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FOR ALL APPLICATIONS, THIRD EDITION.  All problems are solved for which 
answers appear in Appendix F of the text, and in addition, solutions are given for a large 
fraction of the other problems.  Including multiple parts, there are 600 problems in the 
text and solutions are presented here for the majority of them. 
 
 Many of the problem titles are supplemented by key words or phrases alluding to the 
solution procedure.  Answers are indicated.  Many tips on solutions are included which 
can be passed on to students. 
 
 Although an objective of problem solving is to obtain an answer, we have endeavored 
to also provide insights as to how many of the problems are related to engineering 
situations in the real world. 
 
 The Manual includes an index to assist in finding problems by topic or principle and 
to facilitate finding closely-related problems. 
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Chapter 2.  Antenna Basics   
 

2-7-1.  Directivity. 
Show that the directivity D of an antenna may be written 
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Solution: 
 
 

avU
UD max),( φθ

=

,     2
maxmax ),(),( rSU φθφθ = ,     ∫∫ Ω=

π
φθ

π 4
),(

4
1 dUU av  

 
2),(),( rSU φθφθ = ,   ( ) ( )

Z
EES φθφθφθ ,,),(

∗

=  

Therefore    
( ) ( )

( ) ( )
∫∫ Ω

= ∗

∗

π

φθφθ
π

φθφθ

4

2

2maxmax

,,
4
1

,,

dr
Z
EE

r
Z
EE

D       q.e.d. 

 
Note that =2r area/steradian, so 2SrU =   or   (watts/steradian) = (watts/meter2) ×  meter2 

 

2-7-2.  Approximate directivities. 
Calculate the approximate directivity from the half-power beam widths of a unidirectional 
antenna if the normalized power pattern is given by:  (a) Pn = cos θ, (b) Pn = cos2 θ, (c) Pn 
= cos3 θ, and (d) Pn = cosn θ.  In all cases these patterns are unidirectional (+z direction) 
with Pn having a value only for zenith angles 0° ≤ θ ≤ 90° and Pn = 0 for 90° ≤ θ ≤ 180°.  
The patterns are independent of the azimuth angle φ. 
 
Solution: 
 

(a) oo1
HP 12060  2)5.0(cos2 =×== −θ ,  278

)120(
000,40

2 ==D    (ans.) 

(b) oo1
HP 9045  2)5.0(cos2 =×== −θ ,    94.4

)90(
000,40

2 ==D    (ans.) 
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(c) oo31
HP 93.7437.47  2)5.0(cos2 =×== −θ , 3.7

)75(
000,40

2 ==D    (ans.) 

2-7-2.  continued 

(d) )5.0(cos2 1
HP

n−=θ ,       21 ))5.0((cos
000,10
nD −=    (ans.) 

 

*2-7-3.  Approximate directivities. 
Calculate the approximate directivities from the half-power beam widths of the three 
unidirectional antennas having power patterns as follows: 
 

P(θ,φ) = Pm sin θ sin2 φ 
 

P(θ,φ) = Pm sin θ sin3 φ 
 

P(θ,φ) = Pm sin2 θ sin3 φ 
 
P(θ,φ) has a value only for 0 ≤ θ ≤ π and 0 ≤ φ ≤ π and is zero elsewhere.  
 
Solution: 
To find D using approximate relations,  
 
we first must find the half-power beamwidths. 
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For sin2 θ  pattern,   
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3 2
1

2
HPBW90sin =






 − ,   ∴ oHPBW 74.9=  

*2-7-3.  continued 
Thus, 
 

70.3
)90)(120(

000,4082.3
)90)(120(

253,41 deg. sq. 253,41
HPHP

=≅===
φθ

D    (ans.)  

  

45.4
)9.74)(120(

000,4059.4
)9.74)(120(

253,41
=≅==    (ans.) 

 

93.5
)9.74)(90(

000,4012.6
)9.74)(90(

253,41
=≅==    (ans.) 

 
 

*2-7-4.  Directivity and gain. 
(a) Estimate the directivity of an antenna with θHP = 2°, φHP = 1°, and (b) find the gain of 
this antenna if efficiency k = 0.5. 
 
Solution: 

(a) 4

HPHP

100.2
)1)(2(

000,40000,40
×===

φθ
D    or   43.0 dB   (ans.) 

 
(b) 44 100.1)100.2(5.0 ×=×== kDG    or   40.0 dB   (ans.) 

 

2-9-1.  Directivity and apertures. 
Show that the directivity of an antenna may be expressed as 
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where E(x, y) is the aperture field distribution. 
 
Solution:  If the field over the aperture is uniform, the directivity is a maximum (= Dm) 
and the power radiated is P′ .  For an actual aperture distribution, the directivity is D and 
the power radiated is P.  Equating effective powers 

for P(θ,φ) = sin θ sin2φ 

for P(θ,φ) = sin θ sin3φ 

for P(θ,φ) = sin2 θ sin3φ 
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2-9-1.  continued 
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2-9-2.  Effective aperture and beam area. 
What is the maximum effective aperture (approximately) for a beam antenna having half-
power widths of 30° and 35° in perpendicular planes intersecting in the beam axis?  
Minor lobes are small and may be neglected. 
 
Solution: 

  o o
HP HP 30 35 ,A θ φΩ ≅ = ×   22

oo

22
1.3

3530
3.57 λλλ

=
×

≅
Ω

=
A

emA    (ans.) 

 

*2-9-3.  Effective aperture and directivity. 
What is the maximum effective aperture of a microwave antenna with a directivity of 
900? 
 

Solution: 24 / ,emD Aπ λ=  2
2

6.71
4
900

4
2

λλ
ππ

λ
===

DAem    (ans.) 

 

2-11-1.  Received power and the Friis formula. 
What is the maximum power received at a distance of 0.5 km over a free-space 1 GHz 
circuit consisting of a transmitting antenna with a 25 dB gain and a receiving antenna 
with a 20 dB gain?  The gain is with respect to a lossless isotropic source.  The 
transmitting antenna input is 150 W. 
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Solution: 
 

2 2
8 9/ 3 10 /10 0.3 m,            ,           

4 4
t r

et er
D Dc f A Aλ λλ

π π
= = × = = =  

2-11-1.  continued 
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*2-11-2.  Spacecraft link over 100 Mm. 
Two spacecraft are separated by 100 Mm.  Each has an antenna with D = 1000 operating 
at 2.5 GHz.  If craft A's receiver requires 20 dB over 1 pW, what transmitter power is 
required on craft B to achieve this signal level? 
 
Solution: 

2
8 9/ 3 10 / 2.5 10 0.12 m,       

4et er
Dc f A A λλ

π
= = × × = = =

12 10

2 2 2 2 2 2 2 1 6 2
10

2 2 4 2 2 6 2
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(4 ) (4 ) 10 (4 )10 10966 W 11 kW   ( )
10 0.12

r

t r r r
et

P
r r rP P P P ans.
A D D
λ π λ π π

λ λ

− −

−

= × =

= = = = = ≅

 

2-11-3.  Spacecraft link over 3 Mm. 
Two spacecraft are separated by 3 Mm.  Each has an antenna with D = 200 operating at 2 
GHz.  If craft A's receiver requires 20 dB over 1 pW, what transmitter power is required 
on craft B to achieve this signal level? 
 
Solution: 

2
8 9/ 3 10 / 2 10 0.15 m                             

4et er
Dc f A A λλ

π
= = × × = = =  

12 10
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2-11-4.  Mars and Jupiter links. 
(a) Design a two-way radio link to operate over earth-Mars distances for data and picture 
transmission with a Mars probe at 2.5 GHz with a 5 MHz bandwidth.  A power of 10-19 
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W Hz-1 is to be delivered to the earth receiver and 10-17 W Hz-1 to the Mars receiver.  The 
Mars antenna must be no larger than 3 m in diameter.  Specify effective aperture of Mars 
and earth antennas and transmitter power (total over entire bandwidth) at each end.  Take 
earth-Mars distance as 6 light-minutes. (b) Repeat (a) for an earth-Jupiter link.  Take the 
earth-Jupiter distance as 40 light-minutes.  
 

2-11-4.  continued 
Solution: 
 
(a)  8 9/ 3 10 / 2.5 10 0.12 mc fλ = = × × =  

19 6 13

17 6 11

(earth) 10 5 10 5 10  W

(Mars) 10 5 10 5 10  W
r

r

P
P

− −

− −

= × × = ×

= × × = ×  

Take  )5.0(   m 5.31.5(1/2)Mars)( ap
22 === επeA  

Take  kW 1Mars)( =tP  

Take  )5.0(   m 35051(1/2)earth)( ap
22 === επeA  

 

MW 9.6
3505.3

12.0)103360(105)earth(

Mars)(earth)(
Mars)()earth(

228
11

22

=
×

××
×=

=

−
t

etet
rt

P

AA
rPP λ

 

To reduce the required earth station power, take the earth station antenna  
 

22 m 392750   )2/1( == πeA    (ans.) 
so 

6 2(earth) 6.9 10 (15 / 50) 620 kW   ( )tP ans.= × =  
 

 W108
12.0)103360(

39305.310earth)(Mars)(Mars)()earth( 14
228

3
22

−×=
××
×

==
λr
AAPP eret

tr  

which is about 16% of the required 5 x 10−13 W.  The required 5 x 10−13 W could be 
obtained by increasing the Mars transmitter power by a factor of 6.3.  Other alternatives 
would be (1) to reduce the bandwidth (and data rate) reducing the required value of Pr or 
(2) to employ a more sensitive receiver. 
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As discussed in Sec. 12-1, the noise power of a receiving system is a function of its 
system temperature T and bandwidth B as given by P = kTB, where k = Boltzmann’s 
constant = 1.38 x 10−23 JK−1. 
 
For B = 5 x 106 Hz (as given in this problem) and T = 50 K (an attainable value), 

 
 W105.310550101.38noise)( 15623 −− ×=××××=P  

 

2-11-4.  continued 

The received power (8 x 10−14 W) is about 20 times this noise power, which is probably 
sufficient for satisfactory communication.  Accordingly, with a 50 K receiving system 
temperature at the earth station, a Mars transmitter power of 1 kW is adequate. 
 
(b)  The given Jupiter distance is 40/6 = 6.7 times that to Mars, which makes the 
required transmitter powers 6.72 = 45 times as much or the required receiver powers 1/45 
as much. 
 
Neither appears feasible.  But a practical solution would be to reduce the bandwidth for 
the Jupiter link by a factor of about 50, making B = (5/50) x 106 = 100 kHz. 

 

*2-11-5.  Moon link. 
A radio link from the moon to the earth has a moon-based 5λ long right-handed mono-
filar axial-mode helical antenna (see Eq. (8-3-7)) and a 2 W transmitter operating at 1.5 
GHz.  What should the polarization state and effective aperture be for the earth-based 
antenna in order to deliver 10-14 W to the receiver?  Take the earth-moon distance as 1.27 
light-seconds. 
 
Solution: 
 

8 9/ 3 10 /1.5 10 0.2 m,                    c fλ = = × × =  
 
From (8-3-7) the directivity of the moon helix is given by 

60512 =×=D     and    
π
λ

4
)moon(

2D
Aet =  

From Friis formula 
 

RCPm 152
602

4)27.110(310)4( 2
2814

2

2222
=

×
××

===
− π

λ
λπλ

DP
rP

AP
rPA

t

r

ett

r
er  or   

                about 14 m diameter   (ans.) 
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2-16-1.  Spaceship near moon. 
A spaceship at lunar distance from the earth transmits 2 GHz waves.  If a power of 10 W 
is radiated isotropically, find (a) the average Poynting vector at the earth, (b) the rms 
electric field E at the earth and (c) the time it takes for the radio waves to travel from the 
spaceship to the earth. (Take the earth-moon distance as 380 Mm.) (d) How many 
photons per unit area per second fall on the earth from the spaceship transmitter? 
 
 

2-16-1.  continued 
Solution: 

(a) 2218
262 aWm 5.5 Wm105.5

)10(3804
10

4
earth)(at  PV −−− =×=

×
==

ππ r
Pt    (ans.) 

 
(b) ZES /PV 2==     or   2/1)(SZE =   
       or   192/118 nVm 451045)377105.5( −−− =×=××=E    (ans.) 
 
(c) s 27.1103/10380/ 86 =××== crt    (ans.) 
 
(d) Photon = hf J 103.11021063.6 24934 −− ×=×××= ,   where Js 1063.6 34−×=h  
This is the energy of a 2.5 MHz photon.  From (a), 2118 mJs 105.5 PV −−−×=  
 

Therefore, number of photons = 126
24

18
sm 102.4

103.1
105.5 −−

−

−

×=
×
×    (ans.) 

 

2-16-2.  More power with CP. 
Show that the average Poynting vector of a circularly polarized wave is twice that of a 
linearly polarized wave if the maximum electric field E is the same for both waves.  This 
means that a medium can handle twice as much power before breakdown with circular 
polarization (CP) than with linear polarization (LP). 
 
Solution: 

From (2-16-3) we have for rms fields that   
o

2
2

2
1PV

Z
EESav

+
==  

For LP,  
2

1
2 1

o

 (or ) 0,   so  av
EE E S
Z

= =                  

For CP,  
2

1
1 2

o

2 ,   so  av
EE E S
Z

= =  

Therefore    LPCP 2SS =    (ans.) 
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2-16-3.  PV constant for CP. 
Show that the instantaneous Poynting vector (PV) of a plane circularly polarized traveling 
wave is a constant. 
 
Solution: 
 

tEtEE yx ωω sincosCP +=        where oEEE yx ==  

2-16-3.  continued 
2 2 2 2 1/ 2 2 2 1/ 2

CP o o o o( cos sin ) (cos sin )E E t E t E t t Eω ω ω ω= + = + =   (a constant) 

Therefore 
Z
ES

2
oous)instantane(or  PV =    (a constant)   (ans.) 

 

*2-16-4.  EP wave power 
An elliptically polarized wave in a medium with constants σ = 0, µr = 2, εr = 5 has H-
field components (normal to the direction of propagation and normal to each other) of 
amplitudes 3 and 4 A m-1.  Find the average power conveyed through an area of 5 m2 
normal to the direction of propagation. 
 
Solution: 
 

2222/12
2

2
1

2/12
2

2
1  Wm2980)43()5/2(377

2
1)()/(377

2
1)(

2
1 −=+=+=+= HHHHZS rrav εµ

 
kW 14.9 W1490229805 ==×== avASP    (ans.) 

 

2-17-1.  Crossed dipoles for CP and other states. 
Two λ/2 dipoles are crossed at 90°.  If the two dipoles are fed with equal currents, what is 
the polarization of the radiation perpendicular to the plane of the dipoles if the currents 
are (a) in phase, (b) phase quadrature (90° difference in phase) and (c) phase octature (45° 
difference in phase)? 
 
Solution: 
 
(a) LP   (ans.)  
 
(b) CP   (ans.) 
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(c) From (2-17-3)  δγε sin2sin2sin =  
1

2 1

1
2

where tan ( / ) 45

45
22

AR cot 1/ tan 2.41   (EP)...( )

E E

ans.

γ

δ

ε
ε ε

−= =

=

=
= = =






 

 

*2-17-2.  Polarization of two LP waves. 
A wave traveling normally out of the page (toward the reader) has two linearly polarized 
components 

tEx ωcos2=  
 

( )90cos3 += tEy ω  
 

(a) What is the axial ratio of the resultant wave? 
(b) What is the tilt angle τ of the major axis of the polarization ellipse? 
(c) Does E rotate clockwise or counterclockwise? 
 
Solution: 
 
(a) From (2-15-8) ,   5.12/3AR ==    (ans.) 
 
(b) τ = 90o    (ans.) 
 
(c) At 0,  ;xt E E= =  at  / 4,   yt T E E= = − ,  therefore rotation is CW   (ans.) 

 

2-17-3.  Superposition of two EP waves. 
A wave traveling normally outward from the page (toward the reader) is the resultant of 
two elliptically polarized waves, one with components of E given by 

 
tE y ωcos2=′      and     ( )2cos6 πω +=′ tEx  

and the other with components given by    tEy ωcos1=′′    and    ( )2cos3 πω −=′′ tEx  
(a) What is the axial ratio of the resultant wave? 
(b) Does E rotate clockwise or counterclockwise? 
 
Solution: 
 

2cos cos 3cos

6cos( / 2) 3cos( / 2) 6sin 3sin 3sin
y y y

x x x

E E E t t t
E E E t t t t t

ω ω ω

ω π ω π ω ω ω

′ ′′= + = + =

′ ′′= + = + + − = − + = −
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(a) Ex and Ey are in phase quadrature and AR 3/ 3 1  (CP)= =    (ans.) 
 
(b) At ˆ0,  3t = =E y ,   at ˆ/ 4,  3t T= = −E x ,  therefore rotation is CCW   (ans.) 

 

*2-17-4.  Two LP components.  
An elliptically polarized plane wave traveling normally out of the page (toward the 
reader) has linearly polarized components Ex and Ey.  Given that Ex = Ey = 1 V m-1 and 
that Ey leads Ex by 72°, 
(a) Calculate and sketch the polarization ellipse. 
(b) What is the axial ratio? 
(c) What is the angle τ between the major axis and the x-axis? 
 
Solution: 
(b) oo

12
1 72   ,45)/(tan === − δγ EE  

 From (2-17-3), o36=ε ,  therefore 38.1tan/1AR == ε    (ans.) 
 
(c) From (2-17-3),  δε tan/2tanτ2sin =    or   o45τ =    (ans.) 

 

2-17-5.  Two LP components and Poincaré sphere. 
Answer the same questions as in Prob. 2-17-4 for the case where Ey leads Ex by 72° as 
before but Ex = 2 V m-1 and Ey = 1 V m-1. 
 
Solution: 
 

1 o

o

(b)     tan 2 63.4
72

γ

δ

−= =

=
  

 17.2AR   and   8.24 o ==ε    (ans.) 
 
(c) o2.11τ =    (ans.) 

 

*2-17-6.  Two CP waves. 
Two circularly polarized waves intersect at the origin.  One (y-wave) is traveling in the 
positive y direction with E rotating clockwise as observed from a point on the positive y-
axis.  The other (x-wave) is traveling in the positive x direction with E rotating clockwise 
as observed from a point on the positive x-axis.  At the origin, E for the y-wave is in the 
positive z direction at the same instant that E for the x-wave is in the negative z direction.  
What is the locus of the resultant E vector at the origin? 
 
Solution: 
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Resolve 2 waves into components or make sketch as shown.  It is assumed that the waves 
have equal magnitude. 

*2-17-6.  continued 

 
Locus of E is a straight line in xy plane at an angle of 45o with respect to x (or y) axis.    

 

*2-17-7.  CP waves. 
A wave traveling normally out of the page is the resultant of two circularly polarized 
components tj

right eE ω5=  and ( )902 += tj
left eE ω  (V m-1).  Find (a) the axial ratio AR, (b) 

the tilt angle τ and (c) the hand of rotation (left or right). 
 
Solution: 

 
(a) AR 33.23/7

52
52

−=−=
−
+

=    (ans.)    [Note minus sign for RH (right-handed 
polarization)] 
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(b) From diagram, τ o45−=    (ans.) 
 
(c) Since E rotates counterclockwise as a function of time, RH.   (ans.) 

 

2-17-8.  EP wave. 
A wave traveling normally out of the page (toward the reader) is the resultant of two 
linearly polarized components tEx ωcos3=  and ( )90cos2 += tE y ω .  For the resultant 
wave find (a) the axial ratio AR, (b) the tilt angle τ and (c) the hand of rotation (left or 
right). 
 
Solution: 
 
(a) AR = 3/2 = 1.5   (ans.) 
 
(b) τ  = 0o   (ans.) 
 
(c) CW,  LEP   (ans.) 

 

*2-17-9.  CP waves. 
Two circularly polarized waves traveling normally out of the page have fields given by 

tj
left eE ω−= 2  and tj

right eE ω3=  (V m-1) (rms).  For the resultant wave find (a) AR, (b) the 
hand of rotation and (c) the Poynting vector. 
 
Solution: 

(a) 5
3-2
32AR −=

+
=    (ans.) 

 
(b) REP   (ans.) 
 

(c) 22
22

mWm 34 Wm034.0
377

94PV −− ==
+

=
+

=
Z

EE RL    (ans.) 

 

2-17-10.  EP waves. 
A wave traveling normally out of the page is the resultant of two elliptically polarized 
(EP) waves, one with components tEx ωcos5=  and tE y ωsin3=  and another with 

components tj
r eE ω3=  and tj

l eE ω−= 4 .  For the resultant wave, find (a) AR, (b) τ and 
(c) the hand of rotation. 
 
Solution: 
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(a) 

 
ttttE

ttttE

y

x

ωωωω
ωωωω

sin2sin4sin3sin3
cos12cos4cos3cos5

=−+=
=++=

 

2-17-10.  continued 
  
  AR 62/12 ==    (ans.) 
 
(b) Since Ex and Ey are in time-phase quadrature with Ex(max) > Ey(max), τ = 0o. 

Or from (2-17-3),   δε tan/2tanτ2sin = ,    o1 46.9)AR/1(tan == −ε  
but o90=δ   so   ∞=δtan  
Therefore  o0τ =    (ans.) 

 
(c) At  0  ,12  ,0 === yx EEt  

 At 2  ,0   ),90t(    4/ o ==== yx EETt ω  
 Therefore rotation is CCW, so polarization is right elliptical,    REP   (ans.) 

 

*2-17-11.  CP waves. 
A wave traveling normally out of the page is the resultant of two circularly polarized 
components tj

r eE ω2=  and ( )454 +−= tj
l eE ω .  For the resultant wave, find (a) AR, (b) τ 

and (c) the hand of rotation. 
 
Solution: 
 

(a) 3
2
6

24
24AR

1

1 ==
−
+

=
−
+

=
r

r

EE
EE    (ans.) 

(b) When o o
1

0 450,   2   and 4rt E Eω ____ −= = = ∠∠  
 
When   o o o1 1 1

2 2 2122 ,   2 22   and 4 22rt E Eω __ __= − = − = −∠ ∠  

so that   rEE +1 = 6max =E o1
222__−∠   or  o

2
122τ −=    (ans.) 

 
Note that the rotation directions are opposite for Er and E1 
 
so that for ,tω−   12   but   rE t E tω ω__ __= − = +∠ ∠  
 
Also, τ can be determined analytically by combining the waves into an Ex and Ey 
component with values of  

 

E  at t = T/4 

CCW 
 E  at t = 0 
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o o5.60 30.4       and     2.95 16.3x yE E__ __= − =∠ ∠  

from which o7.46−=δ  
 

*2-17-11.  continued 
 
Since from (a) AR = 3, ε can be determined and from (2-17-3), the tilt angle 

oτ 22.5    ( .)ans= −    
 
(c)  E1 > Er so rotation is  CW  (LEP)     (ans.) 

 

2-17-12.  Circular-depolarization ratio. 
If the axial ratio of a wave is AR, show that the circular-depolarization ratio of the wave 
is given by. 

AR 1
AR 1

R −
=

+
 

 
Thus, for pure circular polarization AR = 1 and R = 0 (no depolarization) but for linear 
polarization AR = ∞ and R = 1. 
 
 
Solution: 
 
Any wave may be resolved into 2 circularly-polarized components of opposite hand, Er 
and E1 for an axial ratio 
 

1

1

min

maxAR
EE
EE

E
E

r

r

−
+

==  

 

from which the circular depolarization ratio    
1AR
1AR1

+
−

==
rE

ER  

 
Thus for pure circular polarization, AR = 1 and there is zero depolarization (R = 0), while 
for pure linear polarization AR = ∞ and the depolarization ratio is unity (R =1).  When 
AR = 3,  R = ½. 
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Chapter 3.  The Antenna Family 
 

3-4-1.  Alpine-horn antenna. 
Referring to Fig. 3-4a, the low frequency limit occurs when the open-end spacing > λ/2 
and the high frequency limit when the transmission line spacing d ≈ λ/4.  If d = 2 mm and 
the open-end spacing = 1000 d, what is the bandwidth? 
 
Solution: 
 
D = opened end spacing,         d = transmission line spacing 
 

   Bandwidth = 1000

2

2
min

max

==
d
D

λ

λ

   (ans.) 

 

*3-4-2.  Alpine-horn antenna. 
If d = transmission line spacing, what open-end spacing is required for a 200-to-1 
bandwidth? 
 
Solution: 
 
If d = transmission line spacing min / 2λ=  and D = open-end spacing = 2/maxλ , 
 

for 200-to-1 bandwidth, we must have  
max

min

2 200,  or 200

2

D D d
d

λ

λ= = =    (ans.) 

 

*3-5-2.  Rectangular horn antenna. 
What is the required aperture area for an optimum rectangular horn antenna operating at 2 
GHz with 16 dBi gain? 
 
Solution: 
 
From Fig.  3-5 for m) 0.15( GHz 2 == λf , 
  

2
2

2

7.5 63.118 dBi 63.1,        0.19 m
7.5

whD wh λ
λ

= = = ∴ = =    (ans.) 
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*3-5-3.  Conical horn antenna. 
What is the required diameter of a conical horn antenna operating at 3 GHz with 14 dBi 
gain? 
 
Solution: 
 
From Fig. 3-5 for m) 0.1( GHz 3 == λf , 
  

2 2
2

2

6.5 15.812 dBi 15.8,         0.09 m ,    2 0.18 m
6.5

rD r d rπ λ
λ π

= = = ∴ = = = =    (ans.) 

 

3-7-2. Beamwidth and directivity 
 
For most antennas, the half-power beamwidth (HPBW) may be estimated as HPBW = 
κλ/D, where λ is the operating wavelength, D is the antenna dimension in the plane of 
interest, and κ is a factor which varies from 0.9 to 1.4, depending on the filed amplitude 
taper across the antenna.  Using this approximation, find the directivity and gain for the 
following antennas:  (a) circular parabolic dish with 2 m radius operating at 6 GHz, (b) 
elliptical parabolic dish with dimensions of 1 m × 10 m operated at 1 GHz.  Assume κ = 
1 and 50 percent efficiency in each case. 
 
Solution: 
 
From Fig.  3-9  for 1600 MHz ( 0.1875 m), f λ= =  
 

 17 dBi 50   (for 100% efficiency)G D= = =  
  

(a) 15 5050,     so   3.33
15

LD L λ λ
λ

= = = =  

If spacing = 105.10
/

  turnsofnumber     ,/ ≈===
πλ

πλ Ln    (ans.) 

 
(b) Turn diameter = / 0.0596 6 cmλ π = ≈    (ans.) 
 

(c) Axial ratio   AR 05.1
20
21

2
12

==
+

=
n

n    (ans.) 
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Chapter 4.  Point Sources   
 

*4-3-1.  Solar power 
The earth receives from the sun 2.2 g cal min-1 cm-2. 
(a) What is the corresponding Poynting vector in watts per square meter? 
(b) What is the power output of the sun, assuming that it is an isotropic source? 
(c) What is the rms field intensity at the earth due to the sun’s radiation, assuming all the 
sun’s energy is at a single frequency? 
Note:  1 watt = 14.3 g cal min-1, distance earth to sun = 149 Gm. 
 
Solution: 

(a) 
1 2

2 2
1

2.2g cal min cm 0.1539 W cm 1539 W m
14.3 g cal min

S
− −

− −
−= = =    (ans.) 

(b) 2 2 22 26P(sun) 4 1539 4 1.49 10  W 4.29 10  WS rπ π= × = × × × = ×    (ans.) 
 
(c) 2 1 2 1 2 1

o o/ ,   ( ) (1539 377) 762 V mS E Z E SZ −= = = × =    (ans.) 

 

4-5-1.  Approximate directivities. 
(a) Show that the directivity for a source with at unidirectional power pattern given by 
U = Um cosn θ can be expressed as D = 2(n+1).  U has a value only for 0° ≤ θ ≤ 90°.  The 
patterns are independent of the azimuth angle φ.  (b) Compare the exact values calculate 
from (a) with the approximate values for the directivities of the antennas found in Prob. 
2-7-2 and find the dB difference from the exact values. 
 
Solution: 

(a) n
2 n n+1

0

0

2
4 2If   cos ,     2(n+1)

2 sin cos cos
n+1

mU U D
d

π π
πθ

π θ θ θ θ
= = = =

−∫
   (ans.) 

(b) 

 
.

.

For n=1, 
2.78 4.4 dBi

4 6.0 dBi

1.6 dB

approx

exact

exact approx

D

D

D D

≈ ⇒

= ⇒

− =

        
.

.

For n=2, 
4.94 6.9 dBi

6 7.8 dBi

0.9 dB

approx

exact

exact approx

D

D

D D

≈ ⇒

= ⇒

− =

        
.

.

For n=3, 
7.3 8.6 dBi

8 9.0 dBi

0.4 dB

approx

exact

exact approx

D

D

D D

≈ ⇒

= ⇒

− =
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*4-5-2.  Exact versus approximate directivities. 
(a) Calculate the exact directivities of the three unidirectional antennas having power 
patterns as follows: 

P(θ,φ) = Pm sin θ sin2 φ 
 

P(θ,φ) = Pm sin θ sin3 φ 
 

P(θ,φ) = Pm sin2 θ sin3 φ 
 
P(θ,φ) has a value only for 0 ≤ θ ≤ π and 0 ≤ φ ≤ π and is zero elsewhere. 
 
(b) Compare the exact values in (a) with the approximate values found in Prob. 2-7-3. 
 
Solution: 

(a) 

4

4 4 ,    sin
( , )A n

D d d d
P d

π

π π θ θ φ
θ φ

= = Ω =
Ω Ω∫∫

 

For P(θ,φ) = Pm sin θ sin2 φ,   2 2 2

0 00 0

4 4
sin sin sin sinsinm

m

D
P d dd d

P

π ππ π

π π
θ φ θ φ θ φθ θ φ

= =
∫ ∫∫ ∫

 

2

0 0

1 4 16sin sin 2 ,      5.09
2 4 2

2 2

d D
π πθ π πθ θ θ

π π π
 = − = ∴ = = =     

  
  

∫    (ans.) 

Using the same approach, we find, 

for  P(θ,φ) = Pm sin θ sin3 φ,    
2 3

0 0

4 4 6.0
4sin sin

2 3

D
d d

π π

π π
πθ φ θ φ

= = =
  
  
  

∫ ∫
   (ans.) 

for  P(θ,φ) = Pm sin2 θ sin3 φ,    
3 3

0 0

4 4 7.1
4 4sin sin
3 3

D
d d

π π

π π

θ φ θ φ
= = =

  
  
  

∫ ∫
   (ans.) 

 
(b) Tabulating, we have 5.1 vs. 3.8, 6.0 vs. 4.6, and 7.1 vs. 6.1   (ans.) 

 

4-5-3.  Directivity and minor lobes. 
Prove the following theorem:  if the minor lobes of a radiation pattern remain constant as 
the beam width of the main lobe approaches zero, then the directivity of the antenna 
approaches a constant value as the beam width of the main lobes approaches zero. 
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4-5-3.  continued 
Solution: 

4 4

A M m

D π π
= =

Ω Ω + Ω
 

   
 where     total beam area

 main lobe beam area
 minor lobe beam area

A

M

m

Ω =
Ω =
Ω =

 

 
as  0,   ,    so   4    (a constant)M A m mD πΩ → Ω → Ω = Ω    (ans.) 

 

4-5-4.  Directivity by integration. 
(a) Calculate by graphical integration or numerical methods the directivity of a source 
with a unidirectional power pattern given by U = cos θ.  Compare this directivity value 
with the exact value from Prob. 4-5-1.  U has a value only for 0° ≤ θ ≤ 90° and 0° ≤ φ ≤ 
360° and is zero else where. 
(b) Repeat for a unidirectional power pattern given by U = cos2 θ.   
(c) Repeat for a unidirectional power pattern given by U = cos3 θ.   
 
Solution: 
 
Exact values for (a), (b), and (c) are:    4, 6, and 8.   (ans.) 

 

4-5-5.  Directivity. 
Calculate the directivity for a source with relative field pattern E = cos 2θ  cos θ. 
 
Solution: 

Assuming a unidirectional pattern,  (0 ),    24
2

Dπθ≤ ≤ =    (ans.) 
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Chapter 5.  Arrays of Point Sources, Part I 
 

5-2-4.  Two-source end-fire array. 
(a) Calculate the directivity of an end-fire array of two identical isotropic point sources in 
phase opposition, spaced λ/2 apart along the polar axis, the relative field pattern being 
given by  







= θπ cos

2
sinE  

where θ is the polar angle. 
(b) Show that the directivity for an ordinary end-fire array of two identical isotropic point 
sources spaced a distance d is given by  

( ) ( )λππλ dd
D

4sin41
2

+
= . 

Solution: 
 
(a) 2D =    (ans.) 

 

5-2-8.  Four sources in square array. 
(a) Derive an expression for E(φ) for an array of 4 identical isotropic point sources 
arranged as in Fig. P5-2-8.  The spacing d between each source and the center point of the 
array is 3λ/8.  Sources 1 and 2 are in-phase, and sources 3 and 4 in opposite phase with 
respect to 1 and 2. 
(b) Plot, approximately, the normalized pattern. 
 

 
Figure P5-2-8.  Four sources in square array. 

 
Solution: 
 
(a) ( ) cos ( cos ) cos ( sin )nE d dφ β φ β φ= −    (ans.) 
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5-5-1.  Field and phase patterns. 
Calculate and plot the field and phase patterns of an array of 2 nonisotropic dissimilar 
sources for which the total field is given by  
 

ψφφ ∠+= sincosE  

where  ( )1cos
2

cos +=+= φπδφψ d  

Take source 1 as the reference for phase.  See Fig. P5-5-1. 
 

 
Figure P5-5-1.  Field and phase patterns. 

 
Solution: 
 
See Figures 5-16 and 5-17. 

 

5-6-5.  Twelve-source end-fire array. 
(a) Calculate and plot the field pattern of a linear end-fire array of 12 isotropic point 
sources of equal amplitude spaced λ/4 apart for the ordinary end-fire condition. 
(b) Calculate the directivity by graphical or numerical integration of the entire pattern.  
Note that it is the power pattern (square of field pattern) which is to be integrated.  It is 
most convenient to make the array axis coincide with the polar or z-axis of Fig. 2-5 so 
that the pattern is a function of θ. 
(c) Calculate the directivity by the approximate half-power beamwidth method and 
compare with that obtained in (b). 
 
Solution: 
 
(b)  17   ( .)                      
(c)  10   ( .)

D ans
D ans

=
=
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5-6-7.  Twelve-source end-fire with increased directivity. 
(a) Calculate and plot the pattern of a linear end-fire array of 12 isotropic point sources of 
equal amplitude spaced λ/4 apart and phased to fulfill the Hansen and Woodyard 
increased-directivity condition. 
(b) Calculate the directivity by graphical or numerical integration of the entire pattern and 
compare with the directivity obtained in Prob. 5-6-5 and 5-6-6. 
(c) Calculate the directivity by the approximate half-power beamwidth method and 
compare with that obtained in (b). 
 
Solution: 
 
(b)  26   ( .)                       
(c)  35   ( .)

D ans
D ans

=
=

 

 

5-6-9.  Directivity of ordinary end-fire array. 
Show that the directivity of an ordinary end-fire array may be expressed as 
 

( ) ( )[ ] ( )λππλ kdkknnd

nD n

k
4sin21

1

1
∑

−

=

−+
=  

Note that  
( )

( ) ( )∑
−

=

−+=






 1

1

2

2
2cos2

2
2sin n

k
kknnn ψ

ψ
ψ  

 
Solution:   Change of variable. 
 
It is assumed that the array has a uniform spacing d between the isotropic sources.  The 
beam area 
 

  ( )
( )

2
2

2 0 0

sin 21 sin
sin 2A

n
d d

n
π π ψ

θ θ φ
ψ

 
Ω =  

 
∫ ∫                                    (1) 

where   angle from array axisθ = . 
 
The pattern is not a function of φ so (1) reduces to 
 

  ( )
( )

2

2 0

sin 22 sin
sin 2A

n
d

n
π ψπ θ θ

ψ
 

Ω =  
 

∫                                             (2) 

where / 2 (cos 1)dλψ π θ= −                                                                                         (2.1)                   
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5-6-9.  continued 

Differentiating  sin
2

d d dλ
ψ π θ θ=                                                    (3) 

or   1sin
2

d
dλ

ψθ θ
π

=                                                       (4) 

and introducing (4) in (2) 

  ( )
( )

2
2

2 0

sin 22
sin 2 2

d

A

n
d

n d
λπ

λ

ψ ψ
ψ

 
Ω =  

 
∫                                            (5) 

 
Note new limits with change of variable from  to / 2.θ ψ  
 
When  0,  / 2 0 and when ,  / 2 2 .dλθ ψ θ π ψ π= = = =  

Since  ( )
( )

2
1

1

sin 2
2( )cos(2 / 2)

2

n

k

n
n n k k

ψ
ψ

ψ

−

=

 
= + − 

 
∑                              (6) 

 

(5) can be expressed 
12

2 0
1

2 [ 2( )cos(2 / 2)] 
2

nd

A
k

n n k k d
n d

λπ

λ

ψψ
−

=

Ω = + −∑∫                     (7) 

 

Integrating (7) 
21

2
1 0

2 2( ) sin(2 / 2)
2 2

dn

A
k

n kn k
n d k

λπ

λ

ψ ψ
−

=

− Ω = +  
∑                          (8) 

 

or  
1

2
1

2 2 sin(4 )
n

A
k

n knd kd
n d kλ λ

λ

π π
−

=

− Ω = +  
∑                                 (9) 

 

and    
2

1

1

24

2 sin(4 )
n

A

k

n dD
n knd kd

k

λ

λ λ

ππ

π π
−

=

= =
−Ω + ∑

                                  (10) 

 

Therefore 1

1
1 sin(4 / )

2

n

k

nD
n k kd

nd k
λ π λ

π

−

=

=
−

+ + ∑
   q.e.d.                         (11) 

We note that when / 4,  or a multiple thereof, the summation term is zero and d D nλ= =  
exactly. 
 
This problem and the next one are excellent examples of integration with change of 
variable and change of limits. 
 
The final form for D in (11) above is well adapted for a computer program. 
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5-6-10.  Directivity of broadside array. 
Show that the directivity of a broadside array may be expressed as  

 

( ) ( )[ ] ( )λππλ kdkknnd

nD n

k
2sin1

1

1
∑

−

=

−+
=  

Solution: 
 

The solution is similar to that for Prob. 5-6-9 with  cos
2

dλ
ψ π θ=  

where 0,  / 2  and when = ,  /2=d dλ λθ ψ π θ π ψ π= = −  so that (8) of Prob. 5-6-9 becomes 
 

  
1

2
1

2 ( ) sin(2 / 2)
2

dn

A
k d

n kn k
n d k

λ

λ

π

λ π

ψ ψ
−−

= +

− Ω = +  
∑  

 

  
1

2
1

2 2 2 sin(2 )
n

A
k

n knd kd
n d kλ λ

λ

π π
−

=

− − Ω = +  
∑  

 

 
1

2
1

4 sin(2 )
n

A
k

n knd kd
n d kλ λ

λ

π π
−

=

− Ω = +  
∑  

 
2

1 1

1 1

4

sin(2 ) 1 sin(2 / )
n n

A

k k

n d nD
n k n knd kd kd

k nd k

λ

λ λ

ππ
λπ π π λ

π

− −

= =

= = =
− −Ω  + +  

 
∑ ∑

      q.e.d. 

 
Note that when / 2,d λ=  or a multiple thereof, the summation term is zero and D n=  
exactly. 
 
See application of the above relations to the evaluation of D and of the main beam area 

AΩ  of an array of 16 point sources in Prob. 16-6-7 (c) and (d). 
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Chapter 5.  Arrays of Point Sources, Part II 
 

5-8-1.  Three unequal sources. 
Three isotropic in-line sources have λ/4 spacing.  The middle source has 3 times the 
current of the end sources.  If the phase of the middle source is 0°, the phase of one end 
source +90° and phase of the other end source -90°, make a graph of the normalized field 
pattern. 
 
Solution: 
 
Phasor addition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

5-8-7.  Stray factor and directive gain. 
The ratio of the main beam solid angle ΩM to (total) beam solid angle ΩA is called the 
main beam efficiency.  The ratio of the minor-lobe solid angle Ωm to the (total) beam 
solid angle ΩA is called the stray factor. It follows that ΩM/ΩA + Ωm/ΩA = 1.  Show that 
the average directivity gain over the minor lobes of a highly directive antenna is nearly 
equal to the stray factor.  The directive gain is equal to the directivity multiplied by the 
normalized power pattern [= D Pn(θ,φ)], making it a function of angle with the maximum 
value equal to D. 
 
Solution: 

Stray factor = m

A

Ω
Ω

 

     En 

0.6 North 

0.6 South 

0.2 East 

1.0 West 

0.24 North-East 

0.96 North-West 
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5-8-7.  continued 
where   total beam area

main lobe beam area
minor lobe beam area

A

M

m

Ω =
Ω =
Ω =

 

4

4

( , )

( , )
M

n

m

A n

P d

P d
π

π

θ φ

θ φ
−Ω

Ω
Ω

=
Ω Ω

∫∫

∫∫
 

 

4

1Average directive gain over minor lobes = (minor) = ( , )
4

M

av n
M

DG DP d
π

θ φ
π −Ω

Ω
− Ω ∫∫  

where    4 / AD π= Ω  

Therefore   4

4 ( , )
1 4 (minor) =  

4 4
M

n

m
av

M A M A

P d
DG π

π θ φ
π

π π
−Ω

Ω
Ω

=
− Ω Ω − Ω Ω

∫∫
 

 
If  4M πΩ << (antenna highly directive), 
 

(minor) m
av

A

DG Ω
≅

Ω
    (stray factor)   q.e.d. 

 

*5-9-2.  Three-source array. 
The center source of a 3-source array has a (current) amplitude of unity.  For a sidelobe 
level 0.1 of the main lobe maximum field, find the Dolph-Tchebyscheff value of the 
amplitude of the end sources.  The source spacing d = λ/2. 
 
Solution:  Let the amplitudes (currents) of the 3 sources be as in the sketch 
 
 
 
 
 

/ 2,   10d Rλ= =  
 
Let amplitude of center source o1 2A= =  

2
2

2 2
o o

2
o o

1 2,             ( ) 2 1

2 1 10        2 11

5.5               2.345

n T x x R
x x

x x

− = = − =

− = =

= = ±

 

 

1A O2A 1A

/ 2λ/ 2λ
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5-9-2.  continued 

2 2
3 o 1 o 1 o 12 2 co s2 2 2 (2co s 1) 2 2 (2 1)

2 2
E A A A A A A wψ ψ

= + = + − = + −  

Let o/w x x=  so 
2

2 21
3 o 1 o 12 2

o o

2 2 (2 1) 2 4 2 2 1AxE A A A x A x
x x

= + − = + − = −  

2 2
3 1 o 10.728 ( 2 ) 2 1E A x A A x= + − = −  

 
1 1

o 1 o

Therefore,                   0.728 2       and      2.75
                                   2 2 1   and    2 5.5 1 4.5

A A
A A A

= =
− = − = − =

 

 
Thus, normalizing o 12 1    and    2.75 4.5 0.61A A= = =    (ans.) 
 
Amplitude distribution is 0.61 1.00 0.61 
Pattern has 4 minor lobes.  For center source, amplitude 1=  
The side source amplitudes for different R values are: 
 

R 8 10 12 15 
A1 0.64 0.61 0.59 0.57 

 
 

5-9-4.  Eight source D-T distribution. 
(a) Find the Dolph-Tchebyscheff current distribution for the minimum beam width of a 
linear in-phase broadside array of eight isotropic sources.  The spacing between the 
elements is λ/4 and the sidelobe level is to be 40 dB down.  Take φ = 0 in the broadside 
direction. 
(b) Locate the nulls and the maxima of the minor lobes. 
(c) Plot, approximately, the normalized field pattern (0° ≤ φ ≤ 360°). 
(d) What is the half-power beam width? 
 
Solution: 
(a) 0.14, 0.42, 0.75, 1.00, 1.00, 0.75, 0.42, 0.14 
 
 (b) Max. at:  
 ±21o, ±27o, ±36o, ±48o, ±61o, ±84o, ±96o, ±119o, ±132o, ±144o, ±153o, ±159o 
 Nulls at:   
 ±18o, ±23o, ±32o, ±42o, ±54o, ±71o, ±109o, ±126o, ±138o, ±148o, ±157o, ±162o 
 
(d) HPBW o12=    (ans.) 
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*5-18-1.  Two sources in phase. 
Two isotropic point sources of equal amplitude and same phase are spaced 2λ apart.  (a) 
Plot a graph of the field pattern.  (b) Tabulate the angles for maxima and nulls. 
 
Solution: 
 
(a) Power pattern   2

n nP E=  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In 
 
 
 
 
 
 
Instructional comment to pass on to students: 
 
The lobes with narrowest beam widths are broadside (±90o), while the widest beam width 
lobes are end-fire (0o and 180o).  The four lobes between broadside and end-fire are 
intermediate in beam width.  In three dimensions the pattern is a figure-of-revolution 
around the array axis (0o and 180o axis) so that the broadside beam is a flat disk, the end-
fire lobes are thick cigars, while the intermediate lobes are cones.  The accompanying 
figure is simply a cross section of the three-dimensional space figure. 

 



33 

 

5-18-2.  Two sources in opposite phase. 
Two isotropic sources of equal amplitude and opposite phase have 1.5λ spacing.  Find the 
angles for all maxima and nulls. 
 
Solution: 
 
Maximum at:  0o, 180o, ±70.5o, ±109.5o, Nulls at:  ±48.2o, ±90o, ±131.8o 
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Chapter 6.  The Electric Dipole and Thin Linear Antennas 
 

*6-2-1.  Electric dipole. 
(a) Two equal static electric charges of opposite sign separated by a distance L constitute 
a static electric dipole.  Show that the electric potential at a distance r from such a dipole 
is given by 

24
cos

r
QLV

πε
θ

=  

 
where Q is the magnitude of each charge and θ is the angle between the radius r and the 
line joining the charges (axis of dipole).  It is assumed that r is very large compared to L.  
(b) Find the vector value of the electric field E at a large distance from a static electric 
dipole by taking the gradient of the potential expression in part (a). 
 
Solution: 

 

1 2

1 2

(a)   (at ) ,  
4 4

( / 2)cos ,      ( / 2)cos

Q QV r
r r

r r L r r L
πε πε

θ θ

= −

= − = +
 

2 2 2

2

1 1
4 ( / 2)cos ( / 2)cos

( / 2)cos ( / 2)cos
4 ( / 2) cos

cosFor ,         q.e.d.
4

QV
r L r L

Q r L r L
r L

QLr L V
r

πε θ θ

θ θ
πε θ

θ
πε

 
= − − + 

 + − +
=  + 

>> =

 

 

3 2

3 3

1 1 2cos 1 sinˆ ˆˆ ˆ ˆ ˆ(b)  0
sin 4

cos sinˆˆ
2 4

V V V QLV
r r r r r r

QL QL
r r

θ θ
θ θ φ πε

θ θ
πε πε

∂ ∂ ∂ −  = −∇ = + + = − − + ∂ ∂ ∂  

= +

E rθ φ r θ φ

rθ
 

 

or 3 3

cos sin,       ,      0
2 4r

QL QLE E E
r rθ φ

θ θ
πε πε

= = =    (ans.) 

 

*6-2-2.  Short dipole fields. 
A dipole antenna of length 5 cm is operated at a frequency of 100 MHz with terminal 
current Io = 120 mA.  At time t = 1 s, angle θ = 45°, and distance r = 3 m, find (a) Er, (b) 
Eθ, and (c) Hφ. 

θ

θ
/ 2L

/ 2L

cos
2
L θ

cos
2
L θ

L

Q+

Q−

1r

r

2r
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*6-2-2.  continued 
Solution: 
 
(a) From (6-2-12) 
 

( )
6

6
8

( )
o

2 3
o

(2 )100 102 100 10 (1) (3)
3 10

3 o
12 8 2 6 3

2 3 2 o

cos 1 1
2

1 1(120 10 )(0.05) cos 45
2 (8.85 10 ) 3 10 (3 ) (2 )100 10 (3 )

2.83 10 (4.5 10 ) 2.86 10 9  V

j t r

r

j

I leE
cr j r

e
j

j

ω β

ππ

θ
πε ω

π π

−

  ×
× −   ×   

−
−

− − −

 
= + 

 

 
= × + × × × 

__= × − × = × −∠ /m     ( .)ans
 
(b) From (6-2-13) 

( )
2 2o

2 2 3
o

2 o

sin 1 1 1.41 10 (8.65 10 )
4

8.77 10 81 V/m     ( .)

j t rI le jE j
c r cr j r

ans

ω β

θ
θ ω

πε ω

−
− −

−

 
= + + = × + × 

 
__= × ∠

 

 
(c) From (6-2-15) 

( )
5 4o

2

4 o

sin 1 3.75 10 (2.36 10 )
4

2.39 10 81 A/m     ( .)

j t rI le jH j
cr r

ans

ω β

φ
θ ω

π

−
− −

−

 = + = × + × 
 

__= × ∠

 

 

*6-2-4.  Short dipole quasi-stationary fields. 
For the dipole antenna of Prob. 6-2-2, at a distance r = 1 m, use the general expressions of 
Table 6-1 to find (a) Er, (b) Eθ, and (c) Hφ.  Compare these results to those obtained using 
the quasi-stationary expressions of Table 6-1. 
 
Solution: 
 
Using the same approach for ,  ,  and rE E Hθ φ  as in solution to Prob. 6-2-2, we find for 

1 m,r =  
282 mV/m
242 mV/m
784 mA/m

rE
E
H

θ

φ

=
=
=
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*6-2-4.  continued 
Using quasi-stationary equations,  
 

3 o
3o o

3 3 2 6 12 3
o o

3o o
3 3

o o

o
2

cos cos 120 10 (0.05cos 45 ) 0 (121 10 )
2 (2 ) (2 ) (100 10 )(8.85 10 )1

121 mVm   ( .)

sin sin 0 (61 10 ) 61 mV/m   ( .)
4 (4 )

sin 3.38 1
4

r
q l I lE j

r j r j
ans

q l I lE j ans
r j r

I lH
r

θ

φ

θ θ
πε ω πε π

θ θ
πε ω πε

θ
π

−
−

−

−

×
= = = = − ×

× ×
=

= = = − × =

= = × 40 338 μA/m   ( .)ans− =

 

*6-3-1.  Isotropic antenna.  Radiation resistance. 
An omnidirectional (isotropic) antenna has a field pattern given by E = 10I/r (V m-1), 
where I = terminal current (A) and r = distance (m).  Find the radiation resistance. 
 
Solution: 

2 2

2

10 100    so    I E IE S
r Z r Z

= = =  

 
Let 2 power over sphere 4 ,P r Sπ= =  which must equal power 2I R  to the antenna 
terminals.  Therefore 2 24   andI R r Sπ=  
 

2
2

2 2

1 100 4004 3.33 
120 120

IR r
I r

π
π

= = = Ω    (ans.) 

 

*6-3-2.  Short dipole power. 
(a) Find the power radiated by a 10 cm dipole antenna operated at 50 MHz with an 
average current of 5 mA.  (b) How much (average) current would be needed to radiate 
power of 1 W? 
 
Solution: 
(a) 

26
3

82
6o

o

(2 )50 10 (5 10 )0.1
3 10( ) 377 2.74 10  W 2.74 μW

12 12
avI lP

π
µ β
ε π π

−

−

 ×
× × = = = × =    (ans.) 
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*6-3-2.  continued 

(b) 
1 2

3
6

1For 1 W,  5 10 3.0 A
2.7 10avP I −

−
 = = × = × 

   (ans.)

 

6-3-4.  Short dipole. 
For a thin center-fed dipole λ/15 long find (a) directivity D, (b) gain G, (c) effective 
aperture Ae, (d) beam solid ΩA and (e) radiation resistance Rr.  The antenna current tapers 
linearly from its value at the terminals to zero at its ends.  The loss resistance is 1 Ω. 
 
Solution: 
 
(a) ( ) sinnE θ θ=   

22 2 3

0 0 04

4 4 4 4
sin sin sin 2 sin

4 3 1.5  or 1.76 dBi   ( .)4 22
3

A

D
d d d d

ans

π π π

π

π π π π
θ θ θ θ π θ θ

π

π

= = = =
Ω Ω Ω

= = =

∫∫ ∫ ∫ ∫
 

(d) From (a),  8 / 3 8.38 srA πΩ = =    (ans.) 

(e) 
2 2 2

2

o

1 1From (6-3-14),  790 790 0.878 
2 15

av
r

IR L
I λ

     = = = Ω     
    

   (ans.) 

(b)  
0.878 1.5 0.70   or   1.54 dBi

0.878 1
G kD= = × = −

+
   (ans.) 

(c)
2

23   where   
8e em em

A

A kA A λ λ
π

= = =
Ω

 

20.878 3Therefore   0.058 
0.878 1 8eA λ

π
= × =

+
   (ans.) 

 

*6-3-5.  Conical pattern. 
An antenna has a conical field pattern with uniform field for zenith angles (θ) from 0 to 
60° and zero field from 60 to 180°.  Find exactly (a) the beam solid angle and (b) 
directivity.  The pattern is independent of the azimuth angle (φ). 
 
Solution: 
 

(a)  
oo o o 60360 60 60

0 0 0 0
2 sin 2 cos  srA d dπ θ θ π θ πΩ = Ω = = − =∫ ∫ ∫    (ans.) 
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*6-3-5.  continued 

(b)  4 4 4
A

D π π
π

= = =
Ω

 (ans.)

 

6-3-6.  Conical pattern. 
An antenna has a conical field pattern with uniform filed for zenith angles (θ) from 0 to 
45° and zero field from 45 to 180°.  Find exactly (a) the beam solid angle, (b) directivity 
and (c) effective aperture.  (d) Find the radiation resistance if the E = 5 V m-1 at a distance 
of 50 m for a terminal current I = 2 A (rms).  The pattern is independent of the azimuth 
angle (φ). 
 
Solution: 
 

(a) 
o45

0
2 sin 1.84 srA dπ θ θΩ = =∫    (ans.) 

(b) 4 4 6.83
1.84A

D π π
= = =

Ω
   (ans.) 

(c) 
2 2

20.543 
1.84e em

A

A A λ λ λ= = = =
Ω

   (ans.) 

(d) 
2 2

2 2 2
2

1 5,          1.84 50 76.3 
2 377r A r

EI R r R
Z

= Ω = × = Ω    (ans.) 

 

*6-3-7.  Directional pattern in θ and φ. 

An antenna has a uniform field pattern for zenith angles (θ) between 45 and 90° and for 
azimuth (φ) angles between 0 and 120°.  If E = 3 V m-1 at a distance of 500 m from the 
antenna and the terminal current is 5 A, find the radiation resistance of the antenna.  E = 0 
except within the angles given above. 
 
Solution: 
 

(a) 
o o o

o o

120 90 90

0 45 45

2sin cos 1.48 sr
3A d d πθ θ φ θΩ = = − =∫ ∫    (ans.) 

 

(c) 
2 2

2 2
2 2

1 1 31.48 500 354 
5 377r A

ER r
I Z

= Ω = × = Ω    (ans.)
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*6-3-8.  Directional pattern in θ and φ. 

An antenna has a uniform field E = 2 V m-1 (rms) at a distance of 100 m for zenith angles 
between 30 and 60° and azimuth angles φ  between 0 and 90° with E = 0 elsewhere.  The 
antenna terminal current is 3 A (rms).  Find (a) directivity, (b) effective aperture and (c) 
radiation resistance. 
 
Solution: 
 

o o o

o o

90 60 60

0 30 30
(a)     sin cos 0.575 sr    ( .)

2
4          21.9   ( .)

0.575

A d d ans

D ans

πθ θ φ θ

π

Ω = = − =

= =

∫ ∫
 

(b) 
2 2

21.74 
0.575e em

A

A A λ λ λ= = = =
Ω

   (ans.) 

(c) 
2 2

2 2
2 2

1 1 20.575 100 6.78 
3 377r A

ER r
I Z

= Ω = × = Ω    (ans.) 

 

*6-3-9.  Directional pattern with back lobe. 
The field pattern of an antenna varies with zenith angle (θ) as follows:  En (=Enormalized) = 
1 between θ = 0° and θ = 30° (main lobe), En = 0 between θ = 30° and θ = 90° and En = 
1/3 between θ = 90° and θ = 180° (back lobe).  The pattern is independent of azimuth 
angle (φ).  (a) Find the exact directivity.  (b) If the field equals 8 V m-1 (rms) for θ = 0° at 
a distance of 200 m with a terminal current I = 4 A (rms), find the radiation resistance. 
 
Solution: 
 

(a) 
o o

o

30 180

20 90

22 sin sin 2 (0.134 0.111) 2 (0.245)
3A d dππ θ θ θ θ π πΩ = + = + =∫ ∫  

 4 8.16
2 (0.245)

D π
π

= =    (ans.) 

(b)
2 2

2 2
2 2

1 1 82 (0.245)200 653 
4 120r A

ER r
I Z

π
π

= Ω = = Ω    (ans.)

 

6-3-10.  Short dipole. 
The radiated field of a short-dipole antenna with uniform current is given by 

( )30 sinE l I rβ θ= , where l = length, I = current, r = distance and θ = pattern angle.  
Find the radiation resistance. 
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6-3-10.  continued 
Solution: 

The current I given in the problem is a peak value, so we put      2 2

Power 4 Power
input radiated

1
2 rI R Sr d

π

= Ω∫∫  

where 
2

   and  is as givenES E
Z

=  

so   
2 2 2 2

2 3 2 2 2
2 2 0

2 302 sin 80 ( / ) 790( / )  
120r

l IR r d l l
I r

πβπ θ θ π λ λ
π

= = = Ω∫    (ans.)

 

6-3-11.  Relation of radiation resistance to beam area. 
Show that the radiation resistance of an antenna is a function of its beam area ΩA as given 
by 

Ar I
SrR Ω= 2

2

 

where S = Poynting vector at distance r in direction of pattern maximum 
           I = terminal current. 
 
Solution: 

Taking I as the rms value we set 2 2

Power Power
input radiated

r AI R Sr= Ω , therefore   
2

2r A
SrR
I

= Ω    q.e.d. 

 

*6-3-12.  Radiation resistance. 
An antenna measured at a distance of 500 m is found to have a far-field pattern of |E| = 
Eo(sinθ)1.5 with no φ dependence.  If Eo = 1 V/m and Io = 650 mA, find the radiation 
resistance of this antenna. 
 
Solution:  
 
From (6-3-5) 

2
2 2

2 2 2 2 0 0
o o

3 4

0

0

120 120 sin sin
(0.65) (377)

(6.28 10 )(500)2 sin

3 sin(2 ) sin(4 ) 319.7 19.7 23.2    ( .)
8 4 32 8

r
s

E
R ds r d d

I Z

d

x x x ans

π π

π

π

π π θ θ θ φ

π θ θ

π

−

= =

= ×

   = − + = = Ω     

∫ ∫ ∫

∫
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*6-5-1.  λ/2 antenna. 
Assume that the current is of uniform magnitude and in-phase along the entire length of a 
λ/2 thin linear element. 
(a) Calculate and plot the pattern of the far field. 
(b) What is the radiation resistance? 
(c) Tabulate for comparison: 

1. Radiation resistance of part (b) above 
2. Radiation resistance at the current loop of a λ/2 thin linear element with 

sinusoidal in-phase current distribution 
3. Radiation resistance of a λ/2 dipole calculated by means of the short dipole 

formula 
(d) Discuss the three results tabulated in part (c) and give reasons for the differences. 
 
Solution: 
 
(a) ( ) tan sin[( / 2)cos ]nE θ θ π θ=    (ans.) 
 
(b) 168 R = Ω    (ans.) 
 
(c)  [from (b)] = 168    ( .) R ansΩ  

 
 (sinusoidal ) 73    ( .)
 (short dipole) = 197    ( .)

R I ans
R ans

= Ω
Ω

 

 
(d) 168 Ω is appropriate for uniform current. 
  73 Ω is appropriate for sinusoidal current. 

197 Ω assumes uniform current, but the short dipole formula does not take into 
account the difference in distance to different parts of the dipole (assumes  >>Lλ ) 
which is not appropriate and leads to a larger resistance (197 Ω) as compared to the 
correct value of 168 Ω. 

 

6-6-1.  2λ antenna. 
The instantaneous current distribution of a thin linear center-fed antenna 2λ long is 
sinusoidal as shown in Fig. P6-6-1. 
(a) Calculate and plot the pattern of the far field. 
(b) What is the radiation resistance referred to a current loop? 
(c) What is the radiation resistance at the transmission-line terminals as shown? 
(d) What is the radiation resistance λ/8 from a current loop? 
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6-6-1.  continued 

 
 

Figure P6-6-1.  2λ antenna. 
 
Solution: 
 

(a) cos(2 cos ) 1( )
sinnE π θθ

θ
−

=    (ans.) 

 
(b) max(at ) 259 R I = Ω    (ans.) 
 
(c) (at terminals)  R = ∞ Ω    (ans.) 
 
(d) max(at /8 from ) 518 R Iλ = Ω    (ans.) 

 

6-7-1.  λ/2 antennas in echelon. 
Calculate and plot the radiation-field pattern in the plane of two thin linear λ/2 antennas 
with equal in-phase currents and the spacing relationship shown in Fig. P6-7-1.  Assume 
sinusoidal current distributions. 

 
 

Figure P6-7-1.  λ/2 antennas in echelon. 
 
 

Solution: 
cos[( / 2)cos ] 2( ) cos cos[( / 4) ]

sin 4nE π θ πθ π θ
θ

 
= +  

 
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*6-8-1.  1λ and 10λ antennas with traveling waves. 
(a) Calculate and plot the far-field pattern in the plane of a thin linear element 1λ long, 
carrying a single uniform traveling wave for 2 cases of the relative phase velocity p = 1 
and 0.5.  (b) Repeat for the single case of an element 10λ long and p = 1. 
 
Solution: 

(a) From (6-8-5),    sin 1( ) [sin ( cos )]
1 cosnE

p p
φφ π φ

φ
= −

−
,    patterns have 4 lobes. 

(b) Pattern has 40 lobes. 
 

6-8-2.  Equivalence of pattern factors. 
Show that the field pattern of an ordinary end-fire array of a large number of collinear 
short dipoles as given by Eq. (5-6-8), multiplied by the dipole pattern sin φ, is equivalent 
to Eq. (6-8-5) for a long linear conductor with traveling wave for p = 1. 
 
Solution: 

(1) 

nsin
2Field pattern=

sin
2

ψ

ψ
                                                                                       (5-6-8) 

 
where cosdψ β φ δ= +  

 

(2) Field pattern =
sin[ (1 cos )]

2sin
1 cos

b p
pc

p

ω φ
φ

φ

−

−
                                                         (6-8-5) 

 
For ordinary end-fire,    (cos 1)dψ β φ= −  
 

Also if d is small (1) becomes 
sin (1 cos )

2

(1 cos )
2

nd

d

β φ

β φ

 − 
 

−
 

 
For larger ,  .n nd b≅   Also multiplying by the source factor sinφ  and taking the con-
stant / 2 1dβ =  in the denominator, (1) becomes 
 

 
sin (1 cos )

2sin
1 cos

dβ φ
φ

φ

 − 
 

−
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6-8-2.  continued 
which is the same as (2) for 1p =  
 

since   2
2 2 2

b fb b
pc f

ω π β
λ

= =    q.e.d. 

 
Note that for a given length b, the number n is assumed to be sufficiently large that d can 
be small enough to allow sin / 2ψ  in (1) to be replaced by / 2ψ . 
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Chapter 7.  The Loop Antenna 
 

7-2-1.  Loop and dipole for circular polarization. 
If a short electric dipole antenna is mounted inside a small loop antenna (on polar axis, 
Fig. 7-3) and both dipole and loop are fed in phase with equal power, show that the 
radiation is everywhere circularly polarized with a pattern as in Fig. 7-7 for the 0.1λ 
diameter loop. 
 
Solution: 
 
Uniform currents are assumed. 
 

 
2

2

120 sin( )(loop)= IAE
rφ

π θθ
λ

                                               (1) 

     

 j60 sin( )(dipole)= ILE
rθ

π θθ
λ

                                              (2) 

   

 
2

4
2(loop)=320r

AR π
λ

  Ω 
 

                                                   (3) 

 
 2 2(dipole)=80rR Lλπ                                                             (4) 
For equal power inputs, 

2 2
loop dipole(loop) (dipole)r rI R I R=  

 

 
2 2 2 2
loop
2 4 2 2 2 2 2
dipole

80(dipole)
(loop) 320 ( / ) 4 ( / )

r

r

I L LR
I R A A

λ λπ
π λ π λ

= = =                          (5) 

 loop
2

dipole 2 ( / )
I L
I A

λ

π λ
=                                                    (6) 

Therefore 

 
2

dipole dipole
2 2

120 sin 60 sin
( )(loop)=

2 ( / )
L I A I L

E
r A r

λ
φ

π θ π θ
θ

λ π λ λ
=                         (7) 

 
which is equal in magnitude to ( )Eθ θ (dipole) but in time-phase quadrature (no j). 
 
Since the 2 linearly polarized fields ( Eφ  of the loop and Eθ  of the dipole) are at right 
angles, are equal in magnitude and are in time-phase quadrature, the total field of the 
loop-dipole combination is everywhere circularly polarized with a sinθ  pattern.  q.e.d. 
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7-2-1.  continued 
 
Equating the magnitude of (1) and (2) (fields equal and currents equal) we obtain 
 

 22L Aπ
λ λ

=                                                                 (8) 

which satisfies (6) for equal loop and dipole currents.  Thus (8) is a condition for circular 
polarization. 
 
Substituting  2( / 4)A dπ= ,  where d = loop diameter in (8) and putting C dπ=  
 

 
2 2

2 2

12
4 2

L d Cππ
λ λ λ

= =                                                    (9) 

 
we obtain                                        1 2(2 )C Lλ λ=                                                             (10) 
 
as another expression of the condition for circular polarization. 
 
Thus, for a short dipole /10λ  long, the loop circumference must be 
 
 1 2(2 0.1) 0.45Cλ = × =                                                (11) 
 

and the loop diameter  0.45 0.14d λ λ
π

= =  

or 1.4 times the dipole length.  If the dipole current tapers to zero at the ends of the 
dipole, the condition for CP is 

 24L Aπ
λ λ

=                                                         (12) 

and 
 1 2( )C Lλ λ=                                                        (13) 
 
For a /10λ  dipole the circumference must now be 1 2(0.1) 0.316Cλ = =  and the loop 

diameter 0.316 0.1d λ λ
π

= ≅  or approximately the same as the dipole length. 

 
The condition of (10) is applied in the Wheeler-type helical antenna.  See Section 8-22, 
equation (8-22-4) and Prob. 8-11-1. 
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7-4-1.  The 3λ/4 diameter loop. 
Calculate and plot the far-field pattern normal to the plane of a circular loop 3λ/4 in 
diameter with a uniform in-phase current distribution. 
 
Solution: 

3 2.36
4

Cλ π= =  

From (7-3-8) or Table 7-2, the Eφ  pattern is given by   

1( sin )J Cλ θ  
See Figure 7-6. 

 

*7-6-1.  Radiation resistance of loop. 
What is the radiation resistance of the loop of Prob. 7-4-1? 
 
Solution: 
 
From (7-6-13) for loop of any size 
 

22
20

60 ( )
C

rR C J y dyλ

λπ= ∫  

where 3 4 2.36,      2 4.71C Cλ λπ= = =  
 

From (7-6-16),  
2 2

2 o 10 0
( ) ( ) 2 (2 )

C C
J y dy J y dy J Cλ λ

λ= −∫ ∫  

 

By integration of the o ( )J y  curve from 0 to 2 ( 4.71)Cλ = , 
2

o0
( ) 0.792

C
J y dyλ =∫  

 
From tables (Jahnke and Emde), 1 1(2 ) (4.71) 0.2816J C Jλ = = −  
 

and  
2

20
( ) 0.7920 2 0.2816 1.355

C
J y dyλ == + × =∫  

 
Therefore  260 2.36 1.355 1894    (Round off to 1890 )rR π= × = Ω Ω    (ans.) 
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7-6-2. Small-loop resistance. 
(a) Using a Poynting vector integration, show that the radiation resistance of a small loop 
is equal to ( ) Ω320 224 λπ A  where A = area of loop (m2).  (b) Show that the effective 
aperture of an isotropic antenna equals λ2/4π. 
 
Solution: 

(a)    
2 22
max

2 2
AA

r
E rSrR

I ZI
ΩΩ

= =  

From (7-5-2) and Table 7-2, 
 

2

max2

120 sin sinIAE E
rφ
π θ θ
λ

= =  

 
2

0

4 82 sin sin 2
3 3A d

π
π θ θ θ π πΩ = = =∫  

 

Therefore,  
22 4 2 2 2

4 4
2 4 2 2

120 8 320  197   
120 3r

I A r AR C
r I λ
π π π

λ π λ
 = = Ω = Ω 
 

   q.e.d. 

 

(b) 
2 2

4 ,       
4A e

A

A λ λπ
π

Ω = = =
Ω

    q.e.d. 

 

7-7-1.  The λ/10 diameter loop. 
What is the maximum effective aperture of a thin loop antenna 0.1λ in diameter with a 
uniform in-phase current distribution? 
 
Solution: 
 

AΩ  is the same as for a short dipole ( 8 / 3 sr).π=   See Prob. 6-3-4a. 
 

Therefore,  
2

2 23 0.119
8em

A

A λ λ λ
π

 = = = Ω  
   (ans.)

 

7-8-1.  Pattern, radiation resistance and directivity of loops. 
A circular loop antenna with uniform in-phase current has a diameter d.  What is (a) the 
far-field pattern (calculate and plot), (b) the radiation resistance and (c) the directivity for 
each of three cases where (1) d = λ/4, (2) d = 1.5λ and (3) d = 8λ? 
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7-8-1.  continued 
Solution: 
 
Since all the loops have 1/ 3,Cλ >  the general expression for Eφ  in Table 7-2 must be 
used.  From Table 7-2 and Figures 7-10 and 7-11, the radiation resistance and directivity 
values are: 
 

Diameter Cλ  rR  Directivity 

λ/4 0.785 76 Ω 1.5 

1.5λ 4.71 2340 Ω 3.82 

8λ 25.1 14800 Ω 17.1 

 
 

*7-8-2.  Circular loop. 
A circular loop antenna with uniform in-phase current has a diameter d.  Find (a) the far-
field pattern (calculate and plot), (b) the radiation resistance and (c) the directivity for the 
following three cases:  (1) d = λ/3, (2) d = 0.75λ and (3) d = 2λ. 
 
Solution: 
 
See Probs. 7-4-1 and 7-8-1.    Radiation resistance and directivity values are: 
 

Diameter Cλ  rR  Directivity 

λ/3 1.05 180 Ω 1.5 

0.75λ 2.36 1550 Ω 1.2 

2λ 6.28 4100 Ω 3.6 

 

*7-9-1.  The 1λ square loop. 
Calculate and plot the far-field pattern in a plane normal to the plane of a square loop and 
parallel to one side.  The loop is 1λ on a side.  Assume uniform in-phase currents. 
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*7-9-1.  continued 
Solution: 
 
Pattern is that of 2 point sources in opposite phase.  Referring to Case 2 of Section 5-2, 
we have for / 2 2 ( / 2 ) ,rd π λ π= =  

( ) sin( cos )nE φ π φ=  
resulting in a 4-lobed pattern with maxima at o o60  and 120φ = ± ±  and nulls at 

o o o0 , 90  and 180 .±  

 

7-9-2.  Small square loop. 
Resolving the small square loop with uniform current into four short dipoles, show that 
the far-field pattern in the plane of the loop is a circle. 
 
Solution: 

 
 
The field pattern (1,2)E  of sides 1 and 2 of the small square loop is the product of the 
pattern of 2 point sources in opposite phase separated by d as given by 
 

sin[( / 2)cos ]rd φ  
 
and the pattern of short dipole as given by cosφ  
 
or     (1, 2) cos sin[( / 2)cos ]rE dφ φ=  
 
For small d this reduces to 2(1, 2) cosnE φ=  
 
The pattern of sides 3 and 4 is the same rotated through 90o or in terms of φ is given by 
 

2(3, 4) sinnE φ=  
The total pattern in the plane of the square loop is then 
 

2 2( ) (1, 2) (3,4) cos sin 1n n nE E Eφ φ φ= + = + =  
Therefore ( )E φ  is a constant as a function of φ and the pattern is a circle.  q.e.d. 
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Chapter 8.  End-Fire Antennas: The Helical Beam Antenna and 
the Yagi-Uda Array, Part I 

 

8-3-1.  A 10-turn helix. 
A right-handed monofilar helical antenna has 10 turns, 100 mm diameter and 70 mm turn 
spacing.  The frequency is 1 GHz.  (a) What is the HPBW?  (b) What is the gain?  (c) 
What is the polarization state?  (d) Repeat the problem for a frequency of 300 MHz. 
 
Solution: 

8

9

3 10(a)                                       0.3 m         (0.1) 0.314
10
0.314 0.07                                           1.047         0.233

0.3 0.3

C

C Sλ λ

λ π×
= = = =

= = = =
 

From (8-3-4) 
 

O O
o

1 2 1 2

52 52HPBW 32.5
( ) 1.047(10 0.233)C nSλ λ

= = =
×

   (ans.) 

 
(b) From (8-3-7), 212 30.7 or 14.9 dBiD C nSλ λ≅ =    (ans.) 
 
If losses are negligible the gain = D. 
 
(c) Polarization is RCP.   (ans.) 
 
(d) At 300 MHz,  8 63 10 / 300 10 1 mλ = × × = , 0.314 /1 0.314.Cλ = =   
 
This is too small for the axial mode which requires that 0.7 1.4.Cλ< <  

From Table A-1,     2

41000 38.8  or 15.9 dBi 
32.5

D = =  or 1 dB higher.   

The lower value is more realistic 
 

8-3-2.  A 30-turn helix. 
A right-handed monofilar axial-mode helical antenna has 30 turns, λ/3 diameter and λ/5 
turn spacing.  Find (a) HPBW, (b) gain and (c) polarization state. 
 
Solution: 

(a) From (8-3-4), 
o o

o
1 2

1 2

52 52HPBW 20.3
( ) (30 0.2)

3
C nSλ λ

π≅ = =
×

   (ans.) 

(b) For zero losses, G D=  
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8-3-2.  continued 
 
From (8-3-7),  2 212 12( / 3) 30 0.2 79 or 19 dBiD C nSλ λ π≅ = × =    (ans.) 
 
(c) RCP   (ans.) 

 

8-3-3.  Helices, left and right. 
Two monofilar axial-mode helical antennas are mounted side-by-side with axes parallel 
(in the x direction).  The antennas are identical except that one is wound left-handed and 
the other right-handed.  What is the polarization state in the x direction if the two 
antennas are fed (a) in phase and (b) in opposite phase? 
 
Solution: 
 
Assuming that x is horizontal,  (a) LHP   (ans.) (b) LVP   (ans.) 
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Chapter 8.  The Helical Antenna:  Axial and Other Modes, Part II 
 

*8-8-1.  An 8-turn helix. 
A monofilar helical antenna has α = 12°, n = 8, D = 225 mm.  (a) What is p at 400 MHz 
for (1) in-phase fields and (2) increased directivity?  (b) Calculate and plot the field 
patterns for p = 1.0, 0.9, and 0.5 and also for p equal to the value for in-phase fields and 
increased directivity.  Assume each turn is an isotropic point source.  (c) Repeat (b) 
assuming each turn has a cosine pattern. 
 
Solution: 
 
(a) The relative phase velocity for in-phase fields is given by (8-8-9) as 
 

1
cossin

p

Cλ

αα
=

+
 

The relative phase velocity for increased directivity is given by (8-8-12) 
 

2 1
2

Lp nS
n

λ

λ

=
+

+
 

 
From the given value of frequency and diameter ,  D Cλ  can be determined.  Introducing it 
and the given values of  and nα  
 

0.802 for in-phase fields
0.763 for increased directivity

p
p

=
=

 

 

*8-11-1.  Normal-mode helix. 
(a) What is the approximate relation required between the diameter D and height H of an 
antenna having the configuration shown in Fig. P8-11-1, in order to obtain a circularly 
polarized far-field at all points at which the field is not zero.  The loop is circular and is 
horizontal, and the linear conductor of length H is vertical.  Assume D and H are small 
compared to the wavelength, and assume the current is of uniform magnitude and in 
phase over the system. 
(b) What is the pattern of the far circularly polarized field? 
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*8-11-1.  continued 

 
 

Figure P8-5-3.  Normal mode helix. 
Solution: 
 
See solution to Prob. 7-2-1. 
 
(a) 1 2(2 ) /D Hλ λ π=    (ans.)  
 
(b) sinE θ=    (ans.)

 

8-15-1.  Design of quad-helix earth station antenna. 
An array of four right-handed axial-mode helical antennas, shown in Fig. 8-54, can be 
used for communications with satellites.  Determine (a) the best spacing based on the 
effective apertures of the helixes, (b) the directivity of the array.  Assume the number of 
turns is 20 and the spacing between turns is 0.25 λ. 
 
Solution: 
 
(a) From (8-3-7) the directivity of each helix is  
 

212 (1.05) 20 0.25 66.15D ≅ × × × =  
2

266 5.26
4eA λ λ
π

= =  

The spacing is then 5.26 2.29λ λ=  
 
(b) At 2.29λ spacing the effective aperture for the array is 25.26 4 21.04λ× =  
 
so for the array 

2

4 21.04 264  (24.2 dBi)D π
λ

×
= =     (ans.) 
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Chapter 9.  Slot, Patch and Horn Antennas   
 

9-2-1.  Two λ/2 slots. 
Two λ/2-slot antennas are arranged end-to-end in a large conducting sheet with a spacing 
of 1λ between centers.  If the slots are fed with equal in-phase voltages, calculate and plot 
the far-field pattern in the 2 principal planes.  Note that the H plane coincides with the 
line of the slots. 
 
Solution: 
 
Thin slots are assumed. 
 
 
 
The pattern in the E plane is a circle (E not a function of angle) or ( ) 1E φ =    (ans.) 
 
In the H-plane we have by pattern multiplication that the pattern is the product of 2 in-
phase isotropic sources spaced 1λ and the pattern of a / 2λ  slot.  The pattern of the / 2λ  
slot is the same as for a / 2λ  dipole but with  and E H interchanged. 
 
The pattern of the 2 isotropic sources is given by 
 
 ( / 2)cos ( / 2)cos or 2cos[( / 2)cos ] 2cos( cos )j d j dE H e e dβ θ β θ β θ π θ− += + = =  
The total normalized pattern in the H-plane is then 
 

cos[( / 2)cos ]( ) cos( cos )
sinnE π θθ π θ

θ
=    (ans.) 

 

*9-5-1.  Boxed-slot impedance. 
What is the terminal impedance of a slot antenna boxed to radiate only in one half-space 
whose complementary dipole antenna has a driving-point impedance of Z = 150 +j0 Ω?  
The box adds no shunt susceptance across the terminals. 
 
Solution: 
 

From (9-5-12) the impedance of an unboxed slot is   35476
s

d d

Z
R jX

=
+

 

 
where dR  is the resistance and dX  is the reactance of the complementary dipole. 

φ measured in plane 
perpendicular to page 

 d λ= θ

H H 



58 

 

*9-5-1.  continued 

  Thus, 35476 236.5
150 0sZ

j
= =

+
 Ω 

 
Boxing the slot doubles the impedance so 2 236.5 473.0 473 sZ = × = ≅ Ω    (ans.) 

 

*9-5-2.  Boxed slot. 
The complementary dipole of a slot antenna has a terminal impedance Z = 90 + j10 Ω.  If 
the slot antenna is boxed so that it radiates only in one half-space, what is the terminal 
impedance of the slot antenna?  The box adds no shunt susceptance at the terminals. 
 
Solution: 

From (8-5-12) we have a boxed slot   354762 779 87 
90 10sZ j

j
= × = − Ω

+
   (ans.) 

 

9-5-3.  Open-slot impedance. 
What dimensions are required of a slot antenna in order that its terminal impedance be 75 
+ j0 Ω?  The slot is open on both sides. 
 
Solution: 

From (8-5-11),  35476 35476 473 
75d

s

Z
Z

= = = Ω  

 
From Fig. 14-8 a center-fed cylindrical dipole with length-to-diameter ratio of 37  has a 
resistance at 4th resonance of 473 Ω  (or twice that of a cylindrical stub antenna of a 
length-to-radius ratio of 37).  The width of the complementary slot should be twice the 
dipole diameter, so it should have a length-to-width ratio of 181 .  At 4th resonance the 
dipole is 2λ  long and the slot should be the same length.  The pattern will be midway 
between those in Fig. 14-9 (right-hand column, bottom two patterns) but with E and H 
interchanged. 
 
Nothing is mentioned in the problem statement about pattern so the question is left open 
as to whether this pattern would be satisfactory. 
 
The above dimensions do not constitute a unique answer, as other shapes meeting the 
impedance requirement are possible. 
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9-7-1.  50 and 100 Ω patches. 
What value of the patch length W results in (a) a 50 Ω and (b) a 100 Ω input resistance 
for a rectangular patch as in Fig. 9-22a? 
 
Solution: 
 

From (9-7-7.1),   
22

90
1

r
r

r

LR
W

ε
ε

  =   −   
 

 
Solving for W 

    
290

( 1)
r

r r

W L
R

ε
ε

=
−

 

 

Since    o

r

0.49L λ
ε

=  

o0.49 9.49
( 1)

r

r r

W
R

ε λ
ε

= ×
−

 

With 2.27rε =  

o o
2.27 1 14.65 6.22
1.27 r r

W
R R

λ λ= =  

 
(a) oFor 50 ,            0.88rR W λ= Ω =  
 
(b) oFor 100 ,            0.62rR W λ= Ω =  

 

9-7-3.  Microstrip line. 
For a polystyrene substrate (εr = 2.7) what width-substrate thickness ratio results in a 50-
Ω microstrip transmission line? 
 
Solution: 
 
From (9-7-4) (see Fig. 9-21), 
 

o o 377     or    2 2 2.6
[( / ) 2] 50 2.7c

r c r

Z ZWZ
tW t Zε ε

= = − = − =
+

   (ans.) 
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9-7-3.  continued 
 
 
 
 
 
 
 
 
 
 
 

2.6 field cells under strip plus 2 fringing cells = 4.6 cells giving  377 50 
2.7 4.6cZ == = Ω

×
 

 

*9-9-1.  Optimum horn gain. 
What is the approximate maximum power gain of an optimum horn antenna with a square 
aperture 9λ on a side? 
 
Solution: 

Assuming a uniform E  in the E -direction and cosine 
distribution in the H -direction, as in the sketches, and with 
phase everywhere the same, the aperture efficiency from 
(19-1-50) is 

2
2 2 2 2

o o2 (2 / ) /( / 2) 8 / 0.81
( )

av
ap

av

E E E
E

ε π π= = = =  

A more detailed evaluation of apε for a similar distribution is 
given in the solution to Prob. 19-1-7. 
 

Assuming no losses, 

2

4Power gain = eAD π
λ

=  

 
where    2 2 20.81 10 81e ap em ap pA A Aε ε λ λ= = = × =  
 
and     4 81 1018  or  30 dBiD π= =  
 
The same gain is obtained by extrapolating the Ea λ  line in Fig. 9-29a to 10λ .  However, 
this makes H Ea aλ λ>  and not equal as in this problem. 

  E 
E

oE

oE

E

W 

t 

Strip line 

Ground plane 
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*9-9-1.  continued 
In an optimum horn, the length (which is not specified in this problem) is reduced by 
relaxing the allowable phase variation at the edge of the mouth by arbitrary amounts 
( o o90 2 0.25 rad in the -plane and 144 2 0.4 rad in the -plane).E Hπ π= × = ×  This results 
in less gain than calculated above, where uniform phase is assumed over the aperture. 
 
From (9-9-2), which assumes 60% aperture efficiency, the directivity of the 10λ square 
horn is 

2 27.5 / 7.5 10 750  or  29 dBipD A λ= × = × =  
 

To summarize:  when uniform phase is assumed ( 0.81)apε =  as in the initial solution 
above, 1018 or 30 dBiD =  but for an optimum (shorter) horn ( 0.6)apε = , 750 D =  or 
29 dBi.  

 

9-9-2.  Horn pattern. 
(a) Calculate and plot the E-plane pattern of the horn of Prob. 9-9-1, assuming uniform 

illumination over the aperture. 
(b) What is the half-power beamwidth and the angle between first nulls? 
 
Solution: 
 
(a) From (5-12-18) the pattern of a uniform aperture of length a is 
 

 
sin sin( sin )2

sin
2

n
aE

a
λ

λ

ψ
π θ

ψ π θ

′

= =′                                              (1) 

 
where     aperture length = 10

 angle from broadside
a λ
θ

=
=

 

 
(b) From Table 5-8,  oHPBW 50.8 /10 5.08= =    (ans.) 
 
Introducing o5.08 / 2 2.54=  into (1) yields 0.707nE =  which confirms that o5.08  is the 
true HPBW since 2 20.707 0.5n nP E= = =  
 
Using (5-7-7) and setting nd aλ λ=  for a continuous aperture, 
 

1 1 oBWFN 2sin (1/ ) 2sin (1/10) 11.48aλ
− −= = =    (ans.) 
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9-9-2.  continued 
Setting nd aλ λ=  assumes n very large and dλ  very small, but we have not assumed that 
their product ndλ  is necessarily very large.  If we had, we could write 
 

BWFN 2 / aλ=  rad 
and obtain 

oBWFN 2 /10 rad = 11.46=  
for a difference of o0.02 .  

 

9-9-3.  Rectangular horn antenna. 
What is the required aperture area for an optimum rectangular horn antenna operating at 2 
GHz with 12 dBi gain? 
 
Solution: 
 

From (9-9-2) or Fig. 3-5b, 2
2

7.5
,

7.5
p

p

A DD A λ
λ

≅ =  

 
1.210 15.85,      =0.15 mD λ= =  

 
2 215.85 (0.15) 0.0475 m

7.5pA = × =  

 

9-9-4.  Conical horn antenna. 
What is the required diameter of a conical horn antenna operating at 2 GHz with a 12 dBi 
gain? 
 
Solution: 

From Fig. 3-5b, 
2

2

6.5 rD π
λ

≅  

The diameter  2d r=  is 2
6.5

Dd λ
π

= , 1.210 15.85D = = , 0.15 mλ =  

 
15.852 0.15 26.4 cm
6.5

d
π

= × =
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9-9-5.  Pyramidal horn. 
(a) Determine the length L, aperture aH and half-angles in E and H planes for a pyramidal 
electromagnetic horn for which the aperture aE = 8λ.  The horn is fed with a rectangular 
waveguide with TE10 mode.  Take δ = λ/10 in the E plane and δ = λ/4 in the H plane. 
(b) What are the HPBWs in both E and H planes? 
(c) What is the directivity? 
(d) What is the aperture efficiency? 
 
Solution: 
 
(a) For a 0.1λ  tolerance in the E-plane, the relation with dimensions in wavelengths is 
shown in the sketch. 
 

From which 2 2 2/ 4 0.2 0.01EL a L Lλ λ λ λ+ = + +  
 
with 8  (given),Ea λ =     2 / .8 80EL aλ λ= =    (ans.) 
 
In the H-plane we have from the sketch that 

 

1 o

1 o

/ 2 6.33 and 12.7

/ 2 tan 4 / 80 2.9    ( .)

/ 2 tan 6.33/ 80 4.5    ( .)

H H

E

H

a a
ans

ans

λ λ

θ

θ

−

−

= =

= =

= =

 

 
(c)  If the phase over the aperture is uniform 0.81apε =  (see solution to Probs. 19-1-7 
and 9-9-1), 

4 8 12.7 0.81 1034 or 30.1 dBiD π= × × × =  
 

However, the phase has been relaxed to o36 2 0.1π= ×  rad in the E-plane and to 
o90 2 0.25π= ×  rad in the H-plane, resulting in reduced aperture efficiency, so apε  must 

be less than 0.8.  If the E-plane phase is relaxed to o90  and the H-plane phase to o144 , 
0.6apε  , which is appropriate for an optimum horn.  Thus, for the conditions of this 

problem which are between an optimum horn and uniform phase, 0.6 0.8.apε< <   Taking 
0.7apε ≅ , 

4 8 12.7 0.7 894 or 29.5 dBiD π= × × × =    (ans.) 
 

(b) Assuming uniform phase in the E-plane, 
 

o o
o o50.8 50.8(HPBW) 6.35 6.4

8E
Ea λ

≅ = = ≅    (ans.) 

and from the approximation 

0.1Lλ +
/ 2Eθ

/ 2Ea λ

Lλ

80.25
/ 2Hθ

/ 2Ha λ

80
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9-9-5.  continued 
41000 41000 894

(HPBW) (HPBW) 6.4(HPBW)E H H

D = = =  

 
so  o(HPBW) 7.2H ≅  
 
From Table 9-1 for an optimum horn, 
 

o
o

o
o

56(HPBW) 7
8
67(HPBW) 5.3
12.7

E

H

≅ =

= =
   (ans.) 

 
The true (HPBW)E  for this problem is probably close to o6.4 .  While the true (HPBW)H  
is probably close to o5.3 .  
 
(d) 0.7apε =  from part (c).   (ans.) 
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Chapter 10.  Flat Sheet, Corner and Parabolic Reflector 
Antennas 

 

10-2-1.  Flat sheet reflector. 
Calculate and plot the radiation pattern of a λ/2 dipole antenna spaced 0.15λ from an 
infinite flat sheet for assumed antenna loss resistance RL = 0 and 5 Ω.  Express the 
patterns in gain over a λ/2 dipole antenna in free space with the same power input (and 
zero loss resistance). 
 
Solution: 
 
From (10-2-1) the gain over a / 2λ reference dipole is given by 
 

 
1 2

11

11 12

( ) 2 sin( cos )f r
L

RG S
R R R

φ φ
 

=  + − 
                                (1)  

where, 
 spacing of dipole from reflector
 angle from perpendicular to reflector

S
φ

=
=

 

(See Fig. 10-2.) 
Note that (1) differs from (10-2-1) in that 0LR =  in the numerator under the square root 
sign since the problem requests the gain to be expressed with respect to a lossless 
reference antenna. 
 
Maximum radiation is at 0,φ =  so (1) becomes, 
 

1 2
73.1( ) 2 sin(2 0.15)

73.1 29.4f
L

G
R

φ π
 

= × + − 
 

and for 0LR =  
( ) 2.09   or 6.41 dB (= 8.56 dBi)fG φ =    (ans.) 

 
Note that 12R  is for a spacing of 0.3 ( 2 0.15 )λ λ= × .   See Table 13-1. 
Note that 10 ,   ( ) 1.89 or 5.52 dB (= 7.67 dBi)L fR G φ= Ω =    (ans.) 
Note that ( )fG φ  is the gain with respect to a reference / 2λ  dipole and more explicitly 
can be written ( )[ / ].fG A HWφ  
 
The loss resistance 10 LR = Ω  results in about 0.9 dB reduction in gain with respect to a 
lossless reference dipole.  If the reference dipole also has 10 Ω loss resistance, the gain 
reduction is about 0.3 dB. 
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10-2-1.  continued 
The above gains agree with those shown for 0LR =  and extrapolated for 10  LR = Ω  
at 0.15S λ=  in Fig. 10-4.  Note that in Fig. 10-4 an equal loss resistance is assumed in 
the reference antenna. 
 
The pattern for 0LR =  should be intermediate to those in Fig. 10-3 for spacings of 
0.125  (= /8) and 0.25  (= /4).λ λ λ λ   The pattern for 10LR = Ω  is smaller than the one for 

0LR =  but of the same shape (radius vector differing by a constant factor). 

 

10-3-1.  Square-corner reflector. 
A square-corner reflector has a driven λ/2 dipole antenna space λ/2 from the corner.  
Assume perfectly conducting sheet reflectors of infinite extent (ideal reflector).  Calculate 
and plot the radiation pattern in a plane at right angles to the driven element. 
 
Solution: 
 
From (10-3-6) the gain of a lossless corner reflector over a reference / 2λ  dipole is given 
by 

1 2

11

11 14 12

( ) 2 [cos( cos ) cos( sin )]
2f r r

RG S S
R R R

φ φ φ
 

= − + − 
 

For / 2S λ=  and maximum radiation direction o( 0 )φ =  this becomes 
 

1 273.1( ) 4 3.06  or  9.7 dB (=11.9 dBi)
73.1 3.8 2 24fG φ  = = + + × 

 

 
See Table 13-1 and Fig. 13-13 for the mutual resistance values for 14R  at 1λ  separation 
and 12  at 0.707R λ  separation.  The above calculated gain agrees with the value shown by 
the curve in Fig. 10-11.  The pattern should be identical to the one in Fig. 10-12a. 

 

10-3-2.  Square-corner reflector. 
(a) Show that the relative field pattern in the plane of the driven λ/2 element of a square-
corner reflector is given by  

( )[ ] ( )
θ

θθ
sin

cos90cossincos1


rSE −=  

where θ is the angle with respect to the element axis.  Assume that the corner-reflector 
sheets are perfectly conducting and of infinite extent. 
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10-3-2. continued 
 
(b) Calculate and plot the field pattern in the plane of the driven element for a spacing of 
λ/2 to the corner.  Compare with the pattern at right angles (Prob. 10-3-1). 
 
Solution: 
 
(a) The pattern in the plane of the dipole (E plane) is that of an array of three / 2λ  
elements arranged as in the sketch with amplitudes 1:2:1 and phasing as indicated. 
 
 
 
 
 
 
 
 
 
 
 
 
By pattern multiplication the pattern is the product of the pattern of an array of 3 isotropic 
sources with amplitudes and phasing 1: 2 : 1− + −  and the pattern of / 2λ  dipole (6-4-4).  
Thus, 

ocos(90 cos )(2 1 sin 1 sin )
sinr rE S S θθ θ

θ
__ __= − − −∠ ∠

 

or, see phasor sketch, 
ocos(90 cos )2[1 cos( sin )]

sinrE S θθ
θ

= −  

 
Dropping the scale factor 2 yields the results sought, q.e.d. 

 

*10-3-4.  Square-corner reflector. 
(a) Calculate and plot the pattern of a 90° corner reflector with a thin center-fed λ/2 

driven antenna spaced 0.35λ from the corner.  Assume that the corner reflector is of 
infinite extent. 

(b) Calculate the radiation resistance of the driven antenna. 
(c) Calculate the gain of the antenna and corner reflector over the antenna alone.  Assume 

that losses are negligible. 
 

1I = −

1I = −

2I = +

S

S

θ

2cos( sin )rS θ−

sin1 rS θ__− ∠

1 sinrS θ__− −∠

o2 0__∠

Phasor sketch 



68 

 

*10-3-4.  continued 
Solution: 
(a) From (10-3-6) the normalized field pattern for 0.35S λ=  is 
 

o o[cos(126 cos ) cos(126 sin )]
( )

1.588nE
φ φ

φ
−

=  

 
(b) 11 14 122 73.1 24.8 25 73.3 rR R R R= + − = − + = Ω    (ans.) 
 
(c) From (10-3-6) for 0 and 0.35Sφ λ= =  

1 2( ) 2(73.1/ 73.3) 1.588 3.17 or 10.0 dB (=12.1 dBi)fG φ = × =    (ans.) 

 

10-3-5.  Square-corner reflector versus array of its image elements. 
Assume that the corner reflector of Prob. 10-3-4 is removed and that in its place the three 
images used in the analysis are present physically, resulting in 4-element driven array. 
(a) Calculate and plot the pattern of this array. 
(b) Calculate the radiation resistance at the center of one of the antennas. 
(c) Calculate the gain of the array over one of the antennas alone. 
 
Solution: 
 
(a) 4-lobed pattern as in Fig. 10-9 with shape of pattern of Prob. 10-3-4a. 
 
(b) 73.3 rR = Ω    (ans.) 
 
(c) ( ) 1.59 or  4.0 dB (= 6.1 dBi)fG φ =    (ans.) 
since power is fed to all 4 elements instead of to only one  (Power gain down by a factor 
of 4 or by 6 dB). 

 

*10-3-6.  Square-corner reflector array. 
Four 90° corner-reflector antennas are arranged in line as a broadside array.  The corner 
edges are parallel and side-by-side as in Fig. P10-3-6.  The spacing between corners is 1λ.  
The driven antenna in each corner is a λ/2 element spaced 0.4λ from the corner.  All 
antennas are energized in phase and have equal current amplitude.  Assuming that the 
properties of each corner are the same as if its sides were of infinite extent, what is (a) the 
gain of the array over a single λ/2 antenna and (b) the half-power beam width in the H 
plane? 
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*10-3-6.  continued 

 
Figure P10-3-6.  Square-corner reflector array. 

 
Solution: 
 
(a) From (10-3-6) the gain of one corner reflector with 0.4S λ=  is given by 
 

1 2
o o73.1( ) 2 (cos144 cos 0 )

73.1 18.6 42
2 0.870 1.81 3.15 or 10 dB (= 12.1 dBi)

fG φ  = − − + 
= × × = ≅

 

Under lossless conditions, 

( )2
( ) 1.64 16.3fD G φ= × =  

Thus, the maximum effective aperture of one corner is 
2 2

216.3 1.3
4 4em

DA λ λ λ
π π

= ≅ =  

The effective aperture of a single corner may then be represented by a rectangle 1 1.3λ λ×  
as in the sketch below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.3λ  

1λ  
terminals 

/ 2 dipoleλ  

0.4λ  

emA  

90o corner reflector 

λ
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*10-3-6.  continued 
In an array of 4 reflectors as in Fig. P10-3-6 the edges of the apertures overlap 0.3λ  so 
that the reflectors are too close.  However, at the 1λ  spacing the total aperture is 

24 1 4λ λ λ× =  and the total gain of the array under lossless conditions is 
 

2

4 4 4 50 or 17 dBiemAG D π π
λ

= = = × ≅    (ans.) 

 
No interaction between corner reflectors has been assumed.  With wider spacing ( 1.3 )λ=  
the expected gain 16.3 4 65 or 18 dBi.= × =  
 
(b) Assuming a uniform aperture distribution, the HPBW is given approximately from 
Table 5-8 by 

o o oHPBW = 50.8 / 50.8 / 4 12.7Lλ = =  
To determine the HPBW more accurately, let us use the total antenna pattern.  By pattern 
multiplication it is equal to the product of an array of 4 in-phase isotropic point sources 
with 1λ  spacing and the pattern of a single corner reflector as given by 
 

1 sin(4 sin ) 1( ) [cos(0.8 cos ) cos(0.8 sin )]
4 sin( sin ) 1.809nE π φφ π φ π φ

π φ
= −  

 
The ¼ is the normalizing factor for the array and 1/1.809 for the corner reflector.  Thus, 
when o0 ,φ =  ( ) 1.nE φ =   Note that φ  must approach zero in the limit in the array factor 
to avoid an indeterminate result. 
 
Half of the above approximate HPBW is o o12.7 / 2 6.35 .=   Introducing it into the above 
equation yields o( ) 0.703.  For 6.30 ,  ( ) 0.707n nE Eφ φ φ= = =  as tabulated below. 
 

φ  ( )nE φ  
6.35o 0.703 
6.30o 0.707 

 
Thus,   oHPBW 2 6.30 12.6= × =    (ans.) 
 
The 4-source array factor is much sharper than the corner reflector pattern and largely 
determines the HPBW. 
 
Returning to part (a) for the directivity, let us calculate its value with the approximate 
relation of (2-7-9) using the HPBW of part (b) for the H-plane and the HPBW of 78o for 
the E-plane from Example 6-4.1. 
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*10-3-6.  continued 
Thus, 

40000 40.7  (= 16 dBi)
12.6 7.8

D ≅ =
×

 

 
as compared to 50 (= 17 dBi) D ≅ as calculated in part (a). 
 
Although the directivity of 16.3 for a single corner reflector should be accurate, since it is 
determined from the pattern via the impedances*, the directivity of 50 for the array of 4 
corner reflectors involves some uncertainty (apertures overlapping).  Nevertheless, the 
two methods agree within 1 dB. 
____________________________ 
*Assuming infinite sides 

 

10-3-7.  Corner reflector.  λ/4 to the driven element. 
A square-corner reflector has a spacing of λ/4 between the driven λ/2 element and the 
corner.  Show that the directivity D = 12.8 dBi. 
 
Solution: 
 
For the case of no losses, 
 

( )2
( ) 1.64,   and for  / 4  and  0,fD G Sφ λ φ= × = =  

(10-3-6) becomes 
1 273.1( ) 2 3.39

73.1 12.7 35fG φ  = = − − 
 

Therefore,  ( )2
( ) 1.64 18.9  or  12.8 dBifD G φ= × =    (ans.) 

 

10-3-8.  Corner reflector.  λ/2 to the driven element. 
A square-corner reflector has a driven λ/2 element λ/2 from the corner. 
(a) Calculate and plot the far-field pattern in both principal planes. 
(b) What are the HPBWs in the two principal planes? 
(c) What is the terminal impedance of the driven element? 
(d) Calculate the directivity in two ways:  (1) from impedances of driven and image 

dipoles and (2) from HPBWs, and compare.  Assume perfectly conducting sheet 
reflectors of infinite extent. 
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10-3-8.  continued 
Solution: 
 
(a) From Prob. 10-3-2 the pattern in the E-plane is given by 
 

 
o1 cos(90 cos )( ) [1 cos( sin )]

2 sinnE θθ π θ
θ

= −                                  (1) 

 
From (10-3-6) the pattern in the H-plane is given by  
 

 1( ) [cos( cos ) cos( sin )]
2nE θ π φ π φ= −                                 (2) 

Note that ( )nE θ = maximum for o90θ =  while ( )nE φ = maximum for o0 .φ =  
 
(b) Assuming initially that HPBW( )θ HPBW( )φ≅  and noting from Fig. 10-11 that for 

/ 2S λ=  the directivity is about 12 dBi, we have from (2-7-9) that 
 

o
2

40000 16 or  HPBW( ) 50
HPBW( )

D θ
θ

≅ ≅ ≅  and 
o

oHPBW( ) 50 25
2 2

θ
= =  

 
Introducing o o o90 25 65θ = − =  in (1) yields ( )nE θ which is too high.  By trial and error, 
we obtain o( ) 0.707 when =34.5 .nE θ θ≅  
 
Therefore,   o oHPBW( ) 2 34.5 69θ ≅ × =    (ans.) 
 
Introducing o25φ =  in (2) yields ( ) 0.60nE φ =  which is too low.  By trial and error, we 
obtain ( ) 0.707nE φ ≅  when o21 .φ =  
 
Therefore,   o oHPBW( )  2 21 42φ ≅ × =    (ans.) 
 
(c) The terminal impedance of the driven element is (see Prob. 10-3-1 solution), 
 

73.1 3.8 2 24 125TR = + + × = Ω    (ans.) 
From Prob. 10-3-1 solution, 

 

( )2
( ) 1.64 15.4  (= 11.9 dBi) by impedancefD G φ= × =    (ans.) 

 

o o

40000 13.8  (= 11.4 dBi) by beam widths
69 42

D ≅ =
×

   (ans.) 
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10-3-8.  continued 
 
The 15.4D =  value is, of course, more accurate since it is based on the pattern via the 
impedances.  The two methods differ, however, by only 0.4 dB. 

 

*10-7-2.  Parabolic reflector with missing sector. 
A circular parabolic dish antenna has an effective aperture of 100 m2.  If one 30° sector of 
the parabola is removed, find the new effective aperture.  The rest of the antenna, 
including the feed, is unchanged. 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
The full dish has an effective aperture 2100 m .eA =  Assuming that the dish character-
istics are independent of angle ( ),φ  removing one o45 sector reduces the effective aper-
ture to 7/8 of its original value provided the feed is modified and so as not to illuminate 
the area of the missing sector.  However, the feed is not modified and, therefore, its 
efficiency is down to 7/8.  Therefore, the net aperture efficiency is (7/8)2 and the net 
effective aperture is 

2 2(7 / 8) 100 76.6 m× =    (ans.) 
 

φ
45o 

Sector 
removed 

 φ 
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Chapter 11.  Broadband and Frequency-Independent Antennas   
 

*11-2-2.  The 2° cone. 
Calculate the terminal impedance of a conical antenna of 2° total angle operating against 
a very large ground plane.  The length l of the cone is 3λ/8. 
 
Solution: 
 
From (11-2-2) for ,kZ  and noting that when θ  is small o( 20 )θ <  
 

Then   4cot
4
θ

θ
  ≅ 
 

 

 

or  4120lnkZ
θ

=  

 
and with (11-2-4) and (11-2-5) for , and (11-2-3) for m iZ Z  
 
so  270 350iZ j= + Ω    (ans.) 

 

11-5-1.  Log spiral. 
Design a planar log-spiral antenna of the type shown in Fig. 11-11 to operate at 
frequencies from 1 to 10 GHz.  Make a drawing with dimensions in millimeters. 
 
Solution: 
 
High frequency limit = 10 GHz, 8 93 10 /10 10 30 mmλ = × × =  
 
Low frequency limit = 1 GHz, 300 mmλ =  
 
Take o77.6  (see Fig. 11-10)β =  
 
From (11-5-5),   antiln ( /tan ) = antiln ( /4.55)r θ β θ=  
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11-5-1.  continued 
 

θ  r R 

0 rad 1 1.5 mm 

/ 2π  1.41 2.12 

π  2.00 3.00 

3 / 2π  2.82 4.23 

2π  4.00 6.00 

5 / 2π  5.66 8.50 

3π  8.00 12.0 

7 / 2π  11.3 17.0 

4π  16.0 24.0 

9 / 2π  22.6 34.0 

5π  32.0 48.0 

11 / 2π  45.2 68.0 

6π  64.0 96.0 

 
Spiral is like one in Fig. 11-10.  If gap d at center is equal to /10λ  at high frequency 
limit, then gap should be 30/10 = 3 mm and radius R of actual spiral = 3/2 = 1.5 mm. 
 
If diameter of spiral is / 2λ  at low frequency limit, then the actual spiral radius should be 
300 /(2 2)  75 mm.× =    
 
This requires that 4.55ln(75 /1.5) 17.8 5.7θ π= = =  
 
For good measure we make 6θ π= .  Thus, the spiral has 3 turns ( 6θ π= ). 
 
The table gives data for the actual spiral radius R in mm versus the angle θ  in rad.  The 
overall diameter of the spiral is 96 2 192 mm× = which at 1 GHz is 192/300 = 0.64λ . 
 
Calling the above spiral number 1, draw an identical spiral rotated through / 2π  rad, a 
third rotated through π rad and a fourth rotated through 3 / 2π  rad.  Metalize the areas 
between spirals 1 and 4 and between spirals 2 and 3, leaving the remaining areas open.  
Connect the feed across the gap at the innermost ends of the spirals as in Fig. 11-11. 
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11-7-1.  Log periodic. 
Design an “optimum” log-periodic antenna of the type shown in Fig. 11-17 to operate at 
frequencies from 100 to 500 MHz with 11 elements.  Give (a) length of longest element, 
(b) length of shortest element, and (c) gain. 
 
Solution: 
 
From Fig. 11-19 let us select the point where o15α = intersects the optimum design line 
which should result in an antenna with slightly more than 7 dBi gain.  From the figure, 
k=1.195.  The desired frequency ratio is 5 = F = 250/50.  Thus, from (7) the required 
number of elements musts be at least equal to 
 

log log 5 9.0
log log1.195

Fn
k

= = =  

 
at 250 MHz,  1.2 m,  / 2 0.6 mλ λ= =    (ans.) 
 
at 50 MHz,  6 m,  / 2 3 mλ λ= =    (ans.) 
 
If element 1 is 0.6 in long, then element 10 (= n+1) is 0.6 91.195× = 2.98 m or 
approximately 3 m as required. 
 
Adding a director in front of element 1 and a reflector in back of element 10 brings the 
total number of elements to 12.   (ans.) 
 
The length 2  of any element with respect to the length  , of the next shorter element is 
given by 

2 1/ 1.195k= =     (ans.) 
 
From (11-7-5) (note geometry of Fig. 11-18), the spacing s between any two elements is 
related to the length   of the adjacent shorter element by 
 

o

( 1) 0.195 0.364
2 tan 2 tan15

ks
α

−
= = =
 

     (ans.) 

 
[Note that (11-7-6) gives s with respect to adjacent longer elements.] 
 
Finally, connect the elements as in Fig. 11-17. 
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11-7-2.  Stacked LPs. 
Two LP arrays like in the worked example of Sec. 11-7 are stacked as in Fig. 11-21a. 
(a) Calculate and plot the vertical plane field pattern.  Note that pattern multiplication 
cannot be applied. 
(b) What is the gain? 
 
Solution: 
 
From the worked example of Sec. 11-7, 
  

o15 ,  1.2,  4,  7.6  (8) and 1 9k F n nα = = = = + =  

Consider that min max1 m and 4 m.λ λ= =  
 
Therefore, 8

1 1 1 90.5 m and 0.5 1.2 2 mn
n k+= = = × = =     

 
From (11-7-6) the distance between elements 1 and 9 is 
 

2

1 1
0

( 1)    where 0.5 m
2 tan

nn

n

k kS
α

−

=

−
= =∑   

and 
 

7

o
0

0.2 1.2 =0.187+0.224+0.268+0.322+0.387+0.464+0.557+0.669 = 3.08 m 
4 tan15

n

n
S

=

×
= ∑  

 
The stacked LPs are shown in side view in the sketch below.  Elements 1 through 9 are 
included in the calculation.  Element 1 is / 2λ  resonant at 1 m wavelength and element 9 
is / 2λ  resonant at 4 m wavelength.  A director element is added ahead of element 1 and 
a reflector element is added after element 9 making a total of 11 elements. 
 
In the 60 angle stacking arrangement the stacking distance is 0.5 m or / 2λ  at 1 m 
wavelength and 3.65 m or 0.91λ  at 4 m wavelength.  At the geometric mean wavelength  
(2 m) the stacking distance is 1.25 m or 0.625 λ . 
 
 
 
 
 
 
 
 
 
 



79 

 

11-7-2.  continued 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Let us calculate the vertical plane pattern at 2 m wavelength where elements 3, 4 and 5 of 
the upper and lower LPs are active.  As an approximation, let us consider that the 3 active 
elements are a uniform ordinary end-fire array with spacing equal to the average of the 
spacing between elements 3 and 4 and between 4 and 5. 
 
For element 4 we take  4 / 2λ= .  Then from (11-7-6) 
 

45 o

1 1.2 1 0.187
4 tan 4 tan15
kS λ

α
− −

= = =  
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11-7-2.  continued 
and 

34 0.187 /1.2 0.155S λ= =  
 

0.155 .187 0.171
2avS λ+

= =  

 

The end-fire array field pattern is given by 1 sin / 2
3 sin / 2

nE ψ
ψ

=  

where 
o2 0.171/ 2 (cos 1) 30.8 (cos 1),        3

2
nπψ φ φ×

= − = − =  

 
Each LP (end-fire array) has a broad cardiod-shaped pattern like the ones shown in Fig. 
11-21a with one pattern directed up 30o and the other down 30o. 
 
The total field pattern in the resultant of these patterns and a broadside array of 2 in-phase 
isotropic sources stacked vertically and spaced 0.625λ with pattern given by 
 

ocos[(2 0.625 / 2)sin ] cos(112.5 sin )E π φ φ= × =  
 
This pattern is shown in Fig. 16-11.  Numerical addition of the LP patterns and multi-
plication of the resultant by the broadside pattern yields the total field pattern for 2 mλ =  
shown in the sketch.  At 1 mλ = the up-and-down minor lobes disappear but the main 
beam is about the same.  At 4 mλ = the main beam is narrower but the up-and-down 
minor lobes are larger. 
 
(b) Each LP has a gain 7≅ dBi.  From the equation of Prob. 5-2-3, the directivity of 2 
in-phase isotropic sources with 0.625λ  spacing is 2.44 or 3.9 dBi.  So for 2 mλ = , the 
gain may be as much as 7 3.9 10.9 dBi+ ≅    (ans.) 
 
At both 1 m and 4 mλ λ= =  the gain may be less than this. 
 
The HPBW in the vertical plane is about o47  and in the horizontal plane about o76 .  
From the approximate directivity relation, we have, neglecting minor lobes, 
 

41000 11.5 or 10.6 dBi
47 76

D = =
×

   (ans.) 

 
Actual directivity is probably 10 dBi.  
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Chapter 12.  Antenna Temperature, Remote Sensing and Radar 
Cross Section 

 

*12-2-1.  Antenna temperature. 
An end-fire array is directed at the zenith.  The array is located over flat nonreflecting 
ground.  If 0.9 ΩA is within 45° of the zenith and 0.08 ΩA between 45° and the horizon 
calculate the antenna temperature.  The sky brightness temperature is 5 K between the 
zenith and 45° from the zenith, 50 K between 45° from the zenith and the horizon and 
300 K for the ground (below the horizon).  The antenna is 99 percent efficient and is at a 
physical temperature of 300K. 
 
Solution: 
 

0.9  is at 5 K
0.08  is at 50 K

A

A

Ω
Ω

 

Therefore  0.02  is at 300 KAΩ  
 
From (12-1-8), 
 

1 [5 0.9 50 0.08 300 0.02 ] 4.5 4 6 14.5 KA A A A
A

T = × Ω + × Ω + × Ω = + + =
Ω

    (ans.) 

 

*12-2-2.  Earth-station antenna temperature. 
An earth-station dish of 100 m2 effective aperture is directed at the zenith.  Calculate the 
antenna temperature assuming that the sky temperature is uniform and equal to 6 K.  Take 
the ground temperature equal to 300 K and assume that 1/3 of the minor-lobe beam area 
is in the back direction.  The wavelength is 75 mm and the beam efficiency is 0.8. 
 
Solution: 
 
From (12-1-8), 
 

1 2 1[6 0.8 6 0.2 300 0.2 ] 4.8 0.8 20 25.6 K
3 3A A A A

A

T = × Ω + × × Ω + × × Ω = + + =
Ω

    (ans.) 
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*12-3-4.  Satellite TV downlink. 
A transmitter (transponder) on a Clarke orbit satellite produces an effective radiated 
power (ERP) at an earth station of 35 dB over 1 W isotropic. 
(a) Determine the S/N ratio (dB) if the earth station antenna diameter is 3m, the antenna 
temperature 25 K, the receiver temperature 75 K and the bandwidth 30 MHz.  Take the 
satellite distance as 36,000 km.  Assume the antenna s a parabolic reflector (dish-type) of 
50 percent efficiency. (See Example 12-3.1). 
(b) If a 10-dB S/N ratio is acceptable, what is the required diameter of the earth station 
antenna? 
 
Solution: 
 
(a) Satellite ERP = 35 dB (over 1 W isotropic) 
 

ERP = 2 24 / , ERP / 4t t t et t etPD P A P Aπ λ λ π= =  
 
From (12-3-3), 
 

2

2 2 2 2

ERP
4

t et er er

sys sys

P A A AS
N kT r B kT r B

λ
λ π λ

= = ,  ERP = 35 dB or 3162 

 
2 2 21 1 1.5 3.53 m

2 2erA rπ π= = = , 25 75 100 KsysT = + =  

 

23 2 14 7

3162 3.53 16.6 or 12.2 dB
4 1.38 10 100 3.6 10 3 10

S
N π −

×
= =

× × × × × × ×
    (ans.) 

 
(b) If only 10 dB S/N ratio is acceptable, the dish aperture could be 2.2 dB 
( 12.2 10 dB)= −  less or 60% of the π 1.52 = 7.07 m2 area specified in part (a). 
 
Therefore acceptable area 2 27.07 0.6 4.24 m rπ= × = =  
 
For a diameter 1 22 2(4.24 / ) 2.3 mr π= = =     (ans.) 

 

*12-3-5.  System temperature. 
The digital output of a 1.4 GHz radio telescope gives the following values (arbitrary 
units) as a function of the sidereal time while scanning a uniform brightness region.  The 
integration time is 14 s, with 1 s idle time for printout.  The output units are proportional 
to power. 
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*12-3-5.  continued 
 

Time Output Time Output 
31m30s 234 32m45s 229 
31 45 235 33 00 236 
32 00 224 33 15 233 
32 15 226 33 30 230 
32 30 239 33 45 226 

 
If the temperature calibration gives 170 units for 2.9 K applied, find (a) the rms noise at 
the receiver, (b) the minimum detectable temperature, (c) the system temperature and (d) 
the minimum detectable flux density.  The calibration signal is introduced at the receiver.  
The transmission line from the antenna to the receiver has 0.5 dB attenuation.  The 
antenna effective aperture is 500 m2.  The receiver bandwidth is 7 MHz.  The receiver 
constant k′ =2. 
 
Solution: 
 
(a) Noise output readings 234, 235, etc. with respect to average value (231), are 
squared, averaged and then square rooted for root-mean-square (rms) noise value 4.71. 
 
The rms noise at receiver is then 

4.71 2.9 0.08 K
170

× =     (ans.) 

(b) Transmission line attenuation = 0.5 dB for efficiency of 0.89. 
 
Therefore, min 0.08 / 0.89 0.09 KT∆ = =     (ans.) 
 
(c) From (12-2-3), 
 

1 2 6 1 2
min ( ) 0.09(7 10 14) 445 K

2sys
T ftT

k
∆ ∆ × ×

= = =
′

    (ans.) 

 
(d) From (12-1-7), 
 

23
min

min
2 2 1.38 10 0.09 497 mJy  500 mJy (rounded off) 

500e

k TS
A

−∆ × × ×
∆ = = = ≅     (ans.)
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12-3-6.  System temperature. 
Find the system temperature of a receiving system with 15 K antenna temperature, 0.95 
transmission-line efficiency, 300 K transmission-line temperature, 75 K receiver first-
stage temperature, 100 K receiver second-stage temperature and 200 K receiver third-
stage temperature.  Each receiver stage has 16 dB gain. 
 
Solution: 
 
From (12-2-1) and (12-2-2), 

1 1 100 20015 300 1 75
.95 .95 40 40

15 15.8 78.9 2.6 5.3 117.6 K   ( .)

sysT

ans

   = + − + + +   
   

= + + + + =
 

 

*12-3-7.  Solar interference to earth station. 
Twice a year the sun passes through the apparent declination of the geostationary Clarke-
orbit satellites, causing solar-noise interference to earth stations.  A typical forecast notice 
appearing on U.S. satellite TV screens reads: 
 

ATTENTION CHANNEL USERS: 
WE WILL BE EXPERIENCING 

SOLAR OUTAGES FROM 
OCTOBER 15 TO 26 

FROM 12:00 TO 15:00 HOURS 
 
(a) If the equivalent temperature of the sun at 4 GHz is 50,000 K, find the sun’s signal-to-
noise ration (in decibels) for an earth station with a 3-m parabolic dish antenna at 4 GHz.  
Take the suns diameter as 0.5° and the earth-station system temperature as 100 K. 
(b) Compare this result with that for the carrier-to-nose ratio calculated in Example 12-
3.1 for a typical Clarke-orbit TV transponder. 
(c) How long does the interference last?  Note that the relation eA A2λ=Ω gives the 
solid beam angle in steradians and not in square degrees. 
(d) Why do the outages occur between October 15 and 26 and not at the autumnal 
equinox around September 20 when the sun is crossing the equator? 
(e) How can satellite services work around a solar outage? 
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*12-3-7.  continued 
 
Solution: 

(a)  Earth station min

2 sys

e

kT
S

A
=  

sun 2

22 2 s sA A A

e e A

kTk T k TS
A A λ

Ω∆ ∆ Ω
= = =

Ω
 

 
Assuming 50% aperture efficiency as in Prob. 12-3-4, 

 
2 2

3

2

0.075 1.59 10  sr 5.22 sq. deg.1 1.5
2

A
eA

λ

π

−Ω = = = × =  

Therefore,  
4 o 2

sun

min

5 10 (.25 ) 18.8 or 12.7 dB
100 5.22

s s

sys A

S TS
N S T

πΩ × ×
= = = =

Ω ×
    (ans.) 

 
(b) From Prob. 12-3-4, 
 
12.7 12.2 0.5− =  dB more than satellite carrier, resulting in degradation of TV picture 
quality.  The phenomenon may be described as noise jamming by the sun. 
 
(c) At half-power, solar noise will be reduced to only 3 0.5 2.5− =  dB below carrier. 
Assuming low side-lobes, the solar interference should not last more than the time it takes 
the sun to drift between first nulls.  Using this criterion we have 
 

Solar drift rate

Time 4(min/ deg) BWFN (deg)= ×  

From Table 15-1,  
 
HPBW o o o66 / 66 /(3 0.075) 1.65     and    Time 4 2 1.65 13.2 minDλ= = = ≅ × × =     (ans.) 
 
Allowing for the angular extent of the sun (approx. o1 2 ) increases the time by about 2 
minutes. 

 

sq. deg. 
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*12-3-9.  Critical frequency. MUF. 
Layers may be said to exist in the earth’s ionosphere where the ionization gradient is 
sufficient to refract radio waves back to earth.  [Although the wave actually may be bent 
gradually along a curved path in an ionized region of considerable thickness, a useful 
simplification for some situations is to assume that the wave is reflected as though from a 
horizontal perfectly conducting surface situated at a (virtual) height h.]  The highest 
frequency at which this layer reflects a vertically incident wave back to the earth is called 
the critical frequency fo.  Higher frequencies at the vertical incidence pass through.  For 
waves at oblique incidence (φ>0 in Fig. P12-3-9) the maximum usable frequency (MUF) 
for point-to-point communication on the earth is given by MUF = fo/cos φ, where φ = 
angle of incidence.  The critical frequency Nfo 9= , where N = electron density 
(number m-3).  N is a function of solar irradiation and other factors.  Both fo and h vary 
with time of day, season, latitude and phase of the 11-year sunspot cycle.  Find the MUF 
for (a) a distance d = 1.3 Mm by F2-layer (h = 3 25 km) reflection with F2-layer electron 
density N = 6 x 1011 m-3;  (b) a distance d = 1.5 Mm by F2-layer (h = 275 km) reflection 
with N = 1012 m-3; and (c) a distance d = 1 Mm by sporadic E-layer (h = 100 km) 
reflection N = 8 x 1011 m-3.  Neglect earth curvature. 
 

 
Figure P12-3-9.  Communication path via reflection from ionospheric layer. 

 
 
Solution: 
 
MUF = Maximum Usable Frequency for communication via ionospheric reflection. 
 
(a)

5
11 1 2 1 1 o

o 5

6.5 109 9(6 10 ) 6.97 MHz,     tan [( / 2) / ] tan 63.43
3.25 10

f N d hφ − −  ×
= = × = = = = × 

 

ocos 0.477,           MUF / cos 6.97 / 0.447 15.6 MHzfφ φ= = = =     (ans.) 
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*12-3-9.  continued 
5

12 1 2 -1 o
o 5

7.5 10(b)    9(10 ) 9 MHz,      tan 69.86 ,      cos 0.344
2.75 10

f φ φ
 ×

= = = = = × 
 

MUF 9 / 0.344 26.1 MHz= =     (ans.) 
 

5
11 1 2 -1 o

o 5

5 10(c)    9(8 10 ) 8.05 MHz,      tan 78.69 ,      cos 0.196
10

f φ φ
 ×

= × = = = = 
 

 

6MUF 8.05 10 / 0.196 41.0 MHz= × =  

 

12-3-10.  mUF for Clarke-orbit satellites. 
Stationary communication (relay) satellites are placed in the Clarke orbit at heights of 
about 36 Mm.  This is far above the ionosphere, so that the transmission path passes 
completely through the ionosphere twice, as in Fig. 12-3-10.  Since frequencies of 2 GHz 
and above are usually used the ionosphere has little effect.  The high frequency also 
permits wide bandwidths.  If the ionosphere consists of a layer 200 m thick between 
heights of 200 and 400 km with a uniform electron density N = 1012 m-1, find the lowest 
frequency (or minimum usable frequency, mUF) which can be used with a 
communication satellite (a) for vertical incidence and (b) for paths 30° from the zenith.  
(c) For an earth station on the equator, what is the mUF for a satellite 15° above the 
eastern or western horizon? 
 

 
Figure P12-3-10.  Communication path via geostationary Clarke-orbit relay satellite. 
 
Solution: 
 

mUF = minimum usable frequency for transmission through ionosphere 
 
(a) 1 2 1 2 1 2mUF 9( ) 9(10 ) 9 MHzN= = =     (ans.) 
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12-3-10.  continued 
Although MUF = mUF, whether it is one or the other, depends on the point of view.  It is 
MUF for reflection and mUF for transmission.  Below critical frequency, wave is 
reflected; above critical frequency, wave is transmitted. 
 
(b) omUF 9 MHz/ cos30 10.4 MHz= =     (ans.) 
 
(c) omUF 9 MHz/ cos 75 34.8 MHz= =     (ans.) 
 
A typical Clarke orbit satellite frequency is 4 GHz, which is 115 9 6( 4 10 / 34.8 10 )= × ×  
times higher in frequency than the mUF, so that at 4 GHz, transmission through the 
ionosphere can occur at much lower elevation angles than 15o. 

 

*12-3-11.  Minimum detectable temperature. 
A radio telescope has the following characteristics:  antenna noise temperature 50 K, 
receiver noise temperature 50 K, transmission-line between antenna and receiver 1 dB 
loss and 270 K physical temperature, receiver bandwidth 5 MHz, receiver integration 
time 5 s, receiver (system) constant 2/π=′k  and antenna effective aperture 500 m2.  If 
two records are averaged, find (a) the minimum detectable temperature and (b) the 
minimum detectable flux density. 
 
 
Solution: 
(a) For 1 dB loss, 2 1/1.26 0.79ε = =  
 
From (12-2-1),  

1 5050 270 1 50 71.8 63.3 185 K
.79 .79sysT  = + − + = + + = 

 
 

From (12-2-3), 
 

min 1 2 6 1 2

185 0.058 K  0.06 K (rounded off)
( ) (5 10 5 2)2

sysk T
T

f t n
π′

∆ = = = ≅
∆ × × ×

    (ans.) 

 
where n = number of records averaged 
 

(b) From (12-1-7),  
23

min
min

2 2 1.38 10 0.058 320 mJy
500e

kTS
A

−× × ×
∆ = = =     (ans.) 
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12-3-12.  Minimum detectable temperature. 
A radio telescope operates at 2650 MHz with the following parameters:  system 
temperature 150 K, predetection bandwidth 100 MHz, postdetection time constant 5 s, 
system constant k’ = 2.2 and effective aperture of antenna 800 m2.  Find (a) the minimum 
detectable temperature and (b) the minimum detectable flux density.  (c) If four records 
are averaged, what change results in (a) and (b)? 
 
Solution: 

(a) min 8 1 2

2.2 50 0.015 K
(10 5)

T ×
∆ = =

×
    (ans.) 

(b) 
23

min
2 1.38 10 0.015 52 mJy

800
S

−× × ×
∆ = =     (ans.) 

 

min

min

0.015(c) 0.008 K
4

52 26 mJy
4

T

S

∆ = =

∆ = =
    (ans.) 

 

*12-3-13.  Interstellar wireless link. 
If an extraterrestrial civilization (ETC) transmits 106 W, 10 s pulses of right-hand circ-
ularly polarized 5 GHz radiation with a 100 m diameter dish, what is the maximum 
distance at which the ETC can be received with an SNR = 3.  Assume the receiving 
antenna on the earth also has a 100 m diameter antenna responsive to right circular 
polarization, that both antennas (theirs and ours) have 50 percent aperture efficiency, and 
that the earth station has a system temperature of 10 K and bandwidth of 0.1 Hz. 
 
Solution: (Note: Problem statement should specify S/N =3.) 
 

From (12-3-3),  
8

2 2 9

3 10, 0.06 m
5 10

t er et

sys

P A AS c
N r BkT f

λ
λ

×
= = = =

×
 

6 2 2
2 38 2

2 2 23

10 [ (50) 0.5][ (50) 0.5] 1.03 10  m
( / ) (0.6) (0.1)(1.38 10 )(10)(3)

t er et

sys

P A Ar
BkT S N

π π
λ −= = = ×

×
 

 
Therefore, 191.02 10  m 1000 light yearsr = × ≅     (ans.) 
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*12-3-14.  Backpacking penguin.  
This penguin (Fig. P12-3-14) participated in a study of Antarctic penguin migration 
habits.  Its backpack radio with λ/4 antenna transmitted data on its body temperature and 
its heart and respiration rates.  It also provided information on its location as it moved 
with its flock across the ice cap.  The backpack operated at 100 MHz with a peak power 
of 1 W and a bandwidth of 1- kHz of tone-modulated data signals.  If Tsys = 1000 K and 
SNR = 30 dB, what is the maximum range? The transmitting and receiving antennas are 
λ/4 stubs. 

 
Figure P12-3-14.  Antarctic backpacking penguin. 

Solution: 
 

From (12-3-3),  
8

2 2 6

3 10, 3 m
100 10

t er et

sys

P A AS c
N r BkT f

λ
λ

×
= = = =

×
 

2 2

2
2 2

2

11 2
2 3 23 3

1.5 1.5
4 4

( / ) ( / )

1.5(3)1
4

9.3 10  m
(3) (10 10 )(1.38 10 )(1000)(10 )

t
t er et

sys sys

P
P A Ar

BkT S N BkT S N

λ λ
π π

λ λ

π
−

  
  
  = =

 
 
 = = ×

× ×

 

 
Therefore, 59.6 10  m 960 kmr = × ≅     (ans.) 

 

*12-3-17.  Low earth orbit communications satellite. 
A communications satellite in low earth orbit (LEO) has rup = 1500 km and rdown = 1000 
km, with an uplink frequency of 14.25 GHz and a down link frequency of 12 GHz.  Find 
the full-circuit C/N if the transmitting earth station ERP is 60dBW and the satellite ERP 
is 25 dBW.  Assume the satellite receiver G/T is 5 dB/K and the earth-station G/T is 30 
dB/K. 
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*12-3-17.  continued 
Solution: 
 

From Prob. 12-3-15, 
2 2  t et er

sys

P A AC
N r kTλ

= and using 2

4 eAG π
λ

= , we have 
2

2 2  
(4 )

t t r

sys

PG GC
N r kT

λ
π

=  

 
We now define effective radiated power = ERP = t tPG , Power loss 2 2 2(4 ) /L rπ λ= =  
 

This gives 1 1(ERP)
L

r

sys

GC
N k T

   =        
 

 
For the uplink,  

8

up up9
upup up

(sat)3 10 1 10.021 m,     and     (ERP)
14.25 10 (sat)

r

sys

Gc C
f N L k T

λ
   ×    = = = =          ×       

 

 

Working in dB,   ERPup = 60 dBW,  
26

up
4 (1.5 10 )10log 179.1 dB

0.021
L π ×

= = 
 

 

 
2310 log(1.38 10 ) 228.6 dB,k −= × = −   -1(sat.) 5 dB K

(sat.)
r

sys

G
T

=  

So   
up

60 179.1 228.6 5 114.5 dBC
N

  = − + + = 
 

 

Similarly,  
down

25 174 228.6 30 109.6 C
N

  = − + + = 
 

 

From Prob. 12-3-1,   
1 1 1

11
11.45 10.96

up down

1 1 1.45 10
10 10

C C C
N N N

− − −
−     = + = + = ×     

     
 

 
10

11

1 6.89 10 108.4 dB
1.45 10

C
N −= = × =

×
    (ans.) 

 

*12-3-18.  Direct broadcast satellite (DBS). 
Direct broadcast satellite services provide CD quality audio to consumers via satellites in 
geosynchronous orbit.  The World Administrative Radio Conference (WARC) has 
established these requirements for such services. 
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*12-3-18.  continued 
 

Frequency band   11.7 to 12.2 GHz (Ku band) 
Channel bandwidth   27 MHz 
Minimum power flux density  -103 dBW/m2 

Receiver figure of merit (G/T) 6 dB/K 
Minimum carrier-to-noise ratio 14 dB 

 
(a) Find the effective radiated power (ERP) over 1 W isotropic needed to produce the 
specified flux density at the Earth’s surface from a DBS satellite in a 36,000 km orbit.  (b) 
If the satellite has a 100 W transmitter and is operated at 12 GHz, what size circular 
parabolic dish antenna must be used to achieve the required ERP?  Assume 50 percent 
efficiency.  (c) Does a consumer receiver with circular 1 m dish antenna with 50 percent 
efficiency and system noise temperature of 1000 K meet the specified G/T?  (d) By how 
much does the system specified in parts (a) through (c) exceed the required carrier-to-
noise ratio? 
 
Solution: 

(a) Since ERP t tPG=  and the power flux density 2( ) ,
4

t tPGr
r

ψ
π

=  

we have  2
7 2

ERP103 dB Wm
4 (3.6 10 )π

−− =
×

 

 
7 2 10.3 5ERP 4 (3.6 10 ) 10 8.16 10  Wπ −∴ = × = ×     (ans.) 

 

(b)  
2

2 2

4 ERP 4 ( )( / 2)   
t

A dG k k
P

π π π
λ λ

= = =  

2 5 2

2 2

ERP( )4 8.16 10 (0.025) 4 1.0 m
4 (100)(4)(3.14) (0.5)t

d
P k

λ
π

×
= = =     (ans.) 

 
(c) For a 1-m receive antenna and 1000 K noise temperature, 
 

2
1 1

2 2

4 4 ( )(1/ 2)0.5 5.48 K 7.4 dB K
(0.03) (1000)

eAG k
T T

π π π
λ

− −= = = =   (yes)    (ans.) 

 
(d) The C/N for a channel bandwidth B is 
 

2
5

7 23 7

1 1 1 0.03 1 1ERP 8.16 10 (5.5)
4 (3.6 10 ) 1.38 10 2.7 10

52.9 17.2 dB

C G
N L k T B π −

         = = ×          × × ×         
= =
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*12-3-18.  continued 
 
Therefore C/N  exceeds requirement (14 dB) by 17.2 14 3.2 dB− =     (ans.) 

 

12-3-19.  Simplified expression for C/N. 
The expression for C/N provided in P12-3-15 may be simplified by making the following 
substitutions:   
 
Effective isotropic radiated power = ERP = PtGt (W) 
Link path loss = Llink = 4πr2/λ2 
 
The carrier-to noise ratio may then be written as 
 

sys

r

link

11ERP
T
G

kLN
C

=  

 
where Gr/Tsys is the receive antenna gain divided by the system noise temperature.  This 
ratio, referred to as “G over T,” is commonly used as a figure of merit for satellite and 
earth station receivers.  Find the C/N ratio for the uplink to a satellite at the Clarke orbit (r 
= 36,000 km) equipped with a 1 m parabolic dish antenna with efficiency of 50 percent 
and a receiver with noise temperature of 1500 K.  Assume that the transmitting earth 
station utilizes a 1 kW transmitter and a 50 percent efficient 10 m dish antenna and 
operates at a frequency of 6 GHz. 
 
Solution: 
 

22 7
191 1 4 4 (3.6 10 )ERP , 0.05 m, 8.18 10

0.05
r

sys

GC rL
N L K T

π πλ
λ

   ×    = = = = = ×               
 

2

2 2
8 1

2

4 ( )(5)0.5
4 ( )(5) (0.05)ERP 1000 0.5 1.97 10  W, 1.3 K

(0.05) 1500
r

t t
sys

GPG
T

π π
π π − 

= = = × = = 
 

 
8

19 23

11

1 1Therefore,       (1.97 10 ) (1.3)
8.18 10 1.38 10

2.3 10 113.5 dB   ( .)

C
N

ans

−

  = ×   × ×  
= × =
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12-3-22.  Galileo’s uncooperative antenna. 
When the Galileo spacecraft arrived at Jupiter in 1995, ground controllers had been 
struggling for 3 years to open the spacecraft’s 5 m high-gain communications dish, which 
was to operate at 10 GHz (X band).  Unable to deploy this antenna because of prelaunch 
loss of lubricant, a low-directivity (G = 10 dB) S-band antenna operating at 2 GHz had to 
be used to relay all pictures and data from the spacecraft to the Earth.  For a spacecraft 
transmit power of 20 W, distance to Earth of 7.6 x 1011 m, and 70 m dish with 50 percent 
efficiency at the receiving station, find (a) the maximum achievable data rate if the 5 m 
X-band antenna had deployed and (b) the maximum data rate using the 1 m S-band 
antenna. 
 
Solution: 

1 1ERP r

sys

GC
N L K T

   =        
 

(a) For the 5-m X-band antenna,   
2

6
2

4 ( )(2.5)ERP 20 0.5 2.74 10  W
(0.03)t tPG π π 

= = = × 
 

 

 

22 11
294 4 (7.6 10 ) 1.01 10 ,

0.03
rL π π

λ
 × = = = ×  

   
         

2

2
4 1

4 ( )(35)0.5
(0.03) 5.37 10  K
500

r

sys

G
T

π π
−= = ×  

 
6 4 5

29 23

1 1Therefore,  (2.74 10 ) (5.37 10 ) 1.05 10
1.01 10 1.38 10

C
N −

  = × × = ×  × ×  
  

 

The maximum data rate 51.44 1.44(1.05 10 ) 152 kBits/sCM
N

= = × ≅     (ans.)

 

*12-4-1.  Antenna temperature with absorbing cloud. 
A radio source is occulted by an intervening emitting and absorbing cloud of unity optical 
depth and brightness temperature 100 K.  The source has a uniform brightness dis-
tribution of 200 K and a solid angle of 1 square degree.  The radio telescope has an 
effective aperture of 50 m2.  If the wavelength is 50 cm, find the antenna temperature 
when the radio telescope is directed at the source.  The cloud is of uniform thickness and 
has an angular extent of 5 square degrees.  Assume that the antenna has uniform response 
over the source and cloud. 
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*12-4-1.  continued 
Solution: 

From (12-4-1) and (12-1-6),  (1 )c cc s
A c s

A A

T T e T eτ τ− −Ω Ω
∆ = − +

Ω Ω
 

 

2

2

2 2

5 / 57.3 0.00152 sr

1/ 57.3 0.00030 sr

/ 0.5 / 50 0.005 sr

c

s

A emAλ

Ω = =

Ω = =

Ω = = =

 

 

Therefore,  1 1.00152 .0003100(1 ) 200 23.6 K
.005 .005AT e e− −∆ = − + =     (ans.) 

 

12-4-3.  Forest absorption. 
An earth-resource satellite passive remote-sensing antenna directed at the Amazon River 
Basin measures a night-time temperature TA = 21°C.  If the earth temperature Te = 27°C 
and the Amazon forest temperature Tf  = 15°C, find the forest absorption coefficient τf. 
 
Solution: 

From (12-4-2),  294 288 0.5   and   0.693
300 288

f A f
f

f e

T T
e

T T
τ τ− ∆ − −

= = = =
− −

    (ans.) 

 

*12-4-4.  Jupiter signals. 
Flux densities of 10-20 W m-2 Hz-1 are commonly received from Jupiter at 20 MHz.  What 
is the power per unit bandwidth radiated at the source?  Take the earth-Jupiter distance as 
40 light-minutes and assume that the source radiates isotropically. 
 
Solution: 

1 8 1 1140 light min 60 s min 3 10  m s 7.20 10  mr − −= × × × = ×  
 

2

1
4

tr PP
f f rπ

= ×
∆ ∆

 

 

or 2 20 2 22 14 10 4 7.2 10 65.1 kW Hzt rP P r
f f

π π− −= × = × × × =
∆ ∆

    (ans.)
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12-5-1.  Radar detection 
A radar receiver has a sensitivity of 10-12 W.  If the radar antenna effective aperture is 1 
m2 and the wavelength is 10 cm, find the transmitter power required to detect an object 
with 5 m2 radar cross section at a distance of 1 km. 
 
Solution: 
 

4 2 12 3 4 2

2 2

4 10 4 (10 ) (0.1) 25 mW
(1) 5

r
t

P rP
A
π λ π

σ

− −× ×
= = =

×
    (ans.) 

 

*12-5-3.  RCS of electron. 
The alternating electric field of a passing electromagnetic wave causes an electron 
(initially at rest) to oscillate (Fig. P12-5-3).  This oscillation of the electron makes it 
equivalent to a short dipole antenna with D = 1.5.  Show that the ratio of the power 
scattered per steradian to the incident Poynting vector is given by 2 2( sin / 4 )oe mµ θ π , 
where e and m are the charge and mass of the electron and θ is the angle of the scattered 
radiation with respect to the direction of the electric field E of the incident wave.  This 
ratio times 4π is the radar cross section of the electron.  Such reradiation is called 
Thompson scatter. 

 
Figure P12-5-3. 

 
Solution: 

From (6-2-17), the magnitude of the electric dipole far-field is  o
2

o

sin
4
I lE

c rθ
ω θ

πε
=  

 
The force on the electron due to the incident field oE  is 2

oF eE ma m lω= = =  

So,  o
2

eEl
mω

=  

Since 

o
2

o 2
o

( ) sin
,

4

eEe
mI e E

c rθ

ω ω θ
ωω

πε

 
 
 = =  

Thus, the scattered power density  
222 2

o
2

o

4 sin 14
4scat

r E e ES
Z c m Z

θπ θπ
πε

 
= =  

 
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*12-5-3.  continued 

and since the incident power density 
2
o ,inc

ES
Z

=  the ratio of scattered to incident power is 

( )

2
o

22 22 22 2
o o
2 2
o o o o o

sin 14
4 sin1 sin 1 sin 1

4 4 1/ 4
scat

inc

e E
c m ZS ee e

ES c m m m
Z

θπ
πε µ θθ θσ

π ε π ε µ ε π

 
       = = = = =          

 
For 28 2sin 1, 1 10  mθ σ −= ≅ ×     (ans.) 

 

*12-5-5.  Detecting one electron at 10 km. 
If the Arecibo ionospheric 300 m diameter antenna operates at 100 MHz, how much 
power is required to detect a single electron at a height (straight up) of 10 km with an 
SNR – 0 dB?  See Fig. P12-5-5.  The bandwidth is 1 Hz, Tsys = 100 K and the aperture 
efficiency = 50 percent. 

 
Figure P12-5-5. 

 
Solution: 
 

2 4(4 )
t t erPG AS

N r kTB
σ

π
= ,        

8

6

3 10 3 m,
100 10

λ ×
= =

×
         2 4 20.5 (150) 3.53 10  merA π= = ×  

4
4

2 2

4 4 (3.53 10 ) 4.93 10
3

e
t

AG π π
λ

×
= = = ×  

Thus, 
2 4 2 4 4 23

16
4 4 28

(4 ) ( / ) (4 ) (10 ) (1.38 10 )(100)(1)(1) 1.25 10  W
(4.93 10 )(3.53 10 )(1 10 )t

t er

r kTB S NP
G A

π π
σ

−

−

×
= = = ×

× × ×
    (ans.)
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12-5-6.  Effect of resonance on radar cross section of short dipoles. 
(a) Calculate the radar cross section of a lossless resonant dipole (ZL = -jXA) with length = 
λ/10 and diameter = λ/100.  (See Secs. 2-9, 14-12). 

(b) Calculate the radar cross section of the same dipole from 
( )[ ]24

6

12ln
34

−bL
L

λ
, where L 

is the dipole length and b is its radius. 
(c) Compare both values with the maximum radar cross section shown in Fig. 12-9.  
Comment on results. 
 
Solution: 
 
(a)   2 20.714 4 0.119 1.5λ λ= × ×      (ans.) 

 
(b) 5 22 10 λ−×     (ans.) 
 
(c) 20.83λ     (ans.) 
 
Summary and comparison: 

 
In (a) resonance is obtained by making .L AZ jX= −   In (c) resonance is obtained 
( 0)AX =  by increasing the length to 0.47λ  (with 0,LZ =  terminals short-circuited). 
 
The cross section in (c) is larger than in (a) because the dipole is physically longer. 
 
In (b) the dipole is non-resonant because 0LZ =  (terminals short-circuited) and the length 
(0.1 )λ  is much less than the resonant length (0.47 ),λ  resulting in a very small radar cross 
section. 
 
It appears that if a short dipole (length 0.1 )λ≤  is resonated by making ,L AZ jX= −  its 
radar cross section 2(0.714 )λ  approaches the cross section of a resonant / 2λ  dipole 
(length =0.47 λ ), regardless of how short it is, provided it is lossless. 
 
A short dipole may be resonated ( )L AZ jX= −  by connecting a stub of appropriate length 
across its terminals, 
 

Case σ  Condition 
(a) 20.714λ  Resonant short dipole, length 0.1  ( )L AZ jXλ = −  
(b) 5 22 10 λ−×  Non-resonant 0.1λ  dipole ( 0)LZ =  
(c) 20.83λ  Resonant 0.47  dipole ( 0)LZλ =  

(resonant dipole, )s t L AA Z jXσ= = −  

*(matched dipole, )em L AA Z Z=

   Directivity 
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12-5-6.  continued 
 
Thus, 
 
 
 
 
 
 
or by connecting lumped inductance, thus  
 
 

 

*12-5-12  Fastball velocity. 
A 20 GHz radar measures a Doppler shift of 6 kHz on a baseball pitcher’s fastball.  What 
is the fastball’s velocity? 
 
Solution: 
 

8 3

9

2 (3 10 )(6 10 ), 45 m/s 162 km/h 101 mi/h
2 2(20 10 )

f v c fv
f c f

∆ ∆ × ×
= = = = = =

×
    (ans.) 

 

*12-5-13.  Radar power for fastball measurement. 
To measure the velocity of the fastball of Prob. 12-5-12 with the 20 GHz radar at a 
distance of 100 m, what power is required for an SNR = 30 dB?  The radar uses a conical 
horn with diameter = 8 cm and aperture efficiency εap = 0.5.  The ball diameter = 7 cm 
and it has a radar cross section (RCS) half that of a perfectly conducting sphere of the 
same diameter. 
 
Solution: 

3 4 ,
(4 )

t t rPG GS
N r kTB

σ
π

=  
8

9

3 10 0.015 m,
20 10

λ ×
= =

×
  

 
2 2

2 2

6.5 6.5 (0.04) 0.5 72.6
(0.015)t r

rG G kD k π π
λ

= = = = = ,        2 3 20.5 (0.035) 1.9 10  mσ π −= = ×  

 

Dipole 

Stub 
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*12-5-13.  continued 
 

3 4 3 4 23 6 3

t 2 3

(4 ) ( / ) (4 ) (100) (1.38 10 )(600)(10 )(10 ) 160 mW
(72.6) (1.9 10 )t r

r kTB S NP
G G

π π
σ

−

−

×
= = ≈

×
   (ans.)

 

*12-5-14.  Anticollision radar. 
To provide anticollision warnings, forward-looking radars on automobiles, trucks and 
other vehicles (see Fig. P12-5-14) can alert the driver of vehicles ahead that are 
decelerating too fast or have stopped.  The brake light on the vehicle ahead may not be 
working or it may be obscured by poor visibility.  To warn of clear-distance decrease 
rates of 9 m/s or more, what doppler shift must a 20 GHz radar be able to detect? 

 
Figure P12-5-14. 

 
Solution: 

8

9

2 3 10, 0.015 m, 9 m/s,
20 10

2 2 2(9) 1.2 kHz   ( .)
0.015

f v c v
f c f

vf vf ans
c

λ

λ

∆ ×
= = = = =

×

∆ = = = =

 

 

*12-5-18.  Police radar. 
A pulsed speed measuring radar must be able to resolve the returns form two cars 
separated by 30 m.  Find the maximum pulse width that can be used to prevent 
overlapping of the returns from the two vehicles. 
 
Note that it takes t = 2R/c seconds for a signal to travel from the transmitter to a target 
and return, where t is the time, R is the range and c is the velocity in the media.  If τ is the 
pulse width, then it can be shown that the range resolution (the minimum range 
difference between objects for which the returns do not overlap in time) is given by 
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*12-5-18.  continued 

212
τcRRR =−=∆  

 
where the subscripts denote the different objects. 
 
Solution: 

2or
2
c RR

c
τ τ ∆

∆ = =  

 

The pulse width must be less than 8
8

2(10) 6.6 10  s 66 ns
3 10

τ −= = × =
×

    (ans.) 

 

*12-5-20.  Sea clutter. 
Search-and-rescue aircraft using radar to locate lost vessels must contend with backscatter 
from the surface of the ocean.  The amplitude of these returns (know as sea clutter) 
depends on the frequency and polarization of the radar waveform, the size of the 
illuminated patch on the surface, the angle of incidence, and the sea state.  The scattering 
geometry is shown in Fig. P12-5-20.  To characterize sea cluster independently on the 
radar footprint on the surface, the scattering cross section of the ocean may be specified 
per unit area.  This parameter, designated σo, has dimensions of square meters of dB 
above a square meter (dBsm). The total RCS of a patch of ocean surface is found by 
multiplying σo by the area of the patch.  For area scattering, the radar equation is written 
 

2 2

o patch44
e

r t
AP P A

r
λ σ

π
= . 

 
For a pulsed radar with pulse width τ and 3 dB antenna beamwidth of θ rad, the 
illuminated area for low grazing angle is approximately (cτ/2)(rθ).  The radar equation 
may therefore be written as 
 

( )
2 2 2 2

o
o4 34 2 8

e e
r t r

A A ccP P r P
r r
λ λ σ τθτσ θ

π π
 = = 
 

 

 
(a) Determine the received power from sea clutter at a range of 10 km for a monostatic 
pulsed radar transmitting a 1 µs pulse with 1 kW peak power at a frequency of 6 GHz.  
Assume a 1.5 m circular dish antenna with 50 percent efficiency and sea state 4 (σo = -30 
dBsm/m2 at C band).  (b) For a receiver bandwidth of 10 kHz and noise figure of 3.5 dB, 
find the receiver noise power.  (c) If this radar used to search for a ship with RCS = 33  
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*12-5-20.  continued 
dBsm under these conditions, what signal-to-noise and signal-to-clutter ratios can be 
expected? 

 
Figure P12-5-20.  Sea search-and-rescue geometry. 

 
Solution: 

2 2 8
o
3 9

3 10, 0.05 m
8 6 10

e
t r

A cP P
r

λ σ τθ λ
π

×
= = =

×
 

 

(a) 3 dB
0.05 0.033 radians
1.5D

λθ ≅ = =  

 
2 2 2 30 10 8 6

15
4 3

[ (0.75) ] (0.05) (10 )(3 10 )(1 10 )(0.033)(1000) 3.1 10  W
8 (10 )rP π
π

− −
−× ×

= = ×     (ans.) 

 
(b) The receiver noise power is  

 
3.5 10 23 4 17(10 )(1.38 10 )(290)10 8.96 10  Wn fP N kTB − −= = × = ×     (ans.) 

 
(c) For a ship with 233 dB m  at 10 km.rσ = =  
 

2 2 2 2 2 33 10
3

4 4 4

[ (0.75) ] (0.05) (10 )1000 1.24 10  W
4 4 (10 )
e

r t
AP P

r
λ σ π
π π

−= = = ×  

 
Thus, the signal-to-noise (S/N) and signal-to-clutter (S/C) ratios are: 
 

3 3

17 15

1.24 10 1.2 101384 31.4 dB   ( .),     40 16 dB   ( .) 
8.96 10 3.1 10

S Sans ans
N C

− −

− −

× ×
= = = = = =

× ×
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Chapter 13.  Self and Mutual Impedances   
 

*13-4-1.  A 5λ/2 antenna. 
Calculate the self-resistance and self-reactance of a thin, symmetrical center-fed linear 
antenna 5λ/2 long. 
 
Solution: 
 
From (13-5-2), 

 
11 30[0.577 ln(2 ) Ci(2 ) Si(2 )], where 5Z n n j n nπ π π= + − + =  

Since 2 2 5 10 1,nπ π π= = >>  we have from (13-3-18),   sin(10 )Ci(10 ) 0
10

ππ
π

= =  

And from (13-3-22), 
cos(10 ) 1Si(10 ) 1.539

2 10 2 10
π π ππ

π π
= − = − =  

 
and   11 30[0.577 ln(10 ) 0] 120.7 R π= + − = Ω     (ans.) 
  

11 30 1.539 46.2X = × = Ω     (ans.) 

 

13-6-1.  Parallel side-by-side λ/2 antennas. 
Calculate the mutual resistance and mutual reactance for two parallel side-by-side thin 
linear λ/2 antennas with a separation of 0.15λ. 
 
Solution: 
 
From (13-7-6), 
 

2 2 2 2
21 30{2Ci( ) Ci[ ( )] Ci[ ( )]}R d d L L d L Lβ β β= − + + − + −  

 
where  0.15 , 0.5d Lλ λ= =  
 
and 21 30[2Ci(0.942) Ci(6.42) Ci(0.138)]R = − −  
 
From (13-3-16) or Ci table or from Fig. 13-5 and from (13-3-18), we have 
 

21 30(0.60 0 0.577 ln 0.138) 60.1R = − − − = Ω     (ans.)   (compare with Fig. 13-13) 
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13-6-1.  continued 
 
From (13-7-7),   
 

2 2 2 2
21 30{2Si( ) Si[ ( )] Si[ ( )]}X d d L L d L Lβ β β= − − + + − + −  

and 
21 30[2Si(0.942) Si(6.42) Si(0.138)]X = − − −  

 
From (13-3-20) or Si table or from Fig. 13-5 and from (13-3-21), we have  
 

11 30(1.8 1.42 0.138) 7.3 X = − − − = − Ω     (ans.)   (compare with Fig. 13-13) 

 

*13-6-3.  Three side-by-side antennas. 
Three antennas are arranged as shown in Fig. P13-6-3.  The currents are of the same 
magnitude in all antennas.  The currents are in-phase in (a) and (c), but the current in (b) 
is in anti-phase.  The self-resistance of each antenna is 100 Ω, while the mutual 
resistances are:  Rab = Rbc = 40 Ω and Rac = -10 Ω.  What is the radiation resistance of 
each of the antennas?  The resistances are referred to the terminals, which are in the same 
location in all antennas. 

 
Figure P13-6-3.  Three side-by-side antennas. 

 
Solution: 
 

100 40 10 50 
2 100 80 20 
50 

a s ab ac

b s ab

c a

R R R R
R R R
R R

= − + = − − = Ω

= − = − = Ω
= = Ω

    (ans.) 

 
 

13-8-1.  Two λ/2 antennas in echelon. 
Calculate the mutual resistance and reactance of two parallel thin linear λ/2 antennas in 
echelon for the case where d = 0.25λ and h = 1.25λ (see Fig. 13-16). 
 
Solution: 
 
Use (13-9-1), (13-9-2), (13-3-16) and (13-3-20) where 1.25   and  0.25h dλ λ= =  
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Chapter 14.  The Cylindrical Antenna and the Moment Method 
(MM) 

 

14-10-1.  Charge distribution. 
Determine the electrostatic charge distribution on a cylindrical conducting rod with a 
length-diameter ratio of 6. 
 
Solution: 
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Divide rod into 6 equal segments.  By symmetry charges are as shown.  Neglecting end 
faces, the potential at point P12 is 
 

3 31 2 2 1
12

1(P )
4 2 2 10 26 50 82

Q QQ Q Q QV
a a a a a aπε

 = + + + + + 
 

 

 
Writing similar expression for 23 34(P ) and (P ),V V  equating them (since the potential is 
constant along the rod) and solving for the charges yields: 
 

1 2 3: : 1.582 :1.062 :1.000Q Q Q =     (ans.) 

 

14-12-2.  λ/10 dipole impedance. 
Show that the convergence or true value of the self impedance Zs of the dipole of Table 
14-4 is 1.852-j1895 Ω. 
 
Solution: 
 
Using sZ  values of Table 14-4, plot  vs. sR N  to suitable large scale and suppressed zero 
and note that sR  approaches a constant (convergence) value as N becomes large which 
should agree with Richmond’s value given following (14-12-34).  Calculate sR  for larger 
values of N than 7, if desired.  Do same for sX . 

1Q  
 

2Q  3Q
 

3Q  2Q  1Q  
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Chapter 15.  The Fourier Transform Relation Between Aperture 
Distribution and Far-Field Pattern   

 

*15-3-1.  Pattern smoothing. 
An idealized antenna pattern-brightness distribution is illustrated by the 1-dimensional 
diagram in Fig. P15-3-1.  The brightness distribution consists of a point source of flux 
density S and a uniform source 2° wide, also of flux density S.  The point source is 2° 
from the center of the 2° source.  The antenna pattern is triangular (symmetrical) with a 
2° beam width between zero points and with zero response beyond. 
(a) Draw an accurate graph of the observed flux density as a function of angle from the 
center of the 2° source. 
(b) What is the maximum ratio of the observed to the actual total flux density (2S)? 
 

 
Figure P15-3-1.  Pattern smoothing. 

 
Solution: 

Ratio = 1/2    (ans.) 

 

15-6-1.  Number of elements. 
In Fig. 15-15 how many elements n have been assumed? 
 
Solution: 
 

From Fig. 15-15,   2 1 1
4nd dλ λ

= ×  

 
or  n = 8 
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Chapter 16.  Arrays of Dipoles and of Apertures   
 

*16-2-1.  Two λ/2-element broadside array. 
(a) Calculate and plot the gain of a broadside array of 2 side-by-side λ/2 elements in free 
space as a function of the spacing d for values of d from 0 to 2λ.  Express the gain with 
respect to a single λ/2 element.  Assume all elements are 100 percent efficient. 
(b) What spacing results in the largest gain? 
(c) Calculate and plot the radiation field patterns for λ/2 spacing.  Show also the patterns 
of the λ/2 reference antenna to the proper relative scale. 
 
Solution: 
 
(a) From (16-2-27), 
 

1 2
00 11 12( )( / ) [2 /( )] cos[( cos ) / 2]f rG A HW R R R dφ φ= +  

 
In broadside direction / 2φ π=  
so  1 2

00 11 12( )( / ) [2 /( )]fG A HW R R Rφ = +  
where 00 11 73.1 R R= = Ω  
 
and 12R  is a function of the spacing as given in Table 13-1 (p. 453).  A few values of the 
gain for spacings from 0 to 1 λ  are listed below: 
 

Spacing λ  Gain over / 2λ  reference 
0.0 1.00 
0.1 1.02 
0.2 1.08 
0.3 1.19 
0.4 1.36 
0.5 1.56 
0.6 1.72 
0.7 1.74 
0.8 1.64 
0.9 1.49 
1.0 1.38 
etc.  

 
Note that 
 
 2( / 2) 4 ( / 2) / 4 (30 / 73.1 ) 1.64 or 2.15 dBiemD Aλ π λ λ π π= = =   
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*16-2-1.  continued 
 
so D of 2 in-phase / 2λ elements at 0.67 λ  spacing is equal to 4.9 2.15 7.1+ =  dBi as 
above. 
 
(b) By interpolation, the highest gain occurs for a spacing of about 0.67 λ  for which the 
gain is about 1.76 or 4.9 dB (= 7.1 dBi).  At spacings over 1λ no gains exceed this. 

 

16-3-1.  Two λ/2-element end-fire array. 
A 2-element end-fire array in free space consists of 2 vertical side-by-side λ/2 elements 
with equal out-of-phase currents.  At what angles in the horizontal plane is the gain equal 
to unity: 
(a) When the spacing is λ/2? 
(b) When the spacing is λ/4? 
 
Solution: 
 
(a) From (16-3-18), 
 

1 2
00 11 12( )( / ) [2 /( )] sin[( cos ) / 2]f rG A HW R R R dφ φ= −  

When / 2,d λ=  
1 2

00 11 12( )( / ) [2 /( )] sin[( / 2) cos )]fG A HW R R Rφ π φ= −  
 
where 00 11 73.1 R R= = Ω  
 
and from Table 13-1,  12 12.7 R = − Ω  
 
so   ( )( / ) 1.31sin[( / 2)cos )]fG A HWφ π φ=  
 
For unit gain,  sin[( / 2)cos )] 1/1.31 0.763π φ = =  
 
or o ocos 49.8 / 90 0.553φ = =  and o o56 ,  124φ = ± ±     (ans.) 
 
(b) When / 4,λ  

1 2
00 11 12( )( / ) [2 /( )] sin[( / 4) cos ]fG A HW R R Rφ π φ= −  

 
where 00 11 73.1 R R= = Ω  
 
and from Table 13-1,  12 40.9 R = Ω  
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16-3-1.  continued 
 
so   ( )( / ) 2.13sin[( / 4)cos ]fG A HWφ π φ=  
 
For unit gain,  sin[( / 4)cos ] 1/ 2.13 0.47π φ = =  
 

o o o ocos 28 / 45 0.62 and 52 , 128φ φ= = = ± ±     (ans.) 

 

*16-3-2.  Impedance and gain of 2-element array. 
Two thin center-fed λ/2 antennas are driven in phase opposition.  Assume that the current 
distributions are sinusoidal.  If the antennas are parallel and spaced 0.2λ, 
(a) Calculate the mutual impedance of the antennas. 
(b) Calculate the gain of the array in free space over one of the antennas alone. 
 
Solution: 
 
(a) This is a single-electron W8JK array. 
 
From Sec. 13-7, 12 52 21 Z j= − Ω     (ans.) 
 
(b) From (16-5-8) and assuming losses, 
 

 

1 2
o2 73( )(max)( / ) sin 36

73 52
2.64 0.588 1.55 or 3.8 dB (= 6.0 dBi)   ( .)

fG A HW

ans

φ × =  − 
= × =

  

 

16-4-3.  Two-element array with unequal currents. 
(a) Consider two λ/2 side-by-side vertical elements spaced a distance d with currents 
related by I2 = aI1/δ.  Develop the gain expression in a plane parallel to the elements and 
the gain normal to the elements, taking a vertical λ/2 element with the same power input 
as reference (0 ≤ a ≤ 1).  Check that these reduce to Eq. (16-4-15) and Eq. (16-4-13) 
when a = 1. 
(b) Plot the field patterns in both planes and also show the field pattern of the reference 
antenna in proper relative proportion for the case where d = λ/4, a = ½ and δ = 120°. 
 
Solution: 
(a) 2 1 2 2 1 2

11 11 12( ) { /[ (1 ) 2 cos ]} (1 2 cos )fG R R a aR a aθ δ ψ= + + × + +  
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16-4-3.  continued 
 
where sinrdψ θ δ= +  

( ) ( )  but with  cosf f rG G dφ θ ψ φ δ= = +

 

*16-6-1.  Impedance of D-T array. 
(a) Calculate the driving-point impedance at the center of each element of an in-phase 
broadside array of 6 side-by-side λ/2 elements spaced λ/2 apart.  The currents have a 
Dolph-Tchebyscheff distribution such that the minor lobes have 1/5 the field intensity of 
the major lobe. 
(b) Design a feed system for the array. 
 
Solution: 
 
(a) From Prob. 5-9-5 and the 6 sources have the distribution: 
  

1 2 3 4 5 6 
0.93 0.84 1.00 1.00 0.84 0.93 

 
Normalizing the current for element 1, the distribution is 
 

1.00 0.90 1.08 1.08 0.90 1.00 
 

Using impedance data from Chap. 13 and assuming thin elements, the driving point 
impedance of element 1 is 
 

1

6

73 43 0.9( 12 29) 1.08(3 18) 1.08( 2 12) 0.9(1 10) 1 3
73 10.8 3.2 2 0.9 1 (43 26 19.4 13 9 3) 63 29  =    ( .)

R j j j j j j
j j R ans

= + + − − + + + − − + + − −
= − + − + − + − + − + − = − Ω

 

 
In like manner,  
 2 5 3 446 2 ,   ( .) 53 10 ,   ( .)R R j ans R R j ans= = − Ω = = − Ω  

 

16-6-3.  Square array. 
Four isotropic point sources of equal amplitude are arranged at the corners of a square, as 
in Fig. P16-6-3.  If the phases are as indicated by the arrows, determine and plot the far-
field patterns. 
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16-6-3.  continued 

 
Figure 16-6-3.  Square array. 

 
Solution: 
 
Pattern is a rounded square. 
 

 
o o o

o o

1.00 at 0 ,  90 ,  180

0.895 at 45 ,  135
n

n

E
E

φ

φ

= = ±

= = ± ±
 

 

*16-6-4.  Seven short dipoles. 4-dB angle. 
A linear broadside (in-phase) array of 7 short dipoles has a separation of 0.35λ between 
dipoles.  Find the angle from the maximum field for which the field is 4 dB (to nearest 
0.1°). 
 
Solution: 
 
The dipoles are assumed to be aligned collinearly so that the pattern of a single dipole is 
proportional to sinφ  where φ  is the angle from the array.  Thus 
 
 
 
 
 
 
Since the dipoles are in-phase, the maximum field is at o o

max90  or ( ) 90 .Eφ φ= =  
 
The normalized pattern is given by 

1 sin / 2 sin
sin / 2n

nE
n

ψ φ
ψ

=     (1) 

where n = 7 
(2 / ) 0.35 cos , 4 20log , 1.585x xψ π λ λ φ= × = =  

 

0.35λ

φ
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*16-6-4.  continued 
 
Therefore,  ( 4 dB) 1/1.585 0.631nE − = =  
 
Setting (1) equal to 0.631, n = 7 and solving (see note below) yields o( 4 dB) 78.3φ − =  
 
Angle from max( )Eφ is o o o90 78.3 11.7− =     (ans.) 
 
Note: Use trial and error to solve (1) for ( 4 dB)φ − or calculate pattern with small 
increments in φ . 

 

16-6-5.  Square array. 
Four identical short dipoles (perpendicular to page) are arranged at the corners of a square 
λ/2 on a side.  The upper left and lower right dipoles are in the same phase while the 2 
dipoles at the other corners are in the opposite phase.  If the direction to the right (x 
direction) corresponds to φ = 0°, find the angles φ for all maxima and minima of the field 
pattern in the plane of the page. 
 
Solution: 
Pattern maxima  at o o45 ,  135φ = ± ±   Pattern minima at o o o0 ,  90 ,  180φ = ±  

 

*16-6-7.  Sixteen-source broadside array. 
A uniform linear array has 16 isotropic in-phase point sources with at spacing λ/2.  
Calculate exactly (a) the half-power beam width, (b) the level of the first sidelobe, (c) the 
beam solid angle, (d) the beam efficiency, (e) the directivity and (f) the effective aperture. 
 
Solution: 
 
(a) From (5-6-9), 

 
o

o

1 sin(1440 cos )(HP) 0.707
16 sin(90 cos )

E φ
φ

= =  

By trial and error, o o o o o86.82   and   HPBW 2(90 86.82 ) 6.36 6 22    ( .)ansφ ′= = − = =  
 
(b) From (5-18-10), 
  
 K = 1 (first minor lobe) 

1 0.215 or -13.3 dB
16sin[(2 1) / 32]MLE

π
≅ =

+
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*16-6-7.  continued 
 
This is only approximate (becomes exact only for very large n). 
To determine the level more accurately, we find the approximate angle for the maximum 
of the first minor lobe from (5-18-5). 
 

1 1 o(2 1) 3cos cos 79.212 2 16
2

m
K
ndλ

φ − −± + ±
≅ = =

× ×
 

Then from (5-6-9) we calculate E at angles close to 79.2o and find that E peaks at 79.7o 
with 0.22012  or  -13.15 dB   ( .)E ans=  
 
Although (5-18-5) locates the angle where the numerator of (5-18-5) is a maximum (= 1), 
the denominator is not constant.  See discussion of Sec. 5-18 (p. 159) and also Fig. 5-47 
(p. 100). 
 
(c)  From equation for D in Prob. 5-6-10, the summation term is zero for / 2d λ=  so 
that D = 16 exactly. 
 
Since 4 / ,   4 / 4 /1 6 / 4 srA AD Dπ π π π= Ω Ω = = =     (ans.) 
 
(d) HPBW 1/ 1/(16 0.5) 1/ 8 rad in  directionndλ φ≅ = × = ,  
BW in θ  direction 2  radπ=  
 
Therefore,  2 (1/ 8) / 4 sr  and  / 1 or  100%M M M Aπ π εΩ = × = = Ω Ω =  
 
This result is too large since with any minor lobes Mε must be less than unity (or 

M AΩ < Ω ). 
 
For an exact evaluation, we have from Prob. 5-6-10 that 
 

2

1

1

2
1

2 cos sin(2 cos )
n

M
k

n kn d kd
n d k

θ

λ λ
λ θ

π θ π θ
−

=

− Ω = +  
∑  

o
1 o

o
2 o

o

where         90

90
 angle to first null

θ γ

θ γ
γ

= −

= +
=

 

 
From (5-7-7),  1 1 1 o

o sin (1/ ) sin [1/(16 0.5)] sin (1/ 8) 7.18ndλγ − − −= = × = =  
Therefore,  o o

1 282.82 and 97.18θ θ= =  
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*16-6-7.  continued 
Thus 

 
o

o

97.181

2
1 90

4 cos sin(2 cos )
n

M
k

n kn d kd
n d kλ λ

λ

π θ π θ
−

=

− Ω = +  
∑  

1

2 2
1

2 0.5 4 150.125 sin(0.25 ) sin(0.125 )
16 16 0.5 1

n

M
k

n kn d kd
n d kλ λ

λ

ππ π π
−

=

−  Ω = + = +  ×  
∑  

 

 1014 13 12 11 25 ) sin(0.75 )sin(0.25 ) sin(0.375 ) sin(0.5 ) sin(0.6
62 3 4 5

π ππ π π ++ + + +  

 9 8 7 6 5sin(0.875 ) sin(1.00 ) sin(1.25 ) sin(1.375 ) sin(1.5 )
7 8 9 10 11

π π π π π+ + + + +  

 4 3 2 1sin(1.625 ) sin(1.75 ) sin(1.875 ) sin(2.00 )
12 13 14 15

π π π π + + + + 
 

 
MΩ = 0.0982 + 0.03125 [5.740 + 4.950 + 4.003 + 3.000 + 2.033 + 1.179 + 0.492 

   + 0 – 0.550 – 0.554 – 0.455 – 0.308 – 0.163 – 0.055 +0] 
 = 0.0982 +0.03125 19.312 0.702 sr = M× = Ω  
 

/ 0.702 /( / 4) 0.894M M Aε π= Ω Ω = =     (ans.) 
 

By graphical integration (see Example 4-5.6 and Fig. 4-8b) Mε  was found to be 
approximately 0.90, in good agreement with the above result.  The graphical integration 
took a fraction of the time of the above analytical integration and although less accurate, 
provided confidence in the result because it is much less susceptible to gross errors. 
 
(e) As noted in (c), 16D =     (ans.) 
 
(f) From 24 /emD Aπ λ= ,  2 2 2/ 4 16 / 4 1.27emA Dλ π λ π λ= = =     (ans.)  

 

*16-8-6.  Four-tower broadcast array. 
A broadcast array has 4 identical vertical towers arranged in an east-west line with a 
spacing d and progressive phase shift δ.  Find (a) d and (b) δ so that there is a maximum 
field at φ =45° (northeast) and a null at φ =90° (north).  There can be other nulls and 
maxima, but no maximum can exceed the one at 45°.  The distance d must be less than 
λ/2. 
 
Solution: 
 

φ
EW

d
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*16-8-6.  continued 
(a) 
 
Null at o90φ =  requires that o o90  or 180δ = ± ±  
 
For maximum field (fields of all towers in phase) set 

 
o

maxcos 0   and   90 / 2 raddψ β φ δ δ π= + = = − = −  
 

so o
max

/ 2 0.354
cos (2 / ) cos 45

d δ π λ
β φ π λ

= − = =     (ans.) 

 

If o180  rad,δ π= − = −  o 0.707 ,
(2 / ) cos 45

d π λ
π λ

= =  but this exceeds 0.5λ  

 
(b) Therefore,  o90δ = −     (ans.) 

 

16-10-1.  Eight-source scanning array. 
A linear broadside array has 8 sources of equal amplitude and λ/2 spacing. Find the 
progressive phase shift required to swing the beam (a) 5°, (b) 10° and (c) 15° from the 
broadside direction.  (d) Find BWFN when all sources are in phase. 
 
Solution: 
 
 
 
 
 
 
 
Broadside is set at o90 .φ =   Set  maxcos 0dψ β φ δ= + =  
 

Therefore, o o
max

2 2cos cos95 15.7
2

dπ π λδ φ
λ λ

= − = − = +     (ans.) 
o o o180 cos85 15.7δ = − = −  

 
Thus, depending on whether o o is +15.7  or 15.7 ,δ −  the beam is o5  left or right of 
broadside. 
 
In the same way, we have 

d       d 

o

o

90
0

φ

γ

=

=
γ φ
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16-10-1.  continued 

(b) o o31.3 ( .) for beam 10ansδ = ±  left or right of broadside 
 
(c) o o46.6 ( .) for beam 15ansδ = ±  left or right of broadside 
 
(d) From (5-7-7) the angle of the first null from broadside, when the sources are in-
phase ( 0),δ =  is given by the complementary angle 
 

1 1 o
o o90 sin ( / ) sin (1/ 4) 14.48ndγ φ λ− −= − = = =    

 
Therefore,   BWFN o2 14.48 28.96 29= × = ≅     (ans.) 
 
From the long broadside array equation (5-7-10), 
 

BWFN o o2 / 1/ 2 rad 180 / 2 28.65ndλ π≅ = = =  
The HPBW is a bit less than BWFN/2.  For long broadside arrays, we have from Table 
5-8 (p.155) that  
  o oHPBW 50.8 / 50.8 / 3.5 14.5Lλ= = =  

 

*16-16-1.  Terminated V.  Traveling wave. 
(a) Calculate and plot the far-field pattern of a terminated-V antenna with 5λ legs and 45° 
included angle. 
(b) What is the HPBW? 
 
Solution: 
 
(a) The field pattern for each leg of the V is shown at the left and the combined 
field pattern at the right.  Minor lobes are neglected except for the principal side lobe of 
the V. 
 
 
 
 
 
 
(b) HPBW ≅ 17o    (ans.) 
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*16-16-2.  E-type rhombic. 
Design a maximum E-type rhombic antenna for an elevation angle α = 17.5°. 
 
Solution: 
 
From Table 16-1 (p. 590) for a maximum E rhombic, 
 

o

o o

2

1/(4sin ) 1/(4sin17.5 ) 0.83   ( .)

90 72.5    ( .)
0.5 / sin 5.5   ( .)

H ans
ans

L ans

λ

λ

α

φ α

α

= = =

= − =

= =

 

16-16-3.  Alignment rhombic. 
Design an alignment-type rhombic antenna for an elevation angle α = 17.5°. 
 
Solution: 
 
From Table 16-1 (p. 590) for an alignment rhombic, 
 

o

o o

2

1/(4sin17.5 ) 0.83   ( .)

90 72.5    ( .)
0.371/ sin 4.1   ( .)

H ans
ans

L ans

λ

λ

φ α

α

= =

= − =

= =

 

 

*16-16-4.  Compromise rhombic. 
Design a compromise-type rhombic antenna for an elevation angle α = 17.5° at a height 
above ground of λ/2. 
 
Solution: 
 
From Table 16-1 (p. 590) for a  compromise rhombic, 
 

o o o

2 o

o o o

0.5   ( .)

90 17.5 72.5    ( .)

tan[( )sin 17.5 ] 1 0.5
sin17.5 2 sin17.5 tan( sin17.5 )

H ans
ans

LL

λ

λ
λ

φ

π
π π

=

= − =

 
= − 

 
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*16-16-4.  continued 
or 

o 0.56
tan(16.3 )

L
L

λ

λ

=  

 
By trial and error,  5.14Lλ =     (ans.)

 

16-16-5.  Compromise rhombic. 
Design a compromise-type rhombic antenna for an elevation angle α = 17.5° with leg 
length of 3λ. 
 
Solution: 
 
From Table 16-1 (p. 590), 

o

1 o
o

1/(4sin17.5 ) 0.83   ( .)
3 0.371sin 67   ( .)
3cos17.5

H ans

ans

λ

φ −

= =

− = = 
 

 

*16-16-6.  Compromise rhombic. 
Design a compromise-type rhombic antenna for an elevation angle α = 17.5° at a height 
above ground of λ/2 and a leg length of 3λ. 
 
Solution: 
 
From Table 16-1 (p. 590, bottom entry), 
 

1
sin tan tan(2 sin ) 4 tan( 2 )

H L
H L

λ λ

λ λφ α π α πψ ψ π
= −  

 
where  (1 sin cos ) / 2ψ φ α= −  
 
By trial and error,  o60φ ≅     (ans.) 
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Chapter 17.  Lens Antennas 
 

17-2-1.  Dielectric lens. 
(a) Design a plano-convex dielectric lens for 5 GHz with a diameter of 10λ.  The lens 
material is to be paraffin and the F number is to be unity.  Draw the lens cross section. 
(b) What type of primary antenna pattern is required to produce a uniform aperture 
distribution? 
 
Solution: 
 

8 9( ) 3 10 /(5 10 ) 0.06 m 60 mm
1 so 10 600 mm (  diameter)
1.4  (see Table 17-1)

a
F L d d
n

λ
λ

= × × = =
= = = = =
=

 

 
Therefore from (17-2-7), 
 

(1.4 1)600
1.4cos 1

R
θ

−
=

−
 

 
θ  R  sinR θ  

o0  600 mm 0 mm 
o10  634 110 
o20  761 260 
o22  805 300 / 2d=  

 
 
 

 
 
 
 
 
 
 
 
 
(b) From (17-2-14), power density at edge of lens is 
 

o 3

2 o
o

(1.4cos 22 1) 0.35  or  4.6 dB down
(1.4 1) (1.4 cos 22 )

S
S

θ −
= =

− −
 

 

 

 

Focus        600 mmL =        Lens 
                                          (lower-half mirror image)   

/ 2 300 mmd =  
o22θ =  

R 
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17-2-1.  continued 
 
To reduce side lobes, this much or even more taper may be desirable.  To obtain a 
uniform aperture distribution, as requested in the problem, requires a feed antenna at the 
focus with more radiation (up about 4.6 dB) at 22o off axis than on axis.  This is difficult 
to achieve without unacceptable spillover unless the lens is enclosed in a conical horn, 
except that at edge locations where E is parallel to the edge, E must be zero.  To reduce 
this effect a corrugated horn could be used. 

 

17-3-1.  Artificial dielectric. 
Design an artificial dielectric with relative permittivity of 1.4 for use at 3 GHz when the 
artificial dielectric consists of (a) copper spheres, (b) copper disks, (c) copper strips. 
 
Solution: 
 
From Table 17-2, 
 
(a) 3(sphere) 1 4 1.4r Naε π= + =  
At 3 GHz, 8 1 93 10  ms / 3 10  Hz 0.1 m 100 mmλ −= × × = =  
 
For   ,   take a (radius) 5 mm from whicha λ<< =  

3
3 3 3

1.4 1 0.4 255,000 m
4 4 (5 10 )

N
aπ π

−
−

−
= = =

×
    (ans.) 

 
The dielectric volume per sphere = 1/255,000 6 34 10  m−= ×   
 
While the volume of each sphere is given by 3 3 3 7 3(4 / 3) (4 / 3) (5 10 ) 5.2 10  maπ π − −= × = ×  
 

Therefore, 
6

7

volume of dielectric 4 10 7.7
volume of sphere 5.2 10

−

−

×
= =

×
 

 
6 1 3 2(4 10 ) 1.59 10 15.9 mm  = side of cube versus sphere diameter = 2 5 10 mm− −× = × = × =

 
 
Thus, there is 15.9 10 5.9 mm− =  between 
adjacent spheres in a cubical lattice so there is 
room for the spheres without touching, 
provided the lattice uniform. 
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17-3-1.  continued 
 
 (b) 3(discs)=1+5.33r Naε , and taking (radius) 5 mm    (diameter = 10 mm),a =  

 
3

3 3

1.4 1 600,000 m
5.33(5 10 )

N −
−

−
= =

×
    (ans.) 

 
The dielectric volume per disc 6 31/ 600,000 1.7 10  m−= = ×  for a cube side length of 

6 1 3(1.7 10 ) 12 mm−× ≅ , so that there is 12 10 2 mm− =  minimum spacing between 
adjactent discs in a uniform lattice. 
 
(c) 2(strips)=1+7.85r Nwε  
Taking w (width) = 10 mm, 

2
2 3

1.4 1 51,000 m
7.85(10 )

N −
−

−
= =     (ans.) 

 
as viewed in cross section (see Fig. 17-8a).  The square area per strip is then 1/ 51,000  

5 22 10 m−= ×  for a cross-sectional area side length 5 1 2(2 10 ) 4.5 mm.−× =  
 

This is less than the strip width.  However, if the 
square is changed to a rectangle of the same area with 
side length ratio of 9 as in the sketch, the edges of the 
strips are separated by 3.5 mm and the flat sides by 
1.5 mm. 
 
The above answers are not unique and are not 
necessarily the best solutions. 
 
 
 

 

*17-4-1.  Unzoned metal-plate lens. 
Design an unzoned plano-concave E-plane type of metal plate lens of the unconstrained 
type with an aperture 10λ square for use with a 3 GHz line source 10λ long.  The source 
is to be 20λ from the lens (F = 2).  Make the index of refraction 0.6. 
(a) What should the spacing between the plates be? 
(b) Draw the shape of the lens and give dimensions. 
(c) What is the bandwidth of the lens if the maximum tolerable path difference is λ/4? 
 

10 mm 

Strip 

Rectangular 
area 

Cross section 
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*17-4-1.  continued 
 
Solution: 

8 93 10 /(3 10 ) 0.1 m 100 mm
0.6,    2   so   / 2 (Fig.17-13)

  
n F A L
λ = × × = =

= = =  

(b) Expressing dimensions in λ , we have from (17-4-4) 
 

(1 ) (1 0.6)20 8
1 cos 1 0.6cos 1 0.6cos

n LR
n

λ
λ θ θ θ

− −
= = =

− − −
 

 
θ  Rλ  sinRλ θ  

o0  20  0  
o10  19.6 3.4 

o15.25  19.0 5.0 
 
(a)From (17-4-2),  2 1 2 2 1 2

o o[1 ( / 2 ) ]   or  / 2(1 )n b b nλ λ= − = −  
For     (ans.) 
 
(c) From (17-4-12),   

Bandwidth 2

2
(1 )

n
n t

λ

λ

δ
−

 

ocos 20 19cos15.25 1.67t L Rλ λ λ θ= − = − =  
 
 
(a) From (17-4-2),  2 1 2 2 1 2

o o[1 ( / 2 ) ]   or  / 2(1 )n b b nλ λ= − = −   
 
For o0.6,  0.625 62.5 mmn b λ= = =     (ans.) 
 
(b) From (17-4-12),  Bandwidth 22 /(1 )n n tλ λδ= −  
 

ocos 20 19cos15.25 1.67t L Rλ λ λ θ= − = − =  
 

Therefore,  Bandwidth 2

2 0.6 0.25 0.28  or  28%
(1 0.6 )1.67

× ×
= =

−
    (ans.) 

 
 

 
 

5λ Lens 
(lower-half 
mirror image) 20L λ=  o15.25θ =  

t 

R Line source with
  to line⊥E

 

E
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Chapter 18.  Frequency-Selective Surfaces and Periodic 

Structures.  By Ben A. Munk   
 

18-9-1.  Unloaded tripole. 
Determine the approximate length of the legs of an unloaded trislot operating at f = 15 
GHz with  
(a) No dielectric substrate. 
(b) Dielectric substrate εr = 2.2 and thickness 0.50 mm located on both sides of the FSS 
(use arithmetic average of εr and εo for εeff). 
(c) Determine Dx just short enough that no grating lobes are present when scanning in the 
xy – plane for any angle of incidence. 
 
Solution: 
 
(a) For one leg of the tripole, i.e., the monopole length  

 
2.0 0.5 cm

4 4
λ

= =     (ans.) 

 
(b) eff 2.2ε =  since it is the same on both sides 

eff
2 2 1.35 cm

1.482.2
λ = = =  

eff 1.35 0.337 cm
4 4

λ
= =     (ans.) 

 
(c) For the scattering case, (15-6-1) can be written as 

sin sin
/i s

x

m
D

η η
λ

+ =  

 
Since grating lobes start in the plane of the array,   o90   and  1i s mη η= = =  
 
So    2 / , / 2 2 / 2 1 cmx xD Dλ λ= = = =     (ans.) 

 

18-9-2.  Four-Legged loaded element. 
Determine the approximate dimensions for a four legged loaded element operating at f = 
15 GHz with  
(a) No dielectric substrate. 
(b) Dielectric substrate εr = 2.2 and thickness 0.50 mm located on only one side the FSS 
(estimate εeff). 
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18-9-2. continued 
 
(c) Leave a separation of 1 mm between adjacent elements (rectangular grid); determine 
the lowest onset frequency for grating lobes for any angle of incidence. 
 
Solution: 
 
(a) For a loop type element, the size should be eff / 4λ  across.   
 
So    / 4 2.0 / 4 0.50 cmλ = =     (ans.) 
 

(b) ff
2.2 1.0 3.2 1.6

2 2eε +
= = = ,  eff 2 / 1.6 2 /1.265 1.58 cmλ = = =  

 
eff / 4 0.4 cmλ =     (ans.) 

 
(c) As in Prob. 18-9-1, the condition we want to meet is    

 
2 /   or  2x xD Dλ λ= =  

 
With no dielectric,  0.5 0.1 0.6 cmxD = + =  
 

so   
8

2

3 101.2 cm, 25 GHz
1.2 10

fλ −

×
= = =

×
    (ans.) 

 
With dielectric,   0.4 0.1 0.5 cmxD = + =  
 

so   
8

2

3 101 cm, 30 GHz
1 10

fλ −

×
= = =

×
    (ans.) 
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Chapter 19.  Practical Design Considerations of Large Aperture 
Antennas 

 

*19-1-3.  Efficiency of rectangular aperture with partial taper. 
Calculate the aperture efficiency and directivity of an antenna with rectangular aperture 
x1y1 with a uniform field distribution in the y direction and a cosine field distribution in 
the x direction (zero at edges, maximum at center) if x1 = 20λ and y1 = 10λ. 
 
Solution: 
 
From Prob. 19-1-6 solution, 
 
(a) 0.81 or  81%apε =     (ans.) 
(b) 4 10 20 0.81 2036  or  33 dBiD π= × × × =     (ans.) 

 

*19-1-4.  Efficiency of rectangular aperture with full taper. 
Repeat Prob. 19-1-3 for the case where the aperture field has a cosine distribution in both 
the x and y directions. 
 
Solution: 
 
From Prob. 19-1-7 solution, 
 
(a) 0.657 66%apε = ≅     (ans.) 
(b) 4 10 20 0.657 1651 or  32 dBiD π= × × × =     (ans.) 

 

19-1-5.  Efficiency of aperture with phase ripple. 
A square unidirectional aperture (x1y1) is 10λ on a side and has a design distribution for 
the electric field which is uniform in the x direction but triangular in the y direction with 
maximum at the center and zero at the edges.  Design phase is constant across the 
aperture.  However, in the actual aperture distribution there is a plus-and-minus-30° 
sinusoidal phase variation in the x direction with a phase cycle per wavelength.  Calculate 
(a) the design directivity, (b) the utilization factor, (c) the actual directivity, (d) the 
achievement factor, (e) the effective aperture and (f) the aperture efficiency. 
 
Solution: 
 
Referring to Sec. 19-1, 
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19-1-5.  continued 
 
Let max max

Design field Actual field
( , ) ( , ) 1E x y E x y′ = =  

 

Design: 1 ( , )av
p

E E x y dxdy
A

′ ′= ∫∫  (1) 

    
10 5

0 0

2 1
5 2p

y dxdy
A

λ λ

λ
= =∫ ∫  

 
 
 Note:  This result can be deduced directly from 
 the figure by noting that average height of triangle 
 is ½ max. 
 
 
(b)   Utilization factor, uk : 

 

 *
1

1 ( , ) ( , )
u

p av av

k
E x y E x y dxdy

A E E

=
  ′ ′
  ′ ′  

∫∫
 (2) 

     2
10 5

2 0 0

1 3      ( .)
41 2

(1/ 2) 5p

ans
y dxdy

A
λ λ

λ

= =
 
 
 ∫ ∫

 (3) 

 
Note that for in-phase fields (19-1-50) is a simplified form of (2) giving 
 

 
( )

2 2

2

(1/ 2) 3 / 4  as in (3)
1/ 3

av
u

av

E k
E

= = =  (4) 

 
(a) Design directivity,  (design):D  
 

         2
2 2

4 4(design) (100 )(3 / 4) 940   ( .)p uD A k ansπ π λ
λ λ

= = =  (5) 

 
Turning attention now to the effect of the phase variation: 
 

 
10 5

0 0

2 2 1cos sin (0.933)
6 5 2av

p

x yE dx dy
A

λ λπ π
λ λ

 = = 
 ∫ ∫  (6) 

E

10λ

10λ

y

x
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19-1-5.  continued 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Note that from figures above,          1 0.8662 0.933
2avE +

≅ =    

 
(d) Achievement factor, :ak  

  

1 ( , ) ( , )

1 ( , ) ( , )
p av av

a

p av av

E x y E x y dxdy
A E E

k
E x y E x y dxdy

A E E

∗

∗

  ′ ′
  ′ ′  =
  
  
  

∫∫

∫∫
 

  
2

2

4 / 3 0.87   ( .)1 1 2 ( / 5 )
[(1/ 2)0.933]

a

p

k ans
y dxdy

A
λ

= =

∫∫
 (7) 

 
where *( ) ( ) 1E x E x =  
 
Note that gain loss due to total phase variation across aperture (not surface deviation) is 
from (19-2-3) 
 

 2 ocos 360gk δ
λ
′ =  

 
,     where 

o o

o o

30 0.707 21.2
360 360

δ
λ
′ ×

= =  

 
or  2 ocos 21.2 0.87  as in (7)g ak k= = =  
 
 

 

( , )E x y  avE  

x  
E 
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19-1-5.  continued 
 
(c)  Directivity: 
 

2

4 34 100 0.87 818   ( .)
4

p
u a

A
D k k ans

π
π

λ
= = × × × =  

 
(e) Effective aperture, :eA  

2
265.2    ( .)

4e p u aA D A k k ansλ λ
π

= = =  

(f) Aperture efficiency, :apε  
0.65ap a uk kε = =     (ans.) 

 
Note:  Although phase errors with small correlation distance ( )λ≅  as in Prob. 19-1-5 
reduce the directivity and, hence, increase AΩ , the HPBW is not affected appreciable.  
However, for larger correlation distances ( )λ>>  the scattered radiation becomes more 
directive, causing the near side lobes to increase and ultimately the main beam and the 
HPBW may be affected. 

 

*19-1-6.  Rectangular aperture.  Cosine taper. 
An antenna with rectangular aperture x1y1 has a uniform field in the y direction and a 
cosine field distribution in the x direction (zero at edges, maximum at center).  If x1 = 16λ 
and y1 = 8λ, calculate (a) the aperture efficiency and (b) the directivity. 
 
Solution: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1

1

8
16

y
x

λ
λ

=
=

 

1x  

o
1

( ) sin xE x E
x

π
=  

x  

y  

1y  

oE  E
   

E  

oE  
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*19-1-6.  continued 
 
Although the taper in the x-direction is described as a cosine taper, let us represent it by a 
sine function as follows: 
 

(a) From (19-1-50),   ( )
( )

2

2

( )
( )

av
ap

av

E x
E x

ε =  

 

where  
1

1 1o o o1
0 0

1 1 1 1 1 0

21( ) ( ) sin co s
x

x x

av
E E Exx xE x E x dx dx

x x x x x
π π

π π
− = = = = 

 ∫ ∫  

 
1 1

2 2
2 2 2o o

0 0
1 1 1

1[ ( )] ( ) sin
2

x x

av
E ExE x E x dx dx

x x x
π

= = =∫ ∫  

 

Therefore,    

2

o

2
2
o

2
8 0.811 or 81%1

2

ap

E

E

πε
π

 
 
 = = = ≅  

 
(b)  20.81 8 16 103.7e ap emA Aε λ λ λ= = × × =  
 

2 2
2

4 (4 103.7 ) / 1304 or 31.2 dBieAD π π λ λ
λ

= = × =  

 

19-1-7.  Rectangular aperture.  Cosine tapers. 
Repeat Prob. 19-1-6 for the case where the aperture field has a cosine distribution in both 
the x and y directions. 
 
Solution: 
 
Let the distribution be represented by 
 

 o
1 1

( , ) sin sinx xE x y E
x y

π π
=  
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19-1-7.  continued 

1 1 1 1

1 1

o
0 0 0 0

1 1 1 1 1 1

o o1 1
2

1 1 1 10 0

1(a)                ( , ) ( , ) sin sin

4cos cos

x y x y

av

x y

E x yE x y E x y dxdy dx dy
x y x y x y

E Ex yx y
x y x y

π π

π π
π π π

= =

   
= − − =   

   

∫ ∫ ∫ ∫
 

 
1 1 1 1

2 2
2 2 2 2o o

0 0 0 0
1 1 1 1 1 1

1[ ( , )] ( , ) sin sin
4

x y x y

av
E Ex yE x y E x y dxdy dx dy

x y x y x y
π π

= = =∫ ∫ ∫ ∫  

Therefore, 
2

o2

4
2
o

4
16 4 0.657 or 66%1

4

ap

E

E

πε
π

 
  × = = = ≅  

 
(b)  20.657 8 16 84.1 e ap emA Aε λ λ λ= = × × =  
 

2

2 2

4 4 84.1 1057  or  30.2 dBieAD π π λ
λ λ

×
= = =  

 

*19-1-8.  A 20λ line source.  Cosine-squared taper. 
(a) Calculate and plot the far-field pattern of a continuous in-phase line source 20λ long 

with cosine-squared field distribution. 
(b) What is the HPBW? 
 
Solution: 

 
 
 

The field along the line may be 
represented by  

  2

1

( ) cos
2

xE x
x

π
=  

 
(a) The field pattern ( )E θ  is the Fourier transform of the distribution ( )E x  along the 
line.  Thus,   

1

1

10(2 / )cos 2 (2 / )cos

10
( ) ( ) cos [( / 2)( /10 )]

x j x j x

x
E E x e dx x e dxλ

λ

π λ θ π λ θθ π λ
+ +

− −
= =∫ ∫  

 

E(x) 

20λ 

+x1 −x1 
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*19-1-8.  continued 
 
Let /s x λ=  from which dx dsλ=  
 
Then 

10 102 2 cos 2 cos

10 10

10 102 cos 2 cos

10 10

1 cos( /10)( ) cos ( / 20)
2

cos( /10)
2 2

j s j s

j s j s

sE s e ds e ds

e ds s e ds

π θ π θ

π θ π θ

πθ λ π λ

λ λ π

+ +

− −

+ +

− −

+
= =

= +

∫ ∫

∫ ∫
 

and 
sin(20 cos ) 1 sin(20cos 1) sin(20cos 1)( )

2 cos 2 [2cos (1/10)] [2cos (1/10)]nE π θ θ π θ πθ
π θ θ π θ π

 + −
= + + + − 

 

 

 
2

2

sin(20 cos ) 4cos1
2 cos 4cos 0.01

π θ θ
π θ θ

 
= − − 

    (ans.) (1) 

 
(b) From graph or by trial and error from (1), 
 

o o oHPBW 2(90 87.9 ) = 4.2= −     (ans.) 
 
From Table 4-3 for a 20λ  uniform aperture, 
 

oHPBW = 50.8/ 50.8 / 20 2.5Lλ = =  
 
Thus, the cosine-squared aperture distribution has nearly twice the HPBW of the uniform 
aperture, but its side lobes are much lower with first side lobe down 31 dB as compared 
to only 13 dB down for a 20λ uniform aperture distribution. 



136 

 



137 

 

Chapter 21.  Antennas for Special Applications   
 

21-4-2.  Horizontal dipole above imperfect ground. 
Calculate the vertical plane field pattern broadside to a horizontal λ/2 dipole antenna λ/4 
above actual homogeneous ground with constants εr’ = 12 and σ = 2 x 10-3 Ω-1 m-1 at (a) 
100 kHz and (b) 100 MHz. 
 
Solution: 

3 1 1
o , 12, 2 10  m , / 4r hµ µ ε σ λ− − −′= = = × Ω =  

 
2 1 2

2 1 2

sin ( cos )
sin ( cos )

r

r

α ε αρ
α ε α⊥

− −
=

+ −
 (1) 

 
 1 cos(2 sin ) sin(2 sin )E h j hρ β α β α⊥ ⊥= + +__∠  (2) 
 

(b)  
3

8 12
o

2 10 0.36 at 100 MHz
2 10  8.85 10r

σε
ωε π

−

−

×′′ = = =
×

 

 
12 0.4 12r r rj jε ε ε′ ′′= − = − ≅  

 
Introducing rε into (1), (1) into (2) and evaluating (2) as a function of α  results in the 
pattern shown.  The pattern for perfectly conducting ground ( )σ = ∞  is also shown for 
comparison (same as pattern of 2 isotropic sources in phase opposition and spaced / 2λ ).  
For perfectly conducting ground the field doubles ( 2E = ) at the zenith ( o90α = ), but 
with the actual ground of the problem, it is reduced to about 1.55 (down 2.2 dB) because 
of partial absorption of the wave reflected from the ground. 

 

 
(a) At 100 kHz,  360 and 1rε ρ⊥′′ = ≅ − ,  so the pattern is approximately the same as for 

σ = ∞  in the sketch. 
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21-9-1.  Square loop. 
Calculate and plot the far-field pattern in the plane of a loop antenna consisting of four 
λ/2 center-fed dipoles with sinusoidal current distribution arranged to form a square λ/2 
on a side.  The dipoles are all in phase around the square. 
 
Solution:   
 
Squarish pattern with rounded edges.   
 
Maximum-to-minimum field ratio = 1.14 

 

*21-9-3.  DF and monopulse. 
Many direction-finding (DF) antennas consist of small (in terms of λ) loops giving a 
figure-of-eight pattern as in Fig. P21-9-3a.  Although the null is sharp the bearing 
(direction of transmitter signal) may have considerable uncertainty unless the S/N ratio is 
large.  To resolve the 180° ambiguity of the loop pattern, an auxiliary antenna may be 
used with the loop to give a cardiod pattern with broad maximum in the signal direction 
and null in the opposite direction. 

The maximum of a beam antenna pattern, as in Fig. P21-9-3b, can be employed to 
obtain a bearing with the advantage of a higher S/N ratio but with reduced pattern change 
per unit angle.  However, if 2 receivers and 2 displace beams are used, as in Fig. 
P21-9-3c, a large power-pattern change can be combined with a high S/N ratio.  An 
arrangement of this kind for receiving radar echo signals can give bearing information on 
a single pulse (monopulse radar).  If the power received on beam 1 is P1 and on beam 2 is 
P2, then if P2 > P1 the bearing is to the right.  If P1 > P2 the bearing is to the left and if P1 
= P2 the bearing is on axis (boresight).  (With 4 antennas, bearing information left-right 
and up-down can be obtained.) 
 
(a) If the power pattern is proportional to cos4 θ, as in Fig. P21-9-3c, determine P2/P1 if 
the interbeam (squint) angle α = 40° for ∆θ = 5 and 10°. 
 
(b) Repeat for α = 50°. 
 
(c) Determine the P0/P1 of the single power pattern of Fig. P21-9-3b for ∆θ = 5 and 10° if 
the power pattern is also proportional to cos4 θ. 
 
(d) Tabulate the results for comparison and indicate any improvement of the double over 
the single beam. 
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*21-9-3.  continued 

 
Figure P21-9-3.  Direction finding:  (a) with loop mull, (b) with beam maximum and (c) 
with double beam (monopulse). 
 
Solution: 
 
(a) o40α =  

4 o o
o 2

4 o o
1

4 o o
o 2

4 o o
1

cos (20 5 )5 , 1.290 or 1.1 dB
cos (20 5 )

cos (20 10 )10 , 1.672 or 2.2 dB
cos (20 10 )

P
P
P
P

θ

θ

−
∆ = = =

+

−
∆ = = =

+

 

(b) o50α =  
4 o o

o 2
4 o o

1
4 o o

o 2
4 o o

1

cos (25 5 )5 , 1.386 or 1.4 dB
cos (25 5 )

cos (25 10 )10 , 1.933 or 2.9 dB
cos (25 10 )

P
P
P
P

θ

θ

−
∆ = = =

+

−
∆ = = =

+

 

 
4 o

o 0
4 o

1
4 o

o 0
4 o

1

cos 0(c)      5 , 1.015 or 0.06 dB
cos 5

cos 010 , 1.063 or 0.26 dB
cos 10

P
P

P
P

α

α

= = =

= = =
 

 
(d) Over 1 dB more at 5o and about 2 dB more at 10o. 
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*21-10-1.  Overland TV for HP, VP and CP. 
(a) A typical overland microwave communications circuit for AM, FM or TV between a 
transmitter on a tall building and a distant receiver involves 2 paths of transmission, one 
direct path (length ro) and one an indirect path with ground reflection (length r1 + r2), as 
suggested in Fig. P21-10-1.  Let h1 = 300 m and d = 5 km.  For a frequency of 100 MHz 
calculate the ratio of the power received per unit area to the transmitted power as a 
function of the height h2 of the receiving antenna.  Plot these results in decibels as 
abscissa versus h2 as ordinate for 3 cases with transmitting and receiving antennas both 
(1) vertically polarized, (2) horizontally polarized and (3) right-circularly polarized for h2 
values from 0 to 100 m.  Assume that the transmitting antenna is isotropic and that the 
receiving antennas are also isotropic (all have the same effective aperture).  Consider that 
the ground is flat and perfectly conducting. 
(b) Compare the results for the 3 types of polarization, and show that circular polarization 
is best from the standpoint of both the noncriticalness of the height h2 and the absence of 
echo or ghost signals.  Thus, for horizontal or vertical polarization the direct and ground-
reflected waves may cancel at certain heights while at other heights, where they reinforce, 
the images on the TV screen may be objectionable because the time difference via the 2 
paths produces a double image (a direct image and its ghost). 
(c) Extend the comparison of (b) to consider the effect of other buildings or structures 
that may produce additional paths of transmission. 
 Note that direct satellite-to-earth TV downlinks are substantially free of these 
reflection and ghost image effects. 

 
Figure P21-10-1.  Overland microwave communication circuit. 

 
Solution: 
 
(a) and (b) answers in Appendix F, pg. 919-920. 
 
(c) The effect of reflection from other buildings or structures (or from aircraft) can be 
minimized by the use of CP transmit and receive antennas of the same hand, particularly 
when these structures are many wavelengths in size and reflection is specular. Trouble-
some reflections can be reduced by placing non-reflecting absorbers on the structure. 
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*21-12-1.  Signaling to submerged submarines. 
Calculate the depths at which a 1 µV m-1 field will be obtained with E at the surface equal 
to 1 V m-1 at frequencies of 1, 10, 100 and 1000 kHz.  What combination of frequency 
and antennas is most suitable? 
 
Solution: 
 
From Table A-6, take 80 and 4rε σ′ = =  for sea water.  At the highest frequency (1000 

kHz), ,σ ωε>>  so that / 2α ωµσ=  can be used at all four frequencies. 
 
At 1 kHz, 

3 7
12 10 4 10 4 0.13 Npm

2
π πα

−
−× × × ×

= =  

Since 
6

o

6 13.810 , logyE e y e
E

α

α α
− −= = = =  

 
and  

at 1 kHZ, depth 106 m
at 10 kHz, 35 m
at 100 kHz, 11 m
at 1000 kHz 3.5 m

y
y
y
y

=
=
=
=

    (ans.) 

 
From the standpoint of frequency, 1 kHz gives greatest depth.  However, from (21-2-3) 
the radiation resistance of a monopole antenna as a function of its height ( )ph is 
 

2

400  p
r

h
R

λ
 

= Ω 
 

 

For 300 m at 1 kHzph =  
 

2
4

5

300400 4 10        (or 400 μ )
3 10rR − = = × Ω Ω × 

 

 
With such a small radiation resistance, radiation efficiency will be poor.  At 10 kHz the 
radiation resistance is a hundred times greater.  A practical choice involves a compromise 
of sea water loss, land (transmitting) antenna effective height, and submarine antenna 
efficiency as a function of the frequency. 
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*21-13-1.  Surface-wave powers. 
A 100-MHz wave is traveling parallel to a copper sheet (|Zc| = 3.7 x 10-3 Ω) with E ( = 
100 V m-1 rms) perpendicular to the sheet.  Find (a) the Poynting vector (watts per square 
meter) parallel to sheet and (b) the Poynting vector into the sheet. 
 
Solution: 
 

(a) 
2 2

2
 to sheet

o

100 26.5 Wm
377

yE
S

Z
−= = =     (ans.) 

(b) 
22 3

2 2
int o sheet 2

o

100 3.7 10 182 μWm
377 2e c e c

ES H R Z R Z
Z

−
−× = = = = 

 
    (ans.) 

 
 

21-13-2.  Surface-wave powers. 
A 100-MHz wave is traveling parallel to a conducting sheet for which |Zc| = 0.02 Ω.  If E 
is perpendicular to the sheet and equal to 150 V m-1 (rms), find (a) watts per square meter 
traveling parallel to the sheet and (b) watts per square meter into the sheet. 
 
Solution: 
 

(a) 
2 2

2
 to sheet

o

150 59.7 Wm
377

yE
S

Z
−= = =     (ans.) 

 

(b) 
22 2

2 2
int o sheet 2

o

150 2 10 2.24 mWm
377 2e c e c

ES H R Z R Z
Z

−
−× = = = = 

 
    (ans.) 

 
 

*21-13-3.  Surface-wave power. 
A plane 3-GHz wave in air is traveling parallel to the boundary of a conducting medium 
with H parallel to the boundary.  The constants for the conducting medium are  σ = 107 
Ω-1 m-1 and µr = εr =1.  If the traveling-wave rms electric field E = 75 mV m-1, find the 
average power per unit area lost in the conducting medium. 
 
Solution: 

2
2

int o sheet 2
o

e c e c
ES H R Z R Z
Z

= =  

7 9
o

7

4 10 2 3 10 0.034
2 2 10e cR Z µ ω π π
σ

−× × ×
= = = Ω

×
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*21-13-3.  continued 
 

Therefore,  
2

2
int o sheet

0.75 0.034 1.35 nWm
377

S − = = 
 

    (ans.) 

 

21-13-4.  Surface-wave current sheet. 
A TEM wave is traveling in air parallel to the plane boundary of a conducting medium.  
Show that if K = ρsv, where K is the sheet-current density in amperes per meter, ρs is the 
surface charge density in coulombs per square meter and v the velocity of the wave in 
meters per second, it follows that K = H, where H is the magnitude of the H field of the 
wave. 
 
Solution: 

 
 
 

1 1
2

Q m Q 1 A m I m
m s s msK vρ − −= = = = =  

 
 
 

 
By Amperes’s law, integral of H around strip of width w equals current enclosed or 
 

ds = I wK=∫ H  

 
 and     (note that )wH wK H K H K= = ⊥     (ans.) 

 

*21-13-6.  Coated-surface wave cutoff. 
A perfectly conducting flat sheet of large extent has a dielectric coating (εr = 3) of 
thickness d = 5 mm.  Find the cutoff frequency for the TMo (dominant) mode and its 
attenuation per unit distance. 
 
Solution: 
 

1

o o

2 8.893 1  Np mπα
λ λ

−= − =     (ans.)  0cf =     (ans.) 



144 

 



145 

 

Chapter 23.  Baluns, etc. By Ben A. Munk 
 

23-3-1.  Balun 200 Ω, antenna 70 Ω. 
A Type III balun has the characteristic impedance equal to Zcp = 200 Ω and the electrical 
length is equal to lp = 7.5 cm. It is connected to an antenna with impedance ZA = 70 Ω. 
(a) Find the balun impedance jXp at f = 500, 1000 and 1500 MHz. 
(b) Calculate the parallel impedances ZA || jXp at 500 1000 and 1500 MHz and plot them 
in a Smith Chart normalized to Zo = 50 Ω. Check that all these impedances lie on a circle 
with a diameter spanning over (0,0) and ZA = 70 Ω. Alternatively, you may determine ZA || 
jXp graphically in a Smith Chart. 
(c) Explain what effect it would have on the bandwidth if we changed Zcp to 150 Ω or 250 
Ω. 
 
Solution: 
 

(a) 
8

8

3 10 7.560 cm, 0.125
5 10 60

p
L

L

λ
λ

×
= = = =

×


 

 

 
8

9

3 10 7.530 cm, 0.250
1 10 30

p
M

M

λ
λ

×
= = = =

×


 

 

 
8

9

3 10 7.520 cm, 0.375
1.5 10 20

p
H

H

λ
λ

×
= = = =

×


 

 
From the Smith Chart, by moving the number of wavelengths around from the short 
(zero) position, it is found that  
 
for   500 MHz, 200 pf jX j= = Ω     (ans.)  
 
for   1000 MHz,  pf jX j= = ∞ Ω     (ans.)  
 
for   1500 MHz, 200 pf jX j= = − Ω     (ans.)  
 
Alternatively, the transmission line equation can be used. 
 

(b) 
2 2

2 2
A p A p A p

A p
A p A p

Z jX Z X jZ X
Z jX

Z jX Z X
+

= =
+ +

  

 
For mid frequency,  ,p A p AX Z X Z= ∞ =  
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23-3-1.  continued 

For low frequency,  
2 2

2 2

70 200 70 200200, 62.36 21.83
70 200p A p

jX Z jX j× + ×
= = = +

+
  

 

Normalized to o 50,Z =  
o

1.25 0.44A pZ jX
j

Z
= +


 

 
Similarly, for high frequency,  200, 62.36 21.83p A pX Z jX j= − = −  
 

     
o

1.25 0.44A pZ jX
j

Z
= −


 

 
See accompanying figure of Smith Chart 
 

 



147 

 

23-3-1.  continued 
 
To find these values by the Smith Chart, it is a matter of adding the values as admit-
tances.  This is accomplished by finding their position as impedances, projecting the 
values through the origin an equal distance, adding them, then projecting the added values 
an equal distance to the other side of the origin. 
 
(c) For 150 , it is found that 57.48 26.82cp A pZ Z jX j= Ω ± = ±  
 
or normalized as    1.15 0.54j= ±  
 
 For 250 , it is found that 64.91 18.18cp A pZ Z jX j= Ω ± = ±  
 
or normalized as   1.30 0.36j= ±  
 
It is easily seen that the 150 Ω  value decreases the bandwidth and the 250 Ω  value 
increases the bandwidth.  Note: The closer the values are to the origin, the better the 
VSWR. 

 

23-3-5  Stub impedance. 
(a) What is the terminal impedance of a ground-plane mounted stub antenna fed with a 
50-Ω air-filled coaxial line if the VSWR on the line is 2.5 and the first voltage minimum 
is 0.17λ from the terminals? 
(b) Design a transformer so that the VSWR = 1. 
 
Solution: 

 
 
 

o
o

o

tan
tan

T
m

T

Z jZ xZ Z
Z jZ x

β
β

+
=

+
 (1) 

 
 

 
 
 

min

o

where  impedance on line at 0
 line impedance 50 0 
 stub antenna terminal impedance = 

m m

T T T

Z V R j
Z j
Z R jX

= = +
= = + Ω
= +

 

 
Rearranging (1) in terms of real and imaginary parts: 

Vmin 

ZT 
VSWR = 2.5 

Zo = 50 Ω 

.17λ  
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23-3-5  continued 

 
o

tanT m
m T

X RR R x
R

β
 

− =  
 

  by equating reals,                                  (2) 

and 

  o
o

tan tanT m
T

R R x X R x
R

β β= +   by equating imaginaries  (3) 

 
o

o50 / 2.5 20,  50,  tan tan(360 .17) 1.82mR R xβ= = = = × =  
 

From (2),   2020 1.82 0.728 
50T T TR X X− = × =  

From (3),   20 1.82 50 1.82, 0.728 91
50T T T TR X R X× = + × = +  

From which, 56 50 T T TZ R jX j= + = − Ω     (ans.) 
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Chapter 24.  Antenna Measurements. 
By Arto Lehto and Pertti Vainikainen 

 

24-3-1.  Uncertainty of pattern measurement due to reflected wave. 
The level of a wave reflected from the ground is 45 dB below the level of the direct wave.  
How large of errors (in dB) are possible in the measurement of: 
(a) main lobe peak; 
(b) -13 dB sidelobe; 
(c) -35 dB sidelobe? 
 
Solution: 
 
From Sec. 24-3b and since the reflected wave is (45/ 20)45 dB or 10 0.0056−− = , 
 
(a) 1 0.0056 0.9944  or  0.049 dB− = −     (ans.) 
 
 1 0.0056 1.0056  or  +0.049 dB+ =     (ans.) 
 
(b) (13/ 20)13 dB side lobes provides 10 0.2238−− =  
 

so  0.2238 0.0056 0.9749  or  0.22 dB
0.2238

−
= −     (ans.) 

 

 0.2238 0.0056 1.0251  or  +0.22 dB
0.2238

+
=     (ans.) 

 
(c) (35/ 20)35 dB side lobes provides 10 0.0178−− =  
 

so  0.0178 0.0056 0.6838  or  3.30 dB
0.0178

−
= −     (ans.) 

 

 0.0178 0.0056 1.3162  or  +2.38 dB
0.0178

+
=     (ans.) 

 

24-3-2.  Range length requirement due to allowed phase curvature. 
The maximum allowed phase curvature in the measurement of a very low-sidelobe 
antenna is 5°.  The width of the antenna is 8 m and it operates at 5.3 GHz.  Find the 
required separation between the source and AUT. 
 
 



150 

 

24-3-2. continued 
 
Solution: 
 
 
 
 
 
Similar to Fig. 24-5, let d be the distance causing the phase error. 
 

Then  
2

2 2( )
2
DR d R  + = +  

 
 

2 2
2 2 22 ,

4 8
D DR dR d R R

d
+ + = + ≅  

 
For a o5  phase error, 
    

2 5  (rad)
180

kd dπ π
λ

= =  

 

so,  5 1
360 72

d
λ

= =  

 

Therefore,    
2 21 972

8
D DR
λ λ

= =  

 

Since,   
8

9

3 10 9 640.0566 m, 10,176 m
5.3 10 0.0566

Rλ × ×
= = ≥ =

×
 

 

24-4-1.  Design of elevated range. 
Design an elevated range (range length, antenna heights, source antenna diameter) for the 
measurement of a 1.2 m reflector antenna operating at 23 GHz. 
 
Solution: 

8

10

3 10 0.013 m
2.3 10

λ ×
= =

×
  

 

so,    
2 22 2 (1.2) 221 m

0.013
DR
λ

×
≥ = =     (ans.) 

 

/ 2D  
R  

 

R  

d 
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24-4-1.  continued 
From combining requirements in (24-4-1) and (24-4-2) 
 

5 5 1.2 6 mRH D≅ × = × =     (ans.) 
 

and similarly for T RH H=  
 

From (24-4-1),  1.5 1.5 0.013 221 0.72 m
6T

R

RD
H

λ × ×
≥ = =     (ans.)

 

24-4-2.  Time required for near-field scanning. 
Estimate the time needed for a planar near-field measurement of a 2 m antenna at 300 
GHz.  The sampling speed is 10 samples per second. 
 
Solution: 
 

8

11

3 10 2 m0.001 m, 2000
3 10 0.001 m

Dλ λ×
= = = =

×
 

 
Sample at 2 per wavelength, so samples = 4000 per line per side 
 
Total samples = 3 2 62 (4 10 ) 32 10× × = ×  
 

6
632 10 3.2 10  sec 888 hrs 54min 37 days

10 samples/sec
t ×

= = × = ≅     (ans.) 

 

24-5-1.  Power requirement for certain dynamic range. 
The AUT has a gain of 40 dBi at 10 GHz.  The gain of the source antenna is 20 dBi.  The 
separation between the antennas is 200 m.  The receiver sensitivity (signal level that is 
sufficient for measurement) is –105 dBm.  Find the minimum transmitted power that is 
needed for a dynamic range of 60 dB. 
 
Solution: 
 

From (24-5-2) and since  
2 2

100.03 1.42 10 98 dB
4 4 200R

λ
π π

−   = = × = −   ×   
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24-5-1.  continued 
 

dB

40 dBi + 20 dBi 98 dB 38 dBR

T

P
P

 
= − = − 

 
 

 
With 105 dBm−  needed at a minimum for the reception and a 60 dB dynamic range, 
 then 

105 dBm 38 dB 60 dB 7 dBm
0.2 mW     ( .)

t

t

P
P ans

= − + + = −
=

    

 

24-5-2.  Gain measurement using three unknown antennas. 
Three horn antennas, A, B, and C are measured in pairs at 12 GHz.  The separation of 
antennas is 8 m.  The transmitted power is +3 dBm.  The received powers are -31 dBm, 
36 dBm, and -28 dBm for antennas pairs AB, AC, and BC, respectively.  Find the gains 
of the antennas. 
 
Solution: 
 

From (24-5-2),  
2 8

10

3 10, 0.025 m
4 1.2 10

T
T R

R

PG G
P R

λ λ
π

− × = = =  × 
 

 
2 2

80.025 6.18 10   or  72 dB
4 4 8R

λ
π π

−   = = × −   
   

 

then 
31 dBm 3 dBm 72 dB 38 dB
36 dBm 3 dBm 72 dB 33 dB
28 dBm 3 dBm 72 dB 41 dB

A B AB

A C AC

B C BC

G G C
G G C
G G C

= = − − + =
= = − − + =
= = − − + =

 

 
2, ,B AB AB AB

B C C BC
C AC AC AC

G C C CG G G C
G C C C

 
= = = 

 
 

So  
1 (41 dB + 33 dB 38 dB) 18 dBi
2

BC AC
C

AB

C CG
C

= = − =     (ans.) 

 

33 dB 18 dB 15 dBiAC
A

C

CG
G

= = − =     (ans.) 
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24-5-2.  continued 

41 dB 18 dB 23 dBiBC
B

C

CG
G

= = − =     (ans.) 

 

24-5-3.  Gain measurement using celestial radio source. 
At 2.7 GHz the antenna temperature increases 50 K as a 20 m reflector is pointed to 
Cygnus A.  Find the antenna gain and aperture efficiency. 
 
Solution: 
 

From (24-5-7),  
23

5
2 26 2

8 8 1.38 10 50 1.79 10 52.5 dBi
785 10 (0.111)

Ak TG
S

π π
λ

−

−

∆ × × ×
= = = × =

× ×
 

 
2 5 2

21.79 10 (0.111) 175.5 m
4 4e

GA λ
π π

× ×
= = =  

 
For a 20 m circular reflector, 

2

175.5 0.56  or  56%
(10)

e
ap

p

A
A

ε
π

= = =

 

24-5-4.  Impedance in laboratory. 
You try to measure the impedance of a horn antenna with 15 dBi gain at 10 GHz in a 
normal laboratory room by pointing the main lobe of the antenna perpendicularly towards 
a wall 2 m away.  The power reflection coefficient of the wall is 0.3 and it can be 
assumed to cover practically the whole beam of the AUT.  Estimate the uncertainty of the 
measurement of the reflection coefficient of the AUT due to the reflection of the wall. 
 
Solution: 
 
The normalized received power from the horn to the wall and back into the horn 
 

2

4
R

T R
T

P G G
P R

λρ
π

 =  
 

 

 
2 2

70.030.3 5 dB, 0.03 m, 3.6 10 64 dB
4 R 4 2 2

λρ λ
π π

−   = = − = = = × = −   × ×   
 

 
 



154 

 

24-5-4.  continued 

5 dB 15 dBi 15 dBi 64 dB 39 dB

0.000126   in power
=0.01122   in voltage

R

T

P
P

= − + + − = −

=  

 
So the uncertainty is about 1%.
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Depolarization ratio (2-17-2) 15 
Detecting one electron (12-5-5) 97 
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(6-3-4) 38, (6-3-10) 40      
Direction finding (21-9-3) 136 
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112 
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104 
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J 
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L 
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circular (7-8-2) 51 
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N 
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O 

Overland TV (21-10-1) 138 

P 
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 factors (6-8-2) 44 

horn (9-9-2) 61 
 measurement, uncertainty (24-3-1) 147 
 smoothing (15-3-1) 107 
Patterns over imperfect ground (21-4-2) 135 
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Q 
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R 

Radar cross section (12-5-6) 98 
Radar detection (12-5-1) 96, (12-5-12) 99,     

(12-5-13) 99, (12-5-14) 100, (12-5-18) 100, 
(12-5-20) 101 

Radiation resistance (6-3-1) 37, (6-3-11) 41,    
(6-3-12) 41, (6-5-1) 42, (6-6-1) 42, (7-6-1) 49 

Range length (24-3-2) 147 
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(10-3-4) 67, (10-3-5) 68, (10-3-6) 68,   
(10-3-7) 71, (10-3-8) 71 
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Rhombic 
alignment (16-16-3) 119 
compromise (16-16-4) 119, (16-16-5) 120, 

(16-16-6) 120 
E-type (16-16-2) 119 

S 

Satellite 
downlink (12-3-4) 82, See also Link 
direct-broadcast (DBS) (12-3-18) 91 
low earth orbit (LEO) (12-3-17) 90 
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58 

Solar interference (12-3-7) 84 
Solar power (4-3-1) 19 
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Square loop (21-9-1) 136 
Stray factor (5-8-7) 29 
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Surface-wave 
current sheet (21-13-4) 141 
cutoff (21-13-6) 141 
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T 

Temperature 
with absorbing cloud (12-4-1) 94 
antenna (12-2-1) 81, (12-2-2) 81 
minimum detectable (12-3-11) 88, (12-3-12) 

89 
system (12-3-5) 82, (12-3-6) 84 
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