) is connected to one of the coils,
the second coil, by virtue of induction, produces a spark between its terminals.
The Leyden jar connected to the coil forms a resonant electric circuit.

1Known at the time as Knochenhauer spirals.

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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Fig. 2.1 Two coaxially mounted Knochenhauer spirals. When a Leyden jar is connected to the
bottom one, a spark may be observed between the terminals of the top one.

2.1.1 Resonant Electric Circuit

In electric circuits, the discrete elements we most often encounter are the resistor (R),
capacitor (C) and inductor (L).

A resistor directly resists the flow of electrons. The waveform of the voltage drop
over the resistor is in phase with the waveform of the current through the resistor.

A capacitor does not directly resist the flow of electrons but opposes a change in
voltage over the capacitor. The current ‘through’ the capacitor is a reaction against
the change in voltage over the capacitor; the capacitor tries to retain its present
voltage over the plates. If the voltage is at a maximum, the current will be zero, if
the voltage is at maximum change, the current will be at a maximum. This is shown
in figure 2.2 for sinusoidal waveforms.

time t

voltage

current

time ttime t

voltage

current

Fig. 2.2 Sinusoidal voltage and current waveforms for a capacitor.
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For the sinusoidal waves shown, the voltage wave is −90◦ out of phase with the
current wave.2 The current leads the voltage and the voltage lags behind the current.

An inductor opposes the change in current through it. It does so by generating
a voltage drop over the inductor. Since this voltage drop is a reaction against the
change in current through the inductor, the polarity is such that it tries to maintain
the current flow through the inductor. If the current is at a maximum, the voltage
will be zero, if the current is at maximum change, the voltage will be at a maximum.
This is shown in figure 2.3 for sinusoidal waveforms.

time t

voltage

current

time t

voltage

current

time ttime t

voltage

current

Fig. 2.3 Sinusoidal voltage and current waveforms for an inductor.

For the sinusoidal waves shown, the voltage wave is 90◦ out of phase with the
current wave. The voltage leads the current and the current lags behind the voltage.

When a capacitor and an inductor are connected, for example in a parallel circuit,
as shown in figure 2.4, after charging of the capacitor, energy will be exchanged back
and forth between the capacitor and inductor.3

• When the capacitor is charged, see figure 2.4a, the voltage is at maximum and
the current is zero.

• Then, see figure 2.4b, the capacitor starts to discharge; the voltage over the
capacitor starts decreasing and the current ‘through’ it starts increasing.

• When the capacitor is fully discharged, see figure 2.4c, the voltage over it is zero
and the current ‘through’ it is at maximum.

2Two signals are out of phase if they do not coincide as function of their argument. Our sinusoidal
waves of figure 2.2 are of the form sin(At) and sin(Bt), where t is the time and A and B are constants.
The argument of the sine function, i.e. At or Bt, is called the phase and has the unit of angles. In
figure 2.2, the functions are plotted as function of t rather than as function of the whole argument.
3Our previous choice for sinusoidal voltage and current waveforms was not completely arbitrary. Since
the current ‘through’ a capacitor is proportional to the rate of change of the voltage over it and since
the voltage drop over an inductor is proportional to the rate of change of the current through it,
it can be shown (mathematically) that the energy exchange between the connected capacitor and
inductor will occur through sinusoidal voltage and current waves.
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Fig. 2.4 Voltage and currents in a capacitor-inductor parallel circuit. a. Capacitor charged,
voltage is at maximum, current is zero. b. Begin to discharge capacitor, voltage is decreasing,
current is increasing. c. Capacitor fully discharged, voltage is zero, current is at maximum.
d. The inductor is generating a voltage drop to keep the current flowing in the same direction,
the polarity of the capacitor changes. e. Capacitor fully charged, voltage is at maximum,
inductor fully discharged, current is zero. f. With the polarity of the capacitor changed, the
cycle a–e repeats in the opposite direction.

• Then the inductor generates a voltage drop over the inductor having such a
polarity that it keeps the current flowing in the same direction. The capacitor
will change then from its neutral charge state into a polarity state opposite to
the one it started with, see figure 2.4d. The voltage is increasing in opposite
polarity and the current is decreasing.

• Then, see figure 2.4e, the capacitor gets fully charged (in the opposite polarity)
and the inductor gets fully discharged. The voltage is at its negative maximum,
the current is zero.

• Next, see figure 2.4f, the cycle as explained above repeats itself in the opposite
direction.

This phenomenon, called oscillation or resonance, will continue with decreasing
amplitude values, finally coming to a complete halt, the reason being the (distributed)
resistance present in any real-world circuit. The resistance converts the electric energy
into heat.

The period T and thus the resonance frequency4 depends only on the dimensions
of the capacitor and the inductor, not on the amplitude of the voltage and/or current.

4Frequency, f , is the reciprocal of the period: f = 1
T

.
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It can be shown that at the resonance frequency, the complex admittance (one divided
by the complex impedance) of the circuit shown in figure 2.4 becomes zero.

A similar resonance occurs in a series circuit consisting of a capacitor and an
inductor.

2.1.2 Heinrich Hertz: The First Antenna and Radio System

To experimentally verify Maxwell’s theory, Hertz transformed the closed resonance
system of figure 2.1 into an open resonance system. He replaced the bottom coil with
a pair of straight wires, at the centre connected to a spark gap. The spark gap was
connected to the secondary windings of a conduction coil, see figure 2.5, and the
straight wires were equipped with electrically conducting spheres that could move
over the wire segments.
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Interrupter

Core

Induction coil

Pri Sec

Adjustable capacitor sphere

One-turn
coil

Spark gap

Spark gap

Transmitter Receiver

Battery

Switch

Interrupter
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Induction coil

Pri Sec

Adjustable capacitor sphere

One-turn
coil

Spark gap

Spark gap

Transmitter Receiver

Fig. 2.5 Hertz’s open resonance system. With the receiving one-turn loop, small sparks can
be observed when the transmitter discharges.

By means of moving the spheres, the capacity of the circuit could be adjusted for
resonance. The resonant circuit consisted of the conducting spheres and the straight
wire segments. The former form a distributed capacitance, the latter a distributed
inductance. Capacitor and inductor are connected in series. The induction coil with
the mechanical interruptor transformed a low-frequency (pulsed) signal into a high-
frequency (pulsed) signal.5 By charging the two straight wire segments, eventually
the breakdown voltage of air is reached and a spark is created over the small air-filled

5The operation of the interrupter shown in figure 2.5 is based on the electromagnet principle. When
the switch is closed, a current is flowing through the primary windings of the induction coil and the
core will be magnetised. Therefore, the flexible contact of the interrupter will be attracted to the
core and the circuit will be opened. When the circuit is opened, the core will lose its magnetisation
and the flexible contact will return to its original position, thereby closing the circuit again, after
which the whole cycle starts again. By this mechanical interruptor a train of pulses is created in the
primary windings of the induction coil and these pulses will be transformed to high-voltage pulses
at the secondary windings that will discharge over the spark gap. Induction coils may be found
nowadays in cars, where they raise the low voltage of the car battery to the high voltage necessary
to produce sparks to ignite the fuel in the combustion engine.
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spark gap. This spark makes a pulsed current flow through the two wire segments.
Since a pulse signal actually consists of an infinite number of signals of different
frequencies (or periods, T = 1/f), see figure 2.6, the resonant circuit picks out the
current with the ‘right’ frequency and this current will oscillate in the circuit and
create the radiation.
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Fig. 2.6 A pulse consists of many signals of different frequency (period). Shown are signals of
the form sin

(
n 2π

T
t
)

for n = 1, . . . , 6, where T/n is the period and t is the time. We see that
only six of these signals added, leads to a pulse-shaped signal.

The second coil of the set-up shown in figure 2.1, Hertz replaced with a single-turn
square or circular coil with a small gap, see also figure 2.5.

By adjusting the perimeter of the one-turn receiving coil, Hertz was able to
demonstrate resonance. With the receiver (this one-turn loop) placed several metres
away from the transmitter (the pair of straight wires with the spark gap), small sparks
could be observed in the gap of the receiver when the radiator discharged.

Hertz performed these experiments in 1886 and published the results in 1887. His
equipment, shown in figure 2.5, may be regarded as the first radio (transmitter and
receiver) system. His transmitter was equipped with the first dipole antenna, his
receiver consisted of the first loop antenna.

By using a large, flat, electrically conducting plate, placed in front of his
transmitting antenna, Hertz was able to create standing waves, thereby proving
Maxwell right in his prediction of electromagnetic waves. The electromagnetic waves
emitted by the transmitting antenna, interfered with the waves reflected from the flat
plate, producing these standing waves. With his one-turn receiving coil, Hertz was
able to detect the maxima of these standing waves. For this experiment he worked
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with a wavelength of 6m [1].6 His transmitting antenna was approximately half a
wavelength long. Half a wavelength is the shortest length for a dipole antenna to be
resonant.

As we discussed before, Hertz’s transmitting circuit consisted of a distributed
capacitor and a distributed inductor, connected in series as shown in figure 2.7.
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Fig. 2.7 Equivalent circuit of Hertz’s transmitting circuit. a. Transmitting circuit.
b. Equivalent series representation.

The spheres at the end of the straight wires make up the capacitor C, the straight
wires themselves make up the inductor L and the resistor R stands for the radiation
‘loss’. At a wire length of half a wavelength, the inductance equalises the capacitance,
or in other words: ‘Current is not leading the voltage, neither is voltage leading the
current’; the antenna is resonant. To understand this, it is necessary to look at the
current waves in a transmission line.

We will look at a two-wire transmission line, connected at one end to an AC current
generator, open at the other end, see figure 2.8a.

The current has to be zero at the open end of the transmission line. At this open
end a reflection of the current wave will occur and due to interference of the current
wave going to the right and the reflected one going to the left a standing current wave
will be generated.7

The radiated electromagnetic fields by the current through the upper wire of the
two-wire transmission line of figure 2.8a are annihilated by those radiated by the
current through the bottom wire, travelling in the opposite direction, due to the
close proximity of the two wires. For the deformed part of the transmission line,

6One wavelength is the distance travelled by a wave-front in the time span of one period. This
distance is equal to the speed of light (an electromagnetic wave) times this period.
7Initially, a sinusoidal current wave is travelling from the AC current source to the right, see figure 2.9.
The figure shows the sinusoidal wave for three instances of time, t3 > t2 > t1.

After complete reflection on the open end a similar wave is travelling to the left. The wave going
to the right interferes with the reflected one going to the left, resulting in a standing wave, see
figure 2.10.

Although the amplitude of a standing wave changes with time, the position of the maximum and
minimum value and the zero crossings are invariant with distance along the transmission line.
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Fig. 2.8 Construction of a dipole from a two-wire transmission line. a. Current standing waves
on an open-ended two-wire transmission line. b. Deformation of the transmission line. c. Half-
wave dipole antenna. d. Current and voltage standing wave on a half-wave dipole antenna. The
gap in the dipole is not drawn to scale, λ is the wavelength.
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Fig. 2.9 Sinusoidal current wave travelling to the right from the source at the left.

figure 2.8b, this annihilation is not complete anymore and for the dipole, figure 2.8c,
this annihilation does not occur anymore, and a net radiation stemming from the
currents on the dipole remains. At the positions where the current is crossing the zero
value (the end points of the dipole) and the positions where the voltage is crossing the
zero value (feed point), see figure 2.8d, neither the voltage is leading the current nor
the current is leading the voltage. These are the positions then from where radiation
is stemming. For dipole lengths being an integer number of half wavelengths, such
resonances occur. For lengths differing from these ones, the dipole antenna is not



THE EARLY HISTORY OF ANTENNAS 27

t1
t2

t3 distance

t1
t2

t3 distancedistance

Fig. 2.10 Standing wave.

purely resistive, but also contains a capacitive or inductive component. The smallest
possible length of a resonant dipole antenna therefore is one half of a wavelength.

James Clerk Maxwell already showed (theoretically) that light is an
electromagnetic wave phenomenon. The radio waves demonstrated by Hertz are also
electromagnetic waves, but operating at a (much) lower frequency. Pursuing the ray
theory for light, Hertz realised that it would be possible to direct the electromagnetic
energy radiated by his half-wave dipole, by placing this antenna in the focal point of
a parabolic reflector, see figure 2.11.

The half-wave dipole antenna itself, we have seen, radiates in all directions with
the exception of those along the dipole axis.

F

a b

F

a b

Fig. 2.11 To direct or ‘beam’ the energy of his transmitting antenna, Hertz placed the half-
wave dipole in the focal point F of a parabolic reflector. a. Hertz’s transmitting antenna.
b. Ray-tracing principle of the transmitting antenna.
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To make his equipment fit into the laboratory space allotted to him,8 he scaled
down his dipole for transmission and reception of 60cm waves (that means a frequency
of 500Mc (Mega cycles), or - in modern units - 500MHz (Megahertz), a frequency
considered nowadays to be in the microwave part of the spectrum!). The parabolic
reflector, made out of zinc sheet, measured 2m by 1.2m, [1–3].

With two parabolic reflector antennas, Hertz conducted radio-beaming experiments
over distances up to 16m,9 including the transmission through a wooden door,
connecting two laboratory rooms. He also was able to demonstrate with the two
parabolic reflector antennas and a large flat conducting reflector, that the angle of
reflection is identical to the angle of incidence, just as with light (which is also an
electromagnetic wave phenomenon).

Heinrich Hertz - after having suffered from bad health for several years - died of
blood poisoning in Bonn, Germany, in 1894, just before his 37th birthday. His name
- Hertz, abbreviated as Hz - is given to the unit of frequency, replacing the cycles per
second that was in use till the end of the 1960s. One cycle per second is equal to 1Hz.

The work of Heinrich Hertz was put into practice and commercial use by a young
Italian, named Guglielmo Marconi.

2.1.3 Guglielmo Marconi, the Dawn of Wireless Communication

Guglielmo Marconi (1874–1937) spend his child- and young adulthood at his father’s
estate, Villa Griffone in Bologna, Italy. His father, once widowed, had remarried with
Guglielmo’s mother, an heiress of the Irish whisky distilling family, the Jameson’s.

Although Guglielmo Marconi never went to university - he was denied permission
to the Italian Navy Academy of Leghorn because he failed to finish secondary school,
[4] - he had a big interest in electricity and magnetism and had read about the
experiments of Michael Faraday and Benjamin Franklin.10 His mother supported
him in this interest and arranged private classes for her son on these subjects
by Vincenzo Rosa and later arranged for consultations with Augusto Righi, [4, 5],
professor at the university of Bologna. Professor Righi was at that time a leading
person in physics. Repeating the Hertz experiments, he had succeeded in improving
the efficiency of Hertz’s oscillator.11 His mother also supported Marconi in setting up
his own laboratory at his father’s estate, much against the will of his father.

Although the story goes that Marconi, being on a family holiday in 1894, by
accident came across an article dealing with Hertz’s experiments, it is more likely
that Marconi took the article with him [4]. Anyhow, during this holiday he developed
the idea to use Hertzian waves for wireless telegraphy.

8Hertz found that the dimensions of the mirror needed to be larger than the wavelength used.
9Hertz calculated that his transmitter input peak power went as high as 16kW. The spark being a
very inefficient radio frequency (RF) generator, resulted in an output power in the order of one watt
average, [1]!
10Benjamin Franklin (1706–1790), a president of the United States of America, had become famous
for his ‘thunderstorm experiment’. With a thunderstorm nearby, he flew a kite, picking up the static
electricity, that he stored by means of a key attached to the rope into a Leyden jar or capacitor.
11Hertz called his transmitter oscillator.
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The first experiments Marconi conducted dealt with the detection of lightning.
He constructed an electrical circuit that contained an arrow-shaped zinc plate, a
battery, a coherer and a bell [4]. The circuit might have looked like the one shown in
figure 2.12a.12

I

a b c

I

a b c

Fig. 2.12 Marconi’s lightning detecting apparatus. a. Electric circuit including the coherer as
a ‘lightning switch’. b. Coherer in normal state, no current is flowing. c. Metal filings in the
coherer subject to ‘cohesion’, a current is flowing.

A coherer is a device consisting of a glass tube filled with a mixture of
different metal filings, between two metal probes, see figure 2.12b,c. In the normal
state, figure 2.12b, the coherer has a very high impedance. Under the influence
of electromagnetic waves, however (created, for example, by a spark in the
neighbourhood of the coherer), the filings cohere, figure 2.12c, and the impedance
drops to a low value. The coherer was developed by Eugène Branly (1844–1940) in
1890 and was perfected and named ‘coherer’ by Oliver Lodge (1851–1940) in 1894. The
coherer put into the circuit of figure 2.12a acts as a switch. The electromagnetic waves
created by lightning discharges in the neighbourhood would close the switch and make
the bell ring. After the coherer is put into action, it needs to be tapped, to ‘decohere’
the filings and bring the coherer back into the normal state. For this purpose, Lodge
added a timed hammer mechanism to tap the coherer back into normal state.

Although the electromagnetic waves caused by lightning are far more powerful
than the Hertzian waves created by an induction coil, the fact that these waves were
able to switch on the alarm bell over a distance of kilometres, convinced Marconi
that communication by electromagnetic waves over many kilometres should also be
possible. He set out in duplicating the Hertz experiments, eventually adapting the
Righi oscillator for his experiments. In order to make his dream come true, he realised
that he needed to work on increasing the power of the oscillator (transmitter) and
increasing the sensitivity of the receiver.

12Marconi seems to have been inspired for these experiments by the Russian Alexander Popov (1859-
1906), who elevated a wire connected to a coherer in an attempt to detect the energy in electric storms
[6, 7].
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He started out with the latter of these two tasks and found that the coherer could
be greatly improved by using a mixture of nickel filings (95%) and zinc filings (5%),
put into a vacuum tube having silver plugs [4]. The coherer, combined in a circuit
with a battery and a bell, replaced the spark gap in the original Hertz receiver. The
sparks from this spark gap receiver were hardly visible and usually reception of an
electromagnetic wave was rather heard than actually seen.

Next, Marconi combined the coherer with an electromagnet that attracted a small
hammer that would tap against the coherer after the reception of an electromagnetic
pulsed wave and thus brought the receiver back into its normal state, ready for the
reception of another pulsed wave, see figure 2.13.

a ba b

Fig. 2.13 Receiver with the spark gap replaced by a coherer and an electromagnet-operated
hammer for restoring the normal state of the coherer. a. Shortly before reception. b. Shortly
after reception.

Since the current flowing through the coherer at reception was too weak to operate
a Morse writer, Marconi next put a relay in the circuit to use the weak current to
switch on a more powerful current needed to operate the Morse writer. A Morse
writer consists of an electromagnet that attracts a lever, holding an inked pen.
Underneath this pen, a clockwork motor transports a strip of paper. Every time
the electromagnet is activated, the pen thus writes down ‘dots’ and ‘dashes’ - the
code-elements of the Morse alphabet - on the paper, depending on the time (short for
a ‘dot’, long for a ‘dash’) the electromagnet is activated. The Morse writer had been
in use already for wire-operated electric telegraphs. Of course the pulse repetition
frequency of the coherer restoring device (the hammer) dictated the speed of (Morse
code) transmission.

Marconi started out his experiments, like Hertz before him, using cylindrical
parabolic reflectors, fed in the focal point by half-wave dipole antennas at a frequency
of 1.2GHz, [4, 6]. With his equipment, working at these microwave frequencies, he
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could transmit messages over the distance of the attic of his father’s house; a distance
far too low to his taste.

In 1895, however, he made an important change to his system that suddenly allowed
him to transmit and receive messages over distances that progressively increased up
to and beyond 1.5km, [4, 8]. At the reception of the Nobel prize in Stockholm, Sweden
in 1909, Marconi said about this change [7, 8]:

In August 1895 I hit upon a new arrangement which not only greatly increased
the distance over which I could communicate but also seemed to make
the transmission independent from the effects of intervening obstacles. This
arrangement [figure 2.14a] consisted in connecting one terminal to the Hertzian
oscillator or spark producer to earth and the other terminal to a wire or capacity
area placed at a height above the ground and in also connecting at the receiving
end [figure 2.14b] one terminal of the coherer to earth and the other to an
elevated conductor.13

a ba b

Fig. 2.14 Marconi antennas in 1895. a. Scheme of the transmitter used by Marconi at Villa
Griffone. b. Scheme of the receiver used by Marconi at Villa Griffone.

By replacing the outside balls of the Righi oscillator by plates and subsequently,
elevating one of the plates in the air and connecting the other one to earth, Marconi
first of all had enlarged the antenna.14 This monopole antenna, together with its
image, see figure 2.15, formed a half-wave dipole antenna for a wavelength much
larger than any that had been studied before.

13Although Marconi, in his speech in Stockholm, makes us believe that he came upon the antenna
arrangement as shown in figure 2.14 by chance, this is hard to believe [4]. Considering his obsession
in realising wireless communication and his reluctance in reporting failures, it seems more likely
that his new arrangement was more the product of hard labour than mere luck. He may have been
inspired by the work of Franklin and Popov and his own experiences in detecting lightning.
14The word antenna is actually introduced by Marconi [9]. Before he did so, the terms areal or
elevated wire were used to describe the electromagnetic wave launching or receiving device. The
word antenna stems from the art of navigation used in the Mediterranean sea and means ‘the
long wooden pole transversal to the mast which receives the upper end of the Latin sail’. Marconi
introduced the term antenna in its present meaning in a lecture held on May 1909, before his Nobel
speech in the same year, at the Koninklijk Instituut van Ingenieurs KIVI (Royal Netherlands Institute
of Engineers) [9, 10].
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We know now that electromagnetic waves propagating through the air (or even
vacuum) experience a frequency-dependent attenuation. This attenuation increases
with frequency. Thus by adapting his radio system for longer wavelengths (lower
frequencies), Marconi made wireless communication possible over increased distances.
The creation of the long wavelength electromagnetic waves was the key to his success.

Although Marconi succeeded in creating Hertzian waves at a wavelength larger
than anyone before him, he did not derive his success from putting theory into
practice. After all, Marconi was more of an inventor and engineer (and above all
an entrepreneur) than an academic scientist. Up to the middle of the 1920s it was
common practice to design antennas empirically (like Marconi did) and produce a
theoretical explanation after the successful development of a working antenna [6].

Fig. 2.15 The Marconi monopole, together with its image, created by the ground, forms a
half-wave dipole and may be treated as such.

The above-mentioned explanation of Marconi’s quarter-wave monopole antenna
was not known to him when he made the antenna. The relation between antenna
length and the operational wavelength of the radio system was later explained to him
by his colleague, Professor Ascoli, who had calculated that the ‘length of the wave
radiated (was) four times the length of the vertical conductor’ [11].

Since, at that time, the Italian government was not interested in Marconi’s
invention, at least not up to the point to financially support further research, in
1896 he moved - accompanied by his mother - to Great Britain. On 2 June of that
same year his first patent was granted (No. 12,039, ‘Improvements in Transmitting
Electrical Impulses and Signals, and in Apparatus Therefor’). In Great Britain, the
British Post Office was very interested in his invention and supported further research.
Marconi was introduced to William Preece, chief engineer of the English Post and
Telegraph Services through his cousin Henry Jameson-Davis, who had awaited the
Marconi family upon arrival in London [4, 12].

Experiments, in cooperation with the British Post Office started on Salisbury
Plane.15 In May 1897 messages were exchanged over a distance of 14km (9mi) between

15Among the many people who witnessed the experiments and details of the equipment was Professor
Slaby from Germany, who upon return to Germany, fulfilling the wish of the Kaiser to make the
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Lavernock Point and Isle of Flatholm in the Bristol Channel and in 1899 a regular
radio-telegraph service between England and France was put into service [8].

In 1897 the Wireless Telegraph and Signal Co. was founded with Marconi being
one of the five directors and his cousin Henry Jameson-Davis being the first managing
director. The company changed its name into Marconi’s Wireless Telegraph Co. Ltd.
in 1900. In 1899 the Marconi Wireless Telegraph Company of America was formed
that was taken over in 1919 by the Radio Corporation of America, a company formed
by A.T. & T., Westinghouse and General Electric [4, 12, 17].

The next technical challenge Marconi was facing dealt with the limitation that only
one transmitter could be used at a time, since all receivers in the ‘influence sphere’
of this transmitter would receive all signals transmitted. Up to 1898 the Marconi
equipment was not able to deliver a satisfactory syntony or tuning. By initially
inserting an adjustable resonance circuit - consisting of an inductor and a capacitor
- into the receiver only, he was able to tune the receiver to the waves emitted by a
particular transmitter with an antenna of a certain length [6, 8]. Later, the transmitter
was also equipped with an adjustable resonance circuit, see figure 2.16, and the whole
radio system became tunable. A patent was granted in 1900.16
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Fig. 2.16 The tunable radio system. By inserting in both transmitter and receiver an adjustable
resonance circuit, the transmitter and receiver can be tuned into each other.

In his Nobel Prize speech, Marconi said about this [7]:

In 1900 I constructed and patented transmitters which consisted of the usual
kind of elevated capacity area and earth connection, but this was inductively
coupled to an oscillator circuit containing a condenser, an inductance and spark
gap, the conditions which I found essential for efficiency being that the periods
of electrical oscillation of the elevated wire or conductor should be in tune or
resonance with that of the condenser circuit.

The next and perhaps the most famous technical challenge Marconi encountered
was that of establishing a transatlantic wireless telegraph connection. In the field trials

country independent from foreign communication systems, later, in 1903, participated in the forming
of the Telefunken (Spark Telegraphy) Society [4, 12].
16The patent has become famous as the four sevens patent, named after the patent issue nr: 7777.
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preceding the first transatlantic transmission experiment, Marconi had observed that
the curvature of the earth would not obstruct long distance wireless transmission [6].
These observations were completely in contradiction with the beliefs of the scientific
community at that time. Due to Marconi’s stubbornness and perseverance he pursued
his experiment and on 12 December 1901 the Morse code for the letter ‘S’ (. . .), sent
from Poldhu in Cornwall, Great Britain was received at St. Johns in Newfoundland,
Canada, having travelled a distance of 3684km.17

Although some confusion exists concerning the exact dimensions of the antennas
and wavelength (intentionally or unintentionally) used [6, 8, 12–15], we may assume
that the transmitting antenna at Poldhu consisted of 50 vertical wires in the form of a
fan, connected to the ground through a spark transmitter. The wires were supported
horizontally by a guyed wire between two 48m high wooden poles, 60m apart, see
figure 2.17. The wavelength used was 366m, corresponding with a frequency of 820kHz.

Fig. 2.17 The antenna used at Poldhu, Cornwall, in the first transatlantic transmission.

The antenna at St. Johns was a 122m long copper wire, supported by a kite.
The strong wind prevented the use of balloons which was initially intended. Also
initially intended was the use of a tuned or syntonic receiver. However, due to the
same strong wind, the system would not stay in tune [12]. This is in agreement with
a recent theoretical reconstruction of the transatlantic wireless experiment [16].

Not known at the time of the transatlantic transmission and reason for the
scientific community to strongly disbelieve the possibility of transatlantic wireless
telegraphy, was the refractive characteristic of the atmosphere. In the lower part of
the atmosphere, the troposphere - which extends to a height of 10 to 15km [23] -
the index of refraction (i.e. the ability of the medium to bend waves) decreases with
increasing height above the earth (due to the decrease in permittivity [24]). This
change in refraction index with altitude causes radio waves to bend toward the earth,
as depicted in figure 2.18. In the same figure this refraction phenomenon is clarified

17Marconi had used the Morse code for the letter ‘S’ as a testing signal ever since the moment he
had demonstrated the wireless transmission of this code at his father’s estate, requested by his father
to convincingly demonstrate the usefulness of wireless. This had been the turning point from where
his father changed from a sceptic into an admirer of his son’s work.
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by visualising the process as occurring between discrete layers, although it should be
understood that it is a continuous process. The variations of refraction index with
height are strongly dependent on meteorological conditions, like temperature and
humidity. This explains why, in the first years of transatlantic wireless communication,
best results were obtained at night [4].18
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Fig. 2.18 By refraction in the atmosphere the wireless transmission between Poldhu and
St. Johns became possible.

2.1.4 After the First Transatlantic Transmission

The first transatlantic transmission got an enormous media coverage that made
Marconi a world hero and worked out well for the Marconi’s Wireless Telegraph Co.
Ltd. By 1903, six years after the beginning, the accomplishments were impressive.
To name a few [12]:

• The Marconi system had been adopted by the British Navy, which employed
32 installations on her warships and by the Italian Navy which employed 20
installations on her warships.

• Lloyds had a contract to use only the Marconi system.

• England had 10 coastal stations, the USA also had 10 coastal stations and
stations in Chicago, Cuba, Hawaii (4), Alaska and Milwaukee.

18In this chapter we have implicitly accredited Guglielmo Marconi as the inventor of the wireless
telegraph or radio. It is well known, however, that (long) before Marconi, elements of his radio system
had already been invented and used. Wire antennas, for example, were introduced by Joseph Henry
in 1842. In 1885, Edison patented a communication system using vertical, grounded antennas [13].
Also Popov in Russia is known to have used elevated wire antennas before Marconi did. A tuning
system had already been patented by Sir Oliver Lodge [17], the same person who, already in 1894,
had demonstrated the wireless transmission of Morse code over a distance of 60m [18]. What makes
Marconi unique, however, is that he took all the elements together and combined them into a working
and commercially feasible system.
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• The Dover-Calais and Ostend-Boulogne ships were equipped with Marconi
systems.

• Thirty transatlantic liners were already equipped with Marconi systems.

Despite the first transmission in December 1901 and the following media coverage,
it took Marconi till the autumn of 1907 to establish a regular, reliable transatlantic
telegraphy service [18]. By that time, transmitter powers had increased to 300kW [4],
and wavelengths had increased to 20,000m, corresponding to a frequency of 15kHz.
The antennas had become huge and must have suffered from a low efficiency, since
eye-witnesses from that era report to have seen the antennas glow red in the dark.

Although an everyday transatlantic exchange of radiotelegraphy was in existence
from 1901 onwards, it took until 1907, before this could be put into a reliable
and therefore commercially successful service. The key to this success was the
introduction of the suspended long-wire antenna, see figure 2.19, a structure found
- after experimenting with all kinds of wire structures - to be especially fit for long
distance communication [6, 13].

Fig. 2.19 Two versions of the suspended long-wire antenna, used for transatlantic
communication.

The antenna had directive properties, meaning that is was more sensible for
electromagnetic waves coming from certain directions than it was for electromagnetic
waves coming from other directions. In using the antenna for transmission, this meant
that it would radiate electromagnetic waves in certain directions more strongly than
into other directions. This property was highly desirable for realising the very long
distance to cover. The phenomenon of directivity will be covered in more detail, based
on intuitive reasoning, in the next section. Besides the property of directivity, the
antenna was also capable of sending and receiving over a wider range of frequencies
than previous antennas.

A mathematical explanation of the antenna operation - based on the image theory,
see figure 2.15 - was given in 1906 by Ambrose Fleming (1849–1945), professor
at University College, London, who had been approved as scientific adviser to
the Marconi Company in 1900 [4]. It is assumed that this must have been the
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first time that an antenna design has been accomplished both experimentally and
theoretically [6].

Marconi made a commercial success of wireless telegraphy, cleverly using his
technical insight, entrepreneurship and PR skills. In 1909 he received the Nobel Prize
in physics. In 1912, the importance of wireless telegraphy at sea became painfully
clear with the sinking of the - considered unsinkable - SS Titanic. The Titanic carried
a Marconi wireless set aboard and had sent out CQD distress calls (CQD was the
predecessor of SOS). In the accident, 1500 people died, 700 were saved. Tragically,
the nearby California, also had Marconi equipment aboard, but only one operator.
After a 16-hour shift, the operator had gone to sleep and therefore the distress calls
of the Titanic were missed [4].

While Marconi prepared for the first transatlantic transmission and subsequently
worked on establishing a regular, reliable transatlantic wireless telegraphy service,
other researchers had accomplished important results. Certainly worthwhile
mentioning is the work of Canada-born, USA Professor Reginald Fessenden (1866–
1932), the inventor of wireless telephony.

When wireless telegraphy came into use, it was common practice for the operators
to use headphones instead of the earlier mentioned Morse writer. Also Marconi, at
St. John’s, awaiting the first dots of the ‘S’ transmitted at Poldhu, used headphones
since the human ear is much more sensitive than the Morse writer. When the Morse
key of the transmitter was pressed, one could hear the crackle of the pulse train
transmitted by the spark transmitter. Fessenden put a microphone in series with the
antenna lead, see figure 2.20, and thus superimposed (low frequency) sound upon the
(higher frequency) pulse train [18].
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Fig. 2.20 An early version of Fessenden’s spark-gap telephony transmitter.

In 1900, Fessenden was able to transmit, over 1600m, ‘intelligible speech
accompanied by an extremely loud, disagreeable noise due to the irregularity of the
spark’ [18]. Fessenden realised that what was needed for a proper audio transmission
was continuous waves (CW) instead of a pulse train. He started out with the
development of spark generators with a pulse repetition frequency (PRF) above
audibility. Finally, in 1906, he succeeded in the creation of a true CW generator
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that could deliver enough power for transmission.19 In December of that year the
first radio broadcast took place from Brant Rock, Massachusetts and was received by
operators onboard ships equipped with Fessenden receivers.

The Fessenden receiver was basically a Marconi receiver, but the coherer-detector
was replaced with what Fessenden called a barretter. This barretter, or electrolytic
detector, see figure 2.21 [14, 18] transforms an alternating current into a direct current.
It may be considered as an early type diode.
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Fig. 2.21 An early version of a Fessenden receiver, employing a barretter or electrolytic rectifier
[14, 18].

In the transmitter, a (relative) high frequency signal is amplitude modulated (AM)
with the audio signal, by virtue of the changing impedance of the microphone when
subject to sound, see figure 2.22a,b. At the receiver end, the rectifying detector
converts the high-frequency component of the received signal, i.e. the CW carrier,
into a constant current and superimposes the low frequency component, i.e. the
information-carrying part of the signal, see figure 2.22c. This low-frequency signal
is transferred into sound in the headphones of the receiver set.

In 1905 Fleming invented the thermionic valve or diode, a valve detector [4]. The
diode, see figure 2.23 consists of a filament-heated electrode, called the cathode20

and an anode, both sealed in a vacuum glass tube. The filament heats the cathode
and therefore, electrons are emitted from the cathode. If the anode is positively
charged with respect to the cathode, electrons, emitted by the cathode will travel
to the anode and a current flows through the circuit, see figure 2.23a. If the anode
is reversely charged (with respect to the cathode), electrons, ejected by the cathode
will be decelerated and will not make it to the anode; a current will not flow in the
circuit, see figure 2.23b.

The invention of the diode, a reliable, compact rectifying detector, paved the
way for detection, reception and amplification of radio signals and thereby for
radiotelegraphy and radio broadcasting. Amplification became available in 1907, when

19Marconi started experimenting with CW systems in 1912 [4].
20The names cathode and anode for, respectively, the negative and positive electrode, as well as the
name electrode itself are given by Michael Faraday and originate from his (electro)chemical research.
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Fig. 2.22 Amplitude modulation. a. A (high) frequency CW signal is detected by a rectifying
detector. b. A low-frequency signal is modulating a CW signal. c. A rectifying component filters
the low-frequency signal from the modulated signal.
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Fig. 2.23 Fleming’s thermionic valve. a. Electrons emitted by the cathode (−) are travelling
to the anode (+), a current flows in the circuit. b. Electrons emitted by the cathode (+) are
repelled by the anode (−), no current flows in the circuit.

the American Lee de Forest (1873–1961) invented and used the triode or audion as a
radio detector [17, 19, 20].

Lee de Forest added a third electrode to the diode. This electrode, placed between
cathode and anode, had the form of a grid, see figure 2.24. The grid-shape allowed
electrons to flow through the grid from cathode to anode. By changing the potential
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between this grid and the cathode, the flow of electrons will be influenced. By making
the grid positive, relative to the cathode, the flow of electrons from cathode to anode
will be increased. By making the grid negative, relative to the cathode, the flow
of electrons will be decreased. The triode therefore, apart from being a rectifying
element, also provides amplification.
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Fig. 2.24 Triode or audion. Besides being a radio detector, the triode is also an amplifier.

In figure 2.24, on the left, we show the small AM modulated current picked up by
the receiving antenna. This current is flowing through the resistor providing a varying
voltage between grid and cathode. By virtue of this changing grid voltage, the current
amplitude in the circuit on the right, containing a resistor, a battery, the cathode and
the anode, follows the envelope of the rectified AM modulated signal. Since the current
amplitude in this circuit is much higher than the one picked up by the antenna, the
triode has performed both rectification and amplification. The amplified current is
led through a resistor, creating a voltage waveform.

2.1.5 Directivity

As we have seen in the previous chapter, an accelerated charged particle, emits
electromagnetic radiation in all directions, except those coinciding with the direction
of the particle movement. A charged particle, accelerated back and forth over an
infinitesimal distance, emits radiation continuously. This configuration is known as
the elementary or Hertzian dipole. On a macroscopic level, an alternating current
(i.e. a net replacement of charged particles), over a half wavelength wire, fed in the
centre, also behaves as a dipole, the charge accelerations/decelerations originating
from the tips of the half wavelength wire. This is shown again, for two-dimensional
cuts, in figure 2.25. Of course the radiation phenomenon is three dimensional, but
since the radiation is symmetrical around the dipole axis, two-dimensional cuts in
planes containing this dipole axis will contain all the information needed. The Marconi
antenna, being a quarter of a wavelength long acts as a half wavelength antenna
through the addition of the image in the ground of the quarter wavelength monopole.
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Fig. 2.25 Electromagnetic radiation. a. Radiation emitted by a charged particle. b. Radiation
emitted by an elementary or a half-wave dipole antenna.

Based on the radiation properties as observed in the above figure, we may regard
the radiation stemming from two so-called isotropic radiators positioned at the tips
of the dipole. An isotropic radiator is a radiator that emits electromagnetic radiation
equally in all directions.

Let’s now consider a sinusoidal continuous wave (electric field E in figure 2.26). For
educational purposes only, we convert this sinusoidal wave into a rectangular pulse
wave as shown in figure 2.26. Still assuming that we deal with an isotropic radiator,
we may - in a two-dimensional plane - represent the emitted wave as shown in the
figure by the concentric white and black rings. The wavelength is indicated in the
figure.

A half wave dipole antenna exhibits maximum charge accelerations (i.e. changes in
current) at the two tips. In the top part of figure 2.27 this half wave dipole antenna
with the current distribution over the antenna is shown (enlarged). Taking isotropic
radiation from the two antenna tips we observe a resulting radiation from the half wave
dipole antenna that exhibits directivity: a preference for certain directions over other
directions, see figure 2.27, bottom part. This directivity is the result of constructive
and destructive interference from the isotropic radiators, spaced half a wavelength
apart.

We see that this radiation agrees with what we have seen for an accelerated charged
particle, see figure 2.25a. Waves are emitted in directions perpendicular to the antenna
axis and no waves are emitted in directions along the antenna axis.

From this isotropic radiators exercise we may conclude that, since radiation is
inherently associated with charge displacement, isotropic radiators cannot exist in real
life. Isotropic radiators are physical abstractions that help us in the understanding of
antenna functioning.
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Fig. 2.26 Two-dimensional representation of isotropic radiation. A sinusoidal varying electric
field is - for educational purposes - transformed into a block wave.
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Fig. 2.27 Radiation from a half wave dipole antenna represented as interference from two
radiating isotropic radiators.
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So, the half wave dipole antenna, or actually the quarter wave monopole antenna,
employed by Marconi, already had some directivity. This directivity was such
that waves were transmitted equally around the antenna, having a maximum in
directions perpendicular to the antenna axis, loosing amplitude in directions going
from perpendicular to parallel to the antenna axis. Equally, the antennas were most
sensitive for waves coming in perpendicular to the antenna axis, losing sensitivity
for angles deviating from this direction, finally being insensitive for waves coming in
parallel to the antenna axis.

By enlarging the antenna to a full wavelength, we can distinguish three points of
maximum current change on the antenna and associated with these maximum current
change positions are three isotropic radiators, spaced half a wavelength apart. The net
radiation from these three (non-existing) isotropic radiators is shown in figure 2.28.

λλ

Fig. 2.28 Radiation from a full wave dipole antenna represented as interference from three
isotropic radiators.

We see that through constructive and destructive interference of the three isotropic
radiators a stronger directivity is obtained. The preferred radiation directions have
become more restricted; the radiation beams have become smaller. Thus, by enlarging
the antenna, the directivity has increased.

If we increase the antenna further to one and a half wavelength, see figure 2.29, we
can distinguish four distinct points of maximum current change. However, at every
point, the current undergoes a direction reversal (180◦ phase shift). Therefore, the
two inner points have a relative phase that is the reverse of the phase of the two outer
points. The isotropic radiators at the two inner points should therefore be represented
with concentric rings of black and white with the colours reversed. For clarity reasons -
the graphical possibilities in print being restricted - we have left out the contributions
of the two inner points since their contribution is highly outweighed by those of the
two outer points. The resulting radiation pattern is shown in figure 2.29.
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3λ/23λ/2

Fig. 2.29 Radiation from a one and a half wave dipole antenna represented as interference
from four isotropic radiators.

We see that for an antenna enlarged beyond one wavelength, additional beams are
formed. These results, obtained by physical reasoning and graphical representations,
are in agreement with the dipole antenna’s transmitted electric fields, calculated as
function of the angle relative to the antenna axis, see for example [21].

In the above explanation of directivity, we have restricted ourselves to single dipole
antennas only. Of course, for other wire (or metal plate) structures or combinations
of wire structures (arrays!) the same physical reasoning applies. The general idea
is to combine isotropic (or real) radiators in such a way that by the mechanism of
constructive and destructive interference of these individual radiators a net radiation
results that has the desired direction preference, i.e. directivity.

Directivity allows for an efficient use of available power in long distance
communication. Having reached the limit in generating more power, it finally was
the characteristic of directivity that allowed Marconi in 1907 to set up a reliable
transatlantic wireless communication service.

2.2 ANTENNA DEVELOPMENTS DURING THE FIRST WORLD WAR

The First World War was not the first armed conflict in which wireless communication
was used. That dubious honour is reserved for the Boer War in South Africa (1899–
1902). The conflict (over independence) was between the Boers of Transvaal and
Orange Free State and the British.
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Five mobile wireless installations were constructed by the Marconi Company
and, with six engineers from the company, delivered to the British Army. Although
the wireless sets seem to have been intended for ship-to-shore communications
- to assist disembarkment of reinforcement troops in 1899 - they were sent to
the front. The employment was far from a success for a multitude of reasons.
First of all, the appropriate poles to support the wire antennas were not available
and makeshift poles were made from bamboo, or kites were used to elevate the
wire antennas.21 The wireless sets used were of the ‘untuned’ type, meaning that
communication depended heavily upon the correct lengths of transmit and receive
antenna. Furthermore, lightning activity - not uncommon in South Africa - set off
the coherers, making wireless communication very difficult if not impossible. Finally,
the - as we now know - low conductivity of the South African soil was the reason for
a bad earth connection, further degrading wireless communication. In 1900, the sets
were transferred from the Army to the Navy - the masts of the cruisers were extended
to accommodate the long wire antennas - and performed very satisfactory [11].

The First World War started with the assassination of the Archduke Franz
Ferdinand, heir to the Emperor of Austria-Hungary, in Sarajeva, Bosnia-Herzegovina,
on 28 June, 1914. The reason for the world conflict was a complicated mixture of
economic interests and old sentiments. What was intended to be a quick, mobile,
military conflict ended up in a four-year trench-war on the European mainland, costing
the lives of millions of people, military and civilian.

At the outbreak of the war, wireless telegraphy and telephony was still in its infancy,
especially considering compactness and mobility. The 1918 British ‘Trench Set’ still
required 12 men to carry its components. The bulk of the components were the heavy,
wet-cell batteries [22]. Marconi’s focus on long-wave, high-power transmission turned
out to be an obstacle in creating compact wireless sets for use on land. For long-
distance communication, however, the long-wave sets performed well. At the beginning
of the war, the British Navy had dug up the German overseas telegraphic cables and
cut them and the Germans, in return, had dug up and cut Britain’s telegraphy cables
to India in Turkey. Connections were restored by means of wireless telegraphy.

At sea, the British Navy already had experience in using wireless. In 1914, the
wireless telegraph as means of long-range communication was used with success in
the campaign against the German commerce raiders. For shorter ranges, as in fleet
actions, the wireless was less successful. The long-wave networks overcrowded and
the Navy was forced to fall back to the old-fashioned flag-signalling with all its
drawbacks [22].

Guglielmo Marconi had volunteered in 1915 for the Italian Army and was
appointed reserve lieutenant in the airship engineers with the task of directing
telecommunications [4]. Based upon the then current (long-wave) wireless equipment,
he built (one of) the first apparatus for aviation, see figure 2.30.

The equipment was for transmission (of Morse code) only and weighed about
150kg. Pilots described it as ‘the very fat third passenger’. (The second passenger
was the operator of the wireless transmitter.) It was obvious that transmitters
and receivers operating with shorter wavelengths (i.e. at higher frequencies) were

21The kites were manufactured with the assistance of Baden Powell, the founder of the boyscouts [4].
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Fig. 2.30 Aircraft wireless telegraph transmitter.

desperately needed. The introduction of short wavelengths was withheld however -
after the initial experiments by Hertz, Marconi and others - by the availability of
high-frequency, high-power sources. Now, initiated by the war, research interest again
turned to short wavelengths, not only because it would allow the realisation of compact
wireless equipment, but also because it would serve the need for security by the ability
of making very directive antennas.

In 1916, Marconi constructed, from tuned wires, a cylindrical parabolic reflector.
A monopole aerial was positioned in the focal line of this reflector and the reflector
of the transmitter was made revolvable, see figure 2.31 [13]. Thus, Marconi realised
a (secure) point-to-point wireless connection, using wavelengths of two and three
metres.

Fig. 2.31 Marconi’s 1916 parabolic reflector.

The other way of securing wireless communication was using ciphers. At the
outbreak of the war, direction finding, message interception techniques, cryptoanalysis
and jamming techniques were all at their infancy but they developed rapidly
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throughout the war. The Tannenberg campaign in 1914 at the Eastern Front became
a German success because of the lack of Russian radio security. The difficulty in
distributing code books along the Russian lines, forced the Russians to transmit
messages unciphered, or en clair, permitting the Germans to listen in to the tactical
plans [22]. The Zimmermann telegram accident [22] is another example of the
importance of using secure communications. The then German foreign minister
Zimmermann, sent a telegram - in diplomatic code - to the German ambassador
in Washington. The message was intended for the Mexican government, trying to
get them to enter the war against the USA with Texas, New Mexico and Arizona
promised as reward. The message was cracked by the British and the contents were
- very secretly - passed to the US government. This so-called Zimmermann telegram,
made public on 1 March, 1917, helped bring the USA into the war.

2.3 ANTENNA DEVELOPMENTS IN BETWEEN THE WARS

In 1910, a carbon-arc transmitter of Lee de Forest was used by the De Forest Radio
Telephone Company for broadcasting music - including a performance of Caruso from
the Metropolitan Opera House - in the New York area [13, 17]. De Forest did not
realise that his audion could be used for voice transmission and in 1913 he sold the
rights to a lawyer, who turned out to work for the American Telephone and Telegraph
Company (AT&T) [17].

2.3.1 Broadcasting

In 1916 music was being broadcast from Monday till Saturday at New Rochelle, NY.
In 1917, broadcasts were carried out in Europe and in 1919 the Marconi Company
conducted broadcast tests, even though Marconi himself considered broadcasting a
misuse of his invention [13]. In 1920, broadcasts started on a regular basis and in
1922 the British Broadcasting Corporation (BBC) was formed [5]. In 1923, AT&T
in cooperation with RCA succeeded in accomplishing the first transatlantic wireless
telephony between Rocky Point, NJ, USA and New Southgate in England. A frequency
of 60KHz and a transmitter power of 60kW were used [25].

The early antennas in the broadcasting business were makeshift antennas, derived
from the designs used in point-to-point communication. Later, T-configured antennas
were used for the transmitters [26] and eventually the vertical radiators became
standard, due to their circular symmetrical coverage (directivity) characteristic
[13, 26]. The receiver antennas, used by the public, were backyard L-structures, see
figure 2.19, and T-structures, see figure 2.32.

Even nowadays, L- and T-configured antennas are employed for transmission and
reception aboard ships [26].

In 1919, Marconi had conducted experiments at 20MHz (15m wavelength), using a
vacuum tube generator. He found that even at this frequency, communication beyond
the horizon was possible [4, 13]. This led to a regained interest in microwave research
after the initial experiments by Hertz and Marconi in the previous century.
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Fig. 2.32 T-configured antenna.

2.3.2 Microwaves

In the 1930s a return to the higher end of the radio spectrum took place. Apart
from the antennas already described, like Hertz’ dipole and loop antenna, also the
electromagnetic horn antenna, invented by Chunder Bose before 1900 [6, 13] and the
open-ended waveguide, used by Oliver Lodge in the same period, were already used
for wavelengths ranging from 5mm to 20cm, or for frequencies ranging from 1.5GHz
to 60GHz. Figure 2.33 shows a rectangular open-ended waveguide radiator and a
pyramidal horn radiator, which is identical to the open-ended waveguide, except for
the flared transition to free space. These antennas are both member of the class of
aperture antennas.

In both radiators, a guided wave between the conducting plates of the rectangular
waveguide is launched by means of the coaxial probe at the left. This guided wave
travels to the right, the launched wave travelling to the left is reflected at the short
circuit plate and added in phase to the wave going to the right. At the end of the
waveguide or horn, i.e. at the aperture, the guided wave transfers into a radiated or
unguided wave. In contrast to the wire antennas we have been discussing so far, the
radiation from the aperture antennas shown in figure 2.33 is not symmetrical; energy
is mainly radiated into the directions to the right. This is indicated in figure 2.33d, in
a way similar to that we have been using to show the directive properties of a group
of isotropic radiators.

With the return to the short wavelengths, also the parabolic reflector antenna -
first used by Heinrich Hertz - made its reappearance. It may be said that many of
the antennas that (re)appeared in the 1930s were classical, i.e. still being seen today.
That even goes for the array antenna, already proposed in 1899 and implemented in
1906 [13].

An array antenna is a system of individual antennas, that, together, form another
antenna. To avoid confusion, from now on we will call the individual antennas
radiators and will only refer to the whole system or array as antenna or array
antenna. The purpose of arraying radiators is to shape (increase) the directivity.
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Fig. 2.33 Aperture antennas. a. Open-ended rectangular waveguide. b. Electric field lines in
the aperture of the waveguide. c. Pyramidal rectangular horn antenna. d. Indication of the
sensitivity of a horn antenna.

We may demonstrate this in a manner similar to the one we have been using for
demonstrating directivity before. What applied to two or more isotropic radiators,
also applies to a system of clusters of isotropic radiators, or in other words: ‘The
principal of superposition of isotropic radiation patterns also applies to non-isotropic
or directive patterns’. This is demonstrated for an array of half-wave dipole radiators
in figure 2.34.

We clearly see that by adding radiators, we can increase the directivity, i.e. confine
the radiation to a smaller angular region.

We have to bear in mind though that the reason for Marconi and others to
concentrate on long wavelengths thus far was due to the fact that long wavelength
electromagnetic waves undergo less attenuation than short wavelength waves do upon
travelling through the atmosphere. The difficulty in the creation of high-power, high-
frequency generators had turned the attention away from short to long wavelengths.
In the 1930s, however, technology had evolved to a level that made a regained interest
in short wavelengths feasible.

To name a few of the accomplishments: in 1931 a 17cm microwave link, using
reflector antennas, was established between England and France. In 1932, Marconi
discovered tropospheric scatter communication at 50cm. In 1936 TV broadcast service
started in England at 45MHz and in 1937 a radiotelescope reflector was built by
G. Reber, using a horn feed at 160MHz [13].

In 1933 Marconi spoke to the Royal Institution of Great Britain [27]. His
presentation, reprinted by the IRE in 1957, deals largely with the design of reliable,
high power transmitters for short wavelength communication. High power and
directivity were obtained by arraying dipole radiators, each one connected to a
transmitter and placed in the focal point of a wire-structure parabolic reflector [27].
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Fig. 2.34 Directivity of a dipole array antenna. a. Directivity of a single half-wave dipole
radiator. b. Directivity of a two-element half-wave dipole array antenna, radiators positioned
one half of a wavelength apart. c. Directivity of a four-element half-wave dipole array antenna,
radiators positioned one half of a wavelength apart.

In 1932, a below 1m wavelength communication system was installed at the Vatican
and at Castel Gandolfo, the summer residence of the Pope, at a distance of 20km
from Vatican City.

2.4 ANTENNA DEVELOPMENTS DURING THE SECOND WORLD WAR

The outbreak of World War II, in 1940, intensified the need for reliable, high-power,
high-frequency sources. These were needed for compact communication equipment as
well as for compact (airborne) and high-resolution radar. Radar is an acronym for
radio detection and ranging.

2.4.1 Radar

The use of radio waves reflected from conducting objects, was already demonstrated
for the detection of ships in 1903 and patented the next year by the German Christian
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Hülsmeyer (1881–1957). The German admiralty, however, was not interested due to
the fact that technology in those days limited the usable range to about 1.5km, well
within the range for visible detection [28].

In 1922, Marconi, in a speech to the (American) Institute of Electrical Engineers
(IRE), mentioned the use of radio waves for the detection of metallic objects [28, 29]:

As was first shown by Hertz, electromagnetic waves can be completely
reflected by conducting bodies. In some of my tests I have noticed the effects of
reflection of these waves by metallic objects miles away. It seems to me that it
should be possible to design apparatus by means of which a ship could radiate
or project a divergent beam of these rays in any desired direction, which rays,
if coming across a metallic object, such as another steamer or ship, would be
reflected back to a receiver screened from the local transmitter on the sending
ship, and thereby immediately reveal the presence and bearing of the other ship
in fog or thick weather.

In that same year, A.H. Taylor and L.C. Young of the Naval Research Laboratory
(NRL) made a CW interference radar, operating a wavelength of 5m. Transmitter and
receiver were physically separated (just like Marconi proposed in his 1922 speech).
With their CW interference radar, Taylor and Young demonstrated the detection of
a wooden ship. A proposal for further research was not accepted however [28].

The CW interference radar worked by receiving both the transmitted signal and
the Doppler-frequency-shifted reflected signal from the object. The reflected signal
interfered with the signal received directly from the transmitter and this interference
was detected as a ‘flickering’ or ‘flutter’ in the received signal. This ‘flutter’ therefore
announced the presence of an object in the transmitted beam.

In 1930, L.A. Hyland of NRL while experimenting with a 33MHz direction-finding
apparatus, noticed that aircraft could be detected by the principle of CW interference
and in 1934, after slow progress due to a lack of funds, a 60MHz CW interference radar
was demonstrated by NRL. The mentioned lack of funds was mainly due to the fact
that the CW interference radar could be used to detect the presence of an object
(airplane), but extraction of position information was extremely difficult. For that
purpose, pulse radar was needed. In 1936, NRL demonstrated a pulse radar with a
range of about 40km [28].

Radar developments in Britain started later, but with a war drawing near and
being in a very vulnerable position, much effort was being put into radar development.
Developments started in 1935 when the British Government asked Sir Robert Watson-
Watt (1892–1973) of the National Physical Laboratory to investigate the feasibility
of the so-called death-ray [28, 29].

The idea was born in the pre-war period - with all the progress being made in
the development of high-power radio transmitters - that high-power radio beams
could be used to sabotage the electrical ignition systems of aircraft engines. It
turned out that the amounts of power needed for creating a ‘death-ray’ made the
concept unfeasible. Together with this result of his study, Watson-Watt proposed
the investigation of radio detection as opposed to radio destruction, since detection
seemed to be technically feasible.

This proposal led to an experiment in 1935, involving the BBC’s radio transmitter
at Daventry. A van was equipped with a radio receiver, which was connected to an
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oscilloscope and stationed near the Daventry transmitter. When a bomber flew by,
oscillations caused by the BBC signal reflected from the bomber and interfering with
the signal directly received from the transmitter, were visible on the oscilloscope
[29]. This CW-interference experiment used a 6MHz signal and demonstrated a 13km
range [28].

In the same year, pulse technique was demonstrated at 12MHz and in 1936, the
range had been extended to 135km, using a frequency of 25MHz [28]. In 1937, a
number of radar stations - operating at frequencies in the range 20MHz to 30MHz
were erected along the British east coast and in the same year these stations were put
into 24-hour duty. The 24-hour duty of the so-called Chain Home (CH) radar lasted
till the end of the war. A CH radar station is depicted in figure 2.35 [29, 30].22

Transmitter

Receiver

tTransmitter

Receiver

t

Fig. 2.35 A Chain Home radar station with separate transmitting and receiving antenna.
The time elapsed between transmitted pulse and received echo is a measure for the distance of
the plane.

The transmitter towers were 105m high lattice steel masts, with the transmitting
antennae in between the masts. The receiving towers were 24m high wooden lattice
masts, carrying crossed-dipole antennas.23 The distance of the aircraft was obtained
by measuring (on an oscilloscope, see figure 2.35) the time elapsed between a pulse
transmitted and a pulse received after reflection. The height was obtained separately,
by an operator using a directional coil antenna after a target had been detected on
the oscilloscope screen [29]. The azimuth direction was obtained in the filter room,
i.e. the office were all CH radar information was collected and processed before it

22The line drawing is an interpretation of the author, based on photographs and descriptions in
literature. The problem with old or reproduced photographs is that they suffer in resolution, therefore
making wire structures nearly invisible. Most non-technical literature - if showing a CH radar station
at all - focus on the masts, disregarding the fact that the actual antenna is hung in between the masts.
Similar problems occur with photographs of Marconi’s ‘transatlantic’ antennas, [16]. Photographs,
being patched up by artists not understanding the picture are still in circulation, showing antennas
that have probably never been in existence.
23The lattice structure of transmitting and receiving masts and antennas proved to be a valuable
characteristic in the Battle of Britain, making it a very hard target to bomb since pressure waves
caused by non-direct hits would hardly damage the structure.
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was relayed to the headquarters of fighter command.24 In the filter room, the distance
information of two nearby CH radar stations was combined to get the azimuthal angle
information of the target, see figure 2.36 [31].

East coast Britain

North Sea

CH1

CH2

R1 R2

Azimuth position target

East coast Britain

North Sea

CH1

CH2

R1 R2

Azimuth position target

Fig. 2.36 The azimuth position of a target is found at the intersection of the circle with centre
CH radar station 1 (CH1) and radius the reported distance of CH station 1 (R1) and the circle
with centre CH2 and radius R2.

Because of this processing and to hide the real function of the CH stations, the
system was first called radio direction finding (RDF). This name later changed into
radio location (RL) and finally it became radio detection and ranging (radar), [31].

The CH wavelength (about 10m) and the position of the antennas (horizontal)
were chosen by Watson-Watt to coincide with span and position of the wings of a
bomber [31]. Next to the CH stations a chain of CH-Low (CHL) stations was also
erected, working with rotating antennas at a wavelength of 1.5m for the detection of
low flying targets [31]. The range of the CHL radar was much less than that of the
CH radar.

Later radar systems - operating at higher frequencies - were of the duplexing type,
sharing a common, highly directive antenna for transmission as well as for reception.

2.4.1.1 Radar Principle The radar principle is best explained using such a pulsed,
duplexing system, see figure 2.37.

A highly directive antenna is mounted such that it can be moved around (in
azimuth) and up and down (in elevation). Immediately after a pulse is transmitted, the
antenna is switched to the receiver. The time between a transmitted and a received,
reflected pulse is a measure of the distance of the target. The distance is half that
time (the pulse travels from the antenna to the target, the reflection travels from
the target to the antenna) multiplied by the speed of light. Since the antenna is
highly directive, i.e. transmitting the electromagnetic waves in a narrow beam, the
angular position of the antenna indicates the angular position of the target. When the
antenna is rotated and a fluorescent cathode ray tube (CRT) is configured such that

24At the headquarters of fighter command, finally, decisions were made concerning the employment
of (the scarce) fighter squadrons against the incoming bombers.
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Fig. 2.37 The radar principle. A pulse is transmitted and the antenna is disconnected from
the transmitter and connected to the receiver. When an echo (reflection) is received, the
time elapsed between transmission and reception indicates the distance, the angular positions
(azimuth and elevation) are those of the highly directive antenna.

the deflected electron beam follows this rotation, see figure 2.37, the so-called plan
position indicator (PPI) is created that was introduced later on in the second world
war. Now, the angular position on the PPI screen indicates the azimuth position of
the target and the distance can be read from the concentric circles on the screen.
(The centre of the screen corresponds with the transmitted pulse, the radius of the
screen corresponds to the time interval in between transmitted pulses. The radial
position of the echo on the screen is thus linearly related to the distance that can be
read as a fraction of the PPI radius.)

2.4.1.2 Further Pre-war Developments In the USA, the mentioned duplexing system,
wherein a common antenna is used for both transmission and reception was
demonstrated at NRL in 1936. This system operated at a frequency of 200MHz, but
was limited in range to about 20km. By 1938, this range was extended to 80km. In
that same year, the US Army also got involved in radar. The US Army Signal Corps
employed its first operational radar for antiaircraft fire control, the SCR-268 ; a pulsed
radar system. This SCR-268 was used in conjunction with search lights because of
the poor angular accuracy. The SCR-268 became the US Army Signal Corps standard
till January 1944 when it was replaced by the SCR-854 microwave radar. The SCR-
854 had a better angular accuracy and could be employed without the necessity of
employing search lights at the same time [28].

In 1939, the long-range SCR-270 radar, see figure 2.38, was brought into service
for early warning purposes. Six of these radars were positioned on Hawaii (as well
as 16 SCR-268 radars). One of the six SCR-270 radars detected the attack on Pearl
Harbor in December 1941, but the significance of this detection was not realised until
it was too late [28].
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Fig. 2.38 Antenna of an SCR-270 radar system. Note that the antenna is an array antenna
consisting of 8 × 4 horizontally positioned dipole radiators. The SCR-270 radar worked at a
frequency of about 100MHz.

The reason for using an array antenna is, as said before, to increase directivity.
In general, directivity increases with the size of the antenna. Thus, the larger the
antenna, the smaller the beam of electromagnetic waves.

In Germany, serious radar experiments commenced in 1934, even before Watson-
Watt was asked to investigate the ‘death ray’. In that year, Künhold of the German
navy demonstrated the detection of ships on 12km distance [31]. In 1937, the pocket
battleship Graf Spee was equipped with the Seetakt, a fire control radar. In 1938, the
Germans employed the long-range surveillance radar Freia and in 1939 the Würzburg-
A, an antiaircraft fire control radar [31]. The Freya radar operated at 126MHz, the
Würzburg radar, see figure 2.39, operated at a frequency of 570MHz [29].

a ba b

Fig. 2.39 Antenna of a mobile Würzburg radar installation, photographed in the Imperial War
Museum, London. Note the dipole in the focus of the parabolic dish. a. Front view. b. Side
view.
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In the years preceding the Second World War, radar developments were conducted
simultaneously in a lot of countries, including the USA, Great Britain, Germany,
Japan, Russia, France, Italy and The Netherlands. Therefore it is not possible to
accredit the invention of radar to a single country or individual.

All of the mentioned radar developments did not exceed frequencies of 600MHz.
The invention of the microwave radar, however, may be accredited to Great Britain.
Before we discuss the microwave radar, we conclude the prewar developments with a
remarkable radar development from The Netherlands.

As a result of rumours in the press concerning mysterious accidents involving
incapacitated car engines, thought to be due to a secret, German ‘death ray’, the
then Netherlands Minister of War was forced to take action. He established a research
institute that got the specific task of improving military equipment by applying
physical principles. In 1927 the ‘measurement building’ was erected near The Hague.25

This establishment has become the later TNO Physics and Electronics Laboratory.26

Professor J.L.W.C. von Weiler working at this institute, discovered that planes could
be detected by means of reflection of electromagnetic waves. His discovery led to the
realisation, in 1939, of the ‘electrical listening device’, see figure 2.40.27

Fig. 2.40 The 1939 ‘electrical listening device’ of von Weiler.

In this early radar system we again see the employment of an array antenna!
The array antenna consists of 32 (4 × 8) dipole radiators, positioned in front of a
planar wire mesh reflector. The radar system operated a frequency of 423MHz.28

25In the years of disarmament and pacifism between the two World Wars, the name ‘laboratory’ was
- for reasons of public relations - carefully avoided.
26TNO (instituut voor Toegepast Natuurwetenschappelijk Onderzoek) is the Netherlands Institute
for Applied Scientific Research.
27The name electrical was used to distinguish this device from the then existing audio devices.
These sound locators, consisting of artificially enlarged ears, could obtain a range - under favourable
conditions - of about 30km and were not fit for distinguishing course information.
28The antenna looks very similar to the antenna of the SCR-270 radar, see figure 2.38, having roughly
a quarter of its size which corresponds to the frequency being four times as high as that of the SCR-
270 radar. It may be assumed though, that developments in the USA and in The Netherlands took
place completely independent of one each other.
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The antenna motion is delivered by the radar operator, note the bicycle saddle and
pedals in figure 2.40. Radar information is presented on a CRT in front of the cyclist
operator.

In May 1940, when Germany invaded The Netherlands, a number of these radar
systems were transferred to Great Britain and at least one system is known to have
been operational during the war on board one of the Royal Netherlands Navy’s
warships that had taken refuge in Great Britain.

2.4.1.3 The Cavity Magnetron Although the Chain Home radar performed well in
daytime under good weather conditions, its accuracy was too low to guide fighter
aircraft completely to interception at night or in bad weather. The CH-Low was more
accurate, but lacked range. In order to overcome these problems, in 1939, an aircraft
interception (AI) radar (AI Mark II), operating a wavelength of 1.5m was installed in
an aircraft [28, 30]. The development of the AI Mark II had resulted in the observation
that an airborne radar could be used for the detection of ships from the air. After the
Battle of Britain when the air war subsided (around spring 1941), radar development
was directed to the detection of submarines, the next threat to Britain [30].

Since the need for mobile, airborne and high accuracy radar was getting more and
more urgent, the British Government in 1939 brought together scientists from various
universities to work on the creation of high-frequency sources [29]. The production of
enough RF power at high frequencies was the limiting factor in the development of
these desired radar systems. The frequencies aimed for ran up to X-band.

The frequency spectrum had been divided into frequency bands. The lower bands
followed the natural historic exploration of continuously higher frequencies. The
frequency bands opened up during the Second World War are designated randomly
for reasons of military secrecy. The frequency bands are listed in table 2.1 [28]. In
this table also the new band designations - that are more systematic - are listed [32].
Although the new band designations are the recommended ones, the old ones are still
used by microwave engineers and it will probably take at least a whole generation
before the old habit dies out.

Table 2.1 New and old frequency band designations.

Old band designation Frequency range New band designation Frequency range

HF 3-30MHz C 500–1000MHz
VHF 30-300MHz D 1–2GHz
UHF 300-1000MHz E 2–3GHz
L 1–2GHz F 3–4GHz
S 2–4GHz G 4–6GHz
C 4–8GHz H 6–8GHz
X 8–12GHz I 8–10GHz
Ku 12–18GHz J 10–20GHz
K 18–27GHz K 20–40GHz
Ka 27–40GHz
mm 40–300GHz
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John Randall (1905–1984) and Henry Boot (1917–1983) were two of the scientists
in the British ‘think tank’ at the physics department of Birmingham University. Since
they had been assigned to work on receiver valves, they started with the creation of
a microwave source for testing the receivers. Based on a low power device from 1921,
called the magnetron, they got the brain-wave to create a resonant structure: the
cavity magnetron. The first model was tested in early 1940 and immediately performed
very well. It was possible now to create 500kW at 3GHz or 100kW at 10GHz with
an extremely compact device [28, 29]. The early type cavity magnetron is shown in
figure 2.41 [28, 32].
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Fig. 2.41 Cavity magnetron. a. Top view. b. Side view. c. Electron movement.

The cavity magnetron consists of a cathode, coaxially placed inside an anode
block. Inside this anode block, holes and slots are cut. The slots connect the holes
to the interaction space, i.e. the space wherein the cathode is centrally located, see
figure 2.41a. The holes form resonant electromagnetic cavities. The cavity magnetron
is placed in a permanent magnetic field, see figure 2.41b. When electrons are
emitted by the cathode and moving towards the anode, the magnetic field - being
perpendicular to this electron motion - causes a force to act upon the electrons in a
direction perpendicular to both the electron velocity and the magnetic field as shown
in figure 2.41c. Therefore, the electrons, upon leaving the cathode, will bunch and
move along in a circular motion. The presence of the holes or resonant cavities allows
for the existence of an electromagnetic field moving in a circular motion at the same
speed as the electrons. Therefore the electrons can deliver radio frequency (RF) power
to the electromagnetic wave.29 This power may be extracted by a coaxial line loop as
shown in figure 2.41a,b or by means of a waveguide [28, 32].

The theory explaining the operation of the cavity magnetron became available after
the functionality had been demonstrated. Randall has said about this:

29This is often compared with blowing over the opening of a bottle. The cavity (the bottle), when
brought into resonance then, creates a whistling sound.
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It was fortunate that we didn’t have time to study all the learned papers
available on the magnetron, otherwise we would never have started.

The invention of the cavity magnetron made a large improvement in the AI radar
possible. The AI Mark IV became a success. Later versions of the Mark IV could
provide 10kW of power and provided a detection range of up to 6km [30]. From the
AI radar came the air to surface vessel (ASV) radar. The ASV Mark II (the equivalent
of the AI Mark VIII), that went into service in 1943, could detect submarines on the
surface at distances up to 10km [30].

The magnetron and ASV design had been brought to the USA in the so-called
Tizard Mission30 in 1940 - a mission to exchange war-time secrets for production
capacity - and led to the introduction of microwave radar in the USA.

Tests with the high-frequency, cavity magnetron powered ASV radar had revealed
that landscape features like coast lines, rail lines, roads and rivers could be easily
identified (even through clouds) on a PPI. This led to the development of a
navigational radar for bombers, the H2S, formerly known as blind navigation (BN)
radar. Several explanations for the name H2S exist. The name is said to be an acronym
for height to slope or home sweet home. It is also said that the name stands for the
chemical symbol for hydrogen sulphide, referring to the fact that the device ‘stinks’
and another explanation is that the ‘S’ is referring to the frequency, ‘S-band’. Most
likely though the name does not refer to anything for military security reasons.

The H2S radar was compact enough to be fitted in a blister on the belly of a bomber.
The antenna, a compact parabolic reflector antenna, would rotate, see figure 2.37, and
thus scan the terrain underneath the bomber and display the terrain features on the
PPI CRT inside the bomber. At the start, the British were very reluctant to bring
the cavity magnetron aboard operational aircraft, for fear of the enemy obtaining this
device from a shotdown aircraft. In February 1943, a Pathfinder31 was shot down
near Rotterdam, The Netherlands, and parts of the H2S radar, including the cavity
magnetron were captured (and copied) by the Germans. After that accident the H2S
was used on a large scale, although it did not increase bombing accuracy up to the
level expected [30].

Another negative aspect of H2S was that since it was continuously transmitting
pulses, enemy night fighters could and did home in on these signals (using the NaxosZ
unit, see figure 2.42) and created havoc on the bomber formations [30].

2.4.1.4 German Airborne Radar Although, Germany did not have a cavity
magnetron, the Germans had developed an airborne 50cm radar, known as the
Lichtenstein radar. Since countermeasures were introduced to ‘blind’ this radar,
larger wavelength Lichtenstein radars were introduced as counter-counter measure,
see figure 2.43.

The mentioned countermeasures consisted of ejecting clouds of metal foil strips
having each a length equal to the wavelength of the radar. These clouds of strips,
ejected from a high flying plane, when floating down to earth, would therefore generate

30Named after the mission leader Sir Henry Tizard.
31Pathfinders were bombers fitted with the cavity magnetron radar that had the task of flying ahead
of the bomber waves, identify the target and drop down incendiaries or flares on this target to mark
it for the bomber formations ahead.
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Fig. 2.42 The NaxosZ unit was small enough to be fitted in Junkers Ju 88G or Messerschmitt
109G airplanes. The Naxos unit was also used aboard submarines to locate merchant and other
vessels [33].

Fig. 2.43 The double-dipole antennas of a two metre wavelength Lichtenstein radar mounted
on the nose of a Junkers Ju 88G night fighter. The four antennas are sequentially switched
to the radar transmitter/receiver and thus provide a conical scan of the area in front of the
aircraft [30].

a massive reflection, cluttering the PPI, making it possible to fly behind the cloud,
undetected by the radar. The British called this system window, the Germans called
it Düppel and the Americans called it chaff, the name that is still in use today [29].

2.4.2 Other Antenna Developments

Apart from radar, electromagnetic waves - and thus antennas - were employed for
communication and other war needs, such as identification friend or foe (IFF),
navigation and direction finding. In the subsequent paragraphs we will briefly outline
these applications and the antennas used.
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2.4.2.1 IFF When radar became operational, the immediate need evolved to
distinguish between received echoes from friendly and enemy vehicles. At the
outbreak of the war, the need was most prominent for the identification of aircraft.
The first identification friend or foe (IFF) systems aboard aircraft consisted of dipole
antennas, see figure 2.44, tuned to the (‘friendly’) radar frequency and alternately
short- and open-circuited. This switching caused a fluctuating radar echo to be
received at the radar station and served the purpose of identifying the aircraft as
being ‘friendly’ [34].

Fig. 2.44 IFF antennas on a Supermarine Mark I Spitfire.

This system was not very reliable. Another system to identify friendly aircraft
was known as the pipsqueek system [31, 34]. For the pipsqueek system the aircraft
was equipped with a mechanical timer connected to the already present wireless
communication system. Fourteen seconds of every minute, the switch would turn
on the transmitter and transmit an unmodulated signal. The combined output of
ground-based direction-finding stations then could determine the aircraft position,
see figure 2.36. Also this system was far from perfect. It would, for example, prohibit
the pilot from using the transmitter or receiver for 14 seconds every minute.

The next development was the IFF Mark I which consisted of a complete
transmitter/receiver. The unit was normally in receive mode. Upon receiving a
(friendly) radar signal, it went into transmitter mode and returned a signal to the
radar that interfered with the radar echo and so identified the carrier of the IFF Mark I
as being ‘friendly’. The frequency of the set was swept over all radar frequencies
being used so that it could operate in cooperation with all current radar systems.
Its successor, the IFF Mark II was updated for the new frequency bands being put
into use and its return was a coded response, [34].

The IFF Mark III became the standard being used by the Allies. At the ground
radar station an interrogator transmitted in between the radar pulses. The unit aboard
the interrogated vehicle, i.e. the transponder, responded with a coded signal. This
signal was received by the responder at the ground station, processed and displayed
on the radar screen [34].
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The IFF Mark III was also used aboard ships. The interrogator antenna most
commonly consisted of system of four folded dipole radiators, see figure 2.45.

a ba b

Fig. 2.45 Shipboard IFF antenna. a. Rotatable array of four folded dipole radiators. b. A folded
dipole antenna evolved from a ‘standard’ dipole antenna. A folded dipole antenna exhibits an
input impedance about four times that of a dipole antenna, making it fit to be connected
directly - i.e. without impedance transformer - to a two-wire transmission line.

2.4.2.2 Navigation The start of the Second World War was also the beginning of the
air war. The way of determination of position and course of aircraft (bombers) thus
far had just been dead reckoning. So an immediate need for more accurate methods
existed.

Knickebein In Germany, the Lorenz company had devised a navigation system (also
called Lorenz ) for Lufthansa in 1934. At the outbreak of the war this system had
been upgraded into the Knickebein (crooked leg) system, named after the shape of
the antenna, see figure 2.46.

Again we see an array of dipole radiators. As we have seen in figure 2.34, the array
configuration is used to increase the directivity or create a narrow electromagnetic
beam. This particular antenna got its crooked shape for a particular reason.

The antenna, which could be rotated around its axis, would alternately transmit
two beams, see figure 2.46b, one carrying an audio tone representing Morse ‘dots’,
the other one an audio tone representing Morse ‘dashes’. An aircraft receiving the
Knickebein signal could decide on the basis of the received signal if and how it had to
correct its course [35]. When on course, the dots would add up to the dashes, producing
a continuous tone. Since the Knickebein antenna could be rotated, the centreline
between the two beams could be directed to a desired course. When drifting to the
right, see figure 2.46b, dashes would be heard aboard the aircraft and a correction
to the left should be made. When drifting to the left, dots would be heard and a
correction to the right should be made.

A second transmitter, on a separate location, was used in the Knickebein system.
A bomber was keeping its course by listening to the dots and dashes of the first
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Fig. 2.46 The Knickebein system. a. Knickebein antenna. b. One of the beams is transmitting
Morse ‘dots’, the other one Morse ‘dashes’. At the centreline in between the lobes a continuous
tone will be received.

transmitter. Upon receiving the signal from the second transmitter, that was also
aimed at the target, the target was reached and the bombs would be dropped.

Gee Early in the war, the British had developed the Gee32 navigation system [35].
Gee is a so-called hyperbolic navigation system. It operates on the basis of timing the
delays between sets of received signals. When a master ground station M transmits
a pulse and a slave station A transmits a pulse after a prescribed time interval, a
receiver can determine the time difference between the pulse received from M and
the one received from A, see figure 2.47.
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Fig. 2.47 The Gee system. Curves of constant time delay translate linearly to curves of constant
distance difference between two points. These curves form hyperbola.

32Or AMES Type 7000. Gee was short for ‘Grid’.
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Since the velocity of the electromagnetic waves is finite and constant, the time
difference translates linearly to a difference in distance relative to the master and to
the slave. If, for example the time difference is zero, the receiver will have the same
distance to M as to A. It then will be somewhere on the straight line in between M and
A. For any time difference unequal to zero, the receiver will be on a curve of constant
time difference that translates to a curve of constant distance difference relative to M
and A. These curves form hyperbola. As an example, consider the positions 1, 2 and
3 in figure 2.47. As can be seen, the distance differences relative to M and A (the
thick line pieces) are equal for all three positions on this hyperbola.

To straighten out the remaining uncertainty in position, a second slave is needed
on a separate position. If the master transmits a pulse and after a prescribed time,
slave A transmits a pulse, the position on the first set of parabola may be determined.
If then, after a prescribed time, the master transmits a double pulse and a prescribed
time after this double pulse, a slave station B transmits a pulse, the receiver position
may be determined on a second set of parabola. The exact position of the receiver is
then found where the two parabola intersect, see figure 2.48.
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Fig. 2.48 The Gee system. The position relative to M and A is on the fat hyperbola.
The position relative to M and B is on the fat dashed hyperbola. The exact position is at
the interception point of these two hyperbola.

The double pulse of the master station is needed to distinguish between determining
the position relative to M and A and determining the position relative to M and B.

X-Gerät The X-Gerät was the German derivative of Knickebein [35]. It operated at
a higher frequency - 60MHz instead of 30MHz - and could therefore employ a less
clumsy, more compact antenna. This antenna did not generate a single small beam
but 14 individual, equal strength, small beams. These beams were used for staying
on course and, also just as in the Knickebein system, a second beam was used to
determine the drop point. Because of the multiple beams of the X-Gerät, the bomber
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had to pass multiple beam interception points or checkpoints before reaching the
correct dropping point.

By 1941, the X-Gerät, like its predecessor, Knickebein, had become useless because
of the jamming activities in Great Britain.33

Y-Gerät The Y-Gerät was the successor of the X-Gerät. In the Y-Gerät the need
for a second transmitter, generating a beam to intersect with the ‘course beams’ to
determine the dropping point, was eliminated. The course beams were still present,
but now, from the same transmitter location a second signal was transmitted that
was reradiated by the equipment aboard the bomber. The phase difference between
the signal transmitted by the ground station and the signal reradiated by the bomber
increased with the bomber getting further away from the ground station. This phase
difference was monitored at the ground station and when the bomber reached its
target, the bomber crew was informed so by the ground station over radio. Also early
in 1941 this system had become useless due to the British jamming activities.34

Oboe Oboe or AMES Type 9000 was developed by the British to improve targeting
accuracy. Gee was good enough for getting an estimate of one’s position, but lacked
the accuracy needed for targeting. The Oboe system was developed on the basis of
Chain Home technology, using transponders [35]. Two stations in Britain, at separated
locations, would transmit a signal to a light bomber (a Mosquito pathfinder). The
transponder aboard the bomber would reradiate or reflect the signal and from this
reflected signal, picked up again by the stations in Britain, the distance to the bomber
would be determined. The bomber then would fly along the circumference of the circle
of constant distance defined by one of the stations in Britain, called the Cat until it
reached the intersection with the circle of constant radius defined by the other station,
called the Mouse, see figure 2.49, were it was told to drop the flares for marking the
target so that heavy bomber formations could sight on these flares.

For the obvious reason of the predictable fly path, the Germans called the system
Boomerang.

A drawback of the system was that one pair of Cat and Mouse stations could only
direct one plane. This drawback was annihilated with a new scheme wherein the plane
carried the transmitter and the ground stations were equipped with transponders [35].
This updated Oboe system was called Gee-H.

Decca Another hyperbolic navigation system, meant to replace Gee, was the QM or
Decca navigator. Decca was developed, implemented and maintained by Decca Radio
Ltd, a commercial company. In contrast to Gee, Decca used continuous waves rather
than pulses, on a lower frequency - 70kHz to 130kHz as opposed to 20MHz to 85MHz -
and was less accurate but could be used over longer distances. Like the Y-Gerät, it used
phase to determine distance. To be more precise, it used phase differences between
signals received from different stations to determine possible positions on hyperbola

33The signals were injected with Morse code patterns to degrade them beyond use.
34The jamming of the Y-Gerät consisted of receiving the signal and radiating it back at high power.
For this purpose, amongst others, the large BBC transmitting station in London, set up for national
television broadcasting just before the war, was being used.
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Fig. 2.49 The Oboe system. The Cat directs the bomber to the target, the Mouse indicates
the dropping point.

laid out over a map. Since CW signals are periodic, the same phase relationships
repeat with growing distance. Therefore, the Decca receiver needed to keep track
of the number of passings through the same phases. The Decca system, which was
developed for the British Admiralty was not used until D-day. It was used however
till long after the war. It remained in service until the year 2000.

LORAN The LOng RAnge Navigation (LORAN ) system was the United States of
America version of the British Gee system [35]. The development work on Gee had
been reported in the USA by the Tizard mission, and LORAN was the result of the
work performed on the idea at the Rad Lab.35 LORAN used longer wavelengths than
Gee and therefore had a greater range, at the expense of less accuracy. LORAN was
first put in service in 1943 and at the end of the war a navigational coverage of 30%
of the earth’s surface had been reached. LORAN is still in existence today.

2.4.2.3 Huff Duff One lesson learned from the First World War was the danger that
submarines form for merchant vessels. As a result of this threat, the convoy system
had been invented that made it very difficult and dangerous for a single submarine to
attack a merchant vessel. Therefore, the German Admiral Dönitz, in building the new
U-boat fleet came up with the wolf-pack strategy. In the wolf-pack strategy individual

35After the secret Tizard mission in 1940 had brought the cavity magnetron to the USA, the
Massachusetts Institute of Technology (MIT) was chosen in that same year to house an independent
laboratory staffed by scientists from every discipline to aid in the war effort. The newly formed
Radiation Laboratory (Rad Lab) investigated aspects of microwave electronics. Large-scale research
was devoted to the development of microwave radar. The Rad Lab closed on 31 December, 1945, but
many of the staff members remained for another six months or more to work on the publication of the
results of five years of microwave research and development. This resulted in the famous 28 volumes
of the Rad Lab series, many of which are still in reprint today.
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U-boats were sent to sea in a search pattern to find a convoy. Once a convoy was found,
the U-boat crew would transmit a coded message to shore informing about position
and course of the convoy and this message would be broadcasted from the shore to
the other U-boats. Then the U-boats would gather and make a coordinated attack
[36, 37].

The only weak spot in this strategy was the necessary radio communication, which
had been chosen to use high frequency (using ionospheric reflection) to minimise
the risk of detection. This high frequency (HF) signal was exploited by the allies to
detect the U-boats with the high frequency/direction finding (HF/DF) equipment.
The HF/DF soon got nicknamed Huff Duff.

An excellent antenna for direction finding is the loop antenna. The loop antenna
is the dual of the dipole antenna. The loop antenna receives a maximum signal when
the plane containing the loop is parallel to the direction of wave propagation and it
receives a minimum signal (a ‘null’) when this plane is perpendicular to the direction
of wave propagation, see figure 2.50.

a b

Fig. 2.50 By detecting the maximum (a) or a null (b) in the received signal, while rotating a
loop, the direction of a transmitter may be found.

However, rotating the antenna takes time and requires a high mechanical precision
for reading the antenna position. This may be overcome by using two antennas,
positioned perpendicular to one each other, connecting the terminals to coils which
are also placed perpendicular to one another and then rotating a third coil in the
magnetic fields of these two coils to obtain a direction by either looking for a null or
a maximum.36 This configuration is know as a radio goniometer, [36], see figure 2.51.

The magnetic fields of the coils are linearly related to the received electromagnetic
fields by the loops. Thus by comparing the amplitudes and knowing that the fields
are perpendicular, the bearing may be found by vector addition, see also figure 2.51.
Of course this setup only gives the line bearing, the actual transmitter can be on
either direction along this line bearing.

This ambiguity may be solved by adding a omnidirectional reference antenna with
unambiguous phase relationship in between the two antennas. In figure 2.52 this

36In general a null is easier to detect than a maximum.
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Fig. 2.51 Determination of the line bearing using a goniometer.

setup is in what is called a Watson-Watt arrangement [38]. The sensitivity of the loop
antenna is at maximum in the plane containing the loop and at minimum in the plane
perpendicular to the loop. The sensitivity as a function of azimuth angle is therefore
in the form of an ‘eight’, see figure 2.52. The sensitivity of the omnidirectional antenna
as a function of the azimuth angle is constant and is therefore represented by a circle
around its axis. The output of one of the loop antennas is now - in the Watson-Watt
arrangement - fed to the x-deflection plates of a CRT and the output of the other
loop antenna is fed to the y-deflection plates of the CRT. The omnidirectional antenna
output is used to blank the reciprocal bearing and the direction of the transmitter
may be read directly from the CRT.

Other configurations of the huff duff antenna, using different radiators exist as well.
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Fig. 2.52 Huff duff antenna arrangement with Watson-Watt instantaneous CRT display.
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2.4.2.4 Examples A nice opportunity to see an important range of antenna
developments during the Second World War and shortly thereafter is offered by a
visit to the London warship HMS Belfast. She may be found in the Thames in front
of the Tower Bridge, see figure 2.53.

Fig. 2.53 HMS Belfast.

The cruiser HMS Belfast was launched in March 1938 and served throughout the
Second World War, playing a leading part in the destruction of the German battle
cruiser Scharnhorst at the Battle of North Cape and in the Normandy Landings.
After the war, she supported United Nations forces in Korea and remained in service
with the Royal Navy until 1965. In 1971 she was saved as a unique and historic
reminder of Britain’s naval heritage in the first half of the twentieth century.

To see these antenna developments at a single glance, we take a look at the foremast
of the ship, see figure 2.54.

We have numbered the different antennas we find in the foremast:

1 VHF Communication Aerial. This antenna takes the form of a half wave dipole.

2 Target Indicating Radar Antenna. This antenna is a so-called pillbox or cheese
antenna. A pillbox antenna belongs to the class of parabolic cylindrical reflectors
[13, 38]. The feed of this antenna may be a dipole antenna or a horn antenna.
The focal point of the reflector is usually found in the centre of the aperture.

We have seen in discussing the arraying of dipole radiators that adding more
dipoles to an array led to a narrower antenna beam. The relationship is in fact
broader than that: the larger the antenna aperture, the smaller the antenna
beam will be and even more specifically: the larger an aperture dimension, the
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Fig. 2.54 The foremast of HMS Belfast.
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Fig. 2.55 The beam of a pillbox antenna is narrow in the plane along the long dimension of
the aperture and broad in the plane along the small dimension of the aperture.

smaller the antenna beam will be in the plane along this dimension. This is
shown in figure 2.55. We call this type of antenna beam for obvious reasons a
fan beam.
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When the pillbox antenna is rotated along the z-axis, see figure 2.55, a very
accurate azimuth position of a target may be obtained. An accurate elevation
position needs to be determined by other means.

3 Navigational Radar Antenna. This antenna is also of the pillbox type and will
be rotated in azimuth. For navigational purposes, only azimuth and distance
information is important. Therefore a wide beam in elevation, combined with
the small beam in azimuth will be useful. This antenna needs only be rotated
in azimuth (and not in elevation) to obtain all relevant information.

4 Height Finding and Search Radar Antenna. This is a doubly curved, paraboloidal
type of reflector antenna. In general, the feed antenna (dipole or horn) is
placed in the focal point, see also figure 2.37. The antenna beam is rotationally
symmetrical and provided the aperture is large enough, this beam may be very
small, see figure 2.56. We call this type of antenna beam, again for obvious
reasons, a pencil beam.

Fig. 2.56 The beam of a paraboloid reflector antenna is narrow in the planes along every
aperture dimension.

In figure 2.56, we have shaded the feed and feed support, for reasons of
simplifying the figure. In practise, feed and support blocking may seriously
degrade the antenna functioning and therefore often an offset feed is being used.

Due to the narrow beam, this type of antenna may be used in a radar
system for obtaining both accurate azimuth and elevation information of a
target. Searching the whole hemisphere by rotating the antenna in azimuth
and elevation will take too much time. Therefore, a fan beam antenna will be
employed for target indication (see 2) and when a target position is found in
azimuth, a height finding and search radar, using a pencil beam antenna, will
be employed to get accurate angular position information and follow or track
the target, see figure 2.57.
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a

b

a

b

Fig. 2.57 Target searching and tracking. a. The target indication radar, employing a fan beam
antenna, is rotated in azimuth to detect targets. Once a target is detected, the height finding
and search radar takes over. b. The height finding and search radar, employing a pencil beam,
is employed for searching the target, starting from the azimuth position found by the target
indication radar. When the target is found, the height is also determined and the target may
now be tracked.

5 UHF Communication Aerial. Low-gain UHF antennas may be realised in discone-
monopole form. The length of the antenna is close to a quarter of a wavelength,
the infinite ground is replaced by a finite size disk and the monopole (half a
dipole) is cone-shaped to widen the monopole bandwidth.

Other antennas developed during the second world war worth mentioning are slot
antennas and arrays of slots and metallic and dielectric lens antennas. Examples of
these antennas are shown in figure 2.58.

The functioning of lens antennas may be explained by using optics, just as we
used optics to explain the functioning of (parabolic) reflector antennas. By virtue of
Babinet’s principle [40], slots may be seen as the dual of metal strip antennas, just
like the loop antenna is the dual of the dipole antenna.

2.5 POST-WAR ANTENNA DEVELOPMENTS

Although it is not the purpose of this book to give an exhaustive overview of all
possible kinds of antennas - there are much better books dealing with that subject,
for example [38] - it is the author’s belief that at least commonly encountered antenna
types should be briefly introduced in this introductory chapter.
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a ba b

Fig. 2.58 Slot and lens antennas. a. Two slots cut in the broad wall of a rectangular waveguide.
Also slots in the small side are possible. b. Lens antenna, fed by a pyramidal horn antenna.
The lens may be dielectric or made out of parallel metal plates as shown in the inset.

Most antenna types in use today have seen their origin in the late nineteenth
century or were developed during the Second World War. The monopole antenna we
use for our car stereo has been in use since the early experiments of Marconi, the
parabolic dish reflector antenna we use for the reception of satellite television signals
has seen its origin in Hertz’s experiments and has been re-introduced in radar systems
during the Second World War. The antennas in our cellular phones may be traced
back to the monopole of Marconi and the antennas that may be on top of our roofs
for the reception of TV broadcast signals are in some form or other consisting of a
feed antenna and a reflector, like the many reflector antenna configurations developed
during the war.

After the war, a number of completely new antenna configurations have been
developed that are not directly derived from war or pre-war antennas. In the following,
we briefly describe a choice of these antennas.

2.5.1 Frequency Independent Antennas

At the end of the 1950s, three principal ideas concerning the creation of frequency
independent antennas emerged. With the term frequency independent is meant that
the antenna pattern and impedance remain constant over a relatively wide (10:1)
frequency bandwidth [38, 39]. These three principal ideas are:

• Angular condition When an antenna is satisfying the angular condition, its
form is completely determined by angles and not by any dimension. It means
that a basic antenna structure may be transformed into an identical structure,
except for a possible rotation. Examples of such an antenna are the conical
antenna, see figure 2.59a and the planar equiangular antenna, see figure 2.59b.
These two antennas may be thought to consist of an infinite number of resonant
antennas, each resonant at a single frequency. Antennas possessing the angular
condition are also referred to as continuously scaled structures [38].
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• Log-periodicity If a basic structure is discretely scaled by a factor 1
τ , it will

show the same properties at the frequencies f and τf . Therefore the antenna
characteristics become a periodic function with period |log(τ)|. An example of
such a log-periodic antenna is shown in figure 2.59c.

• Self-complementarity When a planar conducting strip antenna is joined by its
complementary or dual structure (created by interchanging conducting and non-
conducting parts of the planar strip antenna), the impedance of the complete
structure will be frequency independent. This results from Babinet’s principle
[40], from which it follows that the product of the impedance of the original
structure and that of the complementary structure is constant, independent
from frequency [38, 39]. An example of a self-complementary antenna is shown
in figure 2.59b.

a b ca b c

Fig. 2.59 Frequency independent antennas. a. Biconical dipole antenna. b. Equiangular
complementary (strip-slot) spiral antenna. c. Slot log-periodic antenna.

2.5.2 Helical Antenna

The helical antenna or helix emerged from the helical wave-guiding structure used in
travelling wave tubes (high-frequency (radar) sources). In 1946, John Kraus (1910–
2004) made the first helical antenna in his cellar [40] and showed a high gain (narrow),
circularly polarised beam.37

The helical antenna, see figure 2.60, may be regarded as the general case of the
linear antenna and the loop antenna, both linear antenna and loop being special
cases of the helical antenna [40]. The antenna may be operated in three modes, called
respectively normal mode, axial mode and conical mode, referring to the shape of the
radiation pattern, see figure 2.60.

37Polarisation describes the position of the electric field vector in time. An electric field vector
changing with time along a line is called a linearly polarised electric field. An electric field vector
describing a circle in time is called a circularly polarised electric field. Polarisation will be treated in
more detail in the next chapter.
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• Normal mode In normal mode, the radiation reaches a maximum in directions
normal to the helix axis, see figure 2.60a. This mode occurs for helix diameters
being small with respect to the wavelength [38–40].

• Axial mode In axial mode, see figure 2.60b, the radiation is at maximum in
the axial direction of the helix. This mode occurs when the helix circumference
is of the order of one wavelength [38–40]. The axial mode is the most commonly
used mode.

• Conical mode The conical mode, see figure 2.60, will be obtained for helix
dimensions exceeding those needed for axial mode operation [38, 40]. These
dimensions will result in higher-order radiation modes that are characterised
by multilobed or conical radiation patterns.

a b c

d≈λ/πd<λ d>λ/π

a b c

d≈λ/πd<λ d>λ/π

Fig. 2.60 Helical antenna. a. Normal mode. b. Axial mode. c. Conical mode.

2.5.3 Microstrip Patch Antenna

Microstrip patch antennas have evolved from microstrip transmission line technology
in the 1950s. In the 1970s, the need for low profile, conformal (i.e. curved) antennas
led to extensive research in the field of these printed antennas [41].

Microstrip patch antennas are constructed using printed circuit board (PCB)
technology. The basic rectangular microstrip patch antenna consists of a thin
rectangular electric conductor of length L and widthW on top of a grounded dielectric
slab of height h and relative permittivity (dielectric constant) εr, see figure 2.61a,b.

The microstrip patch may be considered as a cavity with electrical conducting
top and bottom and magnetically conducting sidewalls. The electrical conducting top
and bottom force the electric field lines to be perpendicular to them, the magnetically
conducting side walls force the magnetic field lines to be perpendicular to them.

Since the walls are not perfectly conducting, the fields will fringe at the edges
of the patch and these so-called fringe fields, see figure 2.61b, are responsible for
the radiation. The rectangular microstrip antenna length L is chosen to be a half
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Fig. 2.61 Rectangular microstrip patch antenna. a. Microstrip line excited patch antenna.
b. Probe (via) excited patch antenna. c. Fringe electric fields. d. Radiating slots.

wavelength in the dielectric. Due to this choice of length the horizontal components
of the fringe fields are in phase, see figure 2.61d. The radiation may be thought of then
to originate from two small slots at both sides of the patch, separated a distance L.
The field components of the two other slots are in anti-phase and thus cancel one
another. Therefore, the first two slots are called the radiating slots and the latter two
are called the non-radiating slots.

The fields inside the ‘cavity’ are excited by means of a microstrip transmission line,
see figure 2.61a, by means of a coaxial probe or via, see figure 2.61b, or by means of
a slot in the ground plane that in turn is excited by a microstrip transmission line.
The input impedance of the microstrip patch antenna may be tuned by varying the
feed position. The width W should be smaller than one and a half wavelength in
the dielectric material to avoid the excitation of higher order modes [38]. Besides the
rectangular microstrip patch antenna, many other microstrip antennas exist, see for
example [42].

2.5.4 Phased Array Antenna

Although not really an antenna type in the sense of frequency independent antennas,
helix antennas and microstrip patch antennas but rather being an antenna system, it
is appropriate to briefly discuss the phased array antenna at this point.

We have already seen that a half-wave dipole antenna may be represented by two
isotropic radiators, spaced apart by half a wavelength. An isotropic radiator radiates
equally in all directions. By virtue of the non-zero spacing of the isotropic radiators,
the radiated fields of the isotropic radiators will possess a phase difference, dependent
on the direction of radiation. This results in a direction-dependent constructive or
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1 21 2

Fig. 2.62 Half-wave dipole antenna radiation represented as the radiation of two isotropic
radiators spaced apart by a half wavelength.

destructive interference. This phenomenon is shown in figure 2.62 for the direction
along the dipole axis and the direction perpendicular to the dipole axis.

We see that in the direction along the dipole axis, the radiated fields are 180 degrees
out of phase and therefore cancel one another. A half-wave dipole antenna does not
radiate in the directions along the dipole axis. The phase difference of 180 degrees is
the result of the half-wavelength spacing of the two isotropic radiators.

In the direction perpendicular to the dipole axis, the fields radiated by isotropic
radiators one and two are in phase and therefore add. This means that the half-
wave dipole radiation will be at maximum for directions perpendicular to the dipole
axis. The zero degrees phase difference is the result of the fact that in the direction
perpendicular to the dipole axis, the two isotropic radiators do not possess any spatial
difference.

For all other directions the radiated field amplitudes will be in between zero and
maximum.

The physical reasoning we applied in the above for two isotropic radiators applies
equally well for more than two isotropic radiators. It also is not restricted to isotropic
radiators, but may be equally well applied to clusters of isotropic radiators, meaning
non-isotropic radiators. We have already shown this in figure 2.34 for a linear array
consisting of four half-wave dipole radiators.

By grouping radiators into an array we were able to increase the directivity, i.e.
narrow the angular region wherein energy is radiated. If we want to point the thus
formed antenna beam, we need to rotate the whole array around one of its axes,
just as we need to rotate the parabolic reflector antenna of a search and track radar
system.

However, we have seen that the principle of an array antenna is based on
the fact that the spacing of the elements causes phase differences between the
waves transmitted by the individual radiators. Due to these phase differences, in
some directions constructive interference occurs and in other directions destructive
interference occurs.
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Therefore, if we were able to apply an additional phase shift between radiators -
added to the one caused by the non-zero distance between the radiators - we should be
able to influence the positions of maximum constructive and destructive interference.
From figure 2.62 we see that a phase difference may be regarded as a time delay
between the radiators. If one radiator starts transmitting a while after a previous
radiator, a phase difference between the two transmitted signals results. A time delay
between two radiators may be created by having different lengths of transmission line
from a common source to various radiators.

In figure 2.63 the separate transmitted signals are shown for four isotropic radiators.
The radiators are fed in such a way that the utmost right element starts radiating first
(at time t1) and the utmost left element last (at time t4). The time delays between
the radiators (t2− t1, t3− t2 and t4− t3) are equal and therefore the phase differences
between the subsequent radiators are equal too.38

t1t2t3t4 t1t2t3t4 t1t2t3t4

Fig. 2.63 Phase differences created between four isotropic radiators.

By adding this phase taper over the elements of the linear array, we now have
created a phased array antenna consisting of four isotropic radiators. The combined
radiation of the four isotropic radiators with phase/time differences applied is shown
in figure 2.64.

We see that the chosen phase/time delay taper has led to a radiation that has
moved from a direction perpendicular to the line connecting the four radiators, to a
direction that is tilted with respect to this former direction. The ‘tilt’ is dependent on
the applied phase taper (differences) over the array elements. By changing the phase
taper we can change the beam position, without moving the array antenna itself!

The grouping of radiators into a (fixed beam) array to increase the directivity had
already been used in the First World War and in between the two World Wars. We
have seen that a lot of the World War II radar systems employed array antennas.

Phased array antennas, i.e. steered beam array antennas, have been employed in
the Second World War by the British, Americans and Germans [28]. The phase/time

38By looking at the first ‘black ring’ from the centre, for every element, we see that indeed every
element has started to radiate before any of the elements to its left.
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Fig. 2.64 Radiation of the four isotropic radiators, time-delay fed as shown in figure 2.63.

delay in these early phased array antennas was accomplished by (electro)mechanical
means.39

By changing the direction of radiation without moving the (often voluminous and
heavy) antenna, a greater flexibility in employing radar has been accomplished. Beams
can be steered from one position in space to another much faster than by mechanical
means and therefore it has become possible not only to track targets easier but also
the detection and tracking of multiple targets has become a possibility.

In the 1950s the mechanically operated phase shifters were replaced by electronic
phase shifters. This major advance in phased array antenna technology increased
switching and steering speed and thereby flexibility. In the 1960s, digitally switched
phase shifters were introduced, increasing the flexibility even further, making it
possible to electronically steer the antenna beam, controlled by a digital computer.
This step forward made it relatively easy to steer the array antenna beam into two
orthogonal angular coordinates [28].

The most recent step forward in phased array antenna technology is the
introduction of the active phased array antenna in the 1980s. The basic idea behind
the active phased array antenna is to get rid of the often complicated, bulky and
lossy feed network behind the radiators. This feed network, see figure 2.63, is needed
to deliver the energy from a common source in a prescribed manner to all radiators.
In an active phased array antenna, each radiator is equipped with its own transmitter
and only digital steering signals and power supply lines are distributed to all these

39One can think about changing the length of a transmission line by mechanically moving a telescopic
section, often in the form of a ‘U’, just like the movable part of a slide trombone [28].
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transmitters. An RF feed network that was subject to severe attenuation has become
obsolete by the introduction of the active phased array antenna.

With the advance of analog to digital (A/D) converter technology it is not even
necessary anymore to determine and fix phased array antenna beam shape during
the array antenna development. For an active receive phased array antenna (an array
antenna where every element is equipped with its own receiver) we can connect every
receiver to an A/D converter. The digital signals may be connected to a digital bus
and then be processed by a digital computer to form any beam or multiple beams
with prescribed shape(s) and direction(s) [43].
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3
Antenna Parameters

Now that we have developed a basic understanding of the operation of antennas, based on
physical reasoning, it is time to quantify and interrelate the different antenna parameters
that describe the antenna functioning. Therefore, in this chapter we will introduce
mathematical expressions that describe and interrelate these parameters. Instead of
mathematically deriving these expressions, which is beyond the scope of this book, we
will limit ourselves to simply posing these relations and explaining the use of them. The
mathematical background needed for understanding and working with the expressions
posed in this chapter is on a level as educated in secondary school. This chapter will
finish the development of the basic antenna knowledge needed for understanding the
basics of array and phased array antennas.

3.1 RADIATION PATTERN

In the previous chapters we have seen that the most basic antenna, i.e. a short dipole
antenna, may be considered as a radiator consisting of two isotropic radiators.

An isotropic radiator is a (hypothetical) radiator that radiates equally in all
directions.

Due to the fact that even the most basic antenna consists of more than one isotropic
radiator, placed apart by a non-zero distance, the radiation will no longer be equally
distributed over all directions. The non-zero distance between the isotropic radiators -
that may be thought of as making up the antenna - cause phase differences in the fields
radiated into the different directions. These phase differences will cause constructive
interference in some directions and destructive interference in other directions.

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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3.1.1 Field Regions

When talking about radiated fields, we have to take into account the distance relative
to the antenna where these fields are evaluated. We have seen in the previous chapters,
that close to the antenna, a region exists where energy is stored and returned to the
antenna. This region is called the reactive near-field region of the antenna [1, 2], see
figure 3.1. The reactive near-field region is indicated in this figure by I.

EH

P

I

II

III

r

EH

P

EH

P

I

II

III

r

Fig. 3.1 Field regions. I. Reactive near-field region, II. Radiating near-field region. III. Far-field
region.

Moving away from the antenna, through the reactive near-field region, the next
region encountered is called the radiating near-field region or Fresnel region [1, 2].
The radiating near-field region is characterised by the fact that the radiation fields
dominate the reactive fields and that the angular distribution of this radiated field
is dependent on the distance from the antenna. This distance is |r|, the length of
vector r, see figure 3.1.

The angular distribution may be described by the spherical coordinate angles ϑ
and ϕ, see figure 3.2.

The angle ϑ is the angle between the positive z-axis and the observation direction.
The angle ϕ is the angle between the positive x-axis and the perpendicular projection
of the observation direction on the x,y-plane. The interrelation between the spherical
coordinates r, ϑ, ϕ and the rectangular coordinates x, y, z, are given by, see also
figure 3.2

x = r sin(ϑ) cos(ϕ),
y = r sin(ϑ) sin(ϕ), (3.1)
z = r cos(ϑ).

The radiating near-field region is indicated in figure 3.1 by II.
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Fig. 3.2 An antenna in a rectangular coordinate system and the relation to spherical
coordinates.

The far-field region, indicated by III in figure 3.1, is that region where not only
the radiating fields predominate, but where also the angular field distribution has
become independent from the distance to the antenna [1, 2]. In the far-field region,
the electric field vector E and the magnetic field vector H are perpendicular to the
observation direction r and to each other, see figure 3.1. Power flow in the far-field
region is therefore only in the direction of r, in contrast to the situation in both
near-field regions.

The radiated fields of an antenna will be evaluated in the far-field region. In real-life
situations, the separation between transmitting antenna and receiving antenna will
(almost) always be such that the antennas are in each other’s far-field regions.

Although we have indicated sharp boundaries between the reactive-near field
region, the radiating near-field region (together called the near-field region) and the
far-field region in figure 3.1, in practice these boundaries are not that sharp and
precisely determined.

The reactive near-field components attenuate, going away from the antenna, with
a distance-dependency of 1

r3 . The radiating near-field components attenuate, going
away from the antenna, with a distance-dependency of 1

r2 and, finally, the far-field
components attenuate with a distance-dependency of 1

r . If we plot the functions 1
r3 ,

1
r2 and 1

r as function of r, we see that we can distinguish the areas where, respectively,
the near-field components and the far-field components predominate, see figure 3.3
and figure 3.4. The figures also show that the boundary between the near- and far-field
regions are not well-defined. Strictly speaking, the far-field only exists at distances r
approaching infinity.

For most antennas, the boundaries are empirically established as a function of the
antenna dimensions and the used wavelength. The reactive near-field (rnf) region is
commonly taken to be [1]

rrnf < 0.62

√
D3

λ
, (3.2)

where D is the largest dimension of the antenna and λ is the used wavelength.
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as function of r, for 1.0 ≤ r ≤ 5.0.

The radiating near-field or Fresnel (Frs) region is taken for distances [1],

0.62

√
D3

λ
< rFrs <

2D2

λ
, (3.3)

and the far-field (ff) region is taken to exist for distances

rff >
2D2

λ
. (3.4)
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The far-field condition yields a maximum phase error of 22.5◦ [1]. When phase
accuracy is important, the far-field criterion rff > nD2

λ , with n an integer ranging
from 3 to 10, is employed.1

We return now to the phase differences that will cause constructive interference
in some directions and destructive interference in other directions, knowing that we
have to evaluate these effects in the far-field region.

3.1.2 Three-Dimensional Radiation Pattern

For the half-wave dipole antenna we have seen for instance that no radiation occurs
in directions along the dipole axis. To explain this in more detail, we consider a
horizontal half-wave dipole that we represent by two isotropic radiators, 1 and 2 in
figure 3.5, spaced apart by half a wavelength. We will look at the electric field in the
far-field region.2

1 2

I

IIIII

1 2

I

IIIII

Fig. 3.5 A half-wave dipole is represented by two isotropic radiators, spaced apart by half a
wavelength. Along the dipole axis, the waves emitted by radiators 1 and 2 are 180 degrees out
of phase. Perpendicular to the dipole axis, the waves emitted by the isotropic radiators are in
phase.

For situation I, that is in the direction along the dipole axis, the waves emitted
by isotropic radiators 1 and 2 are 180 degrees out of phase and therefore cancel each
other.

For situation III, that is in the direction perpendicular to the dipole axis, the waves
emitted by isotropic radiators 1 and 2 are in phase and add, giving the maximum
possible amplitude. When we evaluate these signals at infinity - what we, strictly
speaking, should do to have a far-field region evaluation - the two distinct directions
stemming from isotropic radiators 1 and 2 become one. This is indicated in figure 3.5.

1For very small antennas, the far-field criterion rff > 2D2

λ
would lead to erroneously short distances.

For small antennas therefore the far-field criterion rff > λ
2π

is employed. [3].
2We could also have chosen to look at the magnetic field. The magnetic field is perpendicular to and
in phase with the electric field.
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For situation II, that is for a direction in between parallel and perpendicular to
the dipole axis, the two waves add, but with a phase difference due to the fact that
one wave reaches a far-field evaluation point before the other one does. Therefore, the
amplitude of the combined waves will be less than maximum.

In figure 3.5, we have restricted ourselves to the evaluation in the plane parallel to
the dipole axis and containing the dipole. If we evaluate the far electric field amplitude
for all possible angular positions ϑ, ϕ and normalise the amplitude to the maximum
value, the three-dimensional radiation pattern or antenna pattern of figure 3.6 results.
Note that this pattern is for a half-wave dipole antenna directed along the Cartesian
z-axis, also indicated in the figure. Contour plots of the radiation pattern (equi-
amplitude lines) are shown, projected on the x,y-plane.
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Fig. 3.6 Three-dimensional electric field radiation pattern of a z-directed half-wave dipole
antenna.

We see that the radiation pattern is symmetrical around the dipole axis, at
maximum in the directions perpendicular to the dipole axis and zero in the directions
along the dipole axis.

Although we are dealing here with a basic antenna having a relatively simple
radiation pattern, we already encounter some difficulty in reading and interpreting this
radiation pattern. This will become worse for more complicated antennas. To illustrate
this we created the artificial (normalised) radiation pattern shown in figure 3.7. This
could be the pattern of a pyramidal horn antenna. The position and orientation of
this horn is indicated in the figure.

Although we encounter even more difficulties in the interpretation of this pattern,
we can still distinguish some salient features of this pattern. First of all we observe
angular regions of strong radiation, surrounded by regions of weak radiation. We
call these regions of strong radiation lobes, see 1, 2 and 3 in figure 3.7. The biggest
lobe, number 1 in figure 3.7, is called the main lobe or main beam. The main lobe
contains the direction of maximum radiation. Here, that direction is given (in spherical
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Fig. 3.7 Three-dimensional electric field radiation pattern of a hypothetical pyramidal horn
antenna.

coordinates) by ϑ = 0. All lobes other than the main lobe are called minor lobes or
side lobes. Side lobes, numbers 2 and 3 in figure 3.7, are radiation lobes pointing in
other directions than the main lobe. The side lobe number 3 in the figure is also called
a back lobe, due to its position relative to the antenna: 180◦ rotated with respect to
the main lobe.

To allow the comparison of radiation intensities in different directions relative to
each other for this and other antennas, it is better to represent the three-dimensional
information in another format. In figure 3.8 the amplitude of the radiated electric
field is shown along the z-direction, while the ϑ- and ϕ-coordinates are shown in a
polar format in the x,y-plane. The coordinate ϑ varies between 0◦ and 180◦ along the
radius of the circle, the coordinate ϕ is the angle between the x-axis and the ϑ-axis.
The E-field amplitude is plotted along the z-axis, as shown in figure 3.8.

More detailed information can be seen if we plot only part of the angular domain.
In figure 3.9, ϑ varies between 0◦ and 90◦ along the radius of the circle.

We see that for ϑ = 0◦, the electric field is zero and that for every angle ϕ,
the electric field amplitude is at maximum for ϑ = 90◦. This is in agreement with
figure 3.6. Note that more detail has become visible at the expense of not having all
the information in one plot.

The radiation pattern of figure 3.7 transforms, in this first alternative
representation, into figure 3.10.

To obtain more information from this graph, we again narrow down the ϑ-domain
down to 90◦. The result is shown in figure 3.11.

It is clear that figure 3.11 reveals more information than the original three-
dimensional pattern, shown in figure 3.7. However, all information in the back lobe
region is not plotted in this figure. Furthermore, additional mental processing is
required to interpret the results shown. The three-dimensional plot serves best for
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Fig. 3.8 Alternative three-dimensional electric field radiation pattern of a half-wave dipole
antenna.
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Fig. 3.9 Alternative three-dimensional electric field radiation pattern of a half-wave dipole
antenna, ϑ varies between 0 and 90◦ along the radius of the circle.

inspection purposes, e.g. the identification of side lobes and their angular distribution.
It is not easy to obtain qualitative information from this representation. For that last
purpose it is customary to use planar cuts of the three-dimensional radiation patterns.
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Fig. 3.10 Alternative three-dimensional electric field radiation pattern of a hypothetical
pyramidal horn antenna.
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Fig. 3.11 Alternative three-dimensional electric field radiation pattern of a hypothetical
pyramidal horn antenna, ϑ varies between 0◦ and 90◦ along the radius of the circle.

3.1.3 Planar Cuts

In figure 3.12 a planar cut of the three-dimensional radiation pattern of a half-wave
dipole antenna is shown. This figure should be compared with figure 3.6.

This planar cut, transformed to the two-dimensional domain, is shown in
figure 3.13.

The elevation angle ϑ increases, going clockwise around the circle. The amplitude
of the electric field is plotted along the radius of the circle.
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Fig. 3.12 Planar cut from the three-dimensional radiation pattern of a half-wave dipole
antenna as shown in figure 3.6.
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Fig. 3.13 Polar plot of the electric field radiation pattern of a half-wave dipole antenna.

Normally, the azimuth angle ϕ where the cut is taken should be specified, but since
- in this particular case - we are dealing with a radiation pattern that is rotationally
symmetric, all cuts are identical.

A planar cut of the (artificial) radiation pattern of the pyramidal horn antenna is
shown in figure 3.14. This figure should be compared with figure 3.7.

This planar cut, transformed to the two-dimensional domain, is shown in
figure 3.15. Note the different amplitude scales in figures 3.7 and 3.15.
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Fig. 3.14 Planar cut from the three-dimensional radiation pattern of a pyramidal horn antenna
as shown in figure 3.7.
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Fig. 3.15 Polar plot of the electric field radiation pattern of a pyramidal horn antenna.

Although, all information can be read from the polar plots and the polar plots
correspond to our perception of the physical three-dimensional world, a rectangular
plot may be found helpful in observing the details in the side lobes.

Rectangular plots are obtained by taking planar cuts from the three-dimensional
radiation patterns of the form as shown in figures 3.8 to 3.11. A rectangular planar
cut of the radiation pattern of a half-wave dipole antenna is shown in figure 3.16. The
rectangular cut, transformed to the two-dimensional domain is shown in figure 3.17.
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Fig. 3.16 Planar cut from the three-dimensional radiation pattern of a half-wave dipole
antenna as shown in figure 3.8.
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Fig. 3.17 Rectangular plot of the electric field radiation pattern of a half-wave dipole antenna.

A rectangular planar cut of the radiation pattern of a pyramidal horn antenna is
shown in figure 3.18. The rectangular cut, transformed to the two-dimensional domain
is shown in figure 3.19.
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Fig. 3.18 Planar cut from the three-dimensional radiation pattern of a pyramidal horn antenna
as shown in figure 3.10.
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Fig. 3.19 Rectangular plot of the electric field radiation pattern of a pyramidal horn antenna.

The correspondence between polar and rectangular plots is shown in figure 3.20.
Whether a polar or a rectangular plot of the radiation pattern is being used, is for

a big part a matter of taste. The author’s taste is for rectangular patterns, especially
for observing details in power patterns.
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Fig. 3.20 Correspondence between polar and rectangular radiation patterns. a. Half-wave
dipole antenna. b. Pyramidal horn antenna.

3.1.4 Power Patterns and Logarithmic Scale

The radiation patterns shown thus far have been so-called field patterns. In general,
one is not directly interested in the angular electric field amplitude distribution, but
more in the angular power distribution. In the far-field region, the power is related
to the electric field through a square-law relationship. So by taking the square of the
electric field amplitude of the normalised field pattern, we may obtain the normalised
power pattern. The normalised power pattern (in the plane ϕ = 0) for the hypothetical
pyramidal horn antenna is shown in figure 3.21.

We see that by plotting the power instead of the field amplitude, we seem to
have lost the detail information in the side lobe region. Ideally, we would want to
observe the same detail information in the side lobes as in the main lobe. This may
be accomplished by plotting the angular power distribution not on a linear scale (as
we have done in figure 3.21) but on a logarithmic scale.

3.1.4.1 Logarithms If
ax = b, (3.5)

where a and b are positive numbers and a �= 1, then x is the logarithm of b to the
base a:

y = loga b. (3.6)
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Fig. 3.21 Power radiation pattern for a pyramidal horn antenna.

We will only look at the base a = 10, so

y = log10 b = log b, (3.7)

means that
10y = b. (3.8)

Logarithms to the base 10 are called common logarithms.
It can be easily verified then that log x relates to x as stated in table 3.1.

Table 3.1 log x vs. x for some values of x.

x log x

0.001 −3
0.01 −2
1 0
10 1
100 2
1000 3

One useful property of logarithms is that

log(x · y) = log x+ log y. (3.9)

This means that the relations as shown in table 3.2 for the multiplications by
powers of 10 of the - arbitrarily chosen - number 1.87 hold.

From table 3.1 and table 3.2 we may conclude that in every decade (0.01 to 0.1,
0.1 to 1, 1 to 10, 10 to 100 and so on), the resolution is equal. This is exactly the
property we were looking for in representing radiation power plots!
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Table 3.2 Logarithmic values of multiplications by powers of 10 of the number 1.87.

x log x

1.87 log 1.87
18.7 log(10 · 1.87) = log 10 + log 1.87 = 1 + log 1.87
187.0 log(102 · 1.87) = 2 · log 10 + log 1.87 = 2 + log 1.87
0.187 log(10−1 · 1.87) = − log 10 + log 1.87 = −1 + log 1.87
0.0187 log(10−2 · 1.87) = −2 · log 10 + log 1.87 = −2 + log 1.87

Instead of directly plotting the logarithm of the radiated power, we first multiply
this number by 10 and so obtain the units of decibel (dB) named after Alexander
Graham Bell (1847-1922), inventor of the telephone. Thus:

1dB = 10 · log(x) −→ x = 10
1
10 = 1.26. (3.10)

The radiated power, expressed in decibels is shown in figure 3.22. This figure should
be compared with figure 3.21.

-28

-24

-20

-16

-12

-8

-4

0

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

elevation angle (degrees)

N
o
rm

a
li

se
d
 p

o
w

e
r 

(d
B

)

Fig. 3.22 Power radiation pattern for a pyramidal horn antenna on a logarithmic (decibel)
scale.

3.1.5 Directivity and Gain

So far we have been comparing the radiated field and power only to the maximally
radiated field or power of the same antenna. If we want to compare different antennas
with each other, we need to have a reference to compare them to. This reference is
taken to be the isotropic radiator.
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Although we know that the isotropic radiator is a physical abstraction,3 it still
may serve as a reference for real life antennas. The (hypothetical) isotropic radiator,
radiates equally in all directions. Its normalised, three-dimensional electric field or
power pattern, on a linear scale, therefore is a sphere with radius one, see figure 3.23.
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Fig. 3.23 Three-dimensional, normalised electric field or power radiation pattern of a
(hypothetical) isotropic radiator.

The directivity function, D(ϑ, ϕ), is defined as the power radiated by an antenna
into a direction (ϑ, ϕ), compared to the power radiated into that same direction by
an isotropic radiator.

The power radiated into a certain direction by an isotropic radiator is equal to
the amount radiated into every other direction and is equal to Pt/4π, where Pt is
the totally transmitted power and Pt/4π therefore is the radiation intensity of the
isotropic radiator.4 Thus

D(ϑ, ϕ) =
P (ϑ, ϕ)
Pt/4π

, (3.11)

where P (ϑ, ϕ) is the power radiated by the actual antenna into the direction (ϑ, ϕ).
So, we compare the power radiated by the actual antenna to the power that would

have been radiated by an isotropic radiator, radiating the same total amount of power.
In figure 3.24 we show both the three-dimensionally radiated power by a half-wave

dipole and the radiated power by an isotropic radiator. Both antennas - the real half-
wave dipole antenna and the hypothetical isotropic radiator - have the same totally
transmitted power.

3Electromagnetic radiation only exists by virtue of accelerating charge and thus by displacement
of charge. This acceleration and displacement may be modelled by assuming the existence of more
than one isotropic radiator, physically displaced from one another. An isolated isotropic radiator
therefore cannot exist.
44π is the value of the solid angle of a complete sphere. Compare this three-dimensional angle with
an angle in the two-dimensional domain, where 2π is the angle of a complete circle.
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Fig. 3.24 Three-dimensional, normalised power radiation pattern of a (hypothetical) isotropic
radiator and a half-wave dipole antenna.

The figure clearly shows the value of using the isotropic radiator as a reference.
We see that in some directions, the half-wave dipole antenna radiates more power
than the isotropic radiator while for other directions the opposite is true. Since both
antennas have the same amount of totally transmitted power, we may transform the
three-dimensional radiation pattern of one antenna into that of the other by reducing
power in certain directions and increasing power into other directions. This process
(transforming the isotropic radiation pattern into that of a half-wave dipole antenna)
is shown - in a planar cut - in figure 3.25.

Fig. 3.25 Transforming the isotropically radiated power into the power radiated by the
half-wave dipole, planar cut: reducing transmitted power in one direction means increasing
transmitted power in another direction.
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The directivity, D is defined as the maximum of the directivity function:

D = max[D(ϑ, ϕ)]. (3.12)

For the half-wave dipole antenna, the directivity is D = 1.64 or D = 2.15dB,
meaning that the half-wave dipole antenna at maximum radiates 1.64 times as much
power as an isotropic radiator would do, transmitting the same total amount of power.

In general though, the total transmitted power of an antenna is not known, or
difficult to assess. Therefore, a second function exists: the gain function, G(ϑ, ϕ). The
gain function resembles the directivity function, except for the totally radiated power
that has been replaced by the totally accepted power, Pin,

G(ϑ, ϕ) =
P (ϑ, ϕ)
Pin/4π

. (3.13)

Pin is easier to assess than the totally radiated power.
The gain function does not take impedance mismatch on the antenna terminals

into account. If 99% of the power delivered to the antenna terminals is reflected, the
gain function tells us how the remaining 1% of this power (i.e. the accepted power)
is distributed in space. The gain, G, is the maximum of the gain function,

G = max[G(ϑ, ϕ)]. (3.14)

The quotient of gain and directivity equals the quotient of totally radiated power
and totally accepted power and is called the radiation efficiency, η [2]

η =
G

D
=

Pt
Pin

. (3.15)

The efficiency is smaller than one due to ohmic and/or dielectric losses in the
antenna.

Before moving on with the description of the parameters that describe an antenna,
something should be said about the fact that so far we have been talking only about
antennas transmitting.

3.1.6 Reciprocity

To say something about an antenna receiving, we take a look at the two-antenna
system of figure 3.26 [4].

The two-antenna system may be considered as a two-port network exhibiting
reciprocity.

This means that: the voltage at II, due to a current source at I, is equal to the
voltage at I, due to the same current source at II. If we further assume that the
two antennas are placed in each other’s far-field regions, the voltage at the antenna
terminals is - by definition [4] - equal to the receiving pattern of that antenna, the
fields generated by the other antenna forming a plane wave at the receiving antenna
position.

Therefore the reciprocity theorem, stated for antennas, reads: the receiving pattern
of an antenna is identical to its transmitting pattern.
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Fig. 3.26 Two-antenna system.

Thus, everywhere an antenna forms a lobe in transmission, it will be sensible
for reception from that same direction and everywhere an antenna forms a ‘null’
in transmission, it will be ‘blind’ for that direction in reception.

3.1.7 Antenna Beamwidth

In comparing antennas we may use the gain we just discussed. But the gain is a
number that only tells us about the maximum radiation. Often we want to know the
shape of the area of maximum radiation. For that purpose we use the beamwidth.
The beamwidth tells us about the shape of the main lobe. Different beamwidth
definitions exist. The two most often used beamwidths are shown in figure 3.27.

The half-power beamwidth, ϑHP , is the angular separation between the points
on a cut of the main lobe where the transmitted (received) power is half that of
the maximum transmitted (received) power. This is shown in figure 3.27a. Since
10 log(0.5) = −3.01dB≈ −3dB, ϑHP is found on a logarithmic scale on the interception
points where the main lobe is 3dB under the maximum value, see figure 3.27b. The
half-power beamwidth is therefore also known as the 3dB beamwidth.

Other, less commonly used definitions for beamwidth are the first null beamwidth,
ϑFN , indicated in figure 3.27a, b and the 10dB beamwidth. In general, when the term
beamwidth is used, the 3dB beamwidth is meant.

Also indicated in figure 3.27b is the level of the first and highest side lobe. This
level is known as the side lobe level (SLL).

The cuts are normally taken in the so-called E-plane and H-plane, also known as
the principal planes. The E-plane is the plane that contains the electric field vector
and the direction of maximum radiation. The H-plane is the plane that contains the
magnetic field vector and the direction of maximum radiation. It is common practice
to orient an antenna so that at least one of the principal plane patterns coincides
with one of the geometrical principal planes [1]. As an example, figure 3.28 shows the
normalised field patterns in the principal planes of a half-wave dipole antenna.
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Fig. 3.27 Antenna beamwidth definitions. a. Polar plot, linear scale. b. Rectangular plot,
logarithmic scale.

Note that for the z-directed half-wave dipole antenna, any plane ϕ = constant is
an E-plane.

3.2 ANTENNA IMPEDANCE AND BANDWIDTH

Antennas will never be used as standalone devices; we will have to consider antennas
as being part of a system. Therefore, besides the radiation characteristics, we also
need to know the impedance characteristics.

When looking into the antenna, at the antenna terminals, we may regard the
antenna as a complex impedance ZA,

ZA = RA + jXA, (3.16)

where RA is the real or resistive part of the antenna impedance and XA is the
imaginary or reactive part of the antenna impedance. The real part accounts for the
dissipation and consists of two parts, the ohmic losses (which may be considerable in
small antennas), RL and the (wanted) radiation losses, Rr,

RA = RL +Rr. (3.17)

Rr is known as the antenna radiation resistance.
The reactive part of the antenna impedance accounts for the reactive near-field

region of the antenna, where energy is being stored.
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Fig. 3.28 Normalised field patterns in the principal planes of a z-directed half-wave dipole
antenna. a. E-plane, containing the electric field vector and the direction of maximum radiation
(eight-figure shape). b. H-plane, containing the magnetic field vector and the direction of
maximum radiation (circle with unit radius).

We assume for the moment that the reactive and ohmic loss part of the antenna
impedance may be neglected (ZA = Rr) and that the antenna is connected to a
generator with (real) impedance Rg,5 see figure 3.29.

Vg

Rg

VA Rr

I

ΓVg

Rg

VA Rr

I

Γ

Fig. 3.29 Equivalent circuit for matching the lossless antenna to the generator.

5The principle of the so-called conjugate matching should be explained - in the most general form -
for complex generator and antenna impedances, see for example [1] or [5]. For reasons of clarity, an
explanation using real impedances is chosen here.
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The (time average) power delivered by the generator to the antenna is given by

P =
1
2
Re {VA · I∗} , (3.18)

where Re {x} means the real part of the complex number x and I∗ is the complex
conjugate of I.

Since we are dealing with real quantities only, the power delivered to the antenna
is

P =
1
2
|Vg|2

∣∣∣∣ Rg
Rg +Rr

∣∣∣∣2 1
Rr

, (3.19)

wherein use is made of
VA =

Rg
Rg +Rr

Vg, (3.20)

and
I∗ = I =

VA
Rr

. (3.21)

To find the value of the antenna impedance that results in a maximum power
transfer from the generator to the antenna, the following condition should be fulfilled

∂P

∂Rr
= 0. (3.22)

Upon substitution of equation (3.19) into equation (3.22), we finally find that the
condition for maximum power transfer results in

Rr = Rg, (3.23)

meaning that the radiation resistance should be equal to the generator resistance.
For the real generator and antenna impedance, this is also the condition for zero

reflections at the antenna terminal. From (microwave) network theory, the reflection
coefficient, Γ, looking into the antenna terminals, see figure 3.29, is found to be

Γ =
Rr −Rg
Rr +Rg

. (3.24)

When we design the antenna such that Rr = Rg, we see that the reflection becomes
zero.

The impedance of an antenna normally varies as function of the frequency and
therefore, the matching also varies as function of the frequency. This means that
an antenna will only operate efficiently within a restricted band of frequencies. The
width of this band of frequencies is called the bandwidth. Normally, at the centre
frequency (middle of the frequency band) the impedance matching will be best and
going to lower or higher frequencies results in a degradation of impedance matching up
to a level where matching has become unacceptably poor. These levels determine the
boundaries of the frequency band. Reflection coefficient levels of −10dB (|Γ|2 ≤ 0.1) or
−15dB (|Γ|2 ≤ 0.03) are commonly employed to determine the impedance bandwidth.
For relatively small bandwidth antennas, bandwidth is expressed in percentages of
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the centre frequency [1]. If f0 is the centre frequency, fl is the lower boundary of the
frequency band and fu is the upper boundary of the frequency band, the bandwidth
is given by:

BW =
fu − fl
f0

· 100%. (3.25)

Bandwidths expressed in percentages of the centre frequency are used up to a few
decades. For larger bandwidth antennas the ratio of the upper and lower frequency
boundaries is used (like 10 : 1 or 30 : 1) [1].

Next to the impedance bandwidth a radiation pattern bandwidth may also exist.
Both bandwidths do not need to be identical. It depends on the antenna and the
application to which of the two bandwidths is most critical.

Example The reflection coefficient of a certain antenna is measured as function of
frequency and plotted (in dBs) in figure 3.30.
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Fig. 3.30 Measured reflection as function of frequency.

The reflection is at minimum at the centre frequency, f0 = 11.3GHz.
The −10dB-bandwidth then follows from the lower frequency limit fl = 10.97GHz
and upper frequency limit fu = 11.93GHz, both read from the graph, and equation
(3.25)

BW−10dB =
11.93 − 10.97

11.3
· 100% = 8.50%. (3.26)

The −15dB-bandwidth follows from the graph and equation (3.25)

BW−15dB =
11.53 − 11.12

11.3
· 100% = 3.63%. (3.27)
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3.3 POLARISATION

The electric field in the far-field region of an antenna will in general possess two
spherical coordinate components, Eϑ and Eϕ, see figure 3.31.
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Fig. 3.31 Electric field components Eϑ and Eϕ in the far-field region of an antenna placed in
the origin O. ur is the unit vector in the direction of wave propagation.

In general, a phase difference will exist between these two field components.
Therefore, the electric field vector, as function of time, t, will - for an arbitrary phase
difference - describe an ellipse in the ϑ,ϕ-plane. The electric field and the antenna are
called elliptically polarised, see figure 3.32a.

When the phase difference is plus or minus 90◦ and the field components are
equal in amplitude, the ellipse becomes a circle and the polarisation is called circular
polarisation. The antenna is called circularly polarised. When the phase difference is
0◦ or 180◦, the ellipse becomes a line and the polarisation is called linear polarisation.
The antenna is called linearly polarised.

3.3.1 Elliptical Polarisation

We can write the electric far-field as

E = Eϑuϑ + Eϕuϕ, (3.28)

where Eϑ is the complex amplitude of the ϑ-component of the electric field and Eϕ is
the complex amplitude of the ϕ-component of the electric field. The vectors uϑ and
uϕ are unit vectors in respectively ϑ- and ϕ-directions. A brief overview of complex
algebra and vector mathematics may be found in, respectively, appendices A and B.

The complex amplitudes Eϑ and Eϕ can be written as,

Eϑ = |Eϑ| ejΨϑ , (3.29)
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Fig. 3.32 Polarisation states. a. Elliptical polarisation. b. Circular polarisation. d. Linear
polarisation.

and
Eϕ = |Eϕ| ejΨϕ , (3.30)

where Ψϑ and Ψϕ represent the phase of Eϑ and Eϕ, respectively.
The electric field vector therefore may be written as

E = |Eϑ| ejΨϑ (uϑ + ρuϕ) , (3.31)

where

ρ =
|Eϕ|
|Eϑ| e

j(Ψϕ−Ψϑ). (3.32)

To trace the extremity of the electric field in the ϑ,ϕ-plane, the real part of the
electric field needs to be taken

E = Re
{
Eej2πft

}
=

|Eϑ| {cos (2πft+ Ψϑ)uϑ + |ρ| cos (2πft+ Ψϑ + Ψρ)uϕ} , (3.33)

where f is the used frequency, t is the time and

Ψρ = Ψϕ − Ψϑ. (3.34)

Elimination of the time t results in a description of the trace of the extremity of
the electric field vector in the ϑ,ϕ-plane. After some mathematical manipulations we
get (

Eϑ
|Eϑ|

)2
+
(

Eϕ
|Eϕ|

)2
− 2EϑEϕ

|Eϑ| |Eϕ| cos (Ψρ) = sin2 (Ψρ) . (3.35)
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Dividing this equation by sin2 (Ψρ), results in[
1

|Eϑ|2 sin2 (Ψρ)

]
E2
ϑ−
[

2 cos (Ψρ)
|Eϑ| |Eϕ| sin2 (Ψρ)

]
EϑEϕ+

[
1

|Eϕ|2 sin2 (Ψρ)

]
E2
ϕ = 1, (3.36)

which is the equation of an ellipse in the ϑ,ϕ-plane, see figure 3.33.
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Fig. 3.33 Polarisation ellipse.

The tilt angle τ is given by

τ = arctan
( |Eϕ|
|Eϑ|

)
. (3.37)

The amount of ellipticity is expressed as the ratio of the semimajor and semiminor
axes of the ellipse. This ratio is therefore known as the axial ratio and is usually
expressed in decibels. With reference to figure 3.33

AR = 20 log
(

Ea

Eb

)
. (3.38)

We will now show that circular polarisation and linear polarisation are special cases
of elliptical polarisation.

3.3.2 Circular Polarisation

For the special situation where |Eϑ| = |Eϕ| = |E| and Ψρ = ±π
2 , equation (3.36)

simplifies to (
Eϑ
|E|
)2

+
(

Eϕ
|E|
)2

= 1, (3.39)

which describes a circle in the ϑ,ϕ-plane.
We may further distinguish between the situations Ψρ = π

2 and Ψρ = −π
2 . For the

former situation we get, upon substitution in equation (3.33)

EL = |E| [cos (2πft′)uϑ − sin (2πft′)uϕ] , (3.40)
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where
2πft′ = 2πft+ Ψρ. (3.41)

Similarly, we get for the latter situation

ER = |E| [cos (2πft′)uϑ + sin (2πft′)uϕ] . (3.42)

For the first situation (Ψρ = π
2 ) we have obtained an electric field vector that

rotates counterclockwise in time, looking into the direction of propagation. This
situation is depicted in figure 3.32 and in figure 3.34a. We call this circular polarisation
state left-hand circular polarisation (LHCP), following the direction of a left-handed
screw.
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Fig. 3.34 Circular polarisation. a. Left-hand circular polarisation (LHCP). b. Right-hand
circular polarisation (RHCP).

For the second situation (Ψρ = −π
2 ) we have obtained an electric field vector that

rotates clockwise in time, looking into the direction of propagation. This situation is
depicted in figure 3.34b. We call this circular polarisation state right-hand circular
polarisation (RHCP), following the direction of a right-handed screw.

3.3.3 Linear Polarisation

For the special situation where Ψρ = ±π and |Eϑ| not necessarily equal to |Eϕ|,
equation (3.35) simplifies to

Eϑ
|E| +

Eϕ
|E| = 0, (3.43)

which describes a straight line in the ϑ,ϕ-plane, see also figure 3.32c. The axial ratio
(AR) is infinite for a linearly polarised wave.

3.3.4 Axial Ratio

The axial ratio of a perfect circularly polarised wave is equal to unity. In practice,
perfect circular polarisation is seldom encountered; a certain amount of ellipticity
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will always exist. This ellipticity is expressed in the axial ratio, the ratio of the
semimajor to the semiminor axis lengths of the polarisation ellipse. These lengths
may be expresses in terms of amplitudes of LHCP and RHCP components. The
elliptical polarisation may be seen as consisting of a combination of LHCP and RHCP
polarisation, the dominant part of these two determining the direction of rotation of
the elliptical polarisation.

To show this we start by decomposing the electric field in LHCP and RHCP
components:

E = Eϑuϑ + Eϕuϕ = ELuL + ERuR, (3.44)
where

uL =
1√
2
{uϑ + juϕ} , (3.45)

uR =
1√
2
{uϑ − juϕ} , (3.46)

and

EL =
1√
2
{Eϑ − jEϕ} , (3.47)

ER =
1√
2
{Eϑ + jEϕ} . (3.48)

EL is the LHCP component of the wave, ER is the RHCP component of the wave.
The relation between an elliptically polarised wave and both circular polarisation
components is graphically represented in figure 3.35.
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Fig. 3.35 Right-hand elliptically polarised wave, decomposed in RHCP and LHCP
components.

In a predominantly RHCP wave (as shown in figure 3.35), the RHCP component is
called the co-polarisation and the LHCP component is called the cross-polarisation.
The opposite is true for a predominantly LHCP wave.
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The axial ratio is given by

AR = 20 log
∣∣∣∣ |EL| + |ER|
|EL| − |ER|

∣∣∣∣ . (3.49)

Circular polarisation may be beneficial both in mobile satellite communications
and in radar applications.

At L-band frequencies, the ionosphere acts as a so-called Faraday rotator [6],
meaning that a linearly polarised wave undergoes a rotation upon passing through
the ionosphere. The use of circularly polarised transmit and receive antennas will
annihilate negative effects of this rotation (co-polarised signal attenuation and increase
of cross-polarised signal level).

In radar, circular polarisation may be employed to ‘see through’ rain [7]. A
right-hand (left-hand) circularly polarised wave, incident upon a (near) spherical
rain drop will be reflected as a left-hand (right-hand) circularly polarised wave, for
which the receiving antenna is insensible and thus this rain scatter will be rejected,
while reflections from a complicated structure, like an aircraft, will possess circularly
polarised components with the right rotation direction that will be accepted by the
antenna. A linearly polarised wave, reflected from a raindrop, would be accepted by
the antenna since the antenna will accept linearly polarised waves, 180◦ shifted in
phase, equally well as in-phase components.

3.4 ANTENNA EFFECTIVE AREA AND VECTOR EFFECTIVE LENGTH

Any antenna, be it a horn antenna or even a half-wave (wire) dipole antenna, may
be considered as an aperture antenna. This means that we may associate with every
antenna an aperture or equivalent area that - in the case of a receiving antenna -
extracts energy from an incident wave.

3.4.1 Effective Area

Let’s assume an antenna in receive situation6 with a plane wave incident upon it,
having a power density at the position of the antenna of S (Wm−2). We may
characterise the antenna by an maximum equivalent area or maximum equivalent
aperture, Aem that is defined as

Aem =
PT
S
, (3.50)

where PT is the available power at the terminals of the antenna.
The effective area is, strictly speaking, a direction-dependent quantity, but, if no

direction is specified - like in the above equation - the direction is assumed to be
that of maximum directivity. Furthermore, without further specification, we assume
that polarisation of antenna and the impinging plane wave are lined up and that the

6We have already seen that, by virtue of reciprocity, transmit and receive properties of antennas are
identical.
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antenna does not introduce dielectric and ohmic losses. Under these conditions the
effective area as defined in the above equation is the maximum effective area.

Real aperture antennas, like electromagnetic horns, have effective apertures which
are smaller than the physical ones. For electromagnetic horns, the effective aperture
is in the order of 0.5 to 0.7 times the value of the physical aperture [8].

The maximum effective aperture of an antenna may be related to its directivity,
this relation is derived in appendix C and results in

D =
4πAem
λ2

. (3.51)

We see that an increase in (effective) area leads to an increase in directivity.
Antenna beamwidth therefore is inversely proportional to aperture size.

The effective aperture, Ae, is related to the maximum effective aperture, Aem,
through the radiation efficiency, η that accounts for ohmic and dielectric losses in
the antenna

Ae = ηAem. (3.52)

With equation (3.15) we then find the following relation between effective aperture
and gain

G =
4πAe
λ2

. (3.53)

Example To show that the concept of effective area is a mathematical abstraction
that does not need to be related to physical area, we will calculate the effective area
of a short dipole antenna of length l � λ and negligible diameter [1, 2].

The antenna and its equivalent circuit are shown in figure 3.36. For educational
reasons we assume antenna and load impedances to be real. Furthermore, we assume
the short dipole to be lossless (which is not true in practice!).

The open circuit voltage of the short dipole antenna is

V = |Ei| l = Eil, (3.54)

where Ei is the amplitude of the incoming (lined up) linearly polarised electric field.
The maximum available power, Pa, realised when RL = RA, is given by

Pa =
|V |2
8RA

=
|Ei|2l2
8RA

, (3.55)

where the short dipole radiation resistance, RA may be calculated as [1, 2, 8]

RA = 80π2

(
l

λ

)2

, (3.56)

where λ is the wavelength used.
The power density in the far-field region of the source, S, may be calculated as

S =
1
2
|Ei × H∗

i | =
1
2
|Ei|2
Z0

, (3.57)



114 ANTENNA PARAMETERS

RL

Plane wave front

Ei

Direction of propagation

RA

RL

V
VA

IA

a b

l RLRL

Plane wave front

Ei

Direction of propagation

RA

RL

V
VA

IA

RA

RL

V
VA

IA

a b

l

Fig. 3.36 Receiving short dipole antenna and equivalent circuit. a. Antenna connected to
receiver with impedance RL. b. Equivalent circuit.

where Z0 is the intrinsic impedance of free space, which is equal to Z0 = 120π (Ω).
With equations (3.55), (3.56) and (3.57), we then find for the maximum effective

area, Aem, of a short dipole (that has a negligible physical area!)

Aem =
Pa
S

=
3
8π
λ2. (3.58)

An effective dimension associated with straight-wire antennas, that appeals more
to our intuition is the vector effective length.

3.4.2 Vector Effective Length

The vector effective length or vector effective height is used to determine the open
circuit voltage induced on the antenna terminals, when a plane wave is incident on
the antenna. When polarisations of plane wave and antenna are lined up, the effective
length of a short dipole antenna is identical to its physical length, l, see equation
(3.54) in the example above.7 In general, the effective length is a direction-dependent
quantity [1].

le(ϑ, ϕ) = lϑ(ϑ, ϕ)uϑ + lϕ(ϑ, ϕ)uϕ. (3.59)

The open circuit voltage of an antenna is then obtained by projecting the incident
electric field vector on the complex conjugate of the vector effective length [2]

Voc = Ei · l∗e, (3.60)

7For the short dipole in the example it was implicitly assumed that the current over the short dipole
antenna is uniform. For any current distribution other than uniform, physical and effective length
are not identical anymore.
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where the complex conjugate is used to correct for the fact that the vector effective
length is associated with the transmitting case, while the open circuit voltage is
obtained in the receiving case.

The incident field vector - radiated by a transmitting antenna - may be expressed
in terms of vector effective length according to [1, 9]

Ei = −jZ0
kIin
4πr

lee−jkr , (3.61)

where Iin is the current at the input terminals of the transmitting antenna, r is the
distance between transmitting and receiving antenna and k = 2π/λ.

Example The radiated electric far-field of a vertically oriented half-wave dipole
antenna is given by [2]

Ei = jZ0
kIin
4πr

(
λ

π

)
e−jkr sin(ϑ)

cos
[(
π
2

)
cos(ϑ)

]
sin2(ϑ)

uϑ (3.62)

Substitution of equation (3.62) for ϑ = π
2 into equation (3.61) gives for the effective

length of a half-wave dipole antenna

|le| = lϑ =
λ

π
= 0.32λ. (3.63)

The effective length of a half-wave dipole antenna is smaller than its physical length,
just like we have seen that the effective aperture of an electromagnetic horn antenna
is smaller than its physical size.

The concept of effective aperture or length is based on the principle that an
imaginary aperture or wire antenna is conceived that intercepts the same amount
of power as the original antenna does, but it does so uniformly, unlike the original
antenna.8 Only when the original antenna is very small, the power interception
approximately takes place uniformly and effective and physical dimensions get close
to one another. The concept of effective aperture is not restricted to physical aperture
antennas and, likewise, the concept of effective length may also be applied to non-wire
(aperture) antennas.

3.5 RADIO EQUATION

As stated before, an antenna is never used as a stand-alone component, but will always
be part of a communication or radar system. When employed in a communication
system, we have to deal with at least two antennas: a transmitting antenna and
a receiving antenna. We assume that both antennas are lined up with respect to
polarisation and maximum directivity and that they are positioned in each other’s
far-field regions, see figure 3.37.

8We have seen that the half-wave dipole has a sinusoidal current distribution over the wire. For the
determination of the effective length, a constant current is assumed. Therefore, the effective length
(0.32λ) is shorter than the physical length (0.50λ).
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Fig. 3.37 Communication system consisting of a transmitter having an antenna with gain GT

and a receiver having an antenna with gain GR. The antennas are displaced a distance R and
assumed to be in each other’s far-field regions and lined up with respect to polarisation and
directivity.

The gain of the transmitting antenna is GT , the gain of the receiving antenna is
GR.

The power density S at distance R from the transmitting antenna is

S = GT
PT

4πR2
, (3.64)

where PT is the input power at the terminals of the transmitting antenna. The
factor 1/(4πR2) accounts for the spherical spreading of the energy. Since the transmit
antenna is non-isotropic, this factor is multiplied with the gain of the antenna.

The amount of power intercepted by the receiving antenna, PR is this power density,
multiplied with the effective area of the receive antenna, AeR. This effective area is
directly related to the gain of the receive antenna

PR = SAeR = GT
PT

4πR2
GR

λ2

4π
. (3.65)

After rearranging the terms of this equation, we may relate the power received at
the terminals of the receive antenna, PR to the power delivered at the terminals of
the transmit antenna, PT

PR
PT

=
(

λ

4πR

)2

GRGT . (3.66)

This equation is known as the radio equation or Friis transmission equation. The
term (λ/(4πR))2 is known as the free space loss factor.

Example Assume a broadcasting system, operating at 100MHz, employing a half-
wave dipole antenna, having a gain of 2.15dBi.9 The power accepted by the transmit
antenna is 1kW.
9The units of dBi refer to a gain relative to an isotropic radiator. Another unit sometimes encountered
is the dBd, the gain relative to an elementary dipole radiator (2.15dBi = 0.0dBd).
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The minimum required power delivered by the receiving antenna is 1nW. When
the maximum range is 500km, what should be the minimum gain of the receiving
antenna?

The required gain is given by

GR =
16π2R2PR
λ2PTGT

. (3.67)

The wavelength is given by λ = c0/f , where c0 is the speed of light in vacuum
(c0 ≈ 3 ·108ms−1) and f is the frequency. The wavelength therefore is 3.0m. The gain
of the transmitting antenna is GT = 102.15/10 = 1.64.10 The desired minimum gain is
then found to be

GR =
16 · 9.87 · 2.5 · 1011 · 10−9

9 · 103 · 1.64
= 2.67, (3.68)

or GR = 10 log(2.67) = 4.27dBi.
Mind that the equation is solved for the situation where both antennas are lined

up with respect to gain and polarisation.

Example Consider a mobile communication system consisting of two identical
transmitter-receiver sets operating at 1GHz. The same half-wave dipole antenna is
used both for transmission and for reception. GT = GR = G = 2.15dBi. The power
delivered to the antenna in transmission is 1W. The minimum power at the antenna
terminals in reception is −65dBm. Find the maximum allowable distance, R, between
the two sets.

The maximum allowable distance is given by

R =
λ

4π
G

√
PT
PR

. (3.69)

The wavelength is c0/f = 3 · 108/109 =0.30m. G = 1.64. PT =1W. The minimum
power at reception is expressed in dBm, meaning decibels with respect to 1mW.
Therefore, PR = 10−65/10mW = 10−65/10 · 10−3W = 3.16 · 10−10W. The maximum
distance is then found to be

R =
0.30
12.57

1.64

√
1

3.16 · 10−10
= 2.20km. (3.70)

3.6 RADAR EQUATION

A radar system is very much like the communication system described in the previous
section. The difference is that instead of a direct link, the electromagnetic waves,
emitted by the transmitter T in figure 3.38a, now reach the receiver,R, via a reflection
against a target.

10The product PTGT is known as the effective isotropic radiated power (EIRP). The EIRP is the
power intensity that could have been obtained from an isotropic radiator if it had an input power,
Pin equal to the EIRP.
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Fig. 3.38 Radar system a. Bistatic radar. The transmitter is connected to an antenna with
gain GT and is at a distance R1 from the reflecting target. The receiver has an antenna with
gain GR and is at a distance R2 from the target. b Monostatic radar. The same antenna, having
gain G, is used for transmission and reception. The distance to the target is R. The target is
assumed to be in each antenna’s far-field region.

The power density incident on the target, Si, is given by

Si = GT
PT

4πR2
1

, (3.71)

where GT is the gain of the transmit antenna, PT is the power at the input of the
transmit antenna and R1 is the distance between transmit antenna and target. It is
implicitly assumed that the beam of the transmit antenna is directed to the target.

The power intercepted by the target, Pi, is proportional to the power density, Si
and is given by

Pi = σSi, (3.72)

where σ (m2) is known as the radar cross-section (RCS) of the target.

3.6.1 Radar Cross-Section

The radar cross-section of a target is the equivalent area intercepting that amount of
power that, when scattered equally in all directions, produces an echo at the radar
equal to that coming from the target [7].

There is in general not a simple rule, relating the physical size of a target to its
radar cross-section, although, in general, larger targets exhibit larger RCSs. Table 3.3
[1, 7] gives an overview of some typical RCS values.

We now return to the radar equation.
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Table 3.3 Typical RCS values.

Object RCS (m2)

Conventional, winged missile 0.5
Small fighter or 4-passenger jet 2
Large fighter 6
Medium bomber or medium jet airliner 20
Large bomber or large jet airliner 40
Jumbo jet 100

Small pleasure boat 2
Cabin cruiser 10

Pickup truck 200
Automobile 100
Bicycle 2

Man 1
Bird 0.01
Insect 0.00001

The power density at the position of the receiver after scattering from the target,
Ss is given by

Ss =
Pi

4πR2
2

=
σGTPT

(4π)2R2
1R

2
2

. (3.73)

The power available at the receiver, PR, is

PR = AerSs, (3.74)

where Aer is the effective aperture of the receiving antenna. With use of equation
(3.53), we find

PR = PT
σGTGRλ

2

(4π)3R2
1R

2
2

. (3.75)

This equation, relating received and transmitted power, is known as the radar
equation.

The setup with a separate transmit and receive antenna, physically displaced,
see figure 3.38a, is called bistatic radar. The more common monostatic radar, see
figure 3.38b, uses the same antenna both for transmission and reception. The
consequences for the radar equation are that GT = GR = G and R1 = R2 = R,
leading to

PR = PT
σG2λ2

(4π)3R4
. (3.76)
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Example It is necessary to detect a target with a RCS of 1m2 at a range of 150km.
A monostatic radar is used. The gain of the antenna employed is 40dB at a frequency
of 3GHz. The minimum power at the terminals of the antenna in receiving mode is
−100dBm.

What is the transmitting power needed and what is the size of the effective antenna
aperture?

The transmitting power is given by

PT = PR
(4π)3R4

σG2λ2
. (3.77)

G = 1040/10 = 104 and λ = 3 ·108/3 ·109 = 10−1m. PR = 10−100/10mW = 10−13W.
The transmitted power is then found to be

PT = 10−13 1984.40
(
150 · 103

)4
108 · 10−2

W = 100.46kW. (3.78)

The effective aperture is

Ae =
Gλ2

4π
=

104 · 10−2

12.57
m2 = 7.96m2. (3.79)

Example Answer the same questions if the frequency is now 1GHz. We assume that
the antenna is replaced by an antenna that has a gain of 40dBi at 1GHz.

The wavelength has changed to λ = 0.30m. The transmitted power is now found
to be

PT = 10−13 1984.40
(
150 · 103

)4
108 · 0.302

W = 11.16kW. (3.80)

The effective aperture of the antenna is

Ae =
Gλ2

4π
=

104 · 0.302

12.57
m2 = 71.60m2. (3.81)

Thus, at a lower frequency we may detect targets using less power, but we need
larger antennas.
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4
The Linear Broadside Array

Antenna

With the just gained physical, or qualitative, understanding of electromagnetic radiation
and antennas - including array and phased array antennas - we are now capable of
developing a quantitative understanding of these antennas. We will start with the
relatively easy-to-understand linear broadside array antenna, i.e. a system of radiators
positioned along a straight line, producing a beam perpendicular to this line. The specifics
of the linear array antenna will be outlined, making use of the antenna parameters
described in the previous chapter. The mathematics needed for the derivation of these
parameters for the linear array rely mostly on straightforward goniometrics.

4.1 A LINEAR ARRAY OF NON-ISOTROPIC POINT-SOURCE RADIATORS

Let’s assume a system of identical radiators, placed at equidistant positions along a
straight line, see figure 4.1. This system is a so-called linear array antenna. Neither
the identicalness of the radiators, nor the equidistant positions are prerequisites for a
linear array antenna. They are introduced though to avoid obscuring the explanation
of the linear array antenna basics. Besides, in practical situations, linear array
antennas are often realised with identical radiators that are equidistantly positioned.

Also for clarity reasons, we assume that the individual radiators that make up
the array antenna do not occupy any volume, but we allow them to have a non-
isotropic radiation pattern. In other words, we assume the radiators to be - physically
not realisable - non-isotropic point sources. Thereby we allow the radiators to have
directivity, i.e. have a non-trivial radiation pattern, but for the moment we do not
have to bother with restrictions in positioning the elements due to their own physical
dimensions since we simply assume these physical dimensions to be non-existent.

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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Fig. 4.1 A linear array of K radiators, equidistantly positioned along a straight line, where a
plane wave is incident under an angle ϑ with respect to the array normal.

Furthermore, for explaining the array antenna basics, we consider the array antenna
to be a receiving antenna. This is not a restriction, since by virtue of the reciprocity
theorem [1, 2], we know that the characteristics of an antenna when used as a
transmitting antenna are identical to those when used as a receiving antenna.

Accepting these restrictions, we assume, see figure 4.1, that the wavefront of a
plane wave is incident upon the linear array antenna under an angle ϑ with the array
aperture. The wavefront is perpendicular to the direction of the plane wave. This
direction is indicated by rays in the figure.

A wavefront is defined by the characteristic that all points on the wavefront have
equal amplitude and phase values.

A point source emits waves having spherical wavefronts. Also the wavefronts
emitted by a real-life antenna, when observed at a large distance from this antenna,
may be considered as being spherical. When observed over a finite area - as is usually
the case since our receiving antenna is of finite size - the wavefronts may be regarded
as being locally planar, see figure 4.2.

4.2 PLANE WAVES

We have already seen that a time harmonic signal, s(t), may be represented as

s(t) = A cos(ωt) = A�{ejωt} . (4.1)

Herein, �{x} is the real part of the complex argument x. The angular frequency
ω is related to the frequency f through ω = 2πf .
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Fig. 4.2 Wavefronts. a. Spherical wavefronts at a large distance from a transmitting antenna
T , received by a receiving antenna R. b. Locally planar wavefronts.

A is the amplitude of signal s(t). The signal s(t) is periodic, which means that the
signal value at instant t = t0 will be repeated at instances of time t = t0 + n 1

f , where
n is an integer number.

A wave is a disturbance in both time and space. A wave function therefore is a
time harmonic function that not only repeats itself in time, but also in space:

s′(t) = A′ cos
(
ωt± 2π

λ
l

)
= A′�

{
ej(ωt±

2π
λ l)
}

= A′�
{
ej(ωt±kl)

}
, (4.2)

where l is the distance along the propagation path and A′ is the amplitude of signal
s′(t).

We see that for l being an integer multiple of wavelengths λ, the signal s′(t) repeats
itself. The parameter k = 2π

λ is called the wave number.
The phase of signal s′(t) - denoted Φ′(t) - is given by

Φ′(t) = ωt± kl. (4.3)

The minus sign indicates a wave travelling away from the source, while the plus
sign indicates a wave travelling towards the source. This can be easily understood
by keeping the phase, Φ′(t), constant - as should be done for following a wavefront -
while increasing the time, t. The phase can only be kept constant by increasing the
distance l if the minus sign applies and by decreasing the distance l if the plus sign
applies.

It is customary in technical publications to mention the time dependency ejωt once
and suppress is further on.1 Adding the time dependency in every equation would not

1Also a time dependency according to e−jωt is used sometimes. Therefore the time periodicity needs
to be mentioned once explicitly.
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add information since the exponential expressions would appear as a multiplication
factor on both sides of every equation.

We now return to our linear broadside array antenna of figure 4.1.

4.3 RECEIVED SIGNAL

Our linear array antenna consists of K radiators or elements. At a certain moment,
the planar wavefront has reached element K, see figure 4.1. To reach element K − 1,
the planar wavefront must travel a distance d sin(ϑ), as may be distilled from the same
figure. To reach element K−2, the wavefront must travel a distance 2d sin(ϑ), and so
on. If we normalise the phases of the received signals such that the phase at element
K is zero, the phase differences with respect to element K of the signals received by
the other elements represent the received phases of these elements. These phases, Φi,
are obtained by multiplying the path lengths with the free space wave number, k0, as
follows from equation (4.3) after suppression of the ejωt time-dependency

Φi = k0(K − i)d sin(ϑ) for i = 1, 2, . . . ,K, (4.4)

where
k0 =

2π
λ0
. (4.5)

Herein, λ0 is the wavelength in free space.
With the term received signal, the current flowing through the clamps of the element

or the amplitude of the guided wave travelling through the waveguide connected to
the element is meant.2 The exact nature of this signal (current, voltage or current
or voltage wave amplitude) is of no concern for the explanation of the array antenna
basics.

The complex signals received by the elements of the array antenna, Si(ϑ), may be
written as

Si(ϑ) = Se(ϑ)aiejk0(K−i)d sin(ϑ) for i = 1, 2, . . . ,K, (4.6)

where Se(ϑ) represents the complex radiation pattern of one - isolated - individual
radiator and ai is the amplitude received by the ith element. For the moment we
will assume that all amplitudes received by the elements are equal and normalised to
one, i.e.

ai = 1 for i = 1, 2, . . . ,K. (4.7)

We call this a uniform aperture distribution.
If we combine all received signals without introducing additional phase differences

between the elements, we may simply add the received signals described by equation
(4.6) for all elements i. The total received signal, S(ϑ), is then found to be

S(ϑ) =
K∑
i=1

Si(ϑ) = Se(ϑ)
K∑
i=1

ejk0(K−i)d sin(ϑ). (4.8)

2The waveguide may be a hollow rectangular waveguide, a two-wire or a coaxial transmission line,
for example.
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Combining the received signal without introducing additional phase differences
may be accomplished by using a feeding or summing network (in the appropriate
waveguide technology) that ensures equal path lengths to all elements of the array.
Such a feeding network is schematically shown in figure 4.3.3

d d d
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Fig. 4.3 Linear array antenna with equal path length summing network.

In writing down equation (4.8), we have implicitly assumed that the radiation
pattern of an individual radiator remains the same upon placing this radiator in
an array environment. Apart from the interaction introduced by the inter-element
distances and the phase differences these distances cause, no further interaction
between the radiators is assumed. In other words: ‘we neglect mutual coupling between
the radiators’. Although situations may arise where this assumption is valid, in general
it is not true. For the explanation of array antenna basics though we neglect mutual
coupling effects for the moment. Later on we will return to this phenomenon.

Having accepted this, we return to equation (4.8) and see that the received signal
may be separated in a component due to a single radiator and in a component due
to the array configuration only

S(ϑ) = Se(ϑ)Sa(ϑ), (4.9)

where Se(ϑ) is known as the element factor and

Sa(ϑ) =
K∑
i=1

ejk0(K−i)d sin(ϑ) (4.10)

is known as the array factor.
The element factor is the radiation pattern of a single radiator, the array factor is

the radiation pattern of an array of K isotropic radiators. The radiation pattern of

3This type of feeding arrangement is known as a corporate feeding network.
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the linear array antenna, S(ϑ), is obtained by multiplying the element factor, Se(ϑ),
with the array factor, Sa(ϑ). This operation is known as pattern multiplication.

Example Consider a linear array antenna consisting of eight elements. The element
voltage radiation pattern is given by

Se(ϑ) = cos(ϑ). (4.11)

Given this hypothetical voltage radiation pattern,4 calculate and show the element
factor power pattern, the array factor power pattern and the power radiation pattern
of the total array as function of the angle ϑ relative to the array normal (broadside)
for the following element distances d:

1. d = λ0
4 ;

2. d = λ0
2 ;

3. d = λ0;

4. d = 5λ0
4 .

Using equations (4.9), (4.10) and (4.11) results in the radiation power patterns
shown in figures 4.4, 4.5, 4.6 and 4.7 for, respectively, d = λ0

4 , d = λ0
2 , d = λ0 and

d = 5λ0
4 . The element power pattern is calculated as 20 log (|Se(ϑ)|), the normalised

array factor power pattern is calculated as 20 log (|Sa(ϑ)| /8) and the normalised power
pattern of the total array is calculated as 20 log (|Se(ϑ)| |Sa(ϑ)| /8).

The first thing that strikes us when taking a closer look at figures 4.4 to 4.7 is
that our expectations, based on the physical reasoning developed in the preceding
chapters, come true. We clearly see that the main beam of the linear array antenna
gets smaller when the elements occupy a larger area, i.e. when the element distance
increases. Furthermore, we see that after passing a critical element distance, a further
increase of the element distance leads to the introduction of additional main beams.

We also see that the total linear array antenna behaviour is dominated by the array
factor. The directive properties of the elements merely act as an angular filter that
lowers the radiated power of the array antenna for angles getting closer to endfire, i.e.
directions parallel to the linear array antenna. Due to the dominant character of the
array factor we will discuss this array factor in more detail.

4Although the element radiation pattern is a hypothetical one, it bears a strong resemblance with
the radiation pattern of a horizontal half-wave dipole antenna as may be seen by comparing the
(power) radiation pattern with the ones shown in the previous chapter for a vertical half-wave dipole
antenna. The pattern also resembles that of a slot in an infinite ground plane. Assuming these latter
elements, we only need to consider the radiation pattern in the upper hemisphere, −90◦ ≤ ϑ ≤ 90◦.
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Fig. 4.4 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element broadside array with element distance d = λ0
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Fig. 4.5 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element broadside array with element distance d = λ0

2
.



130 THE LINEAR BROADSIDE ARRAY ANTENNA

-60

-50

-40

-30

-20

-10

0

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Angle relative to broadside (degrees)

dB

element factor
array factor
total array

Fig. 4.6 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element broadside array with element distance d = λ0.
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Fig. 4.7 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element broadside array with element distance d = 5λ0
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4.4 ARRAY FACTOR

The array factor is given by equation (4.10), which can be rewritten - in more compact
form - into

Sa(ϑ) =
K∑
i=1

ejk0(K−i)d sin(ϑ) =
K∑
i=1

ej(K−i)T , (4.12)

where
T = k0d sin(ϑ). (4.13)

In equation (4.12) we may recognise a finite geometric series.
If we multiply both sides of this equation with ejT , we get

Sa(ϑ)ejT = ejKT + ej(K−1)T + · · · + ej2T + ejT . (4.14)

Next, we subtract equation (4.12) from equation (4.14) and thus obtain

Sa(ϑ)
(
ejT − 1

)
=
(
ejKT − 1

)
, (4.15)

which may be written, after splitting and rearranging the exponential terms, as

Sa(ϑ) =
ej

KT
2

(
ej

KT
2 − e−j

KT
2

)
ej

T
2

(
ej

T
2 − e−j

T
2

) = ej
K−1

2 T sin
(
K
2 T
)

sin
(

1
2T
) , (4.16)

so that, finally

|Sa(ϑ)| =

∣∣∣∣∣ sin
(
K
2 k0d sin(ϑ)

)
sin
(

1
2k0d sin(ϑ)

) ∣∣∣∣∣ =
∣∣∣∣∣∣
sin
(
πKdλ0

sin(ϑ)
)

sin
(
π d
λ0

sin(ϑ)
)
∣∣∣∣∣∣ . (4.17)

4.5 SIDE LOBES AND GRATING LOBES

With the thus found expression for the radiation pattern of a linear array antenna
consisting of isotropic radiators, we may analyse some characteristics of side lobes
and grating lobes .

4.5.1 First Side-Lobe Level

Equation (4.17) shows that the maximum of the (voltage) array factor occurs for ϑ = 0
and is equal to K. For angles ϑ close to broadside, i.e. around the main beam, we
may approximate the array factor of equation (4.17) using an approximation for the
sine function for small arguments, sin(x) ≈ x. This leads to the following expression
for the absolute value of the array factor near broadside

|Sa(ϑ)| ≈ K

∣∣∣∣ sin(Kx)
Kx

∣∣∣∣ , (4.18)
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where
x = π

d

λ0
sin(ϑ). (4.19)

We have specifically chosen for this representation, with a factor K in both the
numerator and denominator.

It is easily verified, see for example [2], appendix I, that the second maximum of∣∣∣ sin(Kx)
Kx

∣∣∣ appears for the argument being equal to approximately Kx ≈ 4.5 and that
the amplitude of this maximum is equal to 0.21723.

Therefore the level of the radiation power pattern’s first side lobe will be
approximately 20 log 0.21723 = −13.26dB, down relative to the pattern maximum.

Comparing this value with the first side lobe levels of the array factor as shown in
figures 4.4, 4.5, 4.6 and 4.7 indicates the validity of our approximation for the array
factor in the vicinity of broadside.

4.5.2 Grating Lobes

Equation (4.17) not only shows that the maximum of the (voltage) array factor (K)
occurs for ϑ = 0. The equation also shows that the array factor is a periodic function
of ϑ and that multiple maxima occur whenever

π
d

λ0
sin(ϑ) = mπ for m = 1, 2, 3, . . . , (4.20)

i.e. for the argument of the sine function being an integer multiple of π. Note that due
to the absolute value of the sine function appearing in the expression for the radiation
pattern, the periodicity has become π instead of 2π.

From the above equation, a restriction for the element distance follows that ensures
having only one maximum (m = 1) within the range −ϑmax ≤ ϑ ≤ ϑmax

d

λ0
≤ 1

|sin (ϑmax)| . (4.21)

If we do not want to have secondary maxima or lobes within the whole angular
range, −π

2 ≤ ϑ ≤ π
2 , the restriction becomes more severe:

d

λ0
≤ 1∣∣sin (π2 )∣∣ = 1. (4.22)

If this condition is not met, more than one maximum will occur. These extra
maxima are known as grating lobes , a term originating from optics.

In our example, grating lobes are occurring for the situation where d = λ0, see
figure 4.6 and for the situation where d = 5λ0

4 , see figure 4.7. Figure 4.6 reveals that
keeping too strict to the grating lobe condition as stated in equation (4.22) does not
prevent grating lobe effects to be not present at all in the radiation pattern. Choosing
an inter-element distance too close to one wavelength, still results in unwanted effects
in the radiation pattern due to the slopes of the first grating lobes. Thus, keeping
the grating lobe maximum out of visible space (−π

2 ≤ ϑ ≤ π
2 ) alone is not enough to
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ensure not observing grating lobe effects. Therefore, the inter-element distance should
be chosen with great care and should be smaller than one wavelength.

One should be aware of the fact that a grating lobe differs from an ordinary side lobe.
Side lobes are the result of constructive and destructive interference from different
radiating parts of the antenna. The level of a side lobe is always below that of the
main beam. A grating lobe is due to the periodicity in the radiation pattern and is
formed in directions where a maximum in-phase addition of radiated fields occur. A
grating lobe should be compared with the main beam instead of to an ordinary side
lobe. The level of a grating lobe is equal to that of the main beam, since a grating
lobe is a repeated main beam. As can be seen from the array factor in figures 4.6 and
4.7, each grating lobe is accompanied by its own set of side lobes that are - just like
the grating lobe itself - copies of the radiation pattern around broadside.

Due to the earlier mentioned ‘angular filtering characteristics’ of the element factor,
the grating lobe phenomenon seems to be less severe in figure 4.6 than in figure 4.7. In
the first figure, the element factor greatly reduces the amplitude of the grating lobe.
As we can see in both figures, also the side lobe levels are affected (lowered) by the
element radiation pattern.

The element radiation pattern ensures that more power is radiated in the forward
direction at the expense of less power being radiated into other directions. If the
element did not have these directive properties, i.e. if the element were an isotropic
radiator, this favourism for the forward direction would not exist. We may employ
another mechanism of broadside favourism in the array antenna to reduce the side lobe
levels. Since we cannot control the element radiation pattern, we have to manipulate
the array factor to create additional directive properties in there. We may accomplish
this by changing our summation network in such a way that the contributions of the
elements are not equal anymore but weighted.

4.6 AMPLITUDE TAPER

We start with a uniformly excited linear array, for which the array factor is given by

Sa(ϑ) =
K∑
i=1

aie
jk0(K−i)d sin(ϑ), (4.23)

where
ai = 1 for i = 1, 2, . . . ,K. (4.24)

To avoid the results of the amplitude weighting or tapering being obscured by
grating lobe effects, we choose an inter-element distance equal to half a wavelength,
well beyond the limit as stated in equation (4.22).

The number of elements we take to be equal to eight and the element factor is
given by

Se(ϑ) = cos(ϑ). (4.25)

This choice will allow us to compare newly derived results with results already
obtained in our earlier example.
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Fig. 4.8 Power radiation patterns of a linear 8-element broadside array with element distance
d = λ0

2
for a uniform, a triangular and a binomial amplitude taper.

The radiation pattern for the uniformly excited linear array is shown in figure 4.5
and is repeated in figure 4.8. The uniform amplitude taper is shown in figure 4.9.

The easiest way to apply an amplitude taper now, favouring centre elements over
edge elements, is to linearly decrease the contribution of the array elements going
from the centre to the edges of the array. A triangular amplitude taper, for which the
ai in equation (4.24) are - arbitrarily - chosen to be

• a1 = a8 = 0.05;

• a2 = a7 = 0.10;

• a3 = a6 = 0.15;

• a4 = a5 = 0.20,

see figure 4.9, results in the radiation pattern show in figure 4.8.
We see that this triangular amplitude taper indeed leads to a lower side lobe level, at

the expense of a broader beam compared to the one obtained for a uniform amplitude
taper.

It appears to be even possible to remove the side lobes all together, by choosing the
amplitude coefficients equal to the coefficients of a binomial series [3]. The binomial
amplitude taper

• a1 = a8 = 0.0078;

• a2 = a7 = 0.0547;
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Fig. 4.9 Amplitude weighting or taper for a linear 8-element array antenna. Uniform,
triangular and binomial amplitude taper, normalised to unity at the centre elements.

• a3 = a6 = 0.1641;

• a4 = a5 = 0.2734,

is shown in figure 4.9 and the resulting radiation pattern is shown in figure 4.8.
We observe a further broadening of the beam to be paid as price for the removal

of the side lobes.
Having reached this point, it seems to be worthwhile to put into practice what we

have learned thus far before moving on. To that purpose, we will, in the next chapter,
treat the design of a linear array of microstrip patch radiators in great detail.
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5
Design of a 4-Element,

Linear, Broadside,
Microstrip Patch Array

Antenna
In this chapter we will put the linear, broadside array antenna theory of the previous
chapter into practice. We will go into every detail concerning the analysis, design and
realisation of a 4-element, linear, broadside, microstrip patch array antenna, including
its corporate feed network. We will develop an approximate mathematical model for
calculating the radiation pattern of a microstrip patch radiator as well as its input
impedance and we will develop expressions for the elements of the scattering matrix
of a split-T power divider. These models will be employed in the design of the 4-element,
linear, broadside, microstrip patch array antenna. When necessary, additional theoretical
background material will be provided, either in the text or in appendices at the end of
this book.

5.1 INTRODUCTION

Excellent full-wave electromagnetic simulation software is commercially available
today. It is still necessary though for the user to have a basic understanding of the
structures to analyse. Since full-wave simulation times for complicated structures -
like, for example, array antennas - may become considerable, the first stages in the
design process of an array antenna should be performed using basic knowledge and
maybe simplified models. In this chapter, these first design stages will be discussed in
detail for a 4-element, linear, broadside array antenna consisting of microstrip patch
elements. We specifically choose a 4-element array antenna, operating at a frequency
of 2.4GHz, since this array antenna will make it possible to demonstrate array antenna
characteristics, while at the same time being of limited size making indoor radiation
pattern measurements feasible (far-field condition!). The frequency is chosen to be

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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in a licence-free frequency-band and the choice for microstrip patch elements at this
frequency will allow for ease in realisation.

In the following we will adopt a modular approach in which we will first design
the subsystems like antenna elements, power dividers and subarrays. In the design
process, full-wave analysis computer codes will be employed occasionally to verify
these subsystems and eventually the complete antenna will be measured and compared
with expectations. The array antenna will be excited by means of a corporate feed
network, designed for a uniform aperture distribution.

In the array antenna design process we will assume that mutual coupling effects
are negligible. Therefore we will ensure that the distance between the array antenna
elements is sufficiently large.

5.2 RECTANGULAR MICROSTRIP PATCH ANTENNA

One of the key parameters, characterising any antenna - besides the radiation pattern
- is the input impedance, which determines the matching bandwidth of the antenna
when connected to the front-end (transmitter/receiver).

A control over the input impedance of a microstrip patch antenna is available by
using the closed-form equations that were derived for these antennas in the 1970s
and 1980s, see for example [1, 2, 4, 5]. The closed-form equations are characterised by
resulting in fast calculations when implemented in computer code, while at the same
time providing a high degree of accuracy. Since - in this section - we are dealing with
a single radiator,1 we can use these equations to accurately predict both the input
impedance as well as the radiation behaviour of the rectangular microstrip patch
antenna.

5.2.1 Cavity Model

The microstrip patch antenna (see figure 5.1) consists, in its basic form, of a
rectangular, electrically conducting element that is photoetched from one side of a
printed circuit board (PCB). The element may be fed with a microstrip transmission
line, with a coaxial feed or by means beyond the scope of this chapter.

The feed introduces a (time-varying) electric field between ground-layer and patch.
The antenna may be regarded as a cavity with electrically conducting bottom and top
walls and magnetically conducting side walls. This cavity imposes boundary conditions
on the electromagnetic field components inside the cavity, such that only discrete
solutions, the so-called modes, can exist. The dimensions of the cavity determine the
resonance frequency of the antenna.

1For an array antenna, in general we would no longer be able to employ closed-form equations.
Due to mutual electromagnetic interactions between the array elements, we would need to resort
to (lengthy and complicated) numerical methods for calculating the element - and inter-element -
characteristics. However, for a fixed-beam array antenna - the subject of this chapter - a careful
choice of array element positions may result in mutual coupling effects being of secondary order,
justifying leaving out mutual coupling effects all together in the analysis.
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Fig. 5.1 Microstrip patch antenna.

Since the side walls are not perfectly magnetic conducting, the electric field lines
are not completely perpendicular to the bottom and top layer at the position of the
side walls, as shown in figure 5.1. These so-called fringe fields give rise to radiation
leaking from the cavity, thus making the antenna operation possible. The radiation
may be considered as originating from two slots, separated by the length b of the
patch, see figure 5.1. For the two slot fields to be in-phase, the slot separation needs
to be half a wavelength (i.e. the wavelength in the dielectric substrate of the PCB).
This is depicted in figure 5.2.

b

a

b

a

b

Fig. 5.2 Slot fields in phase. a. Side view. b. Top view. The strength and direction of the
electric field is indicated by, respectively, the length and direction of the arrow.
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5.2.2 Input Impedance and Radiated Fields

To calculate the input impedance of the rectangular microstrip patch antenna, only
the key equations - needed for the realisation of analysis software - will be stated.
Detailed derivations may be found in the literature listed at the end of this chapter.

5.2.2.1 Electric Field For a rectangular microstrip patch antenna with dimensions
as shown in figure 5.1, the (z-directed) electric field is given by [1]:

Ez(x, y) = jI0η0k0

∞∑
m=0

∞∑
n=0

ψmn (x, y)ψmn (x0, y0)
k2 − k2

mn

Gmn, (5.1)

where

η0 =
√
µ0

ε0
, (5.2)

is the characteristic impedance of free space (µ0 is the free space permeability and ε0
is the free space permittivity) and

ψmn (x, y) =
χmn√
ab

cos
(mπ
a
x
)

cos
(nπ
b
y
)
, (5.3)

is the modal field for mode indices m and n, where

χmn =


1 if m = 0 ∧ n = 0√

2 if m = 0 ∨ n = 0
2 if m �= 0 ∧ n �= 0

. (5.4)

Further

kmn =

√(mπ
a

)2
+
(nπ
b

)2
, (5.5)

is the wave number of the mode with mode indices m and n. k = ω
√
εµ is the wave

number associated with the wavelength in the dielectric substrate. k0 = ω
√
ε0µ0 is

the free space wave number.
Finally,

Gmn = sinc

(
mπdx

2a

)
sinc

(
nπdy
2b

)
, (5.6)

where

sinc(x) =
sin(x)
x

, (5.7)

and where dx and dy are the dimensions of an equivalent rectangular, current I0
carrying excitation, as shown in figure 5.3. For a probe, the dimensions dx and dy are
chosen such that the area of the excitation is equal to that of the (circular) probe
cross-section. For a microstrip transmission line excitation, one of the dimensions is
set to the width of the transmission line, the other one is set to zero.
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Fig. 5.3 Microstrip patch antenna equivalent excitation at (x, y) = (x0, y0).

The input impedance Zin is found as the ratio of the input voltage over the
excitation current I0. The input voltage is −hEz (x0, y0), yielding

Zin = −jη0k0h

∞∑
m=0

∞∑
n=0

ψ2
mn (x0, y0)
k2 − k2

mn

Gmn. (5.8)

Whenever the wave number in the dielectric corresponds to a modal wave number
(i.e. at a modal resonance), the impedance reaches infinity, a situation not encountered
in real life. The reason for this non-realistic behaviour is found in the neglecting of
the losses, including the radiation (a desired loss).

5.2.2.2 Losses To obtain a more realistic model, all losses are lumped into one
effective loss tangent δeff [2].2 Thus the wave number is replaced by a complex wave
number, yielding

Ez(x, y) = jI0η0k0

∞∑
m=0

∞∑
n=0

ψmn (x, y)ψmn (x0, y0)
εr(1 − jδeff)k2

0 − k2
mn

Gmn, (5.9)

and

Zin = −jη0k0h

∞∑
m=0

∞∑
n=0

ψ2
mn (x0, y0)

εr(1 − jδeff)k2
0 − k2

mn

Gmn, (5.10)

where k0 is the wave number in free space.

2Lossy dielectric materials are characterised by a complex relative permittivity, εr = ε′r − jε′′r . The
loss tangent is defined as δd = tan(δ) = ε′′r /ε′r . Waves propagate through the dielectric proportional
to eγl, where l is the distance and γ is the propagation constant. The propagation constant is given
by γ = −jω√µ0ε0(ε′r − jε′′r ). In practice ε′′r /ε′r � 1, and upon propagating through the dielectric,

the waves undergo an exponential decay according to eαl, where α ≈ 1
2
ω
√
ε′rε0µ0δd. Hereby the

term loss tangent is explained.
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The effective loss tangent is obtained from the quality factor of the cavity formed
by the electric and magnetic walls of the microstrip patch antenna:

δeff =
1
Q0

, (5.11)

where
1
Q0

=
1
Qr

+
1
Qc

+
1
Qd

. (5.12)

Herein is Q0 the total quality factor, Qr is the quality factor of the radiation, Qc
is the quality factor of the conductors and Qd is the quality factor of the dielectric.
The occurrence of surface waves has been neglected, which is a valid assumption for
thin dielectrics [1]. The quality factors are given by [1–3]

Qc = h
√
πfµ0σ, (5.13)

Qd =
1

tan δ
, (5.14)

Qr =
2ωWE

Pr
. (5.15)

In the above equations, σ is the conductivity of the electric conductors, tan δ is
the loss tangent of the dielectric, Pr is the total radiated power and WE is the stored
electric energy.

The stored electric energy, for mode (m,n) is calculated to be, with use of equation
(5.9)

WEmn =
ε0εr
4

∫∫∫
cavity

∣∣∣ �E∣∣∣2 dV = |E0mn |2
ε0εrhab

4χ2
mn

, (5.16)

where

E0mn =
jI0χ

2
mnωµ0 cos

(
mπ
a x0

)
cos
(
nπ
b y0
)
sinc

(
mπdx

2a

)
sinc

(
nπdy

2b

)
ab
[
εrε0µ0ω2 (1 − jδeff) − (mπa )2 − (nπb )2] . (5.17)

The total radiated power is

Pr =
1

2η0

∫ π
2

0

∫ 2π

0

(
|Eϑ|2 + |Eϕ|2

)
r2 sin(ϑ)dϑdϕ. (5.18)

The calculation of the effective loss tangent may be simplified by substituting
keff = k in Qr. For a moderately high Q cavity this will lead to acceptable results,
the cavity being dominated by the resonant (m,n)-mode [2].

5.2.2.3 Far Field To calculate the total radiated power - also needed for the
determination of the equivalent loss tangent - we need to determine the far-field
components Eϑmn and Eϕmn as a function of mode amplitude E0mn , for mode (m,n).
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Fig. 5.4 Rectangular microstrip patch antenna and radiating slots.

For the far-field components, we employ the radiating slot model of [7]. The far
field is considered to originate from four slots with width ∆, surrounding the patch
antenna, shown in figure 5.4.

The radiated far field is given by [7]

Emn(r) =
jk0e

−jk0r

2πr

(
îϑEϑmn + îϕEϕmn

)
, (5.19)

where

Eϑmn =
[
Ẽxmn(ξ, η) cos(ϕ) + Ẽymn(ξ, η) sin(ϕ)

]
, (5.20)

Eϕmn =
[
−Ẽxmn(ξ, η) sin(ϕ) cos(ϑ) + Ẽymn(ξ, η) cos(ϕ) cos(ϑ)

]
. (5.21)

In the above equations,

Ẽxmn(ξ, η) =
[
(−1 − (−1)m) j sin

(
ξ
a′

2

)
+ (1 − (−1)m) cos

(
ξ
a′

2

)]
,

hE0mn

b′

2
sinc

(
∆
2
ξ

)
jn
[
sinc

(
η
b′

2
+
nπ

2

)
+ (−1)nsinc

(
η
b′

2
− nπ

2

)]
, (5.22)

and

Ẽymn(ξ, η) =
[
(−1 − (−1)n) j sin

(
η
b′

2

)
+ (1 − (−1)n) cos

(
η
b′

2

)]
,

hE0mn

a′

2
sinc

(
∆
2
η

)
jm
[
sinc

(
ξ
a′

2
+
mπ

2

)
+ (−1)msinc

(
ξ
a′

2
− mπ

2

)]
, (5.23)

where

a′ = a+ ∆, b′ = b+ ∆, (5.24)
ξ = k0 sin(ϑ) cos(ϕ), η = k0 sin(ϑ) sin(ϕ), (5.25)

and ∆ is the width of the slot, see figure 5.4.
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The far field is integrated over a semi-sphere, since we assume the microstrip
patch to be positioned on a grounded dielectric that stretches out to infinity in both
transverse directions. This assumption results in a calculated radiation pattern that
differs from the actual one for angles near grazing incidence. Since the radiated power
in these directions is negligible in comparison to other directions, the infinite grounded
dielectric is a good first-order approximation. The finiteness effects of the grounded
dielectric could be included by diffraction techniques as discussed in [6].

5.2.2.4 Effective Patch Dimensions The width of the slot is approximated in [7]
as ∆ = h. Here, we will employ a more precise approximation, based upon the
capacitance of an open microstrip transmission line [1].

In the theoretical derivation thus far, we implicitly assumed that the electric field
in the cavity is perpendicular to the electrical conductors everywhere in the cavity. As
shown in figure 5.1, this assumption is not valid at the edges of the patch. However, we
can still work with the assumption of a perpendicular field, if we change the transverse
dimensions a and b into effective dimensions aeff and beff. These effective dimensions
are lengthened with respect to the physical dimensions, to account for the fringe field.
The effective dimensions are given by

aeff = a+ ∆, (5.26)
beff = b+ ∆, (5.27)

where [9]

∆ = 0.824h
(εeff + 0.3)

(
b
h + 0.262

)
(εeff − 0.258)

(
b
h + 0.813

) , (5.28)

εeff =
εr + 1

2
+
εr − 1

2

(
1 + 10

h

b

)− 1
2

. (5.29)

In the above we have assumed the TM01-mode to be dominant, meaning that the
length b of the microstrip patch radiator determines the resonance frequency. We have
assumed all slot widths to be equal and have referred this width to the parameter b.

5.2.3 Rectangular Microstrip Patch Antenna Design

For our linear array antenna we need a rectangular microstrip patch radiator that
is excited by a microstrip transmission line. This will allow us to construct both the
radiator and the array antenna feed network in the same technology. Our antenna
thus will consist of a grounded dielectric slab with on top of this slab the radiators
and feed network shaped in a single copper layer that may be photoetched from the
dielectric slab or constructed as shown later on in this chapter.

All the subsystems, including the rectangular microstrip patch radiator, will be
designed for connection to a 50Ω transmission line. 50Ω is nowadays the standard
characteristic impedance for RF transmission lines. This chosen value is a compromise
between a characteristic impedance of 30Ω that will lead to a maximum power-
carrying capability - for physically realisable coaxial transmission lines - and a
characteristic impedance of 77Ω that will lead to a minimum attenuation.
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For low budget reasons, we will realise our linear array antenna not on a microwave
laminate substrate, but on (lossy) standard FR4 PCB material. Since the relative
permittivity of this material is in general not known to a great accuracy, we will
construct a piece of microstrip transmission line of known width and measure
the scattering parameters using a vector network analyser (see also chapter 11).
From these measurement results we calculate the characteristic impedance and next
determine the relative permittivity of the substrate, using [10]

Z0 =


60√
εeff

ln
(

8h
W

+
W

4h

)
for

W

h
≤ 1

120π√
εeff
[
W
h + 1.393 + 0.667 ln

(
W
h + 1.444

)] for
W

h
≥ 1

, (5.30)

where W is the width of the transmission line and h is the thickness of the substrate.
Thus, we found that our specific sample of FR4 material (h=1.6mm) was

characterised by a relative permittivity of εr = 4.28 and a loss tangent of tan δ =
0.016. The width of a 50Ω transmission line is then found with [10]

W

h
=


8eA

e2A − 2
for

W

h
< 2

2
π

[
B − 1 − ln(2B − 1) +

εr − 1
2εr

{
ln(B − 1) + 0.39 − 0.61

εr

}]
for

W

h
> 2

,

(5.31)
where

A =
Z0

60

√
εr + 1

2
+
εr − 1
εr + 1

(
0.23 +

0.11
εr

)
, (5.32)

and
B =

377π
2Z0

√
εr
. (5.33)

Substitution of the found value for the relative permittivity and the height of
the substrate as well as the desired 50Ω characteristic impedance value leads to a
microstrip transmission line width of 3.12mm.

Having found the transmission line width and the relative permittivity of the
substrate, this now allows us to design a rectangular microstrip patch radiator that
is resonant at 2.4GHz. Thereto we could employ equation (5.10) in an iterative way.
Although this equation, used to calculate the input reflection as function of frequency,
requires at least an order of magnitude less in CPU time than a general full-wave
method, simulation times can still become relatively long, due to the slow convergence
of the series in this equation. Although the computation times may be acceptable
for analysis purposes, we would like to speed up the calculation times for synthesis
(iterative analysis) purposes.

Keeping this in mind and knowing that the microstrip patch antenna characteristics
are mainly (but not completely!) determined by the dominant mode, i.e. the mode
with the lowest resonance frequency, in our case the (m,n) = (0, 1) mode, we
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can approximate the contribution of all higher order modes into a single inductive
component [1]. The expression for the input impedance then becomes

Zin = −jη0k0h

◦∑
m=0

1∑
n=0

ψ2
mn (x0, y0)

εr(1 − jδeff)k2
0 − k2

mn

Gmn + j

√
µ0

εrε0
tan (2πhf

√
εrε0µ0) .

(5.34)
We will use this equation - that generates the input impedance very fast - to find the

dimensions of the rectangular microstrip patch radiator that is excited by a (3.12mm
wide) microstrip transmission line, see figure 5.5.
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Fig. 5.5 Geometry of a microstrip line fed rectangular microstrip patch antenna.

We start with a length b equal to half the wavelength in the substrate and then
vary this length to obtain a minimum reflection at 2.4GHz. Next we change the width
a to further minimise this reflection. We choose to keep the position of the feed line
fixed at half the patch width (x0 = a

2 ).
We thus find: a=58.00mm, b=29.30mm, h=1.60mm, εr = 4.28, tan δ = 0.0016,

dx=3.12mm, dy=0, x0=29.00mm, y0=0 and σ = 5.8 · 107. The reflection coefficient
as a function of frequency for these parameters is shown in figure 5.6, calculated with
the cavity model equation shown above and using a full-wave method.

We see that the (simple) cavity model predicts the resonance of the patch radiator
reasonably well. Upon a closer inspection, we see that the full-wave simulation results
agree with those of the cavity model but that for frequencies just above 2.4GHz
something else is happening that is not predicted by the (simple) cavity model.

In order to analyse these differences further, we have calculated the input
impedance of the rectangular patch antenna using the slowly converging series
expression for the cavity model and compared real and imaginary parts with those
calculated with the full-wave method. The results are shown in figure 5.7.

The figure reveals that the cavity model predicts the first resonance (imaginary
part of the input impedance equal to zero) very accurately compared with the full-
wave calculations. The cavity model also shows the occurrence of higher order modes,
but fails in predicting the correct behaviour.
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Fig. 5.7 Real and imaginary part of the input impedance as a function of frequency, calculated
for a rectangular microstrip patch radiator.
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In designing the rectangular patch radiator we have violated the rule-of-thumb
design rule that the ratio of width over length of the patch should be smaller than
approximately 1.5. We have done so deliberately to show the reason for this design
rule and to show the limits of the cavity model employed.

In our analysis thus far we have assumed that the TM01-mode is the dominant
mode and that higher order modes are sufficiently suppressed to be ignored in the
analysis. We have done this in the calculation of the effective loss tangent that is
determined entirely on basis of the dominant mode. Therefore, we see that for our
rectangular patch, where the width is nearly twice the length and where higher
order modes, starting with the TM10-mode are excited, the analysis starts to fail
at higher order resonances. By putting a restriction on the width of the patch in
relation to the length, we may assure a behaviour dominated by the TM01-mode
and for these radiators our cavity model will work fine. If we want to include higher
order mode effects accurately, we should put more effort in correctly calculating the
effective loss tangent. But then, calculation times could become comparable to those
of general full-wave analysis methods and the benefit of the cavity model no longer
is present.

In the example at hand in this chapter we employ the philosophy to employ the
cavity model as is for obtaining a starting design very fast, accepting the limited
accuracy and then validate and maybe fine-tune this design by employing a general
full-wave analysis method. For the moment we are happy with the return loss as
predicted by the cavity model as compared with the full-wave analysis results.

It remains to evaluate the radiation patterns as predicted by the cavity model. We
could calculate the radiation patterns in the principal planes based on the dominant
mode only. This would result in co-polarised patterns only (Eϑ = 0 in the plane
ϕ = 0 and Eϕ = 0 in the plane ϕ = 90◦). Since we know from our input impedance
evaluation that higher order modes are being excited, we may expect cross-polarised
components in the radiation patterns. Since we also know that the higher order
modes are not accounted for very accurately, we may also expect that these cross-
polarised radiation patterns will be calculated with less accuracy than the co-polarised
patterns.

In figure 5.8 the radiation patterns in the plane ϕ = 0◦ are shown as calculated
with the cavity model and with a general full-wave method. Figure 5.9 shows the
patterns calculated for the plane ϕ = 90◦.

As expected, we see a fair agreement between the co-polarised patterns as
calculated by employing the cavity model and as calculated by employing a general
full-wave method. The agreement between the cross-polarised patterns is not that
good, resulting from the approximations we based upon the (for this particular
radiator not entirely correctly) supposed TM01-mode dominance.

All in all we may conclude that the cavity model generates accurate impedance
and radiation information, even if the design rules are violated a bit and that this
information can be calculated very fast. This makes the cavity model a valuable tool
for generating designs or pre-designs very fast. Pre-designs may be fine-tuned - if
necessary - using (commercially available) full-wave methods.

With a design tool for the radiator thus being developed, we may try to do the
same for the components of the corporate feed network.
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Fig. 5.8 Co- and cross-polarised power radiation pattern in the plane ϕ = 0◦, calculated for
a rectangular microstrip patch radiator.
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Fig. 5.9 Co- and cross-polarised power radiation pattern in the plane ϕ = 90◦, calculated for
a rectangular microstrip patch radiator.

5.3 SPLIT-T POWER DIVIDER

The feed network of our 4-element array antenna will be of the corporate type. Since
the array antenna elements are microstrip patch radiators, the feed network will be
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realised in microstrip technology. Within this microstrip feed network, we will need
microstrip power dividers or ‘splitters’. Although we will make a uniformly excited
array antenna and therefore will need only equal power dividers, we will discuss general
power dividers and use the equal power divider as a special case of the general power
divider.

To assess the reflections from the antenna elements and the reflections internally in
the feed network, we will need the scattering matrix (see appendix E) of a basic power
divider. Our power divider and the analysis of this divider is based on the Wilkinson
power divider and the analysis as given in [12]. To get a simple, compact divider, we
have chosen not to use a resistive component. Furthermore, we have chosen to employ
a 50Ω characteristic impedance level at every stage of the feed network and therefore,
we have our power divider equipped with impedance transformers (see appendix D)
immediately at the ‘basic’ splitter’s junction. Therefore we may envisage the splitter as
consisting of a ‘basic’ power divider and two impedance transformers, see figure 5.10.
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Fig. 5.10 Power divider separated in functional blocks.

5.3.1 Analysis Basic Power Divider

The basic power divider is shown in figure 5.11. The inputs and outputs are assumed
to be connected to transmission lines with characteristic impedances of, respectively,
Z0, Z2 and Z3. For a description of the characteristic impedance and transmission
line theory in general, see appendix D.

Although in the figure we have assigned an electrical length ϑ to the two output
ports, for the analysis of this basic power divider we will assume that ϑ ↓ 0.

5.3.1.1 Impedance Levels The input power (at port 1) is equal to P1. The output
powers at, respectively, ports 2 and 3 are denoted P2 and P3. The power division is
such that

P3 = K2P2, (5.35)

where K is provided by the designer.
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Fig. 5.11 Basic power divider. The electric length ϑ is vanishing.

Since P1 = P2 + P3, it may be easily validated that

P2 =
1

1 +K2
P1, (5.36)

P3 =
K2

1 +K2
P1. (5.37)

If we denote the voltage from transmission line 1 at the position of the junction as
V +

0 , the voltage from transmission line 2 at the junction as V −
2 and the voltage from

transmission line 3 at the junction as V −
3 , then the input and output powers may be

written as

P1 =
1
2

∣∣V +
0

∣∣2
Z0

, (5.38)

P2 =
1
2

∣∣V −
2

∣∣2
Z2

, (5.39)

and

P3 =
1
2

∣∣V −
3

∣∣2
Z3

. (5.40)

Since, at the junction, V +
0 = V −

2 = V −
3 , the characteristic impedances are related

to the power levels through

Z2

Z3
=
P3

P2
= K2, (5.41)

Z2

Z0
=
P1

P2
= 1 +K2, (5.42)

so that we can relate the impedances Z2 and Z3 to Z0 by

Z2 = (1 +K2)Z0, (5.43)

Z3 =
1 +K2

K2
Z0. (5.44)
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5.3.1.2 Scattering Matrix Since we are dealing with a three-port circuit having
unequal impedance levels at the three ports, we will make use of the unnormalised
scattering matrix [11], see appendix E.d1

d2

d3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

c1c2
c3

 (5.45)

where ci, i = 1, 2, 3, are the complex unnormalised ingoing wave amplitudes, di,
i = 1, 2, 3, are the complex unnormalised outgoing wave amplitudes and Tij , i = 1, 2, 3,
j = 1, 2, 3, are the unnormalised scattering coefficients. In the derivation of the
unnormalised scattering coefficients we will follow the procedure as outlined in [12]
for a Wilkinson power divider.3

We start with terminating the two outputs in their characteristic impedances, see
figure 5.12.

ϑ ϑ

Z0

Z3Z2

ϑ ϑ

Z0

Z3Z2

Fig. 5.12 Basic power divider terminated in characteristic impedances.

With the three-port network of figure 5.12, driven from port 1 and (this is very
important!) ϑ ↓ 0, we experience equal voltages at port 2 and 3 and therefore we
may apply a short circuit between these ports and take the parallel circuit of the two
transmission lines of electrical length ϑ. Also the terminating impedances need to be
taken in parallel then. The equivalent circuit and signals at the junctions are depicted
in figure 5.13.

The equations governing this network are, see also [12]

d1 = Γ1c1 + (1 − Γ1)ca, (5.46)
da = (1 + Γ1)c1 − Γ1ca, (5.47)

ca = Γ2e
−j2ϑda, (5.48)

d2 = (1 + Γ2)e−jϑda. (5.49)

3A Wilkinson power divider is a three-port circuit that divides the power delivered at its input-
port to the two output-ports and that is characterised by the property that its three ports are all
matched. This matching is accomplished by the incorporation of a resistive element in the three-port
that dissipates mismatches.
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Fig. 5.13 Equivalent circuit for basic power divider, driven at port 1 and terminated in
characteristic impedances.

Now, using ϑ ↓ 0 and Γ1 = Γ2 = 0, reduces these equations to

d1 = ca, (5.50)
da = c1, (5.51)
ca = 0, (5.52)
d2 = da, (5.53)

so that, see [12],

T21 = T31 =
d2

c1

∣∣∣∣
c2=c3=0

= 1, (5.54)

T11 =
d1

c1

∣∣∣∣
c2=c3=0

= 0. (5.55)

On the basis of reciprocity (see appendix E) we find

T12 =
Z0

Z2
T21, (5.56)

and
T13 =

Z0

Z3
T31. (5.57)

The corresponding normalised scattering coefficients are found to be (see
appendix E)

S11 = T11 = 0, (5.58)

S12 =
√
Z2

Z0
T12 =

√
Z0

Z2
, (5.59)

S13 =
√
Z3

Z0
T13 =

√
Z0

Z3
, (5.60)
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S21 =
√
Z0

Z2
T21 =

√
Z0

Z2
, (5.61)

S31 =
√
Z0

Z3
T31 =

√
Z0

Z3
. (5.62)

For the determination of the other parameters, we excite the three-port from ports
2 and 3 as shown in figure 5.14.
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Fig. 5.14 Basic power divider, driven at ports 2 and 3 for even or odd excitation.

We start with the so-called even excitation for which V2e = V3e and V2o = V3o = 0.
For this situation, again bearing in mind that ϑ ↓ 0, the circuit of figure 5.14 may be
represented by the circuits as shown in figure 5.15.
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Fig. 5.15 Equivalent circuit of basic power divider for even excitation.
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The currents and voltages for the even excitation are related through, see figure 5.15

I2e =
V2e

Z2 + Z2e
, (5.63)

E2e =
Z2eV2e

Z2 + Z2e
, (5.64)

where
Z2e = (1 +K2)Z0, (5.65)

is the impedance looking into the left arm shown in figure 5.15.
Thus

I2e =
V2e

2(1 + k2)Z0
, (5.66)

E2e =
V2e

2
. (5.67)

Further
I3e = K2I2e, (5.68)

and
E3e = E2e. (5.69)

For the odd excitation, V2e = V3e = 0 and V2o = −K2V3o. The equivalent circuits
are shown in figure 5.16.
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Fig. 5.16 Equivalent circuit of basic power divider for odd excitation.

The currents I2 and I3 in figure 5.16 are given by

I2 =
V2o

Z2
=

V2o

(1 +K2)Z0
, (5.70)

I3 =
V3o

Z3
= − V2o

(1 +K2)Z0
. (5.71)
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The voltages and currents for the odd excitation are related through, see figure 5.16

E2o = (I2 − I2o)Z2 = V2o − Y2o(1 +K2)Z0E2o, (5.72)

where use has been made of
I2o = Y2oE2o, (5.73)

where Y2o is the admittance looking into the left arm of the circuit shown in figure 5.16.
Thus

E2o =
V2o

1 + Y2o(1 +K2)Z0
, (5.74)

I2o =
V2oY2o

1 + Y2o(1 +K2)Z0
. (5.75)

Since I3 = −I2, we may envisage a short circuit at the end of the transmission
lines of electrical length ϑ, looking from ports 2 and 3. This means that - since this
derivation is only valid for ϑ ↓ 0 - Y2o → ∞ and therefore

E2o = 0, (5.76)

I2o =
V2o

(1 +K2)Z0
, (5.77)

and

E3o = 0, (5.78)
I3o = −I2o. (5.79)

Combining the results of the even and odd excitation will yield the remaining
unnormalised scattering coefficients.

At first we choose V2o = −V2e, meaning that we do not excite port 2.
Using this and the earlier stated V2o = −K2V3o, the excitation of port 3, V , is

found to be

V = V3e + V3o =
1 +K2

K2
V2e. (5.80)

The incident voltage, Vinc is equal to 1
2V , see appendix F. So, the total voltage at

port 3, VT3 is given by

VT3 = (1 + T33)Vinc = (1 + T33)
1 +K2

2K2
V2e. (5.81)

This incident voltage also satisfies

VT3 = E3e + E3o =
1
2
V2e, (5.82)

where use has been made of equations (5.67), (5.69) and (5.78).
From equations (5.81) and (5.82) we find

T33 = − 1
1 +K2

. (5.83)
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The coefficient T23 is found from

T23 =
VT2

Vinc
, (5.84)

where
VT2 = E2e + E2o =

1
2
V2e, (5.85)

and

Vinc =
1 +K2

2K2
V2e. (5.86)

So

T23 =
K2

1 +K2
. (5.87)

As second choice we take V3o = −V3e, meaning that we do not excite port 3.
The excitation of port 2, V ′, is given by

V ′ = V2e + V2o = (1 +K2)V2e. (5.88)

The incident voltage, V ′
inc, at port 2 is then

V ′
inc =

1
2
V ′ =

1
2
(1 +K2)V2e. (5.89)

The total voltage at port 2 therefore will be

VT2 = (1 + T22)V ′
inc = (1 + T22)

1
2
(1 +K2)V2e. (5.90)

This total voltage also satisfies

VT2 = E2e + E2o =
1
2
V2e, (5.91)

so that we find

T22 = − K2

1 +K2
. (5.92)

The scattering coefficient T32 is found with

T32 =
VT3

V ′
inc

, (5.93)

where

VT3 = E3e + E3o =
1
2
V2e, (5.94)

Vinc =
1
2
(1 +K2)V2e, (5.95)

leading to

T32 =
1

1 +K2
. (5.96)
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The normalised scattering coefficients follow from, see appendix E

S22 = T22, (5.97)

S23 =
√
Z3

Z2
T23, (5.98)

S32 =
√
Z2

Z3
T32, (5.99)

S33 = T33. (5.100)

With use of the equations (5.43), (5.44), (5.58) to (5.62), (5.84), (5.87), (5.92),
(5.96) and (5.97) to (5.100), we find for the normalised scattering coefficients

S11 = 0, (5.101)

S12 =
1√

1 +K2
, (5.102)

S13 =
K√

1 +K2
, (5.103)

S21 = S12, (5.104)

S22 = − K2

1 +K2
, (5.105)

S23 =
K

1 +K2
, (5.106)

S31 = S13, (5.107)

S32 = S23, (5.108)

S33 = − 1
1 +K2

. (5.109)

5.3.2 Analysis Impedance Transformer

For the quarter lambda impedance transformer we will make use of the ABCD matrix
of a section of transmission line.

The ABCD matrix of a two-port network relates output voltage, V2, and current,
I2, to input voltage V1, and current, I1, through(

V1

I1

)
=
(
A B
C D

)(
V2

I2

)
. (5.110)
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The ABCD matrix of a section of transmission line of length ϑ is given by [13, 14](
A B
C D

)
=
(

cos(ϑ) jZc sin(ϑ)
j 1
Zc

sin(ϑ) cos(ϑ)

)
, (5.111)

where Zc is the characteristic impedance of the transmission line and

ϑ =
2π
λ
l, (5.112)

where l is the physical length of the transmission line section.
When the transmission line section is a quarter lambda impedance transformer (see

appendix D), the physical length l is equal to a quarter of the centre wavelength, λ0

l =
λ0

4
. (5.113)

The characteristic impedance Zc is equal to the square root of the product of
characteristic impedances encountered at the left and right of the transformer (see
appendix D), as shown in figure 5.17.

Zc =
√
Z01Z02. (5.114)

Z01 Zc Z02

l

Z01 Zc Z02

l

Fig. 5.17 Quarter lambda impedance transformator in between two transmission lines.

The normalised scattering matrix elements may be determined from the ABCD
matrix elements according to [13, 14]

S11 =
AZ02 +B − CZ01Z02 −DZ01

AZ02 +B + CZ01Z02 +DZ01
, (5.115)

S12 =
2(AD −BC)

√
Z01Z02

AZ02 +B + CZ01Z02 +DZ01
, (5.116)

S21 =
2
√
Z01Z02

AZ02 +B + CZ01Z02 +DZ01
, (5.117)

S22 =
−AZ02 +B − CZ01Z02 +DZ01

AZ02 +B + CZ01Z02 +DZ01
. (5.118)
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5.3.3 Power Divider Scattering Matrix

With reference to figure 5.10, the scattering matrix elements of the two impedance
transformers are given by

S′
11 =

(Z0 − Z2) cos(ϑ2)
(Z2 + Z0) cos(ϑ2) + j2

√
Z0Z2 sin(ϑ2)

, (5.119)

S′
12 =

2
√
Z0Z2

(Z2 + Z0) cos(ϑ2) + j2
√
Z0Z2 sin(ϑ2)

, (5.120)

S′
21 = S′

12, (5.121)

S′
22 =

(Z2 − Z0) cos(ϑ2)
(Z2 + Z0) cos(ϑ2) + j2

√
Z0Z2 sin(ϑ2)

, (5.122)

and

S′′
11 =

(Z0 − Z3) cos(ϑ3)
(Z3 + Z0) cos(ϑ3) + j2

√
Z0Z3 sin(ϑ3)

, (5.123)

S′′
12 =

2
√
Z0Z3

(Z3 + Z0) cos(ϑ3) + j2
√
Z0Z3 sin(ϑ3)

, (5.124)

S′′
21 = S′′

12, (5.125)

S′′
22 =

(Z3 − Z0) cos(ϑ3)
(Z3 + Z0) cos(ϑ3) + j2

√
Z0Z3 sin(ϑ3)

. (5.126)

The elements of the scattering matrix of the complete split-T power divider, STij ,
i, j = 1, 2, 3, are calculated as, see appendix G

ST11 = S11 + S31G+ FC, (5.127)

ST12 = S12S
′
12 + S32S

′
12G+ FD, (5.128)

ST13 = S13S
′′
12 + S33S

′′
12G+ FE, (5.129)

ST21 = S′
21C, (5.130)

ST22 = S′
22 + S′

21D, (5.131)

ST23 = S′
21E, (5.132)

ST31 = S′′
21

[
S31

A
+HC

]
, (5.133)

ST32 = S′′
21

[
S32S

′
12

A
+HD

]
, (5.134)

ST33 = S′′
22 + S′′

21

[
S33S

′′
12

A
+HE

]
, (5.135)



SPLIT-T POWER DIVIDER 161

where

A = 1 − S33S
′′
11, (5.136)

B = A(1 − S22S
′
11) − S23S

′′
11S32S

′
11, (5.137)

C =
S21A+ S23S

′′
11S31

B
, (5.138)

D =
S22S

′
12A+ S23S

′′
11S32S

′
12

B
, (5.139)

E =
S23S

′′
12A+ S23S

′′
11S33S

′′
12

B
, (5.140)

F = S12S
′
11 +

S13S
′′
11S32S

′
11

A
, (5.141)

G =
S13S

′′
11

A
, (5.142)

H =
S32S

′
11

A
. (5.143)

5.3.4 Split-T Power Divider Simulation

Before we compare the simulations according to the model presented in the previous
sections with simulations performed using a general full-wave analysis method, we
need to say a few words about (microstrip) transmission line discontinuities. In
general, a transmission line discontinuity like a bend, a change in width, or - as in our
case - a T-junction, will introduce parasitic reactances. These parasitic reactances may
degrade phase and amplitude performance if not properly accounted for in the design
of the discontinuity. Figure 5.18a shows a T-junction and its equivalent electrical
circuit with parasitic reactances. One could try to find the values of these reactances
and include the equivalent electrical circuit into the simulations.
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Fig. 5.18 Parasitic reactances in a microstrip transmission line T-junction. a. Equivalent
electrical model. b. Mitering for compensating parasitic reactances.
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A more pragmatic approach though is shown in figure 5.18b. The analysis will
be performed on the model as developed in the previous sections only, but in the
realisation of the junction, the corners will be mitred, thus compensating for the
parasitic reactances. A practical value for the length of the mitre, a, is given by, [10]

a = 1.8W, (5.144)

where W is the width of the microstrip transmission line, see figure 5.18.
The full-wave analysis results presented in the figures 5.19 and 5.20 are based on

T-split power dividers with mitred corners. Once the power ratio K2 has been chosen,
the characteristic impedances Z2 and Z3 follow from, respectively, equations (5.43)
and (5.44). The widths of the microstrip transmission lines for impedances Z0 = 50Ω
and

√
Z2Z0 and

√
Z3Z0 for the impedance transformers are calculated with the help

of equations (5.31) to (5.33). The substrate is the same as that used for the microstrip
patch radiators, so εr = 4.28 and h=1.6mm.

Figure 5.19 shows the reflection and transmission coefficients versus frequency for
a T-split power divider that divides the input power equally over the two outputs,
K = 1. The width of the input and output microstrip transmission lines is 3.12mm.
The width of the two identical quarter lambda transformer sections is 1.66mm and
their lengths are 17.73mm each.
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Fig. 5.19 Reflection and transmission coefficients for a K = 1 split-T power divider as
calculated with the ideal model and with a general full-wave method for a mitred lay-out.

We see that our ideal model agrees very well with the full-wave results. Not mitering
the corners appears - for this configuration - to have only a small influence on the
amplitude characteristics. Since the power divider is symmetrical, we do not show the
S33 and S13 results, since these are identical to, respectively, the S22 and S12 results.
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As a final example, demonstrating the validity of our ideal model, figure 5.20 shows
the simulated results for a K =

√
2 split-T power divider. Since this power divider is

not symmetrical we have to display more scattering parameter vs. frequency results
as for the K = 1 case.
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Fig. 5.20 Reflection and transmission coefficients for a K =
√

2 split-T power divider as
calculated with the ideal model and with a general full-wave method for a mitred lay-out.

Again the results of the ideal model agree with the full-wave analysis results to
a level that makes the ideal model feasible for design purposes. Having established
this, we move on to the corporate feeding network. This network will consist of one
or more split-T power dividers.

5.4 TRANSMISSION AND REFLECTION COEFFICIENTS FOR A

CORPORATE FED ARRAY ANTENNA

With the analysis of the subcomponents of the linear array antenna (microstrip patch
antenna and split-T power dividers) being completed, we can now turn to the analysis
of the complete array antenna. The scattering matrix of the split-T power divider will
play a central role in this analysis.

Let’s start with the first combined subcomponent of our array antenna, i.e. a split-T
power divider with two microstrip patch antennas, see figure 5.21.

This system may be represented by the circuit shown in figure 5.22.
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Fig. 5.21 Subcomponent: Split-T power divider with two microstrip patch radiators.
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Fig. 5.22 Equivalent circuit of the subcomponent shown in figure 5.21.

The split-T power divider is characterised by its scattering matrix:b1b2
b3

 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

a1

a2

a3

 . (5.145)

The microstrip patch radiators are represented as loads that are characterised by
the reflection coefficients Γ2 and Γ3 respectively. These reflection coefficients relate
the amplitudes of the incoming and outgoing waves of the two output ports of the
power divider according to

a2 = Γ2b2, (5.146)

and
a3 = Γ3b3. (5.147)

Upon substitution of equations (5.146) and (5.147) into equation (5.145), we may
express all outgoing wave amplitudes in terms of the amplitude of the wave going into
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the subsystem a1, [15]

b2 =
(1 − S33Γ3)S21 + S23Γ3S31

(1 − S22Γ2) (1 − S33Γ3) − S23S32Γ2Γ3
a1, (5.148)

b3 =
S31 (1 − S22Γ2) + S32S21Γ2

(1 − S22Γ2) (1 − S33Γ3) − S23S32Γ2Γ3
a1, (5.149)

b1 = S11a1 + S12Γ2b2 + S13Γ3b3. (5.150)

The reflection coefficients Γi, i = 2, 3, are obtained from the microstrip patch
radiator input impedance Zinp and the characteristic impedance of the transmission
line the patch radiator is connected to, Zc

Γi =
Zinp − Zc
Zinp + Zc

. (5.151)

Thus, we implicitly assume that the radiators are connected directly to the split-T
power divider. In reality, finite length transmission lines are situated between power
divider output ports and microstrip radiator input ports.

5.4.1 Two-Element Subarray

In the process of designing a four-element linear microstrip patch array antenna, we
will first look at the two-element subarray. We have seen that the analysis is built
around the scattering matrix of the split-T power divider. In the analysis, we need
to incorporate the transmission lines that connect the components. The two-element
subarray and its equivalent microwave network are shown in figure 5.23.
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Fig. 5.23 Two-element subarray and equivalent microwave network.
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The signals and parameters associated with the split-T power divider three-port
are identified with a superscript (1). Transmission lines are connected to all three ports
of the power divider.

Then, using equations (5.148) to (5.150)

b
(1)
2 =

(
1 − S

(1)
33 Γ(1)

3

)
S

(1)
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(1)
23 Γ(1)
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)(
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(1)
3 =

S
(1)
31

(
1 − S

(1)
22 Γ(1)
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b
(1)
1 = S

(1)
11 a

(1)
1 + S

(1)
12 Γ(1)

2 b
(1)
2 + S

(1)
13 Γ(1)

3 b
(1)
3 . (5.154)

Herein,
a
(1)
1 = aine

−γl(1)1 , (5.155)

where γ is the propagation constant of the transmission line.4 The amplitudes of the
waves entering the antennas, b2 and b3 are obtained in a similar way from b

(1)
2 and

b
(1)
3 respectively:

b2 = b
(1)
2 e−γl

(1)
2 , (5.156)

b3 = b
(1)
3 e−γl

(1)
3 . (5.157)

The reflection coefficients Γ(1)
2 and Γ(1)

3 , see figure 5.23, are obtained from the
reflection coefficients at the radiator input ports according to

Γ(1)
2 = ΓL2e

−2γl
(1)
2 , (5.158)

and
Γ(1)

3 = ΓL3e
−2γl

(1)
3 . (5.159)

Note that in the determination of the reflection coefficients, the wave travels
the transmission line length twice, going from input to termination and back after
reflection. This explains the factor two in the exponent.

The reflection coefficient at the input of the subsystem is finally given by

Γin = Γ(1)
1 e−2γl

(1)
1 . (5.160)

5.4.2 Four-Element Array

The four-element array in fact consists of two subarrays, where each subarray is a
subarray in itself of the kind as described in the previous paragraph, see figure 5.24.

4We do not use a superscript (1) for the propagation constant, since we have designed the power
splitter such that transmission lines with equal characteristic impedance and propagation constant
are connected to all ports.
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Fig. 5.24 Four-element array consisting of two two-element subarrays.

The naming convention is such that the first split-T power divider encountered
from the input going to the radiators is designated (1), the other ones are numbered
in increasing order. The equivalent microwave network is shown in figure 5.25.
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Fig. 5.25 Equivalent microwave network of the array antenna shown in figure 5.24.
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The reflection coefficients at the inputs of the three split-T power dividers are given
by
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where
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for i = 1, 2, 3.
In these last five expressions,

Γ(i)
2 = ΓL2e

−2γl
(i)
2 , (5.166)

Γ(i)
3 = ΓL3e

−2γl
(i)
3 , (5.167)

for i = 2, 3, and

Γ(1)
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1 e−2γl
(1)
2 , (5.168)

Γ(1)
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1 e−2γl
(1)
3 . (5.169)

Finally, the array input reflection coefficient is found to be

Γin = Γ(1)
1 e−2γl

(1)
1 . (5.170)

The wave amplitudes entering the radiators, see figure 5.25, are given by

b22 = b
(2)
2 e−γl

(2)
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3 , (5.174)
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where, using the known wave amplitude ratios
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−γl(1)1 . (5.183)

5.5 SIMULATION, REALISATION AND MEASUREMENT

The four-element array is constructed from two identical two-element subarrays. One
such a subarray, with all the dimensions (in mm) is shown in figure 5.26.

The whole array consists of two of these subarrays, maintaining the same element
distance in the complete array antenna. This element distance is chosen such that the
mutual coupling between the elements is expected to be negligible.

5.5.1 Realisation

Microstrip patch antennas are meant to be photoetched from a copperclad microwave
laminate. These microwave laminates are characterised by a well-known and stable
dielectric constant as well as - in general - low losses. They normally come without
a photoresist layer. If the availability of such a laminate with a photoresist layer is
a problem, standard (FR4) PCB laminate may form an alternative, provided that
the dielectric constant of approximately four and the high losses are acceptable for
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Fig. 5.26 Two-element subarray with dimensions in mm.

the chosen application. Tests with microstrip transmission lines of known physical
dimensions and thus of known characteristic impedance should be undertaken to
obtain the dielectric constant of the material at hand more precisely.

If photoetching facilities are not available, microstrip antennas operating at not too
high frequencies may be constructed using copper tape and a knife. If the frequencies
become too high, the physical tolerances will become so tight that handiwork is no
longer an option. For our array antenna, operating at 2.4GHz, we may get good results
using tape and a knife. The process is as follows. We start with a board of known
dielectric constant. As shown in the following figures, we worked with a board of FR4,
where on both sides the copper was removed completely by a photoetching process.

One side of the board is covered completely with copper tape. The other side of
the board is covered with copper tape in the area where the array antenna needs to
be realised. On top, we fix a sheet of paper that has the outlines of the array antenna
printed on it in real size, see figure 5.27 and figure 5.28.

Next, the array antenna contour is cut out, using a ruler and a knife, see figure 5.29
and figure 5.30.

For a good electrical contact, the seams of copper tape are soldered and, finally, a
connector is soldered to the input transmission line, see figure 5.31.

The final result is shown in figure 5.32.

5.5.2 Simulation and Measurement

The input reflection coefficient of the four-element array is calculated making
use of the ‘dominant mode’ cavity model for the calculation of the radiator
reflection coefficient. This reflection coefficient, Γ, follows from the radiator input
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Fig. 5.27 Antenna board, underneath completely covered with copper tape, on top covered
with copper tape in the area where the array antenna needs to be. On top a sheet of paper
with the real-size array antenna lay-out is held in a fixed position.

Fig. 5.28 Sheet of paper with the real-size array antenna lay-out on top of the antenna board.

impedance, Zin

Γ =
Zin − Z0

Zin + Z0
, (5.184)

where Z0 is the characteristic impedance of the microstrip transmission line connected
to the microstrip patch radiator.

The input reflection coefficient, thus calculated as function of frequency, is shown
in figure 5.33 together with the calculated results obtained from a general full-wave
analysis method. These last results nearly coincide with measurement results that are
therefore not shown in the graph.

Although we have employed a (cavity) model that is not completely suited for the
specific rectangular microstrip patch radiator at hand, we do see that the radiators
with corporate feed network are correctly accounted for around the desired resonance
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Fig. 5.29 Cutting out the array antenna contour.

Fig. 5.30 Part of the array antenna realised.

Fig. 5.31 A connector will be soldered to the input transmission line.
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Fig. 5.32 Final result.
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Fig. 5.33 Corporate-fed four-element array input reflection coefficient, calculated by the ideal
model and by a general full wave method.

frequency.5 This demonstrates that the employment of our fast but reduced accuracy
model is of practical use in the design of an array antenna. A full-wave analysis
method may be employed to validate and/or fine-tune an initial design based on our
fast model.

The power radiation patterns at 2.4GHz are obtained by multiplying the single
radiator gain pattern with the array factor (thus assuming that mutual coupling may

5The filtering characteristics of the quarter lambda transformers in the corporate feeding network
around the desired centre frequency suppress the higher order resonances of the radiators.
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Fig. 5.34 Corporate-fed four-element array power radiation pattern in the plane ϕ = 0◦,
calculated by the ideal model and by a general full-wave method.

be neglected),

0.5
4∑

n=1

e−jk0(n−1)d sin(ϑ), (5.185)

where the element distance is as indicated in figure 5.26 and the factor 0.5 is the
(voltage) transmission coefficient as calculated with the theory from the preceding
sections. This value agrees with our expectation of equal power division at 2.4GHz.

The radiation pattern in the plane ϕ = 0◦ is calculated for the dominant mode only
and is shown, together with full-wave analysis results in figure 5.34. The figure clearly
indicates the validity of the used model and the assumption of negligible mutual
coupling. The only effect of higher-order modes and mutual coupling is visible in the
filling of the ‘nulls’.
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6
The Linear Endfire Array

Antenna

In this chapter we will treat the special situation where the main beam of a linear array
antenna is directed alongside the array axis instead of perpendicular to this axis. The latter
situation - treated in the previous two chapters - is known as broadside radiation, the
first one we designate, for obvious reasons, endfire radiation. For an endfire array antenna,
the radiating elements need to exhibit a radiation pattern that allows radiation into the
endfire direction. Dipole radiators show a radiation pattern in the plane perpendicular
to the dipole axis that satisfies this requirement. Therefore, the endfire specifics will be
demonstrated in this chapter employing dipole radiators. To show that mutual coupling
between radiators in array antenna - briefly mentioned in the previous chapter - is not
necessarily an unwanted phenomenon, we will provide an approximate analysis of a Yagi–
Uda array antenna in detail. A Yagi–Uda array antenna is a linear endfire array antenna
consisting of dipole radiators, where only one element is driven and the other ones are
excited by a mutual coupling mechanism.

6.1 INTRODUCTION

In the chapter on linear broadside array antennas we have seen that, for sufficiently
small inter-element distances, a broadside beam is generated, provided that the array
feeding network is not introducing phase shifts between the elements. We have also
seen that if the inter-element distance is equal to or exceeds one wavelength, the array
forms additional beams (grating lobes) at or near endfire.

The phase shifts introduced by the inter-element distances determine the number
of beams, while additional phase shifts introduced by the feeding network or otherwise
have the effect of dispositioning the main beam from its broadside direction. In this
chapter we will look at the specific phase differences needed for creating endfire

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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operation. The general subject of beam scanning will be treated in the next chapter
on linear phased array antennas.

In the previous chapters we have employed the concept of pattern multiplication.
The array antenna radiation pattern was obtained by multiplying the array factor with
the element factor or element radiation pattern. The element radiation pattern was
seen to have a filtering effect on the array factor. For the aperture elements considered
thus far, the radiation pattern is cosine-like, being at maximum in broadside direction
and at minimum in endfire direction. Obviously, such a radiating element will not
allow an endfire operation of the linear array antenna. We have also seen that a dipole
radiator has a radiation pattern that is rotationally symmetric around the dipole axis
and at maximum for directions perpendicular to the dipole axis centre. Therefore,
we will demonstrate endfire radiation of a linear array antenna by employing dipole
elements.

To create endfire operation of a linear array antenna we need to establish a
phase difference between the elements for fixed inter-element distances. These phase
differences may be introduced by the linear array feeding network. Either a corporate
or parallel feeding network or a series feeding network will introduce mechanical
difficulties (e.g. the need for different layers, see for example [1]) and the feeding
network may take part in, or even disturb the radiation.

We may considerably simplify the array antenna architecture by only feeding one
dipole, having the other (short-circuited) dipole elements in the linear array acting as
parasites. The desired inter-element phase shifts are accomplished then by virtue of
mutual coupling. For (thin) dipole radiators, the mutual coupling can be calculated
with a practical level of accuracy with relative ease,1 thus enabling the analysis of a
Yagi–Uda endfire array antenna.

Before we start with the analysis of the Yagi–Uda array antenna, we will first
have to establish the theoretical description of a linear endfire array antenna, for the
moment not bothering about feeding networks or how to accomplish additional phase
shifts between radiating elements. Then we need to talk about mutual coupling in
general and finally describe the mutual interaction between two dipoles of different
lengths.

6.2 PHASE DIFFERENCES

We start with considering a linear array antenna consisting of K elements, equally
interspaced a distance d. The direction of a wave is described by the angle ϑ between
rays and array normal, see figure 6.1.

We describe the array antenna in the receive situation.
The array factor, Sa(ϑ), for this linear array antenna is given by

Sa(ϑ) =
K∑
i=1

ej(K−i)kd sin(ϑ), (6.1)

where k = 2π
λ is the wave number with λ being the wavelength.

1In general, for arrays of thick or non-dipole radiators, this is not true.
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Fig. 6.1 Linear array of K elements.

If we now allow a linear phase taper to be existent over the array, meaning that
every element of the array antenna adds a progressive phase α, the radiation pattern
of the array antenna, S(ϑ), becomes

S(ϑ) = f(ϑ)
K∑
i=1

aie
j(K−i)kd sin(ϑ), (6.2)

where
ai = ej(K−i)α, (6.3)

and f(ϑ) is the element pattern.
The linear array radiation pattern may be written as

S(ϑ) = f(ϑ)
K∑
i=1

ej(K−i)ψ , (6.4)

where
ψ = kd sin(ϑ) + α. (6.5)

The maximum of the radiation pattern is obtained for ψ = 0, so for endfire
operation at ϑ = 90◦, the additional phase difference, α, between two adjacent
elements should be

α = −kd sin (90◦) = −kd. (6.6)

For endfire operation at ϑ = −90◦, the phase difference should be

α = −kd sin (−90◦) = kd. (6.7)

As we have already discussed, grating lobes occur whenever the argument ψ is an
integer multiple of 2π,

ψ = n2π, n ∈ N. (6.8)
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So, when α = −kd (endfire operation at ϑ = 90◦), grating lobes occur for

d

λ
[sin(ϑ) − 1] = n, n ∈ N. (6.9)

For d = λ, four solutions exist: ϑ = 0 for n = −1, ϑ = 90◦ for n = 0, ϑ = 180◦ for
n = −1 and ϑ = −90◦ for n = −2, corresponding to three additional (grating) lobes
next to the main beam (n = 0). This is shown in figure 6.2 for a linear array of eight
isotropic elements, placed one wavelength apart.
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Fig. 6.2 Linear array of eight isotropic elements, placed one wavelength apart, phased for
endfire operation at ϑ = 90◦, normalised to radiation maximum.

If we reduce the element spacing to a half wavelength, two solutions exist: ϑ = 90◦

for n = 0 and ϑ = −90◦ for n = −1, see figure 6.3 for a linear array of eight isotropic
elements, placed half a wavelength apart.

So, for a broadside linear array antenna we could place the elements as far apart
from each other as one wavelength, before grating lobes started to occur. For a
endfire linear array antenna it appears that the maximum allowable element distance
preventing the occurrence of grating lobes has reduced to half a wavelength. If we
reduce the element spacing below half a wavelength, the grating lobe at ϑ = −90◦ in
figure 6.3 will disappear.

The theoretical explanation of this phenomenon will be given in the next chapter
where we will discuss beam scanning in a linear array antenna.

We will conclude the discussion on grating lobes in endfire array antennas, by
showing that for a linear array, having an inter-element spacing smaller than half a
wavelength, indeed only one endfire beam does exist. Figure 6.4 shows the normalised
radiation pattern of a linear array consisting of eight isotropic elements, spaced four-
tenths of a wavelength apart.
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Fig. 6.3 Linear array of eight isotropic elements, placed half a wavelength apart, phased for
endfire operation at ϑ = 90◦, normalised to radiation maximum.
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Fig. 6.4 Linear array of eight isotropic elements, placed four-tenths of a wavelength apart,
phased for endfire operation at ϑ = 90◦, normalised to radiation maximum.

In fact, by choosing an element distance smaller than half a wavelength, we have
moved the maximum of the grating lobe out of the visible into the invisible region.2

2The visible region is defined by angles ϑ for which |sin(ϑ)| ≤ 1. In this situation, that corresponds
to angles −180◦ ≤ ϑ ≤ 180◦.
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The back lobe we see in figure 6.4 is formed by the part of the grating lobe still present
in the visible region.

If we want the back lobe to be removed altogether, the argument, ψ, for endfire
operation at ϑ = 90◦ should, at ϑ = −90◦ be equal to −π,

ψ|ϑ=−90◦ = kd [sin(ϑ) − 1]|ϑ=−90◦ = −π, (6.10)

so

d =
λ

4
, (6.11)

where use has been made of k = 2π
λ .

Figure 6.5 shows the normalised radiation pattern for an eight-element linear array
of isotropic radiators, spaced a quarter of a wavelength apart and phased for ϑ = 90◦

endfire operation.
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Fig. 6.5 Linear array of eight isotropic elements, placed a quarter of a wavelength apart,
phased for endfire operation at ϑ = 90◦, normalised to radiation maximum.

The figure shows that for this element distance, the grating lobe effects - normally
visible in a backfire lobe - have indeed completely disappeared.

For the linear endfire array antennas treated thus far, the linear phase taper over
the array elements (α = ∓kd) compensates exactly the phase delay of waves in the
desired endfire direction. These endfire arrays are called ordinary endfire arrays. This
naming implies also that ‘extraordinary’ endfire arrays must exist. In the next section
we will briefly discuss the Hansen–Woodyard endfire array.
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6.3 HANSEN–WOODYARD ENDFIRE ARRAY ANTENNA

For long array antennas (i.e. much longer than one wavelength) of closely spaced
elements, a higher directivity (smaller main beam) may be obtained than for the
ordinary endfire array antenna. This may be accomplished by having an additional
phase difference, α′, applied to adjacent array elements that is slightly larger than
the phase delay a wave experiences travelling in the endfire direction

α′ = ∓(kd+ δ). (6.12)

The minus sign applies for a radiation maximum at ϑ = 90◦ and the plus sign
applies for a radiation maximum at ϑ = −90◦.

In 1938, Hansen and Woodyard [2] proposed for δ in the above equation [3, 4]

δ =
2.94
K − 1

≈ 2.94
K

≈ π

K
. (6.13)

The linear array antenna radiation pattern may be written then as

S(ϑ) = f(ϑ)
K∑
i=1

ej(K−i)ψ′
, (6.14)

where
ψ′ = kd sin(ϑ) ∓

(
kd+

π

K

)
, (6.15)

in which the minus sign applies for endfire operation at ϑ = 90◦ and the plus sign
applies for endfire operation at ϑ = −90◦.

Figure 6.6 shows the normalised radiation patterns of a linear array of eight
isotropic radiators, phased for ordinary and for Hansen–Woodyard endfire operation
at ϑ = 90◦ for an element spacing of half a wavelength.

We do see a smaller beam in the desired endfire direction, but at the same time
we observe back lobe levels that are in excess of the main beam level. Obviously, the
additional phase difference, δ, has yielded a sharper main lobe, but this additional
phase shift has also caused the rise of the back lobes. The only way to decrease the
back lobe level to values less than that of the main beam lies in decreasing the element
spacing and thus accomplishes bringing the argument ψ′ closer to −π for ϑ = −90◦

[4, 5].3

To demonstrate this, in figure 6.7 the normalised radiation patterns are shown
of a linear array of eight isotropic radiators, phased for ordinary and for Hansen–
Woodyard endfire operation at ϑ = 90◦ for an element spacing of four-tenths of a
wavelength.

We do indeed observe a lowering of the back lobe level.
If we want to achieve a maximum suppression of the back lobe - for the array

antenna phased for Hansen–Woodyard endfire operation at ϑ = 90◦ - the following

3For the linear array antenna operated at −90◦ endfire, the argument ψ′ should be brought closer
to +π for ϑ = 90◦.
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Fig. 6.6 Linear array of eight isotropic elements, placed half a wavelength apart, phased for
ordinary and for Hansen–Woodyard endfire operation at ϑ = 90◦, normalised to radiation
maximum.
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Fig. 6.7 Linear array of eight isotropic elements, placed four-tenths of a wavelength apart,
phased for ordinary and for Hansen–Woodyard endfire operation at ϑ = 90◦, normalised to
radiation maximum.
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condition should apply

ψ′|ϑ=−90◦ =
[
kd sin(ϑ) −

(
kd+

π

K

)]∣∣∣
ϑ=−90◦

= −π, (6.16)

which leads to
d =

K − 1
K

λ

4
≈ λ

4
. (6.17)

Figure 6.8 shows the normalised radiation patterns of a linear array of eight
isotropic radiators, phased for ordinary and for Hansen–Woodyard endfire operation
at ϑ = 90◦ for an element spacing of a quarter of a wavelength.

Radiation pattern linear 8-elements  endfire array 
element distance = lambda/4
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Fig. 6.8 Linear array of eight isotropic elements, placed a quarter of a wavelength apart,
phased for ordinary and for Hansen–Woodyard endfire operation at ϑ = 90◦, normalised to
radiation maximum.

So, by satisfying the Hansen–Woodyard criterion (α = ∓ (kd+ π
K

)
) in a linear

endfire array antenna, a higher directivity (smaller main beam) may be accomplished.
But since there is no such thing as a free lunch, the price to be paid is an increased
side lobe and back lobe level, as figure 6.8 clearly demonstrates.

6.4 MUTUAL COUPLING

At the beginning of this chapter we said that we were intending to accomplish the
desired phase shift between the linear endfire array antenna elements by virtue of
mutual coupling. To that end we will first discuss mutual coupling between array
antenna elements in general terms, before we go into the details of designing an
endfire dipole array antenna.
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Consider two antenna elements, 1 and 2 [5]. A voltage generator, V1, is attached to
antenna-element 1 that acts as transmitting element, while the current I2, is measured
at the terminals of antenna-element 2, that acts as receiving element. The set-up is
shown in figure 6.9a. If we apply a voltage generator V2 to antenna-element 2, we will
measure a current I1 at the terminals of antenna-element 1, see figure 6.9b.
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Fig. 6.9 Two-element array antenna set-up. a. Antenna-element 1 is transmitting, antenna-
element 2 is receiving. b. Antenna-element 2 is transmitting, antenna-element 1 is receiving.

The ratio of voltage to current is an impedance. For the situation depicted in
figure 6.9a, we call the ratio of voltage V1 to current I2 a transfer impedance or
mutual impedance:

V1

I2
= Z12. (6.18)

Similarly, for the situation depicted in figure 6.9b:

V2

I1
= Z21, (6.19)

and by virtue of antenna reciprocity4

Z21 = Z12. (6.20)

If we now consider the situation where we only have antenna 1 present, excited by
voltage generator V1 and we measure the current I1 at its terminals, we may define
the input impedance as

Z11 =
V1

I1
. (6.21)

Bringing antenna 2 in the neighbourhood of antenna 1, will mean that - through
radiation5 - a current I2 is induced on this antenna by antenna 1. This current I2 will

4If V1 = V2 in figure 6.9, then I2 = I1.
5Next to direct space radiation, mutual coupling may also occur through scattering from nearby
objects and by reflections through and radiation from the array antenna feed network.
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cause radiation from antenna 2 and thus will influence the current on antenna 1. This
phenomenon is called mutual coupling.

The total voltage at antenna 1 may then be written as

V1 = Z11I1 + Z12I2, (6.22)

where Z11 and Z12 are as defined before

Z11 =
V1

I1

∣∣∣∣
I2=0

, (6.23)

and

Z12 =
V1

I2

∣∣∣∣
I1=0

. (6.24)

Similarly
V2 = Z21I1 + Z22I2, (6.25)

where

Z21 =
V2

I1

∣∣∣∣
I2=0

, (6.26)

Z22 =
V2

I2

∣∣∣∣
I1=0

. (6.27)

This discussion of a two-element array antenna may be generalised to a K-element
array antenna for which

V1 = Z11I1 + Z12I2 + · · · + Z1KIK

V2 = Z21I1 + Z22I2 + · · · + Z2KIK

...
VK = ZK1I1 + ZK2I2 + · · · + ZKKIK

, (6.28)

where

Zmn =
Vm
In

∣∣∣∣
Ii=0,i�=n

. (6.29)

The input impedance, Zm, of the mth element in the array, including all mutual
coupling - also known as the active impedance - is then

Zm =
Vm
Im

= Zm1
I1
Im

+ Zm2
I2
Im

+ · · · + Zmm + · · · + ZmK
IK
Im

. (6.30)

Since current is the origin of electromagnetic radiation, the mutual coupling will
not only affect the input impedances of the elements in the array, but also their
radiation patterns. The mutual coupling effects will in general change with element
position, angle of radiation and frequency and will depend on the type of array
element under consideration. Thus, in general, the calculation of mutual coupling
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effects will be difficult.6 However, for some practical situations, approximations may
be made that make an analytical treatment of coupling effects feasible. One such a
practical situation occurs for arrays of thin dipole radiators, e.g. Yagi–Uda endfire
array antennas.

6.5 YAGI–UDA ARRAY ANTENNA

The Yagi–Uda array antenna consists of a number of dipole elements, of which only
one is driven. The other dipole elements act as parasitic radiators, the radiation
stemming from currents induced by mutual coupling. The array is an endfire array.
Usually there is one element next to the driver at one side and multiple elements next
to the driver at the other side. The one element is generally longer than the driver
and acts as reflector, the elements on the other side of the driver usually are shorter
than the driver and act as directors, see figure 6.10.

reflector

driver

directors

x

y

z

reflector

driver

directors

x

y

z

Fig. 6.10 Five-element Yagi–Uda array antenna, one reflector, three directors. The endfire
operation is in the x, y-plane in the y-direction. The elements have an omnidirectional radiation
pattern in the x, y-plane.

The origin of this type of array antenna stems from Japan at the end of the 1920s
and was first published about by S. Uda. The first English written publication on this
array antenna was by H. Yagi, a co-worker of Uda [4] and for long the antenna has
been known as the Yagi-antenna. Recently the antenna has been called the Yagi–Uda
Array Antenna to give credit to both inventors.

6In the chapter on array antenna measurement we will treat the concept of the active or scan
element pattern, i.e. the radiation pattern of one driven element in its array environment where
all other elements are terminated into matched loads. For large array antennas, an average active
element pattern may be factored out of the array antenna radiation pattern, making a pattern
multiplication between active element pattern and array factor without mutual coupling possible.
All mutual coupling effects are accounted for then in the average active element pattern.
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6.5.1 Mutual Impedance

To calculate the mutual impedances between the elements in a Yagi–Uda array
antenna, we need to be able to calculate the mutual impedance between two,
nonstaggered (meaning that the imaginary line through the centres of the dipoles is
perpendicular to both dipoles), unequal length dipole elements as shown in figure 6.11.

d

l1 l2

1
2

d

l1 l2

d

l1 l2

1
2

Fig. 6.11 Two, unstaggered, unequal length dipole elements.

In this figure, d is the distance between the two dipole elements and l1 and l2 are
the half-lengths of, respectively, dipole 1 and dipole 2.

Analytical expressions for the mutual impedance, Z12, for this situation are derived
by King [6], employing the induced emf method (for an explanation of the induced
emf method, see, for example [4]). The results are obtained under the assumption of
infinitely thin dipoles supporting sinusoidal currents, and are shown to be valid for
wire radii at least up to 10−5λ [4]. λ is the used wavelength.

The currents on both dipole elements are

Ii = Ii0

{
sin [k (zi + li)] for − li ≤ zi ≤ 0
sin [k (li − zi)] for 0 ≤ zi ≤ li

(6.31)

for i = 1, 2, where zi is the local coordinate along the dipole i and li is the half-length
of dipole i. Ii0 is the amplitude of the current on dipole i, and k is the wave number,
k = 2π

λ .
The mutual impedance is then found to be [6]

Z12 = R12 + jX12, (6.32)
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where

R12 = 30 {cos [k (l1 + l2)] .
[Ci (u0) + Ci (v0) − Ci (u1) − Ci (v1) − Ci (w1) − Ci (y1) + 2Ci (kd)] +

cos [k (l1 − l2)] .
[Ci (u′0) + Ci (v′0) − Ci (u1) − Ci (v1) − Ci (w1) − Ci (y1) + 2Ci (kd)] +

sin [k (l1 + l2)] . [−Si (u0) + Si (v0) + Si (u1) − Si (v1) − Si (w1) + Si (y1)] +
sin [k (l1 − l2)] . [−Si (u′0) + Si (v′0) + Si (u1) − Si (v1) + Si (w1) − Si (y1)]} , (6.33)

and

X12 = 30 {cos [k (l1 + l2)] .
[−Si (u0) − Si (v0) + Si (u1) + Si (v1) + Si (w1) + Si (y1) − 2Si (kd)] +

cos [k (l1 − l2)] .
[−Si (u′0) − Si (v′0) + Si (u1) + Si (v1) + Si (w1) + Si (y1) − 2Si (kd)] +

sin [k (l1 + l2)] . [−Ci (u0) + Ci (v0) + Ci (u1) − Ci (v1) − Ci (w1) + Ci (y1)] +
sin [k (l1 − l2)] . [−Ci (u′0) + Ci (v′0) + Ci (u1) − Ci (v1) + Ci (w1) − Ci (y1)]} . (6.34)

In the above equations

u0 = k

[√
d2 + (l1 + l2)

2 − (l1 + l2)
]
, (6.35)

v0 = k

[√
d2 + (l1 + l2)

2 + (l1 + l2)
]
, (6.36)

u′0 = k

[√
d2 + (l1 − l2)

2 − (l1 − l2)
]
, (6.37)

v′0 = k

[√
d2 + (l1 − l2)

2 + (l1 − l2)
]
, (6.38)

u1 = k

[√
d2 + l21 − l1

]
, (6.39)

v1 = k

[√
d2 + l21 + l1

]
, (6.40)

w1 = k

[√
d2 + l22 + l2

]
, (6.41)

y1 = k

[√
d2 + l22 − l2

]
. (6.42)

The sine integral Si(x) is defined as

Si(x) =
∫ x

0

sin(ρ)
ρ

dρ, (6.43)
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and the cosine integral is defined as

Ci(x) = −
∫ ∞

x

cos(ρ)
ρ

dρ =
∫ x

∞

cos(ρ)
ρ

dρ. (6.44)

Sine and cosine integrals are well tabulated, see for example [7], and subroutines
are readily available for most programming languages, [8].

The real and imaginary part of the self-impedance of element i, Ri and Xi

respectively, are taken from [1] for dipole lengths 2li and wire radii a satisfying
1.3 ≤ kl ≤ 1.7 and 0.0016 ≤ a

λ ≤ 0.01.

Ri =
4∑

m=0

4∑
n=0

amn (kli)
m
(a
λ

)−n
, (6.45)

Xi =
4∑

m=0

4∑
n=0

bmn (kli)
m
(a
λ

)−n
, (6.46)

where, [1]7


a00 a01 a02 a03 a04

a10 a11 a12 a13 a14

a20 a21 a22 a23 a24

a30 a31 a32 a33 a34

a40 a41 a42 a43 a44

 =


0.484315 · 104 −0.475502 · 102 0.237406
−0.137680 · 105 0.134736 · 103 −0.671429
0.147939 · 105 −0.144272 · 103 0.717576
−0.716807 · 104 0.699523 · 102 −0.346901
0.134304 · 104 −0.130631 · 102 0.644693 · 10−1



−0.517831 · 10−3 0.387725 · 10−6

0.146303 · 10−2 −0.109502 · 10−5

−0.156154 · 10−2 0.116801 · 10−5

0.753029 · 10−3 −0.562448 · 10−6

−0.139347 · 10−3 0.103804 · 10−6

 , (6.47)

7The ‘-n’ powers in equations (6.45) and (6.46) have been introduced by the author to make these
equations work with the coefficients as stated in Elliot’s book [1] and as reproduced in equations
(6.47) and (6.48). The original equations in [1] have ‘+n’ powers, but for the correct equations the
coefficients are erroneous. The correct coefficients are tabulated in the revised version of Elliot’s book
[12]. The altered equations with the original coefficients give results comparable to those obtained
with the correct equations and correct coefficients.
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and 
b00 b01 b02 b03 b04
b10 b11 b12 b13 b14
b20 b21 b22 b23 b24
b30 b31 b32 b33 b34
b40 b41 b42 b43 b44

 =


−0.644754 · 104 0.767385 · 102 −0.360563
0.189983 · 105 −0.237542 · 103 0.110722 · 101

−0.209803 · 105 0.267034 · 103 −0.124666 · 101

0.102804 · 105 −0.131818 · 103 0.619050
−0.188863 · 104 0.245077 · 102 −0.115922




0.709234 · 10−3 −0.488904 · 10−6

−0.218661 · 10−2 0.151517 · 10−5

0.247753 · 10−2 −0.172674 · 10−5

−0.123956 · 10−2 0.869298 · 10−6

0.233996 · 10−3 −0.165155 · 10−6

 . (6.48)

We now assume a Yagi–Uda linear endfire array antenna consisting of K elements.
The driven element is designated number 1, the reflector is number 28 and the K − 2
directors are numbered in increasing order, moving away from the driven element, see
figure 6.12.

2
1

3 4 5 K-1 K

d1
d2 d3 d4 dK-1

y

x=0

reflector driver directors

z
2

1
3 4 5 K-1 K

d1
d2 d3 d4 dK-1

y

x=0

reflector driver directors

z

Fig. 6.12 Element designation for a K element Yagi–Uda linear endfire array antenna.

As shown in figure 6.12, all dipole elements, except for the driven one, are short-
circuited. Therefore, the antenna may be described using equation (6.28), with all

8The reflector element is longer than the driven element, the directors in general are shorter. Because
of the thus created reflective properties of the second element, adding additional reflector elements in
general does not alter the antenna characteristics and in practice more than two reflecting elements
are hardly ever encountered. In our analysis we restrict ourselves to having just one reflector element.



YAGI–UDA ARRAY ANTENNA 193

voltages, except V1, equal to zero

V1 = Z11I1 + Z12I2 + · · · + Z1iIi + · · · + Z1,K−1IK−1 + Z1KIK

0 = Z21I1 + Z22I2 + · · · + Z2iIi + · · · + Z2,K−1IK−1 + Z2KIK

...
0 = Zi1I1 + Zi2I2 + · · · + ZiiIi + · · · + Zi,K−1IK−1 + ZiKIK

...
0 = ZK1I1 + ZK2I2 + · · · + ZKiIi + · · · + ZK,K−1IK−1 + ZKKIK . (6.49)

The last K − 1 equations may be rewritten into



−Z21

−Z31

...
−Zi1

...
−ZK−1,1

−ZK1


=



Z22 Z23 . . . Z2i . . . Z2K

Z32 Z33 . . . Z3i . . . Z3K

...
...

...
...

...
...

Zi2 Zi3 . . . Zii . . . ZiK
...

...
...

...
...

...
ZK−1,2 ZK−1,3 . . . ZK−1,i . . . ZK−1,K

ZK2 ZK3 . . . ZKi . . . ZKK





I2
I1
I3
I1
...
Ii
I1
...

IK−1

I1
IK
I1



.

(6.50)
The system can be solved for the unknown current ratios by taking the inverse of

the impedance matrix
[I] = [Z]−1[V ], (6.51)

where

[I] =
[
I2
I1
,
I3
I1
, . . . ,

IK
I1

]T
, (6.52)

[V ] = [−Z21,−Z31, . . . ,−ZK1]
T
, (6.53)

and

[Z] =



Z22 Z23 . . . Z2i . . . Z2K

Z32 Z33 . . . Z3i . . . Z3K

...
...

...
...

...
...

Zi2 Zi3 . . . Zii . . . ZiK
...

...
...

...
...

...
ZK−1,2 ZK−1,3 . . . ZK−1,i . . . ZK−1,K

ZK2 ZK3 . . . ZKi . . . ZKK


, (6.54)

where −1 means taking he inverse and T means taking the transpose.
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Once the system has been solved for the unknown induced currents, I2, I3, . . . , IK ,
in terms of the current I1, the input impedance, Zin, of the Yagi–Uda antenna may
be calculated as

Zin =
V1

I1
= Z11 +Z12

I2
I1

+Z13
I3
I1

+ · · ·+Z1i
Ii
I1

+ · · ·+Z1,K−1
IK−1

I1
+Z1K

IK
I1
. (6.55)

When the impressed and induced currents are known, the radiated fields can be
computed. I1 is the impressed current, I2, I3, . . . , IK are the induced currents.

6.5.2 Radiation

The far field of one finite length dipole element only has Eϑ and Hϕ components9

and - since the Maxwell equations that relate electric and magnetic fields are linear -
the same applies to a Yagi–Uda antenna, see figure 6.13.

x

y

z

ϑ

ϕ

Eϑ

Hϕ

H-plane
E-plane

x

y

z

ϑ

ϕ

Eϑ

Hϕ

H-plane
E-plane

Fig. 6.13 Yagi–Uda antenna orientation.

The electric field component generated by dipole element i, Eϑi , is calculated as [4]

Eϑi = −jωAϑi , (6.56)

where

Aϑi = −µ0e
−jkr

4πr
sin(ϑ)

∫ li

−li
Iie

jk(xi sin(ϑ) cos(ϕ)+yi sin(ϑ) sin(ϕ)+zi cos(ϑ))dzi =

−µ0e
−jkr

4πr
sin(ϑ)ejk(xi sin(ϑ) cos(ϕ)+yi sin(ϑ) sin(ϕ))

∫ li

−li
Iie

jkzi cos(ϑ)dzi. (6.57)

Herein, li is the half-length of element i.
With the current distribution Ii as stated in equation (6.31) and for the situation as

depicted in figures 6.12 and 6.13 (xi = 0 ∀i) the electric field component is calculated

9These components are perpendicular to one another and are interrelated through Hϕ = Eϑ
η

, where

Eϑ = |Eϑ|, Hϕ = |Hϕ| and η =
√

µ0
ε0

≈ 120πΩ and is called the free space characteristic impedance.
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as

Eϑi = j60Ii0
e−jkr

r
ejkyi sin(ϑ) sin(ϕ) cos [kli cos(ϑ)] − cos [kli]

sin(ϑ)
, (6.58)

where use has been made of

2ωµ0

4πk
=

η

2π
≈ 120π

2π
= 60. (6.59)

The electric field component for the complete K-element Yagi–Uda array antenna
may then be written as

Eϑ = j
60

sin(ϑ)
e−jkr

r

K∑
i=1

Ii0e
jkyi sin(ϑ) sin(ϕ) (cos [kli cos(ϑ)] − cos [kli]) . (6.60)

The antenna will be analysed in the E-plane and H-plane.
The E-plane is the plane containing the electric field vector and the direction of

maximum radiation. In figure 6.13, the E-plane is the yz-plane (ϕ = 90◦). The H-
plane is the plane containing the magnetic field vector and the direction of maximum
radiation. In figure 6.13, the H-plane is the xy-plane (ϑ = 90◦).

The electric fields in the E-plane and H-plane are given by, respectively
E-plane:

Eϑ = j
60

sin(ϑ)
e−jkr

r

K∑
i=1

Ii0e
jkyi sin(ϑ) (cos [kli cos(ϑ)] − cos [kli]) , (6.61)

H-plane:

Eϑ = j60
e−jkr

r

K∑
i=1

Ii0e
jkyi sin(ϕ) (1 − cos [kli]) . (6.62)

The field radiation pattern is proportional to |rEϑ|. The normalised (field) radiation
pattern F (ϑ) is given by

F (ϑ) =
|rEϑ|

|rEϑmax |
, (6.63)

where Eϑmax is obtained from substitution of ϑ = 90◦ in equation (6.61) or substitution
of ϕ = 90◦ in equation (6.62).

Eϑmax = j60
e−jkr

r

K∑
i=1

Ii0e
jkyi (1 − cos [kli]) . (6.64)

6.5.3 Antenna Design

The main advantage of the analysis described in the preceding paragraphs lies in
its simplicity, allowing for the creation of a computer program that can analyse a
multitude of configurations in a short time and thus optimise designs given some
user-defined constraints.
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To understand this, we will try a straightforward approach in the design of a Yagi–
Uda array antenna, using the theory developed.

We will look at the most basic configuration, that consists of a driven dipole element
and a single parasitic dipole element, longer than the driven element, that will act as
reflector, see figure 6.14.

lr
ldr

d

z

y

x

lr
ldr

d

z

y

x

Fig. 6.14 Basic two-element Yagi–Uda array antenna configuration.

We choose the length of the driven dipole to be 2ldr = 0.475λ and the length of
the reflector 2lr = 0.500λ and try to find the element distance d that ensures endfire
operation along the positive y-axis.

We know that to ensure endfire operation in the desired direction, the phasing of
the elements should be such that a phase difference α = −kd exists, see equations
(6.5) and (6.6). For element distances, d, ranging between 0.025λ and 0.50λ, we have
used the theory of the preceding paragraphs to calculate the phase of I2

I1
, where I1

is the excitation current of the driven element and I2 is the induced current in the
reflector. The results are shown in figure 6.15. In the same figure also −kd as function
of element distance d is shown.

We see that nowhere in the element distance range do we find a phasing that applies
to the 90◦ endfire condition (see also [1]).

As a next try we do not pose the constraint of endfire operation at 90◦, but we pose
the constraint of a minimum at −90◦, thus ensuring endfire operation at +90◦ [1].
Equations (6.5) and (6.6) learn that the phase of I2I1 needs to be equal then to −π+kd.
The curve of −π+ kd versus d is also shown in figure 6.15. Again there is no crossing
with the phase curve of I2

I1
.

As a last try, we look at the possibility to create endfire operation at −90◦. To
this end the phase of I2

I1
should be equal to +kd. In figure 6.15 we see that the phase

curve of I2
I1

crosses the kd-curve at d ≈ 0.3λ.
As a verification of the thus found element spacing, the H-plane radiation patterns

of the two-element Yagi–Uda antenna are shown for different element spacings in
figure 6.16.

The figure shows that the found element spacing d ≈ 0.30λ does not lead to
an ‘optimum’ endfire result in the desired direction! The figure reveals an optimum
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Fig. 6.15 Element phasing for the basic two-element Yagi–Uda array antenna configuration.
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Fig. 6.16 H-plane radiation patterns for the basic two-element Yagi–Uda array antenna for
different element spacings.
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element distance d ≈ 0.15λ. We also see that if the element distance increases, the
phasing between the elements changes in such a way that the endfire operation changes
into broadside operation.

The explanation lies in the fact that a Yagi–Uda array antenna is a travelling-wave
antenna that supports a surface wave into the direction of endfire that has a phase
velocity below that of the free space velocity of light [3, 9]. This means that the phase
delay between the elements is greater than kd and that therefore the additional phase
difference α between the elements should also be greater than kd. As figures 6.15 and
6.16 show, an additional phase shift of 60◦ leads - for this particular situation - to the
desired element spacing.

As suggested in [1], the best way to find the optimum element spacing is to compute
the antenna directivity as function of element spacing. The same applies to finding the
optimum driver and reflector length. For Yagi–Uda antennas consisting of more than
three elements, some sort of computer optimisation will certainly facilitate the design
process. The theory as described before offers the advantage of simplicity, resulting
in fast calculation times.

lrefl=0.482, ldr=0.500,ld1=0.428, ld2=0.420. ld3=0.420,ld4=0.428, d1=-0.20, 
d2=d3=d4=d5=0.25, a=0.00425, all dimensions in lambda
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Fig. 6.17 E-plane power patterns for a six-element Yagi–Uda array antenna analysed by
induced-emf method and method of moments.

This simplicity can also be a drawback, especially in the design of larger Yagi–Uda
antennas. The assumption of sinusoidal currents on the array dipole elements is too
crude and will lead to gross inaccuracies in the radiation pattern away from the main
beam, especially in the back lobe region. It should be noted therefore that the theory
was developed as an educational tool and care should be taken in employing this
theory in a real Yagi–Uda antenna design tool. To that purpose, a point-matching
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lrefl=0.482, ldr=0.500,ld1=0.428, ld2=0.420. ld3=0.420,ld4=0.428, d1=-0.20, 
d2=d3=d4=d5=0.25, a=0.00425, all dimensions in lambda
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Fig. 6.18 H-plane power patterns for a six-element Yagi–Uda array antenna analysed by
induced-emf method and method of moments.

version of the method of moments for the analysis of Yagi–Uda antennas [10] that is
added as a Fortran routine to [4] may be employed.

As a demonstration, a six-element Yagi–Uda antenna is analysed, both by the
induced-emf method and the method of moments. The results for the E-plane power
pattern and the H-plane power pattern are shown in, respectively, figures 6.17 and
6.18. The dimensions of the antenna are taken from [11].

The fact that the E-plane radiation patterns seem to be more alike than the H-
plane radiation patterns is due to the element-filtering characteristics in the E-plane.
In the H-plane the element pattern is a constant.
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7
The Linear Phased Array

Antenna

As we already have seen in the chapter on endfire array antennas, a well-chosen phase
taper over the elements of a linear array antenna may make the beam point in endfire
direction. Choosing another phase taper may point the beam at another angle between
broadside and endfire. Being able to adjust the phase taper will make it possible to scan
the beam between these two extreme pointing angles. Obviously, it will be very difficult
to realise this in a parasitic array antenna, and other means than mutual coupling are
needed to accomplish the desired phase taper. Before we discuss means of realising phase
taper, we will first establish the theoretical background of phase-steered or phased array
antennas and discuss the peculiarities of the scanned beam. Objections exist about the
term phased array antenna for a scanned beam array antenna, based on the fact that a
non-scanned array antenna is in fact a phased array antenna, since the operation relies
on relative phases between the elements. Notwithstanding this argument, we still choose
for the term phased in connection with beam-steered, thereby following the historical
development.

7.1 LINEAR PHASE TAPER

As in the previous chapters we start with considering a linear array antenna consisting
of K elements, equally interspaced a distance d. The direction of a wave is described
by the angle ϑ between rays and array normal. The difference with the previous
situations (broadside linear array antenna and endfire linear array antenna) is that
now, in the (corporate) feed network, we add a microwave two-port between every
antenna element and its branch of the feed network, see figure 7.1.

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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Fig. 7.1 A linear phased array of K radiators, equidistantly positioned along a straight line,
where a plane wave is incident under an angle ϑ with respect to the array normal.

The transfer function, Hi(ϑ), of the microwave two-port i, i = 1, 2, . . . ,K, is given
by

Hi(ϑ) =
Si(ϑ)
S′
i(ϑ)

= aie
jψi . (7.1)

How to realise such a two-port is left for the moment and will be treated further
on in this chapter. It suffices to say now that the two-port will allow us to change
the amplitude of every received signal S′

i(ϑ) and - what is more important for the
moment - it will allow us to change the phase of the received signal. The two-ports
open up the opportunity to operate a phased array antenna.

Since Si(ϑ) = S′
i(ϑ)Hi(ϑ) and we already know from the theory of the linear

broadside array antenna that S′
i(ϑ) = Se(ϑ)ejk0(K−i)d sin(ϑ), where k0 = 2π

λ is the free
space wave number and Se(ϑ) is the element radiation pattern, we may now write for
the array radiation pattern, see also figure 7.1.

S(ϑ) =
K∑
i=1

Si(ϑ) = Se(ϑ)
K∑
i=1

aie
j[k0(K−i)d sin(ϑ)+ψi]. (7.2)

In this equation we implicitly have assumed that mutual coupling effects between
the array antenna elements are negligible, allowing for a common element radiation
pattern that is taken out of the summation.

All the coefficients ai form an amplitude taper. In order not to obscure the phased
array antenna discussion, we assume a uniform, normalised amplitude distribution:

ai = 1 for i = 1, 2, . . . ,K. (7.3)
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Now, we only have to consider the array factor, Sa(ϑ), that is given by

Sa(ϑ) =
K∑
i=1

ej[k0(K−i)d sin(ϑ)+ψi]. (7.4)

If, next, we choose a linear phase taper that is equal to

ψi = −k0(K − i)d sin (ϑ0) for i = 1, 2, . . . ,K, (7.5)

where −90◦ ≤ ϑ0 ≤ 90◦, the array factor may be written as

Sa(ϑ) =
K∑
i=1

ejk0(K−i)d[sin(ϑ)−sin(ϑ0)]. (7.6)

For ϑ0 = 0, the phase taper is zero or non-existent and we encounter the linear
broadside array antenna situation. The maximum of the array factor was encountered
in that situation for ϑ = 0, or - more precisely - for sin(ϑ) = 0.

For the linear phased array antenna situation we now find the array factor
maximum for

sin(ϑ) − sin(ϑ0) = 0, (7.7)

or, provided that −90◦ ≤ ϑ, ϑ0 ≤ 90◦, for ϑ = ϑ0.
So, by choosing a desired beam-pointing direction ϑ0 and subsequently phasing the

linear array antenna elements according to ψi = −k0(K− i)d sin(ϑ0), the array factor
will have its maximum at the desired angle ϑ = ϑ0.

Example 1 Consider a linear array antenna consisting of eight elements. The
element voltage radiation pattern is given by

Se(ϑ) = cos(ϑ). (7.8)

Given this hypothetical radiation pattern for an aperture element in an infinite
ground plane, calculate and show the element power radiation pattern, the array
factor power pattern and the power radiation pattern of the total array as function
of the angle ϑ relative to the array normal (broadside) for the following element
distances d:

1. d = λ0
4 ;

2. d = λ0
2 ;

3. d = λ0;

4. d = 5λ0
4 ,

for a phasing aimed at a beam pointing to ϑ0 = 30◦.
Using equations (7.2), (7.6) and (7.8) results in the radiation power patterns shown

in figures 7.2, 7.3, 7.4 and 7.5 for, respectively, d = λ0
4 , d = λ0

2 , d = λ0 and d = 5λ0
4 .

The element power pattern is calculated as 20 log (|Se(ϑ)|), the normalised array factor
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Fig. 7.2 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element phased array antenna with element distance d = λ0

4
, phased for beam

pointing at ϑ0 = 30◦.
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Fig. 7.3 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element phased array antenna with element distance d = λ0

2
, phased for beam

pointing at ϑ0 = 30◦.
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Fig. 7.4 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element phased array antenna with element distance d = λ0, phased for beam
pointing at ϑ0 = 30◦.
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Fig. 7.5 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element phased array antenna with element distance d = 5λ0
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power pattern is calculated as 20 log (|Sa(ϑ)| /8) and the normalised power pattern of
the total array is calculated as 20 log (|Se(ϑ)| |Sa(ϑ)| /8).

As expected, the main beam in all situations points into the desired ϑ0 = 30◦

direction. For an element distance of a quarter of a wavelength though (figure 7.2),
the aperture size of the array is rather small, resulting into a broad main beam and -
although the array factor points at exactly 30◦, the filtering effect of the element
pattern means that the maximum of the linear array main beam is at an angle
ϑ slightly less than 30◦. We see that upon increasing the element distance of the
array, the beam gets narrower and, consequently, the pointing of the beam gets more
accurate. The narrowing of the beam is completely due to the fact that with the
increase of the element distance the aperture size increases and, since beamwidth is
inversely proportional to aperture size, the beam gets narrower.

We also see that for an element distance of one wavelength and a beam directed
towards ϑ0 = 30◦, grating lobes are already well within the visible range (−90◦ ≤
ϑ ≤ 90◦). Apparently, another condition applies for avoiding grating lobes in a linear
phased array antenna as compared to a linear broadside array antenna. Before we
discuss the grating lobe condition in a linear phased array antenna, we will first have
a look at another example.

Example 2 Consider the same linear array antenna and perform the same
calculations but now for a beam pointing to ϑ0 = 60◦.

Using equations (7.2), (7.6) and (7.8) results in the normalised radiation power
patterns shown in figures 7.6, 7.7, 7.8 and 7.9 for, respectively, d = λ0

4 , d = λ0
2 ,

d = λ0 and d = 5λ0
4 .

Apart from the observations already discussed in connection with the first example,
we now also see that for an element distance of half a wavelength, already a
considerable rising of the array factor at an angle ϑ close to −90◦ is taking place
and for an element distance of five quarters of a wavelength, two grating lobes next
to the main lobe are already visible in the range −90◦ ≤ ϑ ≤ 90◦. Another important
observation, next to the grating lobe issue that will be discussed later on, is that for
the same linear array antenna, a beam steered to ϑ0 = 60◦ is broader than a beam
steered to ϑ0 = 30◦. We will discuss this beam broadening first.

7.2 BEAM BROADENING

To demonstrate the beam broadening with increasing scan angle more clearly, we
will take a linear array of 32 elements, displaced half a wavelength with respect to
each other. The element radiation pattern is taken equal to the one for the 8-element
linear array antennas used in examples 1 and 2. The normalised array radiation power
patterns for beams scanned to ϑ0 = 0◦, ϑ0 = 15◦, ϑ0 = 30◦, ϑ0 = 45◦, ϑ0 = 60◦ and
ϑ0 = 75◦, are shown in figure 7.10.

The figure clearly shows the beam broadening with scan angle. It also clearly shows
the influence of the element pattern and demonstrates that only for broad beams a
pointing error results from the filtering effect of the element pattern.
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Fig. 7.6 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element phased array antenna with element distance d = λ0

4
, phased for beam

pointing at ϑ0 = 60◦.
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Fig. 7.7 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element phased array antenna with element distance d = λ0
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Fig. 7.8 Power radiation patterns of the element factor, the array factor and the total array
of a linear 8-element phased array antenna with element distance d = λ0, phased for beam
pointing at ϑ0 = 60◦.
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Fig. 7.10 Power radiation patterns of a linear 32-element phased array antenna with element
distance d = λ0

2
, phased for beam pointing at various angles ϑ0.

To explain the beam broadening with increasing scan angle we will take a closer
look at the array factor, equation (7.6)

Sa(ϑ) =
K∑
i=1

ejk0(K−i)d[sin(ϑ)−sin(ϑ0)] =
K∑
i=1

ejk0(K−i)d[u−u0], (7.9)

where u = sin(ϑ) and u0 = sin(ϑ0).
If we plot the array radiation pattern, for the various beam-pointing directions, as

function of u instead of as function of ϑ [1], we see that the beamwidth is invariant
with u, figure 7.11.

For the beam directed at broadside (u0 = sin(0) = 0), the 3dB-beamwidth is - in
ϑ-coordinates - 2∆ϑ, see figure 7.10.

In u-coordinates, the beamwidth is 2∆u, see figure 7.11.
The half-beamwidths ∆ϑ and ∆u are related through

∆u = sin(∆ϑ), (7.10)

so

∆ϑ = arcsin(∆u). (7.11)
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Fig. 7.11 Power radiation patterns of a linear 32-element phased array antenna with element
distance d = λ0

2
as function of u = sin(ϑ), phased for beam pointing at various angles ϑ0.

Now, we scan the beam to ϑ0 �= 0 or, along the u-axis, u0 = sin(ϑ0). The halfpower
beamwidth - which is invariant in u-coordinates - is now

2∆u = sin(ϑ2) − sin(ϑ1), (7.12)

where

ϑ1 = ϑ0 − ∆ϑ′, (7.13)
ϑ2 = ϑ0 + ∆ϑ′, (7.14)

and 2∆ϑ′ is the beamwidth for the beam scanned to ϑ0, see figure 7.10.
Substitution of equations (7.13) and (7.14) into equation (7.12) leads to

∆u = cos (ϑ0) sin (∆ϑ′) , (7.15)

so that we find for the halfpower beamwidth

2∆ϑ′ = 2 arcsin
(

∆u
cos (ϑ0)

)
. (7.16)

For narrow beam antennas, we may approximate the arcsin-function by its
argument, so

2∆ϑ′ ≈ 2∆u
cos (ϑ0)

. (7.17)
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For narrow beam antennas 2∆u is also approximately equal to the beamwidth
measured in ϑ-coordinates, see equation (7.11), so that, finally

2∆ϑ′ ≈ 2∆ϑ
cos (ϑ0)

. (7.18)

So, the beamwidth of a scanned, narrow beam, linear array antenna, broadens
approximately inversely to the cosine of the scan angle.

7.3 GRATING LOBES AND VISIBLE SPACE

When we take a closer look at the array factor again, equation (7.9), we see that
whenever

k0d [u− u0] = n2π, (7.19)

where n is an integer number, the array factor repeats itself. The main beam is
identified by n = 0, all other integer values of n identify grating lobes. The first
grating lobe (n = 1) satisfies

d

λ
=

1
(u− u0)

, (7.20)

where use has been made of k0 = 2π
λ .

We have seen in the previous section, that for −90◦ ≤ ϑ ≤ 90◦, the u-coordinate
varies between −1 and +1. So when a grating lobe (maximum) just appears at
ϑ = ±90◦, the corresponding u-value is u = ±1. The above equation for the first
grating lobe then tells us that grating lobes may be just or just not avoided if the
element distance relative to the wavelength satisfies

d

λ
≤ 1

1 + |u0max |
, (7.21)

where u0max = sin(ϑ0max) and ϑ0max is the maximum scan angle. The equality sign
applies to the ‘just’ or ‘just not’ situation. For the equality sign, the maximum of
the grating lobe is present at ϑ = ±90◦. As for a non-scanning array antenna, for a
scanning array antenna the grating lobe condition should be applied more restrictively
if also the slope of the first grating lobe should be suppressed.

For ϑ0max = 0 (no scanning at all), we find d
λ ≤ 1. This is the situation we already

encountered for the broadside linear array antenna. If, on the other hand, we do not
want a grating lobe maximum being present in visible space for all possible scan
angles, we should take ϑ0max = ±90◦, which will lead to

d

λ
≤ 1

2
. (7.22)

This explains the grating lobes we have seen for a scanning antenna in examples 1
and 2 for element distances smaller than one wavelength.

When looking at the radiation patterns as a function of the angle ϑ relative to
broadside, we see - upon enlarging the element distance - grating lobes appear at



212 THE LINEAR PHASED ARRAY ANTENNA

ϑ = ±90◦. Upon further increasing the element distance, or scanning the beam
further to endfire, these grating lobes move from endfire direction closer to broadside
direction. The range −90◦ ≤ ϑ ≤ 90◦, corresponding to |u| = | sin(ϑ)| ≤ 1, is called
the visible region. Grating lobes enter the visible region coming from the invisible
region. The invisible region, for which | sin(ϑ)| > 1 corresponds to complex angles
ϑ, which are difficult to display graphically. Now, the usefulness of the parameter u
becomes evident, since we can easily display the radiation pattern as function of u for
−∞ < u <∞, thus displaying visible region, |u| ≤ 1, and invisible region, |u| > 1, in
one graph.

As an example - demonstrating the usefulness of the parameter u - we will take a
linear array antenna of 32 elements, equally displaced three-quarters of a wavelength
with respect to one another and scan the main beam successively in the directions
ϑ0 = 0◦, ϑ0 = 30◦ and ϑ0 = 60◦. Figures 7.12 to 7.14 show the array factor as function
of u and as function of ϑ and demonstrate the grating lobe moving in from invisible
space to visible space.

In these figures, we have indicated the main beam with a white spot and the grating
lobes with black spots at the top of the graphs. The visible region in the u-domain,
−1 ≤ u ≤ 1, is indicated by two dashed lines and transfers to the shown ϑ-domain
for −90◦ ≤ ϑ ≤ 90◦. The movement of the main beam and the grating lobes for the
beam being scanned from 0◦ to 60◦ is indicated by, respectively, a white arrow and
black arrows. Upon moving the main beam from 0◦ to 30◦, figures 7.12 and 7.13, we
see that the grating lobes move with the main beam. The grating lobe to the right of
the main beam has moved further away from the visible region; the one on the left
has entered the visible region. If the beam is scanned further, to ϑ0 = 60◦, figures 7.13
and 7.14, we see that the grating lobe on the right of the main beam has moved out of
our shown u-window, the grating lobe to the left of the main beam has moved further
into the visible region and further to the left a new grating lobe has formed in the
invisible region that is moving towards the visible region.

7.4 MEANS OF PHASE SHIFTING

So far, we have discussed the phased array antenna beam positioning by applying a
phase shift to the linear array antenna elements without specifying how this phase
shifting may be accomplished. In this paragraph we will briefly outline some (certainly
not all) methods available for accomplishing a desired phase shift.

To this end we first start by identifying the phase of a signal. In all our calculations
thus far we have assumed the signals to be time harmonic, i.e. varying according to
ejωt, meaning that a physical realisable signal s(ω) varies according to the real part
of the complex signal ejωt,

s(ω) ∼ cos(ωt), (7.23)

where ω = 2πf , f being the frequency of the signal. The argument of the cosine is
known as the phase, ψ. The time t we may express as the ratio of distance, l, to
velocity of the signal, c, where c = 1√

εµ , so that we find for ψ

ψ = 2πfl
√
εµ, (7.24)
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Fig. 7.12 Array factor of a linear 32-element phased array antenna with element distance
d = 3λ0

4
as function of u = sin(ϑ) and as function of ϑ, phased for beam pointing at ϑ0 = 0◦.

where ε is the permittivity of the medium the signal is travelling through and µ is
the permeability of this medium.

This equation [2] reveals all phase-shifting possibilities at a glance. The possibilities
are:

• phase shifting by changing frequency;

• phase shifting by changing length;

• phase shifting by changing permittivity (dielectric constant);

• phase shifting by changing permeability.
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Fig. 7.13 Array factor of a linear 32-element phased array antenna with element distance
d = 3λ0

4
as function of u = sin(ϑ) and as function of ϑ, phased for beam pointing at ϑ0 = 30◦.

7.4.1 Phase Shifting by Changing Frequency

Phase shifting by changing frequency or frequency scanning is accomplished by series
feeding the array antenna elements, having the elements equidistantly positioned along
the line and changing the frequency, see figure 7.15.

We have seen that changing the frequency makes the phase change. Another way
of looking at this phase change is taking the electrical length into account. Using
c = 1√

εµ , f = c
λ and k = 2π

λ , substituted into equation (7.24), results in

ψ = kl, (7.25)

which is known as the electrical length.
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Fig. 7.14 Array factor of a linear 32-element phased array antenna with element distance
d = 3λ0

4
as function of u = sin(ϑ) and as function of ϑ, phased for beam pointing at ϑ0 = 60◦.
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Fig. 7.15 Series-fed linear array antenna consisting of K identical elements, equidistantly
displaced d with respect to one another.
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This last equation now clearly shows that by changing the frequency, we create a
changing linear phase taper over the array antenna elements, since the input signal
in figure 7.15 has to travel over a physical length il and electrical length ikl to reach
the ith element of the K-elements linear array antenna. If the physical lengths of the
feeding lines are chosen such that at the centre frequency the phased array antenna
beam is directed to broadsight, changing the frequency to values lower than and
greater than the centre frequency will get the beam being directed to, respectively,
angles smaller than and angles greater than broadsight.

7.4.2 Phase Shifting by Changing Length

Another way of accomplishing a desired phase shift is by changing physical lengths,
as equation (7.23) reveals. This type of phase shifting may be applied to series-fed
arrays, figure 7.16a,b, as well as to corporate-fed arrays, figure 7.16c [3].

ψ ψ ψ ψ

ψ ψ ψ

ψ ψ ψ ψ

a

b

c

ψψ ψψ ψψ ψψ

ψψ ψψ ψψ

ψψ ψψ ψψ ψψ

a

b

c

Fig. 7.16 Phase shifters in a linear phased array antenna feed network. a, b. Series-fed linear
phased array antenna. c. Corporate-fed linear phased array antenna.

In the pre-digital era, phase shifters based upon changing physical length were
realised by electromechanical means. The line stretcher [2] is an example of an early
type phase shifter. The line stretcher is a (coaxial) transmission line section, bent in
the form of a ‘U’. The bottom part of this ‘U’ is attached to the two ‘arms’ that form
part of the stationary feeding network. The bottom part of the ‘U’ acts as a telescoping
section that may be stretched by electromechanical means, thus lengthening and
shortening the transmission line section, without changing the position of the ‘arms’
of the ‘U’.

Nowadays, different lengths of transmission line are selected digitally. A schematic
view of a cascaded, four-bit, digitally switched phase shifter is shown in figure 7.17
[2, 3].
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Fig. 7.17 Cascaded, four-bit, digitally switched phase shifter.

The switches in every section are used to either switch a standard length of
transmission line into the network or a piece of transmission line that adds to this
standard length a piece of predetermined length. These lengths are chosen such that
when the cascade of standard length is taken as reference, having a phase ψ = 0◦, 16
phases (4 bits), ranging from ψ = 0◦ to ψ = 337.5◦, in steps of 22.5◦ (least significant
bit) may be selected.

PIN diodes - employed in forward and reverse bias - are often used as switching
elements [2, 3]. The switched phase shifters may be realised in microstrip technology,
using high dielectric constant substrate material, thus minimising physical phase
shifter dimensions.

Another way of switching physical line lengths is found in the cascaded hybrid-
coupled phase shifter, see figure 7.18 [2, 3].

A 3dB hybrid is a device that divides the power at input port 1, equally over output
ports 2 and 3 and passes no power to output port 4, see figure 7.18. The reflections of
the signals that have left ports 2 and 3 return into the hybrid and combine at output
port 4, none of the power being returned to input port 1. The diode switches in every
segment (bit) of the cascaded hybrid-coupled phase shifter are either returning the
signals leaving ports 2 and 3 directly, or after having travelled the extra line length
∆l
2 twice. For the four-bit phase shifter shown in figure 7.18, ∆l

2 = λ
32 for the least

significant bit, and for the following three bits, respectively, ∆l
2 = λ

16 , ∆l
2 = λ

8 and
∆l
2 = λ

4 .

7.4.3 Phase Shifting by Changing Permittivity

As equation (7.23) shows, a phase shift may be accomplished by changing the
permittivity, ε, or dielectric constant of the material a signal is propagating through.
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Fig. 7.18 Cascaded, four-bit, hybrid-coupled phase shifter.

One way is to use a gaseous discharge or plasma, where the dielectric constant - and
thus the phase shift - is changed by changing the current through the device [2].

Another way is provided by making use of so-called ferroelectric materials.
Ferroelectric materials are materials for which the permittivity is a function of the
applied electric field over the material.

7.4.4 Phase Shifting by Changing Permeability

Equation (7.23) shows that a change in permeability, µ, works equally well in
changing the phase. Ferrimagnetic materials, or ferrites are materials for which the
permeability changes as function of the change in an applied magnetic field in which

Fig. 7.19 Basic Reggia–Spencer phase shifter configuration.
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the material is positioned. Ferrite-based phase shifters have been in use for a long
time, especially in combination with waveguide transmission line technology.

The Reggia–Spencer phase shifter, in its most basic form, consists of a rod of
ferrimagnetic material, centrally positioned inside a waveguide, where a solenoid is
wound around the waveguide, see figure 7.19 [2, 3].

By changing the current through the solenoid, the magnetic field is changed and
thereby the permeability of the ferrimagnetic rod and thus the phase of a wave going
through the waveguide is changed. The phase can be changed continuously, making
the Reggia–Spencer phase shifter an analog phase shifter.

A section (bit) of a digital ferrimagnetic phase shifter is shown in figure 7.20 [2, 3].

Fig. 7.20 Single section (bit) of a latched ferrite phase shifter.

The function of the solenoid is taken over by a current wire through the
ferrimagnetic rod. By cascading different lengths of ferrimagnetic rods, different
(discrete) phase shifts may be realised.

REFERENCES

1. N. Amitay, R.G. Pecina and C.P. Wu, Radiation Properties of Large Planar
Arrays, Monograph 5047, Bell Telephone Laboratories, Inc., February 1965.

2. Merill I. Skolnik, Introduction to Radar Systems, second edition, McGraw-Hill,
Auckland, 1981.

3. R.C. Johnson (ed.) Antenna Engineering Handbook, third edition, McGraw-Hill,
New York, 1993.





8
A Frequency Scanned

Slotted Waveguide Array
Antenna

In this chapter we will put the theory of linear phased array antennas into practice.
We will design a so-called slotted waveguide array antenna and provide beam scanning by
changing the frequency. We also give an introductory example of beam synthesis, putting
constraints on the side lobe level of the array radiation pattern for the beam scanned to
broadside. The antenna will be constructed in WR90 waveguide, will have 21 radiating
elements, is expected to scan from minus 15◦ from broadside to plus 15◦ from broadside
and at broadside have a side lobe level of −30dB. We will construct this antenna, measure
the radiation patterns for different frequencies and discuss the results.

8.1 SLOTTED WAVEGUIDE ARRAY ANTENNA

A frequency scanned array antenna may be realised by a so-called travelling wave
array antenna [1]. A linear travelling wave array antenna may be considered as a
transmission line along which radiating elements are connected. The line is excited at
one end and loaded at the other end. When the excited wave travels towards the load,
parts of its energy are radiated by the radiating elements until, after the last element,
a small fraction of the energy remains. This last fraction of the excitation energy
is dissipated into the load. By controlling the path-lengths between the radiating
elements (in hardware or by changing the frequency), the beam pointing direction may
be controlled. The elements should then be spaced at intervals that avoid reflections
at the elements to add in phase [1]. The array is therefore nonresonant.

Travelling wave antennas may practically be realised as dipole arrays and microstrip
patch arrays, but the most often encountered type is the rectangular slotted waveguide

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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array antenna, see figure 8.1. This type of travelling wave antenna offers the greatest
control over feeding and array element excitation [3].

x
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Fig. 8.1 A section of rectangular slotted waveguide array antenna. The waveguide width and
height are, respectively, a and b. The angle ϑ is the angle the beam makes with the z-axis.

In this configuration, the aforementioned transmission line is the rectangular
waveguide and the array radiating elements are the slots cut into the waveguide wall.
Shown in figure 8.1 is the most commonly encountered type where longitudinal slots
are cut into the broad wall of the waveguide.

The current flowing on the broad upper wall of the rectangular waveguide, J is
proportional to [3]

J ∝ cos
(πx
a

)
ux − j

ka

π
sin
(πx
a

)
uz, (8.1)

where ux and uz are unit vectors in, respectively, the x- and z-direction and k = 2π/λg
is the wavenumber in the waveguide. λg is the wavelength in the waveguide. For an
air-filled waveguide, λg > λ0.

The resonant length of a slot is close to λ0/2 [3], where λ0 is the free space
wavelength.

In general, a slotted waveguide may be employed as a resonant array or as a
nonresonant array.

8.1.1 Resonant Slotted Waveguide Array Antenna

A resonant slotted waveguide array antenna is employed to form a broadside (ϑ = 90◦)
beam. For the resonant slotted waveguide to obtain a beam directed at ϑ = 90◦

(broadside or boresight), all slots must be excited in phase. This is accomplished by
spacing the slots λg apart. But since the slot spacing should be less than λ0 to avoid
the creation of grating lobes (also known as secondary lobes) and since λg > λ0, a
feasible spacing will be larger than λ0 and therefore will result in the forming of more
than one lobe.
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This problem is solved by placing the slots λg/2 apart and placing every other slot
on the adjacent side of the broad wall centre line. This will add an additional phase
shift of π to every other slot as can be seen from equation (8.1).

The resonant slotted waveguide is terminated into a short circuit, placed at a
distance λg/4 or 3λg/4 from the last slot. This ensures that the reflected wave also
excites the slots in phase (a short circuit placed at another distance would result in a
reflected wave that would launch a beam in a different direction than broadside).

For our purposes we do not need a fixed beam at broadside, but a beam that
changes position with frequency. For that purpose, we need to employ the slotted
waveguide in a nonresonant setup.

8.1.2 Nonresonant Slotted Waveguide Array Antenna

The nonresonant slotted waveguide array is very similar to the resonant slotted
waveguide array. The waveguide is now terminated into a matched load that prohibits
reflected waves to travel in the opposite direction and form beams in undesired
directions. The energy of the excitation wave is gradually radiated by the elements
(slots) encountered by the wave as it travels from source towards load. The element
spacing may be larger than or smaller than but preferably not equal to half a
wavelength (assuming every other slot placed adjacent to the broad wall centre line) to
avoid reflections (from the slots) adding up in phase. The slotted waveguide therefore
is nonresonant.

We assumed that adjacent elements are on opposite sides of the broad wall centre
line, to allow for a slot spacing close to half a wavelength [6].

8.1.2.1 Radiation Pattern Applying array theory to the slotted waveguide array of
figure 8.1 [1, 2], the far-field radiation pattern F (Ψ) in the y, z-plane may be written
as

F (Ψ) = f(Ψ)
N∑
n=1

ane
−jδnej[k0nd sin(Ψ)+nπ], (8.2)

where f(Ψ) is the radiation pattern of a single slot, an is the excitation amplitude of
the nth slot, δn is the excitation phase of the nth slot and k0 = 2π/λ0 is the free space
wavenumber. The array consists of N slots, equally spaced at a distant d, every other
slot displaced on adjacent sides of the broad wall centre line, explaining the factor nπ
in the exponent of the kernel of the summation. The mutual coupling between the
slots is considered to be negligible, making all slot radiation patterns identical. This
allows us to separate the slot radiation pattern and array factor as we have done in
the above equation.

If we apply a linear phase taper over the slots, δn = nδ, the radiation pattern
transforms to

F (Ψ) = f(Ψ)
N∑
n=1

ane
jn
[

2π
λ0
d sin(Ψ)+π−δ

]
. (8.3)
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The array pattern is at maximum for

2π
λ0
d sin(Ψm) + π − δ = 2πm, m = 0,±1,±2, . . . , (8.4)

where Ψm is the direction of the far-field maximum (beam pointing direction).

8.1.2.2 Grating Lobes The directions of the first couple of secondary or grating
lobes, for a main beam in the direction Ψm, are found for the values m−1 and m+1,
substituted in the above equation

sin(Ψm±1) = sin(Ψm) ± λ0

d
. (8.5)

In general we do not want grating lobes to be present in visible space, i.e. for real
values of Ψ, or - in other words - for values of Ψ that satisfy the condition | sin(Ψ)| ≤ 1.

If we allow grating lobes to be just not present at Ψ = ±π/2, we find - upon
substitution of these values for Ψm±1 in the above equation - that the inter-element
distance should satisfy

d <
λ0

1 + | sin(Ψm)| . (8.6)

For all angles −Ψm < Ψ < Ψm, no grating lobes will appear in visible space.
In figure 8.2, the maximum element distance (in wavelengths) versus maximum

absolute beam pointing angle is shown.
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Fig. 8.2 Maximum element distance vs. beam-pointing angle for grating lobe free visible space.

We see that the maximum inter-element spacing is independent from the element
phase excitation. Furthermore we see that for a fixed beam at broadside (Ψm = 0),
the element distance may be as large as one free space wavelength, λ0. If, on the other
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hand, we want the beam to scan over the whole hemisphere (−90◦ < Ψ < 90◦) in the
y, z-plane, the element distance may not exceed one half of a free space wavelength.

Of course, allowing the grating lobes to be just not present at Ψ = ±π/2, still
leaves us with the slope of the grating lobe close to Ψ = ±π/2. Although this slope
will be greatly suppressed by the slot radiation pattern, (f(Ψ)), it will not hurt to be
a bit more restrictive on the element distance than suggested by equation (8.6).

In the above, we have not yet specified the integer m that was introduced in
equation (8.4). We take the first maximum that occurs as the main lobe and the next
one as the first grating lobe. This means that m = 0.

8.1.2.3 Frequency Scanning Before we look at frequency scanning in detail, we need
to determine the phase, δ. This phase is, due to the slotted waveguide structure -
where the elements are physically displaced a distance d - simply

δ =
2π
λg
d, (8.7)

where λg is the wavelength in the waveguide. This wavelength is related to the free
space wavelength, λ0, through [6]

λg =
λ0√

1 − (λ0
λc

)2 =
λ0√

1 − (λ0
2a

)2 . (8.8)

In the above equation, λc is the cut-off wavelength of the waveguide, i.e. the
maximum wavelength1 that will propagate through the guide. This cut-off wavelength
is equal to twice the width of the guide, λc = 2a, see figure 8.1.

We want the frequency scanning to occur relative to a chosen centre frequency,
fcntr. At this centre frequency, the ratio of free space wavelength to waveguide
wavelength will be designated a constant, C1. At the centre frequency we want the
antenna to radiate into the broadside direction (Ψm = 0). The element distance may
also be related to the centre wavelength, λcntr

λ0

λg
= C1, for λ0 = λcntr, (8.9)

d = C2λcntr. (8.10)

Substitution of equation (8.7) into equation (8.4) and rearranging terms results in

sin(Ψm) =
(
m− 1

2

)
λ0

d
+
λ0

λg
. (8.11)

At broadside (Ψm = 0), substitution of equations (8.9) and (8.10) into equation
(8.11) results in (

m− 1
2

)
= −C1C2. (8.12)

1Related to the minimum frequency through fc = c0
λc

, where c0 is the speed of light in free space.
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Substitution of this result into equation (8.11) and, subsequently using equations
(8.10) and (8.8) leads to

sin(Ψm) =
λ0

λg
− C1

λ0

λcntr
=√

1 −
(
fc
f

)2

− C1
λ0

λcntr
. (8.13)

If we next relate the cut off frequency, fc, to the centre frequency, fcntr, through

fc = C3fcntr, (8.14)

substitution of this relation into equation (8.13), evaluated at broadside, gives

C1 =
√

1 − C2
3 . (8.15)

Therefore, we finally find for the beam-pointing dependency on frequency

sin(Ψm) =

√
1 − C2

(
fcntr

f

)2

−
√

1 − C2

(
fcntr

f

)
, (8.16)

where
fc = Cfcntr. (8.17)

In figures 8.3, 8.4 and 8.5 the beam position is shown as function of the frequency
normalised to the centre frequency for different values of C.
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Fig. 8.3 Beam position as function of frequency for different values of C between 0.7 and 1.0.
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Fig. 8.5 Beam position as a function of frequency for different values of C between 0.95 and
0.98.

From these three figures we see that a linear dependency of beam-pointing angle
with frequency is feasible, see especially figure 8.3.

Also clearly shown in the figures is that the angular scan with frequency is rather
limited. This is due to the fixed path length dictated by the slotted waveguide
configuration. If a larger scan volume is required, the waveguide in between the slots
may be bent to lengthen the path, while maintaining the slot spacing, see figure 8.6 [1].
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This type of feeding is usually combined with slots in the smaller waveguide side
and is known as serpentine feeding, snake feeding or sinusoidal feeding. Since the
complexity of the feeding system will increase costs and since we need a limited
scan volume, we will not use this kind of feeding and stick to the slotted waveguide
configuration of figure 8.1.

in

load

d

path length

in

load

d

path length

Fig. 8.6 Snake feed geometry. Slots in small side waveguide. Not drawn to scale.

8.1.2.4 Power Distribution For the determination of the power distribution we
assume that at every slot power is coupled from the travelling wave to that slot
and that the remaining power is transported to the next slot where a similar process
is taking place and that this process takes place without the generation of reflections.
This assumption is realistic, provided that the coupling per slot is small. This may be
achieved by having a sufficient number of slots [1]. Furthermore, we assume that the
waveguide loss may be neglected. This assumption is realistic for straight travelling
wave feeds [1], as is the case in our slotted waveguide array antenna.

Normalised Slot Conductances Every slot may be considered as a shunt conductance
across the waveguide. The normalised2 conductance of the nth slot is given by [3, 5]

gn = 2.09
λg
λ0

a

b
cos2

(
πλ0

2λg

)
sin2

(πxn
a

)
, (8.18)

where xn is the offset of the nth slot relative to the broad wall centre line.
If the voltage across the transmission line is V , the power radiated by the nth slot

is given by |V |2gn/2. The offset of the slot therefore is a means of controlling the
power distribution [3].

Given a power distribution function Fn, n = 1, 2, . . . , N , the fraction of the input
power that is finally dissipated into the load, L, is given by [1, 3]

L =
PL
Pin

, (8.19)

2Normalised with respect to the characteristic admittance of the rectangular waveguide TE10-mode.
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where PL is the power delivered to the load and Pin is the power delivered to the
slotted waveguide antenna at the input. The equivalent circuit and the powers and
distribution coefficients involved are shown in figure 8.7.

g1 g2 gN-1 gN 1

Pin P1 P2 PN-1 PL

F1 F2 FN-1 FN

g1 g2 gN-1 gN 1

Pin P1 P2 PN-1 PL

F1 F2 FN-1 FN

g1 g2 gN-1 gN 1

Pin P1 P2 PN-1 PL

F1 F2 FN-1 FN

Fig. 8.7 Slotted waveguide equivalent circuit.

We start at the last slot. The voltage at this point of the equivalent transmission
line is VN . The power available at this point of the transmission line is then

Pav =
|VN |2

2
= PN + L, (8.20)

where PN is the power radiated by the N th slot, normalised to the input power Pin.
We have seen that this radiated normalised power is

PN =
|VN |2 gN

2
, (8.21)

where gN is the normalised conductance of slot N .
We find the normalised slot conductance upon division of radiated power and

available power. The radiated power is prescribed by the power function Fn, so

gN =
PN
Pav

=
PN

PN + L
=

FN
FN + L

. (8.22)

For the last but one slot, we find a normalised available power Pav = PN−1+PN+L,
a radiated power PN−1 and therefore a normalised slot conductance gN−1

gN−1 =
FN−1

FN−1 + FN + L
. (8.23)

Continuation of this analysis results in the expression for gn

gn =
Fn

L+
∑N
i=n Fi

. (8.24)
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This equation may be rewritten, using L +
∑N
i=1 Fi = 1, which follows from the

normalisation process, as

gn =
Fn

L+
∑N
i=1 Fi −

(∑N
i=1 Fi −

∑N
i=n Fi

) =
Fn

1 −∑n−1
i=1 Fi

. (8.25)

For the design of a nonresonant slotted waveguide antenna, the fraction of power
to be dissipated in the load, L, needs to be specified as well as the normalised
conductances, gn, which are related to the power distribution function, Fn, through
equation (8.25). The offsets of the slots then follow from equation (8.18).

The value of L is related to the maximum allowed value for gn. The conductances
need to be kept small to get the slots sufficiently removed from the edges of the
waveguide and to ensure that reflections are being kept low. Violating either one or
both conditions will make the analysis performed less accurate.

As a rule of thumb, Collin and Zucker [3], specify gn < 0.2. Hansen [1] is even more
restrictive and poses gn < 0.1.

Taylor Distribution In general we want a prescribed function determining the
amplitude factors, an, in equation (8.2). If we choose all factors equal, an = 1, we have
a so-called uniform amplitude weighting. The benefit of such a weighting is that it
results in the smallest possible half power beam width (HPBW). The drawback is that
it provides - at the same time - the highest possible side lobe level (SLL) of −13.2dB.
Other amplitude distributions, like for example Dolph-Tschebyscheff, binomial, cosine
squared, etc. all make a trade-off between HPBW and SLL. A Taylor distribution
offers an often used compromise between HPBW and SLL. In the following, a (very
brief) outline of the Taylor one-parameter distribution will be presented. Details may
be found in [7] and [8].

Start of the discussion of the Taylor one-parameter distribution - that ensures side
lobe levels to decay with increasing angle, moving away from the main lobe - is a
continuous line source (current) distribution [2]

I(z′) =

J0

[
jπB

√
1 −
(2z′

l

)2 ]
− l

2 ≤ z′ ≤ l
2

0 elsewhere
, (8.26)

where J0(x) is the Bessel function of the first kind and order zero of argument x
and l is the total length of the source, that is directed along the z-coordinate of a
regular Cartesian coordinate system. In the above equation, B is a constant that will
be determined for the specified side lobe level.

The antenna pattern, F (ϑ), as function of the angle relative to the z-axis, ϑ, follows
from the source distribution [2] and is given by

F (ϑ) =


l
sinh

[√
(πB)2 − u2

]
√

(πB)2 − u2
u2 < (πB)2

l
sin
[√

u2 − (πB)2
]

√
u2 − (πB)2

u2 > (πB)2

, (8.27)
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where

u = π
l

λ
cos(ϑ). (8.28)

Maximum radiation takes place at ϑ = π
2 or u = 0. The normalised (with respect

to source length, l) main beam level, H0, is therefore

H0 =
sinh(πB)
πB

. (8.29)

For u� πB, the normalised pattern may be approximated by

F (ϑ) =
sin
[√

u2 − (πB)2
]

√
u2 − (πB)2

≈ sin(u)
u

, (8.30)

and the first side lobe level, H1, is then found to be

H1 = 0.217233. (8.31)

The maximum desired voltage SLL, R0 is then calculated as

R0 =
H0

H1
= 4.603

sinh(πB)
πB

. (8.32)

We now have all the ingredients necessary to design a slotted waveguide array
antenna.

8.2 ANTENNA DESIGN

Our goal is, by employing a standard WR90 waveguide (dimensions: a = 0.9′′ =
22.86mm, b = 0.4′′ = 10.16mm [9]) with 21 slots, to design a slotted waveguide array
antenna having a side lobe level of −30dB that can scan the beam from −15◦ to +15◦

relative to broadside.
Since it would be nice to have a linear dependency of beam-pointing angle on

frequency, we choose - using figure 8.3 - C = 0.7 in equation (8.16). The cut-off
frequency of the WR90 waveguide is fc = 6.562GHz. With C = 0.7 substituted in
equation (8.17), the centre frequency is found to be fcntr = 9.374GHz. The frequency
sweep needs to be 40%, see figure 8.3, so scanning will be from 7.499GHz to 11.249GHz
and the frequency sweep will be ∆f = 3.75GHz.

The slot length, lg is taken to be half the centre wavelength, lg = λcntr/2 =
c0/(2fcntr) =1.60cm. We choose the width to be 1.5mm. The element distance, d, is
taken to be, d = 2.29cm, well above half the largest free space wavelength possible.
Thus, we prevent the slotted waveguide array antenna from becoming resonant while
changing the frequency between lower and upper boundary.

Next, we find the SLL, R0, to be

R0 = 10
30
20 = 31.62, (8.33)
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and, with use of equation (8.32)

eπB − e−πB

πB
= 13.74, (8.34)

where use is made of sinh(x) = 1
2 (ex − e−x).

Finally, we find (graphically)
B = 1.2763. (8.35)

With use of equation (8.26), we now calculate the amplitude coefficients, an in
equation (8.2), for n = 11, 12, . . . , 21 (note that equation (8.26) is for a symmetric
amplitude distribution, so we place the origin on element 11). The length l of the
array is l = 20d =0.458m.

a11 = I(z′)|z′=0 = J0(j4.010) = 11.39, (8.36)

Next,

a12 = I(z′)|z′=d = J0

(
j4.0095 ·

√
1 −
(

0.0458
0.458

))
= J0(j3.989) = 11.20. (8.37)

These and the rest of amplitude coefficients are grouped in table 8.1.
From equation (8.18), we find - at the centre frequency - the slot offsets, xn, as

xn = 7.277 arcsin
(√

gn
1.241

)
(in mm), (8.38)

where the slot conductances, gn, follow from equation (8.25). The terms Fi in equation
(8.25) can be calculated from the amplitude coefficients in table 8.1 according to

Fi =
a2
i

2Nor
, (8.39)

where Nor is a normalisation factor that is calculated from∑N
i=1

a2
i

2

Nor
+ L = 1, (8.40)

whereN is the number of array elements and L is the fraction of power to be dissipated
into the load. L needs to be specified by the designer.

We choose for a 5% dissipation into the load (L = 0.05) and then find the absolute
offsets for the 21 slots as shown in table 8.2.

8.3 VALIDATION

The slotted waveguide has been constructed by milling the slots into the broad wall
of a length of WR90 waveguide. Then flanges are soldered to both ends, where care is
taken to have a sufficient length of waveguide between the end-slots and the flanges.
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Table 8.1 Amplitude coefficients for 30dB SLL.

n an

1 1.00
2 1.92
3 3.06
4 4.37
5 5.78
6 7.19
7 8.55
8 9.72
9 10.62
10 11.20
11 11.39
12 11.20
13 10.62
14 9.72
15 8.55
16 7.19
17 5.78
18 4.37
19 3.06
20 1.92
21 1.00

Onto one of these flanges a coaxial to rectangular waveguide adapter is connected and
a waveguide load is connected to the other one, see figure 8.8.

The calculated array factor and measured, normalised power radiation patterns
for three frequencies corresponding to beam positions near or at −15◦, 0◦ and +15◦,
relative to broadside, are shown in, respectively, figure 8.9, figure 8.10 and figure 8.11.

The figures show that, although the measured side lobe level is less than −13.2dB as
would have been expected for a uniform amplitude distribution, the expected −30dB
is not realised. The calculations however do predict an SLL of −30dB.

Furthermore we see that the direction of the main beam moves with frequency
as expected. However the beam direction deviates a few degrees from the predicted
positions for all frequencies. This deviation is always in the same direction.

This last observation leads to the conclusion that a misalignment of the antenna
under test must have been taking place prior to the antenna pattern measurements.
The high side lobe level and the form of the main beam may have different sources. To
start with, the anechoic chamber used for measuring the radiation patterns, prevented
a separation between antenna under test and standard gain antenna that satisfied the
far-field condition. Next to these possible measurement errors, the construction of the
slotted waveguide array antenna can cause deviations from the calculated patterns.
Figure 8.12 shows a detail of the slotted waveguide array antenna.
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Table 8.2 Slot offsets in mm for a 21-element 30dB SLL slotted waveguide array antenna.

n xn

1 0.82
2 1.55
3 2.33
4 3.01
5 3.46
6 3.65
7 3.66
8 3.54
9 3.35
10 3.11
11 2.85
12 2.57
13 2.28
14 1.98
15 1.68
16 1.38
17 1.09
18 0.82
19 0.57
20 0.36
21 0.19

Fig. 8.8 Realised 21-slots slotted waveguide array antenna in WR90 having a coaxial to
rectangular waveguide adapter connected to one side and a waveguide load to the other side.
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Fig. 8.9 Calculated and measured power radiation pattern for the slotted waveguide array
antenna of figure 8.8 for 8.00GHz.
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Fig. 8.10 Calculated and measured power radiation pattern for the slotted waveguide array
antenna of figure 8.8 for 9.37GHz.
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Fig. 8.11 Calculated and measured power radiation pattern for the slotted waveguide array
antenna of figure 8.8 for 11.25GHz.

Fig. 8.12 Detail of the slotted waveguide array antenna of figure 8.8.

The figure shows that the slots not only deviate from ideal slots in that the ends
are rounded, due to the milling process, but also that the slots are not identical due
to a rough handling of burrs after milling. This may cause an unexpected mutual
coupling between the elements that disturbs the ideal radiation pattern.
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Fig. 8.13 Calculated (single mode and full wave) and measured power radiation pattern for
the slotted waveguide array antenna of figure 8.8 for 8.00GHz.
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Fig. 8.14 Calculated (single mode and full wave) and measured power radiation pattern for
the slotted waveguide array antenna of figure 8.8 for 9.37GHz.

Mutual coupling is not taken into consideration in the design of the slotted
waveguide array antenna and even for a perfectly constructed antenna, mutual
coupling may be a cause of deviations from the calculated array factors.
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Fig. 8.15 Calculated (single mode and full wave) and measured power radiation pattern for
the slotted waveguide array antenna of figure 8.8 for 11.25GHz.

To assess the influence of mutual coupling, the realised array antenna has been
analysed using a full-wave analysis code that takes mutual coupling into account.
The results are shown in the figures 8.13, 8.14 and 8.15.

These figures reveal that the relative high side lobe level is partly due to the
measurement site wherein the far-field condition is not met. However, the high side
lobe level is also for a great deal due to mutual coupling effects that have not been
taken into account in the design of the slotted waveguide array antenna.

Ways to incorporate mutual coupling effects can be found in [8] or one can fall back
on a more pragmatic approach and design a slotted waveguide array antenna along
the lines as outlined in this chapter but increase the desired side lobe level beyond
the actual level needed [4].
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9
The Planar Array and
Phased Array Antenna

Once the basics of linear array and linear phased array antennas are understood, the
planar array and planar phased array antenna are not expected to pose any real problem.
Geometrically, the planar array antenna is in fact a linear array of linear arrays; i.e. a
linear array antenna where the array antenna elements are linear array antennas - along
the orthogonal direction - themselves. For the phasing of the elements in a planar phased
array antenna it will appear that this linear array antenna analogy still holds.

9.1 GEOMETRY

As we did for the linear array antenna, we start with the assumption that the elements
of the planar array antenna are positioned on a regular lattice or grid. This is not
necessary for the array or phased array antenna operation, but it will simplify the
discussion and it describes the situation most often encountered in practice.

To even further simplify the discussion, we assume the lattice to be rectangular, see
figure 9.1, a situation often encountered in practice. The triangular (or hexagonal)
lattice, also often encountered in practice, may be seen as a superposition of two,
displaced rectangular lattices, see figure 9.2.

As in the situation of the linear array antenna, we allow the elements to have
directive properties (a non-isotropic radiation pattern), but - for the moment - we
do not bother about physical dimensions. This leaves us the freedom to experiment
(theoretically) with inter-element distances without having to restrict ourselves to
situations that are constrained by the actual elements being applied.

Returning to figure 9.1, we see that K×L elements are grouped in a configuration
of K rows, having an inter-element distance dx between the rows and L columns,

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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Fig. 9.1 Planar (phased) array antenna, consisting of K × L elements, positioned in a
rectangular lattice in the x, y-plane of a Cartesian coordinate system.
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Fig. 9.2 Regular lattices. a. Rectangular lattice. b. Triangular lattice. c. Triangular lattice as
a superposition of two rectangular lattices.

having an inter-element distance dy between the columns. The planar array antenna
therefore may be regarded as either a linear array antenna directed along the y-axis,
having an inter-element distance dy or a linear array antenna directed along the x-
axis, having an inter-element distance dx. In the first situation, the array antenna
elements are linear arrays, directed along the x-axis, having element distance dx, in
the second situation, the array antenna elements are linear arrays, directed along the
y-axis, having element distance dy, see figure 9.3.

The position of an element (k, l) in the array, rkl, where k is a counter into the
x-direction (k = 1, 2, . . . ,K) and l is a counter into the y-direction (l = 1, 2, . . . , L),
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Fig. 9.3 A planar rectangular lattice array antenna may be envisaged as a linear array of linear
arrays antenna.

is given by
rkl = (k − 1)dxûx + (l − 1)dyûy, (9.1)

where rkl is the vector, originating in O, see figure 9.1, pointing to element (k, l). The
vectors ûx and ûy are unit vectors in the x- and y-direction, respectively. The element
(k, l) = (1, 1) is positioned at O ((x, y, z) = (0, 0, 0)). The planar array is assumed to
be lying in the z = 0 plane, see figure 9.1.

The feeding of the array antenna elements may be accomplished by a variety of
feeding structures, see for example [1]. For a 4 × 4 planar array antenna, different
feeding arrangements are shown in figure 9.4.

a b

c d

a ba b

c d

Fig. 9.4 Feeding arrangements for a 4 × 4 planar array antenna. a. Series-parallel feeding
network. b. Series-corporate feeding network. c. Corporate-series feeding network. d. Full
corporate feeding network.



244 THE PLANAR ARRAY AND PHASED ARRAY ANTENNA

9.2 PLANAR ARRAY ANTENNA

The path-length differences to the elements of the planar array antenna for a plane
wave incident upon the antenna1 are obtained by projecting the plane wave direction
onto the planar element position vector. In fact, this is what we have done for the
linear array antenna as well, but since for the linear array antenna the analysis was
restricted to only two dimensions, the projection could be described in scalar equations
directly.

Before we perform the mentioned vector projection, we will first return to the linear
array antenna, see figure 9.5, and redefine the phase differences.
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Fig. 9.5 Linear array antenna of K elements at an inter-element spacing d, receiving a plane
wave from the direction R̂.

In the analysis of the linear array antenna it was convenient to take the phase
reference (ψ = 0◦) at element K. We know that the operation of the linear array
antenna does not depend on absolute phases but on phase differences between the
array elements. Therefore it is allowed to choose an arbitrary element as phase
reference. Since it is more convenient for the planar array antenna as shown in
figure 9.1 to take the element (k, l) = (1, 1) at O as the phase reference, we will rewrite
the equations for the linear array antenna having element 1 as phase reference, while
at the same time explaining the aforementioned vector projection. After this exercise,
the extension from a linear to a planar array antenna is relatively straightforward.

The path-length difference between two neighbouring elements in the linear array
antenna, ∆l, see figure 9.5, is calculated as the dot product of the plane wave direction,
R̂, and the element position vector r

∆l = R̂ · r = R̂ · r̂d = d cos(ξ) = d sin(ϑ). (9.2)

1We regard the antenna as being a receive antenna. By virtue of reciprocity, the results apply equally
well to the antenna in transmit mode, so the choice for transmit or receive mode depends on what
is most convenient at the moment.
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The phase difference, ∆ψ, between two adjacent elements is thus

∆ψ = k0d sin(ϑ), (9.3)

and the phase of element k relative to element 1, ψk, is given by

ψk = k0(k − 1)d sin(ϑ), for k = 1, 2, . . . ,K, (9.4)

where k0 = 2π
λ0

. This result is consistent with our earlier findings, only the phase
reference has been transferred from element K to element 1.

Equation (9.2) is easily translated to the planar array antenna configuration from
inspection of figure 9.1. For the moment we assume that every element is not weighted
(aij = 1) and not phased (ψij = 0). For element (k, l), the difference in path length
for the plane wave to this element, relative to the (1, 1)-element, ∆lkl, is

∆lkl = R̂ · rkl =
(k − 1)dxR̂ · ûx + (l − 1)dyR̂ · ûy =

(k − 1)dx sin(ϑ) cos(ϕ) + (l − 1)dy sin(ϑ) sin(ϕ). (9.5)

The phase of element (k, l) relative to the (1, 1)-element, ψkl, is then given by

ψkl = k0(k − 1)dx sin(ϑ) cos(ϕ) + k0(l − 1)dy sin(ϑ) sin(ϕ), (9.6)

resulting in the planar array radiation pattern

S(ϑ, ϕ) = Se(ϑ, ϕ)
K∑
k=1

L∑
l=1

ej[k0(k−1)dx sin(ϑ) cos(ϕ)+k0(l−1)dy sin(ϑ) sin(ϕ)], (9.7)

where Se(ϑ, ϕ) is the element radiation pattern. Again, we assume that all elements
are identical and that mutual coupling effects are negligible.

The planar array antenna radiation pattern may be written as the product of an
element factor or element pattern and two linear array factors

S(ϑ, ϕ) = Se(ϑ, ϕ)Sa1(ϑ, ϕ)Sa2 (ϑ, ϕ), (9.8)

where

Sa1(ϑ, ϕ) =
K∑
k=1

ejk0(k−1)dx sin(ϑ) cos(ϕ), (9.9)

is the array factor for the linear array in the x-direction and

Sa2(ϑ, ϕ) =
L∑
l=1

ejk0(l−1)dy sin(ϑ) sin(ϕ), (9.10)

is the array factor of the linear array in the y-direction.
With the planar array factor, Sa(ϑ, ϕ), thus written as the product of two linear

array factors, Sa(ϑ, ϕ) = Sa1(ϑ, ϕ)Sa2(ϑ, ϕ), some interesting characteristics of regular
grid planar arrays become visible. If, for example, we have a plane wave incident with
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a direction parallel to the xz-plane, i.e. for ϕ = 0◦, the array factor Sa2 reduces to
a constant L and the normalised array factor radiation pattern reduces to that of
a K-element linear array with inter-element spacing dx. The effect of the additional
number of elements with respect to the K elements of the linear array antenna is found
in the directivity multiplication factor L. For a plane wave having a direction parallel
to the yz-plane, i.e. for ϕ = 90◦, the array factor Sa1 reduces to a constant K and the
normalised array factor radiation pattern reduces to that of an L-element linear array
with inter-element spacing dy. The directivity of this array antenna is multiplied with
a factor K to account for all the elements in the planar array antenna.

By the positioning of multiple elements in a row (linear array antenna), we have
achieved that - relative to a single element - the directivity has increased in the plane
perpendicular to and containing the linear array antenna. In the plane perpendicular
to this plane, the directivity has not changed and remains that of a single element,
see figure 9.6.

a ba b

Fig. 9.6 Normalised radiation patterns of a single element and a linear array consisting of
these elements in the principal planes. a. Element. b. Linear array.

By the positioning of multiple elements in a regular (rectangular) grid, we have
achieved that the directivity has increased in both principal planes of the array
antenna, see figure 9.7. As a matter of fact in all planes 0◦ ≤ ϕ ≤ 90◦ the directivity
has increased with respect to that of a single element.

9.2.1 Radiation

We will now analyse a 64-element planar array antenna where the identical elements
are arranged in a square (dx = dy) 8 × 8 lattice. We assume the element radiation
pattern to be that of a rectangular aperture in an infinite ground plane. The voltage
radiation pattern of the element is assumed to be ϕ-independent and is stated as

Se(ϑ) = cos(ϑ), for all ϕ, (9.11)

just as for the 8-element linear array antennas we have analysed before.
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a ba b

Fig. 9.7 Normalised radiation patterns of a single element and a planar array consisting of
these elements in the principal planes. a. Element. b. Planar array.

The normalised radiation patterns in the principal planes (ϕ = 0◦ and ϕ = 90◦) for
inter-element distances ranging from λ

4 to 5λ
4 are identical to the ones shown earlier

for the 8-element linear array antennas. Therefore we will not show them. For three
planes in between these principal planes, the radiation patterns will be shown.

Figures 9.8 to 9.11 show the element radiation pattern, array factor and array
radiation pattern in the plane ϕ = 15◦ for element distances of, respectively, λ

4 ,
λ
2 , λ and 5λ

4 . The patterns are normalised to the maximum and are displayed in
decibels. The element pattern is thus plotted as 20 log (|Se(ϑ)|), the array factor as
20 log

(
1
64 |Sa1(ϑ, ϕ)| |Sa2(ϑ, ϕ)|) and the array pattern as

20 log
(

1
64

|Se(ϑ)| |Sa1(ϑ, ϕ)| |Sa2(ϑ, ϕ)|
)
.

Comparing these patterns with the ones obtained for the linear 8-element array
antennas (i.e. the principal planes radiation patterns) leads to the observation that
grating lobes are not present in the plane ϕ = 15◦. Even for element distances equal to
or larger than one wavelength, only a rising of the side lobes is observed. Furthermore,
the distribution of the side lobe levels is less regular than for the earlier analysed linear
array antenna.

Figures 9.12 to 9.15 show the element radiation pattern, array factor and array
radiation pattern in the plane ϕ = 30◦ for element distances of, respectively, λ4 , λ2 , λ
and 5λ

4 .
In comparison with the radiation patterns in the plane ϕ = 15◦, we see that

the patterns are deviating further from the ones in the principal planes (linear array
antenna patterns). In the plane ϕ = 30◦ the side lobe levels are distributed less evenly
than compared to the plane ϕ = 15◦, in which plane the side lobe levels were already
distributed less evenly than compared to the plane ϕ = 0◦.

As a last example, in figures 9.16 to 9.19, we show the element radiation pattern,
array factor and array radiation pattern in the plane ϕ = 45◦ for element distances
of, respectively, λ4 , λ2 , λ and 5λ

4 .
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Fig. 9.8 Element radiation pattern, array factor and array radiation pattern for a square lattice
8 × 8 planar array antenna in the plane ϕ = 15◦ for dx = dy = λ

4
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Fig. 9.9 Element radiation pattern, array factor and array radiation pattern for a square lattice
8 × 8 planar array antenna in the plane ϕ = 15◦ for dx = dy = λ

2
.

Since, in our planar, rectangular grid array antenna we have chosen the element
distances in both orthogonal directions to be identical (square lattice) and have opted
for an element radiation pattern that is ϕ-independent, the radiation patterns in the
planes ϕ = 60◦, ϕ = 75◦ and ϕ = 90◦ are identical to those in the planes ϕ = 30◦,
ϕ = 15◦ and ϕ = 0◦, respectively.
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Fig. 9.10 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 15◦ for dx = dy = λ.

-60

-50

-40

-30

-20

-10

0

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Angle relative to broadside (degrees)

dB

Element pattern

Array factor

Array pattern

Fig. 9.11 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 15◦ for dx = dy = 5λ

4
.

We see that in the plane that is maximally removed from the principal planes,
i.e. ϕ = 45◦, we again encounter a regular side lobe level distribution and in none of
the planes in between the two principal planes do we encounter grating lobes for all
the element distances analysed. Only in the principal planes do grating lobes occur
for element distances equal to and larger than one wavelength. The level of the first
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Fig. 9.12 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 30◦ for dx = dy = λ
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Fig. 9.13 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 30◦ for dx = dy = λ

2
.

side lobe in the plane ϕ = 45◦ appears to be approximately −26dB as can be seen
from the array factor in the figures 9.16 to 9.19. Intuitively it can be understood that
this level is not a matter of coincidence and in the remainder of this section we will
demonstrate this.
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Fig. 9.14 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 30◦ for dx = dy = λ.
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Fig. 9.15 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 30◦ for dx = dy = 5λ

4
.

However, we will first explain the decrease and increase in regularity of the side
lobe level distribution in the radiation patterns when moving from one principal plane
to the other (orthogonal) principal plane.
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Fig. 9.16 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 45◦ for dx = dy = λ

4
.

-60

-50

-40

-30

-20

-10

0

-90 -80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90

Angle relative to broadside (degrees)

dB

Element pattern
Array factor
Array pattern

Fig. 9.17 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 45◦ for dx = dy = λ

2
.

9.2.2 Side Lobe Level

Obviously, the distribution of the side lobe levels in the radiation patterns follow
from the radiation pattern, as calculated by equation (9.7). We will try to explain
the phenomenon not mathematically, but in a more graphical manner. We have
already seen that in the principal planes (ϕ = 0◦ and ϕ = 90◦), the array antenna
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Fig. 9.18 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 45◦ for dx = dy = λ.
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Fig. 9.19 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar array antenna in the plane ϕ = 45◦ for dx = dy = 5λ

4
.

radiation patterns are basically linear array antenna radiation patterns, where the
only difference is in the amount of totally radiated power, not in the form of the
radiation pattern. In fact, we may project all elements perpendicularly onto the ϕ-
plane of analysis, apply an amplitude weighting factor proportional to the number of
projected elements and consider - in the ϕ-plane of analysis - the projected elements
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as being elements of a linear array antenna. This process is demonstrated, for three
angles ϕ, in figures 9.20, 9.21 and 9.22.
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Fig. 9.20 Linear array antenna synthesis by projection of planar array antenna elements for
the plane ϕ = 0◦.
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Fig. 9.21 Linear array antenna synthesis by projection of planar array antenna elements for
the plane 0◦ < ϕ < 45◦.

In figure 9.20 we see that for the direction ϕ = 0◦, the planar array antenna
projected on the ϕ = 0◦-plane leads to a radiation pattern identical in form to the
one found for the already known 8-element linear array antenna. The only difference
is in the radiated power. This effect is visualised by the (identical) weighting factors
of the projected linear array antenna elements. In figure 9.21 we see what happens for
directions 0◦ < ϕ < 45◦. We now get a projected linear array antenna, where every
element is assigned a weighting factor ‘one’ (not shown in the figure) and where the
inter-element distance is no longer identical for every pair of adjacent elements. The
irregular element spacing is responsible for the observed irregular distribution of the
side lobe levels. In figure 9.22, the situation is shown for the ϕ = 45◦-plane. For this
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Fig. 9.22 Linear array antenna synthesis by projection of planar array antenna elements for
the plane ϕ = 45◦.

special situation, the projected linear array antenna exhibits a constant inter-element
spacing (equal to 1

2

√
2d), resulting in a regular side lobe level distribution. Besides, we

see - for this special situation - that a grid-inherent amplitude taper has been created,
resulting in a (first) side lobe level that is lower than that in the principal planes.

To quantify this effect, we rewrite the product of linear array factors, equation
(9.8), in the way we did for the linear array antenna. We then find for the normalised
array factor of a planar array antenna

Sa(ϑ, ϕ) = Sa1(ϑ, ϕ)Sa2(ϑ, ϕ) ≈ sin
(
πKdx

λ sin(ϑ) cos(ϕ)
)

πKdx

λ sin(ϑ) cos(ϕ)

sin
(
π
Kdy

λ sin(ϑ) sin(ϕ)
)

π
Kdy

λ sin(ϑ) sin(ϕ)
,

(9.12)
where we have been making use of the sine function approximation for small
arguments. For ϕ = 45◦, we find

Sa(ϑ, ϕ) ≈
[

sin
(
πKdx

λ sin(ϑ)1
2

√
2
)

πKdx

λ sin(ϑ)1
2

√
2

]2

(9.13)

For the first side lobe level we then find: −26.92dB.

9.2.3 Grating Lobes

Grating lobes appear whenever the inter-element distance of the projected linear
array antenna is such that the argument of equation (9.8) is a multiple of 2π. From
the projections shown in figures 9.20, 9.21 and 9.22, we can already deduce that if no
grating lobes appear in the principal planes, all other planes ϕ will be free of grating
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lobes too, since the element distance in the projected linear array antenna is at its
maximum in the principal planes.

The grating lobes of a planar array antenna are conveniently shown in the projection
coordinates space, by making use of the direction cosines u and v, where

u = sin(ϑ) cos(ϕ), (9.14)

and
v = sin(ϑ) sin(ϕ). (9.15)

We have seen how for the linear array antenna (ϕ = 0 and thus u = sin(ϑ) and
v = 0) these direction cosines proved to be very convenient for showing grating
lobes, especially for showing how they move from invisible space to visible space upon
enlarging the element distance. We now see, that this concept applied to the linear
array antenna is in fact a special case of the planar array antenna for which the
direction cosines are given by equations (9.14) and (9.15).

Upon substitution of equations (9.14) and (9.15) into equation (9.7), we find that
grating lobes occur when

dx
λ

(k − 1)u+
dy
λ

(l − 1)v = m, (9.16)

where m is an integer number.
This condition can only be met if, to start with,

u = p
λ

dx
, (9.17)

and
v = q

λ

dy
, (9.18)

where p an q are integer numbers.
In u, v-space, the area within the circle of radius ‘one’ corresponds to real angles

ϑ and ϕ (−90◦ < ϑ < 90◦ and 0◦ < ϕ < 360◦)2 and is called visible space. The area
outside the circle, corresponding to complex angles ϑ and ϕ, is called invisible space.

In the u, v-plane, the positions of main lobe (i.e. the grating lobe for which
p = q = 0), grating lobes, visible space and invisible space and their interrelations
can be shown with great ease. For the planar array antenna we have been working
with so far (8 × 8 elements, dx = dy), the so-called grating lobe diagrams are shown
in figure 9.23 for four element distances. The main lobe is indicated by a white dot,
the grating lobes are indicated by black dots.

The grating lobe diagrams show - in accordance with the earlier shown radiation
patterns - that for an element distance equal to one wavelength, grating lobes occur
in the principal planes (u = 0 and v = 0), just on the border between visible and
invisible space. For an element distance greater than one wavelength (dx = dy = 5λ

4 ),

2Strictly speaking, we should take −180◦ < ϑ < 180◦, but since we implicitly assume that we are
dealing with array antenna elements that have their radiation maximum at broadside and that are
embedded in a ground plane, we restrict ourselves to the forward directions.
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Fig. 9.23 Grating lobe diagrams for a rectangular lattice, planar array antenna. a. dx = dy =
λ
4
. b. dx = dy = λ

2
. c. dx = dy = λ. d. dx = dy = 5λ

4
.

see figure 9.23d, the grating lobes in the principal planes have entered the visible
space and in the diagonal plane (ϕ = 45◦, or u = v), grating lobes are about to cross
the border from invisible space to visible space.

To determine the element distances for which grating lobes move into the visible
region, we may restrict ourselves to analysing the grating lobes in the principal planes.
These planes, we have seen, act as ‘worst case planes’. If grating lobes do not occur
in visible space in the principal planes, grating lobes will not occur in visible space
in any plane in between. Thus, we only have to take into account two linear array
antenna array factors, the one we obtain by substituting ϕ = 0◦ into equation (9.7)
and the one we obtain by substituting ϕ = 90◦ into equation (9.7).

Then, in complete analogy with the considerations we gave in the discussion of the
linear array antenna, we find

dx
λ

≤ 1, (9.19)

and
dy
λ

≤ 1. (9.20)

In the discussion of the linear array antenna we have seen that at scanning the
main beam, the grating lobes move with the main beam. For a planar array antenna
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we expect a similar behaviour with respect to the grating lobes. In the grating lobe
diagram this effect must become apparent.

9.3 PLANAR PHASED ARRAY ANTENNA

We return to figure 9.1 and now we will make use of the possibility to apply a phase
taper over the elements by allowing ψkl �= 0. We still assume that akl = 1 for all
elements to keep the discussion simple. By choosing the correct values for the ψkl we
should be able to steer the antenna beam into the desired direction.

We choose a phase taper that satisfies

ψkl = −k0(k − 1)dx sin (ϑ0) cos (ϕ0) − k0(l − 1)dy sin (ϑ0) sin (ϕ0) , (9.21)

where (ϑ0, ϕ0) indicates the desired beam direction.
The array factor of a rectangular grid phased array antenna will be, upon

substitution of this phase taper

Sa(ϑ, ϕ) =
K∑
k=1

ejk0(k−1)dx[sin(ϑ) cos(ϕ)−sin(ϑ0) cos(ϕ0)]ejk0(l−1)dy [sin(ϑ) sin(ϕ)−sin(ϑ0) sin(ϕ0)].

(9.22)
This array factor clearly demonstrates the correctness of our chosen phasing; the

maximum for the array radiation will occur for (ϑ, ϕ) = (ϑ0, ϕ0).

9.3.1 Radiation

As an example, we again take the 8 × 8-element, square lattice (dx = dy), array
antenna for the element spacings for which we have shown the radiation patterns in
figures 9.8 to 9.19. We now apply a phase taper, such that the desired beam direction
is at (ϑ0, ϕ0) = (30◦, 45◦), i.e. the beam is positioned at 30◦ in elevation and 45◦ in
azimuth. Figures 9.24 to 9.27 show the normalised element power radiation pattern,
array factor power radiation pattern and array power radiation pattern in the plane
ϕ = 0◦ for the phased array antenna for element distances d = dx = dy = λ

4 , d = λ
2 ,

d = λ and d = 5λ
4 .

The normalisation is with respect to the maximum radiation. Therefore, we see
in the ϕ = 0◦ cuts, that the array factor and array pattern amplitudes are less than
0dB. For an element distance dx = dy = λ

4 , see figure 9.24, we see a distinctive lobe
in the neighbourhood of ϑ = 30◦. Since, for this element distance, the rectangular
array size is quite small, the beam will be relatively wide and the observed lobe in
the ϕ = 0◦ cut must be part of the main beam directed at (ϑ0, ϕ0) = (30◦, 45◦). For
larger element distances, figures 9.25 to 9.27, the array size increases and therefore
the main beam gets smaller. We do see that the most distinctive lobes in the shown
cuts get smaller, move away from ϑ = 30◦ and decrease in amplitude. Therefore these
lobes must be side lobes rather than being slices from the main lobe.
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Fig. 9.24 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 0◦ for dx = dy = λ
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Fig. 9.25 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 0◦ for dx = dy = λ

2
.

To verify the correctness of the observations, we repeat the exercise for cuts at
ϕ = 30◦, i.e. azimuth planes closer to the azimuth direction the beam is steered to.
The results are shown in figures 9.28 to 9.31.
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Fig. 9.26 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 0◦ for dx = dy = λ.
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Fig. 9.27 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 0◦ for dx = dy = 5λ

4
.

The cuts reveal that for element distances d = λ
4 and d = λ

2 , we see slices of the
main beam in the neigbourhood of ϑ = 30◦. In the ϕ = 30◦ cuts for element distances
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Fig. 9.28 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 30◦ for dx = dy = λ
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Fig. 9.29 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 30◦ for dx = dy = λ
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Fig. 9.30 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 30◦ for dx = dy = λ.
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Fig. 9.31 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 30◦ for dx = dy = 5λ

4
.



PLANAR PHASED ARRAY ANTENNA 263

d = λ and d = 5λ
4 we are most probably looking at side lobes in the neighbourhood

of ϑ = 30◦.
The best way to distinguish between main beam and side lobes is to look at a

three-dimensional pattern instead of a couple of two-dimensional cuts. The reason
that we are emphasising the use of two-dimensional cuts is twofold. First, relevant
data may be read directly from these cuts, while it is difficult to read this data from
a three-dimensional pattern. Second, the calculation of these cuts in general is less
intensive than the calculation of a three-dimensional pattern, especially if numerical
methods must be employed to account for mutual coupling effects. If the distribution
of main lobe level and side lobes is important in a certain angular area, cuts in ϑ (as
function of ϕ) and/or additional ϕ-cuts could be made.

Finally, we will show the patterns in the ϕ = 45◦ plane. The results, for the different
element distances, are shown in figures 9.32 to 9.35.
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Fig. 9.32 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 45◦ for dx = dy = λ

4
.

We see that the beam is indeed scanned into the desired direction (ϑ0, ϕ0) =
(30◦, 45◦).

As can be seen, especially in the diagonal plane, the grating lobes move with the
main beam when this beam is scanned away from broadside (ϑ = 0◦). As seen in
figures 9.34 and 9.35, the grating lobes, coming from invisible space, enter visible
space. A better way to track the movement of the grating lobes is by plotting their
positions in the grating lobe diagrams.
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Fig. 9.33 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 45◦ for dx = dy = λ

2
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Fig. 9.34 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 45◦ for dx = dy = λ.

9.3.2 Grating Lobes

Therefore we will make use of direction cosines as we did in the previous paragraph.
Grating lobes are found whenever the following condition applies:

dx
λ

(k − 1) (u− u0) +
dy
λ

(l − 1) (v − v0) = m, (9.23)
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Fig. 9.35 Element radiation pattern, array factor and array radiation pattern for a square
lattice 8 × 8 planar phased array antenna, phased for maximum radiation at (ϑ0, ϕ0) =
(30◦, 45◦), in the plane ϕ = 45◦ for dx = dy = 5λ

4
.

where m is an integer number and

u0 = sin (ϑ0) cos (ϕ0) , (9.24)
v0 = sin (ϑ0) sin (ϕ0) . (9.25)

This condition can only be met if, to start with,

u = p
λ

dx
+ u0, (9.26)

and
v = q

λ

dy
+ v0, (9.27)

where p and q are integer numbers.
If we compare these last two equations with equations (9.17) and (9.18) for the

non-scanned array, we see that as a result of the applied linear phase taper, the main
lobe and grating lobes are translated by ∆u = u0 and ∆v = v0.

In figure 9.36 we show for the four square grid phased array antennas, the grating
lobe diagram before (non-scanned) and after scanning to (ϑ0, ϕ0) = (30◦, 45◦). The
main lobe is indicated by a white dot, the grating lobes are indicated by black dots.
Arrows indicate the translations due to scanning.

The angle ϕ is measured with respect to the positive u-axis, going into the direction
of the positive v-axis. A ϕ = constant-plane is shown in the u, v-plane as a straight
line through the origin. Along this line, the coordinate is sin(ϑ), see equations (9.24)
and (9.25).
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Fig. 9.36 Grating lobe diagrams for a square lattice planar phased array antenna, before and
after being phased for maximum radiation at (ϑ0, ϕ0) = (30◦, 45◦). a. dx = dy = λ

4
, b.

dx = dy = λ
2
, c. dx = dy = λ, d. dx = dy = 5λ

4
.

Figures 9.36c,d show - in the plane ϕ = 45◦ - grating lobes entering visible space.
This is in accordance with what we have seen in figures 9.34 and 9.35. The advantage
of using the grating lobe diagram now also becomes evident. At a single glance we see
when and where grating lobes will occur. The construction of a grating lobe diagram
is much more efficient than plotting a great number of three-dimensional radiation
patterns or an even greater number of two-dimensional cuts. After analysis of the
grating lobe diagram, pattern cuts can be calculated in a more directed way, for
example to analyse the side lobe behaviour in an angular region of interest.

To find the critical element distance where grating lobes (i.e. the maxima) are just
entering visible space, it suffices to take into account beam steering in the principal
planes only. As we have seen for the planar array antenna, in these directions grating
lobes will occur first upon enlarging the element distance. If grating lobes do not
occur in the principal planes, we know for sure that in all other planes grating lobes
will not occur. Therefore, we will only look at the situations ϕ = 0◦ and ϕ = 90◦.

Analogous to the situation for the linear phased array antenna we find for the
critical element distances

dx
λ

≤ 1
1 + |sin (ϑ0max)|

, (9.28)

and
dy
λ

≤ 1
1 + |sin (ϑ0max)|

, (9.29)



PLANAR PHASED ARRAY ANTENNA 267

where ϑ0max is the maximum scan angle in which direction the beam may be pointed
without the occurrence of grating lobes in visible space.

−90◦ ≤ ϑ0max ≤ 90◦. (9.30)

For a rectangular lattice, phased array antenna, capable of steering the beam
everywhere in visible space, the maximum inter-element distance - measured along
the two orthogonal directions - is thus equal to half a wavelength.

dx
λ

≤ 1
2
, (9.31)

and
dy
λ

≤ 1
2
. (9.32)

In every cut ϕ, the beam broadening as discussed in the chapter on linear phased
array antennas will occur - in that plane - when the beam is scanned away from
broadside in that plane. Beam broadening with respect to the angle ϕ may - in first
order - be neglected [1, 2].
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10
Special Array Antenna

Configurations

Along with the linear and planar array and phased array antennas that we have discussed
in detail, other array and phased array antenna configurations exist. Some of these
will also be treated briefly in this chapter and will be designated special array antenna
configurations. We use the adjective special since these configurations are not the most
commonly encountered ones in practice. Of these special configurations we will discuss
curved or conformal array and phased array antennas and volume array and phased array
antennas that use a three-dimensional subspace for positioning the elements. Next to these
non-planar array configurations we will also discuss planar array antennas and a way to
create circular polarisation, using linearly polarised elements through a technique called
sequential rotation and phasing. Finally we will discuss the technique of reactive loading
to control the beam direction of an array antenna with only one element driven.

10.1 CONFORMAL ARRAY AND PHASED ARRAY ANTENNAS

A conformal (phased) array antenna may be defined as: ‘a (phased) array antenna
whose shape is dictated by the contours of a vehicle’ [1]. Strictly speaking this
definition implies that the linear and planar (phased) array antennas of the preceding
chapters are antennas conformal to a plane. Most often though the term conformal
(phased) array antenna is used in the sense of a one- or two-dimensionally curved
(phased) array antenna. An example of a one-dimensionally curved (phased) array
antenna is a cylindrical (phased) array antenna. Examples of a two-dimensionally
curved (phased) array antenna are a spherical and a conical (phased) array antenna.
Nearly all conformal array antennas share the property that the array antenna shape
is not at the disposal of the antenna design engineer.

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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Conformal array antennas are required whenever an antenna must be located on
a vehicle, e.g. the skin of an aircraft, missile or superstructure of a ship. Conforming
the array antenna to the existing structure avoids compromising aerodynamic or
stealth characteristics. This conforming to the existing structure occurs at the cost
of an increased effort in designing the antenna. However, an increased field of view
is often one of the benefits that comes with the employment of a conformal array
antenna.

The increased design effort is caused by a number of significant differences in
curved phased array antennas in comparison to planar phased array antennas [1, 2]:
array factor and element pattern are no longer separable since the elements point
in different directions. Not all the radiating elements contribute equally to the main
beam, some radiating elements do not contribute to the main beam at all. The element
patterns on a non point-symmetric surface will be different since they are embedded
in different environments and may give cause to high side lobes. For a non point-
symmetric surface, the polarisation vectors are in general - for an arbitrary pointing
angle - not lined up, giving cause to a high cross-polarisation level.

The circular (ring) array antenna [2, 3] may be considered as one of the building
blocks of a whole family of conformal array antennas. They may be stacked (each
having its distinctive radius) to create a conformal array antenna on any body of
revolution. In the following, a simplified analysis of a circular sector (incomplete
circle) array and phased array antenna will be given, demonstrating some of the
characteristics of conformal array and phased array antennas.

10.1.1 Circular Sector Array and Phased Array Antenna

To demonstrate some characteristics of conformal array and phased array antennas,
we will start with considering a circular array antenna, consisting of a single row
(ring) of elements, flush mounted on an electrically conducting circular cylinder, see
figure 10.1.

The elements may be microstrip patch radiators or slot radiators. The element
radiation pattern is considered to be cosine-like, having its maximum in the direction
perpendicular to the patch or slot and thus perpendicular to the cylinder tangent.
The radiators - being small with respect to the circle radius - may be thought of as
being locally positioned in a plane as shown in the inset of figure 10.1. The radiation
in endfire directions (and beyond) is therefore assumed to be zero in this simplified
analysis.

We see in figure 10.1 that for an observation angle ϑ, half the number of elements
do not radiate into that direction and that these elements are shielded by the
electrically conducting cylinder. In reality, these elements can still contribute through
the mechanism of mutual coupling, but in our simplified analysis we will assume
mutual coupling effects to be negligible.

To further simplify our analysis, we will consider now a circular sector array,
wherein the elements are positioned over one-quarter (90◦) of the circumference, see
figure 10.2. The far-field radiation will be evaluated over an angular range of 90◦ (±45◦

with respect to broadside, i.e. in the positive z-axis direction), where all elements still
contribute to the far-field, see figure 10.1.
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Fig. 10.1 Circular array antenna, flush mounted on an electrically conducting circular cylinder.
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The element voltage radiation patterns, Sei(ϑ), i = 1, 2, . . . , N , are given by

Sei(ϑ) =

{
cos (ϑ− ϑi) for − π

2
+ ϑi ≤ ϑ ≤ π

2
+ ϑi

0 elsewhere
, (10.1)

where

ϑi =
(2i−N − 1)π

4(N − 1)
, (10.2)

assuming we have N elements, evenly distributed over the quarter circumference of
the circular cylinder.

The voltage radiation pattern of the complete array, S(ϑ), is given by

S(ϑ) =
N∑
i=1

Sei(ϑ)ejk0ri·R̂, (10.3)

where k0 = 2π
λ is the free space wavenumber, ri is the element position vector and R̂

is the unit vector in the direction of observation, ϑ.
The element position is given byxiyi

zi

 =

a sin (ϑi)
0

a cos (ϑi)

 , (10.4)

where a is the radius of the circle.
The unit direction vector is given byR̂xR̂y

R̂z

 =

sin(ϑ) cos(ϕ)
sin(ϑ) sin(ϕ)

cos(ϑ))


ϕ=0

=

 sin(ϑ)
0

cos(ϑ))

 , (10.5)

so that we find for the array radiation pattern

S(ϑ) =
N∑
i=1

Seie
jk0a cos(ϑ−ϑi). (10.6)

This radiation pattern has been calculated for four circular sector array antennas,
having eight elements equally positioned along a quarter of the circumference. The
radii of the four conformal array antennas have been chosen such that the array
antenna lengths, projected onto the x-axis (see figure 10.2) are, respectively, 7λ

4 , 7λ
2 ,

7λ and 35λ
4 . The patterns are evaluated for −45◦ ≤ ϑ ≤ 45◦, see figure 10.2, where

all elements contribute to the radiation pattern. Note that it is not possible to apply
the principle of pattern multiplication, since every element is differently oriented.

This particular choice of radii enables us to compare the radiation patterns of the
curved array antennas - for the given angular range - with those of the non-curved
linear array antennas - having the same number of elements and the same projected
lengths - that have been shown in figures 4.4, 4.5, 4.6 and 4.7.
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Fig. 10.3 Power radiation pattern of 8-element, 90◦ circular sector array antenna for a = 7λ
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Fig. 10.4 Power radiation pattern of 8-element, 90◦ circular sector array antenna for a = 7λ
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√
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The conformal array antenna radiation patterns are shown in figures 10.3, 10.4,
10.5 and 10.6. The power radiation patterns are calculated as 20 log

(
|S(ϑ)|

8

)
.

We see that in comparison with the non-curved linear array antennas, the side lobe
level has increased.

Next, we will scan the beam in the xz-plane. Thereto we apply a phase taper over
the elements just as we did in the case of the non-conformal linear array antenna. We
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Fig. 10.5 Power radiation pattern of 8-element, 90◦ circular sector array antenna for a = 7λ√
2
.

-40

-35

-30

-25

-20

-15

-10

-5

0

-45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45

Theta (degrees)

dB

Fig. 10.6 Power radiation pattern of 8-element, 90◦ circular sector array antenna for a = 35λ
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obtain for the conformal phased array antenna voltage radiation pattern

S(ϑ) =
N∑
i=1

Seie
jk0a[cos(ϑ−ϑi)−cos(ϑ0−ϑi)], (10.7)

where ϑ0 is the desired beam-pointing direction.
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For a beam scanned to the direction ϑ0 = 30◦, the conformal array antenna power
radiation patterns for the four different radii are shown in figures 10.7, 10.8, 10.9 and
10.10. The power radiation patterns are calculated as 20 log

(
|S(ϑ)|

8

)
. These radiation

patterns should be compared with those shown in, respectively, figures 7.2, 7.3, 7.4
and 7.5, for the scanned, non-conformal linear phased array antennas.
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Fig. 10.7 Power radiation pattern of 8-element, 90◦ circular sector array antenna, scanned to
ϑ0 = 30◦ for a = 7λ
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Again, we see an increase of the side lobe level and also a distortion of the radiation
pattern.

In this and the previous example we do not see a benefit from using the conformal
(phased) array antenna over a planar linear (phased) array antenna. But then we
have to remember that a conformal antenna is mostly used when the form of the
antenna is dictated by the carrier of the antenna. When viewed from this perspective,
the conformal (phased) array antenna degradation - compared to its non-curved
counterpart - seems to be acceptable in our example. When the radius of the circular
cylinder is not too small, we may even approximate a circular cylindrical sector
(phased) array antenna by a planar (phased) array antenna.

Situations may occur though where the use of a conformal (phased) array antenna
will be beneficial over the use of a linear or planar (phased) array antenna.

It is not common to phase scan a cylindrical array antenna in the azimuth plane [2].
It is a more common practice to commutate an illuminated sector of a full ring around
the array. This means that the unscanned array patterns are - through the process of
switching elements on and off - rotated, see figure 10.11. Here we see a clear benefit
of using a conformal array antenna. A full 360 scan is possible without mechanically
rotating the antenna and with maintaining the broadside radiation pattern.
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Fig. 10.8 Power radiation pattern of 8-element, 90◦ circular sector array antenna, scanned to
ϑ0 = 30◦ for a = 7λ
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Fig. 10.9 Power radiation pattern of 8-element, 90◦ circular sector array antenna, scanned to
ϑ0 = 30◦ for a = 7λ√

2
.

10.2 VOLUME ARRAY AND PHASED ARRAY ANTENNAS

The concept of conformal array and phased array antennas may be extended beyond
the surface to create volume array and phased array antennas.
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Fig. 10.10 Power radiation pattern of 8-element, 90◦ circular sector array antenna, scanned
to ϑ0 = 30◦ for a = 35λ
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Fig. 10.11 Commutating. An illuminated region of the array is formed and switched around
the array, thus providing a full 360◦ azimuth scan. 1. Illuminated elements to form beam 1, 2.
Illuminated elements to form beam 2, 3. Illuminated elements to form beam 3.

In a volume (phased) array antenna, elements are randomly distributed within a
spherical volume. The main benefit of such a (phased) array antenna is that it enables
a full 360◦ azimuthal coverage where - as opposed to the situation for the cylindrical
array antenna - all radiating elements are participating simultaneously. Furthermore,
the projected aperture size will be equal in all scan directions [4].
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The schematic of a volume array is shown in figure 10.12.
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Fig. 10.12 Schematic of a volume array.

Beam scanning in a volume array is accomplished by connecting a phase shifter
to every element and compensating for phase differences between the elements for a
desired scan direction. The array elements are chosen such that the polarisation is
orthogonal to the direction of the supports and feeding lines. In this way interference
from these supports and feeding lines is minimised.

10.3 SEQUENTIAL ROTATION AND PHASING

So far, we have implicitly assumed that our array and phased array antennas
were linearly polarised. For numerous applications, however, e.g. the reception of
satellite broadcasting signals, circular polarisation is required. Although single-feed
circularly polarised elements do exist, like - for example - perturbated microstrip
patch antennas, the best results are obtained by the application of two separate and
spatially orthogonal feeds that are excited with a relative phase difference of 90◦.

The implementation of dual-feed elements in an array or phased array antenna will
put high constraints on the feeding network. Housing the required ‘real estate’ can
become a serious problem. The high constraints may be relaxed a bit by maintaining
the spatially orthogonal, 90◦ out of phase feeds, but using separate elements instead of
having both feeds at one element. In this way we may use linearly polarised elements,
in a sequentially rotated and phased fashion to create circular polarisation [6, 7].

To explain the principle of sequential rotation and phasing, let’s start with two
linearly polarised elements, placed apart a distance d on the x-axis of a Cartesian
coordinate system, see figure 10.13.

The polarisations are indicated in the figure by arrows. For a broad range of angles
ϑ relative to broadsight in the yz-plane, the polarisation is circular, see figure 10.13.
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Fig. 10.13 Phased array antenna consisting of two linearly polarised elements, phased for a
90◦ phase difference. In the yz-plane a circularly polarised element is created by virtue of
perpendicular projection.
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Fig. 10.14 Additional spatial phase delay in the xz-plane of a phased array antenna consisting
of two linearly polarised elements, phased for a 90◦ phase difference as shown in figure 10.13.

In the xz-plane, however, the phase difference starts to deviate from 90◦ for angles ϑ
increasing from broadside. This deviation is due to the additional spatial phase delay,
∆ψ = k0d sin(ϑ), as shown in figure 10.14 [7].

To demonstrate the effect of sequential rotation and phasing, we will from here
on work with linearly polarised, circular microstrip patch antenna elements, see
figure 10.15.

We choose for this element, since the electric far-field components, Eϑ = Eϑuϑ and
Eϕ = Eϕuϕ are very easily described, as is shown by the equations for the dominant
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Fig. 10.15 Coaxially excited, circular microstrip patch antenna element. The patch of radius
a is placed on a grounded dielectric sheet of relative permittivity εr.

TM11-mode [5]

Eϕ = j
V ak0

2
e−jk0r

r
cos(ϑ) sin(ϕ) [J2 (k0a sin(ϑ)) + J0 (k0a sin(ϑ))] , (10.8)

Eϑ = j
V ak0

2
e−jk0r

r
cos(ϕ) [J2 (k0a sin(ϑ)) − J0 (k0a sin(ϑ))] , (10.9)

where V is the voltage between patch and ground, a is the radius of the patch and
Jn(x) is the Bessel function of the first kind of order n and argument x.

The radius of the patch is found as, [5]

a =
1.841λ
2π

√
εr
, (10.10)

where εr is the relative permittivity of the substrate that the microstrip patch radiator
is photo etched from.

We will evaluate the circular polarisation by looking at the right hand circular
polarisation (RHCP) and the left hand circular polarisation (LHCP). The RHCP-
and LHCP-components of the electric field - ER and EL respectively - follow from
the ϑ and ϕ components by

ER =
1√
2

(Eϑ + jEϕ) , (10.11)

and
EL =

1√
2

(Eϑ − jEϕ) . (10.12)

The dominant part of both polarisations is called the co-polarisation, the other
component is called the cross-polarisation. The purity of the polarisation is best
expressed by means of the axial ratio (AR)

AR =
∣∣∣∣ |EL| + |ER|
|EL| − |ER|

∣∣∣∣ . (10.13)
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For a pure LHCP or pure RHCP wave, the axial ratio is equal to one or, on a
logarithmic scale, 0dB.

For the two-element array of figure 10.13, taking circular microstrip patch radiators
for the elements and choosing the element distance d = 0.8λ0, where λ0 is the free
space wavelength, the principal plane radiation patterns are calculated and plotted,
together with the axial ratio as a function of angle ϑ in figure 10.16. The frequency
of operation is f=1.55GHz and the relative permittivity of the substrate is εr = 2.33.
These values are used to determine the radius of the circular patch element.
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Fig. 10.16 Co- and cross-polarised power radiation patterns and axial ratio in the principal
planes for a two-element, sequentially rotated and phased, array antenna of circular, linearly
polarised microstrip patch elements, displaced 0.8λ0 (see figure 10.13). a. Plane ϕ = 90◦ (yz-
plane). b. Plane ϕ = 0◦ (xz-plane).

The degradation in circular polarisation off broadside in the plane containing the
two radiating elements (xz-plane) can be eliminated by expanding the linear array
into a planar array as shown in figure 10.17 [6, 7].

Now, in both principal planes we have - by virtue of orthogonal projection - created
a circularly polarised element.
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Fig. 10.17 Phased array antenna consisting of four linearly polarised elements, phased for a
90◦ phase difference in the principal planes. In the xz-plane and in the yz-plane a circularly
polarised element is created by virtue of perpendicular projection.

The ϑ and ϕ components of the radiated electric field of the 2 × 2 subarray as
shown in figure 10.17, are calculated as, respectively

Eϑsub
(ϑ, ϕ) =

1∑
p=0

1∑
q=0

Eϑpqe
j 2π

λ (pdxu+qdyv), (10.14)

Eϕsub
(ϑ, ϕ) =

1∑
p=0

1∑
q=0

Eϕpqe
j 2π

λ (pdxu+qdyv), (10.15)

where

u = sin(ϑ) cos(ϕ), (10.16)
v = sin(ϑ) sin(ϕ), (10.17)

and

Eϑ00 = Eϑ11 = − cos(ϕ)F1(ϑ), (10.18)
Eϕ00 = Eϕ11 = cos(ϑ) sin(ϕ)F2(ϑ), (10.19)
Eϑ01 = Eϑ10 = −j sin(ϕ)F1(ϑ), (10.20)

Eϕ01 = Eϕ10 = −j cos(ϑ) cos(ϕ)F2(ϑ). (10.21)

Herein,
F1(ϑ) = J0(k0a sin(ϑ)) − J2(k0a sin(ϑ)), (10.22)

and
F2(ϑ) = J0(k0a sin(ϑ)) + J2(k0a sin(ϑ)). (10.23)
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Furthermore, we have allowed for different spacings in the x- and y-directions and
we have placed the origin of the coordinate system on one of the subarray elements,
see figure 10.18.
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Fig. 10.18 2 × 2 sequentially rotated subarray in coordinate system.

The quality of the circular polarisation is now worst in the diagonal plane, as shown
in figure 10.19.

When we compare the axial ratio in the diagonal plane of this 2× 2 subarray with
the axial ratio in the plane containing the elements of the 2× 1 array (figure 10.16b),
we see a slight improvement of the axial ratio for angles ϑ off broadsight.

This improvement may be explained by the smaller element distance in the
projected linear array, see figure 10.20.

Larger arrays may be constructed using the 2× 2 sequentially rotated and phased
subarray as a basic building block, see figure 10.21.

For the array antenna as shown in figure 10.21, the ϑ and ϕ components of the
radiated electric field are calculated as

Eϑ(ϑ, ϕ) = Eϑsub
(ϑ, ϕ)

M−2
2∑

m=0

N−2
2∑

n=0

ej
4π
λ (mdxu+ndyv), (10.24)

Eϕ(ϑ, ϕ) = Eϕsub
(ϑ, ϕ)

M−2
2∑

m=0

N−2
2∑

n=0

ej
4π
λ (mdxu+ndyv), (10.25)

whereM is the number of elements in the x-direction and N is the number of elements
in the y-direction.

For a square array consisting of 2 × 2, sequentially rotated and phased 2 × 2
subarrays, with inter-element distances of 0.8λ0 and inter-subarray distances of 1.6λ0,
the radiation patterns and axial ratio in the diagonal plane are shown in figure 10.22.

We see a smaller beam due to the fact that the array antenna has become larger.
The cross-polarisation as a function of the angle relative to broadside has not changed,
as can be seen from the axial ratio as a function of the angle relative to broadside.
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Fig. 10.19 Co- and cross-polarised power radiation patterns and axial ratio in the diagonal
plane for a four-element, sequentially rotated and phased, array antenna consisting of circular,
linearly polarised microstrip patch elements, displaced 0.8λ0 (see figure 10.17).

Since the main lobe has become smaller, the need for a low axial ratio over a broad
angular range no longer exists.

If, however, we do need to reduce the axial ratio outside the principal planes, we
may accomplish this by reducing the element spacing as shown in figure 10.23 which
shows a polar plot of the axial ratio of a square array antenna for different element
spacings. The array antenna consists of sequentially rotated and phased, circular,
linearly polarised microstrip patch elements, resonant at 1.55GHz and evaluated at
an angle 20◦ off broadside.

The figure clearly shows that the polarisation is purely circular in both principal
planes and worst in or near the diagonal planes. Upon decreasing the element
distances, the axial ratio outside the principal planes improves.

Normally, placing array antenna elements closer together will increase the mutual
coupling effects. Since the elements are linearly polarised and orthogonally oriented
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Fig. 10.20 Projected linear array with amplitude weighting in the diagonal plane of a four-
element, sequentially rotated, array antenna of linearly polarised elements.
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Fig. 10.21 Array antenna consisting of 2 × 2, sequentially rotated and phased subarrays.

towards each other, mutual coupling is already low. However, when using microstrip
patch antenna elements and employing them in a complete sequential rotation fashion
instead of the until now used limited sequential rotation fashion, the mutual coupling
effects due to higher order modes will be suppressed.

In the complete sequential rotation fashion [6, 7], the elements and phasings of one
subarray will undergo sequential rotations and phasings equal to 360◦ divided by the
number of elements, see figure 10.24.
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Fig. 10.22 Co- and cross-polarised power radiation patterns and axial ratio in the diagonal
plane for an array antenna consisting of 2×2 subarrays. The four-element subarrays consist each
of 2 × 2, sequentially rotated, circular, linearly polarised microstrip patch elements, displaced
0.8λ0.

The sequential rotation and phasing technique also leads to bandwidth
improvement [7], due to mismatch cancellation in the subarray feeding network [8].
Of all the possible subarray configurations, the three-element subarray (as shown in
figure 10.24a) will lead to the largest frequency bandwidth [8].

10.4 REACTIVE LOADING

We have already mentioned that the feeding network of a (phased) array antenna
- due to its size and complexity - will contribute considerably to the costs of the
complete (phased) array antenna. In the chapter on endfire array antennas we have
already seen an alternative feeding structure that is simpler and thus less expensive
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Fig. 10.24 Examples of complete sequential rotation and phasing. a. Triangular lattice
subarray. b. Rectangular lattice subarray.

than the series or corporate feeding structure. In a Yagi–Uda array antenna, only one
element is driven, all other elements act as parasitics. The driver in a Yagi–Uda array
antenna is a (half-wave) dipole radiator, the parasitic elements are short-circuited
dipole radiators.
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The idea of having one (or only a few) array antenna element(s) driven and
the other ones acting as parasitic elements may be taken one step further by
not necessarily having the parasitic elements short circuited. Instead, the parasitic
elements may be reactively (capacitively or inductively) loaded. By choosing the
correct reactive loading of the parasitic array antenna elements, the array antenna
beam may be directed into a desired direction [9].

10.4.1 Theory

For an array antenna consisting of K thin1 dipole elements, where only the first
element is driven,2 we may follow the analysis we introduced for the Yagi–Uda array
antenna in chapter 6. There we found for the first, driven, element

V1 = Z11I1 + Z12I2 + · · · + Z1iIi + · · · + Z1,K−1IK−1 + Z1KIK , (10.26)

and for the next K − 1 short circuited elements

−Z21

−Z31

...
−Zi1

...
−ZK−1,1

−ZK1


=



Z22 Z23 . . . Z2i . . . Z2K

Z32 Z33 . . . Z3i . . . Z3K

...
...

...
...

...
...

Zi2 Zi3 . . . Zii . . . ZiK
...

...
...

...
...

...
ZK−1,2 ZK−1,3 . . . ZK−1,i . . . ZK−1,K

ZK2 ZK3 . . . ZKi . . . ZKK





I2
I1
I3
I1
...
Ii

I1
...

IK−1
I1
IK

I1


.

(10.27)
For the non-driven elements the following system of equations apply

[V ] = [Z][I], (10.28)

where [Z] is the square matrix in equation (10.27) and the [I] and [V ] column matrices
are given by, respectively

[I] =
[
I2
I1
,
I3
I1
, . . . ,

IK
I1

]T
, (10.29)

and
[V ] = [−Z21,−Z31, . . . ,−ZK1]

T
. (10.30)

Since the non-driven elements will now be reactively loaded, we have to add a series
impedance to every element. The system of equations therefore changes into

[V ] = ([Z] + [ZL]) [I], (10.31)

1For thin dipoles we may - in a first-order approximation - assume the currents on the dipoles to be
sinusoidal.
2We have arranged the numbering of the elements such that element no. 1 is the driven element.
This does not have consequences for the position of this element in the array antenna.
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where [ZL] is a diagonal matrix containing the element load impedances jXk, for
k = 2, 3, . . . ,K

[ZL] =


jX2 0 0 . . . 0
0 jX3 0 . . . 0
0 0 jX4 . . . 0
...

...
... . . .

...
0 0 0 . . . jXK

 . (10.32)

Once the correct impedances jXk are known, the currents on the non-driven dipole
elements, relative to the current on the driven element (I1), may be found from

[I] = ([Z] + [ZL])−1 [V ]. (10.33)

10.4.2 Circular Dipole Array Antenna

As an example of the preceding, we will analyse a seven-element circular array antenna
of one driven and six reactively loaded dipole elements as discussed in [9].

The configuration is shown in figure 10.25.
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jX6 jX7
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ϕ

R

jX2

jX3jX4

jX5

jX6 jX7

V

Fig. 10.25 Seven-element circular array antenna of one driven and six reactively loaded dipole
elements. The driven element is positioned in the centre of a circle. The six reactively loaded
elements are equally displaced over a circle with radius R. All element lengths are equal to
L = λ

2
.

The element positions (xk, yk), for k = 1, 2, . . . ,K (K = 7) are given by

(xk, yk) =

(0, 0) k = 1(
R cos

[
(k − 2)2π
K − 1

]
, R sin

[
(k − 2)2π
K − 1

])
k > 1

(10.34)



290 SPECIAL ARRAY ANTENNA CONFIGURATIONS

The inter-element distances dkl, for k, l = 1, 2, . . . ,K (K = 7) are

dkl =


0 k = l

R k = 1 ∨ l = 1√
(xk − xl)2 + (yk − yl)2 k �= 1 ∧ l �= 1 ∧ k �= l

(10.35)

By optimisation [9], the reactive loads are found for steering the beam of a seven-
elements circular array, see figure 10.25, into the directions ϕ = 0◦, ϕ = 10◦, ϕ = 20◦

and ϕ = 30◦. We will use these results of Harrington [9] that are stated in table 10.1
for a radius and element spacings R = d23 = d34 = d45 = d56 = d67 = λ

4 .

Table 10.1 Reactive loads (Ω), [9], for beam-steering a 7-elements, circular, reactively loaded
dipole array antenna.

element number ϕ = 0◦ ϕ = 10◦ ϕ = 20◦ ϕ = 30◦

2 −j63.6 −j64.3 −j64.7 −j57.4
3 −j94.6 −j85.2 −j71.0 −j57.4
4 j9.0 j34.8 180.0 −j398.1
5 j10.8 j11.4 j9.7 j1.7
6 j9.0 −j1.0 −j4.1 j1.7
7 −j94.6 −j105.6 −j.134.1 −j401.0

The power radiation pattern for the non-steered array antenna (all reactive loads
Xk = 0, for k = 1, 2, . . . , 7) is shown in figure 10.26. The radiation pattern is shown in
a polar plot, making it easier to see the relation between radiation and the geometry
of the circular array of figure 10.25.

We see that for the situation where the parasitic dipoles on the circle are short
circuited, the radiation pattern is nearly rotationally symmetric. The small ripple is
caused by the fact that a limited number of parasitic dipoles are placed on the circle.
The maximum radiation is found in the directions that coincide with the parasitic
dipole positions (0◦, 60◦, 120◦, 180◦, 240◦ and 300◦).

With the parasitic dipoles loaded with the reactances as stated in the second
column of table 10.1, the beam should point into the direction ϕ = 0◦. The power
radiation pattern is shown in figure 10.27.

The radiation pattern reveals that the beam is indeed steered to ϕ = 0◦.
For the reactances as stated in the third to fifth column of table 10.1, the power

radiation patterns are shown in respectively figures 10.28, 10.29 and 10.30.
The radiated maximum for the beam that should be steered to ϑ = 10◦ is found

at ϑ = 7◦, see figure 10.28. For the beam that should be steered to ϑ = 20◦, the
maximum is found at ϑ = 17◦, see figure 10.29 and for the beam that should be
steered to ϑ = 30◦, the maximum is found at ϑ = 21◦, see figure 10.30. Since the
beams are rather broad and the levels in the desired beam-pointing directions are not
that much different from the maximum levels, we may conclude that the concept of
reactive loading works well.
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Fig. 10.26 Power radiation pattern of a seven-element circular array antenna of one driven and
six reactively loaded dipole elements. All reactive loads are equal to zero. All dipole lengths are
equal to half a wavelength, the circle radius and inter-element distances are equal to a quarter
of a wavelength.
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Fig. 10.27 Power radiation pattern of a seven-element circular array antenna of one driven
and six reactively loaded dipole elements. The reactive loads are as stated in table 10.1 for a
beam steered to ϕ = 0◦. All dipole lengths are equal to half a wavelength, the circle radius and
inter-element distances are equal to a quarter of a wavelength.
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Fig. 10.28 Power radiation pattern of a seven-element circular array antenna of one driven
and six reactively loaded dipole elements. The reactive loads are as stated in table 10.1 for a
beam steered to ϕ = 10◦. All dipole lengths are equal to half a wavelength, the circle radius
and inter-element distances are equal to a quarter of a wavelength.
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Fig. 10.29 Power radiation pattern of a seven-element circular array antenna of one driven
and six reactively loaded dipole elements. The reactive loads are as stated in table 10.1 for a
beam steered to ϕ = 20◦. All dipole lengths are equal to half a wavelength, the circle radius
and inter-element distances are equal to a quarter of a wavelength.
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Fig. 10.30 Power radiation pattern of a seven-element circular array antenna of one driven
and six reactively loaded dipole elements. The reactive loads are as stated in table 10.1 for a
beam steered to ϕ = 30◦. All dipole lengths are equal to half a wavelength, the circle radius
and inter-element distances are equal to a quarter of a wavelength.

We have seen earlier that capacitive or inductive loads may be realised by lengths
of short-circuited transmission line. So by (electronically) switching pieces of short-
circuited transmission line, the reactive loading may be changed and thus different
beam-pointing directions may be selected.

The reactive loading may be used in conjunction with array antenna elements other
than dipoles. The technique has been used with (dielectric filled) waveguide radiators
[10, 11] and microstrip patch radiators [12, 13].
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11
Array and Phased Array

Antenna Measurement

The basic parameters that describe an antenna are the input impedance and the radiation
pattern. This applies equally well to a single radiator as to an array or phased array
antenna. Measurement of the input impedance is - with modern measurement equipment -
relatively straightforward. Measurement of the radiation pattern requires some additional
effort. For large array and phased array antennas, input impedance measurement and
radiation pattern measurement would require the construction of one or more costly
feeding networks. Besides, the size of the antenna would put extreme demands on the
antenna radiation pattern measurement site. These problems may be circumvented by
measuring the mutual coupling between radiators in an array without a feeding network.
Mathematical manipulation of this measurement data will then reveal the information
necessary for evaluating the array or phased array antenna.

11.1 INPUT IMPEDANCE, SELF-COUPLING AND MUTUAL COUPLING

The input impedance of an antenna can be easily obtained by measuring the reflection
or self-coupling of the antenna, using a vector network analyser (VNA). A VNA is a
two-port microwave receiver that is capable of determining the complex (amplitude
and phase) ratios of reflected and incident voltage wave amplitudes. We remember
that a two-port network as shown in figure 11.1 may be described by scattering
parameters according to

b1 = S11a1 + S12a2, (11.1)
b2 = S21a1 + S22a2, (11.2)

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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where b1 is the complex voltage wave amplitude of the reflected wave at port 1, b2 is
the complex voltage wave amplitude of the reflected wave at port 2, a1 is the complex
voltage wave amplitude of the incident wave at port 1 and a2 is the complex voltage
wave amplitude of the incident wave at port 2.

a1

b1

a2

b2

S11 S12

S21 S22

1 2

a1

b1

a1

b1

a2

b2

a2

b2

S11 S12

S21 S22

S11 S12

S21 S22

1 2

Fig. 11.1 Two-port microwave network and incident and reflected complex voltage wave
amplitudes.

The basic VNA arrangement for the measurement of S11 and S21 of a device under
test (DUT) is shown in figure 11.2 [1].
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load

a1 b1
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display

source

coupler

load

a1 b1

b2

DUT

bi/a1

display

source

coupler

load

a1 b1

b2

Fig. 11.2 Basic VNA arrangement for the measurement of S11 and S21.

In this arrangement. a2 = 0.
If the DUT is reversely connected into the network of figure 11.2, the remaining

scattering coefficients, S21 and S22, can be measured. The same can be accomplished
by keeping the DUT in its position and use switches to reconnect source and load
(a1 = 0) and at the same time redefine the complex ratio.

To determine the input impedance of an antenna, we only need to determine the
reflection coefficient, ρ, at the input. We may disregard the second port of the VNA
and perform a one-port measurement to obtain S11 = ρ.
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From transmission line theory we have already established a relation between
reflection coefficient and input impedance, Zin

S11 =
Zin − Z0

Zin + Z0
, (11.3)

where Z0 is the characteristic impedance of the VNA measurement system (usually
50Ω). From the above equation, we find for the input impedance

Zin = Z0
1 + S11

1 − S11
, (11.4)

where Z0 is known and S11 is obtained from measurement.
Now that we are discussing two ports, we may as well take a preliminary sidestep

towards mutual coupling that will be discussed in detail later on in this chapter. We
will take a look at a two-antenna system and the signal flows, see figure 11.3a.
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Fig. 11.3 Mutual coupling in an array antenna consisting of two radiators. a. Coupling
mechanism. b. Scattering matrix representation.

Let’s assume that antenna 1 is energised or excited (a). Due to a mismatch, a small
part of the incident wave will be reflected (b) and most of the incident energy will be
radiated (c, d). A part of the radiated energy will arrive at the aperture of antenna
2 (d). By the mechanisms of reflection and diffraction, a part of this energy incident
upon antenna 2 is reradiated (e, g). A part of the energy incident upon antenna 2 will
be received and transported into the feeding network (f). Due to internal reflections
in the feeding network, a part of this energy (f) will be reradiated by both antenna
1 and 2. This is not shown in the figure. Part of the reradiated energy by antenna 2
will arrive at antenna 1 (g), where a similar process as described for antenna 2 will
be taking place. The signal levels, however, will by now have decreased considerably.

We see that mutual coupling will affect both the radiator input impedance and
the radiation pattern of the radiator. The radiation pattern of an element in an array
environment will - in general - differ from the one in an isolated (no other elements
present) situation. Furthermore, mutual coupling will also affect the polarisation
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characteristics (direction of the radiated electric field vector) of an element. We will
not discuss this effect though.

The mutual coupling process for these two radiators may also be described by
means of the 2×2 scattering matrix, see figure 11.3b. The two-element array antenna
is considered as a microwave two-port network. The mutual coupling in an N -element
linear or planar or curved array antenna may be described by the N ×N scattering
matrix of a microwave N -port. One of the advantages of such a description is that
the elements of the scattering matrix can be obtained directly by measurement,
using a VNA. How the obtained scattering matrix helps in obtaining the array
radiation pattern will be explained after we have discussed the measurement of
antenna radiation patterns in general.

11.2 RADIATION PATTERN MEASUREMENT

The radiation power or field pattern of an antenna is a graphical representation of the
radiated power or field amplitude of that antenna as a function of direction angles ϑ
and ϕ, see figure 11.4.
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Fig. 11.4 Measurement of a radiation pattern in a ϕ = constant plane. a. Probing a
cut in a three-dimensional radiation pattern. b. Practical two-dimensional radiation pattern
measurement.

Normally, we are interested in two-dimensional cuts taken from the three-
dimensional pattern and most often these cuts take the form of the radiated power
(field amplitude) as a function of ϑ for a constant angle ϕ as shown in figure 11.4a for
one-eight of a sphere of radius r. Here we assume that the antenna to be evaluated,
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i.e. the antenna under test (AUT) is placed in the origin of the coordinate system,
that this antenna is acting as a transmitting antenna and that on a sphere with radius
r, a probe is moved that receives the signal transmitted by the AUT. This received
signal is plotted as a function of direction and thus gives the radiation pattern.1 2

A practical implementation of measuring two-dimensional cuts of the three-
dimensional radiation pattern is shown in figure 11.4b. The AUT is placed on a
pedestal and rotated around its axis, while a standard gain antenna (SGA) is placed
on a distance r from the AUT and receives the signal transmitted by the AUT while
being kept in a fixed position. An SGA is an antenna with a known gain as a function
of direction and frequency. Provided that the distance r satisfies the far-field condition
that we stated in chapter 3,

r ≥ 2D2

λ
, (11.5)

where D is the largest dimension of AUT and SGA and λ is the used wavelength, the
radio equation (chapter 3) gives us the possibility to calculate the gain function from
the received power as a function of direction.

When the far-field condition is met exactly, the spherical wavefront (transmitted
by the SGA, assuming that the SGA is smaller than the AUT) deviates from a
planar wavefront (over the aperture of the AUT) maximally 22.5◦ [2]. For most
measurements, this deviation from a plane wave is acceptable.

In the following, we will very briefly outline the most common ways in which
antenna radiation patterns are measured nowadays.

11.2.1 Far-Field Antenna Measurement Range

The obvious way to perform an antenna radiation pattern measurement is to build
a set-up as shown in figure 11.4b and make sure that this set-up is constructed in
such a way that possible sources of error are reduced to an acceptable level. Since
equation (11.5) tells us that for large antennas (large in terms of wavelengths) the
far field distance may become considerable, an outdoor antenna range seems to be a
good solution.

The most important error source is formed then by reflections from ground and
surrounding objects. The influence of these error sources can be reduced by elevating
the antennas above the ground and possibly above the reflecting surrounding at
ground level. An elevated far-field antenna range is shown in figure 11.5.

In fact, the outdoor far-field antenna range as shown in the figure is a combination
of a true elevated antenna range (AUT and SGA on the same horizontal level) and a
so-called slant range [2, 3]. A slant range is a far-field antenna range where either the
AUT or the known antenna is elevated.
1When the antenna only, i.e. without active transmitting or receiving circuitry is measured, the
antenna is reciprocal, meaning that transmit and receive patterns are identical. Therefore the AUT
may also be used in receive mode, while the probe is being used in transmit mode.
2In fact, any antenna is reciprocal. However, when a transmitter and/or a receiver are/is directly
connected to the antenna and the antenna clamps are no longer physically accessible, the whole
system of antenna and active circuitry is no longer reciprocal. Although - in the author’s opinion
- the whole system should not be called an antenna, it has become common to do so and these
‘antennas’ are nowadays known as active antennas.
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SGA

AUT

Fig. 11.5 Elevated far-field antenna range.

The disadvantages of any outdoor range are - besides the possible disturbance
caused by scattering from objects in the surrounding - disturbances due to
electromagnetic interference caused by other services using the same part of the
electromagnetic spectrum as being used in the measurements, the inability to perform
measurements during rain and a lack of security.

For antennas that are small with respect to wavelength, these problems can
be overcome by moving the antenna measurement site indoors and taking special
measures to reduce the reflections from walls, ceiling and floor.

11.2.2 Anechoic Chamber

Indoor reflections can be reduced by lining walls, ceiling and floor with radar absorbing
material (RAM). Thus a so-called anechoic chamber is created. RAM basically consists
of a carbon-impregnated foam that is produced in tiles. These tiles are often shaped
as arrays of pyramids. These shapes ensure a minimisation of front face reflection and
work well up to angles of approximately 50◦ from normal incidence [4].

r
SGA AUT

RAM

r
SGA AUT

RAM

Fig. 11.6 Anechoic chamber and typical RAM tile, used to line walls, ceiling and floor.
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Figure 11.6 shows an anechoic chamber and a typical RAM tile.
Since the radiation pattern measurement performed inside an anechoic room is a

far-field measurement, the distance between the AUT and SGA must satisfy the far-
field condition as stated in equation (11.5). This will put a limit on the maximum
allowable size of the antennas to be tested, since indoor space will - in general - be
limited.

If an antenna is too large for the far-field condition to be met indoors, the wavefront
at the AUT will deviate from a planar wavefront too much. This statement in itself
contains the solution for this problem: if we want to measure the radiation pattern
of an antenna that has dimensions such that the far-field distance is beyond the
maximum allowed antenna separation in an anechoic chamber, we need to synthesise
a planar wavefront over the AUT.

11.2.3 Compact Antenna Test Range

In a compact antenna test range (CATR), planar wavefronts are generated in a very
short range, hence its name. The planar wavefronts are generated by virtue of one or
two curved metal reflectors. In figure 11.7, a so-called dual parabolic-cylinder CATR
is shown.

SGA

AUT

RAM

plane wave

SGA

AUT

RAM

plane wave

Fig. 11.7 Compact antenna test range using two parabolic-cylinder reflectors.

In this set-up, two parabolic-cylinder reflectors are used, having their one-
dimensional curvature positioned perpendicular to one another. A spherical wavefront,
created by the SGA, hits the first reflector whose curvature is - in figure 11.7 - directed
inside the paper. The reflected wavefront, that is now cylindrical, then hits the second
reflector with curvature as shown in the figure. The doubly reflected wavefront at the
position of the AUT has become planar. Of course the wavefront is not perfectly
planar everywhere upon leaving the second reflector. The area where the wavefront is
planar ‘enough’ for antenna measurement purposes is called the quiet zone. This quiet
zone is about 50%–60% of the dimensions of the reflector. To reduce the disturbance
in the quiet zone caused by diffracted fields from the reflector edges, these edges are
in practice either serrated or rolled.
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Another compact type of antenna radiation pattern measurement site is formed by
the family of near-field ranges.

11.2.4 Near-Field Antenna Measurement Range

A type of antenna radiation pattern measurement range that is gaining in popularity
is the so-called near-field antenna measurement range. In a near-field range the
AUT is kept in a fixed position and the radiated field is probed in a plane,
on a cylinder or on a sphere close to and in front of or surrounding the AUT.
Next, the sampled near-field data is Fourier-transformed to obtain the (three-
dimensional) radiation pattern [5]. The far-field thus obtained may be inverse-
Fourier-transformed backwards beyond the sampling plane onto the antenna aperture
to obtain the aperture distribution for diagnostic purposes. If the AUT is an
array antenna for example, this backward transformation may be used to find
defective array antenna elements. With the exception of the spherical near-field
antenna measurement range, near-field antenna ranges only sample a part of
the near-field surrounding the antenna. Therefore, a planar near-field antenna
measurement range is best suited for highly directive antennas where most of the
radiated energy will be directed into the forward direction. The spherical near-
field antenna measurement range is best suited for near-omnidirectional radiators.
The cylindrical near-field antenna measurement range forms a good alternative
for measuring low-directivity antennas. Besides, the cylindrical near-field antenna
range is easily combined with a planar near-field antenna range as is shown in
figure 11.8.

a b

AUT AUT

probe probe

a ba b

AUT AUT

probe probe

Fig. 11.8 Near-field antenna radiation pattern measurement range. a. Planar near-field range.
b. Cylindrical near-field range.

Figure 11.8a shows a planar near-field antenna measurement range. The scanner
moves the probe around to take samples of the near-field in amplitude and phase over
a regular grid. This scanner is shown here without its lining of RF absorbers (RAM).
The probe is a small antenna (often taking the form of an open-ended waveguide),
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that is kept as small as possible to minimise reflections between the AUT and probe.
As figure 11.8b shows, the planar scanner when operated as a vertical linear scanner,
combined with the AUT being rotated on its pedestal, allow - in a relatively easy
and cost-effective way - the operation of the planar near-field range as a cylindrical
near-field range.

Although the (planar) near-field antenna measurement range offers the opportunity
to obtain the radiation pattern of a large phased array antenna in a limited-size indoor
environment, its value within the design path of a phased array antenna lies mostly in
the final, verification stage of the complete antenna with feeding network and phase
shifters.

Since this feeding network with phase shifters will contribute substantially to the
costs of a phased array antenna, it is not cost-effective at all to construct different
complete phased array antennas in the design process. To minimise costs, it is
preferred to separate array antenna and feeding network and optimise the array
antenna first before adding the feeding network in the final stage. So what is needed
is an effective way to obtain radiation patterns of the array antenna without a feeding
network. The concept of the scan element pattern [6], also known as the active element
pattern, offers a way to obtain this desired array antenna pattern in a cost-effective
way. Waveguide simulator measurements also offer a cost-effective means of obtaining
scanned array antenna characteristics without the need of constructing a feeding
network.

11.3 SCAN ELEMENT PATTERN

The characterisation of a large array antenna may be accomplished on the basis of
the assumption that in a large array nearly all elements encounter a similar array
environment and therefore also encounter identical mutual coupling effects from the
surrounding [6–8]. Next to the mutual coupling, also the concept of the scan element
pattern, i.e. the radiation pattern of a singly excited element in its array environment
- where all other elements are terminated into matched loads - will prove to be
useful.

The scan element pattern is also known as the active element pattern, but we
choose the first term, following [6], in order to avoid confusion. The scan element
pattern will provide the phased array antenna gain at the position of the scanned
beam as a function of scan angle. For a large phased array antenna, all scan element
patterns will be nearly identical and the phased array antenna performance may be
approximated by applying pattern multiplication. In this pattern multiplication, the
common scan element pattern is multiplied with the array factor. All coupling effects
are accounted for then in the scan element pattern [6, 8].

We will discuss the mutual coupling and scan element pattern, using a K-element
linear (phased) array antenna as an example in order to keep the discussion as clear
as possible. We have seen that the translation of the analysis results for a linear to a
planar (phased) array antennas is straightforward. Therefore - after the linear array
antenna analysis - we will simply state the results for a planar array antenna.
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11.3.1 Mutual Coupling

We assume the linear array antenna to consist of K identical elements, displaced a
distance d with respect to one another and being matched to a voltage source as
shown in figure 11.9 [8].

V1
+

V1
-

V2
+

V2
-

VK-1
+

VK-1
-

VK
+

VK
-

d

1 2 K-1 K

V1
+

V1
-

V1
+

V1
-

V2
+

V2
-

V2
+

V2
-

VK-1
+

VK-1
-

VK
+

VK
-

VK
+

VK
-

d

1 2 K-1 K

Fig. 11.9 K-element linear array antenna. Every element is match-connected to a voltage
source.

Since the radiators are match-connected to their sources, the voltage waves
travelling in negative directions are due to mutual coupling from surrounding
elements.

To obtain the scan element pattern, only one of the K elements will be excited,
the other elements will be disconnected from their sources and will be terminated
in matched (reflectionless) loads. This situation is shown for element k, where
k = 1, 2, . . . ,K, in figure 11.10.
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Fig. 11.10 K-element linear array antenna. Feeding for obtaining the scan element pattern for
element k.

The effect of the mutual coupling is shown in figure 11.10 by the presence of waves
travelling from the not-excited elements into the loads.
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We relate the voltage wave amplitude to the radiated electric and magnetic fields,
Ee and He, of an isolated element through

Ee(ϑ) = VeSe(ϑ)
e−jk0r

r
, (11.6)

He(ϑ) =
Ve
η
Se(ϑ)

e−jk0r

r
, (11.7)

where Ve is the voltage wave amplitude of the excitation, k0 = 2π
λ and Se(ϑ) is

the normalised isolated element radiation pattern. η is the free space characteristic
impedance and is given by

η =
√
µ0

ε0
, (11.8)

where µ0 is the free space permeability and ε0 is the free space permittivity.
Implicitly we assume here that the element radiates a single mode and that a single

mode propagates through the feed network, an assumption that has given us fairly
good results in the preceding chapters.

The K-element linear array may be seen as a K-port, characterised by a K ×K
scattering matrix, where the scattering coefficients relate the element voltage wave
amplitudes according to

Skl =
V −
k

V +
l

∣∣∣∣
V +

m =0;m �=l
for k, l,m = 1, 2, . . . ,K. (11.9)

This equation tells us that the scattering coefficient Skl is obtained by comparing
the voltage wave amplitude of the wave entering element k from free space with the
voltage wave amplitude of the wave exciting element l. For this comparison, none of
the elements, with the exception of element l is being excited. All these elements are
terminated in matched loads. This process is visualised in figure 11.11.

With V +
k and V −

k the voltage wave amplitude of, respectively, the incident and
reflected wave at element k and with use of equation (11.9), we find for the voltage
wave amplitude of the reflected wave at element k

V −
k =

K∑
l=1

SklV
+
l . (11.10)

The total voltage over the antenna clamps of element l, Vl, is the sum of incident
and reflected voltage wave amplitudes

Vl = V +
l + V −

l . (11.11)

The total current is given by

Il = I+
l + I−l =

1
Z0

(
V +
l − V −

l

)
, (11.12)

where Z0 is the characteristic impedance of the transmission line.
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Fig. 11.11 Definition of scattering coefficient Skl.

For reasons of keeping the discussion simple, we will assume that the characteristic
impedance of the transmission line connected to the antenna element, Z0, is equal to
one, i.e. we will work with a normalised characteristic impedance. Thus

Il = V +
l − V −

l . (11.13)

If we want the antenna beam of theK-element linear array to be directed to ϑ = ϑ0,
the previous chapters have told us to apply a phase taper that satisfies

V +
l = e−jk0(l−1)d sin(ϑ0), (11.14)

where we have put the phase reference on element 1.
The scan reflection coefficient of element k, Γk (ϑ0), i.e. the reflection coefficient of

element k in its (scanned) array environment with all elements excited and properly
phased, is found with the aid of equations (11.10) and (11.14)

Γk (ϑ0) =
V −
k

V +
k

= ejk0(k−1)d sin(ϑ0)
K∑
l=1

Skle
−jk0(l−1)d sin(ϑ0). (11.15)

The radiated electric field of the complete K-element linear array antenna, with
all elements excited, Ea(ϑ), is found to be, applying pattern multiplication

Ea(ϑ) = Ee(ϑ)
K∑
k=1

Vke
jk0(k−1)d sin(ϑ). (11.16)

Note that we have simply multiplied the isolated element pattern with the array
factor, so mutual coupling effects are not taken into account.
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To bring in the mutual coupling effects, we first relate the voltage wave amplitude,
Vk, to the scan reflection coefficient, Γ(ϑ), by using equations (11.11) and (11.15)

Vk = V +
k + V −

k = [1 + Γk(ϑ0)]V +
k . (11.17)

Substituting this result, together with equation (11.14) into equation (11.16) gives
for the radiated electric field of the completely excited array antenna

Ea(ϑ) = Ee(ϑ)
K∑
k=1

[1 + Γk(ϑ0)] ejk0(k−1)d[sin(ϑ)−sin(ϑ0)], (11.18)

and, phased for ϑ = ϑ0

Ea (ϑ0) = Ee (ϑ0)
K∑
k=1

[1 + Γk(ϑ0)] . (11.19)

Substitution of equation (11.6) into equation (11.19) gives

Ea (ϑ0) = VeSe (ϑ0)
K∑
k=1

[1 + Γk (ϑ0)]
e−jk0r

r
. (11.20)

In a similar way we find for the radiated magnetic field of the fully excited array

Ha (ϑ0) =
Ve
η
Se (ϑ0)

K∑
k=1

[1 − Γk (ϑ0)]
e−jk0r

r
. (11.21)

In the chapter on antenna parameters we have seen that the gain function G(ϑ) is
given by

G(ϑ) =
P (ϑ)
Pin/4π

, (11.22)

where P (ϑ) is the radiated power in the direction ϑ and Pin is the totally incident
available power.

The time-average power density S (watts per square metre) of the radiated fields
can be calculated as [2]

S(r) =
1
2
�{Ea(r) × H∗

a(r)} =
1
2
�{EaH∗

a}ur. (11.23)

The radiated power, P (ϑ), per solid angle unit dΩ = sin(ϑ)dϑdϕ, see figure 11.12,
is then given by

P (r) = P (ϑ) =
∣∣r2S(r)

∣∣ . (11.24)

The radiated power into the direction ϑ0 thus becomes

P (ϑ0) = V 2
e S

2
e (ϑ0)

1
2η

{
K∑
k=1

[1 + Γk (ϑ0)]

}{
K∑
k=1

[1 − Γk (ϑ0)]

}
. (11.25)
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Fig. 11.12 Solid angle dΩ = sin(ϑ)dϑdϕ.

The incident available power is, since we assumed a normalised characteristic
impedance,

Pin = K
V 2
e

2
, (11.26)

so that we find for the gain of the fully excited array in the direction ϑ0

Ga (ϑ0) =
4πS2

e (ϑ0)
Kη

K2 −
∣∣∣∣∣
K∑
k=1

Γk (ϑ0)

∣∣∣∣∣
2
 . (11.27)

So, based on the scan reflection coefficient, Γk, that can be obtained from pair-wise
mutual coupling measurements between the array elements, and the isolated element
pattern - that in general is relatively easy to obtain - we may find the gain of the
complete array antenna in the direction of the scanned beam.

Recapitulating: The isolated element pattern is the radiation pattern of a single
element, measured in an empty environment, i.e. not in its array environment.
The scan element pattern is the radiation pattern of a singly excited element in
its array environment, where all other array antenna elements are terminated into
matched loads. The scan reflection coefficient is the reflection coefficient of a single
element in its array environment, where all elements are excited and properly phased.

The scan element pattern is difficult, although not impossible to measure directly.
The scan reflection coefficient is difficult to measure directly. Mutual coupling
coefficients are relatively easy to measure. These coupling coefficients may be used
to determine the scan reflection coefficient. As we will see in the next paragraph, the
scan element pattern may be obtained from the scan reflection coefficient.

We return now to the expression for the gain of a fully excited array, evaluated at
the direction of the scanned beam.

We may simplify this equation for large array antennas.
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In a large one- or two-dimensional array antenna, nearly all elements experience
an identical array environment. Only the elements at and near the edges of the array
experience an environment that differs substantially from those in the centre. When
the array antenna is sufficiently large,3 the number of centre elements outweighs the
number of edge elements and approximately all elements experience the same mutual
coupling effects. Therefore, in this situation, all element scan reflection coefficients
are approximately equal, Γk ≈ Γ, so that

Ga (ϑ0) = KGe (ϑ0)
(
1 − |Γ (ϑ0)|2

)
, (11.28)

where Ge is the gain of an isolated element, that is given by

Ge(ϑ) =
4πS2

e (ϑ)
η

. (11.29)

So, if - for a large array - we measure all scattering coefficients relative to a centre
element,4 of which we know the isolated gain pattern, we may calculate the scan
reflection coefficient, Γ, using equation (11.15) and calculate the gain of the fully
excited array in the direction ϑ0, using equation (11.28).

VNA

RAM
array

fixed at centre element

variable

VNA

RAM
array

fixed at centre element

variable

Fig. 11.13 Measuring coupling coefficients relative to the centre element in one-half or one-
quarter of the array. All elements not involved in the current coupling measurements are
terminated into matched loads. The array antenna is facing an anechoic environment.

3How large ‘sufficiently large’ is, is determined by the desired accuracy in calculating the antenna
parameters using the large array antenna approximations.
4This means that we keep one port of a two-port VNA connected to the centre element and connect
the other port to every other element, one after the other, while keeping all other elements terminated
into matched loads. If the array antenna is symmetric, measurements may be restricted to one-half
or one-quarter of the array. While measuring the pair-wise coupling coefficients, the array antenna
aperture should be directed into an RF absorbing surrounding like an anechoic room, see figure 11.13.
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11.3.2 Scan Element Pattern

To obtain the scan element pattern, i.e. the pattern of one excited element in its array
environment where all other elements are terminated into matched loads, we take a
closer look at our K-element (phased) array antenna. We assume that element k is
excited. To calculate the radiated electric far-field, Esa(ϑ), we start with equation
(11.16)

Esa(ϑ) = Ee(ϑ)
K∑
l=1

Vle
jk0(l−k)d sin(ϑ), (11.30)

where we have moved the phase reference to element k.
Since only element k is excited, equation (11.11) reveals that Vk = V +

k + V −
k and

Vl = V −
l for l �= k. This leads to

Esa(ϑ) = Ee(ϑ)

[
V +
k +

K∑
l=1

V −
l e

jk0(l−k)d sin(ϑ)

]
, (11.31)

and since V −
l =

∑K
m=1 SlmV

+
m , (equation (11.10))

Esa(ϑ) = Ee(ϑ)

[
V +
k +

K∑
l=1

(
K∑
m=1

SlmV
+
m

)
ejk0(l−k)d sin(ϑ)

]
. (11.32)

Since only element k is excited, only the term for m = k remains in the summation
over m. Further, using equation (11.6) and equation (11.14) (V +

k = 1), leads to

Esa(ϑ) = VeSe(ϑ)

[
1 +

K∑
l=1

Slke
jk0(l−k)d sin(ϑ)

]
e−jk0r

r
. (11.33)

From equations (11.10), (11.14) and (11.15), substituted in the above equation, we
finally obtain

Esa(ϑ) = VeSe(ϑ)
[
1 + e−jk0(k−1)d sin(ϑ)Γk(−ϑ)

] e−jk0r
r

, (11.34)

where the phase reference, by virtue of equation (11.14), has been put back to element
1 and where use has been made of Skl = Slk.

For the radiated magnetic field, Hs
a , we find

Hs
a(ϑ) =

VeSe(ϑ)
η

[
1 − e−jk0(k−1)d sin(ϑ)Γk(−ϑ)

] e−jk0r
r

. (11.35)

The gain of the singly excited element then follows from

Gsk(ϑ) =
P (ϑ)
Pin/4π

=
4πr2

2Pin
�
{
EsaH

s∗
a

}
= Ge(ϑ)

[
1 − |Γk(−ϑ)|2

]
. (11.36)

For a very large array, Γk(−ϑ) = Γk(ϑ) = Γ(ϑ) and the gain function reduces to

Gsk(ϑ) = Ge(ϑ)
[
1 − |Γ(ϑ)|2

]
. (11.37)
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So the scan element pattern (of a singly excited element) is simply related to the
scan reflection coefficient of the completely excited array antenna. This scan reflection
coefficient can be calculated from the mutual coupling coefficients between the array
elements, that can be relatively easy obtained by measurement, see figure 11.13.

11.3.3 Blind Scan Angles

Upon comparing equation (11.37), the gain function of a singly excited element, with
equation (11.28), the gain of a fully exited array in the direction ϑ = ϑ0, we see that

Ga (ϑ0) = KGsk (ϑ0) . (11.38)

The gain of a large, K-element, fully excited phased array antenna, in the direction
ϑ = ϑ0, i.e. in the direction of the scanned beam, is equal to K times the scanned
element pattern into that direction.

This means that if we observe anomalies in the scanned element pattern - like
‘dips’ or ‘nulls’ - these anomalies will also result in the fully excited phased array
antenna pattern. A ‘null’ in the scanned element pattern means that for the phased
array antenna scanned into the direction of this ‘null’ the radiation pattern will also
show a ‘null’, i.e. energy will not be radiated into that direction. The specific angle ϑ
where such a phenomenon occurs is called a blind scan angle.

A blind scan angle may occur in any array that has a periodic structure and in
which materials are used in such a way that a leaky wave may propagate over the
array face [6]. The leaky wave emits radiation that in certain directions (the blind
scan angles) cancels the array antenna radiation. The effect is in general more serious
for large array antennas.

A blind scan angle occurs before the appearance of a grating lobe. Therefore, by
changing the inter-element distances in an array, blind scan angles may be removed
from the scan area of interest. For printed antennas, blind scan angle positions may
be calculated, using the approximate equations of [9]. An elaborate discussion and
literature survey on scan blindness and measures to avoid blindness - that is beyond
the scope of this book - may be found in [6].

The measurement of mutual coupling between array antenna elements has made
it possible to predict the scan behaviour of a phased array antenna without having
to construct one or more costly feeding networks. Although this has resulted in a
substantial reduction of development costs, still one or more array antennas need to
be realised. A means to further reduce development costs and bypass the need for
full-scale array antenna realisation is offered by the waveguide simulator.

11.4 WAVEGUIDE SIMULATOR

Let’s assume that we have an infinite, regularly spaced, planar array antenna of
identical elements. This means that in the two transverse directions there are no
edge elements, only centre elements exist. The infinite array assumption allows us to
assume all elements to be identical with respect to mutual coupling effects.
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Assume now that the array antenna is phased in such a way that a beam is directed
towards a certain direction ϑ0, different from broadside and that the polarisation
is such that the electric field is directed perpendicular to the plane of scan, see
figure 11.14a.
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E ϑ0
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Fig. 11.14 Scanned beams for an infinite array antenna. a. Plane wavefront direction for a
beam scanned to ϑ = ϑ0. b. Plane wavefront direction for a beam scanned to ϑ = −ϑ0. The
polarisation is perpendicular to the plane of scan.

By measuring the reflection coefficient of an arbitrary element for the beam scanned
to ϑ = ϑ0, we can calculate the phased array antenna characteristics as explained in
the previous section.

Next we assume that a phase taper is applied for scanning the beam into the
direction ϑ = −ϑ0 and we assume that both phase tapers exist simultaneously. Then
we get the situation as shown in figure 11.14b.

By superposition, the reflection coefficient of an arbitrary element in the array,
emitting both plane wavefronts is identical to that of an element in an array emitting
a single beam [10].

In the planes where the two planar wavefronts cross, the net electric field is zero
due to the opposite phasing of the waves. Since on a perfect electric conductor the
tangential electric field is zero, we may place metallic walls in these planes without
this wall placing affecting the array antenna characteristics. If we choose the plane
wave directions such that the positions of these metallic walls coincide with planes
of symmetry of the array antenna (as is the case in figure 11.14), we may analyse a
single waveguide containing a repeatable cell of the array antenna, see figure 11.15.

The walls of the waveguide simulator act as mirrors and by reflection of the array
cell and its images an infinite array antenna is created. The waveguide simulator needs
to be sufficiently large and needs to be terminated into a waveguide load to prevent
waves to be incident upon the array cell.
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Fig. 11.15 Simulation of an infinite array antenna, phased for scanning to ϑ = ϑ0, using a
waveguide simulator.

The array cell as shown in figure 11.15 contains a single element which is the
smallest cell that repeats itself to form the infinite array. Cells containing more
elements, even parts of elements are also allowed [10, 11], as long as by reflection
in the waveguide walls the original infinite array antenna is created. The choice of
the waveguide dimensions then depends on the particular scan angle ϑ0 that needs to
be analysed. This angle depends on frequency (wavelength) and waveguide simulator
dimensions, see figure 11.15

sin (ϑ0) =
λ

2a
. (11.39)

This equation and the fact that a repeatable cell needs to be created means that
waveguide simulators can be employed only for a discrete set of scan angles.
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Appendix A
Complex Analysis

The use of complex variables in solving problems in the applied sciences, like in electrical
engineering, appears to be a very valuable tool. Especially when dealing with sinusoidal
excitations, the introduction of complex variables will simplify the solution process. Before
this simplification is fully appreciated though, one has to deal first with the somewhat
awkward concept of complex numbers.

A.1 COMPLEX NUMBERS

We are all familiar with the real numbers and the permitted and non-permitted
operations on real numbers. So, it is for example permitted to calculate the square
root of the number 3.79 (

√
3.79 = 1.95), but the square root of −4 does not exist.

The complex numbers allow for the latter square root to exist, through the
introduction of so-called imaginary numbers next to the real numbers. Any complex
number consists of a real part and an imaginary part and is generally denoted as

c = a+ jb, (A.1)

where c is a complex number, a is the real part of the complex number

a = �(c), (A.2)

Array and Phased Array Antenna Basics Hubregt J. Visser
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and b is the imaginary part of the complex number

b = �(c). (A.3)

j is the imaginary unit1 that exhibits the special characteristic

j2 = −1. (A.4)

Before we move on to the arithmetic concerning complex numbers, we first define
the complex conjugate of a complex number.

The complex conjugate of a complex number c, denoted c∗, is defined by replacing
j by −j everywhere in the complex number. So, if

c = a+ jb, (A.5)

then
c∗ = a− jb, (A.6)

The addition and subtraction of complex numbers is straightforward. If c = a+ jb
and d = e+ jf , then

c+ d = a+ jb+ e+ jf = (a+ e) + j(b+ f), (A.7)
c− d = a+ jb− (e+ jf) = (a− e) + j(b− f). (A.8)

Multiplication makes use of the special characteristic of the imaginary unit

e · (a+ jb) = ea+ jeb, (A.9)
(e+ jf) · (a+ jb) =

ea+ jeb+ jaf + j2fb =
(ea− fb) + j(eb+ af). (A.10)

Multiplication of a complex number with its complex conjugate results in

cc∗ = (a+ jb)(a− jb) =
a2 + jab− jab− j2b2 =

a2 + b2 =
|c|2. (A.11)

For division, use is made of the complex conjugate. If c = a + jb and d = e+ jf ,
then

c

d
=
cd∗

dd∗
=

(a+ jb)(e− jf)
e2 + f2

=

ae+ bf

e2 + f2
+ j

be− af

e2 + f2
(A.12)
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Fig. A.1 Complex numbers (x1, y1) and (x2, y2) in the complex plane.

Complex numbers may be graphically represented in the complex plane, see
figure A.1.

The real part of a complex number is plotted along the horizontal axis, the
imaginary part of the complex number, multiplied by j, is plotted along the vertical
axis.

Another way of representing complex numbers instead of using Cartesian
coordinates is using polar coordinates. For z1 = x1 + jy1, see figure A.1, the polar
form is

z1 = r1 [cos (ϑ1) + j sin (ϑ1)] , (A.13)

where
r1 = |z1| , (A.14)

and

ϑ1 = arctan
(� (z1)
� (z1)

)
. (A.15)

If we differentiate the expression of z1 to ϑ1, we get

dz1
dϑ1

= r1 [− sin (ϑ1) + j cos (ϑ1)] =

jr1 [cos (ϑ1) + j sin (ϑ1)] =
jz1, (A.16)

and therefore

z1 = r1 [cos (ϑ1) + j sin (ϑ1)] =
r1e

jϑ1 . (A.17)

As a last check, we verify that

z∗1 = r1e
−jϑ1 , (A.18)

1Mathematicians and physicists use the symbol i for the imaginary unit, but since in electrical
engineering this symbol is already reserved for current, electrical engineers use the symbol j instead.
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and therefore
z∗1z1 = r21 . (A.19)

A.2 USE OF COMPLEX VARIABLES

Let us first look at an electric capacitor, C. The current ‘through’ a capacitor, i, is
described as function of the voltage, v, over the capacitor

i = C
dv

dt
. (A.20)

Now, assume that we are dealing with sinusoidal signals (currents and voltages)

v = V1 cos(ωt), (A.21)

where ω = 2πf is the angular frequency.
The current ‘through’ the capacitor is now given by

i = C
d

dt
[V1 cos(ωt)] =

−V1Cω sin(ωt). (A.22)

Next, we look at an inductor, L. The voltage over the inductor, v, is described as
a function of the current, i, through the inductor

v = L
di

dt
. (A.23)

For sinusoidal signals, i = I1 cos(ωt),

v = L
d

dt
[I1 cos(ωt)] =

−I1Lω sin(ωt). (A.24)

If we work with complex signals, we get for the capacitor

v = � (V1e
jωt
)
, (A.25)

i = C�
(
d

dt
V1e

jωt

)
=

C� (jωV1e
jωt
)

=
−V1Cω sin(ωt), (A.26)

and for the inductor

i = � (I1ejωt) , (A.27)

v = L�
(
d

dt
I1e

jωt

)
=

L� (jωI1ejωt) =
−I1Lω sin(ωt), (A.28)
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We see that for the complex signals the operator d
dt is replaced by the multiplication

with jω.
Therefore, we can define a complex impedance for the capacitor as

ZC =
V1e

jωt

jCωV1ejωt
=

1
jωC

. (A.29)

Similarly, we may define a complex impedance for the inductor as

ZL =
jLωI1e

jωt

I1ejωt
=

jωL. (A.30)

To show the ease of working with complex signals, we will calculate the input
impedance of a parallel circuit consisting of a resistor, R, an inductor, L, and a
capacitor, C, see figure A.2.

R L C
Zin

R L C
Zin

Fig. A.2 Parallel electric circuit consisting of resistor R, inductor L and capacitor C.

The complex input admittance Yin is

Yin =
1
R

+
1
jωL

+ jωC =

1
R

− j
1
ωL

(
1 − ω2LC

)
, (A.31)

and the complex input impedance is therefore found to be

Zin =
1
Yin

=

1
1
R − j 1

ωL (1 − ω2LC)
=

R

1 − j R
ωL (1 − ω2LC)

=

R
[
1 + j RωL

(
1 − ω2LC

)]
1 + R2

ω2L2 (1 − ω2LC)2
. (A.32)
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Finally, the ‘real-world’ input resistance is found as the real part of the complex
input impedance

Rin = �{Zin} =
R

1 + R2

ω2L2 (1 − ω2LC)2
. (A.33)

The phase is found to be, see also figure A.2

ΨRin = arctan
(�{Zin}
� {Zin}

)
=

1
ωL

(
1 − ω2LC

)
. (A.34)

We see that the calculation of the input resistance of the parallel circuit, using
complex numbers, is really straightforward, while a direct solution based on time-
derivatives of real sinusoidal currents and voltages would have been far more
complicated.

So, the general idea in dealing with a sinusoidal excitation, Sin (voltage or current)
is to create a complex number, Scin, such that �{Scin} = Sin (or �{Scin} = Sin), then
calculate the response of the complex signal, Scout - which is easy since time-derivatives
are replaced by multiplications by jω - and finally extract the real response, Sout by
taking Sout = �{Scout} (or Sout = �{Scout}).



Appendix B
Vector Analysis

Scalars are defined by an amplitude only (e.g. charge or temperature). Vectors are not
only defined by their amplitude, but also by their direction. This means that operations
familiar for scalars, like addition and subtraction, multiplication and division and taking
the derivative become more complicated for vectors.

B.1 NOTATION

A scalar in printed text is represented by a normal, though often cursive, letter
(e.g. charge q). A vector in printed text is often represented by a bold face letter (e.g.
electric field E). In writing (like on a blackboard), scalars pose no problem, but vectors
do if the above stated convention is followed. Therefore, vectors are also written as
letters with an arrow on top of them. This arrow may be deformed into a half arrow
or even a bar and this bar may also be found underneath the letter. The vector a may
therefore be represented as

a,�a, ā, a. (B.1)

The amplitude of this vector a, represented by |a|, is a scalar (a). For a vector in
two-dimensional space, the relation between amplitude and direction is given by, see
figure B.1,

a = a cos(ϕ)ûx + a sin(ϕ)ûy, (B.2)

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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where ûx and ûy are unit vectors in respectively the x- and y-direction. Unit vectors
have a length 1 and are mutually perpendicular. In three dimensions, a vector may
be decomposed into Cartesian coordinates as shown in figure B.2.

x

y

a

a

ϕ
x

y

a

a

ϕ

Fig. B.1 Two-dimensional vector a having amplitude a and direction ϕ.

a

a

x

y

z

ϑ

ϕ

acos(ϑ)

asin(ϑ)
asin(ϑ)cos(ϕ)

asin(ϑ)sin(ϕ)

a

a

x

y

z

ϑ

ϕ

a

a

x

y

z

ϑ

ϕ

acos(ϑ)

asin(ϑ)
asin(ϑ)cos(ϕ)

asin(ϑ)sin(ϕ)

Fig. B.2 Three-dimensional vector a having amplitude a and direction ϑ, ϕ.

The vector a, decomposed into unit vectors, is given by

a = a sin(ϑ) cos(ϕ)ûx + a sin(ϑ) sin(ϕ)ûy + a cos(ϑ)ûz, (B.3)

were, again, use is made of a = |a|.
The terms sin(ϑ) cos(ϕ), sin(ϑ) sin(ϕ) and cos(ϑ) are often referred to as direction

cosines. This terminology is not quite correct and finds its roots into a decomposition
of the vector into unit vectors where other than the usual spherical coordinate angles
are being used, see figure B.3.
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a

a

x

y

z

ϑ

α

γ

a

a

x

y

z

ϑ

α

γ

Fig. B.3 Three-dimensional vector a having amplitude a and direction ϑ, α, γ.

For the angles shown in figure B.3, we find

a = a cos(α)ûx + a cos(γ)ûy + a cos(ϑ)ûz , (B.4)

explaining the name direction cosines.

B.2 ADDITION AND SUBTRACTION

The addition of vectors may be graphically represented using the ‘parallelogram rule’
as shown in figure B.4 for the addition of the vectors a and b.

a

b

a+b
a

b

a+b

Fig. B.4 Addition of the vectors a and b by constructing a parallelogram having sides a and b.

Subtraction of vectors, a − b, proceeds along the same way by first - through
reflection in the origin - constructing the vector −b which is then added to the vector
a, see figure B.5.
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b

-b

a+(-b) = a-b

a

b

-b

a+(-b) = a-b

a

Fig. B.5 Subtraction of the vectors a and b by first constructing -b, followed by the addition
of a and -b.

B.3 PRODUCTS

For the scalar quantities a and b only one product exists: a · b. With vectors we have
two possibilities: The so-called scalar product or dot product and the vector product
or cross product.

B.3.1 Scalar Product or Dot Product

The dot product of two vectors results in a scalar (thus having only an amplitude and
not a direction). The dot product of two vectors is obtained by projecting one of the
vectors onto the other one, see figure B.6.

a

b

α

a

b

α

Fig. B.6 Determination of the dot product of the vectors a and b having an internal angle α.

The dot product (notation a · b) is

a · b = |a|.|b|. cos(α). (B.5)
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Note that for α = π/2, the dot product becomes zero. It does not matter which
one of the two vectors is projected onto the other one, or

a · b = b · a. (B.6)

B.3.2 Vector Product or Cross Product

The cross product of two vectors, a and b, results in another vector (thus having
amplitude and direction). The direction of the cross product follows that of a right-
handed screw, see figure B.7. The amplitude of the cross product is equal to the area
of the parallelogram defined by both vectors, a and b.

α

a

b

n̂

( )ððsinbaα

a

b

n̂

( )ððsinbaα

a

b

n̂

( ) αsinba

Fig. B.7 Determination of the cross product of the vectors a and b, having an internal angle α.

The cross product of the vectors a and b (notation a × b) is

a × b = |a|.|b|. sin(α)n̂, (B.7)

where n̂ is the so-called normal (length 1 ) on the plane defined by the vectors a
and b. Unlike the situation in the dot product, in the cross product the order of the
vectors does matter,

a × b = −b× a. (B.8)

B.3.3 Threefold Product

With the previously defined dot product and cross product, two possibilities arise for
the threefold vector product of the three vectors a, b and c, (a×b) ·c and (a×b)×c.

First, we determine the cross product of the vectors a and b. Thereto we decompose
the vectors into Cartesian components

a = axûx + ayûy + azûz,
b = bxûx + byûy + bzûz,

(B.9)
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and apply the ‘determinant rule’ for determining the cross product

(a×b) =

∣∣∣∣∣∣
ûx ûy ûz
ax ay az
bx by bz

∣∣∣∣∣∣ = (aybz−byaz)ûx−(axbz−bxaz)ûy+(axby−bxay)ûz. (B.10)

Next, we take the dot product with c = cxêx + cy êy + cz êz, which results in

(a × b) · c = (aybz − byaz)cx − (axbz − bxaz)cy + (axby − bxay)cz. (B.11)

With equation (B.10), the ‘determinant rule’ and some calculation and regrouping
of terms, we find

(a × b) × c =

∣∣∣∣∣∣
ûx ûy ûz

aybz − byaz azbx − bzax axby − bxay
cx cy cz

∣∣∣∣∣∣ =
{(azbx − bzax)cz − (axby − bxay)cy} ûx −
{(aybz − byaz)cz − (axby − bxay)cx} ûy +
{(aybz − byaz)cy − (azbx − bzax)cx} ûz =

(a · c)b − (b · c)a. (B.12)

B.4 DERIVATIVES

Suppose a vector a is dependent on the (scalar) parameter t

a = a(t). (B.13)

For a small change δt the vector transforms into, see figure B.8:

a(t+ δt) = a + δa. (B.14)

The derivative of a to t we define, in the usual way, as

da
dt

= lim
δt→0

δa
δt
. (B.15)

The derivative to t of the product of two scalars a(t) and b(t) is found by applying
the ‘chain rule’

d

dt
(ab) =

da

dt
b + a

db

dt
. (B.16)

The dot product of two vectors a(t) and b(t) may be written, using equation (B.5),
as ab cos(α), where α is the internal angle. Applying the ‘chain rule’ results in

d

dt
(a · b) =

da

dt
b cos(α) + a

db

dt
cos(α). (B.17)

When δt in the limit approaches zero, also δa and δb will approach zero
and therefore da

dt and db
dt will have the same direction as, respectively, a and b.
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a

δa

a+δaa

δa

a+δa

Fig. B.8 Translation of the vector a(t) into the vector a(t + δt) = a + δa.

Equation (B.17) then transforms into

d

dt
(a · b) =

da
dt

· b + a · db
dt
. (B.18)

In a similar way we find

d

dt
(a × b) =

da
dt

× b + a × db
dt
. (B.19)





Appendix C
Effective Aperture and

Directivity

The effective aperture of an antenna is uniquely related to its directivity. By using the
directivity and effective aperture of a short dipole, which are relatively easy calculated,
a general interrelation between effective aperture and directivity, valid for any antenna
may be derived.

Consider the two-antenna communication system of figure C.1. System 1 may be the
transmitter, while system 2 is the receiver, or the other way around. The antennas are
displaced a distance R and are assumed to be lined up with respect to polarisation
and directivity. The directivity of antenna 1 is DT , its effective aperture is AeT .
Directivity and effective area of antenna 2 are, respectively DR and AeR. We start
by considering the first option; antenna 1 is transmitting and antenna 2 is receiving.

The totally radiated power by antenna 1 is PT . If antenna 1 were an isotropic
radiator, the power density, S0, at distance R from antenna 1 would be

S0 =
PT

4πR2
. (C.1)

Due to the directive properties of antenna 1, the power density, ST at distance R
is

ST = S0DT =
PTDT

4πR2
. (C.2)

Array and Phased Array Antenna Basics Hubregt J. Visser
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1 2

R

AeT DT AeR DR

1 2

R

AeT DT AeR DR

Fig. C.1 Two-antenna communication system. The antennas are displaced a distance R and
are assumed to be lined up with respect to polarisation and directivity. The directivity of
antenna 1 is DT , its effective aperture is AeT . Directivity and effective area of antenna 2 are,
respectively DR and AeR.

The power received by antenna 2, PR is then

PR = STAeR =
PTDTAeR

4πR2
, (C.3)

where AeR is the effective aperture of antenna 2. Rearranging this equation gives

DTAeR =
PR
PT

(
4πR2

)
. (C.4)

If we now let antenna 2 transmit PT and we look at the received power at antenna
1, which - by virtue of reciprocity - is equal to PR, we find

DRAeT =
PR
PT

(
4πR2

)
, (C.5)

so
DT

AeT
=

DR

AeR
. (C.6)

If we now assume that in the two-antenna system, the transmitting antenna is an
isotropic radiator, then DT = 1 and the above equation transforms into

AeTISO =
AeR
DR

, (C.7)

which means that

the effective aperture of an isotropic radiator is equal to the ratio of effective aperture
and directivity of any antenna.
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If we take, for example, a short dipole, we may relatively easy calculate the effective
area and directivity as

Ae =
3
8π
λ2, (C.8)

D =
3
2
, (C.9)

where λ is the used wavelength. Therefore the effective area of an isotropic radiator
is

AeISO =
λ2

4π
, (C.10)

and thus for any antenna
λ2

4π
=
Ae
D
. (C.11)

This gives us the sought after relation between effective aperture, Ae, and
directivity, D, of an antenna

D =
4πAe
λ2

. (C.12)





Appendix D
Transmission Line Theory

At microwave frequencies, the wavelengths have become so small that the physical
dimensions of transmission lines and even those of lumped elements, like resistors,
capacitors and inductors, are in the order of these wavelengths. This means that at
these frequencies we have to consider effects of waves, like standing waves and reflections.
Depending on the type of transmission line under consideration, these effects may be
best characterised employing a field description or employing a circuit description. In this
appendix we will limit ourselves to a circuit description of transmission lines.
The microwave frequency range is somewhat arbitrary, but in practice, frequencies
between 300MHz and 30GHz may be considered as being in the microwave spectrum.

D.1 DISTRIBUTED PARAMETERS

A general long - i.e. long with respect to wavelength - two-wire transmission line may
be characterised by distributed transmission line parameters, see figure D.1.

Herein R is the sum of resistances in both conductors per unit of length, G is the
conductivity per unit of length, L is the self-inductance per unit of length and C is
the capacity per unit of length.
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Fig. D.1 Distributed transmission line parameters in a general long two-wire transmission line.

When the distributed transmission line parameters are known, the characteristic
impedance, Z0, and propagation constant, γ0, may be calculated as

Z0 =

√
R+ jωL

G+ jωC
, (D.1)

γ0 =
√

(R+ jωL)(G+ jωC). (D.2)

We will demonstrate this, as well as state the definitions for characteristic
impedance and propagation constant, using an infinitesimal length, ∆z, of
transmission line as shown in figure D.2.

z z+∆z

+

-

+

-

V(z,t) V(z+ ∆z,t)

R ∆z L ∆z

G ∆z C ∆z

∆I

z z+∆z

+

-

+

-

V(z,t) V(z+ ∆z,t)

R ∆z L ∆z

G ∆z C ∆z

∆I

Fig. D.2 Equivalent network for an infinitesimal length of transmission line.

Applying the Kirchhoff voltage law to the circuit of figure D.2 gives

V (z, t) = R∆zI(z, t) + L∆z
∂I(z, t)
∂t

+ V (z + ∆z, t), (D.3)

or, after rearranging terms,

−V (z + ∆z, t) − V (z, t)
∆z

= RI(z, t) + L
∂I(z, t)
∂t

. (D.4)
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In the limit ∆z → 0, this equation reduces to

−∂V (z, t)
∂z

= RI(z, t) + L
∂I(z, t)
∂t

. (D.5)

Next, applying the Kirchhoff current law to the circuit of figure D.2 gives

I(z, t) = I(z + ∆z, t) + ∆I = I(z + ∆z, t) +G∆zV (z + ∆z, t) + C∆z
∂V (z + ∆z, t)

∂t
,

(D.6)
which may be written as

−I(z + ∆z, t) − I(z, t)
∆z

= GV (z + ∆z, t) + C
∂V (z + ∆z, t)

∂t
. (D.7)

In the limit ∆z → 0, this equation reduces to

−∂I(z, t)
∂z

= GV (z, t) + C
∂V (z, t)
∂t

. (D.8)

If we now suppose time harmonic signals, i.e. signals having a (co)sinusoidal time-
dependency, we may describe the voltages and currents using complex quantities:

V (z, t) = �{Vs(z)ejωt} , (D.9)

I(z, t) = �{Is(z)ejωt} , (D.10)

where �{x} means the real part of complex argument x. The parameter ω = 2πf is
the angular frequency, where f is the frequency.

Substitution of equations (D.9) and (D.10) into equations (D.5) and (D.8) gives

−dVs
dz

= (R + jωL)Is, (D.11)

−dIs
dz

= (G+ jωC)Vs. (D.12)

Taking the derivative to z of equation (D.11) and substituting equation (D.12) into
that equation yields

d2Vs
dz2

= (R + jωL)(G+ jωC)Vs. (D.13)

This equation may be written as

d2Vs
dz2

− γ2Vs = 0, (D.14)

where
γ = α+ jβ =

√
(R + jωL)(G+ jωC). (D.15)

Equation (D.14) is known as the wave equation or Helmholtz equation, γ is known
as the propagation constant. The propagation constant consists of an attenuation
constant, α, and a phase constant, β, where β = 2π

λ , λ being the wavelength.
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For the current, a wave equation of identical form may be derived

d2Is
dz2

− γ2Is = 0. (D.16)

Solutions of the Helmholtz equations for voltage and current are

Vs(z) = V +
0 e−γz + V −

0 e+γz, (D.17)

Is(z) = I+
0 e

−γz + I−0 e
+γz, (D.18)

where V +
0 and I+

0 are the amplitudes of, respectively, voltage and current waves
travelling in positive z-direction and V −

0 and I−0 are the amplitudes of, respectively,
voltage and current waves travelling in negative z-direction.

The characteristic impedance, Z0, of the transmission line is defined as the ratio of
voltage and current amplitude of in positive direction travelling voltage and current
waves:

Z0 =
V +

0

I+
0

. (D.19)

With use of equations (D.11), (D.12), (D.17) and (D.18), we find for the
characteristic impedance

Z0 =
V +

0

I+
0

=
R+ jωL

γ
=

γ

G+ jωC
, (D.20)

and upon substitution of equation (D.15)

Z0 =

√
R+ jωL

G+ jωC
. (D.21)

D.2 GUIDED WAVES

We have seen in the previous section that by introducing complex quantities, we may
describe voltage and current at any place on a transmission line as a superposition of a
(voltage or current) wave travelling in positive direction and one travelling in negative
direction. We used this concept, in combination with that of distributed transmission
line parameters, to derive expressions for the propagation constant and characteristic
impedance of a transmission line.

In this section we will further explore this guided wave1 property of transmission
lines to derive practical parameters like voltage standing wave ratio (VSWR),
reflection factor, impedance and input impedance. These parameters prove to be very
useful in designing microwave networks, as they allow us to design subsystems and
predict the behaviour of the interconnected subsystems on basis of the values of these
parameters.

In order to analyse transmission lines, we will take the general two-wire
transmission line of figure D.3 and look in detail at the voltage between and the
current through the two wires.
1Guided waves as opposed to unguided waves as we encounter in a radio link.
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s = 0

Fig. D.3 Voltage and current of a two-wire transmission line.

Voltage and current in the long transmission line can propagate as a wave going
in positive s-direction and as a wave going in negative s-direction. For the wave
propagating in positive s-direction

v+(s, t) = �{V +(s)ejωt
}
, (D.22)

where
V +(s) = Ae−γs, (D.23)

and
i+(s, t) = �{I+(s)ejωt

}
, (D.24)

where
I+(s) =

A

Z0
e−γs, (D.25)

Z0 being the characteristic impedance of the transmission line. A is for the moment
an unknown complex amplitude coefficient.

For the wave propagating in negative s-direction

v−(s, t) = �{V −(s)ejωt
}
, (D.26)

where
V −(s) = Be+γs, (D.27)

and
i−(s, t) = �{I−(s)ejωt

}
, (D.28)

where
I−(s) = − B

Z0
e+γs. (D.29)

B is for the moment an unknown complex amplitude coefficient.
The propagation constant is also in general complex,

γ = α+ jβ, (D.30)
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where α is the attenuation constant and β is the phase constant. When the
transmission line is lossless, α = 0 and the amplitude of the wave is constant over
the transmission line. In that situation R = G = 0 and equation (D.21) reveals that
for that situation the characteristic impedance is real. Using the sign convention of
figure D.3 makes the characteristic impedance positive.

The phase constant β is related to the wavelength λ. Whenever s increases with
an amount equal to λ, the same phase must be encountered: βλ = 2π and thus

β =
2π
λ
. (D.31)

β is also known as the wave number.

D.2.1 VSWR and Reflection Factor

When a travelling wave at some point is totally or partially reflected, a standing wave
is created. The ratio of the absolute values of the complex voltage wave amplitude at
maximum and at minimum is known as the voltage standing wave ratio (VSWR), S.

S =
|V |max

|V |min
=

|V +| + |V −|
|V +| − |V −| . (D.32)

The reflection factor, ρ, is defined as

ρ =
V −

V +
=
B

A
e2γs. (D.33)

From equations (D.32) and (D.33) follows

S =
1 + |ρ|
1 − |ρ| , (D.34)

and
|ρ| =

S − 1
S + 1

. (D.35)

D.2.2 Impedance and Relative Impedance

The impedance, Z - which is a function of the position s along the transmission line,
just like ρ - is defined as

Z =
V

I
=
V + + V −

I+ + I−
. (D.36)

The relative impedance, z, is the impedance Z normalised to the characteristic
impedance of the transmission line

z =
Z

Z0
=

1 + B
Ae

2γs

1 − B
Ae

2γs
. (D.37)

In determining the impedance we suppose the transmission line being cut at
position s. The impedance is related to the part of the transmission line to the right
of the cut. An excitation voltage V (s) then results in a current I(s).
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Substitution of equation (D.33) into equation (D.37) leads to

z =
1 + ρ

1 − ρ
, (D.38)

and

ρ =
z − 1
z + 1

. (D.39)

D.3 INPUT IMPEDANCE OF A TRANSMISSION LINE

Assume a transmission line of length l, meaning 0 ≤ s ≤ l. We will add a subscript i
to the parameters Z, z, S and ρ when they refer to the input of the transmission line
(s = 0). When they refer to the output of the transmission line (s = l), we will use a
subscript u. For an arbitrary position s (0 < s < l) we will use no subscript.

We now want to express the input impedance, Zi, as a function of the load
impedance, Zu, at the end of the transmission line.

With use of equation (D.33) we find

ρi = ρue
−2γl. (D.40)

Upon substitution of this result into equation (D.38) and using equation (D.39),
we find for the normalised input impedance

zi =
1 + ρue

−2γl

1 − ρue−2γl
=

1 + zu−1
zu+1e

−2γl

1 − zu−1
zu+1e

−2γl
. (D.41)

After some straightforward, though lengthy calculations,2 this equation may be
rewritten into

zi =
zu cosh(γl) + sinh(γl)
zu sinh(γl) + cosh(γl)

. (D.42)

For a lossless transmission line, γ = jβ = j 2π
λ , so that

zi =
zu + j tan

(
2π l

λ

)
1 + jzu tan

(
2π lλ

) . (D.43)

D.4 TERMINATED LOSSLESS TRANSMISSION LINE

Using equation (D.43), that relates the normalised input impedance to the normalised
load impedance of a lossless transmission line of length l, we will now look into some
special situations.

2Start with multiplying the numerator and denominator of the equation with 1
2

(zu + 1) eγl.
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D.4.1 Matched Load

A transmission line is terminated into a matched load, if the load impedance is the
complex conjugate of the characteristic impedance of the transmission line. Since -
by virtue of equation (D.43) - we assume our transmission line to be lossless, we have
seen that the characteristic impedance is real. Therefore, the line is terminated into
a matched load if the load impedance is equal to the characteristic impedance of the
transmission line.

So, we have the situation that Zu = Z0 and therefore zu = 1. This makes that
everywhere on the transmission line Z = Z0 and ρ = 0 (no reflection). Also, S = 1.

D.4.2 Short Circuit

When we terminate the transmission line into a short circuit, Zu = 0 and therefore
also zu = 0. Substitution of zu = 0 into equation (D.43) gives

zi = j tan
(

2πl
λ

)
. (D.44)

Upon a closer inspection of this equation we see that - going from the short
circuit over the transmission line to the input - we alternately, at intervals of a
quarter wavelength, encounter an impedance that is either purely inductive or purely
capacitive, see also figure D.4.

λ/4 λ/4 λ/4 λ/4

zi
0 0 0-j j -j j∞ ∞

Ind. Cap. Ind. Cap. Ind.

λ/4 λ/4 λ/4 λ/4

zi
0 0 0-j j -j j∞ ∞

Ind. Cap. Ind. Cap. Ind.

Fig. D.4 Impedance behaviour along a short-circuited transmission line.

A practical application may be found in the creation of capacitors and inductors
by means of pieces of short-circuited transmission lines.
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D.4.3 Open Circuit

If we leave the transmission line open at the end, Zu = ∞ and thus zu = ∞.
Substitution of zu = ∞ into equation (D.43) gives

zi = −j 1
tan
(

2πl
λ

) . (D.45)

We find an input impedance behaviour over the transmission line analogous to the
situation depicted in figure D.4, but shifted over a quarter of a wavelength.

D.4.4 Imaginary Unit Termination

When Zu = jZ0, remembering that Z0 is real, zu = j. Substitution of zu = j into
equation (D.43) gives

zi = j tan
(

2π
l

λ
+
π

4

)
. (D.46)

Again, we find an input impedance behaviour similar to the situation as depicted
in figure D.4, but now shifted over one-eighth of a wavelength.

D.4.5 Real Termination

If Zu is real, zu = ru. We may distinguish two situations:

D.4.5.1 ru < 1 For this situation

|ρ| =
1 − ru
1 + ru

, (D.47)

and

S =
1
ru

> 1. (D.48)

D.4.5.2 ru > 1 For this situation

|ρ| =
ru − 1
ru + 1

, (D.49)

and
S = ru > 1. (D.50)

D.5 QUARTER WAVELENGTH IMPEDANCE TRANSFORMER

We have seen that if the termination of a lossless transmission line, i.e. the impedance
connected at the end of the transmission line, is not identical to the characteristic
impedance of that transmission line, reflections will occur.
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Not only are these reflections unwanted due to the fact that they prohibit a
complete signal transfer, they are also unwanted since they distort the quality of the
signal transferred. When a mismatch exists not only at the end of the transmission
line but also at the beginning, the generator side, part of the signal power will reach
the load (at the end of the line) after a certain time delay.

To overcome the negative effects of a mismatch, an impedance transformer may be
placed in between transmission line or microwave circuit and load to make a reflection
free transition between transmission line or microwave circuit and load.

Such an impedance transformer may be realised very easily, employing a piece of
transmission line with the right characteristic impedance.

Starting with equation (D.43), we take a piece of transmission line of characteristic
impedance Zc and length equal to a quarter of a wavelength at the frequency of
operation. The load impedance is ZL. The unnormalised input impedance is then
found to be

Zin = Zczin = Zc

[
ZL + jZc tan

(
π
2

)
Zc + jZL tan

(
π
2

)] =
Z2
c

ZL
. (D.51)

So, if we take a piece of transmission line, a quarter of a wavelength long (at the
operating frequency) and dimension this transmission line such that its characteristic
impedance is equal to

Zc =
√
ZinZL, (D.52)

where Zin is the required input impedance (usually the impedance level of the circuit
connected to the load), and place this piece of transmission line between circuit output
and load, we have created a reflectionless transition from circuit to load, see figure D.5.

The equivalent of the impedance transformer and load impedance ZL is a new load
impedance equal to Zin.

Z1 ZL

Z1 Z1

ZcZ1 ZL

Z1 Z1

Zc

Fig. D.5 Impedance matching using a quarter wavelength impedance transformator.



Appendix E
Scattering Matrix

At microwave frequencies it is easier to work with waves than with voltages and currents.
A microwave network therefore is most easily described in terms of waves. The scattering
matrix relates amplitudes and phases of incoming to outgoing waves for an n-port network.
The incoming and outgoing waves are suitably normalised for a network experiencing
identical impedance levels at all ports. For networks experiencing different impedance
levels at the ports, it is convenient to use the unnormalised scattering matrix. The
unnormalised scattering matrix is, however, uniquely related to the normalised scattering
matrix.

E.1 NORMALISED SCATTERING MATRIX

In an n-port network (see figure E.1), a wave that is incident at one port may be
distributed to one or more other ports. Due to internal reflections, power from the
input will be distributed not only to the intentioned ports but - to various degrees -
to all other ports.

The complex amplitudes of the ingoing waves are denoted ai, those of the outgoing
waves bi, where i = 1, 2, . . . , n.

To ease the discussion of the scattering, we will look now at a two-port network as
shown in figure E.2.

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd
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1 2 n-1 n

n-port

a1 b1
a2 b2

an-1 bn-1
an bn

1 2 n-1 n

n-port

a1 b1
a2 b2

an-1 bn-1
an bn

Fig. E.1 In- and outgoing waves in an n-port microwave network.

2-port network

a1

b1

a2

b2

2-port network

a1

b1

a2

b2

Fig. E.2 In- and outgoing waves in a two-port microwave network.

The complex amplitudes of the outgoing waves are related to those of the ingoing
waves through (

b1
b2

)
=
(
S11 S12

S21 S22

)(
a1

a2

)
, (E.1)

or

b1 = S11a1 + S12a2,

b2 = S21a1 + S22a2. (E.2)

The scattering coefficients, i.e. the elements of the scattering matrix are defined as

S11 =
b1
a1

∣∣∣∣
a2=0

, (E.3)

S12 =
b1
a2

∣∣∣∣
a1=0

, (E.4)

S21 =
b2
a1

∣∣∣∣
a2=0

, (E.5)

S22 =
b2
a2

∣∣∣∣
a1=0

. (E.6)

S11 therefore is the reflection coefficient at port 1 when port 2 is not excited and
S22 is the reflection coefficient at port 2 when port 1 is not excited. S12 is the transfer
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from port 2 to port 1 when port 1 is not excited and S21 is the transfer from port 1
to port 2 when port 2 is not excited.

The normalisation of the complex wave amplitudes is such that 1
2aia

∗
i is the

available power at port i and 1
2bib

∗
i is the power emergent from port i, where i = 1, 2.

This means that the wave amplitudes must satisfy

ai =
v+
i√
Z0

, (E.7)

bi =
v−i√
Z0

, (E.8)

where i = 1, 2 and v+
i and v−i are, respectively, the voltage corresponding to the

wave going into port i and the voltage corresponding to the wave leaving port i. The
impedances looking into either port 1 or port 2 are assumed to be equal to Z0.

This can be understood by evaluating the average power, Pi, flowing into port
i. Thereto we look at the total voltage, vi, and total current, ii, at port i, using
transmission line theory (see appendix D):

vi = v+
i + v−i =

√
Z0 (ai + bi) , (E.9)

ii =
1
Z0

(
v+
i − v−i

)
=

1√
Z0

(ai − bi) . (E.10)

The average power flowing into port i is

Pi =
1
2
�{vii∗i } =

1
2

(aia∗i − bib
∗
i ) , (E.11)

which is the power of the incident wave at port i minus the power in the reflected
wave at that same port.

Although we have demonstrated the normalisation using a two-port, the theory is
general and applies to any n-port. Since we are especially interested in three ports
(split-T power dividers), we will demonstrate the unnormalised scattering matrix
properties for a three-port, keeping in mind that the concept is more general.

E.2 UNNORMALISED SCATTERING MATRIX

In general, the relationship between incoming and outgoing voltage waves of a three-
port is given by b1b2

b3

 =

S11 S12 S13

S21 S22 S23

S31 S32 S33

a1

a2

a3

 , (E.12)

where ai and bi, i = 1, 2, 3, are the (complex) amplitudes of incoming and outgoing
voltage waves, that are normalised such that 1

2aia
∗
i is the average incoming power at

port i and 1
2bib

∗
i is the average outgoing power at port i.

This normalised scattering matrix is used whenever the three-port exhibits equal
impedance levels at all ports. However, when the three-port has unequal impedance
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levels at the ports - as is the case for a split-T power divider - the unnormalised voltage
scattering matrix T is used. T relates the amplitudes of (unnormalised) incoming and
outgoing voltage waves throughd1

d2

d3

 =

T11 T12 T13

T21 T22 T23

T31 T32 T33

c1c2
c3

 . (E.13)

The unnormalised voltage wave amplitudes are related to the normalised ones
through [1]

di = gibi, (E.14)
ci = giai, (E.15)

for i = 1, 2, 3, where

gi =
√
Zi0. (E.16)

Zi0 is the impedance level at port i.
With use of equations (E.12) to (E.16) we find

d1 = g1b1 = g1S11a1 + g1S12a2 + g1S13a3 =
T11c1 + T12c2 + T13c3 =

T11g1a1 + T12g2a2 + T13g3a3, (E.17)

and thus

S11 = T11, (E.18)

S12 =
g2
g1
T12, (E.19)

S13 =
g3
g1
T13. (E.20)

In the same way we find

S21 =
g1
g2
T21, (E.21)

S22 = T22, (E.22)

S23 =
g3
g2
T23, (E.23)

and

S31 =
g1
g3
T31, (E.24)

S32 =
g2
g3
T32, (E.25)

S33 = T33. (E.26)
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Using the reciprocity of the S-matrix [1], we find

T12 =
(
g1
g2

)2

T21, (E.27)

T13 =
(
g1
g3

)2

T31, (E.28)

and

T23 =
(
g2
g3

)2

T32. (E.29)
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Appendix F
Voltage Incident at a

Transmission Line

For a transmission line connected at one side to a generator with internal impedance equal
to the characteristic impedance of the transmission line and connected at the other side to
a load also equal to the characteristic impedance, the incident voltage on the transmission
line is equal to half the generator voltage.

In the even and odd mode analysis of a split-T power divider, we stated that the
incident voltage at a transmission line is half the generator voltage. In this appendix
we will show that this is true.

Therefore we start with the circuit as shown in figure F.1.
The voltage at the beginning (s = 0) and end of the line (s = l) are found by

inspection from figure F.1

V (0) = E − ZGI(0), (F.1)
V (l) = ZLI(l). (F.2)

The voltage and current along the transmission line may be written as, see also
appendix D

V (s) = Ae−γs +Be+γs, (F.3)

I(s) =
A

Zc
e−γs − B

Zc
e+γs, (F.4)

Array and Phased Array Antenna Basics Hubregt J. Visser
c© 2005 John Wiley & Sons, Ltd



350 VOLTAGE INCIDENT AT A TRANSMISSION LINE

ZG

E

I(0)

ZL
Zc

s

s=0 s=l

ZG

E

I(0)

ZL
Zc

s

s=0 s=l

Fig. F.1 Transmission line of length l and characteristic impedance Zc connected at one
side to a generator of voltage E and internal impedance ZG and at the other side to a load
impedance ZL.

where γ is the propagation constant, A is the complex voltage wave amplitude of the
voltage wave going to the right and B is the complex voltage wave amplitude of the
voltage wave going to the left.

Substitution of equations (F.3) and (F.4) for s = 0 into equation (F.1) gives(
1 +

ZG
Zc

)
A = E −

(
1 − ZG

Zc

)
B. (F.5)

Substitution of equations (F.3) and (F.4) for s = l into equation (F.2) gives(
1 − ZL

Zc

)
Ae−γl = −

(
1 +

ZL
Zc

)
Be+γl. (F.6)

From equations (F.5) and (F.6) we obtain:

A = − Zc (Zc + ZL) e+γlE
(Zc − ZG) (Zc − ZL) e−γl − (Zc + ZG) (Zc + ZL) e+γl

, (F.7)

B =
Zc (Zc − ZL) e−γlE

(Zc − ZG) (Zc − ZL) e−γl − (Zc + ZG) (Zc + ZL) e+γl
. (F.8)

If Zc = ZL, then

A =
ZcE

Zc + ZG
, (F.9)

and
B = 0. (F.10)

If also Zc = ZG, we finally find that

A =
1
2
E. (F.11)



Appendix G
Cascaded Scattering

Matrices

A split-T Power divider in microstrip or any other transmission line technology may be
analysed as consisting of a basic power divider and two impedance transformers. The
basic power divider is a transmission line of desired characteristic impedance that splits
into two transmission lines of zero length with characteristic impedances determined by
the desired power ratio of the two outputs. The impedance transformers are transmission
lines of quarter lambda length at the centre frequency that transform these impedance
levels to the desired characteristic impedance. The basic power divider may be described
by a 3 × 3 scattering matrix, each impedance transformer may be described by a 2 × 2
scattering matrix. The overall scattering matrix may be described by a 3 × 3 scattering
matrix.

The cascading process of the basic power divider and the two impedance transformers
is schematically shown in figure G.1.

The scattering matrix of the basic power divider is denoted S, the scattering
matrices of the two impedance transformers are denoted S′, respectively S′′.
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a2
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S

Fig. G.1 Cascading of three-port and two two-ports.

The complex amplitudes of outgoing waves and incoming waves of the basic power
divider are related through, see figure G.1

b1 = S11a1 + S12a2a + S13a3a, (G.1)
b2a = S21a1 + S22a2a + S23a3a, (G.2)
b3a = S31a1 + S32a2a + S33a3a. (G.3)

The complex amplitudes of outgoing waves and incoming waves of the impedance
transformer at the left of figure G.1 are related through

a2a = S′
11b2a + S′

12a2, (G.4)
b2 = S′

21b2a + S′
22a2, (G.5)

and for the impedance transformer at the right of the figure, we find

a3a = S′′
11b3a + S′′

12a3, (G.6)
b3 = S′′

21b3a + S′′
22a3. (G.7)

Substitution of equations (G.4) and (G.6) into equations (G.1), (G.2) and (G.3)
results in

b1 = S11a1 + S12S
′
11b2a + S12S

′
12a2 + S13S

′′
11b3a + S13S

′′
12a3, (G.8)

b2A = S21a1 + S22S
′
11b2a + S22S

′
12a2 + S23S

′′
11b3a + S23S

′′
12a3, (G.9)

b3A = S31a1 + S32S
′
11b2a + S32S

′
12a2 + S33S

′′
11b3a + S33S

′′
12a3. (G.10)

Rearranging the terms in equation (G.10) leads to

b3a =
S31

1 − S33S′′
11

a1 +
S32S

′
12

1 − S33S′′
11

a2 +
S33S

′
12

1 − S33S′′
11

a3 +
S32S

′
11

1 − S33S′′
11

b2a. (G.11)
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Substitution of equation (G.11) in equation (G.9) results in an expression for b2a
in terms of a1, a2 and a3

b2a =
S21(1 − S33S

′′
11) + S23S

′′
11S31

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

a1 +

S22S
′
12(1 − S33S

′′
11) + S23S

′′
11S32S

′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

a2 +

S23S
′′
12(1 − S33S

′′
11) + S23S

′′
11S33S

′′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

a3. (G.12)

Then, upon substitution of equation (G.12) into equation (G.11) we find for b3a

b3a =
[

S31

(1 − S33S′′
11)

+

S32S
′
11

(1 − S33S′′
11)

S21(1 − S33S
′′
11) + S23S

′′
11S31

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

]
a1 +[

S32S
′
12

(1 − S33S′′
11)

+

S32S
′
11

(1 − S33S′′
11)

S22S
′
12(1 − S33S

′′
11) + S23S

′′
11S32S

′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

]
a2 +[

S33S
′′
12

(1 − S33S′′
11)

+

S32S
′
11

(1 − S33S′′
11)

S23S
′′
12(1 − S33S

′′
11) + S23S

′′
11S33S

′′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

]
a3. (G.13)

Substitution of equations (G.12) and (G.13) in, respectively, equations (G.8), (G.5)
and (G.7), bearing in mind that the scattering matrix of the complete cascaded system
is given by b1b2

b3

 =

ST11 ST12 ST13
ST21 ST22 ST23
ST31 ST32 ST33

a1

a2

a3

 , (G.14)

finally yields for the scattering coefficients

ST11 = S11 + S12S
′
11

S21(1 − S33S
′′
11) + S23S

′′
11S31

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

+

S13S
′′
11

[
S31

1 − S33S′′
11

+

S32S
′
11

1 − S33S′′
11

S21(1 − S33S
′′
11) + S23S

′′
11S31

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

]
, (G.15)



354 CASCADED SCATTERING MATRICES

ST12 = S12S
′
12 + S12S

′
11

S22S
′
12(1 − S33S

′′
11) + S23S

′′
11S32S

′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

+

S13S
′′
11

[
S32S

′
12

1 − S33S′′
11

+

S32S
′
11

1 − S33S′′
11

S22S
′
12(1 − S33S

′′
11) + S23S

′′
11S32S

′
12

(1 − S22S′
11)(1 − S33S”11) − S23S′′

11S32S′
11

]
, (G.16)

ST13 = S13S
′′
12 + S12S

′
11

S23S
′′
12(1 − S33S

′′
11) + S23S

′′
11S33S

′′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

+

S13S
′′
11

[
S33S

′′
12

1 − S33S′′
11

+

S32S
′
11

1 − S33S′′
11

S23S
′′
12(1 − S33S

′′
11) + S23S

′′
11S33S

′′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

]
, (G.17)

ST21 = S′
21

S21(1 − S33S
′′
11) + S23S

′′
11S31

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

, (G.18)

ST22 = S′
22 + S′

21

S22S
′
12(1 − S33S

′′
11) + S23S

′′
11S32S

′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

, (G.19)

ST23 = S′
21

S23S
′′
12(1 − S33S

′′
11) + S23S

′′
11S33S

′′
12

(1 − S22S′
11)(1 − S33S′′

11) − S23S′′
11S32S′

11

, (G.20)

ST31=S
′′
21

[
S31
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11S31
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]
,
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+
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Grouping common terms results in the following - easier to handle - equations for
the elements of the split-T power divider scattering matrix

ST11 = S11 + S31G+ FC, (G.24)

ST12 = S12S
′
12 + S32S

′
12G+ FD, (G.25)

ST13 = S13S
′′
12 + S33S”12G+ FE, (G.26)

ST21 = S′
21C, (G.27)

ST22 = S′
22 + S′

21D, (G.28)

ST23 = S′
21E, (G.29)

ST31 = S′′
21

[
S31

A
+HC

]
, (G.30)

ST32 = S′′
21

[
S32S

′
12

A
+HD

]
, (G.31)

ST33 = S′′
22 + S′′

21

[
S33S

′′
12

A
+HE

]
, (G.32)

where

A = 1 − S33S
′′
11, (G.33)

B = A(1 − S22S
′
11) − S23S

′′
11S32S

′
11, (G.34)

C =
S21A+ S23S

′′
11S31

B
, (G.35)

D =
S22S

′
12A+ S23S

′′
11S32S

′
12

B
, (G.36)

E =
S23S

′′
12A+ S23S

′′
11S33S

′′
12

B
, (G.37)

F = S12S
′
11 +

S13S
′′
11S32S

′
11

A
, (G.38)

G =
S13S

′′
11

A
, (G.39)

H =
S32S

′
11

A
. (G.40)
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Ørsted, 2

ABCD matrix, 158
accelerated charge, 10–12
active element pattern, 303
active impedance, 187
Ampère, 2
amplitude weighting, 133
anechoic chamber, 233, 300
antenna, 31
antenna impedance, 105
antenna under test, 233
anti-parallel currents, 2
array antenna, 48
array factor, 127, 131, 203, 223, 245, 258,

270
attenuation constant, 335, 338
audion, 39
axial ratio, 110, 280

back lobe, 89, 182, 183, 198
barretter, 38
battery, 1
beam broadening, 206
beamwidth, 102
Bell, 98
blind scan angle, 311
Boot, 58

Branly, 29

capacitor, 8, 18, 20
cascading, 351
cavity, 138
cavity magnetron, 58
characteristic impedance, 336
circular array antenna, 270, 289
circular polarisation, 107, 110, 278
circular sector array, 270
co-polarisation, 280
coherer, 29
coil, 4, 5, 9, 19
compact antenna test range, 301
complex conjugate, 316
complex impedance, 319
complex numbers, 315
conformal (phased) array antenna, 269,

275
continuous waves, 37
corporate feeding network, 127
cross product, 324
cross-polarisation, 280, 283
cut-off wavelength, 225

design rule, 148
diagonal plane, 263
digitally switched phase shifter, 216
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diode, 38
dipole, 17, 19, 24, 26, 43, 87, 178, 189,

194
direction cosines, 256, 322
directivity, 36, 41, 77, 101, 123, 246
displacement current, 8, 9
distributed transmission line parameters,

334
dot product, 324

E-plane, 102, 195
earth, 31
effective aperture, 113, 329
effective dimensions, 144
effective loss tangent, 141
electric field lines, 7
electromagnetic induction, 4, 8
electromagnetic radiation, 18
electromagnetic wave, 8, 12
electromagnetism, 2, 8
element factor, 127, 245
element radiation pattern, 245
elliptical polarisation, 109
endfire, 128, 177, 179
even excitation, 154

far-field, 85, 142
far-field antenna range, 299
far-field condition, 87, 137, 299
Faraday, 4
feed network, 201
Fessenden, 37
field, 8
Fleming, 36
flux, 5, 14
force lines, 5
frequency scanning, 214, 225
Friis transmission equation, 116
full-wave, 137, 238

gain, 101
Galvani, 2
grating lobe, 131, 132, 180, 211, 224, 255
grating lobe condition, 211
grating lobe diagrams, 256, 263
grazing incidence, 144
grounded dielectric, 144
grounded dielectric slab, 144

H-plane, 102, 195
Hülsmeyer, 51
half-power beamwidth, 102

Hansen–Woodyard endfire, 183
helical antenna, 74
Helmholtz equation, 335
Hertz, 19
Hertz’s oscillator, 28
higher order modes, 146
Huff Duff, 67

identification friend or foe, 61
imaginary numbers, 315
impedance transformer, 158, 342
induction, 19
inductor, 18, 20
input impedance, 138, 140, 165, 187, 295
invisible region, 181, 212
invisible space, 256
isotropic radiator, 41, 76, 83, 98

kinks, 11
Knochenhauer spirals, 19
Kraus, 74

Lee de Forest, 39
left hand circular polarisation, 280
Leyden jar, 19
line stretcher, 216
linear array antenna, 123
linear broadside array antenna, 126
linear phased array antenna, 203
linear polarisation, 107
Lodge, 29
loop, 2, 14, 24
loop antenna, 67

magnet, 2, 5
magnetic field, 5
magnetic field lines, 5, 14
main lobe, 88, 258
Marconi, 28
matched load, 223
Maxwell, 8
microstrip patch antenna, 75, 279
microstrip patch array antenna, 137
microstrip patch radiator, 137
microstrip transmission line, 144
mitre, 162
monopole, 7, 32, 43, 73
Morse writer, 30
mutual coupling, 127, 178, 185, 187, 202,

245, 297, 304
mutual impedance, 186, 189
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near-field antenna measurement range,
302

nonresonant slotted waveguide array, 223

odd excitation, 155
oscillating currents, 13
oscillation, 22

parabolic reflector, 27, 46, 48
parallel currents, 2
pattern multiplication, 128, 178, 303
phase constant, 335, 338
phase shifting, 212
phase taper, 78, 179, 203, 223, 258, 312
phased array antenna, 76, 202
pillbox antenna, 69
plan position indicator, 54
planar array antenna, 241
polarisation, 107, 270
power divider, 150
power pattern, 96
principal planes, 102, 247, 257, 281
probe, 140
projected aperture, 277
propagation constant, 335, 337

quality factor, 142
quarter lambda impedance transformer,

159
quiet zone, 301

radar, 50
radar absorbing material, 300
radar cross-section, 118
radar equation, 119
radiated fields, 84
radiating near-field, 84
radiating slot, 143
radiation efficiency, 101
radiation fields, 84
radiation pattern, 88, 138
radiation resistance, 103
radio equation, 116
Randall, 58
reactive fields, 84
reactive loading, 288
reactive near-field, 84
reciprocity, 101, 244
rectangular slotted waveguide array

antenna, 222
Reggia–Spencer phase shifter, 219
relativity, 10

resistor, 20
resonance, 22–24
resonant slotted waveguide array

antenna, 222
right hand circular polarisation, 280

scalar product, 324
scan element pattern, 303
scattering matrix, 344
self-coupling, 295
self-impedance, 191
sequential rotation and phasing, 278
serpentine feeding, 228
short dipole antenna, 83
side lobe, 89, 131, 252
slant range, 299
spark gap, 23
standing waves, 24
storage field, 7, 9
subarray, 138, 165, 166, 283

Taylor one-parameter distribution, 230
thermionic valve, 38
time harmonic signal, 124, 335
transmission line discontinuity, 161
travelling wave array antenna, 221
triode, 39
tuning, 33

uniform amplitude weighting, 230
uniform aperture distribution, 126
unnormalised scattering matrix, 152

vector effective length, 114
vector product, 324
vector projection, 244
visible region, 212
visible space, 224, 256
Volta, 2
voltage radiation pattern, 246
voltaic pile, 2
volume (phased) array antenna, 277

Watson-Watt, 51
wave equation, 335
wave function, 125
wave propagation, 9
wavefront, 124
waveguide simulator, 311, 313
Wilkinson power divider, 150
WR90, 231

Yagi–Uda, 177, 178, 188, 196, 287
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