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foreword to the revised edition

The purpose of the IEEE Press Series on Electromagnetic Wave Theory is to publish
books of long-term archival significance in electromagnetics. Included are new titles as
well as reprints and revisions of recognized classics. The book Antenna Theory and De-
sign, by Robert S. Elliott is one such classic.

In the case of antennas and Robert S. Elliott, I should like to be personal. Much of
the material that forms the basis of Antenna Theory and Design I studied as a graduate
student under Bob Elliott’s guidance at UCLA in the late 1950° and early 1960%. This
material became the fundamental background for me during my ten-year antenna design
and development career at Hughes Aircraft Company and, what was then, North American
Rockwell. The notes I compiled in his courses later became the foundation for two anten-
na courses when I moved on to the University of Arizona in 1968.

Antenna theory can be studied, assimilated, and then written down in a textbook
with little practical experience. Antenna design is another matter entirely. Bob Elliott’s ca-
reer has been in actuality two careers in one. He has contributed significantly to antenna
and microwave component design and development at Hughes Aircraft Company and
Rantec Corporation while also forming and leading a strong, internationally recognized
antenna and microwave program at UCLA. The book, Antenna Theory and Design, re-
flects the breadth and depth of coverage that such a background would suggest. As a re-
sult, the book is useful to academics and also to practitioners in industry and government
laboratories.

Professor Elliott has been an internationally well-known contributor to electromag-
netics for many years. He is universally regarded among his peers and students as an elec-
tromagnetic scholar. As an example, his clear and groundbreaking exposition on electro-
magnetics and its relationship to the special theory of relativity appears in the
widely-regarded book, Electromagnetics; History, Theory, and Applications. This scholar-
ly work was added to the IEEE Press Series on Electromagnetic Wave Theory in 1993.

Professor Elliott is a Fellow of the IEEE (1961). Prior to his retirement from active
teaching, he was the Hughes Distinguished Professor of Electromagnetics at UCLA.
Among his teaching awards, he was elected Best Teacher, UCLA Campus-Wide (1983)
and has been elected Best Teacher, UCLA College of Engineering, four times. Among his
many professional honors, he was elected a Fellow of the National Academy of Engineer-
ing (1988). The IEEE Antennas and Propagation Society (APS) awarded him the APS



Foreword to the Revised Edition

Distinguished Achievement Award (1985). In addition, he has received two APS Prize Pa-
per awards. In 2000, he was awarded an [EEE Third Millennium Medal.

I have received many comments from Bob Elliott’s colleagues and former students
since beginning this reissue project. The one that most typifies this book is, “Many of the
insights in his text are originally his and are still considered the fundamental way of look-
ing at things.”

It is with pleasure that I welcome this classic book into the series.

Donald G. Dudley

University of Arizona

Series Editor

IEEE Press Series on Electromagnetic Wave Theory



preface to the revised edition

This textbook first appeared in 1981 and, although it has been out of print for the past
decade, a continuing demand has led to the decision that it be reissued. Like Electromag-
netics, its predecessor in this Classic Series, it seems to have become something of a col-
lector’s item.

The primary appeal is apparently due to the fundamental treatment of both theory
and design for a wide variety of antenna elements, arrays, and feeding systems. The seri-
ous reader will find in this text the basic coverage of all aspects of the antenna discipline
needed as background for someone desiring to pursue a career in electronic systems, or as
preparation for advanced study leading to a desired career as an antenna engineer.

The decision to reissue has provided an opportunity to eliminate errors that have
been discovered in the final printing of the original text. Several colleagues and former
students kindly contributed to the compiling of a list of errata. Most of the errors found
were minor, a few were more serious, notably the entries in Tables 7.6 and 7.7. J.H.Ander-
son verified all suggested corrections and assembled the errata in a common format, thus
facilitating their removal. His help is warmly acknowledged.

The opportunity was also taken to update the references in Sections 5.14 and 8.13
because of seminal advances in the design of slot arrays and in the synthesis of shaped an-
tenna patterns.

The author wishes to thank the IEEE Press for its decision to reissue Antenna Theo-
rv and Design and trusts that their faith in this project will not go unrewarded.

Robert S. Elliott
Los Angeles
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preface

A nine-month sequence in antenna theory and design is offered on a yearly basis at
the author’s institution. The first and second quarters are open to seniors and first-
year graduate students; the third quarter is at the graduate level. The sequence pre-
supposes a background at the intermediate level in electromagnetic theory and a
knowledge of introductory transmission line theory, including Smith charts and
waveguide modal analysis. The present book has evolved from the lecture notes for
the antenna sequence.

It has been the author’s experience, in teaching this sequence for the past five
years, that the various topics which seemed to provide a balanced treatment were not
to be found at an introductory level in a single textbook currently available. Further,
some recent developments, the importance of which is widely recognized, were only
available in the research literature. Student frustration over nonuniformity of notation
from article to article and over the economic hardship associated with buying a
multiplicity of texts that would only be partially used, provided the original motiva-
tion for the lecture notes. The editing of these notes by successive groups of students
is appreciated, and it is hoped that their criticisms have benefited the final product.

The topic coverage has been influenced by the author’s experience and by the
needs of local industry in the Los Angeles area. The reader will find emphasis on
microwave antennas, particularly on arrays for use in radar and communication sys-
tems. The practical applications of such antennas have grown to occupy a major
portion of the field, so it is hoped this emphasis will find wide appeal. However, other
topics have not been neglected, as can be observed from the Table of Contents.

The text is divided into four parts. Part I commences with a review of electro-
magnetic theory and then proceeds to the establishment of integral relations between
a collection of sources (the antenna) and the radiated field caused by these sources.
A convenient division of antennas into two types emerges from this development. The
first type, for which the actual sources are known quite well, includes dipoles, loops,
and helices, and their pattern characteristics are studied in turn. The second type, for

Xix
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which the close-in fields are known with reasonable accuracy, can be analyzed in
terms of equivalent sources. This category includes horns, slots, and patches, all of
which are considered in some detail.

Part 1II is concerned with the analysis and synthesis of one- and two-dimen-
sional arrays. The antenna elements studied in Part I form the constituent parts of
these arrays, and focus is on the pattern characteristics. The synthesis procedures of
Dolph and Taylor are introduced and extended to pattern requirements involving
arbitrary side lobe topography.

In Part III the emphasis is shifted to the impedance properties of antenna ele-
ments, used either singly or in arrays. Hallén’s integral equation formulation of the
self-impedance of a cylindrical dipole is developed and extended to strip dipoles.
Several types of solution are studied, including those obtained by the method of
moments and by functional expansion. Babinet’s principle is used to extend these
results to slots. Mutual impedance, so important in the design of arrays, is formulated
with the aid of the reciprocity theorem and then calculated for the most commonly
used antenna elements. All of this information of self-impedance and mutual impe-
dance is then employed in the design of feeding structures for single elements and for
linear and planar arrays, including those which scan.

Part 1V is devoted to antennas with continuous (or quasi-continuous) apertures.
Long wire antennas such as the rhombic and V are studied and the properties of
many surface wave structures are analyzed. These include slow wave types such as
dielectric-clad and corrugated ground planes and fast wave types, notably leaky wave-
guides. The book concludes with an introductory treatment of reflectors and lenses,
antenna types to which many of the principles of optics can be applied.

The three courses that form the antenna sequence at the author’s institution span
three months each, with four hours of lecture offered per week. The first course covers
Chapters 1, 2, and 4 plus the first six sections of Chapter 5, the first fifteen sections of
Chapter 7, the first twelve sections of Chapter 8, and the first three sections of Chapter
9. It thus concentrates on wire antennas (dipoles, monopoles, loops, and helices) after
introduction of the fundamentals. The second course covers Chapter 3, the remainder
of Chapters 7, 8, and 9, and all of Chapter 10. It emphasizes aperture antennas (slots,
patches, reflectors, and lenses). The third course is devoted to pattern synthesis and
relies on the last half of Chapter 5 and all of Chapter 6, plus some of the current
literature.

For someone wishing to give a balanced offering of antenna topics in a one
semester course, a combination which should prove satisfactory would contain Sec-
tions 1.1 through 1.6, Sections 1.10 through 1.18, Sections 2.1 through 2.6, Sections 3.1
through 3.6, Sections 4.1 through 4.4, Sections 5.1 through 5.3, Section 7.8, Sections
7.13 through 7.15, Sections 8.1 through 8.6, Sections 10.1 through 10.5, and Sections
10.10 through 10.11. This would provide exposure to the fundamentals, to wire anten-
nas, to aperture antennas, to the elements of array theory, to the problem of feeding
arrays in the presence of mutual coupling, and to the application of geometric optics
to the design of reflector and lens antennas.

Various friends have been kind enough to read portions of the manuscript and
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xxi

offer their comments. The author wishes to acknowledge his indebtedness to Profes-
sors N. Alexopoulos, C. Butler, D. G. Dudley, G. Franceschetti, Y. T. Lo, C. T. Tai,
and P. G. Uslenghi, and to his industrial colleagues J. Ajioka, V. Galindo-Israel,
W. H. Kummer, and A. W. Love. Among the many students who have uncovered
errors and assisted in modifications of the text, the efforts.of D. Kim and J. Schaffner
deserve explicit mention.

A special and warm expression of gratitude is reserved for my longtime col-
league and friend, Alvin Clavin, Manager of the Radar Laboratory at Hughes Canoga
Park. He had the confidence to offer me consulting work at Hughes when I had been
away from the field for a decade, thus rekindling my interest in the subject. This tribute
extends to the entire Hughes organization, which has been so generous in supporting
many of the antenna research efforts which have found their way into the pages of
this book. My association with the engineering staff at Hughes has been rich and
valuable, and particular gratitude must be expressed for the counsel of Louis Kurtz
and George Stern. The computer assistance given me at Hughes by Ralph Johnson
and Annette Sato is also gratefully acknowledged.

ROBERT S. ELLIOTT
Los Angeles






sourcelfield relations
single antenna elements

This initial part of the text, consisting of three chapters, is concerned first with
establishing the general relations between a collection of sources (the antenna)
and the radiated field produced by those sources (the far-field pattern). The
source/field formulas are then used to deduce the pattern characteristics of the
most commonly encountered antenna elements (dipole, loop, helix, horn, slot,
and patch). These radiators will be seen to be ideally suited to many applications
in which a single element will suffice. They have the added advantage of being
useful in arrays, a subject which is discussed in Part II.






1.1

the farfield integrals,
reciprocity, directivity

Introduction

This chapter is concerned primarily with establishing formulas for the electromagnetic
field vectors E and H in terms of all the sources causing these radiating fields, but at
points far removed from the sources. The collection of sources is called an antenna
and the formulas to be derived form the basis for what is generally referred to as
antenna pattern analysis and synthesis.

A natural division into two types of antennas will emerge as the analysis
develops. There are radiators, such as dipoles and helices, on which the current dis-
tribution can be hypothesized with good accuracy; for these, one set of formulas will
prove useful. But there are other radiators, such as slots and horns, for which an
estimation of the actual current distribution is exceedingly difficult, but for which the
close-in fields can be described quite accurately. In such cases it is possible to replace
the actual sources, for purposes of field calculation, with equivalent sources that
properly terminate the close-in fields. This procedure leads to an alternate set of
formulas, useful for antennas of this type.

The chapter begins with a brief review of relevant electromagnetic theory,
including an inductive establishment of the retarded potential functions. This is fol-
lowed by a rigorous derivaticn of the Stratton-Chu integrals (based on a vector
Green’s theorem), which give the fields at any point within a volume V in terms of the
sources within ¥ and the field values on the surfaces S that bound V. This formulation
possesses the virtue that it applies to either type of antenna, or to a hybrid mix of the
two. Simplifications due to the remoteness of the field point from the antenna will
lead to compact integral formulas, from which all the pattern characteristics of the
different types of antennas can be deduced.

A general derivation of the reciprocity theorem is presented ; the result is used to
demonstrate that the transmitting and receiving patterns of an antenna are identical.
The concept of directivity of a radiation pattern is introduced and a connection is estab-
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lished between the receiving cross section of an antenna and its directivity when trans-
mitting. The chapter concludes with a discussion of the polarization of an antenna
pattern.

A. REVIEW OF RELEVANT ELECTROMAGNETIC THEORY!

It will generally be assumed that the reader of this text is already familiar with elec-
tromagnetic theory at the intermediate level and possesses a knowledge of basic trans-
mission line analysis (including the use of Smith charts) and of waveguide modal
representations. What follows in the next several sections is a brief review of the
pertinent field theory, primarily for the purposes of introducing the notation that
will be adopted and highlighting some useful analogies.?

Throughout this text MKS rationalized units are used; the dimensions of the
various source and field quantities introduced in the review are listed on the inside of
the front cover.

1.2 Electrostatics and Magnetostatics in Free Space
A time-independent charge distribution
plx, ), z) (1.1a)

expressed in couloumbs per cubic meter, placed in what is otherwise free space, gives
rise to an electrostatic field E(x, y, z). Similarly, a time-independent current distribu-
tion

J(x, y, z) (1.1b)
expressed In amperes per square meter, produces a magnetostatic field B(x, y, z). To

heighten the analogies between electrostatics and magnetostatics, it is sometimes
useful to refer to the “reduced” source distributions

Ed J 3 3
p(xéoy z) (JL ay‘ 2) (1.2)

in which €, is the permittivity of free space and w;! is the reciprocal of the perme-
ability of free space.

Coulomb’s law can be introduced as the experimental postulate for electrostatics
and described by the equations

1The reader who prefers to omit this review should begin with Section 1.7,

2The pairing of B with E (and thus of H with D), the use of g;!, the introdaction of reduced
sources, and the parallel numbering of the early equations in this review all serve to emphasize the
analogies that occur between electrostatics and magnetostatics. This is done in the belief that percep-
tion of these analogies adds significantly to one’s comprehension of the subject. See R. S. Elliott,
“Some Useful Analogies in the Teaching of Electromagnetic Theory,” [EEE Trans. on Education,
E-22 (1979), 7-10. Reprinted with permission.
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F = gE (1.3a)

O (1.42)

in which R is the directed distance from the source point (&, #, {) to the field point
(x, y, 2), and F is the force on a charge g placed at (x, y, z), due to its interaction with
the source system p(&, 7, {).

Similarly, the Biot-Savart law can be introduced as the experimental postulate
for magnetostatics and is represented by the equations

F=gqvxB (1.3b)

JELD X RaV
B(x,y,7) = | 3¢ Zni)aw (1.4b)
V

One can show by performing the indicated vector operations on (1.4a) that

VXE=0 (1.52)
V.-E- P2 (1.5b)
€o

In like manner, the curl and divergence of (1.4b) yield

J

0

V-B=0 (1.5d)

Equations 1.5 are Maxwell’s equations for static fields.
Integration of (1.5b) and use of the divergence theorem gives Gauss’ law, that is,

§ E.dS = f (g) dV = total reduced charge enclosed (1.6a)
s vy 20

Similarly, integration of (1.5c) and use of Stokes’ theorem yields Ampere’s circuital
law:

§ B.dl= f ( {1) « dS = total reduced current enclosed (1.6b)
fod S /‘tO

In like manner, integration of (1.5a) and (1.5d), followed by the application of Stokes’
theorem or the divergence theorem results in the following relations.

fﬁcE cdl=0 (1.72)

§SSB .dS=0 (1.7b)
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From (1.7a) it can be concluded that E (x, y, z) is a conservative field and that § E - dl
between any two points is independent of the path. Equation 1.7b permits the con-
clusion that the flux lines of B are everywhere continuous.

Equation 1.4a can be manipulated into the form

E=—VO (1.8a)
in which
0,0dV
®(x,y,2) = | £ (54,?63{ (1.9a)
v

is the electrostatic potential function. In like manner, Equation 1.4b can be rewritten
in the form

B=V xA (1.8b)
where
_ (I nDav
A(x,y,z) = | anu; 'R (1.9b)

is the magnetostatic vector potential function. One can see that the reduced sources
(1.2) play analogous roles in the integrands of the potential functions (1.8a) and
(1.8b), as well as in the integrands of the field functions (1.4a) and (1.4b).

There is no compelling reason to introduce either D or H until a discussion of
dielectric and magnetic materials is undertaken, but if one wishes to do it at this
earlier stage, where only primary sources in what is otherwise free space are being
assumed, then it is suggestive to write

D, = €,E (1.10a)
H, = x;'B (1.10b)

with the subscripts on D and H denoting that the medium is free space. Then it fol-
lows logically from (1.5) that

V:Di=p VxH,=1J (1.11D)
and from (1.6) that
iﬁ D+ dS = f p dV = total charge enclosed (1.12a)
S 14
51; H, . dl = J J « dS = total current enclosed (1.12b)
c S

Equations 1.12 are the forms in which one is more apt to find Gauss’ law and Ampere’s
circuital law expressed. It is apparent from (1.12) that D, and H, play analogous roles
in the two laws.
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When flux maps are introduced, (1.12a) leads to the conclusion that the lines of
D, start on positive charge and end on negative charge. If one chooses to defer the
introduction of D and H until materials are present, a flux map interpretation of
(1.6a) includes the idea that the lines of E start on reduced positive charge and end on
reduced negative charge.

It has already been noted in connection with equation (1.7b) that the flux lines
of B are continuous. Since H, differs from B only by a multiplicative constant, the
flux lines of Hy are also continuous.

1.3 The Introduction of Dielectric, Magnetic,
and Conductive Materials

The electrostatic behavior of dielectric materials can be explained quite satisfactorily
by imagining the dielectric to be composed of many dipole moments of the type
p = 1,9d, in which ¢ is the positive charge of the oppositely charged pair, d is their
separation, and 1, is a unit vector drawn from —q to +¢. If P(x, y, z) is the volume
density of these elementary dipole moments, one can show’ that their aggregated
effect is to cause an electrostatic field given by

P.dS (—Vs - P)va (1. 138)

E(x,,2) = —VF{:§S47Z€0R + Ane.R

with S the dielectric surface and V its volume. In (1.13a), Vs operates on the source
point and Vg operates on the field point.

Similarly, the magnetostatic behavior of magnetic materials can be explained in
terms of a collection of current loops with magnetic moments of the type m = 1,7a?I,
where ma? is the area of the loop, [ is the current, and 1, is a unit vector normal to
the plane of the loop in the right-hand sense. If M(x, y, z) is the volume density of
these elementary loops, one can show* that their aggregated effect is to cause a mag-
netostatic field given by

vV

M x dS stx MdV] (1.13b)

B = — -
(x,7,2) V: Xli . dnu;'R 4nu; 'R

In the more general situation that there is a primary charge distribution p(x, y, z)
somewhere in space and secondary (or bound) charge distributions P, on the dielectric
surface and —V » P throughout its volume, the total electrostatic field is E = E, -+
E,, with E, given by (1.4a) and E, given by (1.13a). No additional information would
be conveyed by using Dy = €,E in this situation. However, it is extremely useful® to

3See, for example, R, S. Elliott, Electromagnetics (New York: McGraw-Hill Book Co., Inc.,
1966), pp. 330-37.

4Elliott, Electromagnetics, pp. 404-7.
sIbid., pp. 339-40.
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generalize the concept of D through the defining relation
D=¢E+P (1.14a)
This insures the desirable feature that

VeD=¢V-E +€6V:-E,+V.P
=p—V.P+V.P (1.15a)
V:D=p

at all points in space (both within and outside the dielectric), thus permitting the
assertion that the flux lines of D start and stop on primary charge alone. If there are no
primary charges inside the dielectric, the D lines are continuous there. Outside the
dielectric, (1.14a) reduces to D = ¢,E, which is consistent with (1.10a).

SinceV X E=V X E, + V X E,, and since E, and E, are both expressible as
the gradient of a scalar function, it follows that in this more general situation of pri-
mary and secondary charge distributions,

VXE=0 (1.15b)

However, one can see from the defining relation (1.14a) that V X D=V X P
and thus the generalized D, unlike E, may not be an irrotational field everywhere.

Many dielectric materials are linear (or nearly so), in the sense that P = y,¢,E
holds, where y, is a constant called the dielectric susceptibility. When this can be
assumed, Equation 1.14a reduces to

D=( + x.)e,E=¢€E (1.16a)

where € is the permittivity of the dielectric medium. The quantity €/e, = 1 + g, is
more useful and is known as the relative permittivity, or dielectric constant.

Similarly, in the more general situation that there is a primary current distribu-
tion J(x, y, z) somewhere in space and secondary (or bound) current distributions
M x 1, on the surface of the magnetic material and V X M throughout its volume,
the total magnetostatic field is B = B, + B,, with B, given by (1.4b) and B, given by
(1.13b). No additional information would be conveyed by using Hy = g«;'B in this
situation. However, it is extremely useful® to generalize the concept of H through the
defining relation

H=4;'B—M (1.14b)
This insures the desirable feature that

VXH=y;'VXB, +u;'VxB,—VxXM
=J+VXM-VxXxM (1.15¢)
VxH=J

Sop. cit., Elliott, Blectromagnetics, pp. 408-10,
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at all points in space (both within and outside the magnetic material) thus permitting
the assertion that H is irrotational except at points occupied by primary sources.

Since VB =V - B, + V « B,, and since B, and B, can both be expressed as
the curl of a vector function, it follows that in this more general situation of primary
and secondary current distributions,

V.B=0 (1.15d)

However, one can see from the defining relation (Equation 1.14b) that V. H =
—V « M, and thus the generalized H, unlike B, may have discontinuous flux lines.

Most magnetic materials are nonlinear, but in the exceptional case that linearity
can be assumed, M is linearly proportional to B and Equation 1.14b reduces to

B B

H = = =
A+ xtte 1

(1.16b)

in which y,, is the magnetic susceptibility and u is the permeability of the magnetic
material.

Equations 1.15 are Maxwell’s equations for static fields when dielectric and
magnetic materials are present. They are supplemented by Equations 1.14, one of
which links E, D, and the secondary sources P, with the other linking B, H, and the
secondary sources M.

The integral forms of (1.15a) and (1.15¢) lead to

5€ D .« dS = primary charge enclosed (1.17a)

S

ﬁg H . dl = primary current enclosed (1.17b)
c

Thus the generalized D and H satisfy Gauss’ law and Ampere’s circuital law, respec-
tively, in terms of the primary sources alone. This is their principal utility. On the other
hand, E and B enter into a calculation of the force on a charge ¢ moving through the
field. In the most general static source situation (primary and secondary charge and
current distributions), Equations 1.3, 1.4, and 1.13 combine to give

F=¢qgE+vxB (1.18)

which is the Lorentz force law.
When conductive materials are present and Ohm’s law is applicable,

J =0E (1.19)
at points occupied by the conductor, with ¢ the conductivity of the material.”

Top. cit., Elliott, Electromagnetics, pp. 473-81.



1.4 Time-Varying Fields
If the sources become time-varying, represented by

p(x, y, z, ) coulombs per cubic meter (1.20a)
J(x, y, z, t) amperes per square meter (1.20b)

and are assumed to exist in otherwise empty space, then Equations 1.5 need to be
generalized. Faraday’s EMF law and the continuity equation linking charge and
current lead to the result that

JB
VXE__T:
V.-E=2
€o (1.21)
VxB:—{—1+iza—E
Ho 4 14
V:-B=0

in which ¢ is the speed of light and E(x, y, z, t) and B(x, y, z, t) are now functions of
time as well as space. Equations 1.21 are Maxwell’s equations in their most general
form for primary sources in empty space. If one uses (1.10) and the fact that g,€,c2 =
1, these equations convert readily to the more familiar set

B
VXE_—W
V.Dy=p
iD, (1.22)
V:.-B=0

If dielectric, magnetic, and conductive materials are present and are represented
by time-varying dipole moments, current loops, and drifting electron clouds, respec-
tively, if the defining relations in (1.14a) and (1.14b) are extended to apply when the
fields and secondary sources are time-varying, and if Ohm’s law (1.19) is still valid in
the time-varying case (and all of these are good assumptions in practical situations),
then Maxwell’s equations become?

JB
VXE**W
V:D=
’ P (1.23)
VXH=J+ 7
Jt
V.:B=

80p. cit., Elliott, Electromagnetics, pp. 393-94, 464, 509.

10
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where now D and H have their generalized meanings, as given in the supporting
Equations 1.14, and J is linked to E by (1.19) at all points occupied by conductor.

1.5 The Retarded Potential Functions

In antenna problems, one desires to find the field values at a point in terms of all the
time-varying sources that contribute to the fields. This implies an integration of (1.22)
or (1.23), a relatively difficult undertaking that will be deferred until Section 1.7. A
simpler but less rigorous approach will be followed in this section, in which E and B
are not found directly, but are found instead through the intermediation of potential
functions whose relations to the sources are obtained intuitively.

Let the time-varying sources be given by (1.20) and be assumed to exist in a
finite volume V in otherwise empty space. Then Maxwell’s equations in the form
(1.21) are point relations that connect E(x, y, z, f) and B(x, y, z, 1) to the sources.
Since V » B =0, it is permissible to introduce a new vector function A(x, , z, t) by
the defining equation

B=VXA (1.24)

Because the divergence of the curl of any vector function is identically zero, it is
apparent that (1.24) automatically satisfies (1.21d).
If (1.24) is inserted in (1.21a), one obtains

J
VXE—=_—2(VxA
ar ) (1.25)

VX (E-+A)=0

where the dot over A implies time-differentiation. Since the curl of the gradient of
any scalar function is identically zero, the most general solution to (1.25) results from
the introduction of a new scalar function ®(x, y, z, t) such that

E=—A—VOD (1.26)

Equation 1.26 not only satisfies (1.21a) but, taken in conjunction with (1.24), provides
a solution for E and B if the newly introduced functions A and ® can be related to
the sources. This can be done by forcing (1.24) and (1.26) to satisfy the two remaining
Maxwell equations, that is, (1.21b) and (1.21c), notably the equations containing the
sources.

If (1.24) and (1.26) are used in (1.21), the result is that

VxVxAzgg_%d+v®

0

(1.27)

Vv -A) —va= _ L | v
Ko 4

Equation 1.27 is a hybrid second-order differential equation (hybrid in the sense that
it contains both A and ®) and as a consequence would be extremely difficult to solve.
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Fortunately, a simplification is possible because, up to this point, only the curl of A
has been specified, and a vector function is not completely defined until some specifica-
tion is also placed on its divergence. It is convenient in this development to choose

®

V-A= - (1.28)
for then (1.27) reduces to '
A _A_ _ T

va-f- -2 (1.29)

Equation 1.29 is an inhomogeneous second-order differential equation in the unknown
function A, with the negative of the reduced current distribution (which is assumed to
be known) playing the role of driving function. It is variously called the Helmholtz
equation or the wave equation, the latter name arising because the solutions to (1.29)
away from the sources are waves that travel at the speed of light.

The task remains to insure that (1.24) and (1.26) satisfy the remaining Maxwell
equation (1.21b). Substitution gives

V-A+V2(I>=—€£

0

This is also a hybrid differential equation, but use of (1.28) converts it to

2 e _p
V(D_E?__E; (1.30)
Thus A and ® satisfy the same differential equation, the only difference being the
driving function; in (1.30) it is the negative of the reduced charge distribution (which
is assumed to be known) which appears and governs .

The development has now reached the point that if (1.29) and (1.30) can be
solved for A and @, then (1.24) and (1.26) can be used to determine E and B, and the
goal will have been achieved.

A solution of (1.30) can be inferred from the limiting electrostatic case. If the
sources cease to vary with time so that p(x, y, z, ) — p(x, y, z), then (1.25) and (1.30)
reduce to

E=—V® (1.31)
Vi =P (1.32)
€o

in which @ is now a time-invariant function, that is, ®(x, y, z, t) — ®(x, y, z). But if
one returns to Section 1.2, it can be observed that (1.8a) and (1.31) are identical.
Further, if the divergence of (1.8a) is taken and the result is combined with (1.5b),
Equation 1.32 is reproduced, and its solution must be (1.9a), namely,

O(x, , 2) = f E%L’fki/ (1.33)
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Thus the limiting (time-invariant) solution to (1.30) is (1.33). How can this be used to
deduce the general (time-variant) solution to (1.30)?

It can be argued that a change in the charge density at a source point (&, #, {)
causes a distrubance which is not immediately felt at a field point (x, y, z), since that
disturbance, traveling at the speed of light, must take a time interval R/c to traverse
the intervening distance R. Thus if one wishes to find the value of ® at the point
(x, y, z) at the time ¢, that is, ®(x, y, z, t), one should use the charge densities at the
source points (£, #, {) at the earlier times ¢t — (R/c). This suggests that a solution to
(1.30) might be

M%%gozﬁf@m%;;fde (1.34)

This is admittedly a highly intuitive argument, and a rigorous solution to this problem
will be presented in the development beginning in Section 1.7. However, if (1.34) is
inserted in (1.30), one finds that it is indeed a solution.

By a similar argument it can be inferred that

JE 0Lt — Rlc)dV
TR (1.35)

A(z,y,z,t) = f

1 4

Equations 1.34 and 1.35 are known as retarded potential functions because of the use
of retarded time in the integrands. In conformance with the names already given to
their limiting forms in electrostatics and magnetostatics, ® is called the electric scalar
potential function and A is called the magnetic vector potential function.

1.6 Poynting’'s Theorem

One of the most useful theorems in electromagnetics concerns the power balance in a
time-varying electromagnetic field. To introduce this theorem, let it be assumed that
there is a system of impressed sources J that produces an electromagnetic field E/,
B, and that this impressed field causes a response system® of currents J to flow,
creating an additional field Er, B. If all these sources are in otherwise free space, the
impressed and response fields both satisfy Maxwell’s equations in the form (1.21).
The total current density and field at any point are therefore

J=J +JF
E=E +E°
B=B | B

9The decomposition of the total current system into impressed and response current densities
is arbitrary, but often forms a natural division. For example, the currents that flow in a dipole may be
considered to be a response to the impressed currents that flow in the generator and transmission line
feeding the dipole.
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If power is being supplied to the field, it must be at the rate!®
d*P = —J « EdV

But from Maxwell’s equations (1.22),

F=VxH -y
so that
&3P — [—E -V x H, + %(%50E2> +E- J':l av (1.36)

Application of the vector identity
V. (ExXxXHy)=Hy- VXE—-E-«V X H,

coupled with the use of (1.22) gives

JdB

—E-V X Hy= V. (ExH)+H -5

As a consequence, (1.36) may be rewritten as

43P — [(—%(%EOEZ i —é—,ug‘Bz> L E-J 4+ V. (EX Ho)] v (137
This result gives the power balance in a volume eclement dV. The left side of
(1.37) is the instantaneous power being supplied by the impressed sourczs to dV. The

factor

g{(_zl_'_EOEZ “.L’ _%_#5132>
is the time rate of change of density of stored energy.!! The factor E - J* represents
the power density being absorbed from the field by the response current density J’. If,
for example, the response current is flowing in a conductor, this term accounts for
ohmic loss. Alternatively, if J* is due to freely moving charges, E - J* accounts for
their change in kinetic energy.

When the law of conservation of energy is invoked, it follows that the term
V -« (E X H,) may be interpreted as the volume density of power leaving dV.

This conclusion can be seen from another point of view by integrating (1.37).
With the aid of the divergence theorem, one is able to write

:% <%60E2+—%u5132> dV+J-E.erV+E{; E x H, - dS (1.38)
v 4 S

10gp. cit., Elliott, Electromagnetics, p. 283.
Vop. cit., Elliott, Electromagnetics, pp. 193-95, 283-84.



1.6 Ponyting’s Theorem 15

The left side of (1.38) represents the entire instantaneous power being supplied by all
the sources. The first integral on the right side of this equation accounts for the time
rate of change of the entire stored energy of the field. The second integral stands for
the power being absorbed by the system of response currents. The last integral there-
fore represents the entire instantaneous power flow outward across the surface S
bounding the volume V. For this reason, one may define the Poynting vector as

® = E x H, (1.39)

and place upon it the interpretation that it gives in magnitude and direction the
instantaneous rate of energy flow per unit area at a point. This is Poynting’s theorem.
Since the units of E and H, are volts per meter and amperes per meter, respec-
tively, it is seen that the units of @ are watts per square meter.
Cases in which the currents and fields are varying harmonically in time occur so
frequently and have such importance as to deserve special discussion. Expressing all
quantities in the form of a complex spatial vector function multiplied by e/, such as

E(x, y, z, t) = Re &(x, y, z)e’™

one may write

® =FE X HO — %(Sej"‘” + s*e*jwl) X (Jcoejmr 4 zczgeAjwt)
= 4(& X ¥ + &% X 3€o) + §(& X e + 8% X FeFe 2y (1.40)
= IRe(E x HY) + 1Re(E x H,)

The term tRe(E x HY¥) is independent of time and thus represents the time-average
value of ®, giving

® = JRe(E X HY) (1.41)

The term {Re(E x H,) contains the factor ¢/2** and thus represents the oscillating
portion of Poynting’s vector. Therefore ® may be interpreted at a point as consisting
of a steady flow of energy density plus a flow which surges back and forth at frequency
20.

Similarly

J€,E? = J€,E « E = Je [L(Ee/ + E*e o) « (8esr + Ekeior)]

1e.E « E* + le ,Re(E - E)

l

and
$445'B? = Ju5'B + B* + Ju;'Goe(B « B)

The terms 4€,E « E* and 14, 'B » B* are independent of time and represent the tims-
average stored energies; their time derivatives are zero. The terms 1e,R2(E - E) and
1us'®Re(B « B) oscillate at a frequency 2w and they represent the variable components
of the stored energy.

Finally,

E:J = JReE . J* { JReE . Jr
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Here again, the term 1®e E « J** represents the time-average power density being
absorbed by the response currents; the term &< E « J* oscillates at a frequency 2w
and represents the energy density being cyclically absorbed and released by the
response currents.

With this formulation, Equation 1.38 may be rewritten in two parts. The time-
average power balance is seen to be

F:%axeLE-J'*dv+%me§sExHzc-ds (1.42)

while the time-variable part, oscillating at a frequency 2w, may be written

d

PQw) = 4

[4€,R2(E « E) + }u;'®e(B - B)]dV

v (1.43)
1 « J 1 .

+ I(RseLE I dv + 7<;>ue§sE X H, - dS

Thus, on the time average, the sources supply power only to that component of the
response currents in phase with the electric field, represented by the first integral in
(1.42), and to the net energy flow out of the volume ¥ across the surface S. In addition,
the sources may have to furnish energy and take it back at the cyclic rate 2w if the
right side of (1.43) is not zero. However, in many practical circumstances, the indi-
vidual integrals in (1.43) may not be in phase, but may be adjusted purposely so that
they cancel each other, thus “matching” the generator.

B. INTEGRAL SOLUTIONS OF MAXWELL'S EQUATIONS

IN TERMS OF THE SOURCES

The next four sections and two related appendices are devoted to a rigorous solution
of Maxwell’s equations in integral form, giving the fields at any point within a volume
V in terms of the sources within ¥ and the field values on the surfaces .S that bound V.
One advantage to this development, beyond its rigor, is that the results are in a perfect
form to delineate approaches to the two types of antennas mentioned in the introduc-
tion, namely those on which the current distribution is known quite well (such as
dipoles and helices), and those for which the close-in fields are known quite well
(such as slots and horns). Another advantage of the development is that it delivers
the retarded potential functions as an exact consequence of the central results.!?

128ome authors, in contradistinction to using the Stratton-Chu formulation (which gives E
and B directly as integrals involving the sources), prefer to present a rigorous proof that the retarded
potential functions A and ® are given by the integrals shown in (1.34) and (1.35). Then E and B follow
from (1.24) and (1.26). That approach is comparable in complexity to the Stratton-Chu development,
and suffers from the ultimate disadvantage of requiring an ad hoc introduction of fictitious magnetic
sources without rigorous validation. The concept of fictitious magnetic sources arises naturally from
the Stratton-Chu solution, and their results provide a sound basis for Schelkunoff’s equivalence
principle. See Section 1.12.
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However, the reader who is not interested in delving into the complexities of this
development, and who is satisfied with the intuitive introduction of the retarded
potential functions given in Section 1.5, may wish to move directly to Section 1.11.
This can be done without any loss of continuity.

1.7 The Stratton-Chu Solution

Since Maxwell’s equations are linear in free space, no loss in generality results from
assuming that time variations are harmonic and represented by e’**, The angular
frequency @ may be a component of a Fourier series or a Fourier integral, thus bring-
ing arbitrary time dependence within the purview of the following analysis. Accord-
ingly, if f(x, y, z, t) is any field component or source component, it will be assumed
that f(x, y, z, t) = f(x, y, z)e’™.

Further, it will be assumed that all of the sources are in what is otherwise free
space. This does not preclude the presence of a dielectric material if it is represented
by a P dipole moment distribution, nor the presence of a magnetic material if it is
represented by an M magnetic moment distribution, nor the presence of a metallic
conductor if it is viewed as consisting of a positive ion lattice and an electron cloud,
coexisting in free space. With dielectric or magnetic materials present, P = J, and
Ja = V X M are the bound current density contributions to the total current density
J. In the case of the metallic conductor, the electrostatic fields of the lattice and cloud
are assumed to cancel each other, thermal motions are assumed to be random with a
null sum, and only the oscillatory motion of the electron cloud is germane, making a
contribution ¢E to the total current density J, with ¢ the conductivity of the metal.
All of these assumptions concerning the representation of electrical behavior of
materials are valid in the practical realm of the actual materials used to construct
most antennas. For this reason the ensuing analysis has wide applicability.

Maxwell’s equations (1.21), for time-harmonic sources in otherwise free space,
can be written in the form

Vx E=—jwB

J o

0

(1.44)
V.-E=2~
€o
V.B=0

Since ¢*u, €, = 1, the result if the divergence of the second of these equations is taken
is the continuity relation

VJ= —jwp (1.45)
In all five of the above equations, the time factor ¢/ is suppressed and the fields are

complex vector functions, as is the current density. The charge density is a complex
scalar function.
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If the curl of either (1.44a) or (1.44b) is taken and then (1.44b) or.(1.44a) is used
to eliminate E or B, one obtains the vector wave equations

V x VX E—kZE:—jco(jI—l> (1.46)
0
J
VXVxB—kB=V x (- 47
* (1) (147

in which k = w/c is called the propagation constant, for a reason that will emerge
shortly. These last two equations can be integrated through use of a technique first
introduced by Stratton and Chu, and based on a vector formulation of Green’s
second identity.!3

Consider a region ¥, bounded by the surfaces S, - - - Sy, as shown in Figure 1.1.
Let F and G be two vector functions of position in this region, each continuous and
having continuous first and second derivatives everywhere within V and on the
boundary surfaces S;. Using the vector identity

V-[AXB]=B:VXA—-—A-VXB

FIG. 1.1 Notation for Vector Green's Theorem.

13J, A. Stratton and L. J..Chu, “Diffraction Theory of Electromagnetic Waves,” Phys. Rev.,
56 (1939), 99-107. Also, see the excellent treatment in S, Silver, Microwave Antenna Theory and Design,
MIT Rad. Lab. Series, Vol. 12 (New York: McGraw-Hill Book Co., Inc., 1939), pp. 80-9. The pre-
sent development is a reproduction, with permission, of what appears in R. S. Elliott, Electromagnetics
(New York: McGraw-Hill Book Co., Inc., 1966), pp. 272-80 and 534-8, and differs from Silver’s
treatment principally in the nonuse of fictitious magnetic currents and charges.



1.7 The Stratton-Chu Solution 19
and letting A = F while B =V X G, one obtains
V. FXVXGl=VXG:VXF-F:-VXVXxG
IfA=GandB=V X F, then
V. GXVXF=VXF.VYXG—-G-VXVXF

When the difference in these results is integrated over the volume ¥, one obtains

J(F-VxVxG—G-VxVxF)dV
|4

:fV-[GxVxF—FxVxG]dV
14

If 1, is chosen to be the inward-drawn unit normal vector from any boundary surface
S, into the volume V, use of the divergence theorem gives

J.(F-VxVxG—G-VxVxF)dV
g (1.48)
- GXVXF—-FxVxG)-.1,dS

S1-Sn

This result is the vector Green’s theorem.
Suppose that the fields E and B of (1.46) and (1.47) both meet the conditions
required of the function F in V; let G be the vector Green’s function defined by

e*ij
6= a=ya (1.49)

in which a is an arbitrary constant vector and R is the distance from an arbitrary
point P(x, y, z) within V to any point (£, 5, {) within V or on S,.

As defined by (1.49), G satisfies the conditions of the vector Green’s theorem
everywhere except at P. Therefore, one can surround P by a sphere X of radius d and
consider that portion V' of V bounded by the surfaces S, - - - Sy, Z. Letting E = F,
one finds that

j (E+Vsx Vs X wa— ya- Vs X Vg X E)dV
v
(1.50)
:-~J (wax VX E— E X Vg X ya)+ 1,dS
Sy 8S;vEZ

in which, since y is a function of (x, y, z) as well as (£, 7, {), it is necessary to distin-
guish between differentiation with respect to these two sets of variables by subscripting
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the operators so that

10,4
VS’—'IX(—?Z_*_lya”"}_lz

S

and (1.51)

_ 4, 0 d d
Ve = lxa_x+ly§}+ lzm

It is shown in Appendix A that both sides of this equation may be transformed
so that a is brought outside the integral signs, with the following result:

. J p
. e dVv —a. .
a J;I (]Cl)l//ﬂal e Sy/) a J;ps,v,z 1,-E)yvywds

= —a j [jow(l, X B — (1, X E) X Vey]dS
S1-SN,Z

Since a is arbitrary, it follows that the integrals on the two sides of the above equation
can be equated, yielding

oy 3. L - .
[ (ot =2 vw)av — | .- BV

1SN

+ (1, X E) X Vey — joy(1, X B)]dS  (1.52)

= [ [ B) Ve + (1. X B) X Vo — jooy(1, x B)]dS

where, for convenience, the surface integral over the sphere I is displayed separately.

It is further shown in Appendix A that the right side of (1.52) reaches the limit
—4nE(x, y, z), with (x, y, z) the coordinates of the point P, as ¥ shrinks to zero.
Therefore the limiting value of (1.52) is

I .
E(x,y,2) = v (6—”0 Vs —wah%) dav
|4

(1.53)
- Zlﬁf (1. B) Vo + (L X B) X Ve — jooy(1, X B)]dS

This important formula gives E at any point in the volume V in terms of the sources
within V plus the field values on the surfaces that bound V.

By letting B = F, one may proceed in a similar fashion to deduce a companion
formula for B(x, y, z). Alternatively, the curl of (1.53) may be taken and then (1.44a)
used to obtain B. By either procedure, one finds that

!
B(x,y,z):zf—tf’u—‘;? X Vsy dv
’ (1.54)

+ L [J'“’V’(l,, x E)+ (1, X B) x Vsy + (1, + B) sz] s
4n S SN c2
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Equations 1.53 and 1.54 comprise a solution of Maxwell’s equations in terms of
the time-harmonic charge and current sources within ¥ and the field values on the
boundary surfaces S;.

1.8 Conditions at Infinity

Let it now be assumed that the surface Sy of Figure 1.1 becomes a large sphere of
radius ® centered at the point P. Initially, & will be taken great enough to enclose all
the sources J and p of the fields; ultimately ® will be permitted to become infinitely
large. Under these circumstances, consider the contributions to (1.53) and (1.54) of
the surface integrals over Sy.

If 14 is a unit vector directed outward along the radius of the spherical surface

Sy, so that 1 = —1,, one may write for the appropriate part of (1.54)
| 280 X B) + (1% B) X Vap + (1, - B) Vay | ds
SN
1 [ [_lje ( ; L)
= SN[ D(1g X E) + (1a X B) X 1a{jk + %
L 1\Te R
T (g - B)lm<1k + 7{“)]61‘{ ds (1.55)
_ L {~L°9(1 X E) — (jk + i)[(l X 1g X B) — (15 « B)1 ]} e s
47[ - CZ ® (PL ® ®R ® AR (R
1 jw B B} e /*¢
- = SN{~C_2(1(R><E) cB]+a} o dS
Similarly, the appropriate part of (1.53) becomes
1 )
32 ) [0 BV + (1. X B) x Vay ~ joy(l, x B]ds
s (1.56)

— L JS { jw[(lm X B) -+ %] + %} e as

If ® — oo, since the surface of the sphere increases as ®2, the surface integral in (1.55)
will vanish if

lim ®B is finite (1.57)
R—o0
Ry xE)-cB]=0 (1.58)

Similarly, the surface integral (1.56) will vanish if

Iim RE is finite (1.59)

®R-ro0

(lﬁirg&[(lm x B) -+ %] —0 (1.60)
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Relations 1.57 through 1.60 are known as the Sommerfeld conditions at infinity.
Expressions (1.57) and (1.59) are commonly called the finiteness conditions (End-
lichkeit Bedingungen) and Expressions 1.58 and 1.60 are customarily called radiation
conditions (Ausstrahlung Bedingungen). The finiteness conditions require that E and
B diminish as ® !, while the radiation conditions require that they bear the relation to
each other found in wave propagation in regions remote from the sources. (See
Section 1.11.)

It is now possible to demonstrate the extremely important result that real
sources, confined to a finite volume, always give rise to fields that satisfy the Som-
merfeld conditions. To see this, consider Equations 1.53 and 1.54 when the only
boundary surface is the large sphere Sy, with radius that will be permitted to become
infinitely large. It shall be assumed that the real sources J and p are finite and con-
fined to a finite volume V,. With the surface Sy becoming an infinite sphere, the
volume ¥ in (1.53) and (1.54) also becomes infinite, but no convergence difficulties
arise with the volume integrals because the sources are all within V.

If one borrows from the results of Section 1.6, the fields over S, will consist of
outgoing waves with power density E X H, watts per square meter. Since the surface
area of Sy is increasing as ®2, if there is even the most minute loss in ¥, the law of
conservation of energy requires that E and H, diminish more rapidly than &', and
thus Conditions 1.57-1.60 are satisfied. One can then conclude that in an unbounded
region, B(x, y, z) and E(x, y, z) are given solely by the volume integrals that appear in
(1.53) and (1.54).

A check on this conclusion for the limiting case of no loss in ¥ may be obtained
through an ordering of the terms that comprise the volume integrals. To see this,
assume that there are no bounding surfaces except the infinite sphere Sy, and that the
surface integrals involving Sy in (1.53) and (1.54) are zero. Then, for this situation,
Equations 1.53 and 1.54 reduce to

B3, = g5 [ (£ Vo —jow o) ¥ = g [ 55l Vo) Vo

+ k) dV

(1.61)

B(x, ), 2) — 4nf ;i: X Vey dV (1.62)

where the second version of the integrand in (1.61) has been achieved with the aid of
the continuity equation (1.45). It can now be ascertained whether or not E and B,
when computed from (1.61) and (1.62), satisfy Sommerfeld’s conditions at infinity.

Let an arbitrary point in ¥, be selected as the origin and let r be the vector
drawn from the origin to the field point P(x, y, z}; the vector drawn from the source
element to P will be labeled R. Then

(J- V) Vey = (J VS)[IRO/{ + %)e—;:a]

s BT s R+ e )
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in which spherical coordinates (r, 8, ¢') centered at P have been used and

Performing the indicated differentiations, one obtains
G-V Ve = [0+ tte] 2(jk + ) — # | — Rk + )%
S S R/JIR R R R
The functions y, Vg, and (J - Vg)Vgy are all seen to involve polynomials in the

variable R™!. Retain for the moment only first-order terms; then substitution in (1.61)
and (1.62) gives

l e‘ij
EGp,2) = g [ e A0 - Wla + K01 ¥ (163
J -JjkR
B(x,y,2) = —f Jkﬂ X 1% 7 (1.64)

But

=[x=&*+(p—m+ (="

=[(rsinf@cos¢ — &* + (rsinfsingd — n)® + (rcos § — {)*]'”?
in which now conventional spherical coordinates (r, 8, §) centered at the origin have
been introduced. As P becomes remote, R can be expressed in the rapidly converging
series

R=r—~(EsinBcos¢ + nsinf@sing -+ { cosB) + 0(r ) (1.65)
Similarly,
R 1= r1 4+ 02 lim1g = 1,

and thus as r becomes very large, Equations 1.63 and 1.64 may be written

E ,ﬂ)e Rl 1 J kL -2
(x,,2) _ ( X )e' dv + 0(r-?) (1.66)

ikr
B(x,,2) = K€

f—,—l X 1e*¢ dV + 0(r~2) (1.67)

in which £ = ¢ sin 8 cos @ + 7 sin @ sin¢ + { cos 6.

If one were to go back and include a/l the terms in the expressions for Vg and
(J - V5)Vsw, they would alter the results in (1.66) and (1.67) only at the level of O(r~?).
Therefore these two expressions for B and E may be taken as exact.

In considering Expressions 1.66 and 1.67 with respect to the Sommerfeld con-
ditions, one notices that the terms of 0(r~2) and below satisfy all four conditions and
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thus concern may be focused on the explicit first-order terms. But

. ik J .
lim B = Z% lim e~ /%" jke g 1.68
s 47 r-oo fy,ug‘ X lee v (1.68)

and, since the volume integral is a function of the source coordinates and the angular
direction to P, but not of r, this limit is finite. A similar argument establishes that
lim rE is also finite and thus both finiteness conditions are satisfied.

roo

Further,

lim r[(l, X B) - %]

r-voo

o . (1.69)
—1lim % f[jkl, x % x 1.+ 121, x 1, ﬁ{_‘]emdl/
oo v 0 0

The integrand in (1.69) is identically zero and therefore Condition 1.60 is satisfied.
In like manner, Condition 1.58 is also found to be satisfied. This supports the argu-
ment that any system of real sources confined to a finite volume V, gives rise to an
electromagnetic field at infinity that satisfies Sommerfeld’s conditions, that the surface
integral over an infinite sphere Sy gives a null contribution, and that in an unbounded
region the electromagnetic field at any point P, near or remote, is given precisely by
(1.61) and (1.62).

Suppose now that parts of the volume V, are excluded from V by the finite,
regular closed surfaces S, --- S; - - -. These surfaces may exclude some of the sources
from V or not, but their presence does not alter the results at infinity. However, now
the more general expressions in (1.53) and (1.54) apply, and one may conclude by
saying that these expressions are valid even if the volume V is infinite, so long as real
sources in a finite volume are assumed. If the volume V is infinite, the surface at
infinity need not be considered.

This solution for E and B, given by Equations 1.53 and 1.54, is in a form that is
convenient for the purpose of drawing a distinction between two types of radiators.
Type I antennas will be taken to be those for which the actual current distribution is
known quite well, such as dipoles and helices. Type II antennas will be those that
have actual current distributions which would be difficult to deduce, but which could
be enclosed by a surface over which the fields are known with reasonable accuracy.
These include horns and slots.

For type I antennas, there will be no volume-excluding surfaces and (1.53) and
(1.54) will contain only volume integrals. For type II antennas, the volume-excluding
surfaces (usually only one) will be chosen to surround all the actual sources so that
there are none to be found in the remaining part of space V. Thus for type Il antennas,
(1.53) and (1.54) will contain only surface integrals. In the developments that follow
later in this chapter, it will be seen that it is useful to replace the field values occurring
in the integrands of these surface integrals by equivalent sources. Thus for the remain-
der of this book, type I radiators will be referred to as actual-source antennas and
type II radiators will be called equivalent-source antennas.



1.9 Field Values in the Excluded Regions

Because of its bearing on the analysis of type II (equivalent-source) antennas, it is
important to consider the values of the fields E and B at points inside the excluding
surfaces shown in Figure 1.1. In particular, let the field point (x, y, z) lie anywhere in
the volume ¥V, which has been surrounded by the closed surface S,. A simple applica-
tion of the general results in (1.53) and (1.54) gives

E(x,7,2) = 4 f (2 Vo — jow L) v
Vi

(1.70)
Fam | BV + (1, X B) X Vo —jow(l, x B)dS
v SN
B(x,y,z) — I x Ve av
4” Vav,ﬂa (1.71)

+ Ez s,_”SN[L?‘zV‘/(ln X E) + (1, X B) X Vg + (1, « B)sz]ds

Another way to view this situation is to imagine that ¥, is the volume region
comprising the collection of field points and that S, is the sole surface, performing the
function of excluding all the rest of space. From this viewpoint, a second application
of the general results in (1.53) and (1.54) yields

Y Py — iow I
E(X,y, Z) _47ZJ:,1 <60 VSW Jwy/uo—l) av (1 72)
-k f [(1, - Ve + (1, X E) X Vs — joy(l, X B)dS
St

1 J

B(X,y, Z) - Zﬁf —ﬂ_l X Vsl// dav
i 0

g (1.73)

41n f [wa(l X E)+ (1, X B) X Vv + (1, B)st/] ds

The negative signs in front of the surface integrals in (1.72) and (1.73) are occasioned
by the fact that now the normal to the surface S, is oppositely directed.

If the difference between these two sets of formulas for the fields within V, is
formed, one obtains

0—47! ( \ —Jwy/——> av
(1.74)
+ [(1, - E)Vsy + (1, X E) X Vg — jow(l, X B)]dS
SlsN
25
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1 (J
O_Zﬁfyﬁ?x Vsy dV
(1.75)

1 joy .
+ L f [ X B+ 1 x B x Vo (L By ]S

The right sides of (1.74) and (1.75) are seen to be exactly the same as the right sides of
(1.53)and (1.54). Therefore one can conclude that if the range of the field point (x, y, z)
is unrestricted, when (x, y, z) lies within ¥, Equations 1.53 and 1.54 will give the true
fields E and B. However, when (X, y, z) lies outside V, Equations 1.53 and 1.54 will
give a nu!l result.

1.10 The Retarded Potential Functions: Reprise

If the volume V is totally unbounded, Equations 1.53 and 1.54 give

E — PVsWdV_- f v .

f 4re, J@ anus! (1.76)
B — f" X VY gy (1.77)

Since Ve = — Vg, and since J and the limits of integration are functions of (¢, #, {),

but not of (x, y, z), these integrals may be written in the forms

- Py Jy
E fo dre, dv — f4nﬂa‘dV (1.78)
Jy
B=Vp X dv 1.79
F J;4nﬂal ( )
Therefore it is convenient to introduce two potential functions by the defining
relations
_ J(c’ ﬂ, C)ej(wl—kR)
A(x’y, z7t)_J; 4”#61R dV (1.80)
_ P(f, 1, C)ej(wr—kR)
O(x, y, z,1) T dre R av (1.81)

in which the time factor e/** has been reinserted and e~ /*®/R has been substituted for
w. The function A is called the magnetic vector potential function and @ is called the
electric scalar potential function.

Since k = w/c, one may write

exp [j(wt — kR)] = exp[ja)(t — %)]
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Therefore each current element in the integrand of (1.80) and each charge element in
the integrand of (1.81) makes a contribution to the potential at (x, y, z) at time ¢ which
is in accord with the value it had at the earlier time t — R/c. But this is consistent with
the idea that it takes a time R/c for a disturbance to travel from (&, , {) to (x, y, 2).
For this reason, (1.80) and (1.81) are often called the retarded potentials.

From (1.78) and (1.79),

E=—V®—A (1.82)

B=VXxA (1.83)
in which the subscripts on the del operators have been dropped, since A and ® are
functions only of (x, y, z) and not also of (&, n, {).

The differential equations satisfied by A and ® may be deduced by taking the
divergence of (1.82) and the curl of (1.83), which leads to

L G

VA - A= (1.84)

WQ—%":—g (1.85)
0

These relations are valid whether J and p are harmonic functions of time or more
general time functions representable by Fourier integrals. A proof may be found in
Appendix B.

All of the results in this section can be seen to be consistent with those obtained
in Section 1.5 by a different line of reasoning.

C. THE FAR-FIELD EXPRESSIONS FOR TYPE |
(ACTUAL-SOURCE) ANTENNAS

In antenna problems, one is interested in determining the fields at points remote from
the sources. This introduces several simplifications in the field/source relations, as can
be seen in the development in the next section.

1.11 The Far-Field: Type | Antennas

The typical situation for an actual-source antenna is suggested by Figure 1.2. The
sources are assumed to be oscillating harmonically with time at an angular frequency
w and to be confined to some finite volume V. There are no source-excluding surfaces
S,. For convenience, the origin of coordinates is taken somewhere in V. It is desired
to find E and B at a field point (x, y, z) so remote that R ») max [¢? -+ 5 4+ 3]V
Said another way, the maximum dimension of the volume V' that contains all the
sources is very small compared to the distance from any source point to the field
point.
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(x, y. 2)

wno |7 M

W Y

FIG. 1.2 Notation for Far-Field Analysis.

Because (x, y, z) is outside of V and thus is a source-free point, it follows that
Maxwell’s equations (1.44) reduce to

VXE— —joB VxB=1I2E
/o XB=a (1.86)

V-E=0 V.B=0

As seen either in the development of Section 1.5 or Section 1.10, B can be related to
the time-harmonic current sources by the equation

B=VXA (1.87)
in which
_ [ 3 m e
Alx,y,z,t) = | 202/ 4V 1.88
Gy, 20 = | HonDen (1.88)

with k = w/c = 2r/A the wave number and R the distance from the source point
(&, 1, ) to the field point (x, y, z). From (1.86) and (1.87) it follows that, at source-
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free points (x, y, z),

E=1(c!jwo)VXVXA (1.89)
For this reason it is not necessary to find ®. The charge distribution on the antenna
need not be known for far-field calculations; the current distribution will suffice. The

procedure is reduced to finding A from (1.88) and E and B from (1.89) and (1.87).
The distance between source point and field point is given by

R=[x—&"+ 0 —m+—1”
~[(rsin @ cos ¢ — &)* + (rsin B sind — n)> + (rcos  — {)?]'/2
= [r? — 2r(&sin O cos  + n sin O sin ¢ -+ { cos ) + & -+ n* + (2]
=r— (Esin@cosd + nsinfsing + { cos ) + 0 )

(1.90)

in which the last result is obtained via a binomial expansion. If (1.90) is inserted in
(1.88) and terms of O(r~2) are neglected, one obtains the far-field approximation

ej(wl—kr) .
A(x,p,z,1) = WLJ(Q 1, Oe* L dv (1.91)
in which
£ =2¢sinfcosd + nsinfsing + L cos b (1.92)

The distance £ can be interpreted as the dot product of: (1) the position vector
drawn from the origin to (&, 11, {); and (2) a unit vector drawn from the origin toward
(x, y, z). The result in (1.91) can be given the interpretation that A(x, y, z, t) is expres-
sible as the product of an outgoing spherical wave

ej(ml*k!)

L (1.93)

and the directional weighting function
@6, ¢) = [ (& n, O dE dn df (1.94)

The radiated power pattern of the antenna, given by the function ®(, ¢) watts per
square meter can be expressed in terms of this weighting function @(8, ¢). To see this
relation, one can first perform the curl operations indicated by (1.87) and (1.89).
When this is done and only the terms in r~! are retained, it is found that!*

E = jol, X (I, X A) = —jw0Ar (1.95)

H=4'B= _(i’;i’)l X A — (%)1 x E (1.96)

14The subscript zero has been dropped on H as a simplification, since it is unambiguously
clear that the region is free space.
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in which 1, is a unit vector in the radial direction and 7 = (uy/g)""? = 377 ohms is the
impedance of free space. The transverse part of A is Ay = 1,A, -+ 1,A,. It can be
concluded from a study of (1.95) and (1.96) that the radiated E and H fields are
entirely transverse, that E differs from Ay only by a multiplicative constant, that H is
perpendicular to E, and that

’5‘: 7 (1.97)

The complex Poynting vector yields an average power density which can be
written (see Section 1.6)

®®0, ) — %cﬁe(E x H*)
(1.98)
_ i’ k*n ][La ar & _l_a a*:,
@rr)?E )2 0 T e
It is customary to call that part of the radiation pattern associated with E, the 8-
polarized pattern, or the vertically polarized pattern, and to call that part of the radia-
tion pattern associated with E, the ¢-polarized pattern, or the horizontally polarized

pattern. From (1.95) and (1.98), it can be seen that these two patterns are given by the
functions

O, 8) = | il || 06, ) (199)
@, 40, 8) = ’;_—[(4%:7-)2]1&43(9, )P (1.100)

Often one is interested only in the relative power densities being radiated in different
directions (6, @), in which case the factor {[k?5/(4nr)?] can be suppressed.

Since the unit vectors in spherical and cartesian coordinates are connected by
the relations

1o=1,cosfcos¢ -~ 1,cosfsind — 1,sin @
1,= —1,sin¢ 4 1,cos ¢

it follows that the transverse components of (1.94) can be written in the forms
@6, ) = | [cos 0 cos § J.(&,7,0) + cos 8sin § J,(&, 7, )

— sin 8 JA&, n, Ole’** d& dn d{
@0, $) = | [—sin 1. 71,0 + cos § J (& m Dleede dndl  (1.102)

(1.101)

These two equations are the key results of this development and form the basis of
pattern analysis and synthesis for actual-source antennas. If one starts with known
current distributions, @, and @, can be determined from (1.101) and (1.102) and then
used in (1.99) and (1.100) to deduce the radiation patterns. This is the analysis prob-
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lem. Conversely, if desired patterns are specified, (1.101) and (1.102) become integral
equations in the sought-for current distributions. This is the synthesis problem.

The results of this section can be summarized by saying that when one is doing
pattern analysis of a type I (actual-source) antenna, the steps to follow are these.

1. Place the known current distribution in (1.101) and (1.102) and determine
@,(0, ¢) and @0, ¢).

2, If the far-field power patterns are desired, use (1.99) and (1.100). Then | @48, ¢) |*
and [@4(0, ) |* will give the vertically and horizontally polarized relative power
patterns, respectively.

3. If the E and H fields are desired, use (1.95) and (1.96).

For pattern synthesis, (1.101) and (1.102) become integral equations in the unknown
current distribution with @46, ¢) and @,(8, ¢) specified.!*

D. THE FAR-FIELD EXPRESSIONS FOR TYPE I
(EQUIVALENT-SOURCE) ANTENNAS!®

A distinction has already been made between antennas for which the actual source
distribution is known to reasonable accuracy and those for which it is not. In the
latter case, it is fortunately often true that the fields adjacent to the antenna are fairly
well known; it is then useful to surround the antenna by surfaces that exclude all the
real sources. If the Stratton-Chu formulation is used, the fields E(x, y, z)e’** and
B(x, y, z)e’*' can then be determined from Equations 1.53 and 1.54 with only surface
integrals involved.

An alternate (and equivalent) approach that is rich in physical insight is one in
which substitute sources are placed on the surfaces enclosing the antenna. These
sources must be chosen so that they produce the same fields at all points exterior to
the surfaces as the actual antenna does. The next two sections are concerned with
developing this alternate approach.

1.12 The Schelkunoff Equivalence Principle

The concept of equivalent or substitute sources is an old and useful idea that can be
traced back to C. Huyghens,!” but the development to be presented here is patterned
after S. A. Schelkunoff.'®

1350ften it is a vexing problem to specify the phase distribution of @¢ and @4 since all that may
really be desired is some specified |@4(6, ¢)] or |@4(6, $)|. In such cases, one can search for that phase
distribution of @¢ and @4 which results in the simplest physically realizable current distribution. This
can be a much more formidable synthesis problem.

16Reading the material in Part D of this chapter can be deferred without any loss in continuity
until Chapter 3 is reached.

t7C, Huyghens, Traité de la Lumiére, 1690 (English translation: Chicago: The University of
Chicago Press, 1945).

18S. A, Schelkunoff, “Some Equivalence Theorems of Electromagnetics and their Applica-
tion to Radiation Problems,” Bell System Tech. Jour., 15 (1936), 92-112,
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In pursuing this idea, one finds that if the equivalent sources are to reproduce
faithfully the external fields, electric sources alone will not suffice. It is necessary to
introduce fictitious magnetic sources. In anticipation of this, consider the situation in
which real electric sources (p, J) create an electromagnetic field (E,, B;) and magnetic
sources (p,,, Jn) create an electromagnetic field (E,, B;). The properties of these
fictitious magnetic sources are so chosen that Maxwell’s equations are obeyed in the
form given below. Away from the sources, no distinction can be made that would
allow one to determine which type of source had given rise to either field. The two
sets of sources and fields satisfy

V x E; = —joB, (@ VXE,~— _-/;Lﬂ —jwB, (o)
0
VxB~ L+ l2E ) VxB=IZE 0
’ (1.103)
v.Elzfﬁ (c) V-E,=0 (8
0
V.B,=0 (@) V-B2=% (h)
0

The divergence of (1.103¢) combined with (1.103h) reveals that V « J, = —jwp,,. In
other words, the manner in which the magnetic sources have been introduced insures
that the continuity equation applies for magnetic as well as electric sources.

In a development paralleling what is found in Section 1.5, it is useful once again
to introduce potential functions, this time by means of the defining relations

B,=VxA (@ E=-VxF (b (1.104)

As before, A will be called the magnetic vector potential function; by analogy, it is
appropriate to call F the electric vector potential function. Equation 1.104a insures
compliance with (1.103d); similarly, (1.104b) is in agreement with (1.103g). Equations
1.103a and 1.103f then lead to

V X (E +joA)=0 V x (132 +ic‘2i’F)Eo
from which

E,— —jwA —V® B,— —-L(joF + VO,) (1.105)

C2

with @ and ®,, called the electric and magnetic scalar potential functions, respectively.
If the total fields are E = E, + E, and B = B, + B,, then

E——V XF— joA — VO (1.106)
B—V xA—_CIT(ij+ vo,) (1.107)
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Equations 1.103b and 1.103e can next be converted to the forms

VxVxA:%-%‘}’(ijJrV(D) VxVxF:;“%—{%’(ijJFV(Dm)

If the divergences of A and F are selected to satisfy

VeA= 12 v.F=_1%,
4 C

then these hybrid equations reduce to

VA + kA = _—,u{_l (a)  V°F + k°F — _% ()  (1.108)

] ]

Finally, (1.103c) and (1.103h) transform to

V2 -+ k2D = _fﬂ (a) V2, + k20, = _é’_m (b)  (1.109)
0 0

The solutions for A and ® have already been given (see Section 1.10) and the
solutions for F and ®,, are obviously similar. If the electric and magnetic sources are
confined to reside in surfaces, then lineal current densities K amperes per meter and
K, magnetic amperes per meter replace J and J,. In like manner, the areal charge
densities p, coulombs per square meter and p,,, magnetic coulombs per square meter

replace p and p,,. The potential functions are then given by

K(, 1, e/ ® _ f Ka(&, 1, e/ ™*0
ACe,y,z,1) = | =232 (S F(x,y,z,t) = = das
(x,y,2,1) J; dnp;) (x,y,2,1) . LR

(D(xa Y, z, t) L 47[60R das (Dm(x’y, z, t) ) 4n60R ds

(1.110)

Suppose one desires to find the values that these surface sources should have in
order to give a specified electromagnetic field external to S but a nu// field within S.
As suggested by Figure 1.3a, let a contour C; be constructed such that the leg ab is
just outside S and parallel to B,,,,; the leg ¢d is parallel to ab and just inside S; both
legs have infinitesimal lengths d/. Since (1.103b) and (1.103f) combine to give
V X B=(J/u:') + (jo/c*)E, integration of this result and the application of
Stokes’ theorem yields

~

§ B-dl:J {l-ds+f~‘;’f E - dS (1111
Cs Ss ¢ Ss

\]

in which S, is the membranelike surface stretched over the infinitesimal rectangular
contour C;.
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No fields
inside S

True fields
outside S

Edge view of

illbox vol crnd True fields
No fields pillbox volume \\ \Sb R

L \ outside .S
inside S dlsa

(b)

Fig. 1.3 Determination of Equivalent Surface Sources

As the legs bc and da are shrunk toward the limit zero, with ab always outside S
and cd always inside, the electric flux enclosed goes to zero, the current enclosed is
Kdl, and the line integral in (1.111) gives B,,,.d/, since there is no contribution from
inside. In Figure 1.3a, K emerges from the paper if B,,, is in the direction from a to b.
One obtains the result that

%zlan (1.112)

0

with 1, a unit outward-drawn normal vector.
Similarly, if (1.103a) and (1.103e) are added and the result integrated, with the
contour taken so that its leg ab is parallel to E,,,, one finds that

K.

s = —LXE (1.113)
0

Next, imagine that an infinitesimal pillbox has been erected, straddling S as
shown in Figure 1.3b. If the view in the figure were to be rotated 90°, one would see an
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infinitesimal disclike area d.S, with the upper surface of the pillbox just outside .S and
the lower surface just inside S. Since (1.103c) and (1.103g) combine to give V « E =
p/€,, integration plus use of the divergence theorem yields

§ E-dszf P oav
S vy €o

in which S; is the total surface of the pillbox, enclosing the volume V.

Because there is to be no field inside S, as the height of the pillbox is reduced
toward the limit zero, with one pillbox face always on each side of S, in the limit
EdS = (p,/e,) dS, with E, the normal component of E. Thus

s _1,.E (1.114)
€
In like manner, if (1.103d) and (1.103h) are combined and this process is repeated,
one finds that

Psm _ 1 .
ﬂE‘_I" B (1.115)

Schelkunoff’s equivalence principle in essence asserts that, if the equivalent
sources given by (1.112) through (1.115) are inserted in the potential functions (1.110),
and the results are used in (1.106) and (1.107), the calculation of E and B will give the
true fields at all points external to S and null fields at all points internal to S.

It is not immediately obvious that this should be so, since all that has been done
so far is to choose equivalent sources that would correspond to the situation that the
true fields exist infinitesimally outside S and that no fields exist infinitesimally inside
S, with no obvious indication that this will produce the proper field values at points
further removed from S. However, Schelkunoff’s assertion can be affirmed by fol-
lowing his suggested procedure. If the factor e/ is suppressed, if y replaces e 7*%/R,
and if equations (1.112) through (1.115) are substituted in (1.110), the result is that

1 1
= 4—L(ln X By dS F = -—4—7[L(ln X Eyw dS
(1.116)

1 c?
®=1|,-Ewds @ — 1, « By dS

When these expressions for the potential functions are used in (1.106) and (1.107),

and the vector transformations Ve = — Vg and Vi X [w(1, X E)] = Ve X (1, X E)
= (1, X E) X Vg are employed, one finds that

E(x,y,2) = 4—lnfs[(l,, ‘E)Vay + (1, X E) X Vow — jow(1, X B)}JdS  (1.117)

B(x,p,2) = 4]—nf [ji”#(lu x E) + (1, X B) X Vaw + (1, « B)Vsy/} ds (1.118)
S
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where Vi and Vg are the del operators for the field point variables and source point
variables respectively; they have been defined by Equations 1.51.

These integral solutions for E and B at the field point (x, y, z), in terms of the
field values over the surface S, are seen to be identical to the Stratton-Chu solutions
1.53 and 1.54 for the case that all the real sources have been excluded from the exterior
volume V. Since it has already been shown in Sections 1.7 and 1.9, via a direct integra-
tion of Maxwell’s equations, that (1.53) and (1.54) give the true fields at all points
exterior to S, whereas they give a null result at all points interior to S, it follows that
Schelkunoff’s equivalence principle has been established.

1.13 The Far Field: Type Il Antennas

In a development paralleling what was done in Section 1.11 for actual-source antennas,
the potential expressions (1.110) for equivalent-source antennas can be simplified if
the field point (x, y, z) is remote from all the sources. The details need not be repeated,
but the thread of the argument proceeds as follows.

Away from the sources, (1.103b) and (1.103¢) give

C2 C2
Jjo jo

B,— - LVXE —LVxVxF
jo jo
so that (1.106) and (107) simplify to
- _ <
E=—VxXF+OVxVxa (1.119)
B:VxA+J—.1a—)VxVxF (1.120)

As before, one can dispense with the need to know the charge distributions if the
fields are only sought at source-free points; knowledge of the current distributions,
which determine A and F, is sufficient.

The far-field forms of these vector potential functions can be written as the
product of the outgoing spherical wave factor (1.93) with the directional weighting
functions

&, 9) = | K 1,0 ds (1.121)
56, 4) = | Ka(&, 1, Do ds (1.122)

When (1.119) and (1.120) are applied to the far-field forms of A and F and only the
terms in r-! are retained, the result is
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E = —jwAr + jk(1, X Fy) (1.123)

H-— 4;'B = —%‘"(1, X Ag) — jwe,Fy = %1, x E (1.124)

with A; and Fr the transverse components of the vector potential functions. Once
again it can be noted that the far field E and H are both transverse to the radial direc-
tion and are perpendicular to each other, and that | E/H| = 1.

In this case of equivalent sources, the complex Poynting vector gives as the
average power density

1

PO, §) = 5 ®e{[—joAr + jk(L x F] x [ (22) (1, x AD) + joeoFs |

2
_ 1 Kk 1 r o Lo,
= el @ — g x w0 | x | 0 x @b+ o5t ]}
k? 1 (1.125)
- 1'?47:7)2[@«9“? + 05 + (555 + 5,55

+ %(Re(&gff;‘ — Ctﬁ;")]

A study of (1.123) reveals that the vertically polarized (£,) pattern is related to @, and
F,4, whereas the horizontally polarized (E,) pattern is governed by @, and &, Thus
the component patterns are given by the functions
®,d0.9) — 3 ol [ 1046, 8) + IS0, 9P + Z@e@sn|  (1.126)
r,0\Y> 2 (47[")2 O\Y C2 \Y> c CAd]

®,i0.8) = 5| o | 1040, 91 - 51560, 9)F — Lae@sn)] (1129

Once again, the factor $[k25/(4ar)*] can be suppressed when only relative levels are of
interest.

As before, the transverse components of @ and ¥ can be obtained by expanding
(1.121) and (1.122) into components. This gives

@,(0, ¢) = [ [cos 8 cos § Ku(&, . {) + cos O sin§ K, (&, 7. {)

— sin 8 K.(&, 1, O)]e** dS (1.128)
a6, 9) = [ [—sin K.(¢, 1. 0) + cos ¢ K, (&, 1, Olereds  (1.129)
50, §) = [ [c0s 6 cos  K.nl&, 1, §) + cos O sin ¢ K, (&, 1,0)

—sin 8 K,.(£, 1, O)]e’ < dS (1.130)

T8, @) = [ [—sin ¢ Konl&, 1, O) + cOs § K,nlé, m, Dl dS  (1131)
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These four equations are the key results of this development and form the core of
pattern analysis and synthesis for most equivalent-source antennas.!® If one starts
with known equivalent-current distributions, @,, @,, F,, and F, can be determined
from (1.128) through (1.131) and then used in (1.126) and (1.127) to deduce the
radiation patterns. This is the analysis problem. Conversely, if desired patterns are
specified, (1.128) through (1.131) become integral equations in the equivalent current
distributions that are sought. This is the synthesis problem.

The results of this section can be summarized by indicating the procedure for
doing pattern analysis of a type II (equivalent-source) antenna.

1. Surround the antenna with a closed surface S over which the actual fields are
known, at least to a good approximation.

2, Use (1.112) and (1.113) to find the equivalent lineal current densities K(&, 5, {)
and K,(&, 7, {) on S.

3. Find @@, ¢) and F(d, ¢) from (1.128) through (1.131).

4. If the component power patterns are needed, use (1.126) and (1.127) to deter-
mine them.

5. If the far fields E and B are required, use (1.119) and (1.120).

For pattern synthesis, (1.128) through (1.131) assume the roles of integral equations
in the unknown equivalent-current distributions, with @(8, ¢) and F (8, ¢) specified.??

E. RECIPROCITY, DIRECTIVITY, AND RECEIVING CROSS SECTION

OF AN ANTENNA

This penultimate part of Chapter 1 is concerned with the development of several
concepts that have proven to be extremely useful in antenna theory. The first of these
is the concept of reciprocity, based on a simple deduction from Maxwell’s equations.
The second (directivity) is a measure of the ability of any antenna to radiate prefer-
entially in some directions relative to others. The last concept (receiving cross section)
introduces a measure of the ability of an antenna to “capture” an incoming elec-
tromagnetic wave.

19Qccasionally a design problem will be encountered in which the antenna is very long in one
dimension and the sources are essentially independent of that dimension. It is then convenient to
assume that the problem is two dimensional and use cylindrical coordinate expressions equivalent to
(1.128) through (1.131). See Appendix G for the development of these expressions.

20The synthesis problem is actually quite a bit more complicated than this simple statement
would suggest. Often it is only ®, 48, ¢) and @, 4(0, ¢) that are specified. The division into @1(8, ¢)
and ¥1(0, ¢) is immaterial to the desired result, but it may be critical in terms of physical realizability
of a synthesized antenna. Another difficulty is that the phase of the far-field pattern is seldom specified.
This offers the antenna designer an added degree of freedom, but complicates the synthesis problem.
One should strive for a phase distribution of the far-field pattern that permits the simplest physically
realizable antenna, This can be a formidable undertaking.



1.14 The Reciprocity Theorem

One of the most important and widely used relations in electromagnetic theory is the
reciprocity theorem, which will be invoked many times in this text as various subjects
are presented. A derivation of this theorem is based on the idea that either of two sets
of sources, (J*, J%, p*, p2) or (J°, I, pP, pb), can be established in a region, producing
the fields (E*, B*) and (E®, B?), respectively. It is assumed that the two sets of sources
oscillate at a common frequency. There may be dielectric, magnetic, and conductive
materials present in which some or all of these sources reside, but if so the electro-
magnetic behavior of these materials must be /inear. The equivalent situation of free
and bound sources in free space will be used to represent the behavior of the materials,
as a consequence of which Maxwell’s curl equations in the free space form,

VxE-:_/“’Ey—ij- V x H = J* | joD*

JO., (1.132)
VXE“:~/Ti~ij“ V x H* = J* | jwD"

0

can be used to connect the fields and current sources for each set. Equations 1.132 are
a restatement of (1.103) in combined form, with D = ¢,E and H = g;'B. These curl
equations can be dotted as indicated to give

H*-V x E* = —y H". J% — jou,H* «- H*
E*.V x H* = E* « J* | jwe,E* « EP
H* -V x E* = —y H* - J& — jou,H* - H®
E* .V x H* = E* « J* + joe E* « E?

(1.133)

Since
V- ExXH —EPExXH)=H"-VXE —E-VXxH —H*-V x Eb
+ E*.V x H*
it follows from (1.133) that

'[(E‘xH"——E"xH')-dS:f(E"-J'~B"-J,',,—E’-J"
S 14
B IR dV (1.134)

in which integration has been taken over a volume ¥ large enough to contain all the
sources of both sets, and in which the divergence theorem has been employed. Equa-
tion 1.134 is a statement of the reciprocity theorem for sources in otherwise empty
space, but with the possibility that some might be bound sources representing the
behavior of linear matertals. Several special forms of this reciprocity relation have
proven useful and can be described as follows.

39
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1. If S is permitted to become a sphere of infinite radius, with the sources con-
fined to a finite volume V, the fields at infinity must consist of outgoing spherical
waves for which E, = yH, and E, = —nH, Under these conditions the surface
integral in (1.134) vanishes and one obtains

j (Eb+ J* — B® . J3)dV = j (E*+ J* — B* . J8)dV (1.135)

Equation 1.135 is a principal reduction of the reciprocity theorem, which is used in
circuit theory to demonstrate a variety of useful relationships. It will be used in this
text to establish the equality between transmitting and receiving patterns for arbitrary
antennas and to develop a basic formula for the mutual impedance between antenna
elements.

2. Another important reduction of the reciprocity theorem can be derived by
returning to Equation 1.134 and considering the situation illustrated in Figure [.4a.

All sources All sources

outside V,

in ¥,

Yy

(a) (b)

Fig. 1.4 Geometries for Two Applications of the Reciprocity Theorem

The volume V is enclosed between the surfaces S, and S,, with S, completely sur-
rounding S,. If all the sources are excluded by S;, so that none of them lic in V, then
the right side of (1.134) has a null value. And, if S, is once again permitted to become
a sphere of infinite radius, the fields at infinity again consist of outgoing spherical
waves for which £, = nH, and E, -nH, and the integral over S, in (1.134)
vanishes. One is left with

(E*x H> — E'* x H*) . dS =0 (1.136)
S
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In (1.136), dS is drawn outward from V, but no change in (1.136) occurs if S is instead
drawn outward from V,, the volume enclosed by S,. Thus (1.136) can be interpreted
by saying that if a surface S is constructed to enclose a// the sources of both sets in a
finite volume V,, then the fields caused by these sources satisfy the relation in (1.136).

Equation 1.136 will be used in Chapter 7 in the establishment of the induced
EMF method for computing the self-impedance of a dipole.

3. A variant on the previous reduction is suggested by Figure 1.4b. The closed
surface S, excludes all the sources, that is, the volume V| is source free. Application
of (1.134) to this situation once again gives (1.136). This result will be used in Chapter
3 in the derivation of a formula for the scattering from a waveguide-fed slot.

1.15 Equivalence of the Transmitting and Receiving Patterns
of an Antenna

The reciprocity theorem can be used to establish the very important result that the
transmitting and receiving patterns of an antenna are the same. Consider the situation
indicated by Figure 1.5, in which two antennas are sufficiently separated so that each

Antenna 2

Antenna 1

¢

Fig. 1.5 Disposition of Two Antennas in Each Other’s Far Field
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is in the far-field region of the other. Spherical coordinates are arranged to place
antenna 1 at the origin and antenna 2 at the point (r, 8, ¢). Both antennas can be as
simple or complicated as one wishes, so long as they are composed of linear materials.
It will be assumed that a transmitter is connected to one antenna via a suitable
transmission line and a receiver is connected to the other antenna, also via a suitable
transmission line.2!

In accord with the notation used in Section1.14, let the a-set of sources occur
when a transmitter is attached to antenna 1 and a receiver to antenna 2. The b-set of
sources will represent the situation when the positions of transmitter and receiver are
interchanged. The combination of transmitter and receiver used in the b-situation
need not be the same as in the g-situation.

It will be assumed that a cross section 1 can be found in the transmission line
connecting antenna [ to the transmitter (receiver) at which a single, clean propagating
mode exists, and that similarly a cross section 2 can be found in the transmission line
connecting antenna 2 to the receiver (transmitter) where a single, clean propagating
mode exists,?!

For the a-situation, let electric and magnetic current sheets be placed at cross
section 1 so that the fields on the antenna side are undisturbed, but so that, with the
transmitter turned off, the fields on the transmitter side have been erased. From
Equations 1.112 and 1.113, these port sources are given by

i=LxH wm=—uy' 1, x E* (1.137)

in which 1, points along the transmission line toward antenna 1 and E* and H* are
evaluated in cross section 1. In like manner, let electric and magnetic current sheets
be placed at cross section 2 so that the fields on the antenna side are not altered, but
so that, with the receiver turned off, the fields on the receiver side have been erased.
These port sources satisfy

11, x H* s, = —us' 1, X E* (1.138)

with 1, pointing along the transmission line toward antenna 2, and with E* and H*
evaluated in cross section 2.

The effective replacement of the transmitter and receiver by equivalent sources
at ports 1 and 2 leaves intact all the a-sources and fields between these cross sections,
including the radiation field transmitted by antenna 1 and received by antenna 2.

In precisely the same manner, equivalent electric and magnetic current sheets
can be found which, when placed at cross sections 1 and 2, can serve as proxies for
the transmitter and receiver in the b-situation.

These two sets of sources and the fields they produce satisfy the reciprocity
theorem in the form of (1.135). The volume V over which the integration is to be
performed must encompass all the original sources between the two cross sections
plus the equivalent sources in the two cross sections.

21As a special case of this analysis, the transmission lines may be lumped circuits,
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Consider any point between the cross sections that is occupied by sources. If
these sources flow in conductive material,

Eb.J*=E.gE* E*.J*=E*.QE" (1.139)
with ¢ the conductivity at that point. Similarly, if the material is dielectric,
Eb . Jr =K. jwe,x Bt B JP=KE*. jwe,y Eb (1.140)
with y, the dielectric susceptibility at that point. And if the material is magnetic,
B® . Jy = B* . jouyx..B* B* . J: =B« jouy,x,B" (1.141)

in which y,, is the magnetic susceptibility at that point.

In (1.139) through (1.141), the parameters o, x., and y,, can be functions of
position, depending on the composition and disposition of the materials that com-
prise the two antennas and their feeds, but, with the assumption that all materials are
linear, these parameters are independent of the levels of the fields. Thus, for every
source point between the cross sections, equal contributions are made to the integrals
on the two sides of (1.135). What remains are the contributions made by the equiva-
lent sources in the cross sections.

Equation 1.135 reduces to

[ ek —B.Kyds = (B*« K* — B*- K5)dS  (1.142)
S1+.52

S1+ 82

with S, and S, the cross sectional surfaces at ports 1 and 2. By virtue of the set of
relations of the type (1.137), this can be converted to the form

j (E*« 1, x H* + H*+ 1, x E*dS
Sitse (1.143)

= (E* « 1, x H* + H* - 1, X E®) dS

S1+82

It is demonstrated in textbooks dealing with transmission line theory?? that any
propagating mode can be represented by a voltage wave and a current wave, defined
so that

Eung(X, ¥, 2) = V(2) g(x, ) (1.144)
Huuns(x, 3, 2) = 1(2) h(x, y) (1.145)

with Z the propagation axis and with the functions g(x, y) and h(x, y) characteristic of
the given mode. The level of these characteristic functions is adjusted so that

[ 1+ lgtr ) X hex ) ds = 1 (1.146)

228ee, for example, S. Silver, Microwave Antenna Theory and Design, MIT Rad. Lab. Series,
Volume 12 (New York: McGraw-Hill Book Co., Inc., 1939), p. 55.
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with S a cross-sectional surface. The functions V(z) and /(z) in (1.144) and (1.145) are
called the mode voltage and mode current and are given generally by

V(z) = Ae % 4 Be~/# (1.147)

I(z) = Y,(Ae 757 — Be’#?) (1.148)

with 4 and B constants to be determined by the boundary conditions, with £ the

propagation constant and Y, the characteristic admittance of the mode.

When this representation is applied to the modes at S, and S,, one finds that
E}-1, x H3 =1, - Hf X E} = V4I¢1, - h, X g,
H‘l"lan.l:11|.E=le;: Vqllilz;'gIXhl

Hy«1, x Ef=1, - E} x H} = V%/31,, - g, X h,
Substitution in (1.143) together with use of (1.146) gives

2 2
S Vel =Y vere (1.149)
n=1 n=1
This is a key result of the analysis and can be interpreted as saying that the mode
voltages and currents at the two ports satisfy the reciprocity theorem.
Next, let Z,, be the impedance of antenna 1 referenced at port 1, and let Z,, be
the impedance of antenna 2 referenced at port 2. Then

Ve =12Z,, Vi=1Z,, (1.150)

Further, let Z,, be the impedance of the receiver transformed to port 1 in the b-
situation, and let Z,, be the impedance of the receiver transformed to port 2 in the
a-situation. Then

Vi = —I8Zn V8 = —15Z, (1.151)

When (1.150) and (1.151) are placed in (1.149), one finds that

IR (O

The transformed receiver impedances are obviously independent of the direction (6, ¢)
from antenna 1 to antenna 2 and, since the two antennas are in far fields of the other,
so too are the driving point impedances Z,; and Z,,. Thus

Vi _

Vi

v

K22 (1.153)
4

with K = [| + (Zra/Z, )1 + (Zri/Z,,)), 2 constant.
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If V¢ is held fixed and ¢ is measured as a function of (8, ¢) while antenna 2 is
moved along some programmed path on the spherical surface of radius r, the frans-
mitting field pattern of antenna ! is recorded. Reciprocally, if V% is held fixed and /¢
is measured as a function of (8, ¢) while antenna 2 is moved along the same pro-
grammed path, the receiving field pattern of antenna 1 is recorded. But Equation
1.153 leads to the conclusion that

10, ¢) = (K—V‘?Eb) 136, ¢) (1.154)

In words, the normalized transmitting field pattern and the normalized receiving
field pattern of any antenna are identical.

Some features of this proof are worth noting. No specification of the size, shape,
or type of either antenna was necessary, nor were there any restrictions on the types
of transmission lines feeding the two antennas, except that each should exhibit a
single, clear propagating mode at the chosen ports. The materials of which the
antennas and their feeds were composed were arbitrary except that they needed to be
linear. It was not necessary for either antenna to be matched to its transmission line,
nor was there any requirement that the transmitter or receiver be matched to either
transmission line. Also, there was no restriction on the orientation of antenna 2 as it
moved along its programmed path. It could be continuously reoriented to measure
Eq(8, ), or E, 8, @), or E(, ¢), or some arbitrarily shifting polarization. All that is
needed is for antenna 2 to replicate its orientation at each point along the path after it
has shifted from receive to transmit. One can conclude from this that the proof is very
general.

Equation 1.154 establishes the equivalence of the transmitting and receiving
field patterns of any antenna. A simple extension shows that this equivalence applies
to the power patterns as well. If (1.154) is multiplied by its complex conjugate, the
result can be used to deduce that

Ty 2 _ (R | KV2
7 10O, DR = (52) 1)

Z%“Z”(&d’)lzRRz (1.155)

The quantities | 7§]* Rg,/2 and |I?|> Ry,/2 that appear in (1.155) are the powers
absorbed in the receiver when antenna | is transmitting and receiving, respectively.
Since each is linearly proportional to the power density of the waves passing the
receiving antenna, it is proper to infer that they are measures of the transmitting and
receiving power patterns of antenna |. With K" = (Rg,/Rg,) | KV2/V?|?, one can write

@re<(6, ¢) = K'¢"(0, §) (1.156)

Care must be taken in interpreting (1.156). For example, if antenna 2 is linearly
polarized and always oriented as it moves along its programmed path, in order to
receive or transmit only 8-polarized waves, then (1.156) becomes

®5(0, ) = K'®(0, 9) (1.157)
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from which one can conclude that the normalized @-polarized component of the
power pattern of antenna | is the same for receive and transmit. Similarly, if antenna 2
is linearly polarized but aligned to receive or transmit only ¢-polarized waves, (1.156)
reduces to

Cy(0, ¢) = K'®y(8, ¢) (1.158)

and once again equivalence is demonstrated in the component power patterns for
antenna 1. And if, for example, antenna 1 is linearly polarized with only an F, electric
field, then (1.158) gives a null result, as it should. If antenna 1 does not radiate an E,
field, it cannot detect an incoming £, field.

The sum of Equations 1.157 and 1.158 shows that the rota/ power patterns are
equivalent:

Pral0, ) = K'®a(0, ) (1.159)

Acceptance of the conclusion that the normalized total power patterns of any
antenna are the same for transmit and receive, and thus that one need not determine
both, still leaves a measurement difficulty that should be noted. This concerns the fact
that not any antenna can be chosen to play the role of antenna 2, make one traverse
of the programmed path, and at each point in the path be oriented so that the received
powers in (1.155) coincide with the power densities in (1.159). This will occur only if
antenna 2 is polarization-matched to antenna 1. For example, if antenna 1 is circularly
polarized, antenna 2 must be circularly polarized in the proper screw sense in order to
have the received powers in the ¢- and b-situations that can be interpreted as the total
radiated and received power patterns of antenna 1.

However, if one is content to use as antenna 2 a linearly polarized antenna,
make two traverses of the programmed path, one with 8-orientation and the other
with ¢-orientation, and keep transmit power and receiver sensitivity stable, then the
separate measurements give the component power patterns. Their sum gives the total
power pattern, and Equations 1.157 through 1.159 indicate that it does not matter
whether the measurements are made with antenna 1 transmitting and antenna 2
receiving, or vice versa.

1.16 Directivity and Gain

Often a principal goal in antenna design is to establish a.specified radiation pattern
®(d, ¢) watts per square meter through a suitable arrangement of sources. The
specified pattern frequently embodies the intent to enhance the radiation in certain
directions and suppress it in others. A useful measure of this is the directivity, which
is simply the radiated power density in the direction (8, ¢) divided by the radiated
power density averaged over all directions; that is,

D, ¢) = _—r 9@, 9) (1.160)
(1/47r2) jo fo P, ¢')r* sin 6' dO’ dg’
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Equation 1.160 contains the implications that the origin for spherical coordinates has
been chosen somewhere in the immediate vicinity of the antenna, and that power
densities are being evaluated on the surface of a sphere whose radius r is large enough
to ensure being in the far field of the antenna.

If the radiation intensity is defined by

P9, ¢) = r*e(0, ¢) (1.161)

then, since ®(8, ¢) is measured in watts per square meter, it follows that P(8, @) is
measured in watts per steradian. Substitution in (1.160) gives the equivalent expres-
sion

D@, $) = 2700, 9) (1.162)
jﬂ j PO, ¢')sin 6’ d9’ dg’

The value D(8, ¢) is a pure numeric. It will have a value less than unity in
directions in which radiation has been suppressed, and a value exceeding unity where
the radiation has been enhanced. If (8, ¢,) is the direction in which the radiation
intensity is greatest, then D has its largest value at (8, ¢,) and D(8,, ¢,) is the peak
directivity.

In characterizing an antenna, one must be careful to distinguish between direc-
tivity and gain. Directivity is used to compare the radiation intensity in a given direc-
tion to the average radiation intensity and thus pays no heed to the power losses in
the materials comprising the antenna. Gain includes these losses, and the definition of
gain is therefore

G@, 4) — F‘i’% (1.163)

in which P,_is the total power accepted by the antenna from the transmitter, measured
in watts. The denominator of (1.163) is the value, in watts per square meter, that
the radiated power density would have if all the power accepted by the antenna were
radiated isotropically. Since the power accepted is greater than the actual power
radiated, the denominator of (1.163) is larger than the denominator of (1.160), and,
as a consequence, G(8, ¢) < D(8, ¢).

Most antennas are constructed of linear materials; in this case, one may argue
that

Pae =K, [ [T 00, 0 sin 00" ag’ (1.164)

with K, a pure real constant that has a value somewhat greater than unity. When this
is so, Equation 1.163 becomes

G(0, ¢) = D(z’ $) (1.165)

L
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The gain and directivity differ by a multiplicative factor that is independent of direc-
tion. In particular, the peak gain occurs in the same direction (8,, ¢,) as the peak
directivity.

Often, gain and directivity are expressed in decibels (dB). From (1.165),

log,,G(0, ) = log,, D(8, ¢) — log, K, (1.166)

The gain in any direction is seen to be 10 log, K, decibels below the directivity in that
direction; 10 log, K, thus represents the power losses in the materials forming the
antenna.

For some applications it is useful to introduce the concept of partial directivity
and partial gain. As an example of how this is done, a return to Equations 1.98
through 1.100 or 1.125 through 1.127 helps to recall that

®6, ¢) = @, 0, 8) + @, 40, ¢) (1.167)
If this relation is inserted in Equation 1.160, it can be seen that it is possible to write
DG, ¢) = D'(8,¢) + D' (6, $) (1.168)
in which
D'(8, ) = _ 2,,6)"9(0’ $) (1.169)
(1jazr) [ [ 00", ') sin 0 46" dg
0 Y0
and

D6, $) = XA (1.170)
(1/4nr?) L fo @@, ¢')r* sin 6’ dO’ d’

are the partial directivities associated with the §-component and ¢-component pat-
terns, respectively. Similar definitions follow readily for the partial gains.

An example of the utility of this concept would be when an antenna is to be
designed to give peak radiation at an angle (8,, ¢,), but all the radiation should be
f-polarized; any ¢-polarized radiation is unwanted, but for practical reasons some
may be unavoidable. In such a circumstance it is the peak partial directivity D'(8,, ¢,)
that is a pertinent measure, not the peak total directivity D(8,, ¢,).

The division of the total power pattern into components can be done in other
ways than the 8/¢ partition indicated above. For example, the decomposition could
equally well be into right-handed and left-handed circularly polarized component
power patterns. In that case one could identify right-handed and left-handed partial
directivities and gains.

1.17 Receiving Cross Section

A receiving antenna will absorb energy from an incident plane wave and feed it via a
transmission line to its terminating impedance. A useful measure of its ability to do
this results from introducing the concept of the absorption cross section of the antenna
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or, as it is more commonly known, its equivalent receiving cross-sectional area. If S is
the power density of the incoming plane wave in watts per square meter and P, is the
absorbed power in watts, then the equation

P8, ¢) = SA4.(0,¢) (1.171)

serves to define the receiving cross section, in square meters, as a function of the angle
of arrival of the incoming signal. In order to have 4,(8, ¢) be a2 maximum measure of
the capture property of the antenna, it is customary to assume that the incoming plane
wave is polarization matched to the antenna, and that the antenna is terminated by a
matched receiver. With these assumptions, Equations 1.155 and 1.159 are applicable
and one can write

SAr(09 ¢) - % | 1{’(0, ¢) |2RR1 = P::t‘;l(a’ ¢) = K/(P;;tal(05 ¢) (l " l 72)
An integration of (1.172) gives
S n 2n K, k.4 P2
2 ’ ’ . ’ ’ [ tr ’ NL2 ol ' ’ ’
P L J; A,(6',¢")sin 0" dO" d¢ 4—7zr2J; j; G (0, )tsin 0'dl’ dp’  (1.173)
If the ratio of (1.172) to (1.173) is taken, one obtains

A,(g, $) _ D@, ¢) (1.174)

r

in which D(@, ¢) is the directivity of antenna 1 when it is transmitting, as given by
(1.160). Then A, is the average receiving cross section of antenna 1, defined by

n 2n
i— }f f A6, ¢") sin 6" d6" d’ (1.175)
1] 0

T

It is a remarkable fact that the average receiving cross section 4, is the same for
all lossless antennas that are polarization matched. This can be demonstrated as
follows.

Consider again the situation of two antennas, depicted as in Figure 1.5, with
antenna | transmitting and antenna 2 receiving in the ag-situation and the reverse
occurring in the b-situation. To obtain maximum power transfer, assume that in the
a-situation the transmitter attached to antenna 1 has an internal emf ¥, and an internal
impedance that has been adjusted to equal Z3, with Z,, the driving point impedance
of antenna 1. Similarly, in the b-situation, let the transmitter attached to antenna 2
have an internal emf ¥, and an internal impedance Z,, with Z,, the driving point
impedance of antenna 2.

In the a-situation, /¢ = V_/2R,, and the power delivered to antenna I is
3 I212R,, = |V, |*/8R,,. If the losses in the antenna can be neglected, all of this
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power is radiated, with an average density in watts per square meter given by

‘ VK I2/8R1 1
4nr?

When antenna 2 is located at the point (v, 8, ¢), the power density in the wave arriving
from antenna 1 is given in watts per square meter by

6@, ¢) = "o B p(6,9)

in which D,(8, @) is the directivity of antenna 1. If use is made of (1.171) with § =
®(8, ¢), it can be argued that the power absorbed by the receiver attached to antenna 2
is given by

2
Pr = ' Vg(].ln/rg?-Rl ! Dl(ea ¢)Ar,2(0, ¢) watts

with A4, ,(6, ¢) the receiving cross section of antenna 2. Use of (1.174) converts this to

2 -
p, = WYl BRi1 p,6,4)D,(6, )4, (1.176)

The power absorbed is also given by (1/2)®Re 1315 Z,, but, with a matched receiver,
Zr, = Z%,, and thus

P, =I5 Ry, (1.177)

When (1.176) and (1.177) are combined, the result can be written in the form

D,(8, $)D,6, )4, , = 16m2“_5|li{}1_|1}2 (1.178)
&

If this analysis is repeated for the b-situation one finds that

DO, 9)D:0, )4, = 16mr> LT Rez (1.179)
4

The currents and voltages in the two situations are related generally by Equation
1.152. In the circumstance being considered here, V¢ = ItZ,, = (V/2R)Z,,, V} =
Z,, = (V4/2R,,)Z,,, Zg, = Z},, and Z, = Z},; as a consequence of this, (1.152)
reduces to

If=1t (1.180)
Hence, upon comparing (1.178) and (1.179), one can see that

Ar,l :Ar,z (1181)
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Since antennas | and 2 are completely arbitrary (except that they must be polariza-
tion-matched), Equation 1.181 is a general result.

The value of the constant 4, for linearly polarized antennas can be deduced as
follows: Let antenna | be completely arbitrary and located at the origin, as shown in
Figure 1.5, except that it is linearly polarized and has been oriented to transmit an E
field that has only a §-component. Antenna 2 is a single current element of length d/,
located at the point (r, 8, ¢), and oriented parallel to 1, so that the two antennas are
polarization matched.

In the a-situation, let antenna | be transmitting with antenna 2 absent. In the
b-situation, the current element 1,/¢ d/ (antenna 2) is present and radiating, and
antenna 1 is receiving. Port 2 is taken to be the §-directed line segment of length 4/
located at (r, 8, ¢). In this case the reciprocity relation (1.149) becomes

Vi, + Vil = Vil
which can be rewritten in the form
Vers — yire — Exr, 0, §)I% dl (1.182)

Since I{ = V'¢/Z,, when antenna | is transmitting, and I} = —V}/Z,, = —V?I/Z¥
when antenna 1 is receiving, (1.182) assumes the form

Z,, + ZF 2R
yapsl 1 1i_yapb — Fafb J] 1.183
VT ZZE [Z, 2 - ( )

When (1.183) is multiplied by its complex conjugate, the result is

ARG\ papee — |E32 |12 dlp (1.184)
Wlﬂxx[*e\zl .

In the a-situation, antenna | accepts an amount of power given by

L Vel o

g PRV

acc

l 2
:7“”#1{11 =

from the transmitter and, if losses in antenna | are neglected, all of this power is
radiated. The power density at (r, 8, ¢) in the a-situation is, therefore,

||Es(r.0,8)F _ Vi, D.(6.9)
2 1ZaERN e (1.183)

When | £4|* is eliminated from (1.184) and (1.185), one obtains the result that

e =120 lRe p 0, 9y a2 al? (1.186)
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In the b-situation, the receiver attached to antenna 1 absorbs the power

R,, (1.187)

since Zy, = Z§,. This absorbed power can also be expressed in terms of the power
density in the waves radiated by the current element and the receiving cross section of
antenna 1. From Equations 1.99 and 1.101 the maximum?? power density radiated by
a single current element is

&, k2'7)2|15d1|2 (1.188)

Gl Xcro
and thus the power absorbed by antenna 1 is also given by

1 kin

Pabs = 7(&7)2

|12 dl}* 4, (8, ) (1.189)
If (1.187) and (1.189) are combined and the result solved for | ¥}|2, further combination
with (1.186) gives

4,,0,9) = 2 D0, 9) (1.190)

and thus the universal value of the average receiving cross section for linearly polarized
antennas is A%/4n.

Equation 1.190 is an extremely useful result. It permits computation of the
optimum power level in a receiver which is attached to an antenna of peak directivity
D(@,, ¢,) when the power density in the incoming signal is known. This value is
diminished slightly by the losses in the antenna. It is also diminished by the multipli-
cative factor (I — |T'|2) when the receiver and the antenna are mismatched, with T’
the reflection coefficient.?*

F. POLARIZATION

This concluding section of Chapter 1 is concerned with characterizing the polarization
of an electromagnetic field far from the sources which produce it. Such characteriza-
tion is important in many practical applications. Prominent examples include the
following. (1) For purposes of optimizing propagation through a selective medium
(such as the ionosphere), or optimizing back-scattering off a target, it may be desirable
to specify the polarization the wave should have. This places a constraint on the
design of the transmitting antenna. (2) When a sum pattern is required to have a

23]t is the maximum value that should be used since the current element is oriented so that
its maximum power density is directed at antenna 1.

24See, for example, Silver, Microwave Antenna Theory, and Design, pp. 51-53.
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specified polarization and low side lobes, it is important to check that the antenna
being proposed does not produce a cross-polarized pattern at a height which exceeds
the desired side lobe level. This possibility exists, for example, with parabolic reflector
antennas. (3) The polarization of an incoming wave may have to be accepted, which
places a constraint on the design of an antenna that will receive this wave optimally.
(4) The polarization of an incoming wave may be unpredictable, in which case it may
be desirable to design a receiving antenna which will respond equally to all polariza-
tions. To be equipped to deal with these and similar problems, it is important to be
able to describe the polarization of an electromagnetic wave unambiguously.

1.18 Polarization of the Electric Field

It has been shown in Sections 1.11 and 1.13 that the far field of a transmitting antenna
can be viewed as the product of an outgoing spherical wave and a complex directional
weighting function. For the electric field (which is conventionally used as the vehicle
for describing polarization), this complex directional weighting function is given by
(1.95) for type I antennas and by (1.123) for type II antennas. In either case, at a far
field point (r, 8, ¢), the electric field can be represented by

E = (1,E, -+ 1,E,)ei" (1.191)

when time-harmonic sources are used in the transmitting antenna.
The functions Eur, 8, ¢) and E(r, 8, §) that appear in (1.191) are, in general,
complex. If this is recognized by the notation

E, = E, + JE, E,= E, + JE; (1.192)
then it can be appreciated that what is really meant by (1.191) is that

E(r,8,¢,1) = Qe(l(Ey + jEg) + 1(Ey + JEY)]e’*

] ) (1.193)
= 1,(Ey cos wt — Ej sin wt) + 1,(E}, cos wt — E sin wt)
with Ej, Ey, E, R, all real functions of r, 8, and ¢.
Equation 1.193 can be rewritten in the form
E = 1,4 cos {wt + &) + 1,B cos (wt + f) (1.194)
in which
A= J(EQ)* + (EQ)? B = J(Eg)* + (EQ)
" " 1195
o = arctan E—;" B = arctan E—f‘ ( )
Eg ¢

With no loss in generality, the origin of time can be selected so that & = O (that is,
E; = 0). Then (1.194) becomes

E = 1,4 cos wt + 1,B cos (wr + f) (1.196)
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Equation 1.196 is a particularly convenient representation of the electric field for the
purpose of identifying its polarization.

(a) LINEAR POLARIZATION 1f B = 0, the electromagnetic wave is said to be
linearly polarized in the @-direction. Similarly, if A = 0, the wave is ¢-polarized. But
more generally, if § = 0but 4, B 5~ 0, the @ and ¢ components of the electric field are
in phase. The polarization is then tilted, but it is still linear, as can be seen from the
time plots of Figure 1.6a. Therefore the most general example of linear polarization
occurs when Ey and E, are in phase.

(b) CIRCULAR POLARIZATION 1If A =B and f = —90°, Equation 1.196
becomes

E = A(1, cos wr + 1, sin wt) (1.197)

In this case the magnitude of E is constant with time. The angle that E makes with the
1, direction is w¢ and this angle changes linearly with time. The locus of the tip of E is
a circle, as indicated in Figure 1.6b. For this reason, the field is said to be circularly
polarized.

The sequence in Figure 1.6b is drawn as though the observer were looking
toward the transmitting antenna from afar, along a longitudinal line in the (8, ¢)
direction. The progression of E with time is seen to be counterclockwise, which is the
direction of rotation a right-hand screw would have if it were being turned to progress
in the direction of propagation. For this reason, (1.197) is said to represent a right-
handed circularly polarized wave. If one were to write

E = A(1o cos ot — 1, sin wt) (1.198)

so that E; leads F, by 90°, instead of lagging by 90° as in (1.197), then a left-handed
circularly polarized wave would be described.

(c) ELLIPTICAL POLARIZATION The most general case of (1.196) occurs when
A 7= B, B = 0. The magnitude of E is given by

[E()| = [A? cos® wt + B? cos? (wt + B)]/2 (1.199)

If the time derivative of this function is set equal to zero, the extrema of | E(¢)| can be
identified. They occur at angles wt = § governed by

B%sin 28

tan29 = A% + B*cos 28

(1.200)

If 4, is the angle in the first quadrant which satisfies (1.200), then §, = J, + =/2 also
satisfies (1.200).

Substitution of the angles §, and d, in (1.196) reveals both the direction and
magnitude of each of the two extrema of E(z). The two directions are at right angles
to each other and form the principal axes of the locus. It is left as an exercise to show
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Fig. 1.6 Phasor Plots of E Versus Time for Electromagnetic Waves of Various Polariza-
tions
that this locus is an ellipse.?* Its semimajor and semiminor diameters can also be
found by substituting J, and §, in (1.199). This gives

E=SE () @] (1200

25The components E; and Ej that occur in (1.196) are analogous to the voltages applied to the
two sets of deflecting plates in an oscilloscope in order to create a Lissajou figure on the screen.
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A typical plot of (1.196) is shown in Figure 1.6¢c. As in the case of circular
polarization, the direction of rotation of E can be either clockwise (left-handed ellip-
tical polarization) or counterclockwise (right-handed elliptical polarization). This is
determined by whether the phase angle f is lead or lag.
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PROBLEMS

1.1 Complete the Stratton-Chu derivation by letting F = B and repeating the analysis that
was used in Section 1.7 to obtain B, thus establishing Equation 1.54 of the text.

1.2 Alternatively, take the curl of Equation 1.53 to find —jwB and in this manner verify
Equation 1.54 of the text.

1.3 Use the expression for the curl of a vector in spherical coordinates and begin with
Equation 1.91 in the form
ej(wl-kr)
Alx, y,2,t) = WQ(G, o))
Then use (1.10b), (1.87), and (1.89) to deduce that, in the far-field

E=—jwAr
E

S
n

thus confirming (1.95) and (1.96).
1.4 Demonstrate the validity of equations (1.113) and (1.115) in the text.

1.5 Use equivalent-source Equations 1.112 through 1.115 in the retarded potential functions
(1.110) and show in detail that the results agree with the surface integrals in the Stratton-
Chu formulation for E(x, y, z) and B(x, y, z).

1.6 Begin with the far-field expressions (1.123) and (1.124) and show that the power radiated
has a density given by (1.125).

1.7 Enumerate the theorems in circuit analysis that can be proven with the aid of the reci-
procity relation (1.134). Sketch the proof of each.

1.8 An antenna A4, when transmitting, radiates a circularly polarized field in the direction
(8, ¢), which is right-handed. If antenna A is receiving an elliptically polarized electro-
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magnetic wave, incident from the direction (8, ¢), state the conditions of ellipticity which
will maximize the received signal. State those which will minimize it.

1.9 Show that |E(t)|, as given generally by Equation 1.199, has as its locus an ellipse with
axes that occur at angles d; and d, = d, + m/2, with these angles satisfying (1.200).
What is the ellipticity ratio?



radiation patterns of dipoles,
loops, and helices

2.1 Introduction

In this chapter the formulas that have been developed for the fields caused by an
assumed known distribution of current will be applied to a succession of simple but
practical radiators. These type I (actual-source antennas) include dipoles, loops, and
helices. The center-fed dipole of length 2/ will be taken up first, with emphasis on the
two cases of greatest interest, when 2/ = 1/2, and when 2/ < A. After a discussion of
images, these results will be extended to a monopole over a ground plane and a dipole
in front of a ground plane. Next, the small current loop will be examined, followed by
the helix, the latter being an example of a traveling wave current distribution.

These antenna configurations have many practical applications as single radiat-
ing elements but also are widely used in arrays, a subject which will be introduced in
Chapter 4.

2.2 The Center-Fed Dipole

58

The practical center-fed dipole usually consists of a pair of tubular conductors of
diameter d aligned in tandem so that there is a small feeding gap at the center, as
shown in Figure 2.1. The total length is 2/ > d. A voltage is applied across the gap,
often by means of a two-wire transmission line. The resulting current distribution on
the pair of tubular conductors gives risc to a radiating field. If a good estimation can
be made of this current distribution, the formulas of Section 1.11 can be used to deduce
the field.

One can gain insight to the current distribution by considering the case of a two-
wire transmission line that is opened out, as shown in Figure 2.2. Without any flare,
the open-circuit termination causes a standing-wave distribution of current, oppositely
directed in the two conductors. Pairs of current elements, which are equal, opposite,
and close together, radiate negligibly, which is the behavior of a good transmission
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Fig. 2.1 Simpie Center-Fed Dipole J

line. If the origin of the X-axis is taken a distance / back from the end of the trans-
mission line, the current distribution can be given by

I(x, 1) = 1, sin k(I — x)Je’ Q2.1

With a flare of 45°, as shown in the second panel of Figure 2.2, the inductance
and capacitance per unit length change with position along the flared segment, and
thus so too does the characteristic impedance; however, to first order, the wave
number is still constant at the free-space value k. For this reason, one can argue that
the current distribution is little altered by the flare. This is still assumed to be the case
in the third panel of Figure 2.2, where the current distribution is also shown as that of
a standing wave with sinusoidal spatial distribution. Note that the pair of current
elements, which had canceled each other’s radiation tendencies in the first panel where
they were oppositely directed and close, are more widely separated and reinforcing in
the third panel, which serves to illuminate why a dipole radiates.

Modern methods, pioneered by the work of E. Hallén! and S. A. Schelkunoff?
and using powerful computational techniques such as the method of moments, have
led to more precise knowledge of the current distribution on a cylindrical dipole, but
the deviation from a sinusoidal function is found not to be great, and for pattern
calculations can be ignored. (Compare with Section 7.6, and particularly Figures 7.8
and 7.9).

With the dipole diameter « < 4, it becomes feasible to treat the dipole as a
filamentary conductor and replace Jd'V by Idl as the current element. The geometry is

1E, Hallén, “Theoretical Investigations into the Transmitting and Receiving Qualities of
Antennas,” Nova Acta Upsala, 11 (1938), 1-44.

28, A. Schelkunoff, Electromagnetic Waves (Princeton, N.J.: D. Van Nostrand Co., Inc.,
1943), pp. 441-52,
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Fig. 2.2 The Dipole as a Transmission Line that is Opened Out
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Fig. 2.3 Center-Fed Dipole with \
Assumed Sinusoidal Current Dis- I, sin [k(I+§)]
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then as shown in Figure 2.3. The sources are I({)d{ with
1Q) = I, sin [k(/ — |{D] 22
Since all the sources lie along the Z-axis,
£ ={cosb (2.3)

and a return to Equations 1.101 and 1.102 reveals that, for a filamentary center-fed
dipole, @, = 0, whereas @, is given by

@0) — —1,sin 0 j ; sin [k(I — | £ D]e*c 0 df 2.4)

Because the current distribution is symmetrical around ¢ = 0, the odd part of
exp (jk{ cos 8) can be discarded, yielding

@y(8) = 21, sin 8 | sin [k(! — {)] cos (k( cos §) d @.5)
0
This integrates to give
@) = — kzsilﬁ [cos (kT cos 6) — cos (k1)] 2.6)

Two cases of special interest can now be considered.

1. The half-wavelength dipole, 2/ = A/2.
For this length,

_ 25, cos[(n/2) cos 6]
a,(§) = —2n 8 [(7/2) cOs 6] @
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With the outgoing spherical wave factor of (1.93) restored, use of (1.95) and (1.96)
gives

I e/ wr=kn "cos [(m)2) cos 0]

E, = 601, %~ [ L ] (2.8)
I el eos [()2) cos 0]

Hy =525 [ a8 ] (2.9)

A polar plot of Ef8)/E4(n/2) is shown in Figure 2.4. It is seen to be doughnut-shaped
(the three-dimensional pattern results from rotating Figure 2.4 about the Z-axis, since
E,is ¢-independent), with a null along the 8 = 0°, 180° axis. This type of pattern finds
wide use in omnicoverage applications when vertical polarization is required and a
null can be tolerated in one direction.

1.0
0.8
cos (g cos 6)

E ~
0.6 o sin 8

0.4

0.2

Fig. 2.4 Normalized E-Field Pattern of a Half-Wavelength
Center-Fed Dipole
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The power pattern can be deduced with the aid of (1.99) and is given by

~2y12 [cos? [(w/2) cos O]
O,l) = gz | st (2.10)

The total radiated power is

2z prm
P = [ [ .56, )% sin 0.0 ¢
] 0

= r @, (@) 2mr* sin 8 d
0

_ ﬂf"/z cos? [(x/2) cos 6] 0
2r J, sin

Numerical integration gives

_ LB
P,,, = 0.609 o 2.11)
The peak directivity of a half wavelength dipole (see Section 1.16) is

D(peak) — %{ﬁ’% — 1.64 2.12)

Since / = A/4, the peak input current to the dipole (at { = 0) is I,, and the
feeding transmission line can be said to be delivering the power

2
% I2R,,, — (0.609) % (2.13)

to a resistance R,,, placed across its terminus. This is called the radiation resistance of
the half-wavelength dipole, and solution of (2.13) gives

R, — @9—” — 73 ohms (2.14)

Nothing has appeared in the development to indicate whether or not the current
and voltage at the end of the transmission line are in phase, so there is no information
at this stage about the reactance of the dipole. This subject will be explored in Part
HI, which is concerned with the impedance of antennas. There it will be found that
the current distribution on the dipole needs to be known more accurately in order to
solve for the input impedance, and that this impedance is a function of the length 2/
and diameter d of the dipole. However, for 2/ == 4/2 and 2/ >> d, the real part of the
impedance is close to 73 ohms.
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Now attention can be turned to the second special case.

2. The short dipole, 2/ < 4.

The terms cos (k/ cos €) and cos (k/) that appear in Equation 2.6 can be expanded
in power series which converge rapidly if k/ is small. One obtains

— 2 5 (kl)Z 2 '
@y(8) = —KkI1, sin 0[1 — 0+ cos2) + - (2.15)
The input current to the dipole is given by
1=1msin(k1)=1m[k/—(£3’,)_3+ J (2.16)

Even for 2/ as large as A/4, it is seen to be a good approximation to write
Qy0) = —kI*I,sinf = —Ilsin @ 2.17

Thus the short dipole also gives a vertically polarized field pattern that is doughnut-
shaped, a little bit broader than Figure 2.4, but not significantly so. Where the short
dipole differs radically from the half-wave dipole is in its input impedance. To see the
effect on radiation resistance, (1.99) can be used to obtain

®,40) = % (1&;:;)122 sin? 6 (2.18)

If (2.18) is integrated over a full sphere of radius r, the result is

_ (kD?nl?
Py =15 (2.19)

The peak directivity for a short dipole can be obtained as in Equation 2.12 and is
found to be 1.5, not much less than the value for a half-wavelength dipole.

Since the radiation resistance can be defined by P,,; = (1/2)I*R,,;, Equation
2.19 yields

R, =20 (”TL)Z (2.20)

in which L = 2/ is the length of the short dipole.

As an example, if 2/ = A/8, R,,; = 3 ohms, a value considerably lower than the
value of 73 ohms found for a half-wavelength dipole. The effect on the reactive com-
ponent of the input impedance of a dipole is even more drastic as it is shortened. For
a finite dipole diameter d, the reactance is positive at 2/ = 4/2, goes through zero at a
dipole length slightly below A/2, and then becomes increasingly negative as 2/ is
shortened further. For 2/ = /8, it is not unusual for X to be as much as 1000 ohms
capactive. This can be tuned out by a suitable inductance placed at the feeding point,
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but the dipole reactance changes so rapidly with frequency at these short lengths that
the combination is quite narrow band. This subject will be explored in more depth in
Part III, where a study of the input impedance of a dipole is undertaken.

2.3 Images in a Ground Plane

The results of the previous section can be extended to the case of a monopole over a
large highly conductive ground plane, or a dipole in front of it, by invoking the method
of images. Because of these present applications and others to be encountered in later
chapters, it is desirable at this point to digress and discuss the images of both electric
and magnetic current elements.

Consider first an electric current element, situated at the origin, and oriented in
the z-direction. The magnetic vector potential function due to this single element is

lzldl ej(“"_k') (221)

A = Anus'  r

The use of (1.89) in spherical coordinates gives

_cr ddl eferkor ik 2 . jk L) . J
o ja)4nﬂal r \:l" <T I r2> COSB+ 19( k + 'r—+ rz Slne (222)

When this expression is converted to Cartesian components, one obtains

2 I Jlwt—kr) 3 3 . .
dE == jc—co . 4712161 € p {[(—kz - J—r—lf =+ 75) sin 8 cos 9}[11 cos ¢ +- 1, sin @]

(B 2o (oo B o)
(2.23)

Let the result of (2.23) be applied to the case of an electric current element
normal to and a distance & above an infinite, perfectly conducting ground plane, as
shown in Figure 2.5a. This current element will induce a current distribution in the
ground plane such that E,,,, = 0 along the ground plane. But the same effect could
be achieved if the ground plane currents were not there and an image current element
were a distance d below the ground plane and in phase with the actual element. To
see this, one should observe from Figure 2.5a that for any point in the ground plane
r'=r,8 =n—0,and ¢ = ¢. Since dE' is also expressible in the form of (2.23), if
I'dl’ = Idl, it follows that dE, = —dE, and dE, = —dF, because sin (n — 8) = sin 6,
but cos (x — ) = —cos . Thus dE + dE’ has only a z-component, as required. The
result is independent of d.

If this exercise is repeated, but with /dl parallel to the ground plane as shown in
Figure 2.5b, then the proper image is oppositely directed. This can be demonstrated
by noting that now, for any point on the ground plane, r' =r, 8’ =6, and ¢' =
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Fig. 2.5 Images in an Infinite Ground Plane
2n — ¢. Thus if I'dl’ = —Idl, it follows that dE,, = —dE, and dE, = —dE,. But

dE!, = dE, because sin (2 — ¢) = —sin ¢. Therefore dE + dE’ has only a y-compo-
nent, as required, and this result is independent of d.

If a magnetic current element 7,,d1 replaces the electric current element, one can
write, as a special case of (1.110b),

. lzlmdl ei(wr—kr)

dF = Aruzt  r

(2.24)

Use of (1.120) gives an expression identical to (2.23),except that ¢ B replaces 4E on the
left and a factor ¢? is deleted on the right. Now the boundary conditions require that
B.ormat = 0 on the ground plane instead of E,,,, = 0. For this reason, in Figure 2.5¢
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the image is seen to be oppositely directed, whereas in Figure 2.5d the image is seen to
be codirected with the current element,.

These results can be summarized by saying that the image of an electric current
element is codirected if the element is perpendicular to an electric ground plane, and
is oppositely directed if the element is parallel to the ground plane. The image of
a magnetic current element is oppositely directed if the element is perpendicular to an
electric ground plane, and is codirected if the element is parallel to the ground plane.

Since any antenna can be viewed as a collection of these elementary current
elements, the results just stated are also true in aggregation, that is, at the macroscopic
level.

2.4 A Monopole Above a Ground Plane

When the results of the previous section on images are invoked, the development of
the fields due to a center-fed dipole, considered in Section 2.2, can be extended to the
case of a monopole above a ground plane. Figure 2.6 shows the arrangement; the
images, taken together with the monopole, are seen to replicate the dipole. Thus the
value of @46) in z > 0 is given by (2.6), the fields and power pattern for a quarter-
wavelength monopole are given by (2.8) through (2.10), and the corresponding results
for a short monopole are given by (2.17) and (2.18).

One notable difference is that the monopole is only radiating into a half-space,
so the field pattern is only the upper half of Figure 2.4. Implicit in this result is the
assumption of an infinite, perfectly conducting ground plane. For a finite ground
plane composed of a good conductor, diffraction at the edges causes some radiation to
“spill over” into z < 0 with maximum radiation occurring at an angle above the
horizon. For an extensive but lossy earth, radiation along the horizon is diminished
due to the ohmic losses in the earth, and once again maximum radiation occurs at an
angle above the horizon. The monopole fed against a ground plane has its most

1
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Fig. 2.6 Vertical Monopole above ] ///\Im sin [k(/ + D))
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prominent application in broadcast antennas (such as the AM band) where omni-
azimuthal coverage is desired.

Another distinction between the monopole above an infinite, perfectly con-
ducting ground plane and a center fed dipole in a full space is that, for the monopole,
P,,; is half that of the center-fed dipole for the same value of I,,. As a consequence,
R,,, for a monopole is only half the value of R,,; for the corresponding dipole.
Another way to see this is to observe from Figure 2.6 that the voltage applied between
the monopole and ground is only half the voitage applied between the monopole and
its image.

2.5 A Dipole in Front of a Ground Plane

The method of images can also be used to determine the pattern of a center-fed dipole
which is parallel to and a distance /4 in front of a large ground plane, as shown in
Figure 2.7. If the current in the dipole is given by (2.2), the current in the image is the
negative of (2.2). A point on the dipole can be assigned the coordinates (0, A, {) in
which case the corresponding point on the image has the coordinates (0, —A, {).
Equation 1.102 gives @, = 0 and Equation 1.101 indicates that

!
@, ¢) — —1I_sin OJ' ISin [k(I — | ¢ |)]e*sinosinsccos o) gr
!
I, sin 0_[ Isin [k(I — |¢])]erk(hsivosiasrccosa gr

= —2jI,, sin @ sin (kA sin @ sin ¢) J.jl sin [k(I — [{]e*¢esedl  (2.25)
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The integral in (2.25) is the same as the one encountered earlier in (2.4) and thus

a0, ¢) — — k4£ilﬁ' 5 [cos (k1 cos 0) — cos ki) sin (khsin O sin ) (2.26)

Therefore the pattern of a dipole plus ground plane, in the half-space y > 0, is the
pattern of an isolated dipole multiplied by the factor 2; sin (kA sin § sin ¢). In the
half-plane ¢ = n/2, for & = A/4, the normalized pattern is similar to Figure 2.4. In
three dimensions, the pattern is ball-like.

2.6 The Small Current Loop

If a circular wire loop of radius @ small compared to a wavelength is fed by a two-
wire-line, as shown in Figure 2.8, it is a good approximation to assume that the current
is Je’** everywhere on the loop, with 7 a constant. Since the coordinates of a point on
the loop are given by

E=acosy n=asny (=0
and since

Idl = Ia(—1,siny + 1, cos y) dy

r P

av

Y —

Fig. 2.8 The Small Current Loop
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it follows that (1.101) becomes, for this case,

2n
ag(e’ ¢) — _Ia cos 0 J sin (W . ¢)ejka sin B(cos ¢ cos w+sin ¢ sin y) dW
0

2r—
= —Ja cos Hj ’ sin (y — @)elkasinfeostv=d) gy — &) 2.27)
-4

Since the integrand is cyclical in 2x, the limits on the integral in (2.27) can be shifted
to range from O to 2z, which is to say that the result is independent of ¢. When one
examines the even and odd nature of the functions sin y, cos (ka sin 8 cos ), and
sin (ka sin @ cos w) which comprise the integrand, it is a simple matter to show that

@0, ¢) =0 (2.28)

Proceeding similarly, one finds that, for the small loop, (1.102) takes the form

2z—¢
@0, ) = Ia j cos (y — @)erkesinocov=6) d(yy — B) (2.29)
-$
Once again, the limits of integration can be shifted, indicating @, is not a function of
¢ elimination of the odd terms in the integrand leaves

@.,(0) = 2jla jo sin (ka sin @ cos w) cos y dy (2.30)

If ka is assumed to be small, sin (ka sin 8 cos w) = ka sin 6 cos y and (2.30) becomes,
to good approximation,

@,(0) = j(na*I)(Kk sin 6) 2.31)

The far-field pattern is horizontally polarized and has a power density which,
from (1.100), is

0,48 = KN 2 (2.32)

By comparing this result with (2.18), one can conclude that a short dipole and a
small loop have similar patterns, with a difference of 90° in polarization. Thus the
applications for a small loop are similar to those for a short dipole—situations in
which an omni-azimuthal coverage is needed and in which a null can be tolerated
along some axis. The distinction is that the short dipole gives vertical polarization,
whereas the small loop gives horizontal polarization.

Integration of (2.32) over a sphere of radius r, with the result equated to /2R, ,,
yields

R, = 3207 (%)4 (2.33)
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As an example, if (¢/1) = 0.03, R,,, = 0.25 ohms. By contrast, from (2.20), a short
dipole of length 2//1 = 0.06 has a radiation resistance of 0.7 ohms. The radiation
resistance of a small loop can be raised by a factor #? if n closely wound turns are
used.

The preceding analysis is also applicable for large ka as long as one is able to
assume a uniform current /e/** on the entire loop. For this more general case, (2.30)

gives
@,0) = j2rla] (ka sin 6) (2.34)

with J, a Bessel function. As ka increases, more and more fine structure appears in
the pattern, through the behavior of J,(ka sin 8). As an illustration of this, Figure 2.9
shows a polar plot of the field pattern of a loop for which ¢ = 2.54, and this is con-
trasted to the pattern when a = 0.054.

The achievement of a uniform current Je/* in a large loop requires complicated
feeding arrangements. Some examples of how this can be approximated are given by
J. Blass.?

6=0°
6 =0° E,(8)
E (8)
a/x=0.05
alx=2.5

Fig. 2.9 Normalized E-Field Patterns of a Small Loop and a Large Loop; Linear Scale
(From Antennas by J. D. Kraus. Copyright 1960, McGraw-Hill. Used with permission of
McGraw-Hill Book Company.)

2.7 Traveling Wave Current on a Loop

Prior to a discussion of the practical problem of radiation from helices, it is useful to
consider the hypothetical situation of a loop with circumference one wavelength,
supporting a current distribution Je/@ % with y the angle measured from the X-
axis, as shown in Figure 2.8. This can be viewed as a wave traveling along the wire at

3], Blass, “Loop Antennas,” Antenna Engineering Handbook, ed. H. Jasik (New York:
McGraw-Hill Book Co., Inc., 1961), Chapter 6.
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the speed of light, repeating itself every 2z radians, as required by the physical bound-
ary conditions. For this case, because k& = 1, Equation 1.101 becomes

2n
@y, 9) = —Iacos 8 J.O sin ( — ¢)e/sinfeoslv=9 o=iv dys
2r—¢ i
= —TacosBe [ sin(y — g)el I Ve d(y — §)  (2.39)
-4

Since the integrand is cyclical in 27, the limits of integration can be changed to range
from 0 to 2z. Thus @,(@, ¢) is a function of ¢ only in the multiplicative factor e~ 7*.
This is reasonable in view of the ¢-symmetry of the structure and the assumed traveling
wave distribution.

When the even and odd nature of the terms in the integrand of (2.35) is explored,
it is found that

A0, §) = (4jla cos B)e~ 7 J. a sin? y cos (sin 8 cos y) dy (2.36)

0
In like fashion, (1.102) becomes, for this case,

a0, §) — Alae* jo"/z cos? y cos (sin 8 cos y) dy 2.37)
Polar plots of normalized {@,| and |®@,|, which are also normalized plots of | E,| and
| E,|, are displayed in Figure 2.10. One needs to imagine that these field patterns are
sweeping azimuthally as e/*~%. It is interesting to observe that, whereas the small
loop gave a doughnut pattern with nulls at § = 0°, 180° (see Figure 2.4 as a prototype),
the ka = 1 loop gives a “figure-eight” pattern for E,, with a null at 8° = 90°, and an
almost omnidirectional pattern for E,.

Fig. 2.10 Normalized E-Field
Patterns of a Traveling Wave Loop
Antenna; Linear Scale
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From (1.95), (2.36), and (2.37), it is a simple matter to deduce that

ej(wt—kr)

E(r,0° ¢,1) = E(r, 180°, ¢, 1) = wu,lae ™7 e (1, — j1,)

= QoI o s 1o - 1,07 D] (2.38)

The factor 1, cos wt + 1, sin wt that appears in (2.38) can be given the following
interpretation: If a measurement is made of E at either pole of a large sphere centered
on the loop, the polarization of E will rotate synchronously with a period 7 = 27/,
but the magnitude of E will be independent of time.

This is an example of circular polarization. Figure 2.10 indicates that, as one
departs from 8 = 0° or 180°, E, decreases more rapidly than does E,, but Equations
2.36 and 2.37 reveal that the two component polarizations are still 90° apart in time
phase. The polarization becomes elliptical. In a #-region not too far from either pole,
the ellipticity is not great and the polarization remains almost circular.

2.8 The End-Fire Helix

A practical radiator of wide applicability is the helix, mounted against a ground plane
and fed by a coaxial line, as shown in Figure 2.11 Experiments have shown* that if the
circumference of the helix is approximately one wavelength and if there are several

Fig. 2.11 Coaxially Fed Helical Antenna with Ground Plane

4See, for example, J. D. Kraus, Antennas (New York: McGraw-Hill Book Co., Inc., 1950),
Chapter 7.
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turns per wavelength, a primary component of current on the helix is a wave traveling
along the wire at approximately the speed of light, and that the radiation pattern is
beamlike off the end of the helix and essentially circularly polarized.

To construct a model that will explain this behavior, assume that the parametric
equations of the helix are

E=acosy n=asiny { = by (2.39)

where the notation of Figure 2.8 is once again applicable, with the helix replacing the
loop. An infinitesimal length along the helix is given by

dl = (—1,asiny + l,acosy + 1,0) dy (2.40)

Assume that there is an outgoing current wave traveling along the helix at the phase
velocity » = pc and decaying in amplitude to account for radiation leakage. Then

I(s) = Ipe= P (2.41)

where s is the distance measured along the helix from the beginning of the turn closest
to the ground plane, /; is the input current, and & + jf is the complex propagation
constant.

It is desirable to convert (2.41) to a function of the angle y. If one imagines that
the helix is unwrapped by rolling out the cylinder on which it is wound, one turn of
the helix becomes a straight line of length L, as shown in Figure 2.12. Since one turn
of length L corresponds to a change of 2z in the value of y, it follows that (s/L) =
w/2n. Thus

I(W) — Ioe~[(<1+jﬁ)(L/2n)]w (2.42)
T
s>/
L
| Fig. 2.12 An Unwrapped Turn of
’ 2mb a Helix
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With the use of (2.39), (2.40), and (2.42), Equations 1.101 and 1.102 can be written, for
a helix of N turns, in the forms

27
G0, 9) = L ¥ I(y)[—a cosOsin (y — @) — bsin G)e/*lasindcostv=g)ruboosbl gy,
(2.43)

ad’(e’ ¢) — J.:NN I(l//)[a cos ('// _ ¢)] ejk[a sin @ cos(y—¢) +yb cos 8] dl// (244)

The repetitive nature of the structure can be used to convert (2.43) and (2.44) into
expressions that are more easily interpreted. If (£,, #,, {,) is a point on the helix in
the first turn corresponding to an angle ¥ = y,, then at an angle y = y, + 27zn there
is a point (&,, 11, {,) on the ath turn for which

¢, =&, N, =M (=1L + 2mnb (2.45)

Further, from (2.42)

Iy, + 2nn) = Iy, e~ ot (2.46)

When this information is substituted in (2.43) and (2.44), the result is that

@0, §) = f(0)g.(0, $) (2.47)
a0, ¢) = f(0)g.(0, $) (2.48)

in which
f(@) — i‘: e-—jZnn[(ﬂ—ja)(L/Zn)—-kbcos0] — ﬁ: e*jlnnh(a) (2.49)

2.0, ¢) = —1I, J-Z" e ™[a cos O sin (W — @) -+ b sin Gle/*esinbeostv-4 gy (2.50)
0
£:(0.8) = 1, [ e la cos (y — )leresinomiv=e dy (2.51)
1]

The function f(#), which is common to @, and @, is called the array factor of
the helix and accounts for the fine structure in the field patterns. It is seen to be a sum
of N phasors, one each due to the N individual turns of the helix. These phasors rotate
in the complex plane as @ is varied, and in general are not coaligned. However, they
will have a maximum sum at 8 = 0° if

BL ., _
b= —kb=m (2.52)
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in which m is an integer. Since f = (w/v) = (2nv)/pc = k/p, this expression can be
solved for p to give

o LjA
P = Tmbihy T m (2.53)
As seen from Figures 2.11 and 2.12, 2#b is the axial progression of one turn. Typically,
helices are found to radiate end-fire (beam at § = 0°) when (L/1) is somewhat greater
than unity, (2nb/2) = 0.3, and p is somewhat less than unity. Therefore the proper
value to take for m in order to model this behavior 1s m = 1. With this choice for m,

Lol

w0 =1+ kb(1 —COSG)—]E

(2.54)

The effect of & turns out to be small in practical situations and results primarily
in null-filling. For example, if the current wave is assumed to be damped to —10dB
of its input value by the time it reaches the end of the helix, then e~*"* = 0.316 and
oL/2n = 0.183/N. For N >> 5, inclusion of the term involving & in (2.52) causes only
a minor change in f(8). As an illustration of this, Figure 2.13 shows polar plots of
f(6) for Qna/i) = 1, 2nb/A) = 0.3, and N = 6, with and without the & term in 4(8),
and under the assumption that e~*¥ = 0.316.

Figure 2.13 also shows that the dominant part of /() is in the neighborhood of
@ = 0°. But in this neighborhood, with « ignored, A(8) = 1 and (2.50) and (2.51)

Y ™ 9

(a) Unattenuated current wave (b) 10dB attenuation in current wave

Fig. 2.13 Array Factor (@) for a Six-Turn Helix; Polar Plots; Linear Scale
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approximate the earlier equations (2.35) and (2.36), namely, the field patterns for a
single loop of circumference 2z = A, carrying a current wave traveling at the speed
of light.

In summary, this analysis suggests that the field patterns of a helix radiating
end-fire are, to good approximation, the product of f(f) with the patterns shown in
Figure 2.10. Since g,(0, ¢) and g,(8, ¢) are in time-phase quadrature, @, and @, for a
helix combine to give a rotationally symmetric pattern, consisting of a main beam at
end-fire plus sidelobes, the pattern being essentially circularly polarized in the neigh-
borhood of § = 0°. Because g,(8, ¢) and g,(f, ¢) are broad patterns (compare with
Figure 2.10), the fine structure in @, and &, comes from f(f). For the example of a
six-turn helix just cited, the product of Figure 2.13a with Figures 2.10a and b gives
the polar plots of @, and @, shown in Figure 2.14. Both of these patterns are figures of
rotation.

(a) 1E4(8, 9)/Ey(0°, 9)I (b) 1E4(0, 9)/E,(0°, 9

Fig. 2.14 Approximate Normalized E-Field Patterns for a Six-Turn Helix

The actual current distribution on the helix is found experimentally to be more
complicated than has been assumed here. Since the total current at the end of the helix
is perforce zero, there must also be a damped wave traveling back toward the ground
plane. In addition, there are quasi-static mode currents corresponding to monopole-
type radiation. But a current wave of the type assumed in (2.41) is the dominant factor
in explaining end-fire radiation and theoretical patterns such as those shown in
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Figure 2.14 are in good agreement with experiment. The interested reader should
consult J. D. Kraus?® for a detailed discussion of this topic. A different approach to the
analysis of the helical antenna can be found in E. A. Wolff.®
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PROBLEMS

2.1

2.2

23

2.4

25

2.6

Show in detail that, for a filamentary center-fed dipole with an assumed current distribu-
tion 1({) = I, sin[k(/ — |{})], the magnetic vector potential function, with the outgoing
spherical wave factor deleted, is given by

21,
ksin @

Q0 = — [cos (ki cos 8) — cos(k!)]

With the contribution of a magnetic current element to the electric vector potential func-
tion given by (2.24), determine dB in Cartesian form and use the result to demonstrate
that the images shown in Figures 2.4c and 2.4d are correct.

Find the expression for the power density radiated by a dipole in front of a ground plane.
Numerically integrate this result over a half-space and use the answer to estimate the
radiation resistance when the dipole is one-half wavelength long and # = 4/4.

If the earth is assumed to be a perfectly conducting ground plane, the radiation field of a
vertical quarter wave monopole is unattenuated. The rms value of the electric field along
the horizon is given by

617 ,— .
E = ~== /P millivolts per meter

with r in miles and P,,4 in watts. Verify this relation and derive the corresponding result
for a short monopole.

A small current loop, a = 0.024, is to be designed to have a radiation resistance of
25 ohms. How many turns should be used?

Find the pattern of a small loop of radius a < A parallel to and a distance 4 above a
perfectly conducting ground plane.

sKraus, Antennas.
6§E. A. Wolff, Antenna Analysis (New York: John Wiley and Sons, Inc., 1966), Chapter 9.



radiation patterns of horns,
slots, and patch antennas

3.1 Introduction

The material in this chapter is sibling to what was presented in Chapter 2. There,
various type I (actual-source) antennas were introduced and their radiation patterns
deduced. Here, several simple but practical type I1 (equivalent-source) antennas will
be analyzed. First to be treated will be the open-ended waveguide, which will then be
allowed to evolve into a horn antenna. Next, a center-fed slot in a ground plane will
be studied and its equivalence to a center-fed strip dipole established. Attention will
then turn to waveguide-fed slots, their excitation, and their radiation patterns. Finally,
a metallic patch bonded to a grounded dielectric slab will be viewed as an aperture
antenna and analyzed in terms of equivalent sources along its perimeter.

As in the case of the antennas studied in Chapter 2, these configurations find
many practical applications as single radiating elements, but are also used in arrays.
This is particularly true of waveguide-fed slots, but arrays of horns are not unusual,
and patches, stripline-fed slots, microstrip dipoles are all employed as array elements
because of such desirable features as having a low profile, being lightweight, and being
inexpensive to manufacture.

3.2 The Open-Ended Waveguide

A prototype for the horn antenna is a section of rectangular waveguide, open at its
end and terminated in a large ground plane, as shown in Figure 3.1. It will be assumed
that the dimensions a and b are chosen so that only the TE,, mode will propagate,
and that the waveguide section is long enough so that only a TE,, mode is incident on
the waveguide mouth. Back-scattering will be in many modes, including a TE,, mode,
since the open-ended waveguide is not inherently matched to free space.

Efforts to deduce the complete current distribution in this structure, including
currents in the ground plane, the waveguide walls, and the probe—followed by efforts

79
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to sort out which of these currents contribute to radiation and which do not—is a
forbidding task. This is a classic example of a situation in which the fields can be
estimated more easily than the actual sources. For this reason, a source-excluding
surface S is shown surrounding the antenna in Figure 3.1. So that advantage may be
taken of the image principle, this surface is chosen to lie within the ground plane, but
to have a slight bulge at the mouth of the waveguide. Thus the actual sources are all
excluded, except for those that have been induced in the ground plane by the elec-
tromagnetic waves emerging from the open-ended waveguide.

e T T T a
- - g
s
g 2
// K =
/ Microwave _g- Ground plane
/ transmitter £
{ o Y
,’ Coaxial o
| probe s T
\ ' T Waveguide
t Waveguide o~ 7 g
\ J' mouth
\
\ —a—
\
\
\ 2
\ =
N S
\\ -g
& 2
gy 8
f‘\e; ~_ &}
C'Illa’l-\ ~_
Og SU)}‘\ -
aCely -

Fig. 3.1 Open-Ended Waveguide Flush-Mounted in a Large Ground Plane

The large ground plane will be modeled by assuming it is infinite in extent. Then
S can be viewed as composed of a rectangular boss S, at the waveguide mouth plus an
otherwise infinite plane S, lying in the ground plane and just below its outer surface,
plus an infinite hemisphere S;, which encloses the transmitter.

The radiation pattern will be determined by following the procedure outlined at
the end of Section 1.13. The lineal current densities on S are given by K =1, x H
and K, = —u;'1, x E. But E and H are identically zero over the hemisphere S;.
Therefore equivalent sources, in the form of electric and magnetic current sheets,
need to be placed only on the rectangular boss S,. With the transmitter turned off,
these current sheets—plus the actual sources in the ground plane—will maintain
the actual fields in z > 0, while causing no fields in z << 0, including the region
inside the waveguide.
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For this reason, the mouth of the waveguide can now be closed off with con-
ductor, causing the ground plane to become an infinite plane sheet with no holes. The
seemingly peculiar situation emerges in which the two lineal current sheets in the boss
S, combine to induce the actual current distribution everywhere in the hole-free
ground plane except where the waveguide mouth had been. In that part of the hole-
free ground plane, they combined to induce no current at all. This is a surprising
effect, but one must remember that these are not physically realizable equivalent
sources, but instead, convenient mathematical constructs.

With the presence of a hole-free infinite ground plane, the method of images
can be invoked. The fields in z > 0 can be computed either from the two lineal current
sheets on S, plus the actual currents in the ground plane, or by the lineal cur-
rent sheets on S, plus their images. But from the results of Section 2.3, the image
of K =1, x H is counterdirected, whereas the image of K, = —u;'1l, x E 1s
codirected. Therefore, as the boss is lowered so that S, approaches infinitesimally
close to the surface of the ground plane, K and its image cancel; however, K, and its
image add. This simple formulation can be summarized by saying that the radiation
pattern in z > 0 can be deduced solely from the magnetic lineal current distribution
—2u5'1, x E in the mouth of the waveguide.

Next to be considered is an estimation of Er in the waveguide mouth. With
the origin of coordinates taken at the middle of a transverse cross section rather
than at a corner, the electric field of the incident TE,, mode can be expressed in the
form

Ei = C cos %’ﬁeﬂmf-ﬂwv (3.1)
If the reflection coefficient for the TE,, mode is I', the back-scattered wave is
E} = IC cos n—:e"(“"”’“”) (3-2)

It will be assumed that these two fields comprise the bulk of Ey in the apsrture.
Then

E: =1,C’ cosn?f (3.3)
at a source point (&, n, 0), with C" = C(1 4 I'). As a consequence,
K. = 1,2u5'C’ cos%é 34

Use of the generic integral forms (1.130) and (1.131) gives
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b/2

Fy(0, ¢) = 2u5'C’ cos 0 cos ¢ f e”‘s“‘ d¢cosprnsing) gl dp  (3.5)
—a/2 J-b/2
(9 ¢) — __2#61(? Sln ¢ f ejk sin (& cos ¢+ sin ¢) déd” (36)
—a/2 —b/2
The integral common to (3.5) and (3.6) reduces to

Jim cos %’f cos( 276 sin 8 cos ¢> dé i, cos (%ﬂ sin @ sin d)) dn 3.7

which readily integrates to give

546, $) — 45" abC’ cos 6 cos § —£ g’(‘ff)){)z S“(‘ﬂ(;)Y ) (3.8)
540, ) = —4nuz'abC" sin ¢ X E{gf })()2 Slf(’;;’)Y ) (3.9)
in which
X = %sm 6 cos ¢ (3.10)
Y — —i—smﬁsm(ﬁ G.11)

From (1.123), since A = 0, it follows that £y, = —xF, and E, = kT, with x a
common multiplier that includes the outgoing spherical wave factor. Therefore, in
the XZ-plane (¢ = 0°, 180°), Equations 3.8 and 3.9 indicate that there is only an E,
component, given in normalized form by

cos (7% sin 0) G512

—4 (nﬂa sin 0)

E,0) = 7 cos 0

In the YZ-plane (¢ = 90°, 270°), there is only an £, component, given by

. (nb .

sin (T sin 9) G13)
wh . ’
»

Ee(e) =

sin 8

Polar plots of these two principal-plane field patterns, for the typical values
(a/A) = 0.7 and (/1) = 0.35, are shown in Figure 3.2. Plots for intermediate ¢-cuts
show a smooth transition, with the net polarization always parallel to the YZ-plane.
The pattern is seen to be quite broad, consistent with the small size of the aperture.
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Q° 0°

90° 90°
(a) E4(8,0°/180°) (b) E,(6,90°/270°)

Fig. 3.2 Normalized E-Field Patterns of an Open-Ended Rectangular Waveguide with
Large Ground Plane; Polar Plots; Linear Scale; a = 0.74, b = 0.354

3.3 Radiation from Horns

The functions [cos (7 X)]/[r? — 4(r X)?] and [sin (7 Y)]/= Y that occur in both (3.8) and
(3.9) are plotted versus X and Y in Figure 3.3. The two functions are seen to have
similar features—an even symmetry and a central main lobe, with minor lobes that
alternate in sign and diminish in height as X or Y is increased. From (3.10) and (3.11)
one sees that the range of X and Y, as the pointing direction (8, ¢) varies through the
half-space z > 0, is

a
—w=X=

a b b
7 =7

IA

A

Thus if one wants the radiation from this rectangular aperture to consist of a main
beam and side lobes, clearly what is needed is to make a/A and b/4 suitably large

(how large depends on the desired narrowness of the main beam). For example, in the
YZ-plane only the factor [sin (z Y)]/(z Y) is involved, and Figure 3.3 indicates that the
null between the main beam and first side lobe occurs at an angle §, given by

sin 8, = (3.14)

A
b
Thus the larger b/A, the smaller €, and the narrower the main beam in the YZ-plane.
Similarly, in the XZ-plane, only the factor [cos (zX)]/[n? — 4(xX)?*] is involved, and
Figure 3.3 indicates that the null between the main beam and first side lobe occurs at
an angle 8, given by

3
2

o>

sin 8, = (3.15)

Here again, the larger @/, the narrower the main beam in the cut ¢ = 0°, 180°.
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Fig. 3.3 Rectangular Plots of Principal Factors in Horn Pattern Formulas

One reaches the important conclusion that a/A controls the beamwidth in the
XZ-plane, and b/A controls the beamwidth in the YZ-plane. But how does one get
these larger values of a/1 and b/A for a rectangular waveguide without setting up the
uncontrolled propagation of higher order modes? Clearly, the answer is to provide a
smooth transition from a size in which (a/1) < 1 and (b/A) < 0.5 to a size where
a'[/A and b’/A are large enough to produce the desired narrow beam pattern.

A common method for achieving this, because of its constructional simplicity,
is to use a pyramidal horn, pictured in Figure 3.4. Ceteris paribus, the longer L, the
smoother the transition. Practical limitations usually force adoption of some mini-
mum L, below which the performance of the horn is degraded unacceptably. This
typically corresponds to a flare angle of about 20°.

It should be noted that the presence of a significant flare angle has several effects
on the pattern. First, forward-scattered modes of higher order are set up at the flare
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Fig. 3.4 A Pyramidal Horn Antenna

discontinuity. Some, with lower indices, do not have to travel too far before they are
no longer cut off, and their presence at the ultimate @’ by b’ aperture affects the
equivalent-source distribution and thus the pattern (though the effect is not necessarily
bad). Second, the flare means that the dominant mode (expanding TE,) that reaches
the horn mouth has a curved phase front, which tends to broaden the main beam of
the pattern somewhat and also to fill in the nulls.

Strictly speaking, the field pattern formulas in (3.8) and (3.9) apply only if TE|,
modes with plane phase fronts are exclusively present in the aperture, and if the horn
mouth is terminated in an infinite ground plane. In practice, horns are used without
ground planes more often than with ground planes. However, if a'/4 and b'/4 are
reasonably large, Figure 3.3 shows that the radiation at 8 = 90° is small, and it
ceases to be important whether the ground plane is there or not. Thus, despite the
fact that (3.8) and (3.9) assume the presence of a ground plane and ignore the presence
of higher-order modes, as well as any phase curvature to the TE,, mode, they provide
a good first approximation to the field patterns of a pyramidal horn. As an example
of this, Figure 3.5 shows the comparison of theory and experiment! for the principal
plane cuts of a pyramidal horn for which a'/A = 1.82 and b'/A = 1.47.

Refinements which can account for many of the effects that have been ignored
in this introductory treatment can be found in the literature. W. C. Jakes,? has
provided a comprehensive overview of the subject and A. W. Love?® has compiled an
excellent collection of journal paper reprints.

This entire discussion could be repeated for an open-ended circular waveguide
and the conical horn that evolves from it in order to produce a narrow beam of radia-
tion.

1C, W. Horton, “On the Theory of the Radiation Patterns of Electromagnetic Horns of
Moderate Flare Angles,” Proc. IRE, 37 (1949), 74449,

2W. C. Jakes, Jr., “Horn Antennas,” Antenna Engineering Handbook, ed. H. Jasik (New York:
McGraw-Hill Book Co., Inc., 1961), Chapter 10.

3 Electromagnetic Horn Antennas, ed. A. W. Love (New York: IEEE Press, 1976).
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00
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Theory Theory
— - —= Experiment — —=—= Experiment
(a) E-plane pattern (b) H-plane pattern

Fig. 3.6 Normalized Power Patterns of a Pyramidal Horn Antenna; Polar Plots; Loga-
rithmic Scale; a’' = 1.824, b’ =1.471 (€ 1949 IEEE. Reprinted from C.W. Horton,
Proc. IRE, pp. 744-749, 1949.)

3.4 Center-Fed Slot in Large Ground Plane

An extremely important antenna element, not so much in its own right, but more
because of its derivatives, is the narrow rectangular center-fed slot in a large ground
plane, as shown in Figure 3.6. The length and width are 2/ and w, with 2/>> w. A two-
wire line can be imagined to be feeding the slot at the central points P, and P,.
With w { 4, the slot itself resembles a section of two-wire line, the two “wires”
being semi-infinite ground planes with adjacent edges at x = 4 w/2, with these
“wires” shorted at z = +/. A standing wave of voltage exists on this section of line

Fig. 3.6 Center-Fed Slotin a Large
Ground Plane
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such that the electric field in the slot is given to good approximation by
EG 70 - LEGOD - L msin k(- [()) . (3.16)

in which V,, is the peak voltage.

If the generator and two-wire line which attaches to the points P, and P, are in
y <0, the fields in y > 0 can be determined by the same technique used in connection
with Figure 3.1. The actual large ground plane is modeled by an infinite ground plane.
A source-excluding surface S is constructed that consists of a boss S, in front of the
slot, plus an otherwise infinite plane S, inside the ground plane, plus an infinite
hemisphere in y < 0. Use of the image principle reduces all the sources to a lineal
magnetic current sheet on S, given by

Ko = 2451, X L 2msin [k(/ — |{])]
(3.17)
— 2 e k1))
Equation 3.17 is identical in form to Equation 2.2. For this reason, a narrow
center-fed slot in a large ground plane is often referred to as a magnetic dipole. The
analysis of Section 2.2 can be repeated with the principal result that

Fo(0) = 4”—0(;/ [cos (ki cos B) - - cos (k1)] (3.18)

For a slot one-half wavelength long, use of (1.123) and (1.124) gives

Vel ) cos [(=)2) cos 0]
E, = T T [ sin 6 ] (3-19)
V., el k0 Teos [(7/2) cos 8]
Hy=jone [ dicon 1 (3.20)

which are in the same form as (2.8) and (2.9), but with the polarization rotated 90°.
The field pattern shown in Figure 2.4 thus also applies for a half-wavelength slot in a
large ground plane.

Since there is no A for this antenna, (1.125) yields

8V 2/nl cos?(n/2) cos Hﬂ
Pro0) = (4nr )2[ sin* @ J (3:21)

If the presence of the transmitter and two-wire feed in y << 0 can be assumed to have
little influence on the far-field in y < 0, then (3.19) through (3.21) apply on both
sides of the ground plane. Under this assumption, the total power radiated is

Prog = (0.609) 2 /1 (3.22)
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Since, for this case of / = /4, the peak input voltage to the slot (at the terminals
P./P,) is V,, the feeding transmission lines can be said to be delivering the power

2
% VigG,., — (0.609)4_‘;—;/.’1 (3.23)

to a conductance G,,, placed across its terminus. The value R,,; = 1/G,,, is called the
radiation resistance of the center-fed half wavelength slot. From (3.23),

_ nn/4 _
R = 5o = 486 ohms (3.24)

An interesting relation results if (3.24) is multiplied by (2.14), for then

dipole , Pslot . 0609” 7{”/4 — Z]_i
Rétgote . Rele —( x )(0_609) =1 (3.25)

This is a special case of Booker’s relation®. It will be shown in Chapter 7 that
. n?
Zdlpulz_Zslo.’ — _4__ (326)

for any length 2/ of a narrow dipole, as long as the complementary slot in a ground
plane has the same length.

The analysis undertaken in Section 2.2 for a short dipole could be repeated here
for a short slot. All of the results are similar, with E and H interchanged; this is left
as an exercise.

The practical applications of a two-wire fed slot, cut in a large ground plane
and radiating into both half-spaces, are few. However, if the slot is “boxed in” on one
side by a metallic-walled cavity and the dimensions of the cavity are properly chosen,
the radiation in one half-space is hardly affected, whereas in the other half-space, it is
virtually eliminated. The presence of the cavity affects the input impedance of the slot.
This is a subject which will be treated in Chapter 8.

3.5 Waveguide-Fed Slots

Most antenna applications involving slots unify the feeding and radiating structures
by placing the slots in one of the walls of a rectangular waveguide. This insures a
nonradiating transmission line, permits precise machining of the slots, and provides a
mechanically rigid structure. Usually the slots are arranged in arrays, which compli-
cates the feeding because of mutual coupling. That subject will be treated in Chapter

4H. G. Booker, “Slot Aerials and Their Relation to Complementary Wire Aerials (Babinet’s
Principle)”, J.I.E.E. (London), 93, part I11A (1946), 620-26.
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8. For now, the discussion will be limited to the behavior of a single slot, cut in one of

the walls of a rectangular waveguide and excited by a TE,, mode.
With axes chosen as shown in Figure 3.7, the normalized field components for a

TE,, mode, traveling in the positive z-direction, are

Hz :J Cosn_‘xei(wr—/hoz)
a

— X i
H, = —n/f;’ sin 2% gter=p12) (.27)
E = Wl sin ﬂ_x ei‘.wr-ﬂln:)
' mja a

TY
b /

V4

Fig. 3.7 Rectangular Waveguide

The normalization in (3.27) consists of choosing the peak magnitude of the longitu-
dinal component to be unity, but adjusting the phase by 90° through the presence of
the factor j. This causes the transverse components to have pure real amplitudes, a
convenience since they enter into the Poynting vector calculation of power flow.
Figure 3.8a shows the electric field distribution at a fixed time, and Figure 3.8b

Zied)

(a) Electric field and  (b) Magnetic field (¢) Current flow
charge distribution

Fig. 3.8 Field and Source Distributions in a Rectangular Waveguide for
7E10 Mode (From Electromagnetics by R.S. Elliott. Copyright 1966,
McGraw-Hill. Used with permission of McGraw-Hill Book Company.)
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illustrates the corresponding distribution of magnetic field. The charge and current
distribution in the waveguide walls can be determined using the same procedure which
led to Equations 1.112 and 1.114. Figure 3.8a shows the instantaneous distribution
of charge on the upper broad wall and Figure 3.8c pictures the corresponding instan-
taneous current distribution. Over time, these patterns will propagate longitudinally
at the phase velocity of the TE;, mode.

If a narrow slot is cut in one of the waveguide walls such that its long dimension
runs parallel to a current line, the presence of the slot causes only a minor perturba-
tion in the current distribution, and negligible coupling to outer space occurs. Thus
the longitudinal slot on the center line in Figure 3.9a causes little disturbance, as can
be seen by studying the current distribution in Figure 3.8c. Such a slot is useful for
making measurements of the E-field inside the waveguide, since a vertical probe can
be inserted through this slot to sample the field. If the probe is permitted to move
longitudinally, VSWR data can be obtained.

// \

(a) Longitudinal (b) Inclined slot (¢) Inclined slot
slots in broad in broad wall in narrow wall
wall

Fig. 3.9 Some Practical Slot Configurations in the Walls of a Rectangular
Waveguide (From Electromagnetics by R. S. Elliott. Copyright 1966, McGraw-
Hill. Used with permission of McGraw-Hill Book Company.})

However, the longitudinal slot displaced from the center line in Figure 3.9a will
interrupt X-directed current; the more the displacement, the greater the interruption.
The electric field developed in this slot has as one of its manifestations a displacement
current which “replaces” the interrupted conduction current, This electric field can be
represented by its equivalent magnetic current sheet, and can radiate into outer space.

Similarly, the inclined broad wall slot in Figure 3.9b interrupts Z-directed cur-
rent, the more so the greater the inclination. This is another candidate for use as a
radiating element. Finally, the inclined slot in the narrow wall, shown in Figure 3.9¢,
will interrupt Y-directed current, the more the inclination, the greater the interrup-
tion. This slot is a third candidate for use as a radiating element.

A desirable feature shared by all three of these radiating-type slots is that there
is mechanical control over the amount of radiation, through choice of the amount of
displacement or inclination. What is needed is a set of design equations which reveal
this connection, a problem that is addressed in the next section.



3.6 Theory of Waveguide-Fed Slot Radiators?

It is assumed that the reader is familiar with waveguide mode theory, and thus it will
be stated without proof that the field components in rectangular guide can be expressed
in the normalized form

TE,,, mode ™,,, mode
H = jH,e  E = +jE.e™
E, = E, "7 E, = E, e (3.28)

H, = +H,,e"* H, = +H,,e7*

In (3.28) the subscript @ is shorthand for the double index mn, and

H,, = cos %X cos Y (3.29)
a b
. mAX . Ry
E,. =sin - sin 5 (3.30)
_ mm\? nm\? 2
Y=+ (—a) + (“17) .y (3.31)

The upper signs in (3.28) need to be taken for propagation in the positive Z-direction;
the lower signs for propagation in the negative Z-direction. The transverse field vectors
are given by

TE,., modes
__ou dH,, 4 9H,,
E. = rZ+ % (1" dy 1,75% >
) Il s (3.32)
- jyﬂ az az
Hnt - yaz + k2< a + 1! 0)} )
TM,,, modes
0E JE,
E . = JJ)a ( YViaz + 1 az)
* I+ KEI\"" ox ¥
Rz d (3.33)
H. — __ @€ ( 0E,, 1 0Ea,)
a 24+ K2\ dy v dx

5The results to be presented in this section were first obtained by A. F. Stevenson in a classic
paper “Theory of Slots in Rectangular Waveguides™, J. Appl. Phys., 19 (1948), 24-38. However, the
development follows an approach used by J. E. Eaton, L. J. Eyges, and G. G. MacFarlane, Microwave
Antenna Theory and Design, ed. S. Silver, vol. 12, MIT Rad. Lab Series (New York: McGraw-Hill
Book Co., Inc., 1949), Chapter 9.
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This information needs to be applied to scattering off a slot cut in one of the
walls of the waveguide. Without at this point specifying which type of slot it might be
from among those illustrated in Figure 3.8, imagine that the slot is contained in the
region bounded by z = z, and z = z,, with z, > z,. If the waveguide is assumed to
be infinitely long and a TE,, mode is launched from z = — oo, traveling in the positive
Z-direction, the incidence of this mode on the slot will cause a profusion of reactions.
Backward and forward scattering of all TE,,, and TM,,, modes is possible. Radiation
into outer space via the electric field set up in the slot is possible.

If the waveguide walls are assumed to be perfectly conducting, and if the g- and
b-dimensions are chosen so that all modes except TE;, are cut off, then a power
balance can be written that will connect the slot’s excitation to its displacement or
inclination. This can be done because (1) the power contained in the incident wave is
calculable; (2) the power radiated is also calculable if the electric field in the slot is
known; and (3) the forward and backward scattered waves in the TE,, mode can be
determined if the electric field in the slot is known. It is this last determination that
completes the linkage in the power balance equation.

To see the relation between scattering off the slot and the electric field distribu-
tion in the slot, consider two fields (E,, H,) and (E,, H,), both time-harmonic at the
common angular frequency w, and both satisfying Maxwell’s equations in a region V
bounded by a closed surface S. Let S be a rectangular parallelopiped with end faces
S, at z=z, and S, at z = z,; the remainder of S is a surface S; which is skintight
against the four interior faces of the waveguide between z, and z,. With S a source-
free region, the reciprocity theorem in the form of (1.136) is applicable and the two
fields are connected by the relation

f (B, x H, — E; x H;) - dS = 0 (3.34)
S

Let (E;, Hy) be the scattered field due to the interaction of the slot and the
incident mode. (E,, H,) does not relate to the actual situation, but its use is an artifice
to obtain the scattering coefficient. It will be taken to be a single normalized mode,
that is, a member of either the TE or TM families given in (3.28), traveling in the
positive Z-direction and designated by the subscript & = m’n’. The transverse com-
ponents of the scattered field (E,, H;) can be represented by

E, = 3 C,E,e7 z2> 2z,
E(= Z B,E,.e™* z<<2z

‘ (3.35)
H,, = Y CH, e z>z,

H,, = — BH,.e z <z,

in which the summation is over all TE and TM modes. The forward-scattered mode
amplitudes C, and the backward-scattered mode amplitudes B, are yet to be deter-
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mined. It should be noted that (E,, H,) cannot be represented by (3.35) in the region
z, < z < z, because of the presence of the slot.

Since the tangential component of E, is identically zero over the entire sub-
surface S;, and since the tangential component of E, is identically zero over all of
the subsurface S; except that part occupied by the slot, it follows from (3.34) that

(E, xH,)-dS =1, + I, (3.36)

slot

in which
llzj (E, x Hy — E, x H,) + dS
A

- J‘ (Ebte_”h X ZBaHateyun + ZB‘,E“EV“Z' X Hb'e”}'ﬂl) * lz dSl (337)
S a a
and

12:L (E, x H, — E, x H,) « dS
= j (Epe x 3 CHye s — 3 CEype ™ x Hye #) « 1,dS,  (3.38)
S a a

Because of the orthogonal properties of these modes, the only contribution to 7,
comes when a = mn not only equals b = m'x’, but also when the indices mn and
m’'n’ refer to the same type of mode (both TE or both TM). The proof is left as an
exercise, the result being that

I, = 2B, JS (Ey, x H,,) + 1, dS, (3.39)

The same argument applies to the evaluation of [I,, except that in the special case
a = mn = b = m’'n’ the integrand is identically zero, and therefore 7, = 0. When
these results are placed in (3.36), a formula emerges from which the back-scattered
mode amplitude B, can be computed as follows.

j (E, x H,) - dS
Bb . slot
2| (Eaox Hy) - 1,45,
S

(3.40)

If this process is repeated with the only change being that (E,, H,) is assumed to
be propagating in the negative Z-direction, one finds that

| (B, xHy - ds
C, = —slor (3.41)
2 (Ep X Hy) - 1, dS,
S
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It is important to note that, although the denominators of (3.40) and (3.41) are equal,
the numerators are not necessarily equal, because H, in (3.40) is associated with a
+Z propagating mode, whereas the H, in (3.41) is associated with a —Z propagating
mode.

Equations 3.40 and 3.41 have wide applicability. As an illustration of their use,
consider an offset longitudinal shunt slot in the upper broad wall, depicted in Figure
3.10. It will be assumed that the waveguide walls have negligible thickness and are
composed of perfect conductor. The slot is rectangular with length 2/ and width w
where 2/ > w. The origin of coordinates has been taken so that the X Y-plane bisects
the slot. The transverse dimensions of the waveguide are chosen so that only the TE,
mode can propagate.

i
a t | f
l w i X1
Fig. 3.10 An Offset Longitudinal Slot in the Upper Broad Wall of a Rectangular Wave-
guide

—Z

The forward- and backward-scattering off this slot in the TE,, mode will be
determined with the aid of (3.40) and (3.41). First, it is a simple matter to show that

. _ 0 B10 2 né wﬂoﬁloab
J;‘ (Eyo,0 X Hygp) e 1, dS, = (z/a) f df]f sin dé = Anja) (3.42)

Second, the narrowness of the slot permits the assumption that

E, = LE, () (3.43)
and thus

x1+w/2 é 1
j f cos e [ E, (Oemag
-1

B, = —x=el
10 co,uoﬂloab/(n/d)z
R 7 i IAIRR (244

in which V({) = wE, ({) is the voltage distribution in the slot.
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In like manner, one can show that

—(n/a)? cos (nx,/a) (" Ihro
1 jouBi.ab -1 V@Qertde (345)

The slot voltage distribution function ¥({) depends on the manner in which the
slot is excited. Let it be assumed that a matched generator is placed at a position
z < —land a matched load is placed at a position z >/, so that the generator launches
a TE,, mode of amplitude A4,, in the guide propagation in the +Z direction. The TE,
modes scattered off the slot, of amplitudes B,, and C,,, cause no additional reflections
because of the matched generator and the matched load.

Despite the fact that the generator-launched TE,, mode incident on the slot has
a phase progression across the slot, detailed analysis shows that, if 2/ = 4,/2, the
dominant component of ¥V{({) is a symmetrical standing wave of the form

V(&) =V, sin[k(/ — (D] (3.46)
The similarity of (3.46) to (3.17) should be noted; it is as though the slot were essen-

tially being excited at its center by a two-wire line.
With the approximation in (3.46) assumed, Equations 3.44 and 3.45 become

B — €y = ZalZID 8 (i) [ (1 — ) cos oot

_ 2V,
jou(Be/k)ab

(3.47)

B, =C,, (cos ,B,ol—coskl)cos%

It is important to observe that the assumed symmetry of V({) resulted in the scattering
off the slot being symmetrical, that is, B,, = C,,. This implies that the slot is equiva-
lent to a shunt obstacle on a two-wire transmission line. To see this, consider the
situation suggested by Figure 3.11. A transmission line of characteristic admittance
G, is shunted at z = 0 by a lumped admittance Y. The voltage and current on the

YYvy
~

—AAAA

—z

Z=0

Fig. 3.11 A Shunt Obstacle on a Two -Wire Transmission Line



96

Radiation Patterns of Horns, Slots, and Patch Antennas

line are given by

V(z) = Ae #* + Beif*

I(z) = AG e /% — BGyel#*
V(z) = (4 + C)e -

I(z) = (4 + C)G,e’**

z<<0
(3.48)

z>0

The form selected for (3.48) is consistent with a matched generator being to the left of
Y and a matched load to the right of ¥ in Figure 3.11.
The boundary conditions are

V(07) = V(0) = ¥(0*)

(3.49)
1(07) = V(0)Y + 1(07)
which, when inserted in (3.48), give
A+B=A4A+C (3.50)
(4 — B)Gy = (A + B)Y + (4 + C)G, (3.51)
Thus B = C (the scattering is symmetrical), and
Y _ 2B (3.52)

G, A+ B

The usefulness of (3.52) lies in the fact that, by analogy, if one can find the ratio
—28B,,/(4,, + B,,) for the slot, one can then say that the slot has an equivalent
normalized shunt admittance equal to that ratio.

The slot is said to be resonant if Y/G, is pure real. Since no loss in generality
results from taking A4, to be pure real, it follows that the resonant normalized con-
ductance of the slot is given by

G _ ___2B, (3.53)

G, A, + By,

where B, is perforce pure real also. What this implies is that, for a given displacement
x, of the slot, it is assumed in (3.53) that the length 2/ of the slot has been adjusted so
that B, , is either in phase with, or out of phase with, 4. (It will be seen subsequently
that B, is out of phase with 4,,).

Attention will now be restricted to this special case of a resonant slot.® The
assumption of resonance permits a deduction from (3.53) via a power balance equa-

6The more general case of a nonresonant slot will be considered in Chapter 8.
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tion. The incident power is given by

b
szu§mef<AmEm.xAnHﬁo-lnwlzgggggLAmAn (3.54)
S

In like manner, one finds that the reflected and transmitted powers are

Prefl = wjz:zellzgfb BIOBTO (355)
Py = PB4, 4 )i + )" (3.56)

If use is made of the information that B,, = C|, and that all three amplitudes are
pure real, then

b .
%[A%O — B2 — (4, + B,,)"] — power radiated (3.57)

But experiment shows that resonance occurs when 2/ = 1,/2, in which case, if the

upper wall of the waveguide is imbedded in a large ground plane, the radiated power
1s given by one-half of (3.22). Thus

1 V. :
— OB, (Ao + Buo) - 0.609 22 (3.58)

If V,, is eliminated from (3.47) and (3.58), the result is

G 2B, (a/b) _ 2 o2 BXy
PR e 2.09 (ﬂm/k)(cos B.ol — cos kl)* cos = (3.59)

When the substitution x = x; — (¢/2) is made in (3.59) and the approximation
k!l = /2 is used, one obtains

—GG—O = [2.09 %0[/)_1)() cos? (%’ %)] sin? ngx (3.60)

in which x is the offset from the center line of the broad wall.

Equation 3.60 is a celebrated result first obtained by A. F. Stevenson’; it indi-
cates that the normalized conductance of a resonant longitudinal shunt slot in the
broad wall of a rectangular waveguide is approximately equal to a constant times
the square of the sine of an angle proportional to its offset.

7Stevenson, “Theory of Slots.”
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Figure 3.12 gives a typical plot of experimental data showing resonant length of
a longitudinal shunt slot versus offset. It can be seen that although the resonant
length is offset-dependent, it stays close to the value 2/ = 4,/2 assumed in (3.60).

Slot width = 0.0625 inch

a =0.900 inch 0
b = 0.400 inch /b/
0.500 t =0.050 inch »

yd |

0.490 8/ ‘
o Experimental points determined by
j& admittance measurements.

}

2,/

( T . T . T T . N
0’/ o Experimental points from radiation
pattern measurements.
0.480 0.050 0.100 0.150 0.200 0.250

Slot displacement off waveguide centerline, x inches

Fig. 3.12 Resonant Length versus Offset for Longitudinal Shunt Slot (After R. J. Stegen,
“Longitudinal Shunt Slot Characteristics,”” Hughes Technical Memorandum No. 261,
Nov. 1951, Hughes Aircraft Co., Culver City, California)

Figure 3.13 shows a plot of (3.60) versus experimental data. The agreement is
quite good, serving to justify the approximations that were made in the theory. A more
accurate analysis, which will give a better fit to the experimental data, will be presented
in Charter 8.

The assumption that the voltage distribution in the slot is given by (3.46), plus
the experimental information that 2/ = 4,/2 for a practical range of offsets, means
that the radiation pattern is insensitive to offset and the same as a half-wavelength
dipole (with the polarization rotated 90°). Thus when the slot is imbedded in a large
ground plane, the H-plane pattern is given by Figure 2.4 and the E-plane pattern is
almost semicircular. But the power level in these patterns is governed by the offset of
the slot through the factor sin? 7x/a. Slot offset thus serves as a transformer, providing
a means for controlling the radiation level through the amount of coupling to the
incident feeding TE,, mode. This will prove to be a very useful feature when slot
arrays are studied in Chapter 8.

The procedure followed in this section can be repeated for the cases of inclined
slots in the broad and narrow walls. The analysis, though lengthy, is not difficult if the
foregoing is used as a guide, and these two cases are left as exercises.
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Fig. 3.13 G,/Go versus Offset for Resonant Longitudinal Shunt Slot
(After R. J. Stegen, “"Longitudinal Shunt Slot Characteristics,” Hughes Tech-
nical Memorandum No. 261, Nov. 1951, Hughes Aircraft Co., Cuiver City,
California)

3.7 Patch Antennas

A radiating element with the attractive characteristic that it has a low profile is the
patch antenna, \llustrated inr Figure 3.14. It consists of a thin metallic film bonded to a
grounded dielectric substrate, and has the additional advantages of being lightweight,
conformable, economical to manufacture, and easily wedded to solid state devices.
The patch can be any shape, but the regular geometric shapes (such as rectangles or
circular discs) are most commonly used. Feeding is achieved either via microstrip, as
shown in Figure 3.15, or through use of a coaxial line with an inner conductor that
terminates on the patch, as illustrated by Figure 3.16. The placement of the feed is
important to the operation of the antenna.

The flow of electromagnetic power in the patch antenna can be visualized easily.
Guided waves transport the energy along the microstrip or coax to the feed point.
The energy then spreads out into the region under the patch; some of it crosses the
boundary of the patch, to be radiated into space. If the fields in this exit region can be
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Dielectric
substrate

Metallic
patch

Ground plane

Fig. 3.14 Components of a Patch Antenna (Feed Not Shown)

Microstrip

Fig. 3.15 A Microstrip-Fed Rectangular Patch

determined, equivalent sources may be placed on the boundary, from which the
radiation pattern can be deduced.

In practice, the permittivity of the dielectric layer is usually not great (¢/€, < 4)
and its thickness ¢ is small, so the region under the patch behaves very much like a
portion of a parallel plate transmission line. Waves that leave the feed point see almost
an open circuit when they arrive at the perimeter of the patch and considerable reflec-
tion occurs, so that the fraction of the incident energy emerging to be radiated is
small. This suggests that the patch behaves more like a cavity than a radiator, and
pinpoints its principal disadvantages—that it is not a highly efficient antenna and that
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Fig. 3.16 A Coaxially Fed Circular Coaxial
Disc Patch feed

it is narrow band. The efficiency can be improved by using patches in arrays, but
narrow-bandedness puts a limitation on the applications.

The assumption that the electromagnetic properties of the patch antenna can be
deduced by viewing it primarily as a cavity (perhaps leaky cavity would be a better
description) has been a fruitful one. Y.T. Lo and his co-workers® have been able to
obtain good correlation between experiment and a theory based on this assumption,
both for pattern and impedance when ¢ < A. Their analysis is essentially reproduced
in what follows.

Let attention be confined to the region under the patch, and assume that in this
region the electric field is z-directed and that the spatial variations of all field com-
ponents are z-independent, with the Z-axis perpendicular to the patch. Maxwell’s
equations in this region take the form

VxE=—jouH VxH=J+4 jweE

(3.61)
V.-E=0 V:-H=0

The appearance of J in (3.61) and its assumed nature require some explanation.
Except in the subvolume occupied by the feed, J = 0 (The lower surface of the patch
and the upper surface of the ground plane are excluded from the region being ana-
lyzed.) If the feed is the inner conductor of a coaxial line, then J = 1,J,(u, v)e/*, with
u and v the transverse coordinates. If the feed is a microstrip, its presence will be
modeled by a lineal current sheet K = 1,K,e/*" at the segment of the boundary where
the patch joins to the strip line. In either case, since the current distribution is assumed
to be z-independent because of the thinness of the dielectric layer, the continuity
equation gives V « J = —jwp = 0. As a consequence of this, the volume charge

8Y. T. Lo, D. Solomon, and W. F. Richards, “Theory and Experiment on Microstrip Anten-
nas” IEEE Trans. Antennas Propagat., AP-27 (1979), 137-46.
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density distribution is identically zero in the region, which is the reason for writing
VY « E=0in (3.61).
A familiar sequence of operations gives

VxVxE=V(V.E) —VE=—jouV x H

(3.62)
(V> + kDE, = jou,J,
with k; = w./t,€ the wave number in the dielectric medium.? If the driving function
J, is specified, in principle (3.62) can be solved for E, subject to the boundary condi-
tions, after which H can be determined from (3.61). From this, the equivalent sources
along the boundary of the patch can be deduced.
An effective approach to the solution of (3.62) is to begin by finding the charac-
teristic solutions to the homogeneous wave equation

(V2 4+ KkL)E. =0 (3.63)

To do this, assume first that the region is bounded on the top (patch) and bottom
(ground plane) by perfect electric conductors and along its perimeter by a perfect
magnetic conductor (to simulate an open circuit). Then if the patch is rectangular, as
depicted in Figure 3.15, the solutions to (3.63) that fit the boundary conditions are
given by

mux ATy

E, =¥, =cos 5 Cos = (3.64)

o= )

That (3.64) is a solution to (3.63), subject to the condition (3.65), can be verified by
substitution. That it also satisfies the assumed boundary conditions can be seen by
returning to (3.61) and noting that

o ° (3.66)
1, mnja sin M7X cos 12
JOHo a b

This solution gives H, = 0 for y = 0, b and H, = 0 for x = 0, a, as required.
Similarly, if the patch is a circular disc, as shown in Figure 3.16, the charac-
teristic solutions which should be selected are

E, = Yp, = J(kn.p)e’™* (3.67)

9Since € = ¢’ + je'’ = €'(1 — j§) with  the loss tangent (usually small), k4 will be slightly
complex.
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with J, the Bessel function of the first kind and order n, and with k,,, chosen to satisfy
Jik,,a) =0 (3.68)

The solutions in (3.64) or (3.67) are seen to comprise sets of orthogonal functions,
with each member satisfying the boundary conditions. With a source present that is
z-directed and z-independent, these sets can be assumed to be complete and an arbi-
trary linear sum of the member functions can be used to represent the general solution
to (3.62). This same procedure can be followed for many regular patch shapes and
Y.T. Lo catalogs some of the most useful geometries.!® Proceeding generally, one can
assume that the solution to (3.62) is expressible in the form

E, = ; z": A4, %P, (3.69)
The constant coefficients 4,,, can be determined by noting that
ViE, = ; ; A VY, = —; ; kZ. A
= Joud; — kKE, = jou,J, — 3 3 kid,, ¥y,
which can be rearranged to give
; Z (ki — k) Ame¥ my = joOps0J. (3.70)

If (3.70) is multipled by W¥, and the result integrated over the domain of the patch, one
obtains

> 5k — ki) A, [ W WEdS = jou, [ V5 dS (3.71)
m n s S

Since the functions ‘¥,,, and ¥,, are orthogonal over this domain, (3.71) reduces to

i I
4, = kgjci'u;éz <<\{1 ‘P*> (3.72)

in which
¥Ry = [ Jwrds, (5> = 9 ends (3.73)
s 5

The placement of the feed clearly influences the relative values of the excitation coeffi-
cients A4,,.

Insertion of (3.72) in (3.69) gives a general solution for the E-field in the region
below the patch, that is,

LU g

10Lo, “Microstrip Antennas,” p, 138.
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Since E is z-directed and z-independent, the magnetic field can be expressed in the
form

]

Jou,

1, x VE, (3.75)

As an illustration of the use of this formulation, assume that a rectangular
patch is being fed by a microstrip, as indicated in Figure 3.15. The microstrip will be
assumed to be equivalent to a lineal electric current density

1, <x<d,y=0, —t<z<0
K= c=r=4) = (3.76)
0 elsewhere
When (3.76) is used in (3.74), one finds that
Ez(xs y) :Jwﬂo {‘ig_abc —+ ’; abz((/fdz__(22 COS!I—Z—y
. mi::l [4 sin (mn(d ;;Z/gkc})]k(;(sz(r;n(d + ¢)/2a)] cos m;zx (3.77)

i i i‘ [8 sin (mn(d ~m;)lﬁflizg)][_co;3(gn(d + ¢)/2a)] cos m;zx oS nbﬂ}

3
N
X
1l

with k,,, given by (3.65).

For a specified frequency of operation, k; = @w./ i€ is a constant. If the dimen-
sions a and b of the patch are properly chosen, one of the k,, wave numbers can be
made almost to coincide with k,, which for a dielectric with a small loss tangent is
nearly pure real. In this case (3.77) indicates that the mnth amplitude coefficient
becomes very large. The patch is then said to be resonant in the mnth mode, and this
mode dominates the E, distribution.

Let a closed surface S be chosen to bound the dielectric region under the patch,
as shown in Figure 3.17. The upper face of S lies inside the metallic patch and the

Patch

Ground plane

Fig. 3.17 The Choice of a Source-Excluding Surface S

lower face of § lies inside the ground plane, so the true fields on these two faces are
null and no equivalent sources will appear on these faces of S. With resonance in the
mnth mode postulated, the equivalent magnetic sources on the perimeter faces of S
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can be deduced using (1.113) and are found (with a multiplicative constant suppressed)
to be

Km:—lycos%z x=0

Km:lxcosm—nx =0
a

(3.78)
K, =1,(—-Dr cosﬂg xX=a

K, = —1,(—1) cos ™=

y=5b

The analysis postulates Hy = 0 along the boundary, so there are no equivalent electric
sources on the perimeter faces.

To the extent that the assumptions in the analysis are valid, the equivalent
sources (3.78), plus the actual sources outside S, can be used to calculate the true
fields exterior to S. The actual sources outside S consist of the P bound sources in the
dielectric, the electric currents in the ground plane, and the electric currents on the
upper face of the patch. These latter will be ignored on the argument that the fringing
field is negligible. The image principle can be invoked to account for the ground plane,
with the result that —P image sources occur in an extra layer of thickness t and +K,
image sources occur in a vertical extension of the peripheral faces of S to a depth ¢.
With ¢ small, and €/e, not too large, the P bound sources and their negatives images
make a minor contribution to the radiated field, which will be ignored. What is left
are the equivalent magnetic sources (3.78) extending a distance 2¢ in the Z-direction.

With the outgoing spherical wave factor in (1.93) suppressed, (1.123) indicates
that the far field is given by

E = —jk(1,5, — 1,5,) (3.79)

where §, and F, can be calculated from (1.130) and (1.131). When the equivalent
sources of (3.78) are inserted in these integral expressions, one finds that

Fo(, §) = (2t cos O)[cos § g,(0, §) + sin ¢ g,(0, )] (3.80)
5}45(0’ ¢) - “2I[Sin ¢ gl(oa ¢) — COS ¢ g2(9’ ¢)] (3‘81)

in which
2.(0, $) = [I — (—1)reikesingsing] J‘acosrna_néejk{sin 6c0s g (3.82)

miwm

b
228, ¢) = [I — (—1ym e/hnsinosin s f cos 27 (3.83)
)
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As a test of this theory, Lo and others constructed a rectangular patch with
dimensions a = 11.43 centimeters and b = 7.62 centimeters on a copper-clad Rexolite
2200 substrate, L= inch thick, with €/e, = 2.62 and a loss tangent of approximately
0.001. To account for fringing, they took the effective dimensions to be

aeff:a"}“%:“jlcm beff:b+-%:7.70cm
From (3.65),
_ T I 4
k1o*0_1151 Kos ~ 0.0770

so this patch should be resonant in the (1, 0) mode at a frequency such that

2ny /e ®

ko = on/ o€ = =l = 0131

from which vi$ = 804 MHz. Similarly, one finds that v = 1202 MHz.

Imput impedance measurements (to be discussed in Chapter 7) indicate resonant
frequencies for these two modes at 804 MHz and 1197 MHz. Both values are seen to
be close to the above predictions. The principal plane patterns when the patch is
operating in each of these modes, and fed by a 50-ohm microstrip at the point (8.57
cm, 0), are shown in Figure 3.18. The agreement between theory and experiment is
excellent. The patterns are broad, which is consistent with the fact that the resonant
dimension for each mode is 4,/2, with 4, = 1/(¢/€,)!/? the wavelength of a TEM
mode in the dielectric (1 is the free space wavelength). These features of small physical
size and broad radiation patterns combine to make the rectangular patch, excited in
one of these dominant modes, attractive for use in arrays.

Y.T. Lo and his co-workers have duplicated this analysis and its experimental
validation for circular disc patches fed by microstrip.’! The agreement between
theory and experiment for the (1, 1) and (2, 1) modes was once again excellent. Their
results are reproduced in Figure 3.19.

Many interesting innovations in the design of patch antennas have been dis-
covered by various workers, including novel patch shapes and methods of feeding.
As examples, if a square patch is fed by two microstrip lines, one each attached to
adjacent sides of the patch, circularly polarized radiation will occur if the microstrips
are connected through a 90° hybrid. The same effect can be achieved with a slightly
elliptical disc patch that has an offset coaxial feed. Various scatterers can also be
placed in the dielectric region under the patch in order to modify the radiation
pattern. And the possibility of dual frequency operation has already been seen in the
patterns of Figures 3.18 and 3.19.
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Fig. 3.18 Principal Plane Patterns for a Rectangular Patch Antenna (© 1979 IEEE.
Reprinted from Lo, Solomon, and Richards, /EEE AP Transactions, pp. 137-146, 1979.)
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a =6.75cm
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mode)

v, = 1324 MHz (resonant
frequency of (2, 1)
mode)

X X XX Theory
=== Experiment

Fig. 3.19 Principal Plane Patterns for a Circular Disc Patch Antenna (© 1979 IEEE.
Reprinted from Lo, Solomon, and Richards, /EEE AP Transactions, pp. 137-146, 1979.)
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A discussion of the impedance properties of patch antennas will not be under-

taken until Chapter 7, but it is significant to mention here that the input impedance
level is generally higher the further the feed point is from the center of the patch.
This provides the opportunity to position the feed point to match the characteristic
impedance of the feed line. However, the situation is complicated when patches are
used in arrays, for then mutual impedances must also be considered.
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PROBLEMS

3.1

3.2

33

34

3.5
3.6

Assume a TE,,, mode is present in the aperture of Figure 3.1 and find the expressions
for the corresponding far field. Sketch the principal plane patterns for the TE;, mode.
(This mode is often present due to forward scattering in a horn, and its presence can
actually be helpful in narrowing the main beam. Do your results serve to explain how
this can happen?)

Repeat the analysis of Section 3.2 for a circular waveguide, terminated in a ground
plane, with a radius that is small enough to prevent all but the dominant mode from
propagating.

Are the results of Section 3.2 valid when @ — oo, that is, for an infinitely long slot of
width 5? If not, return to first principles and solve for the fields due to the excitation
E, n,{) = 1,E; in a slot for which —oo < { < oo, —(b/2) <151 < (b/2), and { = 0.
Assume a rectangular slot of length 2/ and width w is cut in a perfectly conducting
infinite ground plane. If 2/ > w but 2/ < A, find expressions for the far field, the power
pattern, and the total power radiated. Then find a formula for the radiation resistance,
R..q. Does R,,q satisfy Booker’s relation when taken in conjunction with the short
dipole of Section 2.2?

Verify the scattering formulas (3.40) and (3.41).

For the inclined slot in the broad wall shown in Figure 3.9b, demonstrate that the

scattering is antisymmetrical (C,, = —B;,) and thus that the equivalence is a series
obstacle in a two-wire line. For the resonant-length case, show that

ER; —0.131 %—9%[1(0) sin @ -}—;’—zl(e)cos 9]2
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3.7

3.8

3.9
3.10
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in which @ is the angle of tilt, and

](9)} cos (nT](l) Ccos (%)

Jol T Tk *T-K3

K\ _ Bio Ao
Kz}— % cosG?zasmG

This result is due to A. F. Stevenson.!?

For the inclined slot in the narrow wall shown in Figure 3.9¢, demonstrate that the
scattering is symmetrical (C;, = B,) and thus that the equivalence is a shunt obstacle
in a two-wire line. For the resonant length case, show that

. Biom . 2
G£ = 0.131m_/};)_3b ’—sma cos (%’ 2 sin 9)}
’ 1o L1_(ﬁ10//<)28in20

with 8 the angle of tilt. This result is also due to A. F. Stevenson.12

Find the characteristic solutions and wave numbers for the dielectric region under a
patch when the shape of the patch is a right isosceles triangle.

Verify that Equation 3.75 gives H in the dielectric region under a patch of general shape.

Find the modal expansion for E(p, f§) in the dielectric region under a circular disc patch
which is fed at the edge by a microstrip line. From this, deduce the equivalent sources
and expressions for F, and ¥, when the mnth mode is dominant.

Repeat Problem 3.10 for the case that the circular disc patch is fed off center by a coaxial
line intruding from below, as in Figure 3.16.

12Stevenson, “Theory of Slots.”



array analysis
and synthesis

In Part I of this text, approximate expressions were deduced for the source
distributions on various practical antenna elements (dipole, loop, helix, horn,
slot, patch) and then the source/field formulas were used to determine the
pattern characteristics. All of these elements have practical applications when
used singly, but they also are widely used in arrays, and it is this latter class of
applications which is the subject of the next three chapters. Since analysis is
simpler and highly informative, it is taken up first. One- and two-dimensional
arrays are studied in turn, with various relative element excitations assumed,
which permits calculation of the array pattern. Conventional measures such as
beamwidth, directivity, and side lobe level are introduced. Then attention is
turned to array synthesis, with the desired pattern specified, the need being to
find the relative element excitations which will achieve what is desired.






linear arrays:
analysis

4.1 Introduction

Part I of this text had two principal objectives. The first was to establish formulas
that would connect the radiated fields of any antenna to its sources. This was done in
Chapter 1, where it was found to be desirable to divide antennas into two types, those
in which the actual sources were used and those in which it was advantageous to
introduce equivalent sources. Wire antennas of various shapes, notably monopoles,
dipoles, loops, and helices, are practical examples of type I (actual source) antennas,
and their far-field patterns were deduced in Chapter 2. Aperture antennas such as
horns, slots, and patches are prominent examples of type II (equivalent-source)
antennas. Their radiation patterns were determined in Chapter 3.

All of these elements can be used singly, in which case the pattern results of
Chapters 2 and 3 are applicable. But they need not be used singly, and when the
antenna consists of more than one element, it is called an array. In most practical
applications, the elements will be of a common type, equispaced, and oriented to be
capable of congruence through a simple translation. The discussion in this text will be
limited to arrays that meet these conditions. The specialized literature should be con-
sulted for discussions of arrays in which one or more of these restrictions is lifted.

The relative physical positioning of the elements and their relative electrical
excitations are two parameters that can be used to exercise control over the shape of
the radiation pattern of an array. In this chapter and the next, the positioning will be
chosen so that the elements are equispaced along a straight line. Interelement spacing,
the number of elements, and their relative excitations are then the principal variables
available to the antenna designer. In Chapter 6 the scope of the discussion will be
enlarged to include planar arrays.

There is an adage that the best way to learn synthesis is first to learn all you can
about analysis. That truism certainly can be argued in the case of someone who is
approaching antenna array theory for the first time and is the basis for devoting the
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present chapter to the analysis of linear arrays, deferring till Chapter 5 the subject of
synthesis. Thus this chapter begins with a development of formulas for @, and @, (or
F,and F,) for the general case of arbitrarily positioned elements, but then immediately
moves to the study of equispaced linear arrays with known excitations. A variety of
excitations will be assumed and the patterns deduced. Schelkunoff’s unit circle repre-
sentation wil} be introduced and used extensively.

The analysis of the effects on pattern caused by varying the excitation will reveal
many opportunities available to the antenna designer. These include the ability to
form a pattern with a main beam and side lobes, to control angular placement of the
main beam, to select beam sharpness by choosing the length of the array, to create a
difference pattern, and to produce a shaped pattern devoid of nulls. All of these array
fundamentals will form a useful basis for the synthesis procedures which follow.

4.2 Pattern Formulas for Arrays with Arbitrary Element Positions

It was established in Section 1.11 that a current density distribution J(&, #, {)e’,
contained in a finite volume ¥, causes a far-field pattern given by

@y(6, ¢) = | [cos 8 cos $J.(&, 1, ) + cos B sin 4,8, 7,0)
— sin 8J.(, n, O)le* d¢ dn d
G0, 4) = | [—sin §J.& m.0) + cos L& m Dl d dndl  (42)

@.1

in which
L =¢sinfcos¢p + nsinfsing +  cosf 4.3)

It was also shown that E,/@, = E,/@,, so @40, ¢) can be viewed as the vertically
polarized component of the far-field and @0, ¢) as the horizontally polarized
component.

It is further evident from the development in Sections 1.12 and 1.13 that, if
magnetic currents are introduced as secondary sources, F4(f, @) is given by (4.1) with
J,, replacing J, and F,(0, ¢) is given by (4.2) with J, replacing J. When only that
part of the field due to magnetic sources is being considered, Ey/F, = E;/F,50 T8, ¢)
can be viewed as the vertically polarized component of the far-field and F40, ¢) as
the horizontally polarized component. With these relations in mind, one can see that
the development about to be presented applies equally well for & and &, and thus
equally well for type I and type II antenna arrays.

Imagine that the current distribution of an array resides in N 4 1 identical
discrete radiating elements.! The word element could mean a dipole, a helix, a horn,

1The analysis presented in this and the next two sections follows closely some earlier writing
by the author, contained in “Beamwidth and Directivity of Large Scanning Arrays,” Microwave
Journal, 6 (1963), 53-60 and 7 (1964), 74-82, and also in Microwave Scanning Antennas, ed. R. C.
Hansen, vol. 2, (New York: Academic Press, 1966), Chapter 1. Reprinted with joint permission.
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or a slot, as examples. However, it might equally well mean a collection of helices or
a hybrid collection of dipoles and slots. To say that the elements are identical is to
impose the condition that any two of them can be made congruent by a simple
translation plus rotation. To require additionally, as will be done here, that the ele-
ments are similarly oriented in space, is to impose the tighter condition that any two
are capable of congruence through a translation alone. It is then possible to select a
reference point in the ith element, P/(x,, y,, z,), and find a point P(x,, y,, z;) that
occupies the same position in the jth element. This collection of N + 1 reference
points can serve to describe the relative positions of the different elements. It is con-
venient to establish local coordinate systems at each of these reference points. To do
this, let

=8 —x n=n-—-Jy; (i=8—z 4.4)

define any point Q(¢, n,, ) in the ith radiator, relative to its characteristic point
P{x,, y;, z,). This situation is shown in Figure 4.1. Then, for example

J&En ) =T+ &y + 1,2+ 8)

j ™ element

i™ element

Fig. 4.1 Positional Notation for Antenna Arrays
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whereas, for any point in the jth radiator,

Jx(fa 'I’ C) = Jx(xj + éj’ yj + 771, Zj + Cj)

Since all of the elements are assumed to be identical and similarly oriented, if
I, is the complex total current at the “terminals” of the ith radiator and I, is the
complex total current at the “terminals” of the jth radiator,? it follows that, if £, =

ﬁj’ n=1"n, and {; = C/, then

JOoa+ &y + 1,2+ 8) _ 1 4.5)
J.O+ &8y, + 12+ C)

because J, is being determined at corresponding physical points in the two elements,
Equation 4.5 implies that the elements are sufficiently separated to insure that the
current distribution is the same (except for level) on each.

With the aid of Equation 4.5, one can rewrite (4.2) as follows:

a0, ¢) = g J.V [—sin ¢J (x; + &, yi + mi 2 + 8
-+ cos @J(x; + &, v + My 2+ {)Ne*c dg; dn, dg;

= a¢,a(05 ¢)a¢,z(0’ ¢) (46)
in which
NI
G‘¢,a(0, ¢) — E I_ejk(m sin 6cos ¢ + ¥y sin @sin ¢ + zy cos 6) (47)
=0 {g
and

G‘¢,e(0’ ¢) = LD [—sin ¢J (&0, M6, §o) + cos §J,(Eo, 10, £o)]

. ej'k(fo sin fcos ¢ + M sin @sin ¢ + {ocos ) déo dﬂo dCO

(4.8)

In the above, the origin of principal coordinates has been chosen to coincide
with the characteristic point Py(x,, y,, z,). This entails no loss in generality. The
choice of a different origin for the principal coordinates merely introduces a phase
change in @, (0, ¢).

Similarly, @,(f, ¢) can be recast in the form

aa(oa ¢) - aa,a(07 ¢)a9,e(6s ¢) (49)
in which

N
ag,a(G, ¢) — Z _IL_eJk(x‘sm fcosd + yysinBsin ¢ + z;cos §) (410)

2These terminals may be a convenient cross section in the waveguide feeding a slot, or the
junction of a coaxial cable and a helix-plus-ground plane, as examples.
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and

ao,e(o: é) = J;/ [cos & cosdJ (o, 7o, §) + cOS 0 sin ¢‘]y(§0’ Mo, Co)
— sin 8J.($o, 10, {o)] 4.11)

.e jk{(&osin@cos ¢ + Mg sin @5in ¢ + {ocos &) déo d”o dCO

One can observe that @, (6, ¢) and @, (8, ¢) involve only the current distribu-
tion in one of the elements. For that reason, they are called the element patterns or
element factors. It can also be noticed that @, , and @, , are identical and involve the
relative current levels in the different elements as well as the relative placements of
the elements. With the unnecessary ¢ and @ subscripts dropped, @,(8, ¢) given by
either (4.7) or (4.10) will be called the array pattern or array factor. It should be noted
that @,(0, §) is a summation of directionally weighted phasors and has no vector
characteristics. The polarization of the field pattern comes from the element factors
@, and G, ..

In most practical applications, the elements are small, perhaps a half-wavelength
long in their maximum dimensions, in which case @, (8, ¢) and @, (6, ¢) are broad
patterns, as has been seen for most of the elements studied in Chapters 2 and 3.
When this is so, the fine structure in G (8, ¢) and @46, §) comes from the array
factor. This will be assumed to be the case in all subsequent developments in this
chapter, but it is wise to remember the multiplication of patterns embodied in (4.6)
and (4.9) and not to ignore the element factors unless it is justified.

4.3 Linear Arrays—Preliminaries

Let r, be the distance from P(x,, y,, z,) to P(x;, y,, z;), with the line connecting P, to
P, having direction cosines cos «;, cos f§;, and cos y,. If all the elements lie along a
common line, then «, f, and y are the same angles for every P,. The antenna thus
formed is called a linear array. In this case the array factor can be written

aa(e’ ¢) _— }Lv‘_‘o In ejkrn(cosa sin @cos ¢ + cos B sin &sin g + cos y cos 8) (412)
e

0

—

In the special but important and common case that the elements are equispaced
and 2N -+ | in number,? the zeroth element can be taken as the central one. If one
writes r, = nd, in which d is the common spacing, (4.12) becomes

N
aa(g’ ¢) — Z _?Lejknd(cosusin fcos¢ + cos fsin @sin ¢ + cosycos ) (413)
n 0

3Equispaced arrays of an even number of elements 2NV will be considered later in the develop-
ment.
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Equation 4.13 is the general expression for the array factor of a uniformly spaced
linear array.* It is instructive to consider several special cases of this equation.

(a) UNIFORMLY EXCITED BROADSIDE ARRAYS Imagine first an equispaced
array, laid out along the Z-axis, with radiating elements at the positions z;, = 0, +-d,

+2d, ..., +Nd. In this case, cos a = cos § = 0 and cos y = 1, so (4.13) simplifies
to
N I X
aa(e) —_ E Ln ginkdcos 8 (414)
n=—-N IO

a pattern which is rotationally symmetric (¢-independent). If all the currents are equal
and in phase, this reduces further to

N
@ 0) = Y elrkdcost 4.15)
n=-N
Equation 4.15 is a sum of phasors with the common magnitude unity, possessing
phase angles which depend on 6 but which, for a given 8, are progressive multiples
of the basic angle

wzkdcosezz%IICOSO (4.16)
A plot of these phasors for the case (2rnd/A) cos 8 = =/12 and 2N 4- 1 = 15 is shown
in Figure 4.2. It is apparent that their sum is a maximum when cos § = 0 or § = =/2,
for then all the phasors are aligned. As 8 departs from z/2 toward either O or =, the
phasors begin to fan out, those with positive index going one way, those with negative
index the other. If d/] is large enough, when

2n

(27'[61’/1) cos § = im

Fig. 4.2 Phasor Contributions for a
Uniformly Excited Linear Array

4Nonuniformly spaced linear arrays have some practical applications, but are beyond the
scope of this introductory treatise. The interested reader will find a starter bibliography in Microwave
Scanning Antennas, ed. R. C. Hansen, Vol. 2 (New York: Academic Press, 1966), 53-59.
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the phasors are equispaced in the complex plane and their sum is zero. This occurs at
a direction 8, given by

_ A
80 = LN

If the length of the array is defined by L = (2N -+ 1)d, this can be written as

8, = arccos (i %) 4.17)

For example, if L = A then 8, = 0, z and a polar plot of @,(8) is as shown in
Figure 4.3a. On the other hand, if L < A, the phasors never fan out far enough to give
a null value for @,(@) and a typical plot is almost circular, as suggested by Figure
4.3b. It should be recognized that these are polar plots in the ¢ = 0° half-plane.
Since in this example, @, is independent of ¢, a three-dimensional plot of @, could be
obtained by rotating the patterns shown in Figure 4.3 around the Z-axis.

D

(a) L=2x (b) L <A

Fig. 4.3 E-Field Patternsin Polar Form for Short, Uniformly Excited Linear Arrays ; Linear
Scale

The most interesting case occurs when L >> 4, in which event

6, = arccos (i%) ;%i% (4.18)
and the phasors have fanned out to give a pair of nulls at angles only 4/L radians
away from the maximum at @ = 7/2. The beamwidth between nulls is 24/L radians
and is governed by the normalized length of the array.

In this case of uniform excitation, investigating values of 8 even further removed
from z/2 than 0, corresponds to looking at the sum of phasors that have fanned out
beyond one complete rotation in the complex plane. A secondary maximum will
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occur when the phasors are fanned out to occupy one and one-half sheets of
the complex plane, as shown in Figure 4.4a, whereas a second null will occur when
they have fanned out to occupy two complete sheets of the complex plane, as
shown in Figure 4.4b. The phasors lying in the second sheet are dotted to assist in
identification.

(@) C)

Fig. 4.4 Phasor Positions versus Polar Angle 8 for a Long, Uniformly Excited Linear
Array; L = 7.54

It can be noticed that only one-third of the phasors contribute to the net sum at
the secondary maximum and that the sign of the sum is negative. This secondary
maximum, or first side lobe, is thus 13.5 decibels (dB) below the primary maximum,
or main lobe. The field throughout this first side lobe is out of phase with the field
throughout the main lobe.

The second pair of nulls occur at angles 8, given by

—zﬂjcos()z: +

4
'/’z—l I

2N + 1

or when

@, = arccos (:J: 2%) = —725 +

21
T 4.19)
Thus the nulls near the principal maximum are approximately equispaced A/L radians
apart when L > A.

If 8 is varied beyond 8, toward either O or #, the phasors fan out further and
encroach upon the third sheet of the complex plane. A tertiary maximum occurs when
the phasors occupy two and one-half sheets, and a third null occurs when the phasors
occupy a full three sheets of the complex plane. Only one-fifth of the phasors con-
tribute to the tertiary maximum and the sign of their sum is positive. This tertiary
maximum, or second side lobe, is even lower than the first side lobe, being 17.9 dB
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below the principal maximum. The third pair of nulls occur at angles 6, given by

_ 2nd . 6m
Vs =3 008y = 5oy
or when
i 3 _n | 32
03 = arccos I - 7 + 'Z (420)

This process of letting the phasors fan out can be continued until the angle 6
has reached 0° or 180°, at which extremities all of real space has been covered and
the phasors have separated the maximum amount. The pattern, for this case of L > 4,
is therefore as suggested in Figure 4.5, in which |@,(6)| has been plotted for the half-
plane ¢ = 0°. The phase of the field changes by 180° in passing through each null.
Put differently, the lobes alternate in sign. The three-dimensional pattern is a figure of
revolution, and is seen to be an omnidirectional beam, pointing in the direction § =
90°. This is a pattern shape of practical importance in engineering applications and is
commonly called a beacon pattern. Because the beam lies in a plane transverse to the
array axis, it is also commonly referred to as a broadside pattern.

=

Fig. 4.5 E-Field Pattern in Polar
Form for a Uniformly Excited
Broadside Linear Array; L = 7.54;
Linear Scale

Figure 4.5 was drawn for the special case 2N + | = 15 elements, d = 4/2, and
L = 7.5A. It is seen to possess a single main beam and symmetrical side lobes which
diminish in height as their angular distance from the main beam increases. An inter-
esting effect would have arisen if the spacing had been greater. Imagine that the
phasors are able to fan out so far before 8 = 0° or 180° is reached that the angular
spacing between adjacent phasors in the complex plane is 360°. In this event, all the
phasors once again are aligned and sum to give a second main beam. This will occur
at an angle 8’ given by

2 cos ' = 2n

. 2nd
V=7

or when

f' = arccos (i%) 4.21)
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and thus will only occur if d > A. By spacing the elements close enough together
(d < A), the pattern can be limited to one main beam.

If d> A, the phasors can fan out to be 360°, 720°, 1080°, ..., apart, and a
sequence of main beams will occur, with the side lobe structure repeated in between,
This gives what is known as an interferometer pattern, which has some useful applica-
tions, particularly in radio astronomy. However in most practical applications it is
desirable to prevent these extra main beams by making 4 sufficiently small. It will be
seen shortly, upon considering patterns with a single main beam which points in a
direction other than 8 = 90°, that the requirement d < A is not stringent enough.

(b) BROADSIDE ARRAYS WITH TAPERED EXCITATION All of the foregoing
has assumed equal, in-phase currents. Next, consider the situation when all the cur-
rents are in phase, but the amplitudes are symmetrically tapered. By this it is meant
that the central element is fed by the largest current; its nearest neighbors contain
currents equal but somewhat smaller than the central current, and so on, and finally
the two end elements have equal currents that are the smallest in the array.

For this case, the phasor diagram of Figure 4.2 is modified as shown in Figure
4.6. Upon reflection, it can be appreciated that if L > A, the phasors must fan out
slightly beyond one sheet before they sum to zero and give a pattern null. Thus a
tapered distribution suffers the penalty of some increase in beamwidth to the first
null. However, this sacrifice is balanced by a compensating advantage. When the
phasors have fanned out to occupy slightly more than one and one-half sheets a
secondary maximum is reached. But this maximum is contributed to principally by
that third of the phasors representing the outermost elements, that is, by the phasors
with the smaller amplitudes. Thus the secondary maximum, or first side lobe, 1s lower
than it was in the case of the uniform current distribution considered earlier. Similarly,
the tertiary maximum is lower, because it is contributed to principally by that fifth
of the phasors representing the outermost elements, and so on. One reaches the
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Fig. 4.6 Phasor Diagram for a
1 Linear Array with Tapered Excita-
tion
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important conclusion that side lobe level can be controlled by tapering the array
excitation, at some cost in beamwidth. Several synthesis techniques for accomplishing
this will be explored in Chapter 5.

Note that if L < A, tapering the excitation has negligible effect on the pattern,
because the phasors never fan out far enough to give a pattern much different from
Figure 4.3b. It is for this reason that the pattern of a half-wavelength dipole is essen-
tially the same as the pattern of a very short dipole. The half-wavelength dipole can
be thought of as an array of infinitesimal dipoles, touching end to end, and with
L = 2/2, thus falling within the scope of the present discussion.

(c) SCANNED ARRAYS Next, consider the case of a uniformly spaced linear
array laid out along the Z-axis so that Equation 4.14 continues to apply, but now
assume that the currents have equal amplitudes and a uniform progressive phase,
that is, let

I, = Ipe~i (4.22)

in which «, is a constant, called the uniform progressive phase factor. Under this
assumption, (4.14) becomes

aa(e): ﬁ ejn(kdc059~zx;) (423)
N

ne -

which differs from (4.14) only in an angular shift of origin. Whereas (4.14) gave a
family of phasors that align at 8 = x/2, (4.23) gives the same family of phasors, but
now they align at an angle 8, given by

kdcos @, = a, 8, = arccos [(%[) (%ﬂ (4.24)

Thus a, can be used as a parameter to position the main beam in space. If ¢, is varied
(for example, electronically), the beam will scan.

Once again, the position of the first null on either side of the main beam can be
determined by permitting the phasors to fan out until they uniformly occupy the
complex plane. This will occur when

(2N + I)(kdcos 0, — a,) = +2n (4.25)

The two values of §, that satisfy (4.25), 87 and 67, are the two central null angles, one
on each side of the beam position 8. Since &, = kd cos 8, further development of
(4.25) gives

A

cos @) — cosf, = % cos @] — cos @, = —
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If L>> A, one can let 8; = 8, — AB; and 8/ = 8, + A8 and write

cos 8, cos AB; + sin 8, sin AG; — cos 8, = —%

cos 8, cos Af; — sin 0, sin AB| — cos 8, = —%
Since cos AG; = 1, cos A} == 1, sin Af} == A@}, and sin AB] = A}, these last two
equations sum to give
0 — 6, — AG, + AG, = (%) csc B, (4.26)
This result is seen to embrace the earlier special case in which all the currents were
equal and in phase, and which gave a beamwidth between nulls of 24/L. (In that case,
#, = n/2 and csc 8, = 1).

Equation 4.26 indicates that the beam broadens as it is scanned off broadside,
the beamwidth between nulls being governed by the projected length of the array
transverse to the beam direction.

Proceeding further with this case, when one permits the phasors to spread out
so that they occupy one and one-half sheets of the complex plane, secondary maxima
occur, giving the first side lobe on each side of the main beam, and at a relative height
of —13.5dB. When the phasors occupy two full sheets, the second pair of nuils
occurs. A spread over two and one-half sheets produces tertiary maxima, and so on.
Thus one finds a sequence of side lobes of steadily diminishing amplitudes, terminated
when the limits of.real space (6 = 0°, 180°) are reached. A typical pattern computed
from the magnitude of (4.23) is shown in Figure 4.7, with 2M + 1 = 15, d/A = 1/2,
and &, = 7/2. One can observe that, with the beam tilted up, the side lobe heights are
still symmetrical, but that there are more side lobes below the main beam than above.
Once again, this is a plot of {@,(f)| in the half-plane ¢ = 0°. The three-dimensional
pattern can be found by rotating Figure 4.7 about the Z-axis.

Since Equation 4.23 is a series with a geometric progression, it can be summed
to give

_sin {[(=wL/A)(cos 8 — cos 8,)]
G.(0) = sin [(md/A)(cos 8 — cos 8,)] (*27)

<Y

Fig. 4.7 Polar Field Plot for a
Linear Array Excited with Uniform
Amplitude, Uniform Progressive
Phase; L = 7.6 ; Linear Scale
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The proof is left as an exercise. Equation 4.27 is usually more convenient to use for
calculating patterns such as the one shown in Figure 4.7.

In this case also, if the phasors can fan out so that adjacent phasors are 360°
apart before the limits of real space are reached, a second main beam will occur. This
will happen if

kdcos @ — a, = +2m, cos ' = cos 8, + (A/d) (4.28)

Equation 4.28 is seen to be a generalization of (4.21). If §, = n/2, one obtains §' =
arccos(+A/d) as before. However, if 8, assumes another value, and one wishes to
prevent the appearance of a second main beam, then it is apparent that the spacing d
must be chosen so that

|cos 8, + (A/d) > 1, [cos 8, — (A/d) < —1 (4.29)
The second of these inequalities is more demanding and requires that

d |
7 STT [cos 8, | (430)
Equation 4.30 is the criterion for avoiding multiple beams in large scanning linear
arrays. As an example of its use, one can see that if the beam is scanned close to
end-fire, the elements must be spaced only one-half wavelength apart if a second main
beam is to be prevented from appearing.

This discussion of a scanned beam can be readily enlarged to include the case
of a tapered amplitude distribution together with a uniform progressive phase for
the currents /,. The main beam will still point at an angle 8, given by (4.24); it will be

somewhat broader due to tapering, and the side lobes will be lower.

(d) EXTENSION TO AN EVEN NUMBER OF ELEMENTS—DIFFERENCE
PATTERNS —If the number of elements in an equispaced linear array is even, for
instance, 2N-—the array can be laid out along the Z-axis so that the elements are at

the positions 4-d/2, +3d/2, . .., and the array factor in (4.10) becomes

I_w,-jtan- I, _,
af) = I—Ne JQN=1) 21kdcos6 | . ., +1_!€ {1 2)kdcas @
1 1
4.3
- @itl 2kdcose . I_N_ej[(ZN—l) 21kd cos &

1

From this point, the discussion of the preceding parts of this section can be repeated
with little change. If all the currents are equal and in phase, @,(6) is represented by a
family of phasors lying at the angles +w/2, +-3y/2, ..., withw = kd cos 8 as before.
These phasors fan out to give, in sequence, nulls and side lobe heights, and the con-
clusions about side lobe levels, null positions, possible multiple beams, all still prevail,
now with L = 2Nd. Earlier arguments can be repeated for tapered excitation and
when a uniform progressive phase is introduced.
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What adds to the interest in linear arrays with even numbers of elements is the
opportunity to excite the two halves of the array out of phase with each other, some-
thing which is neither convenient nor desirable with an odd number of elements
because of the awkward presence of the middle element. As an example of this pos-
sibility, let all the currents be equal in amplitude, but let I_, = —1I, for all n. Then
(4.31) gives a family of phasors that appear in the complex plane as shown in
Figure 4.8.

Fan direction // \\ Fan direction

7/ N\
/ AN

R

Fig. 4.8 Phasor Diagram for Difference Mode; Uniform Excitation

Re

For 8 = n/2, half of these phasors lie along the positive real axis, the other half
lie along the negative real axis, and the sum is zero; that is, there is a null in the
pattern at broadside. As § departs from n/2 toward O (or x), these phasors fan out
into the upper (or lower) half of the complex plane. When (2N — 1)w/2 = 3z/4, their
phasor sum S is a maximum, given by S == + j./ 2 N. (Proof of this is left as an exer-
cise). When (2N — 1)w/2 = 2z, their phasor sum is zero. As the phasors fan out fur-
ther onto the second sheet of the complex plane, this summation process is repeated,
with only one-third of the phasors effectively participating. Thus secondary maxima
of approximate heights + j./2 N/3, . . ., are reached. A typical difference pattern for
uniform but asymmetrical excitation is shown in Figure 4.9. Twin main lobes are
found straddling § = n/2, with symmetrically decaying side lobes; the first pair is
9.5 dB below the level of the main lobes.

Patterns of the type found in Figure 4.9 are more readily computed from

6.6 — sin? <% cos 0)

sin (n_d cos 0) @

2

This result is obtained by summing (4.31) for the special case [, =-1_, =1, for all n.
The high side lobe level (—9.5 dB) of this pattern is due to the choice of equal
amplitudes. If a tapered current distribution of the type shown in Figure 4.10 were
selected, the side lobe level could be reduced. The reader might wish to confirm this
by sketching the phasor diagrams as they would appear for & values corresponding to
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Fig. 4.9 Polar Field Plot for a 14-Element Linear Array,
d=1/2, with Uniform Asymmetric Excitation; Broadside
Difference Pattern; Linear Scale

I,

L

Fig. 4.10 Bar Graph of Tapered Current Distribution to Give Difference Pattern with
Reduced Side Lobes

successive lobe maxima. A synthesis procedure for determining the proper taper to
produce a specified side lobe level will be presented in Chapter 5.

A uniform progressive phase can be given to the current distribution, with the
two halves of the array still excited out of phase with each other. The effect on Equa-
tion 4.31 is to replace kd cos 8 by kd(cos 8 — cos 8,), with the current ratios pure real
and 8, the null angle between the two principal lobes. The current distribution can,
in this case, also have a taper to reduce side lobes.

Patterns such as those shown in Figures 4.5 and 4.9 form a useful pair in radar
applications. With the two halves of the array fed in phase (the sum mode), one
obtains a pattern with a single main beam; this is useful for acquiring a target, but
not too useful for telling exactly where the target is. However, if the target is close
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enough and the excitation is switched to the mode in which the two halves of the
aperture are excited out of phase (the difference mode), then, unless the target is
exactly in the null between the two principal lobes of the difference pattern, a return
signal will be detected in the radar receiver. This signal can be used either to tilt the
array mechanically or to introduce a uniform progressive phase shift in the excitation,
the result being to place the target in the central null of the difference pattern. The
sensitivity of this process is high, so the target’s angular position can be determined
with considerable accuracy.

4.4 Schelkunoff's Unit Circle Representation

The development of the previous section can be reinforced and extended with the aid
of an extremely useful formulation due to S. A. Schelkunoff.> The synthesis tech-
niques to be considered in Chapter 5 also benefit from Schelkunoff’s method of
representation.

Consider an equispaced linear array of N 4 1 elements (N can be even or odd),
laid out along the Z-axis. From (4.7), the array factor can be written in the form

¢ 0 — NL jntkdcos @ ~ a;)
a( ) 21 e

n=0 4g

(4.33)

In (4.33), a uniform progressive phase factor «, has been factored out of the current
distribution and shown explicitly because many applications involve current distribu-
tions of this type. However, no loss in generality results from this, since the ratio
I /I, appearing in (4.33) can still be complex.

If one lets
w = e/¥ (4.34)
v =kdcos8 — a, (4.35)
Equation 4.33 can be converted to the form
N N
aw) =3 Loy — In s Loy (4.36)
=01, on=o Iy
from which
— I_N N <IN-1> N-T1 L &
@) = ||+ (Bt o
I
= |1 17| 4:37)
0
From this, by the fundamental theorem of algebra,
| f)|=1w—wi|-lw—wy|---|w—wyl (4.38)

5S. A. Schelkunoff, “A Mathematical Theory of Linear Arrays,” Bell System Tech. J., 22
(1943), 80-107.
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Equations 4.37 and 4.38 reveal several interesting things. First, | f(w)] differs
from the magnitude of @,(f) by only a multiplicative constant and thus can serve as a
surrogate for the array factor. Second, the array factor can be represented as a poly-
nomial in w of degree one less than the number of elements in the equispaced array.
Third, this polynomial has N roots which are linked to the array excitation, since the
current ratios comprise the coefficients of the polynomial.

The placement of these roots in the complex w-plane can be related to the field
pattern in real 8 space, as will be seen in what is to follow. In this manner, the analysis
and synthesis of array patterns due to equispaced arrays can be tied to a study of the
properties of polynomials, a distinct asset for the antenna designer.

To develop this approach further, observe that as # varies in real space from 0
to =, the definitions in (4.34) and (4.35) require that y vary from y, = kd — «, to
¥, = —kd — «, and that w trace out a path along a wunit circle in the complex plane,
as illustrated in Figure 4.11. The total excursion of w is from e/¥* to ¢/¥s, proceeding
clockwise as @ goes from O to z. Thus y, (read w-start) and y, (read w-finish) mark
the initial and terminal points of the w-excursion, the angular extent of which is 2kd
radians.

w=elV

- Re

vy

Fig. 411 Schelkunoff's Unit Circle

Further inspection of (4.38) reveals that if the roots w,, are placed on the unit
circle, in the range of w, then | f(w,)| = 0, and a pattern with N nulls will result.
Alternatively, if all the roots w,, are placed off the unit circle, or at least outside the
range of w, a pattern devoid of nulls will be produced. Both types of patterns have
their uses. Synthesis of null-free patterns is a more difficult topic and generally is
beyond the scope of this introductory treatise, though some discussion of it will be
found in Chapter 5. In what follows, attention will be focused on situations in which
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the roots w,, have all been placed on the unit circle through proper choice of the cur-
rent distribution.

(a) UNIFORMLY EXCITED BROADSIDE ARRAYS If the excitation currents
have equal amplitudes and a common phase, (4.35) reduces to y = kd cos § and
(4.36) simplifies to

1__WN+1
I —w

@, () = f(w) = ﬁo W — (4.39)

DeMoivre’s theorem permits the conclusion that f(w) has roots at the positions
W, = e/rm/(N+ D m=1,,...,N (4.40)

(Note that the root w = 1 is excluded because of the factor in the denominator).
Thus a uniform amplitude/equiphase excitation of the equispaced array does put all
the roots on the unit circle. As has already been seen in Section 4.3, this results in a
pattern with lobes interspersed by nulls.

An illustration of (4.40) is given in Figure 4.12 for the case of a five-element
array. The roots are found at the positions 4-27/5 and +-4n/5S. The value of | f(w)]
can be found by taking the product of the four distances d,, d,. d,, d,, which is an
example of the use of (4.38). As the point w moves along the unit circle (which corre-
sponds to permitting @ to vary in real space), these four distances change, as does
their product. Whenever w coincides with one of the roots w,,, the distance d,, = 0 and
| f(w,)| = 0; that is, a null has been encountered in the array factor.

This presupposes that the range of w includes the roots w,,. For example, if

d = A2, then y, = m and v, = —=; all four of the roots are within the range of w.
Im r
wy
wy d1
4,
W
Re
d3 d4
w3
Fig. 4.12 Root Positions on a
W, Schelkunoff Unit Circle for a Uni-

formly Excited Five-Efement Linear
Array
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As w moves clockwise from e/~ through e/® to e~/7, the product d,d,d;d, traces out
half a side lobe, a null at w,, a full side lobe, a null at w,, a main beam, a null at w,, a
side lobe, a null at w;,, and finally another half side lobe, as illustrated in Figure 4.13.

The nulls in real space can be determined from y, = 2zm/(N + 1) = kd cos 8,
which is in agreement with the earlier results of Section 4.3.

V4
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Fig. 4.13 Polar Field Plot for a Uniformly Excited Five-Element
Linear Array, d = 1/2; Broadside Sum Pattern; Linear Scale

If only a quick sketch of the pattern is needed, a graphical construction using
the unit circle of Figure 4.12 (suitably enlarged) can be helpful. The height of a side
lobe or main lobe occurs when w is approximately halfway between roots. The product
d,d, - -+ dy when w is at such halfway points gives the relative lobe heights. This can
be determined with reasonable accuracy if care is taken in measuring the distances.
Knowledge of these lobe heights and the null positions ,, is all that is needed to be
able to produce a decent polar representation of the field pattern. The reader might
wish to try this for the five-element array by constructing an enlarged version of
Figure 4.12 and checking that the side lobe heights are —13.5dB and —17.9 dB (in
agreement with the conclusions of Section 4.3), and that the pattern resembles Figure
4.13.

If d = 2, then y, = 27 and y, = —2x; w ranges two full revolutions around
the unit circle. The result for a five-element array is the pattern shown in Figure 4.14.
If one wishes to avoid these extra main beams at 8 = 0, 7, a suitable restriction for a
five-element array would be to have y, coincide with w, and let w range more than
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Fig. 4.14 Polar Field Plot for a
Uniformly Excited Five-Element
Linear Array, d = A; Broadside
Sum Pattern; Extra Main Beams
at End-Fire; Linear Scale

one full revolution around the unit circle, past w, and on to y,, which is allowed to
coincide with w,. In the more general case of N 4 1 elements, this means choosing

o o . 2n_ 2maN
kd=y, = —Y; =2 = g1 = § 1

or

N
@ D)aex = 577 T (4.41)
Equation 4.41 can be viewed as the maximum element separation for a uniformly
excited broadside array if multiple main beams are to be avoided. For N large, it
agrees with the result found in Section 4.3. For N + 1 = 5, the elements should be
no further than 0.84 apart. The pattern for this case is shown in Figure 4.13.
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Fig. 4.156 Polar Fielc Piot for a Uniformly Excited Five-Element
Linear Array, d = 0.81; Broadside Sum Pattern; Maximum
Spacing for Multiple Beam Avoidance; Linear Scale

It is instructive to compare the patterns of Figures 4.13 and 4.15. Both are for
uniformly excited five-element arrays, and each has a single main beam at broadside.
But Figure 4.15 shows a narrower main beam and three additional side lobes. This is
due to the increased length of the array (44 versus 2.51).

(b) BROADSIDE ARRAYS WITH LOWERED SIDE LOBES The fact that (4.38)

can be written in the form | f(w)] = H d,, with d,, the distance between w and w,,

has already been noted in the dlscuss1on in this section. With w approximately halfway
between the successive nulls w,, and w,,,,, the product of these distances gives the
relative height of the mth side lobe. It follows that if these two roots are brought
closer together, the height of this side lobe will be reduced. For broadside arrays, if
the heights of all the side lobes are to be reduced, the roots must cluster closer arocund
—m, indicating that the main beam region on the unit circle (from w, to wy) must be
enlarged. In other words, the main beam is broadened as the price paid to reduce the
side lobes. This tradeoff has already been noted in Section 4.3.

As an example of this effect, consider again the five-element equispaced array.
With uniform amplitude/equiphase excitation, this array could be represented by the
Schelkunoff unit circle shown in Figure 4.12. For element spacings of d = /2, 1, 0.84,
the patterns of Figures 4.13 through 4.15 were obtained. All of these patterns have
the same side lobe topography, since they arise from a common unit circle diagram.
The innermost side lobes are at -11.9 dB and the next set is at —13.7 dB.
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Suppose it is desired to produce patterns in which all the side lobes are at —20
dB. This would require displacing the four roots of Figure 4.12 so that they are closer
together and clustered closer to —.

This design problem can be solved graphically by trial and error. At present,
the roots are at +72° and +144°. Suppose the new positions +87° and 4-149° are
tried. (This places the roots 62° apart, instead of 72°.) When a large unit circle is
constructed with roots placed in these positions, the product of distance measure-
ments gives the innermost side lobe at —18.5 dB and the other side lobes at —21.3
dB. This suggests that the roots w, and w, have been shifted too close together, but
that the shift in w; and w, might be just about right. One could continue to try revised
root positions, perhaps +87° and 4-147°, thus converging to the root positions that
will give the desired —20 dB level for all side lobes. The interested reader might wish
to pursue this and demonstrate that the proper root positions are +89° and 4-145.5°.

With the correct root positions known, one can return to (4.38) and write

f(w) — (W _ ejl.SS)(w _ ej2‘54)(W — e*j2.54)(w _ e‘jl‘SS)
= (w? — 2w cos 89° + 1)(w? — 2w cos 145.5° -+~ 1)
= w* £ 1.6w* + 1.95w?2 + L.6w + | (4.42)

If this result is compared to (4.37), it can be observed that the relative current distri-
bution is

1 1.6 1.95 1.6 1

The central element is seen to be most strongly excited. The distribution has a sym-
metric taper, consistent with the discussion in Section 4.3.

(c) SCANNED ARRAYS The only change, if an equispaced linear array is to have
a uniform amplitude/uniform progressive phase excitation, is that one needs to return
to the more general definition of y given in (4.35), with a, = kdcos 8, and 6, the
central angle of the main beam. The Schelkunoff unit circle is unaffected; all the roots
are where they were before. Only the starting and ending values of y are altered. They
are now

v, = kd(l1 — cos §,), w,= —kd(l + cos 8,) (4.43)

The total excursion is still 2kd, and the height of the main beam still occurs at = 0.
However, the fact that the main beam is scanned raises anew the question about
multiple main beams.

As an example, one can return to the case of the five-element array, for which
the unit circle of Figure 4.12 applies. If the main beam is to point at § = 120° (that is,
30° beyond broadside) and if the element spacing is d = A/2, then y, = 37/2, ¢, =
—7/2, and the pattern is as shown in Figure 4.16. On the other hand, if the element
spacing is d = A, then y, = 7, ¥, == —3m, and the pattern assumes the shape shown
in Figure 4.17. If one wishes to avoid the presence of a second main beam, it is
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Fig. 4.16 Polar Field Plot for a Five-Element Linear Array
Excited with Uniform Amplitude, Uniform Progressive

Phase, d = 1/2; Sum Pattern with Main Beam Scanned
to B¢ = 120°; Linear Scale

apparent that the spacing should be chosen such that

2 \ 2N . n
"’fz‘(zn‘zxwl)—_/\u,—l it 0o < 7,
2 2aN . T
vesm ey Ny Gy

as before, but now (4.43) imposes the requirement that

| N
kd(1 + feos 0y]) < 2m =

or that

d\ NN+ 1)
(D) =1 e (4.44)
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Fig. 4.17 Polar Field Plot for a Five-Element Linear Array
Excited with Uniform Amplitude, Uniform Progressive Phase,
d = A ; Sum Pattern with Main Beam Scanned to 8, = 120°;
Extra Main Beam at # = 60°; Linear Scale

which is the criterion for avoidance of multiple beams if a uniformly excited linear
array is scanned. For N large, this agrees with (4.30). For the five-element array, with
8, = 60°, the maximum spacing should be 84/15.

(d) DIFFERENCE PATTERNS For equispaced linear arrays of an even number
of elements, f(w) has an odd number of roots. If one of these roots is placed at y = 0
and the others are arranged in complex conjugate pairs as suggested by Figure 4.18, a
symmetrical difference pattern will result, with twin main beams straddling a null at
8,, and with the same side lobe topography on both sides of the main beams. A
special case of this occurs when I, = —I_, = 1, for all n, for which it has been seen
that the pattern is given by (4.32). In addition to the central null at 8 = 7/2, (4.32)
indicates nulls at the positions
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Ecos 6, = mn
21 "

Since L = 2Nd, with 2N the number of elements in the array, and since w = kd cos 8,
this result can be converted to the form

w, = M 10 AN (4.45)

Im |

Fig. 4.18 A Schelkunoff Unit Circle
with Roots Placed to Give a
Symmetric Difference Pattern

Thus the roots are equispaced on the unit circle, but they are all double roots except
for the single root at y = 0. This is an inefficient root placement. For example, the
pattern shown in Figure 4.9 is for a 14-element array, d = 1/2, with uniform asym-
metric excitation, and shows only two and one-half side lobes on each side of the
twin main beams. It has already been remarked that this pattern does not have
impressively low side lobes (the innermost pair of side lobes is only 9.5 dB below the
height of the twin main beams). If the roots were repositioned appropriately on the
unit circle, so that they occurred singly, there could be five and one-half side lobes on
each side of the pattern, with a concomitant lowering of the side lobe level at no
expense in terms of broadening the twin main beams.

Further lowering of the side lobe level could be accomplished by clustering the
roots closer to ¥ = m (with one root held at w = O to insure a difference pattern).
This would be at the expense of some broadening of the twin main beams. Such designs
can be achieved graphically by trial and error in the manner already described for the
sum pattern. They can also be obtained by a synthesis technique that will be presented
in Chapter 5.

(e) SUPERGAIN ARRAYS Since the total excursion of w along the unit circle is
2kd, the intriguing possibility arises that one could make the interelement spacing d
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smaller and smaller, simultaneously repositioning the roots on the unit circle so that
they always remained within the range of w, and in such a way that the pattern in
real space was unaltered. In this manner, for example, a sum pattern with a main
beam of a prescribed beamwidth and side lobes of prescribed heights could be gen-
erated by an equispaced linear array of a specified number of elements, but with the
total length of the array arbitrarily small. The current distribution in this compressed
array will need to be investigated. It clearly will not be uniform, because the earlier
analysis of that case revealed that, for a uniformly excited array, the null-to-null
beamwidth of the main beam of a sum pattern is 24/L. (See Equation 4.18 and the
related discussion.)

As a specific illustration of this possibility of a reduced-length array, consider
once again the five-element equispaced linear array, excited to give a broadside sum
pattern with symmetrical side lobes. If the roots are placed on the unit circle at the
positions y,, = +72° -4-144°, it has already been seen that the excitation will be
uniform. For 4 = /2, the pattern will have a main beam plus one and one-half side
lobes on each side of it. Suppose next that the interelement spacing is reduced to a
fraction f of 1/2 and that the roots are simultaneously repositioned to be at +y,,
+w,, with y, = 72 f degrees. This will clearly keep the roots within the range of w.
As a generalization of (4.42),

fw) = (w* — 2weceosy, + )(w? —2wcosy, + 1)
and thus the current distribution is

1 —2(cos w, +cos2y;) 2l + 2cosy, cos2y,) 4.46)
—2(cos w, + cos 2y,) 1 '

When y, = 72°, all of these currents are unity and [(1)® + (1)? + (1) + (1) +
(1)?]R denotes the ohmic losses, with R some appropriate ohmic representation of the
resistivity and shape of an element. The field strength at the peak of the main beam is
measured by the sum of the currents and therefore the total radiated power can be
represented by (5)2K, with K a factor that depends on pattern shape. Assume that,
with w, = 72°, the ohmic losses are 1%, of the power radiated. Then (5)>°K = 100(5R)
or K= 20R.

Now assume that y; = 1°, that is, there has been a 72-fold contraction in the
length of the array and in the root placement on the unit circle. For this case, (4.46)
gives, for the current distribution,

1 —3.998477 5.996954 —3.998477 1

The ohmic losses have become 70R and the field strength at the peak of the main
beam is only 0.371 x 107%, so the radiated power is 0.13764 X 107 !2K. The ratio of
the power radiated to the ohmic losses 1s

0.13764 x 10-12K

— -12
TOR = 0.39326 x 10
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The ohmic losses, which were assumed to be only 1% of the radiated power at d =
A/2 spacing, are in contrast a trillion times as large as the radiated power at d — /144
spacing.

Even with a modest reduction in spacing to d = 1/4, the ohmic losses are four
times as large as the radiated power. This simple example serves to illustrate the drastic
penalty one must pay in loss of efficiency if reduction of length is contemplated for
linear arrays. Further study shows that mechanical and electrical tolerances become
severe and frequency bandwidth is sharply curtailed as the interelement spacing is
contracted. For all these reasons, supergaining (as this process is called) has proven
to be impractical.
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PROBLEMS

4.1 Begin with Equations 4.1 and 4.5 and show that @¢(8, ¢) can be written as the product
of the array factor (4.10) and the element factor (4.11).

4.2 Assume that a uniformly spaced linear array of 2N + 1 elements is uniformly excited.
If 2N +- 1 is very large, show that the height of the first side lobe occurs when the cor-
responding 2N 4- 1 phasors uniformly occupy one and one-half sheets of the complex
plane. Do this by letting the position of the outermost phasor, Ny, be a variable.
Approximate the phasor diagram by a continuum density of phasors and show that
this first side fobe is 13.5 dB below the height of the main beam.

4.3 Show that Equation 4.27 is a transformation of equation (4.23).

4.4 Assume that a uniformly spaced linear array of 2N elements is uniformly excited, but
in the difference mode. If 2N is very large, show that the height of the principal lobe
occurs when the corresponding 2N phasors have fanned out such that the outermost
one is at the position 2N — 1)y/2 = 3x/4. Do this by letting the position of the outer-
most phasor be a variable. Approximate the phasor diagram by a continuum density of
phasors and show that the pair of side lobes that is closest in is approximately 9.5 dB
below the level of the twin principal lobes.
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Show that Equation 4.32 can be derived from (4.31) when I, = —I_, = I, for all n.
Show the equivalence of Expressions 4.27 and 4.39.

A six-element equispaced linear array is to be given uniform amplitude/equiphase
excitation. Construct a suitably large Schelkunoff unit circle (say » = 4 inches) and mark
the root positions. If d = /2, find the null positions in #-space. Use the fact that
| f(w)] = d,---ds to determine the relative lobe heights, and make a rough polar plot
of the field pattern.

For the six-element array discussed in the preceding problem, use trial and error to
determine the proper root positions to yield an array pattern with a single main beam
and all side lobes at —20 dB. Find the corresponding current distribution.

For the six-element array discussed in the two preceding problems, use trial and error
to determine the proper root positions to yield a difference pattern with all side lobes at
—20 dB. Find the corresponding current distribution. Note that this current distribu-
tion is substantially different from what you would get by reversing the phase of half of
the array excitation found for the sum pattern in Problem 4.8.

It has been shown in the text that, for an equispaced linear array of 2NN elements, a
difference pattern will result if the nulls are placed on the unit circle at the positions
Ym = 2m{N with m =0, +1,..., =N — 1. Show that this gives I, = —I_, =1,
for all n, for the current excitation, and that the pattern is represented by Equation 4.32.

Design a six-element equispaced array to give a sum pattern with its main beam at end-
fire and all side lobes at —30 dB. This can be done graphically by trial and error. Then
deduce the maximum spacing between elements if not even a trace of a second main
beam is to be present at reverse endfire.

It has been shown in the text that if an equispaced linear array of 2N elements is excited
uniformly but asymmetrically, a difference pattern results with the roots occurring on
the unit circle at positions y¥,, = 2em/N, m =0, =1,..., =N — 1. All roots are
double except w,. This is an inefficient root placement. One way to correct this is to
place the roots singly at ¢, = 2m@/(2N - 1), m = 0, £N — 1, . . ., 1. Show that if this is
done, all side lobes are the same height as the twin main beams and that all currents in
the array are zero except the end two, which are equal and opposite. (The result is called
an interferometer pattern.)

With reference to the preceding problem, another possible root placement that avoids
double roots is to let ¥, = wm/(N + 1), m =0, &2, 43, ..., £ N. Show that this
gives larger y-regions on the unit circle for the twin main beams than it does for the side
lobes. Plot the polar field patterns for the case 2N = 14, d = 4/2, and compare with
Figure 4.9 of the text. Find the current distribution and compare with Figure 4.10 of
text.
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5.1 Introduction

In the previous chapter the basic analysis of equispaced linear arrays was presented
under the assumption that a known current distribution existed in the array and that
one desired to find the resulting array pattern. A variety of practical distributions
were assumed (uniform amphtude with and without uniform progressive phase,
tapered amplitude with and without uniform progressive phase, the two halves of the
array excited out of phase) and it was discovered that useful sum and difference
patterns were caused by these distributions. In conjunction with the introduction of
the Schelkunoff unit circle, the subject of synthesis was even touched on when a
graphical trial-and-error technique was suggested in which root placement could be
systematically altered until a desired pattern was achieved.

In the present chapter the synthesis problem will be addressed directly. In

synthesis, one begins by specifying the desired array pattern. Since the discussion here
is restricted to linear arrays,! the desired pattern must be a function of 8 alone and

not ¢, that is, in the form @,(8) or F,(6). But the class of functions @,(8) or F,(0) is
large. It includes sum patterns with uniform side lobes, with symmetrically tapered
side lobes, and with asymmetric side lobes. It includes difference patterns with the
same variety of side lobe topographies. It includes patterns with neither nulls nor side
lobes. For all of these patterns, the synthesis question is basically the same: Given
@,(0) or F,0), what is the requisite current distribution in an equispaced array?
This question will be answered in succeeding sections of this chapter for some
of the more widely used classes of prescribed patterns. Dolph’s technique, which uses
Chebyshev polynomials to deduce discrete current distributions that yield sum pat-
terns with uniform side lobes, will be taken up first. Taylor’s procedure, which
accomplishes basically the same result but for continuous line sources, will also be

I'This restriction will be lifted in Chapter 6 with the introduction of planar arrays.
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presented. A perturbation method, which can be used to modify either a Dolph or
Taylor pattern in order to produce sum patterns with arbitrary side lobe topographies,
will be introduced and then extended to applications involving difference patterns.
The Woodward technique, which synthesizes patterns requiring null-filling, will also
be described.

The chapter is not devoted entirely to synthesis procedures. The concepts of
half-power beamwidth and peak directivity of a linear array pattern are introduced
and applied specifically to the case of sum patterns, since these two quantities often
form a key part of the design specifications on which the pattern synthesis must be
based.

5.2 Sum and Difference Patterns

Many applications of linear arrays involve the need to produce sum and difference
patterns with the main beam of the sum pattern pointing at an angle §,, with the twin
main beams of the difference pattern straddling €, and with both patterns exhibiting
a symmetrical side lobe structure. When there are 2N elements in the array, equispaced
by an amount 4, the array factor can be written in the form?

-1

aa(e): 2 %ej[(2n+1),‘2]kd(cos€—cos@o)
oy (5.1)
e i Lej[(?.n‘l),'Z]kd(coss‘cosHo)

Under the above stipulations, all the current amplitudes in (5.1) can be taken as pure
real. For the sum pattern, I, = /_, and (5.1) becomes

SOy =2 E L cos [(Zn — l)( )(cos@ — cos @ )] (5.2)
For the difference pattern, 7, = —17_, and (5.1) takes the form
DB) — ﬁ 5_ i [(2;1 . 1)( )(cose — cosf )] (5.3)

An array with 2N - 1 elements (an odd number) is not suitable for the creation
of a difference pattern because of the awkward presence of the central element. How-
ever, as seen in Chapter 4, it can be used to produce a sum pattern. Under the assump-
tion of symmetrical side lobes, the pattern from such an array is given, as a reduction
from Equation 4.13, by

8O =1+ 2'2 ;—;cosPn (%)(cos 8 — cos 00)] (5.4)

2For convenience @,(f) is used, but the results apply equally well for F,(6).
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A major class of synthesis problems can be stated in terms of these equations. If a
sum pattern with a specified side lobe topography is desired, how does one determine
the current distribution I,//, in (5.2) or I,/I, in (5.4) to achieve the desired result?
Or, if a difference pattern with a certain side lobe topography is desired, how does
one find the current distribution 7,/7, in (5.3) to bring this about 7 Several sections of
this chapter are concerned with answers to these questions.

5.3 Dolph-Chebyshev Synthesis of Sum Patterns

The discussions of Chapter 4 revealed some useful information about the design of
equispaced linear arrays, excited so as to give an array factor with one main beam
plus side lobes (sum pattern). This information can be summarized as follows.

1. For 2N + 1 elements, if the 2N roots are placed on the unit circle in complex
conjugate pairs, a symmetrical sum pattern will result. If the positions of these root
pairs are adjusted, the side lobe heights can be altered. To reduce the level of the side
lobes, the root pairs need to be clustered closer to y = =, at the expense of broadening
the main beam.

2. For 2N elements, if the 2N — 1 roots are placed on the unit circle with one
root at iy = —7 and the remainder in N — 1 complex conjugate pairs, a symmetrical
sum pattern will result. If the positions of the root pairs are adjusted, the side lobe
heights can be altered. To reduce the level of the side lobes, the root pairs need to be
clustered closer to ¢ = =, at the expense of broadening the main beam.

3. With the roots occurring in complex conjugate pairs, f(w) is a polynomial
with pure real coefficients. These coefficients appear in symmetrical pairs in the
polynomial, thus evidencing the fact that the current distribution in the array is
symmetrical in amplitude.

With these observations as background, the problem of proper positioning of
the root pairs can be addressed. If one argues that side lobes occur in spatial regions
in which it is desirable to suppress radiation, and assumes that the suppression of
all side lobes is equally important, then an optimum design is one in which all side
lobes are at the same height. The reduction of a single side lobe further than this
common level could only be at the expense of additional broadening of the main
beam, and would deny the assumption that the region of this side lobe is no more
important than the region of any other side lobe.

This problem of seeking the proper root positions (and thus the proper array
excitation) to give a sum pattern with uniform side lobes at a specitied height was
solved by C. L. Dolph in a classic paper.? To do this, he took advantage of a useful
property of Chebyshev polynomials, which are solutions of the differential equation

T | pet, =0 (5.5)

4T, 4T,
(L —u?) du? “du

3C. L. Dolph, “A Current Distribution for Broadside Arrays Which Optimizes the Relation-
ship between Beamwidth and Side Lobe Level”, Proc. IRE, 34 (1946), 335-48.
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It is shown in Appendix C that, if the index m is an even integer 2N, then a solution
to (5.5) is

Ton@) = 3 (=¥ (V37 upee (5.6)

If m is an odd integer 2N — 1, then

Tova) = 5~ g2 L (VT D 1)

with ( ; ) the binomial coefficient r!/s!(r — 5)!. Both (5.6) and (5.7) can be put in the

revealing form

T, (1) = cos(m cos™! u) ~l=u=1
= cosh (m cosh™! u) u>1 (5.8)
= (—1y" cosh(m cosh™! |u)) u<l

which is easily verified by substitution in (5.5). Thus T,{(u), with m an integer, is a
function that oscillates in a cosinusoidal manner in the range {#] < 1 and then rises
hyperbolically in [« > 1. It is this property of the Chebyshev polynomials that makes
them so useful in antenna array design. Figure 5.1 shows the typical features of

T, (W)

+1

LN NS

(ug, b)

Fig.5.1 Chebyshev Functions (Reprinted from Microwave
Scanning Antennas, Volume 2, R.C. Hansen, Editor, Courtesy
of Academic Press, Inc. €) 1966 Academic Press.)
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Chebyshev functions. For m = 2N there is symmetry about # = 0, with N root pairs
in |u] < 1. Here T,5(1) = T,5(—1) = 1. There are no roots outside [u| = 1, so just
beyond |u| = 1 the function rises rapidly, with steeper slope for larger values of 2N.
For m = 2N — 1, there is antisymmetry about 6§ = 0, with a root at u = 0 and N — 1
root pairs in|u| < 1, where T,y_ (1) = —T,x_,(—1) = 1. There are no roots beyond
lu] = 1, so the function rises rapidly, with steeper slope for larger values of 2N — 1.

These plots reveal why the Chebyshev polynomials were ideal for Dolph’s
purpose. If the variable u can be made to correspond in some manner to the real
angle variable @, so that an appropriate segment of 7,,(x) can be made to relate to
@,(6), then a pattern with uniform side lobes will result.

To develop this correspondence, one can return to the basic equation for the
array factor, assume a uniform progressive phase and symmetrical amplitude distri-
bution, and write as alternate forms of (5.4) and (5.2)

AR S v
5(2) L 23 g cos 2n Y (5.9)
UATSE R o A _phy
5(2) 23 reos@n—1Y (5.10)
in which, as before,
w = kd(cos § — cos8,) (5.11)

Equation (5.9) applies for an odd number of elements and is equivalent to a poly-
nomial of order 2N in the variable cos (y/2). Equation 5.10 applies for an even
number of elements and is equivalent to a polynomial of order 2N — 1 in the variable
cos (w/2). Thus if one selects the transformation

U= u, cos% (5.12)
then (5.6) and (5.9) can be equated for arrays with an odd number of elements, and
(5.7) and (5.10) can be equated for arrays with an even number of elements.

What this transformation accomplishes can be appreciated by returning to
Figure 5.1. As @ ranges from 0 to 8, to z, and as w ranges from y, = kd(1 — cos 8,)
to zero to w, = —kd(l + cos8,), u will range from u, = u, cos (¥,/2) to u, to
u, = uy cos (/2). The pattern trace is shown by the arroweddotted path in Figure
5.1a. If u, is chosen so that T,,(u,) = b, with 20 log, , b the desired side lobe level, then
a pattern will result consisting of a main beam at the relative field height & plus a
family of side lobes all at the height unity.

Dolph’s design procedure can now be articulated. One begins by selecting the
number of elements, which determines the degree of the Chebyshev polynomial that
1s to be used (m is one less than the number of elements). Next, it is necessary to find
u, from T,,(u,) = b, with b fixed by the desired side lobe level. Then, from (5.8), the
roots of T,(u) can be determined readily and are given by

= - cos | (2p = Do | (5.13)
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When these values are inserted in (5.12), the corresponding root positions y, on the
unit circle can be computed. At this point f(w) is known in factored form and can
be multiplied out to give the current distribution.

As an example, consider a five-element array that is to be excited to give a sum
pattern with all side lobes at —20 dB. Then it is T,(x) which should be used, and
T(uy) = b = 10. From (5.8),

cosh (4 cosh™! uy) = 10

which is satisfied by u, = 1.2933. Also, from (5.8), one finds that the roots of T,(u)
are +0.9239 and +0.3827. Thus, from (5.12), the roots on the unit circle are at the
positions

Y =+88.82°, +145.58°

If the calculation that produced Equation 4.42 is repeated (where this same problem
was being solved by a graphical trial-and-error method), the present more accurate
w values give

Sw)=wh+ 1.61w> + 1.93w? + 1.61w + 1

with the coefficients of the various powers of w representing the relative current
distribution.

With the uniform progressive phase factor a, embedded in the definition of
w (compare Equations 4.34 through 4.35), the coefficients

1 1.61 1.93 1.61 1

represent the relative magnitudes of the currents in the five-element array. This implies
that the Dolph-Chebyshev distribution is the same in magnitude regardless of where
the main beam points. All that changes when the main beam pointing direction &,
is altered is the uniform progressive phase, which must be attached to the amplitude
distribution.

If the avoidance of extra main beams is of concern, the precautions noted in
Section 4.4 must be observed. The interelement spacing should be chosen so that the
w-excursion on the Schelkunoff unit circle only traverses the main beam region once.

The case of an end-fire Dolph-Chebyshev distribution is worth special mention,
and the example cited above can serve as a typical illustration. To place the main
beam at end-fire, i, = 0° and y, = —(360° — 88.82°) = —271.18°. The interelement
spacing should not exceed

Ay,
d= 5ttt = 0.3774

if even a vestige of a second main beam cannot be tolerated at reverse end-fire. With
this spacing, the uniform progressive phase is a. = kd = 2.369 radians and the
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end-fire Dolph-Chebyshev current distribution for this array is

1271.4°  1.60[135.7°  1.9310°  1.60|—135.7°  1|—271.4°

It is possible to determine the Dolph current distribution for the general case
without the intermediate steps of finding the roots u,, w,, and w, followed by mul-
tiplying out the factors of f(w). To do this, one needs to insert (5.12) in (5.6) or (5.7)
and make use of the relations

cosz"% = Ting, eq<n ?1 )cosz‘zﬂ (5.149)
N o—

A derivation of these two formulas can be found in Appendix D. In Equation 5.14,
€, = 1 if g = 0, otherwise ¢, = 2.

With the use of (5.13) through (5.15), the expressions for the Chebyshev poly-
nomials become

Ton() = B E a0 5 (V) )b eos 20 (5.16)
e (9)- 8 B 2 (e

cos (2g — 1)% (5.17)

The coefficients of cos 2miy/2 are in the same ratio in (5.9) and (5.16) for all m, and
likewise the coefficients of cos (2m — 1)w/2 are in the same ratio in (5.10) and (5.17)
for all m. Therefore the relative current distribution for an array with 2N -+ 1 elements
18

and, for an array with 2N elements is

_ 5w 2N — 1 N+p—N\/2p — 1\ 4,4
e 1] AP [y L A

Although they look formidable, (5.18) and (5.19) are simple to program. To use
them, one still needs to start with the knowledge of the number of elements in the
array and the desired side lobe level, so that 1, can be determined. For arrays with a
large number of elements, the time saved in using (5.18) or (5.19) is considerable when
compared to the procedure that first determines the root positions.
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Discussions in Chapter 4 have revealed that the angular extent of the main beam in
a sum pattern is inversely related to the length of a linear array. Further, it has been
seen that, for a given length array, the main beam broadens as the side lobe level is
lowered. In synthesis problems, these relationships must be approached from the
other end. Often the design specifications include statements about the desired beam-
width of a sum pattern, as well as the side lobe level. The designer must not only
determine the requisite current distribution, but also the array length and number of
elements, both chosen to avoid multiple beams (d/A should not be too great) and
supergaining (L/A should not be too small).

Because of the importance of beamwidth as a design specification, it is desirable
to sharpen these earlier discussions by introducing a more precise definition of
beamwidth. The one normally used is that the beamwidth is the angular separation
between 6 directions at which the radiated power density is down to one-half its
maximum value. For an equispaced array of 2N + 1 elements,* laid out symmet-
rically along the Z-axis, let § = 8, — 8, be this beamwidth, in which 8, and 8, are
the two values of § which satisfy the relation

§0,) = 0.7078(8)) = 35 dn prmissncs )2 (5.20)

=N 1

In (5.20), the current amplitudes /, are assumed to be pure real, the current phase
progression is governed by «,, d is the interelement spacing, and 8, is the pointing
angle of the main beam.

The amplitude distribution 7,/I; can be described by a Fourier series, namely,

In L j2anp/ (ZN+1)
L (5.21)

in which P is the highest spatial harmonic needed to represent the distribution.
Attention will be restricted to sum patterns in which the side lobe topography is
symmetric, which means that 7,/], is also symmetric, and thus that a, = a_, is pure
real for all p. Since &, = kd cos 8, insertion of (5.21) in (5.20) gives

8(0 ) — i ap i ejnkd[cos Opm—~cos o+ pi/L)
m

p=—-P n=-N

_ & sin{(zL/A)[cos B, — cos 8, + (pA/L)]}
= ,:z_:p a, sin {(nd/A)[cos B, — cos b, + (pA/L)]} (5.22)

4All the results obtained in this section are equally valid for 2V elements.
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in which L = (2N + 1)d 1s the length of the array. It has been shown? that, for large
arrays with conventional distributions, Equation 5.22 can be transformed to

P
sin Km Ay 1yeri K? )’1
ST = 0.707 (,,Zpa_o( D < (5.23)
where
K = %(cos 8, - cosf,) (5.24)

is a substitution variable from which the beamwidth can be deduced. Several cases
will now be considered.

CASE 1: UNIFORM DISTRIBUTION This is the simplest case of all and
extremely useful as a reference. Only q, has a value and (5.23) yields two solutions for
K such that sin Kn = 0.707Kz and K7 = +1.392, and therefore

cos 8, — cos 8, = 0.443(A/L) (5.25)
cos 8, — cos B, = —0.443(A/L) (5.26)

from which it follows that the half-power beamwidth is given by

6=0, 08, = cos"‘[cost‘)0 — 0.443%]
(5.27)
o A
—cos [cos @, -+ 0.443 f]
in the range 0 < 6, < /2, 6, = 0.
As the main beam is scanned from broadside (8, = =/2) to end-fire (8, = 0),
a cross section of the beam takes on a succession of positions, as indicated in Figure
5.2. As the conical beam closes toward end-fire, a position is reached at which 8, = 0,
and from this position to end-fire, there is no half-power point on one side of the beam.
For this reason 6, = 0 can be called the scan limit. Equation 5.25 will not give a real
value for 8, beyond this limit.
When the end-fire position is reached, the concept of beamwidth once again
takes on meaning. Equation 5.26 is still valid and one can write

§-—20, -2 cos“[l —0.443 %] @, = 0, 7) (5.28)

The beamwidths given by (5.27) and (5.28) are plotted in Figure 5.3 as functions of
array length and scan position. These curves will prove useful beyond the present case
of uniform amplitude excitation, as will be seen shortly.

SR. S. Elliott, "Beamwidth and Directivity of Large Scanning Arrays”, Appendix B, Micro-
wave Journal, 6 (1963), 53-60. Also in Microwave Scanning Antennas, ed, R. C. Hansen, Vol. 2 (New
York: Academic Press, 1966), Chapter 1.
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Fig. 5.2 Conical Beam Shape versus Scan

Each of these expressions for beamwidth (Equation 5.27, which is valid to
within one beamwidth of end-fire, and Equation 5.28, which is valid at end-fire) has
an approximate form when L >> 1. Using small-angle expansions, one obtains

8= 0.886% csc @, (at or near broadside) (5.29)
}. 1/2
g = 2[0.886T} (at end-fire) (5.30)

For L > 54, Equation 5.29 is in error by less than 0.2 9 at broadside and is in error
by less than 4% when the main beam has been scanned to within two beamwidths of
end-fire. For L > 54, Equation 5.30 is in error by less than 1%,

CASE 2: DOLPH/CHEBYSHEV DISTRIBUTION It has been shown in the
literature® that when the current distribution is chosen so that the pattern is equivalent

6R. S. Elliott, “An Approximation to Chebyshev Distributions,” IEEE Trans. Antennas
Propagat., AP-11 (1963), 707-9.
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End fire
Scan limit

3 dB beam width in deg.

(o)
10 100 100070
Array length L/N in wavelengths
Fig. 5.3 Half-Power Beamwidth versus Linear Array Length and Scan Angle for

Uniform Excitation (Reprinted from Microwave Scanning Antennas, Volume 2,
R.C. Hansen, Editor, Courtesy of Academic Press, Inc. © 1966 Academic

Press.)

to the Chebyshev polynomial T, x(u, cos ¥/2), then the Fourier coefficients are given by

7
Q2N+ Da, = T2N<u0 cos ﬁ) (5.31)
It follows from (5.31) that 2N -+ 1)a, = Ton(u,) = b, with 20 log,, b the side lobe
level. Thus
b

For large arrays, and for side lobe levels in the range from —20 decibels to —60 deci-
bels, only a, and a, are significant in determining the beamwidth. If (5.8) and (5.31)
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are used in conjunction for p = 1, it is found that a, is given quite precisely by
(2N + Da, = cosh [(arccosh b)? — r2]'/2 (5.33)

With all other Fourier coefficients insignificant in the calculation of beamwidth, (5.23)
becomes for this case

1 2 -1
SO E — 0.707(1 + 2a_"01___1 ) (5.34)

Inspection of (5.34) reveals that the solution for K when a, % 0 differs from the solution
for K when a, = 0 only through the presence of the ratio a,/a,. But (5.32) and (5.33)
indicate that a,/a, depends on side lobe level but not on scan position nor the number
of elements in the array. Thus it becomes convenient to introduce a beam-broadening
factor f which is simply the ratio of the half-power beamwidth when a given array is
excited Dolph-Chebyshev to the half-power beamwidth when it is uniformly excited.
Computations of beamwidth from (5.34), with a, and @, given by (5.32) and (5.33),
can be compared to the computations that produced Figure 5.3. The result is the
f-curve shown in Figure 5.4. The f~number can be interpreted as the cost in beam-
broadening to convert all the side lobes to a common height and reduce them to a
specified level.

The extended utility of Figure 5.3 can now be appreciated. If one wishes to
determine the beamwidth of a linear array of normalized length L/A excited to give

1.7

16 yd

.
1.5 /

1.3 //
/

Beam broadening factor

Ly v
/

15 20 25 30 35 40 45 50 55 60
Side lobe level in dB

Fig. 5.4 Beam-Broadening versus Side Lobe Level for Linear Arrays with Dolph-
Chebyshev Excitation
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a sum pattern with the main beam at §,, a reading from Figure 5.3 will give the
half-power beamwidth for uniform amplitude excitation. For Dolph-Chebyshev
excitation with a specified side lobe level, that reading should be multiplied by the
f-number read from Figure 5.4. One can also work backwards with the aid of these
two figures to deduce the array length needed when the scan position, beamwidth, and
side lobe level are specified for a Dolph-Chebyshev sum pattern.

5.5 Peak Directivity of the Sum Pattern of a Linear Array

The peak directivity D(8,) of the sum pattern produced by a linear array is a frequently
encountered design specification. It can be deduced as a special case of the general
definition of directivity, given as equation (1.160) and repeated here for convenience:

D@, $) = T 7% 0. 9) (5.35)
. fo fo ®(8', ') sin 8 6’ di’

The power density in the sum pattern of a linear array is given by’
P(0, $) = SA0)8X(0)[Cs,.(0, $)@Z.(6, §) + Gy, (0, $)25.(6, $)] (5.36)

The array and element factors that appear in (5.36) have previously been defined by
Equations 4.6 through 4.11.

If the array is large, the element patterns broad, and the side lobe level of the
sum pattern low, the principal contribution to the integral in the denominator of
(5.35) is in the neighborhood of the main beam. When this is the case, the factor
Q, Q% + @, .QF, can be brought out in front of the integral and given its value at
(@,, ¢). If this is done,

54(00) 55 (6o)
= ™2 5.37
D(%) L[ (0526 sin 040 d (5:37)
4ar Jo Jo
which further simplifies to
254(00) 52 (60)
(5.38)

D6y = rsa(e))s;(e) sin 0.d6
)

Equations 5.37 and 5.38 represent the peak directivity of the array factor, or
what is the same thing, the peak directivity of the sum pattern when the element
factor is assumed to be isotropic. They are approximate and cannot be used with
good accuracy for small arrays.

7Equation 5.36 assumes a type I (actual-source) array. The development can be duplicated
exactly when the array is represented by an equivalent magnetic current distribution,
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Continuing with the assumption that the array is large (L/A > 1), one can
return to the definition 4.35 and write

w =kdcos@ — a, dy = —kdsin 6 df (5.39)
NoT o
Sdl) = 2 e (5.40)
n=-N Iy

Use of these relations in (5.38) gives

kd—a,

p=a(En) ey (% rem)(E e )y 64

—kd—a;

If d = A/2 or any multiple thereof,? (5.41) reduces very simply to

N 2 N
DZ( > In> / > Iz (5.42)
n=—N n=-N
which is a most interesting formula in several respects. The directivity given by (5.42)
is a measure of the coherence of radiation from the linear array. The numerator is
proportional to the total coherent field, squared, whereas the denominator is propor-
tional to the sums of the squares of the individual fields from the various elements.
Furthermore the peak directivity, as expressed either by (5.41) or (5.42), is seen
to be independent of scan angle. On the face of it this seems surprising, since it has
already been observed that the main beam broadens as it is scanned away from
broadside, a manifestation which usually signifies lowered directivity. However, for
a linear array, as the conical beam is scanned toward end-fire, the “cone” occupies a
smaller solid angle in space, an effect that just cancels the beam-broadening.
Although Equation 5.42 is independent of scan angle, it is not independent of
current distribution. If one uses the Fourier series description of the excitation
embodied in (5.21), it is evident that

(3, 4) =N+ 1 (5.43)
)y (5_)2 —@N+ D) Y a (5.44)
so that ’
p=_2N+1 (5.45)
p:Z_P (a,/a,)?

For half-wave spacing, L = (2N + 1)4/2, so that (5.42) can be rewritten as
D— 2L/A

= - (5.46)
L+23 (a,/a,)?

8This restriction will be lifted shortly,
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For element spacings in the range 1/2 < d < 4, if L is held fixed, computations using
(5.41) show that the directivity is quite insensitive to element spacing. Since this is
the range which avoids either supergaining or multiple beams, (5.46) can be adopted
as a practical expression for the peak directivity of a large equispaced linear array,
symmetrically excited to give a sum pattern with symmetrical side lobes, with no
restriction on the pointing direction of the main beam. Several special cases can now
be considered.

CASE 1: UNIFORM DISTRIBUTION Once again this is the simplest case of all
and gives

D= : (5.47)

which is sometimes referred to as the standard directivity of a linear array. It is the
maximum directivity which can be obtained from a linear array of length L, using an
aperture distribution which has uniform progressive phase.

CASE 2: DOLPH-CHEBYSHEV DISTRIBUTION If one makes use of (5.31),
(5.32), and (5.46), the directivity for a Dolph-Chebyshev distribution can be written as
2LJA

D= N
{1 + @b?) T (Taaliy cos pri(2N + D)}

(5.48)

Unlike the computation of beamwidth for a Dolph-Chebyshev array, in which only
the first two Fourier coefficients were significant, it develops that all the Fourier
coefficients that appear in the denominator of (5.48) should be included. Indeed, if
the array becomes large enough, the sum of the squares of these coefficients becomes
proportional to 2N + 1 and thus the directivity tends to a limit.

It 1s a tedious computation to determine all the Fourier coefficients in (5.48),
particularly for large arrays. Fortunately, this is not necessary, It has been shown’
that an excellent approximation to (5.48) for large arrays is

2b*

b= nans (5.49)
in which 20 log, b is the side lobe level and fis the beam-broadening factor.
Equation (5.49) has the limit
Dy = 267 (5.50)

which is reached when L/A -- oo. Thus the maximum directivity for a Dolph-
Chebyshev array is 3 dB more than the side lobe level. This means, for example, that
if one wishes to design a linear array to have uniform side lobes and a directivity of
43 dB, it is necessary also to design it to have a side lobe level reduced at least to
—40 dB.

9Elliott, “Beamwidth and Directivity of Large Scanning Arrays,” Appendix C.
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Actually, maximum directivity is approaches rather rapidly at first, as L/1 is
increased, but then additional directivity is bought very dearly in terms of increased
array length. This point can be appreciated by studying Figure 5.5, which is a plot of
(5.49) for various values of side lobe level. An optimum directivity (and thus array
length) can be selected for a given side lobe level by specifying a point on the appro-
priate curve of Figure 5.5 at which the curve has just barely begun to bend significantly.
For example, one might not wish to design an array for a 20 dB side lobe level for
which L/A exceeded 100 and the directivity exceeded 100.

40 dB
60

1000 30

/ 20
100

4 15

Directivity

10 100 1000
LiX

Fig. 5.5 Peak Directivity versus Linear Array Length and Side Lobe Level for Dolph-
Chebyshev Excitation (Reprinted from Microwave Scanning Antennas, Volume 2,
R. C. Hansen, Editor, Courtesy of Academic Press, Inc. € 1966 Academic Press.)

This phenomenon of a directivity limit is not observed for a uniformly excited
array, with directivity given by (5.47). The difference is that the uniformly excited
array has tapered side lobes. The Dolph-Chebyshev feature of uniform side lobes,
while giving minimum beamwidth, is responsible for the directivity limitation. As
L/A is increased, more and more side lobes are found in real space. For a uniformly
excited array, these side lobes that are farther out are at increasingly lower levels
and thus make increasingly smaller contributions to the denominator of (5.38), which
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is not so for a Dolph-Chebyshev pattern, where all side lobes make the same contri-
bution. However, current antenna practice is to combine large arrays with low side
lobe levels, so this directivity limitation is not so serious as to preclude the use of
Dolph-Chebyshev designs. For example, Figure 5.5 shows that, for arrays as long as
10004, very little bending has occurred in the curve for a 40 dB side lobe level.

5.6 A Relation Between Beamwidth and Peak Directivity
for Linear Arrays

Equations 5.29 and 5.46 indicate that for a linear array both the peak detectivity and
the reciprocal of half-power beamwidth depend linearly on the array length. .Upon
eliminating L/A from these two expressions, one obtains

p=LT1 S (5.51)
0 Zﬁp(ap/ao)2

in which 8, is the broadside half-power beamwidth.
If the beamwidth is expressed in degrees instead of radians, and if the distri-
bution is uniform, Equation 5.51 reduces to the simple relation

(5.52)

For a Dolph-Chebyshev distribution, until an array length is reached at which
the directivity begins to limit, the factor in brackets in (5.51) is unity. Thus (5.52) is
a good working relation between broadside beamwidth and peak directivity for the
array excitations studied thus far, and this can be rounded off by saying that the
product of broadside beamwidth in degrees and peak directivity for a linear array is
approximately one hundred.

5.7 Taylor Synthesis of Sum Patterns

A horn of aperture size a by b, with ¢/A > 1 and b/A < | can be viewed as a continuous
line source, as can some of the traveling wave antennas to be discussed in Chapter 9.
For such structures, there is the need to develop a synthesis procedure that will permit
determination of the line source distribution corresponding to a specified pattern.
When the desired pattern contains a single main beam of a prescribed beamwidth and
scan position, together with a family of side lobes at a common specified height, this
problem parallels the one solved by Dolph for discrete linear arrays. The solution was
achieved by T. T. Taylor'® in an elegant paper of far-reaching importance, since
Taylor distributions can be sampled and thus applied to the design of discrete arrays

10T, T. Taylor, “Design of Line Source Antennas for Narrow Beamwidth and Low Side
Lobes,” IRE Trans. Antennas and Propagat., AP-7 (1955), 16-28.
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as well. Further, as shall be seen in Chapter 6, Taylor was able to extend his technique
to circular planar apertures. These Taylor circular distributions, as they are called,
can also be sampled, and thus can give the excitation coefficients for discrete planar
arrays with a circular boundary. Since there is no similar extension of Dolph’s
technique to circular planar apertures, it is important for the antenna designer to be
cognizant of the principal features of Taylor’s procedure.

If one returns to the development of the far-field vector potential functions
given in Chapter 1 for a continuous line source of small cross section S stretching
along the Z-axis from —a to +a, Equations 1.101 and 1.102 take the forms

a,0) — j S[cos 8 cos ¢ J.(£) - cos 8 sin ¢ J,(L) — sin @ J(O]e**de  (5.53)
@0 = | S[=sin $ J.() + cos $ J(O]e™= (5.54)

where £ = { cos 6.
If the direction of the current density is the same in every aperture element d(,
that is, if

J(©) = (1,C, + 1,C; = 1,Cy) g(0) (5.55)

with C,, C;, and C; constants, then (5.53) and (5.54) become
Qu(0) = (Cycos@ cosp + C,cosfsing — C, sin 0)SJG g(§)e*test e (5.56)
@,0) = (—C, sind + C, cos §)S j g(Q)er e qr (5.57)

The factors in front of the integrals in (5.56) and (5.57) are called the element factors
for @, and @, The integrals, which are seen to be common, give the array factor for
the line source. This partitioning exactly parallels what has already been observed for
discrete linear arrays.

Were one to deal with a continuous line source being represented by magnetic
currents, the foregoing could be repeated to the point of partitioning §, and F, into
element factors and a common array factor, the latter being an integral identical in
form to the integral found in (5.56) and (5.57). For this reason, Taylor chose to start
his analysis by considering the general array factor

$0) = | g@ereeag (5.58)

Equation 5.58 indicates that the synthesis problem is one of finding the aperture
distribution g({), given the desired pattern $(). But before proceeding to the specific
class of patterns §(8) treated by Taylor, it is instructive to consider a special and
idealized analysis problem, namely, given that g({) has uniform amplitude, uniform
progressive phase, what pattern results?
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dB

If g({) = Ke 7/*¢ with K and f constants, the integration of (5.58) is extremely
simple, and gives

sin [ka(cos 8 — B/k)]

8®) = 2Ka ka(cos 8 — Blk)

(5.59)

a result which should be compared with (4.27), a formula that was obtained for a
uniformly excited discrete array. Since L = 2q, one can see that these two pattern
expressions are identical (as they should be) in the limit when d/A — 0.

With the substitution

u = 27a (cos 0 — %) (5.60)

a universal power pattern can be constructed from (5.59) by the definition

sin 7u

f(u) =20 log,, (5.61)

SO 901
S(eo)‘ 0810

in which 6, = arccos(f/k) is the pointing angle of the main beam. A decibel plot of
f(u) can be found in Figure 5.6. One sees a sum pattern with symmetrical side lobes

sin mu
U

-20

Anﬁnﬂ AAAAA

~30

-40

-50

—15

=10 =5 0 S 10 15

u= %\f (cos 8 —cos )

Fig. 5.6 Sum Pattern for Continuous Line Source with Uniform Excitation
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whose field heights trail off as u~!, the pair of side lobes closest in being down
13.5dB. As @ moves in real space from 0 to 8, to =, (5.60} indicates that ¥ moves to
the left in Figure 5.6 from (2a/A)(1 — B/k) to 0 to —(2a/A)X1 + B/k). The number of
side lobes in the “visible” range of u thus depends on the aperture length 2a/1. All of
this is consistent with what has been learned earlier about discrete linear arrays.

What Taylor sought can be appreciated from a study of Figure 5.6. Suppose,
for example, one could find a way to depress the nine innermost side lobes on each
side of the main beam to a common height of —30 dB, meanwhile leaving alone all
the side lobes that are further out. Clearly, this would give a satisfactory design,
particularly if the further out side lobes were all in the “invisible” range of u.

An approximation to such patterns can be constructed in the following way:
Select an integer 7 and say that for |u#]| > 7, the nulls of the new pattern are to occur
at integral values of u, just as in Figure 5.6. But the next pair of nulls in toward the
main beam will need to occur at u = 4-u,_;, where |u,_,| > a7 — 1, in order to depress
the intervening side lobes somewhat. Similarly, the penultimate pair of nulls needs
to be shifted to ¥ = +u,_,, where |u,_,| > 7 — 2, and so on. The function that
expresses this new pattern is

A=1
122 2
sin nu,,lzll(l u?fuy)

= (5.62)
AL = )
n=1

Su) =

which can be seen to remove the innermost 7 — 1 pairs of nulls from the original
sin 7zu/mu pattern and replace them with new pairs at modified positions +u,.
Taylor found that the new null positions should be determined from the formula

- A2 + (n e %‘_)2 1/2
4, = n[——-—-AZ e %)2] (5.63)

with 4 a measure of the side lobe level (SLL) in that cosh 74 = b, with 20 log, ,b =
SLL.

An example of a Taylor pattern is shown in Figure 5.7, with 7 = 6 and the
design side lobe level —20 dB. This plot exhibits the characteristic features of all
Taylor patterns. One can observe that, for |u| = 7 and beyond, the nulls occur at
the integers, and that the far-out side lobes decay in field value as u~!. The close-in
side lobes are not precisely at the design level —20 dB. The closest in pair are slightly
below it, the next pair out are a bit lower, and so on, so that there is a slight droop to
the envelope of the near-in side lobes. However, one finds that this droop is less if
# is selected to be a larger number, and Taylor has shown that the beam broadening
associated with this droop is negligible in practical circumstances.

With a Taylor pattern defined by (5.62) and (5.63), it becomes a simple matter
to find the corresponding aperture distribution from (5.58). If one lets g({) = A({)e 7%,
with A({) represented by the Fourier series

WO = 3 B, cosTZ_C (5.64)
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Fig. 5.7 Taylor Sum Pattern for Continuous Line Source, 7 = 6, —20dB SLL

then substitution in (5.58) gives

S(u) — mi B, f cos'ﬁa”_c et gt (5.65)

a

The odd part of the integrand of (5.65) can be discarded, which leaves

S8u) == mio B, Jm cos anC cos _m;_C ac (5.66)

If u is an integer, the integral in (5.66) is zero unless m = u; as a consequence,
2aB, = §(0), aB,, = §(m), m=12,... (5.67)

However, (5.62) indicates that §(m) = 0, m > 7, so this Fourier series truncates, and
thus the continuous aperture distribution is given by

2 = 7] 5(0) + 2 35 8(m) cos™ | (5.68)
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The aperture distribution corresponding to the Taylor pattern of Figure 5.7
and computed from (5.68) is shown by the solid curve in Figure 5.8. For comparison,
a bar graph is superimposed showing the Dolph excitation for a 19-element discrete
array and the same design side lobe level. This reveals a common finding. The Dolph
distribution typically has a wider swing near the aperture ends than does the Taylor.
This can be traced to the requirement that all the side lobes in the Dolph pattern are
at a common height, whereas in the Taylor pattern they droop somewhat. The
Taylor distribution (discretized) is physically easier to achieve, which adds to its
attractiveness.

<
0 & RN Bs . E_ u _ 3
-a _3a _a 0 a a 3a a
4 4 4 2 4

Aperture position §

Fig. 5.8 Taylor Aperture Distribution for Pattern of Figure 5.7 ; Dolph-Chebyshev Bar
Graph Overlay

5.8 Modified Taylor Patterns

Optimum designs of sum patterns often call for the maximum directivity (minimum
beamwidth) from a line source of specified length, subject to some specification on
the side lobe level. However, all directions in space may not be equally important
insofar as side lobe suppression is concerned. Since every side lobe that is suppressed
costs something in beam broadening, Taylor patterns (which arise when equal impor-
tance is attached to all directions) may not be optimum in some applications.!! One

11These remarks are equally applicable to Dolph-Chebyshev patterns, and the development
to be presented here will be extended to the discrete array case in Section 5.10.
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is led to consider designs which permit high side lobes in unimportant regions, while
maintaining low side lobes in critical regions, that is, patterns with arbitrary side lobe
topography.

A perturbation procedure may be used to modify a Taylor pattern so that all
the side lobes have individually arbitrary heights.!2 It is best to begin by expressing
the Taylor pattern of (5.62) in the more general form

Ap—1

. I (1 —uji)
So(u) = Co 3 ez lie (5.69)
F_I(I'_“ (A — u/n)

The subscripts R and L in (5.69) are used to identify the right side and the left side
of the pattern. As generalizations of (5.63), the root positions are given by
_[A%+M~DZ
"R AR (- 1)
0 _|:Af+(n—'2)2 12
Uy = —n| ———————3
Alz, +(n, —5)?

Ko

1/2
} n=1,2,... fig—1 (5.70)
ne=—1,-2,...,—(,—1) (571

In (5.69) through (5.71), i1, and #, are positive integers that denote the transition roots
on the two sides of the main beam (there is a root at —7, and at each integer less
than —7,; there is a root at 7z and at each integer greater than 71,). The side lobe
level parameters on the two sides of the pattern are A, and A,. The prime on each
product sign in (5.69) indicates that the factor for which » = 0 has been excluded.
C, is a constant.

It is readily seen that if 7, = 7i, = 7and A, = A, = A, Expression 5.69 reduces
to the standard Taylor form of (5.62). The advantage of (5.69) is that it permits the
two sides of the Taylor pattern to be treated separately, since 4 need not equal 4,,
and 71, need not equal 7.

In what is to follow in Section 5.9 the root positions #, will be perturbed in
order to modify individual side lobe heights. But before passing on to that develop-
ment, it is interesting to pause and observe that useful patterns can be generated merely
by choosing the parameters on the two sides of the main beam to be different. For
example, if i, = 8, A, = 3, A2 = 1.29177, and A2 = 0.58950, the left side corresponds
to a 15 dB Taylor and the right side to a 25 dB Taylor. This modified 15/25 Taylor,
computed from (5.69), is shown in Figure 5.9. It can be seen that some averaging has
taken place (the innermost side lobe on the left side, at —16.7 dB, is lower than its
counterpart in the symmetrical Taylor 15/15; the innermost side lobe on the right
side, at —24.3 dB, is higher than its counterpart in the symmetrical Taylor 25/25).
However, this effect is systematic, and one could achieve 15/25 by designing for
13.5/26.

The asymmetry of the side lobe structure in Figure 5.9 caused a small shift in

12R, S. Elliott, “Design of Line-Source Antennas for Sum Patterns with Sidelobes of Indi-
vidually Arbitrary Heights”, JEEE Trans. Antennas Propagat., 24 (1976), 76-83.
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Fig. 5.9 An Asymmetric Taylor Sum Pattern () 1975 IEEE. Reprinted from /EEE AP
Transactions, pp. 100-107, 1975.)

the position of the main beam. This can be compensated easily by a slight change in
the uniform progressive phase of the distribution.

Patterns of the type shown in Figure 5.9 are useful in applications where side
lobe reduction is important on one side of the main beam but not the other. Speci-
fically, this pattern has the advantage that the beamwidth is narrower and the direc-
tivity is higher than one finds in a symmetrical Taylor 25/25.

The aperture distributions corresponding to these modified Taylor patterns can
be expressed in the Fourier form

8O = Qe = e 5 B e G

Substitution in (5.58) gives

So(e) — i Bm J.a e—jmn( 'aejkc(cos g-p8 k) dC

So(u):% ;mef e~ Impeiur dp (5.73)
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in which
_ L
p== (5.74)
Integration of (5.73) gives
8o(m) = 2aB,,
and thus
P 1 k= ~jmn{/a
W) = Zm=—(ﬁL—1)80(m)e Jmt (5.75)

A plot of the distribution A({) needed to produce the pattern of Figure 5.9 is
shown in Figure 5.10. The amplitude distribution of the Taylor 20/20 is shown for
comparison. It is well within the state of the art to achieve a discretization of either
one of these distributions.
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Fig. 5.10 The Aperture Distribution for the Pattern of Fig. 6.8 (© 1975 IEEE. Reprinted
from /EEE AP Transactions, pp. 100-107, 1975.)
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5.9 Sum Patterns with Arbitrary Side Lobe Topography

Imagine that a sum pattern §(u) has been prescribed in which the height of every side
lobe is individually specified. §(¢) can be expressed in the form of (5.69), that is,

S@ = Cfw 1T (1 — l) (5.76)

n==~{(i,—1) u,
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with
S = —=r ””1/”” u (5.77)
n:;[(IﬁL—l) < 7)

Let a starting pattern §,(«) be selected such that the side lobe levels on the two sides
of its main beam separately approximate the average side lobe levels on the two sides
of the main beam in the desired pattern. Then all the roots #, in the starting pattern
are known, being calculable from (5.70) and (5.71).

Assume that the roots in the desired pattern are given by

u, = u, -+ du, (5.78)

with the perturbations du, small. Then if

C=C,+dC (5.79)
the desired pattern becomes
) = (Cy + 6C) f(u) Hl (1 — 04) (5.80)
=G~ 1) u, + 6u,
But
—(+—H—) =1 — u@, + éu,)*
: <13,, + 5u,,> ity + Our)
1 du, , Ou?
2
o
u’l u" un
0, 03
={1— %\(1 ._(_”/“n_)é _ _Wfu) 2. ... 5.81
( &)( +1—u/13,, S N CLD ) (5-81)
Therefore
fin—1 0,
—(C, 4+ 6C b= BN W) s 582
$(u) = (Cy + )f(u)n:_l(lr”( u)( L ) G

and, to first order,

8 = 8o + £ 8600) + $sw S W) g,

0
n=-t-0 1 — ufu,

which can be put in the useful form

8(14) 1 — 5_C r'-n—-ll M
So(u) l CO + n="Tm-1 1 — u/ZS,, éun (583)
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Including the main beam and all side lobes, there are 7i; + 7i, — 1 lobes between
the anchored roots at —n,; and +7i. Let the positions of the peaks of these lobes in the
starting pattern be designated by w2, m = —(i, — 1),...,—1,0,1,..., (i — 1)
Insertion in (5.83) gives

Swp) _ | _0C "=l (uafid) o 5.84
Solut) Co + n=m-0 1 — ubju, e (5.84)

If the lobe peak positions in the desired pattern are close to those in the starting
pattern, S(uz) is essentially the height of the mth lobe in the desired pattern, a known
quantity. Then all the terms appearing in (5.84) are known except the (7, + 77, — 2)
perturbations du, and the unknown 8C/C,. Since there are (7, + 7, — 1) values of
m to insert in (5.84), this is a deterministic set of linear equations. Matrix inversion
will yield the root perturbations du, which, with the aid of (5.78), give the new root
positions. When these are used in (5.76), the new pattern may be computed and
inspected to see if it is close enough to desired. If not, the process can be repeated
with the new pattern used as starting pattern.

Experience shows that, for desired patterns in which the variation in heights
of successive side lobes is not extreme, convergence of this process is rapid; usually
several iterations are sufficient. For specified patterns of extreme variability, an interim
desired pattern might need to be postulated to assure convergence.

As an example of the use of this technique, assume that a symmetrical sum
pattern is desired, with the three innermost pairs of side lobes at —40 dB, the next
four pairs at —20 dB, and all further outside lobes decaying as |u#|~!. It is convenient
to use as starting pattern a symmetrical 30/30 Taylor with n, = n, = 8. This pattern
is shown in Figure 5.11a. Three iterations yield the result displayed in Figure 5.11b.
The expanded range, showing the tailing off of the outer sidc lobes, can be seen in
Figure 5.11c. After the third iteration, all side lobes were within one quarter of a
dB of specification.

The aperture distribution which will produce this desired pattern can be deter-
mined from (5.75), with §(m) replacing §,(m), and is shown in Figure 5.12. Because
the pattern is symmetrical, #({) is an equiphase distribution.

A second example involves a desired pattern which is Taylor 20/20, 7 = 8,
except that the innermost three lobes on one side of the main beam are to be at
—30 dB. With the unmodified Taylor used as starting pattern, three iterations produce
the result shown in Figure 5.13. The corresponding aperture distribution is seen in
Figure 5.14. Because of the asymmetry in the pattern, A({) exhibits an asymmetric
phase distribution to go with the symmetric amplitude distribution.!?

A third example provides more of a challenge for the perturbation procedure.
Suppose that the desired pattern has the innermost seven side lobes on one side of

13Resolution of (5.75) into its real and imaginary components indicates that, for a sum pat-
tern, the amplitude distribution is always symmetrical, whereas the phase distribution is always
asymmetrical if the pattern is asymmetrical, and is always zero if the pattern is symmetrical.
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the main beam at a common height of —25 dB, whereas the innermost seven lobes
on the other side are cascaded in 5 dB steps, the closest-in at —45 dB, the next at
—40 dB, and the last at —15 dB. All further out side lobes on both sides are to decay
as |u|"t.

Though it is not quite optimum, let the pattern of Figure 5.9 serve as starting
pattern. It is found that six iterations are needed to bring all side lobes within one
quarter of a dB of specification. The patterns resulting from each iteration are shown
in Figure 5.15 and the requisite aperture distribution in Figure 5.16. It can be
observed that in this case also, because of the asymmetry in the pattern, there
is an asymmetric phase distribution coupled to the symmetric amplitude distribu-
tion. Both display considerable fine structure because of the severity in the side lobe
topography.

It is interesting to observe that this perturbation procedure is capable of
achieving Taylor’s original goal—to find a continuum equivalent to the Dolph-
Chebyshev discrete excitation—a distribution that will produce a pattern with all side
lobes in real space at a common specified height. However, this is a point of academic
interest only. The Taylor pattern suffers an inconsequential loss in beamwidth and
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directivity due to the slight droop in near-in side lobes, and requires an aperture
distribution that is easier to achieve than the continuous distribution which would

produce uniform side lobes.

5.10 Discretization of a Continuous Line Source Distribution

Continuous line source distributions, such as those shown in the even-numbered
Figures 5.8 through 5.16 can be sampled at ¥ + 1 equispaced values of { to determine
the excitation of a linear array consisting of N -+ 1 equispaced elements. Obviously,
if N -+ 1is large enough, the sampling interval will be so small that all the fine detail
in the continuous aperture distribution will be captured. Under these circumstances,
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the pattern from the discrete array will differ but little from the pattern due to the
continuous aperture distribution. However, in many practical applications, & + 1
will be small enough that the sampling results in an excitation which gives a badly
degraded pattern. It is possible to circumvent this difficulty by working directly with
the desired pattern, rather than its continuous aperture distribution.

Suppose, as an example, one wishes to produce the pattern shown in Figure
5.13 with a linear array of N + 1 elements spaced A/2 on centers. The array length is
2a = (N + 1)A/2. The full excursion of u is (4a/A) = N + 1. Thus there are N nulls
in the visible range of Figure 5.13, which exactly matches the number of roots which
can be placed on a Schelkunoff unit circle for an array of N + 1 elements.

Since w = e¥, with w = kd(cos § — cos 8,) = n(cos 8 — cos §,), and since
u = (2a/A)(cos § — cos 8,), it follows that

y =Tk, 2mu (585)

Therefore, if u, is a null in the pattern, then
W, = eiima/(Vi1) (5.86)

is the corresponding root on the unit circle.

The nulls u, for the pattern of Figure 5.13 are known to good precision. (The
pattern was computed from Equation 5.76 after the null positions were found using
the perturbation procedure). Thus it is a simple matter to calculate the roots w, from
(5.86). Once these w, roots are known they can be placed in (4.38). When the factors
are multiplied out, the discrete current distribution is determined.

If another spacing than 1/2 is used, this does not affect the root placement,
nor f(w), nor the current distribution, only the extent of the w-excursion on the unit
circle and the number of side lobes in visible space. Thus Equation 5.86 can be used
to determine the root placement regardless of the element spacing.

As a specific example of this procedure, suppose a 19-element equispaced linear
array is to be excited so as to produce the pattern of Figure 5.13. Corresponding
values of u, and w, are listed in Table 5.1 and the normalized current distribution,

TABLE 5.1 Null positions for pattern of Figure 5.13

n Uy W n Uy W,

-9 —9.000 —0.,986 — j.165 1 1.459 0.886 + j.464
-8 —8.000 —0.879 — j.476 2 2.021 0.785 + 7.620
-7 —6.940 —0.663 — j.749 3 2.803 0.600 + ;800
—6 —5.888 ~0.367 — j.930 4 3.561 0.383 4 ;924
-5 —4.,842 —0.030 — j.999 S 4.776 -0.009 + ;.999
—4 —3.805 0.307 — j.952 6 5.857 —0.358 + 7.934
-3 —2.789 0.604 — j.797 7 6.926 —0.659 + ;752
—2 —1.827 0.823 — j.568 8 8.000 —0.879 + ;476
—1 —1.071 0.938 — j.347 9 9.000 —0.986 + ;.165
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TABLE 5.2 Discretization of Figure 5.14

Linear Arrays: Synthesis

I, 1, I, 1y
Root Conventional Root Conventional
n Matching Sampling n Matching Sampling
0 1.000 |0° 1.000 |0° +5 0.730]2:12.50° 0.714 | £13.90°
+1 0.986 | +3.92° 0.981 | +4.04° +6 0.6731418.31° 0.596 | +-20.96°
+2 0.914 | +£6.58° 0.906 | - 6.60° +7 0.448 | £-28.12° 0.387 | +27.99°
+3 0.852(4+7.32° 0.847(+£743° -8 0.373{£19.37° 0.518 |4 8.90°
+4 0.804 | +8.59° 0.787 | +£9.31° +9 0.727 |+ 2.29° 0.782|0°

found by expanding n(w — w,), is given in the second column of Table 5.2. For
comparison, the current distribution found by conventional sampling of the con-
tinuous aperture distribution of Figure 5.14 is shown in the third column of Table
5.2. Significant differences can be noted between the two excitations, particularly in
the outer elements.

The patterns produced by both current distributions listed in Table 5.2 have
been computed using Equation 4.14 and are shown in Figure 5.17 for an element
spacing of 0.74. The pattern due to conventional sampling of the continuous aperture
distribution is seen to be degraded to an unacceptable level. Only one of the three
innermost side lobes is depressed, and it is depressed too far, whereas the remainder of
the side lobe structure does not stay below —20 dB. In contrast, the pattern resulting
from root matching is an excellent approximation to the desired pattern. (The rise
in the outer side lobes of both patterns in Figure 5.17 is due to the fact that they are
repeats of closer-in side lobes. With d/A = 0.7, the w-excursion is 1.4 revolutions
around the Schelkunoff unit circle).

An experimental test of the current distribution obtained by root matching,
and listed in Table 5.2, will be described in Chapter 8 in conjunction with the design
of a 19-element waveguide-fed slot array.

This discretizing technique can be applied equally well to an unmodified Taylor
pattern. For example, if a 19-element array is required to produce the Taylor 20,20,
i = 6 pattern of Figure 5.7, with the main beam at broadside, the 18 nulls in u-space
can be computed from (5.63). 1t is found that

u, — +1.15659, +1.91011, £2.87579, +3.89905, +4.94428, -6, 47, 48, +£9.
Thus the roots w, occur in complex conjugate pairs at the angular positions

+73.877°, 493.681°,
4-170.526°

4-36.192°, +113.684°,

4-132.632°,

4-54.489°,
+151.579°,

w, = +21.914°,

Except for a multiplicative constant, the pattern is given by

fw) = f[(wz — 2wcosy, -+ 1)
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which, when multiplied out, gives the equiphase current distribution shown in
Table 5.3.

TABLE 5.3 Current distribution for discretized Taylor

20/20,n =6
n 1, n I,
0 1.000 +5 0.769
+1 0.997 +6 0.649
+2 0.966 +7 0.563
+3 0.904 +8 0.623
+4 0.843 +9 0.749

The pattern corresponding to this discrete current distribution is shown in Figure
5.18 and is seen to be an exellent approximation to Figure 5.7. (Once again, the side

lobes begin to repeat because of the element spacing.)

This determination of the discrete excitation by root matching, though superior
to conventional sampling, is not sufficient if the side lobe topography becomes too
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severe. To illustrate this, imagine that the pattern of Figure 5.15 is to be produced by
a 15-element array with 0.4751 spacing. Conventional sampling of the aperture
distribution of Figure 5.16 leads to the badly degraded and unacceptable pattern
displayed in Figure 5.19a. When the current distribution is determined by root
matching, considerable improvement results, as can be seen in the pattern of Figure
5.19b. However, this pattern is not an adequate approximation to the ideal of Figure
5.15. In such circumstances, a perturbation procedure can be used to improve the
approximation to any degree desired.!*

To see this, assume that—for an equispaced array of N + 1 elements—a
current distribution [0,, has been found by root matching and produces the pattern
(see Section 4.4)

N 10 N 0
fiw) =3 <T")w" = [[ w-w,) (5.87)
A=0 IN =1
and that this pattern is not quite a satisfactory approximation to some ideal that has

been specified.
Let (5.87) be called the starting pattern and assume that the desired pattern can
be expressed in the same form, that is,

Sw) = ﬁ ('T) W (5.88)

n=0 IN
If the starting and desired patterns are not too disparate, one can write

I =1 + 6l (5.89)

and expect that the perturbations 6/, will be small compared to the starting currents
0
/.. When (5.89) 1s used in (5.88), the result is that

Sw) = folw) + io (‘—Soi) " (5.90)

n IN

Let wZ be the positions in w-space of the lobe peaks in the starting pattern,
with wg the peak position of the main beam, and w2, ..., w% the peak positions of
the N side lobes.!* Then

Som) —Sown) 5~ W) 55 01, N (5.91)
Jowh) nrOIONfo(Wg) ’ , ’

14R . S. Elliott, “On Discretizing Continuous Aperture Distributions”, [EEE Trans. Antennas
Propagat., AP-25 (1977), 617-21.

15These peak positions can be found by a peak-finder computer routine, or with reasonable
accuracy, can be taken to lie halfway between successive w roots.
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If the perturbations are small, w2, is close to the peak position of the mth lobe in the
desired pattern. And if the condition

S8 — fo(w§) =0 (5.92)

is imposed, the two patterns will have been adjusted so that their main beam heights
are essentially equal. In that case

[ODfd) e =12, N (593)

is a pure real number!¢ representing the difference in height of the mth side lobe in
the desired pattern and in the starting pattern. This difference is a known quantity.

If (5.92) and (5.93) are used in (5.91), the result is & + 1 simultaneous linear
equations in the unknown complex quantities 87,. Matrix inversion gives the pertur-
bations in the relative currents, and use of (5.89) gives the new current distribution.
If this is inserted in (5.88), the new pattern can be computed and compared to the
desired pattern. If the agreement is satisfactory, the procedure has been completed.
If not, f(w) can be used as the new starting pattern, and the process repeated. Experi-
ence has shown that in practical applications only a few iterations are needed to give
satisfactory convergence.

If the individual side lobes in the ultimate desired pattern have heights that
vary markedly from their average value, it may be desirable to select a sequence of
interim desired patterns, thus moving toward the final goal in a series of gradual
steps. Since the computer program is simple, this is not a costly operation.

As an example, this perturbation procedure can be applied to the pattern of
Figure 5.19b, which is not sufficiently close to the ideal of Figure 5.15. Three iterations
are sufficient to bring all side lobes within } dB of specification, as shown in Figure
5.20. The final normalized current distribution is listed in Table 5.4.

TABLE 5.4 Discrete current distribution for 15-element array,
0.475/ spacing, to give pattern of Figure 5.20c

n 1, n In

0 0.881] 0° +4 0.510 £ 9.96°
+1 1.000 | +1.72° +5 0.580 | £12.31¢
+2 0.778 | +4.76° +6 0.215 |+ 1.66°
+3 0.828 | +5.49° +7 0.398 | £39.48°

16To insure that the right side of (5.91) is also pure real, it is desirable either to index the ¢le-
ments from the center of the array, or to extract a factor (w)N/2, in order to establish the phase center
appropriately. Since a sum pattern with asymmetrical side lobes, interspersed by deep nulls, requires
element excitations which occur as a sequence of complex conjugate pairs relative to the array center,
one could paralle] the development which begins with (5.87) and express the pattern in terms of sines
and cosines of multiples of y. This leads to a real matrix equivalent of (5.91), which some users of
this technique might prefer.
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5.11 Bayliss Synthesis of Difference Patterns

Section 5.7 was concerned with a synthesis problem solved by Taylor, namely, the
determination of a continuous line source distribution that would produce a sym-
metric sum pattern, with pairs of near-in side lobes at a quasi-uniform height. The
requisite distribution was found to be symmetrical in amplitude and nonzero at the
end points.

An analogous synthesis problem exists for difference patterns. Can one find a
continuous line source distribution that will produce a symmetric difference pattern,
with twin main beams surrounded by pairs of near-in side lobes at a quasi-uniform
specified height?

An approach to the ultimate answer to this question can be patterned after the
development in Section 5.7. In retrospect, the Taylor line source distribution g({),
given by Equation 5.68, is seen to be the product of two factors: (1) a uniform pro-
gressive phase term e /# which serves the purpose of determining the pointing
direction of the main beam, and (2) a pure real amplitude distribution function

MO = 55 8O 4 25 §(m) cos 7 | (5.94)

In (5.94), A({) is represented by all even terms in a Fourier series that are nonzero at
the endpoints. The special case of a uniform distribution #({) = constant corresponds
to taking only the first term of this Fourier series, and results in the generic pattern
shown in Figure 5.6, which can be modified by root displacement to give the Taylor
pattern.

By analogy, it can be anticipated that the line source distribution being sought
for a Dolph-like difference pattern is representable by a Fourier series consisting of
all odd terms that are nonzero at the end points, that is,

WO = 3 Busin[ (m+ 3) %] (5.95)

a

The generic difference pattern should result from taking only the zeroth term of this
Fourier series, that is, from the aperture distribution

g(0) = sin (’2‘—2) eI (5.96)
When (5.96) is used in the array factor common to (5.56) and (5.57), it can be seen that

DO) = | g(Oere0dy

— f Sin (7;_5) ejkC(cosafﬂ k) dc

-a
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=12 Jm sin (g—f;) sin [kC (cos 0 — —kﬁlﬂ dl
:jJ: {cos[(u — %) %C] — cos [(u + %)n_(ﬂ} da¢ (5.97)

with u once again given by (5.60). Integration of (5.97) gives, with the suppression of
an inconsequential mutiplicative constant,

_ muCcos Tu
D(u) = DD (5.98)

This generic pattern is shown in Figure 5.21. It is seen to consist of twin main beams
that straddle a null at ¥ = 0, plus symmetric pairs of side lobes with heights that
diminish as |« |~!. The innermost pair is only 10 dB below the main beam. However,
if the near-in null pairs could be shifted outward in some programmed manner, a
useful difference pattern would result. For example, if the innermost four pairs of side
lobes could be adjusted to be at a common height of —20 dB, with all further-out

U * COS TU

D)= (u“%)(ll*’%)

L) | Np
| |

dB

e |

=50
-7.5 -5 -2.5 0 2.5 S 7.5

u=(2a/N(cos 6 —cos 83)

Fig. 5.21 Generic Difference Pattern for a Continuous Line Source
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side lobe pairs unaffected, one would accomplish the equivalent of what Taylor did
to obtain a —20 dB SLL sum pattern.

The nulls in the generic difference pattern given by (5.98) occur (1) at v = 0,
and (2) when cos i == 0, that is, when

n=0,1,2,... (5.99)

u=+4(n-+1%)
(The » = 0 nulls are removed by the two factors ocurring in the denominator of
(5.98)). Thus if one wishes to anchor the nulls which occur at +(7 4 ) and beyond,
while moving the intervening null pairs so as to depress the near-in side lobes, it is
clear that (5.98) should be modified to the form

1
(I — u?/ug)
D(u) = nu cos Ay —==*

11 {t — [u/(n + DI}

n=0

fi—

(5.100)

The synthesis problem is now focused on the need to find the new null locations +-u,
such that the near-in side lobe pairs are at a quasi-uniform specified level.

This problem was solved by E. T. Bayliss.!” Unlike Taylor, who was able to
determine his null relocation formula (5.63) through recourse to the ideal space factor
cos m./u? — A%, Bayliss was not able to find a limiting form for the ideal difference
pattern. Thus he was obliged to undertake a parametric study with the aid of a com-
puter, the results of which have yielded the following formulas for root placement.

0 n=20

. l ’7; 172
<n + 7)(_—/12 i ﬁ2> n=1,2,3,4

- IN/AE + a2 -
<n“«h2—><m> n=25,6,...,n—1
The parameters 4 and &, are related to the side lobe level and their appropriate values

can be read from Table 5.5. A typical Bayliss pattern for 7 = 10 and a prescribed
30 dB side lobe level, is shown in Figure 5.22. These patterns exhibit many of the

(5.101)

TABLE 5.5 Parameter value versus side lobe level for Bayliss
difference pattern

Side Lobe Level in dB

15 20 25 30 35 40
A 1.0079 1.2247 1.4355 1.6413 1.8431 2.0415
&1 1.5124 1.6962 1.8826 2.0708 2.2602 2.4504
& 2.2561 2.3698 2.4943 2.6275 2.7675 2.9123
&3 3.1693 3.2473 3.3351 3.4314 3.5352 3.6452
Ea 4.1264 4.1854 4.2527 4.3276 4.4093 4.4973

17E, T. Bayliss, “Design of Monopulse Antenna Difference Patterns with Low Side Lobes”,
Bell System Tech. J., 47 (1968), 623-40,
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same characteristics observed in Taylor sum patterns. The near-in side lobes droop
off slightly and the far-out side lobes decay as |u|'. The near-in nulls have been
displaced outward to lower the near-in side lobes. For |#| > 4 the null positions
occur at the half integers.

The aperture distribution that will produce a Bayliss pattern can be determined
by multiplying (5.95) by e 7 to obtain g(&), inserting the result in the first form of
(5.97), and using (5.100) for D(u). One finds that

sin [(m —;—) %} sin <u 7-%) da¢ (5.102)

If u is halfway between two integers, say »n + 4, this integral is zero unless n = m,
in which case

a

D) = 2 ;Bmf

0

Dm + 1) = jaB, (5.103)

Further, since D(m + ) = 0 for m > 7, as can be seen from (5.100), the Fourier
series truncates. Therefore the aperture distribution for a Bayliss pattern is given by

A1
g0 = e X D (m - %) sin E(m . %) ﬁﬂ (5.104)
with the factor (ja)~! suppressed, and with D(m + 1) evaluated from (5.100).

For the pattern shown in Figure 5.22, use of (5.104) yields the distribution
shown in Figure 5.23. One observes a symmetrical amplitude distribution which is
nonzero at the end points, but which goes to zero at the midpoint, which is where a
phase reversal of 180° takes place.
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Fig. 5.23 Bayliss Aperture Distribution for Pattern of Fig. 5.22

5.12 Difference Patterns with Arbitrary Side Lobe Topography

The perturbation procedure used in Section 5.9 to shift the nulls of a Taylor pattern,
so as to create a sum pattern with the heights of all side lobes individually specified,
can be applied to Bayliss difference patterns for the same purpose.'® As a generaliza-
tion of (5.100), the starting pattern can be written in the form

'71:‘,1 u
Do) = Crf G T (1 §) (5.105)
with
f) = s (5.106)
L0 - win+ )

The desired pattern can be expressed in the same form, that is,

D(u) = (Cy - 6CYu — duy) f(u) ﬁﬁ} (l 0—55—) (5.107)

ne=(ag,=1) u, -+

n

in which u, = u, + du, is the new root position and C = C, + &C is the amplitude
factor of the new pattern.

18R S. Elliott, **Design of Line Source Antennas for Difference Patterns with Side Lobes of
Individually Arbitrary Heights”, IEEE Trans. Antennas Propagat. AP-24 (1976), 310-16.
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One new feature can be observed in the formulation of (5.107). Whereas the
starting pattern Dy(u) has a null at # = 0, the desired pattern has a null at the shifted
position # = du,. This is necessary if one wishes to have a deterministic set of pertur-
bations. Between the anchored roots at ¥ = —7, and u = 7, there are 7, -+ 1, lobes
with heights to be adjusted. /ncluding the null between the two main lobes, there are
ng + A, — 1 movable nulls which, combined with the adjustable amplitude factor
C, provide just the proper number of degress of freedom.

When the expansion in (5.81) is used, to first order,

Dw) _ | _8C buy D ) 5.108
D) C, u +n:—(u—1)1—u/13,, o (-108)

If the peak positions uZ of the lobes in the starting pattern are placed in (5.108), a
set of 71, -- 7, simultaneous linear equations results and matrix inversion gives the
values of the perturbations. As in the sum pattern case, D(u2)/D,(u2) can be identified
as being essentially the ratio of the desired height of the mth lobe to its starting
height.

An example of the use of this technique is the modification of a Bayliss 30/30,
7 = 10, so that the four innermost pairs of lobes are at —40 dB. Three iterations give
the pattern shown in Figure 5.24. The corresponding aperture distribution can be
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4OAAAAf

-50 U 1 1
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u=(2a/N\)(cos 6 —cos )

I —

M

Fig. 5.24 A Modified Bayliss Difference Pattern; Inner Side Lobes Symmetrically
Depressed (© 1976 IEEE. Reprinted from /EEE AP Transactions, pp. 310-316, 1976.)
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found in Figure 5.25. It is significantly different from the distribution for the
unperturbed Bayliss 30/30 (compare with Figure 5.23), but not difficult to achieve in
practice.

5.13 Discretization Applied to Difference Patterns

The discretizing technique introduced in Section 5.10 does not distinguish between
sum patterns and difference patterns. If one starts with a desired pattern with known
null positions, the excitation of the discrete array can be determined so that the nulls
of its pattern coincide with those of the starting pattern. And, if that is not sufficient
to cause the lobe heights to agree, the perturbation procedure introduced via Equations
5.87 through 5.93 can be used to effect the desired result.

As an example of the application of this technique to difference patterns, let
the Bayliss 30/30, n = 10, of Figure 5.22 be selected as starting pattern. The null
positions can be calculated from (5.101) and are listed in Table 5.6. If a 10-element
equispaced linear array is to approximate this pattern, the Schelkunoff unit circle
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TABLE 5.6 Roots of the Bayliss 30/30 pattern

n 1 2 3 4 5 6 7 8 9

u, 2.1456  2.7224  3.5553 4.4838 54525 6.4450 7.4494 8.4614 9.4787

should show a root at w = 1 + ;0 plus root pairs which can be calculated from
w, = e/2mn/10 n=+l1, £2,+£3, +4 (5.109)
Thus the nine roots on the Schelkunoff unit circle occur at the angles
v, =0° £77.24°, +£98.01°, £127.99°, +161.42°

The pattern is given by
Sw)=(w— 1)|4l (w* — 2wcosy, + 1) (5.110)
n=1

and is shown for 0.74 element spacing in Figure 5.26. The corresponding current
distribution is found by multiplying out the factors appearing in (5.110), and is
listed in the second column of Table 5.7, normalized so that the field magnitude of
the peaks of the twin main beams is unity.

TABLE 5.7 Normalized currents for patterns of Figures 5.26-27

Element Number

n I, for Figure 5.26 I, for Figure 5.27
1 +0.0687 +-0.0725
2 +0.1686 +0.1764
3 +0.1903 +0.1903
4 +4-0.1365 +0.1322
5 +0.0695 +0.0615

It can be seen from Figure 5.26 that the discretizing of the Bayliss 72 = 10,
SLL = 30 dB pattern is not completely satisfactory, since all the side lobes are above
—30 dB, one pair being as high as —26.5 dB. One could use the perturbation proce-
dure to place all these side lobes at —30 dB, if that were desired. But imagine instead
that the desired pattern calls for the innermost pair of side lobes to be at —35 dB, all
others at —30 dB. Then from the pattern of Figure 5.26, one can deduce that the
lobe peaks occur at w2 = +28.1°, +87.6°, +113.0°, 4144.7°, 4-180°. Since the
desired pattern is symmetrical, the perturbations in the currents occur in equal and
opposite pairs, and it is only necessary to construct a 5 X 5 matrix from Equation
5.91. With the starting lobe heights read from Figure 5.26, and the desired lobe heights
known, the left side of (5.91) is known for each of the five values of m. Inversion of
the matrix gives 87, values which, when added to the starting current distribution,
gives the new discrete currents. These currents give an inadequate approximation to
the desired pattern and one finds it necessary to repeat the process by using the result
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Fig. 5.26 The Difference Pattern of a 10-Element Linear Array, d = 0.7 ; Design Goal :
Achieve Pattern of Fig. 5.22; Excitation Found by Root Matching

as a new starting pattern. Three successive iterations are sufficient and yield the
desired current distribution listed in the third column of Table 5.7. This distribution
gives the difference pattern shown in Figure 5.27.
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Fig. 5.27 The Difference Pattern of a 10-Element Linear Array, d = 0.71; Design Goal:
All Side Lobes at =30 dB Except Inner Pair at —35 dB ; Excitation Found by Perturbation
Procedure, Starting with Fig. 5.26
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Some antenna applications require patterns without nulls. An example is the airport
beacon antenna which must radiate uniformly in ¢ to be able to communicate with
aircraft arriving from all directions. It must also radiate without nulls in @ if it is to
maintain contact with incoming aircraft which fly at constant height, and thus appear
at a constantly changing angle § with respect to the antenna.

A method due to P. M. Woodward!® is useful in such applications. Imagine a
continuous line source that is uniformly illuminated by a traveling wave distribution
of the form

8.0) = K,e %+ (5.111)

It has already been seen in the development leading to (5.61) that, within a multipli-
cative constant, the field pattern for this distribution is given by

sin mu
u) = K 2—= 5
fn( ) n u (., N 12)

in which u = (2a/A)(cos 8 — f,/k), with 2a the aperture length. This pattern is
plotted in Figure 5.6 and shows a main beam at « = 0, or at an angle §, in real space
given by 6, = arccos(f,/k).

Imagine a continuous aperture distribution composed of a sum of waves of the
type in (5.111) with B, adjusted so that each partial distribution places its main beam
at an angle 6, corresponding to the closest-in null of its neighbor. If the amplitudes
K, are also properly adjusted, the peaks of the main beams can have an envelope of
prescribed shape. Additionally, there will be null filling. The effect is as suggested in
Figure 5.28 where only the main beams have been sketched to avoid confusion.

This type of synthesis can be accomplished if the pattern is represented by

X sin a(u — n)
F(u) = ";0 K, =) (5.113)
with u defined by
u= 2—f(cos 6 — cosf,) (5.114)

where 6, is the pointing angle of the main beam of the zeroth partial aperture distri-
bution. One can observe from (5.113) that u = 1 is both the first null of the zeroth
partial pattern and the peak of the first partial pattern. Similarly, ¥ = 2 is both the
first null of the first partial pattern and the peak of the second partial pattern, and so
on. The values of K, must be selected to fit the specified envelope.

19P. M. Woodward, “A Method of Calculating the Field Over a Plane Aperture Required to
Produce a Given Polar Diagram”, J. IEEE (London), pt. 111A, 93 (1947), 1554--58.
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Fig. 5.28 Woodward-Type Null-Filling

As an example, consider the design of an airport beacon antenna which is to
be 8A long and have the main beam of its zeroth partial patterns pointing just far
enough above the horizon (that is, above § = 90°) so that one closest-in null lies
along the horizon. From (5.114) one can see that this means

—1 =8(0 — cos 8,)
#, = arccos () = 82.82°
Thus in this application
u=2_8cosf — 1

and the zeroth partial pattern has seven nulls in the range 0° << 6 <C 82.82°,

Imagine that these nulls are to be filled by the other partial patterns such that
in this range the envelope is csc(90° — 6). This is a particularly practical selection
because it would ensure that an airplane flying at a constant height would continue
to recetve a constant level signal from the beacon as its range changed. It follows that

K, = csc(90° — 6)) and @, = arccos[(n + 1)/8] n=1,2,..,7

A tabulation of the partial beam positions and the amplitudes K, is shown in Table
5.8. A plot of (5.113) for this case is shown in Figure 5.29. One can see a ripple around
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Fig. 5.29 Null-Filled Cosecant Squared Pattern

TABLE 5.8

n 0 1 2 3 4 5 6 7
8, 82.82° 75.52° 67.98° 60° 51.32° 41.41° 28.96° 0°
K, 8.00 4.00 2.67 2.00 1.60 1.33 1.14 1.00

the desired envelope of about +-2.4 dB, but no nulls. The aperture distribution is
7 .
Q) =2 K,e /<
#z=0

and is displayed in Figure 5.30. Note that there is considerable fine structure in both
the amplitude and phase distribution. This would not be a simple aperture excitation
to achieve, and some pattern degradation from the ideal would have to be anticipated.

The pattern of Figure 5.29 would be improved if the ripple could be reduced.
H. J. Orchard et al.?? have devised a synthesis procedure that can produce null-filled
patterns with minimum ripple and arbitrary side lobes.

20H. J. Orchard, R. S. Elliott, and G. J. Stern, “Optimizing the Synthesis of Shaped Beam Antenna
Patterns.” Proc. I[EEE, Part H. 132 (1985). 63-68.
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PROBLEMS

5.1 Show that the choice of a, in the development of the even-degree Chebyshev polynomial
in Appendix C also insures that T,5(1) = 1. Similarly, show that the choice of a, for
an odd-degree Chebyshev polynomial insures that Toy_ (1) = 1.



194

5.2

53
54

5.5

5.6

5.7

58
59

5.10

511

5.12

5.13

Linear Arrays: Synthesis

Design a six-element equispaced linear array to give a broadside sum pattern with all
side lobes at —20 dB. Do this by using (5.12) and (5.13) to deduce the root positions on
the unit circle and then the current distribution. What is the maximum interelement
spacing so as to avoid completely a second main beam? If the main beam is to point at
0, = 45°, find the maximum interelement spacing and current distribution.

Repeat the preceding problem for a seven-element array.

Use Equations 5.18 and 5.19 to obtain an independent calculation of the current dis-
tributions for Problems 5.2 and 5.3.

Design a four-element equispaced linear array to give a Dolph-Chebyshev end-fire
pattern with side lobes of —15 dB. Find the maximum element spacing, current dis-
tribution, and 3 dB beamwidth.

Show that, for 2N -+ 1 large, Equation 5.31 is given to good approximation by Equa-
tion 5.33 for the special case p = 1.

Find the 3 dB beamwidth of a 36-element linear array, with 34/4 spacing, if it is uni-
formly excited and is designed to radiate a broadside sum pattern. What is your answer

if the sum pattern is end-fire? If the sum pattern is broadside, but 30 dB Dolph-
Chebyshev ?

Find the directivity for each of the three arrays described in Problem 5.7.

With the aid of Figures 5.3 and 5.4, find the half-power beamwidth of an equispaced
array consisting of 241 elements A/2 on centers, excited to give a Dolph-Chebyshev sum
pattern, with the main beam pointing at 8, = 30° and with side lobes of —30 dB. What
is the directivity ?

A continuous line source is to be designed to give a Taylor pattern at 8, = 45° for
7 = 6 and a side lobe level of —20 dB. Find f/k, A, and the positions =+u, of the five
innermost pairs of pattern nulls. Write an expression for the pattern in u-space. Deter-
mine the corresponding aperture distribution g({).

Use the perturbation procedure described in Section 5.9 to modify the Taylor pattern
of Problem 5.10 so that the innermost side lobe on one side of the main beam is at
--30 dB. Find the requisite aperture distribution.

A 10-element discrete array, 0.7 spacing, is to be excited to produce the Taylor pattern
described in Problem 5.10. Use the discretizing procedure described in Section 5.10 and
determine the excitation in amplitude and phase. The pattern is given by

80 = zj;1 1, cos[(2n — Dkd(cos 8 — cos B,)]

in which 7, is the amplitude distribution. If a computer plotter is available, graph ()
and compare it to Figure 5.7. Plot Z, as a bar graph overlay of the continuous aperture
distribution of Figure 5.8.

The pattern due to the discrete array of Problem 5.12 will be found to be somewhat
degraded from the desired pattern shown in Figure 5.7. Use the perturbation procedure
outlined in Section 5.10 to determine a modified excitation that will reproduce the
desired pattern to within +£0.25 of all side lobe heights.
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5.14 A continuous line source is needed to produce a Bayliss difference pattern with i = 7
and a side lobe level of 20 dB. Find the null positions and plot the patternin |u| < 7.5.
If the principal null is to point at broadside determine the aperture distribution.

5.15 A 10-element equispaced linear array, 0.54 spacing, is to be excited to produce a dif-
ference pattern all of whose lobes are at exactly —20 dB. Use the Bayliss 20/20 of Prob-
lem 5.14 as starting pattern and deduce the discrete current distribution.
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The previous two chapters have dealt with the analysis and synthesis of equispaced
linear arrays. Under certain circumstances, much of what was developed there can be
carried over to apply to planar arrays. However, practical considerations will at times
require the use of design techniques that are peculiar to planar arrays. Thus this
chapter will be seen to consist of a mixture of extensions and new approaches.

Two basic types of planar arrays will be considered. The first consists of elements
that form a rectangular grid. The second is composed of elements that lie on concentric
circles. For both types of arrays it will be assumed that the elements are equispaced,
though not necessarily with the same spacing in the two orthogonal directions. Often
it will be assumed that the array can be divided into four symmetrical quadrants for
the purpose of permitting excitations that will give sum and difference patterns. The
boundary of the rectangular grid arrays wili at different times be assumed to be
square, rectangular, circular, or elliptical; the boundary of the circular grid arrays
will always be taken to be circular.

For rectangular grid arrays, if the boundary is square or rectangular, and if
the aperture distribution is separable, the pattern is the product of the patterns of
two orthogonal linear arrays, and all of the ideas previously developed about linear
arrays can be extended readily. This case will be taken up first because of its simplicity
and because it reveals so many basic ideas about planar arrays. However, separable
distributions suffer from some gain limitations which can be overcome by ¢-symmetric
patterns. For this reason, Taylor’s extension of his line-source analyis to the case of a
planar aperture with a circular boundary, containing a continuous ¢-symmetric
distribution, forms an ideal second topic. Sampling of the Taylor circular distribution
can give excitation coefficients for either rectangular grid or circular grid discrete
arrays.

Extension of Dolph’s technique to planar arrays has not been effected for the



6.2 Rectangular Grid Arrays: Rectangular Boundary and Separable Distribution 197

general case, but Tseng and Cheng have shown how it can be done for rectangular
grid arrays, with a rectangular boundary, if the number of elements in each direction
is the same. Their design procedure will be developed in an ensuing section.

Perturbation methods have been devised that will modify a circular Taylor
pattern so that the different ring side lobes have arbitrary heights, or so that the
pattern is Taylor-like in every ¢-cut, but ¢-nonsymmetric. The resulting continuous
aperture distributions can be sampled and applied to discrete arrays, and these
methods will also be fully developed.

As has already been noted in the linear case, sampling continous distributions
will result in some pattern degradation. For circular grid arrays, it will be shown how
this degradation can be reduced considerably. The problem is much more difficult
with rectangular grid arrays, but an approximate procedure will be presented which
provides some improvement.

Difference patterns are amenable to many of these synthesis techniques, and
some attention will be given to such applications.

A general formulation of the synthesis of a continuous planar aperture distri-
bution needed to produce a specified far-field pattern can be given in terms of Fourier
integrals. A presentation of this technique and some fundamental deductions which
can be drawn from it form the concluding section of this chapter.

6.2 Rectangular Grid Arrays: Rectangular Boundary
and Separable Distribution’

(a) PRELIMINARIES Consider a planar array in which the elements are arranged
in a rectangular grid, with a rectangular boundary, as shown in Figure 6.1. Let there
be 2N, -+ 1 rows of elements, each row parallel to the Y-axis, with common spacing
d, between rows. Let each row contain 2N, + | elements? with common spacing d,.
By the mnth element will be meant the element whose positional coordinates are én =
md, and 5, = nd, in which —N,<<m <N, and —N, <n <{N,. The current
representative of the mmnth element will be designated 7,,. With this notation, the
array factor in (4.7) can be written

Nz Ny
aa(e, ¢) — Z Z (lﬂﬂ>€jk sin @(mdrcos ¢ + ndysin ¢) (6 1)
m-~N;n=—Ny 100

If the representative current is magnetic, (6.1) can be replaced by an identical equation
for 5,06, ¢). Thus the following analysis applies equally well for arrays of elements
which are replaced by equivalent magnetic sources.

1The analysis in this section follows closely some earlier writing by the author, contained in
“Beamwidth and Directivity of Large Scanning Arrays: Part 11,” Microwave Journal, 7 (1964), 74-82.
Also, in Microwave Scanning Antennas, ed. R. C. Hansen, Vol. 2, (New York: Academic Press, 1966),
Chapter 1. Reprinted with joint permission.

2The even case of 2N, by 2N, elements can be treated in a completely analogous manner.
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p P(r, 0, ¢)

Fig. 6.1 Planar Array; Elements Arranged in a Rectangular Grid

If each row has the same current distribution—even though the current levels
are different in different rows—that is, if I,./I., = I,,/1,,, then the current distribu-
tion is said to be separable and the array factor can be expressed in the form

a0, ¢) = a.0, $)a,0, $) (6.2)
in which

@0, 8) = 35 Lermrissnoess (6.3)

G,(0,4) = 3, Lemsunosns (6.4)
and ”

Iy = Lnollos I, = Io,/Io, (6.5)

are the normalized current distributions in a row of elements parallel to the X-axis
and the Y-axis, respectively.

Equation 6.2 is another example of the principle of pattern multiplication. The
factors in (6.3) and (6.4) can be recognized as representing linear arrays parallel to
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the X- and Y-axes, since 1,1, =cosf, =sinfcos¢ and 1,+1, =cosf, =
sin @ sin ¢. Thus, underthe stated restriction that the aperture distribution is separable,
the array factor for a rectngular grid array with a rectangular boundary is the product
of the array factors for two linear arrays, one laid out along the X-axis, and the other
laid out along the Y-axis. Many of the results which have been developed for linear
arrays in Chapters 4 and 5 can thus be interpreted to apply for this type of planar
array as well.

(b) BEAM POSITION OF THE SUM PATTERN 1f I, differs in phase from I,
by the factor exp[—j(me, -+ na,)] then

aa(e’ ¢) — [% Imejm(kdz sin §cos ¢ — ax)]\i % Inejn(kdy sin #sin ¢ — ay)] (66)
—Ng —Ny

and the distribution has a uniform phase progression a, in the X-direction and a
uniform phase progression e, in the Y-direction. The amplitude distributions /,, and
I, are now pure real. If they are also symmetric, the factor @, represents a pattern
that consists of a conical main beam and side lobes, rotationally symmetric about
the X-axis. The main beam of @, makes an angle &, with the positive X-axis that
satisfies the relation

kd, cos @, —a,=kd, sinfcos¢ —a, =0

A T 6.7)
cos &, — g = sin 8 cos ¢

x

Similarly, the factor @, gives a pattern that consists of a conical main beam and side
lobes, rotationally symmetric about the Y-axis. The main beam of @, makes an angle
8, with the positive Y-axis satisfying the relation

®,

> sin @ sin ¢ 6.8)

cos @, =

¥

The criterion developed in Chapter 4 applies to these two patterns with respect to the
avoidance of multiple conical main beams in @, and @,. Neither d, nor d, should
exceed one-half wavelength if the two conical patterns are to be scanned to the
vicinity of endfire.

The planar array factor @, == @,Q,, since it is the product of the two linear
array factors, is principally the intersection of the two conical main beams, plus those
side lobes of each conical pattern which intersect with the conical main beam of the
other conical pattern. Of course, it is possible to scan one conical main beam so close
to the X-axis and the other conical main beam so close to the Y-axis that the two
conical main beams do not intersect. This is an impractical situation, and a criterion
will be developed shortly for avoiding it.

If the two conical main beams do intersect, their product gives two pencil beams,
one pointing in the half-space z > 0, the other pointing in the half-space z < 0.
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Almost invariably, the element pattern will be selected to give negligible radiation in
the half-space z < 0 (through use of a ground plane, for example). There is then left
a single main pencil beam, pointing in the direction (8,, ¢,), with 8, and ¢, satisfying
two equations that can be deduced from (6.7) and (6.8), namely,

_ad,
tan ¢, = ocid, (6.9)
2 (%) @, \?
sin 0, — (kd) + (kd,) (6.10)

For given spacings d, and d,, and given interelement phase shifts o, and a,, Equations
6.9 and 6.10 give a unique pointing direction (8, ¢,) in z > 0. Radiation patterns
from planar arrays, exhibiting this feature of a single pencil beam, are called sum
patterns.

Equation 6.10 can be used as the criterion for avoiding the situation that @,
and @, contain conical main beams that do not intersect. This situation would just be
reached if sin? 8, = 1. Thus, the elliptical relation

(kﬁj:)2+(%>2:1 (6.11)

limits the range of a, (or a,) for specified values of kd,, kd,, and &, (or &,). In the
remainder of this analysis, the existence of a single main pencil beam will be assumed.

(c) BEAMWIDTH OF THE SUM PATTERN Since the significant side lobes are
in the two cones defined by (6.7) and (6.8), these cones are the pattern cuts which
should be taken to determine the side lobe level. However, the profiles of the main
pencil beam obtained in these two cuts are not, in general, due to two orthogonal
slices through the pattern. (For example, if the pencil beam lies close to the X' Y-plane
at ¢, = m/4, these two cuts are almost coincident.) Thus it is desirable to define
beamwidth in another fashion, one which will reveal more information about the
structure of the pencil beam.

In what is to follow, it will be shown that the —3 dB contour of the pencil beam
is approximately elliptical. The beam cross section is suggested in Figure 6.2. At a
given large distance r from the planar array, the size and shape of this elliptical contour
are dependent on the pointing direction (8, ¢,), as is the tilt of the axes of the ellipse.
The two orthogonal planes which contain, respectively, one or the other of the
eilipse axes, plus the origin, may be used to define the pattern cuts in which the
beamwidth is measured. These two orthogonal measurements of half-power beam-
width then serve to specify the major and minor diameters of the elliptical contour,
and thus give an indication of the size and shape of the beam cross section.

From (6.6), the central point in the main beam has the intensity

N: Ny
a(eo, ¢0) = g —ZN ImIn
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Fig. 6.2 Orthogonal Beamwidths of a Pencil Beam (Reprinted from Microwave Scanning
Antennas, Volume 2, R. C. Hansen, Editor, Courtesy of Academic Press, Inc. © 1966
Academic Press.)

In a nearby direction 8, + 80, ¢, + ¢, the intensity will be down by 3 dB if
a8, + 80, ¢, + 68) = 0.707@(0,, ¢,) — 0.707% ¥ 1.1,

—-Nz —Ny

- )N%; 1, exp{jmkd [sin(8, + 88) cos(dy |- 5¢) — sin 8, cos dol}  (6.12)

Ny
% _21; I, exp{jnkd [sin(8, + 60) sin(¢, + I¢) — sin 0, sin ¢,]}
For large arrays, 66 and d¢ are small, and (6.12) reduces to

0.707 :V_] % LI = i I, exp{jmkd [cos 0, cos ¢, 68 — sin 8, sin ¢, IP]}
—Nz —Ny —N:
| (6.13)
X _%] I, exp{jnkd,[cos 8, sin ¢, 60 -+ sin B, cos ¢, I¢]}

The right side of (6.13) consists of a family of phasors, symmetrically spread out in
the complex plane, much as in the case of the linear array described in Section 4.3.
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This sum is to be 0.707 times the sum of the phasors when they are aligned. For
conventional distributions, the phasors do not need to fan out very far for this to
occur. The outmost phasor normally does not reach a position of more than z/2
radians. Thus, if one lets

Q, = kd,[cos 8, cos ¢, 30 — sin 8, sin ¢, 5]

and

Q, = kd,[cos 8, sin ¢, 68 + sin B, cos ¢, ¢]

the phase factor exp[j(mQ, + nQ,)] can be expanded in a power series that will
converge reasonably rapidly even for the largest values of m and n. When this is done,
(6.13) becomes

07072 =S S,
—Nz ~Ny

—Nz —Ny

) [ 1o, + 1) — €2, + 1) — (§) @+ n)7 ]

Since the distributions 7,, and I, have been assumed to be symmetrical, all summations
which contain m or n to an odd power are zero. Thus, through third order,

Nz Ny Nz Ny N: Ny
05865 S I, =0rS S mrl I + Q25 S Ll (6.14)
~Nz —Ny —Nz —Ny —Nz —Ny

The two sums that appear on the right side of (6.14) can be evaluated by con-
sidering the situation in which the beam lies in either the XZ- or the YZ-plane. When
the XZ-plane is chosen, ¢, = 0, and (6.14) becomes

0.586 3% 3% I = (kd, cos 8, 60)° 2 Y mL L

—Nz —Ny z =Ny

& (kd, sin 8, 6)* S* S\ w1,
~Nz —Ny

(6.15)

When the pencil beam lies in the XZ-plane, it is caused by the intersection of: (1) a
conical beam that makes an angle (z/2) — 8, with the X-axis; and (2) a conical beam
that makes an angle (%/2) with the Y-axis. The pattern cut in the XZ-plane is therefore
identical to the one that would be obtained if there were only a single linear array laid
out along the X-axis. But this pattern contains two points that lie in the —3 dB
contour of the pencil beam, namely the points (8 = 8, +16,,¢ = 0), where 6, is the
half-power beamwidth of the X-directed linear array when its conical main beam
makes an angle (z/2) — 8, with the positive X-axis. For this reason, the couplet
(00 = 16,, 6¢ = 0) must satisfy (6.15), which gives

N N

0.586 3 2 L1, = (kd, cos 0,6,)* S5 S m?II, (6.16)

N SF ~N: =Ny
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For the special case 8, = 0, (6.16) yields

N: Ny Nz Ny
3 3 Ml = 0.586(kd 0.0) * 3 3 L], (6.17)

in which 8, is the broadside beamwidth of the X-directed linear array.
Similarly, with the pencil beam placed in the YZ-plane, one finds that

fg i n2I,I, = 0.586(3kd,8,,)" 2; 0, (6.18)

If these two results are inserted in (6.14), rearrangement gives

Q2 Q: |

= B
ka8 T Gkd, 8,0 (6.19)

Since (68, 8¢), and thus (Q, Q,), defines the set of pointing directions in which the
field is 0.707 times the peak value, Equation 6.19 can be viewed as describing the
—3 dB contour on the pencil beam. To see this more clearly, let »- and v-axes be
erected along lines of longitude and latitude on the sphere of radius r, as shown in
Figure 6.2. Then

u=ro v=rsinf, ¢

Substitution of these variables in (6.19) gives

(ucos @, cosp, — vsin¢d )2 (ucos@,sind, + vcosg,)?
N 8,027 =1 620

This can be recognized as the equation of an ellipse in (4, v)-space. Introduction of
the axes u’ and »" via the rotation f§ (compare with Figure 6.2), such that

u=ucos ff§+ v sin g, v= —u sin f§ + v cos B

permits (6.20) to be written in the form

WY @R
@ T 6.21)

In (6.21) d,. and d,, are the diameters of the ellipse measured along its two principal
axes. The rotational angle f is given by

,, 2 cos 8, sin 2¢
@28 = (1 1 cos* Gy c0s 2, + (@ + GO — G5l O

At a constant zenith angle ,, B rotates smoothly through 90° as ¢, changes through
90°. Individual expressions for d,. and d,. are unwieldy, but their product is given by
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the simple expression
d.d, = rtsec,8,.8,, (6.23)

Thus the area of the ellipse is independent of ¢,.
If the pencil beam lies in the XZ-plane in the direction (8,, 0), the «’- and v"-axes
are aligned with the u- and v-axes and (6.20) gives

d,=d,=rsec,8,,, d,=d, = ré,, (6.24)

In the pattern cuts containing the u-axis or the v-axis, the half-power beamwidths
are therefore

8, = % =§f,,secf, and 8, = % =8, (¢, =0) (6.25)

Similarly, if the pencil beam lies in the YZ-plane in the direction (8, n/2), the

u’-axis points in the —o-direction and the »’-axis is aligned with . For this case (6.20)
gives

d,=d,=rsec,8,, d,=d, = rf_, (6.26)

In the pattern cuts containing the w-axis or the v-axis, the half-power beamwidths
are now

g, = 4 _ 6,,secf, and 6, = 4 6.0 <¢0 = E) (6.27)
r r 2
To use either Equation 6.25 or Equation 6.27, one needs first to determine
6.0, 6,0, and the zenith pointing angle §,. For uniform distributions, 6., and 6,,
can be determined by using L,/A and L /1 and reading the appropriate beamwidth off
the broadside curve of Figure 5.3. For Dolph-Chebyshev distributions, these beam-
widths need to be modified by the f~factor read from Figure 5.4. After this it is a
simple matter to determine §, and 6,.
It is useful to define an areal beamwidth B by the relation

B=6.86, (6.28)

Through use of (6.23) this becomes
B— (‘%)(‘%) — 6,48, sec 6, (6.29)

The areal beamwidth, which is a measure of the area inside the —3 dB contour of the
pencil beam cross section, is seen to be independent of ¢,. As one would expect, it
has the same functional dependence on 6, that the projected aperture does.

The general effect of scanning a pencil beam can be constructed as suggested
in exaggeration by Figure 6.3. At broadside-broadside, the cross section of the beam
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Z i

X Y

Fig. 6.3 Beam Shape versus Scan Position for a Pencil Beam (Reprint-
ed from Microwave Scanning Antennas, Volume 2, R. C. Hansen, Editor,
Courtesy of Academic Press, inc. ) 1966 Academic Press.)

is approximately elliptical (position P,) with dimensions proportional to L;! and
L;'. As the beam scans in the XZ-plane, the beam cross section elongates in that
direction (position P,). Scanning in the YZ-plane causes elongation in the other beam
dimension (position P;). For a constant angle 8, from the zenith, as the beam is moved
from ¢, = 0 to ¢, == 7/2, the two half-power beamwidths smoothly change and the
elliptical cross section smoothly rotates, these two effects combining in such a way
that the areal beamwidth remains constant.

Thus for narrow pencil beams from large rectangular grid arrays with rectan-
gular boundaries, if the distribution is separable, the entire subject of beamwidth can
be based on the results previously obtained for linear arrays. The relations derived
in this section are quite good to within several beamwidths of the limiting condition
of no main beam at all, defined by (6.11).

(d) PEAK DIRECTIVITY OF THE SUM PATTERN The peak directivity of this
type of planar array (compare with Section 1.16) is given by
D= 237[@(00, $,)8*(0,, bo) (6.30)
j j a0, $)a*(8, ) sin 6 df dp
0 0

in which it is assumed that the element pattern is such as to eliminate the total pattern
in the half-space @ > #/2 but is broad enough to be ignored in 8 <C /2. It has been
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shown in the literature® that, for large arrays which are not scanned closer than
several beamwidths to end-fire, an approximate reduction of (6.30) is

2L JA 2LJA
¢ ); (ay/ay)* Xq] (b,/bo)*

D =mncos8 (6.31)

in which the Fourier coefficients a, and b, describe the aperture distribution in the
X- and Y-directions, and L, = (2N, -+ 1)d, and L, = (2N + 1)d, are the dimensions
of the array. This equation has the simple interpretation that the maximum peak
directivity of a planar array is

D =naD,D,cosf, (6.32)

in which D, and D, are the directivities of the two linear arrays. The factor cos 8,
accounts for the decrease in projected aperture with scan. Unlike the directivity of a
linear array, which was found to be independent of scan angle, the directivity of a
planar array is dependent on the zenith coordinate 8,. However, it is independent
of the azimuthal coordinate ¢,.

Because of the form of (6.31), many of the remarks that have been made about
the directivity of linear arrays can be applied as well to this type of planar array. For
aperture distributions with a uniform progressive phase and a symmetric amplitude,
(6.31) indicates that maximum directivity results from the choice of uniform excita-
tion. Dolph-Chebyshev distributions suffer from a gain limit for very large arrays,
and the curves of Figure 5.5 are applicable to such planar arrays.

(e) A RELATION BETWEEN BEAMWIDTH AND PEAK DIRECTIVITY As in
the case of linear arrays, one finds from (6.29) and (6.31) that, for this type of planar
array, peak directivity and the reciprocal of areal beamwidth depend linearly on the
area of the planar aperture. Elimination of L, L,/A? from these two expressions results
in

D:9-T§7 L ., A (6.33)
; (a,fay)? ; (by/bo)?

where f, and f, are the beam broadening factors for the linear arrays of 2N, + 1 and
2N, + 1 elements that comprise the two dimensions of the array. The quantity in
brackets is unity for a uniform distribution, and is essentially unity for a Dolph-
Chebyshev distribution until gain limiting sets in. Thus, for these practical aperture
distributions,

_ 32,400

P="%

(6.34)

3R, S. Elliott, “Beamwidth and Directivity of Large Scanning Arrays”, Appendix D, Micro-
wave Journal, 7 (1964), 74-82. Also, Microwave Scanning Antennas, ed. R. C. Hansen, vol. 2 (New
York: Academic Press, 1966), Chapter 1.
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in which the areal beamwidth is now expressed in square degrees rather than square
radians.* It is important to remember that, in (6.34), both quantities are measured at
the same tilt angle 6,.

(f) SUM AND DIFFERENCE PATTERNS To this point in the discussion, the
array factor given by Equation 6.6 has been interpreted under the assumption that
the normalized current distributions I,, and I, were symmetrical, the result in z > 0
being a sum pattern consisting of a pencil beam and a family of side lobes. In such
circumstances, an alternate expression for the array factor is

Ny Ny
$0,6) = (1+2 3 1, cos my/x><l 12341, cos m,/y) (6.35)
m=1 n=1
in which
w,.=kd, sinfcosd — a,, v, = kd, sinf@sing — a, (6.36)

For the case of an even number of elements in each dimension, 2N, by 2N,, (6.35) is
replaced by

86.0) = 4 3 1, cos(y) [Z ncos (5-1) | 631

In this latter case, two difference patterns can be generated, one by causing I,, = —1
while leaving I, = I_,, the other by doing the reverse. The first condition gives

—m?

D,(0, §) = 4j[ MZ: I, sin (2’"2_ ]y/xﬂ [il I cos (2” = ly/y>] (6.38)

while the second condition gives

D36, 6) = 4] 3 fcos (P2 ty ) [ 3 Loin (251w) ] 639)

In the ¢ = 0°, 180° plane, D,(0, ¢) gives the pattern of an X-directed linear array,
identical to the result in (5.3). As one examines a succession of ¢-cuts in 0° <C ¢ <C 90°,
a difference pattern is always observed, with the level of the entire pattern diminishing
until, at ¢ = 90°, there is no pattern at all. This behavior is repeated in the other
three quadrants as ¢ is varied. The behavior of D,(f, ¢) is similar, except that its
highest level occurs in ¢ = 90°, 270°, diminishing to zero in ¢ = 0°, 180°. In radar
applications, the sum pattern of (6.37) can be used to acquire the target by proper
pointing of the pencil beam, and then the difference patterns D, and D, can be used
to boresight the target more accurately.

4Equation 6.34 is frequently encountered in the literature with the incorrect coefficient 41,253,
(See, for example, J. D. Kraus, Anfennas (New York: McGraw-Hill Book Co., Inc., 1950), p. 25.)
The higher figure results from the improper assumption that the 3 dB contour is rectangular. Since
the area of a rectangle is 4/z times the area of its inscribed ellipse, the ratio of these two coefficients
is readily understood.
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A proper selection of the current distributions in (6.37), (6.38), and (6.39) can
yield sum and difference patterns with prescribed side lobe topography. With the
assumption being made here of separable distributions, this selection is the same as
for linear array applications, and all of the procedures discussed in Chapter 5 are
applicable.

(¢) AN ILLUSTRATIVE EXAMPLE Assume that the assignment has been given
to design a planar array under the following specifications.

1. Rectangular grid, rectangular boundary, separable distribution.

2. Sum pattern scannable 4+-45° in XZ-plane and 4+30° in YZ-plane.

3. When the sum pattern is broadside-broadside (8, = 0°), the 3 dB beamwidths
are to be 5° in the XZ-plane and 2}° in the YZ-plane. Both principal cuts are
to be Dolph-Chebyshev, with —30 dB side lobe levels.

4. The array should be capable of generating both difference patterns as well as
the sum pattern.

The last condition implies that an even number of elements should be chosen
in each dimension. One can determine the lengths L,/ and L,/A through use of
Figures 5.3 and 5.4. The results are

L

= = (L19)(10) = 115
L

5= (L15)20) = 23

To avoid multiple main beams when scanning in the XZ-plane, (4.30) indicates that®

d, 1 1

IS TFsmb,)  T—snds 0

Since L, = 2N,d,, it follows that

Thus the tentative choice 2N, = 20 can be made, but this will need to be checked
through a computation of final sum patterns at the limiting scan positions.

Similarly,
d, I _
7 <TTwm3or 0¥
N, = =345

51t should be observed that, in Chapter 4, linear arrays that extended along the Z-axis were
considered. Now, linear arrays along the X- and Y-axes are being considered, so cos §y must be
replaced by sin 8.
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A tentative choice of 2N, = 36 can also be made. With L /A = 11.5and L,/A = 23,
this also means that the tentative values

are being selected.
From (6.36) one can learn that

I

ar* = 27(0.58) sin 45° = (0.41)2x radians = 148°
amx = 27(0.64) sin 30° = (0.32)2x radians = 115°

A check of Equation 6.11 gives
apn\? e\t 041N 032\
() 4 () = (B40) + (32) =075 <1

This indicates that, even if &, and &, take on their maximum values simulatneously,
the two conical beams will intersect to give a pencil beam.

The normalized Dolph-Chebyshev current distributions can be computed from
(5.19) for a 30 dB side lobe level with 20 and 36 elements, or can be obtained from the
literature.® The results are shown in Table 6.1.

TABLE 6.1

+m 12 3 4 5 6 1 8 9 10

I. 1.0 097 0.91 0.83 0.73 0.62 0.50 0.39 0.29 0.33

+n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I, 1.0 099 0.97 0.95 0.91 0.87 0.82 0.77 0.71 0.65 0.59 0.53 0.47 0.40 0.35 0.29 0.24 0.49

Since the distribution is separable, I, = I I, and one can prepare a schedule of
element excitations as suggested in Table 6.2. Only one quadrant needs to be shown
since the excitation is symmetric.

One cannot take this design much further without knowing the nature of the
elements making up the array. Then a feeding network would need to be devised to
deliver these currents to the individual radiators. This is a complicated problem that
must take into account not only the self impedance of the elements, but also their
mutual impedances. The need to scan is an added complication. These problems will
be addressed in Chapter 8 of this text.

6L, B. Brown and G. A, Scharp, “Chebyshev Antenna Distribution, Beamwidth, and Gain
Tables”, Nav. Ord. Report 4629, (California: Corona, 1958).
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TABLE 6.2
x 1 2 3 4 5 6 7
m
1 1.00 0.99 0.97 0.95 0.91 0.87 0.82
2 0.97 0.96 0.94 0.92 0.88 0.84 0.80
3 0.91 0.90 0.88 0.86 0.83 0.79 .
4 0.83 0.82 0.81 0.79 0.76 0.72
5 0.73 0.72 0.71 0.69 0.66 .
6 0.62 0.61 0.60 0.59 0.56
7 0.50 0.50 0.49 0.48 .
8 0.39 0.39 0.38 0.37
9 0.29 0.29 0.28 0.28
10 0.33 0.33 0.32 .

The areal beamwidth of this array can be computed from (6.29), and at
broadside-broadside is given by

B=20,,6,, = (5)(2.5) == 12.5 square degrees
From (6.34), the broadside-broadside directivity is
D =2592 =34.1dB

As the beam is scanned, the arcal beamwidth broadens as sec 8, and the directivity
decreases as cos 0.

(h) THE NATURE OF THE SIDE LOBE REGION 1t has been observed that
planar arrays of this type (rectangular grid, rectangular boundary, separable distri-
bution) when excited with a symmetrical amplitude distribution, give a sum pattern
with a pencil beam and side lobes, and that this pattern can be represented as the
product of two conical patterns, one each from two orthogonal linear arrays. The
nulls in this sum pattern thus conicide with the nulls in either of the conical patterns.
On the surface of a large sphere centered at the array midpoint, these nulls are the
intersections of two families of conical surfaces with the spherical surface, the conical
axes of these families being the X- and Y-axes. To a person looking down on this
spherical surface from a remote point on the Z-axis, if the pencil beam is pointing
broadside-broadside, the grid of null intersections looks as shown in Figure 6.4. It is
clear from a study of this figure that the main beam is surrounded by mound-type
side lobes. Those side lobes that occur in the principal planes (XZ or YZ) are depressed
by an amount governed by the design of the X-oriented and Y-oriented linear arrays.
Thus, for example, if the X-oriented array is to be —20 dB SLL Dolph-Chebyshev,
and the Y-oriented array is to be —30 dB SLL Dolph-Chebyshev, then all the mound
side lobes that occur vertically above or below the main beam in Figure 6.4 (such as
the side lobe occurring in the half-tone region A) are 20 dB in power level below the
main beam. Similarly, all the side lobes that occur horizontally to the right or left of
the main beam in Figure 6.4 (such as the side lobe occurring in the half-tone region B)
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Fig. 6.4 Grid of Null Contours for the Sum Pattern of a Planar Array ; Separable Aperture
Distribution ; Mound-Type Side Lobes

are 30 dB in power level below the main beam. However, an off-axis side lobe, such as
one which occupies region C in Figure 6.4, are the result of the intersection of a
conical side lobe of the X-directed linear array with a conical side lobe of the Y-
directed linear array. In this example, all of these off-axis mound side lobes are
therefore 50 dB in power level below the main beam.

This pinpoints the principal objection to separable distributions for planar
arrays. Side lobe reduction is bought at the price of beam broadening (with a con-
comitant lowering of directivity). If the design requirement for this pattern were that
side lobes be at —20 dB in the XZ-plane and at —30 dB everywhere else, then the
separable distribution overachieves in most of the side lobe region, at the expense of
resolution and directivity.

To improve on this situation, one must go to nonseparable aperture distribu-
tions. As an example, if the entire side lobe region is of uniform importance, what
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would be most desirable is to see a Dolph-Chebyshev pattern in every ¢-cut, that is,
a pattern consisting of a pencil beam and a family of concentric ring side lobes of a
common height, as suggested by the grid of null contours shown in Figure 6.5. But

Null contour

X

Fig. 6.5 Grid of Null Contours for a ¢-Symmetric Sum Pattern of a Planar Array; Non-
separable Aperture Distribution; Ring-Type Side Lobes

to obtain a ¢-symmetric pattern, one must have a ¢g-symmetric aperture distribution.
Clearly, a rectangular grid array, with a rectangular boundary and a separable
aperture distribution, does not fit this criterion. Several things are wrong. First, a
¢-symmetric aperture distribution more naturally fits a circular boundary. Second,
it more naturally fits a circular grid arrangement of the elements. Despite these natural
drawbacks, it will be seen in Section 6.9 that, under certain circumstances, a rectan-
gular grid array, with a rectangular boundary and a nonseparable distribution, can
create a sum pattern which is Dolph-Chebyshev in all ¢§-cuts.
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But first attention will be turned in Section 6.3 to the creation of a ¢-symmetric
sum pattern under the more natural condition of a circular boundary.

6.3 Circular Taylor Patterns

Consider a planar aperture with a circular boundary of radius a, as suggested by
Figure 6.6. If this aperture contains a lineal current density distribution which is
unidirectional, then for this case (1.128) and (1.129), or (1.130) and (1.131), can be
written in the forms

@,(0, ¢) = cos O sin ¢ L K (&, n)e™< dé dn (6.40)
G0, ¢) = cos§ | K,(& me s d¢ dn (6.41)
in which £ is reduced to
£=¢sinf@cosg + nsindsing (6.42)
The integral common to (6.40) and (6.41) can be viewed as the array factor for

a linearly polarized planar aperture distribution. It is convenient to recast this integral
in the polar coordinates illustrated in Figure 6.6 and defined by

E=pcosf n=psinf (6.43)
z P(r,0,9)
r
a Y
o
B

dp /idp

X

Fig. 6.6 Cartesian/Cylindrical/Spherical Coordinates
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If K,(&, n) is designated as K(p, f), the common integral becomes
FO,9) = [ K(p, Brerrsne=e=np dp dp (6.44)
The aperture distribution can be represented by the Fourier series
Ko, B = S K(p)er (6.45)
If (6.45) and the Bessel expansion
glkpsin0coss=—p) _ ,:Zw (YT (kp sin §)em =5 (6.46)
are inserted in (6.44), the result is that
FO.9) = 3 5 [T KDGI T kp sin Beimseimip dpdf  (6.4T)
The B-integration in (6.47) only has a nonzero value when m = n. This reduction gives
FO,4) =21 3, (jyer ["K(p)(kp sin 6)p dp (6.48)

It is clear from a study of (6.48) that, if a ¢-independent pattern is desired,
n should be restricted to the value zero. Returning to (6.45), one sees that this corre-
sponds, quite logically, to choosing an aperture distribution that is f-independent.

If attention is restricted to this case, then the aperture distribution is K (p) and
the pattern is given by

F(O) = 2nj" Ko(p)o(kp sin 0)p dp (6.49)
0

When one makes the substitutions

2a . 2a*
U= Ta sinf - p = %P go(p) = %Ko(/’) (6.50)
Equation 6.49 transforms to
Fw) = [ peu(p)o(up) dp (6.51)

It is useful to note at this point that u is a surrogate for the pointing direction in real
space, and that p is a surrogate for the radial aperture coordinate.

A particular example of the use of (6.51) is of special importance. If the circular
aperture is uniformly excited, a condition that can be represented by letting g,(p) = 1,
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then integration of (6.51) gives the sum pattern

§(u) = L0 (6.52)

This pattern is plotted in Figure 6.7 and shows a main beam plus a family of side
lobes that decay in height as the side lobe position becomes more remote from the
main beam. Since this pattern is rotationally symmetric, the main lobe is a pencil
beam, surrounded by ring side lobes. How many of these side lobes are in visible
space depends on the aperture size. Since u = (2a/A) sin §, the range of u correspond-
ing to visible space is 0 < v < 2a/A.

This result should be compared to Figure 5.6 where, for the analogous case of
a uniformly excited line source, the pattern was seen to be given by sin mu/mu.

Continuing with the analogy, one can ask what form the function g,(p) should
take in order to modify the side lobe structure of Figure 6.7 so that the near-in side

0

J (mu)
mu

dB

~-30 A

—40 f\ N

4 8 12 16 20

2a .
u=-— sinf
b

Fig. 6.7 Array Factor Pattern for a Uniformly Excited Circular Aperture
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lobes are at a quasi-constant controlled height. T. T. Taylor undertook the solution
to this problem in a companion paper to his earlier treatment of the line source.”
The essence of his analysis consisted in moving the innermost 7 — 1 nulls of Figure
6.7 to achieve the desired level for the intervening side lobes. If the roots of J,(u)
are defined by

Ji@y) =0, n=0,1,2,...
then a modification of (6.52) can be written as

7oy T (= w¥fud)

U n-1

A u?[1,)
n=1

Su) = (6.53)

One can see that (6.53) accomplishes the purpose of removing the first # — 1 root
pairs of (6.52) and replacing them by 7 — 1 root pairs at the new positions +u,.
Taylor found that the new root positions should be such that

2 — 2
u? = y%ﬁfj}% (6.54)
where once again, —20 log,, cosh nA is the desired side lobe level.

A typical circular Taylor pattern is shown in Figure 6.8, with i = 6 and a design
side lobe level of —15 dB. The near-in side lobes are seen to droop somewhat. (The
far-out side lobes share—with those of Figure 6.7—the property of decaying as u=3/2.)

To find the aperture distribution g,(p) that will produce this type of pattern,
it is helpful to express g,(p) as a series in the form

go(P) = X Budo(yinp) (6.55)

When this is done, (6.51) becomes

8 = X Bu | pIolyinp)otup) dp

= ,,.Z::o Bm[?’mp-]x(?’lmp)-]o(up) - upJo(yl,,,p)Jl(up)]" (6.56)

2 2
Yim — U 0

Since, in (6.56), $(y,) is at most contributed to by the kth term in the sum, one can
write

7T. T. Taylor, “Design of Circular Apertures for Narrow Beamwidth and Low Side Lobes”,
Trans. IRE, AP-8 (1960), 17-22,
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Fig. 6.8 Taylor Sum Pattern for a Circular Aperture, 7 =6, =15 dB SLL
8014 = Bi [ I3 14p) dp

2 K3
= By B U3 uep) + T30} | (6.57)

0

from which

B, — 2 80 (6.58)

ke FJtz)(?’m”)

Because §(yz) = O for k > #a, the series in (6.55) truncates, and the aperture distri-
bution is given by

8u(p) = 2 5, B (y,,0) (6.59)

where §(p,,) can be computed from (6.53). A plot of (6.59) for the aperture
distribution corresponding to the pattern of Figure 6.8 is shown in Figure 6.9.
This distribution, like the pattern, is a figure of revolution.

R. C. Hansen® has provided tables of the roots u, of circular Taylor patterns,

8R. C. Hansen, “Tables of Taylor Distributions for Circular Aperture Antennas,” Hughes
Technical Memorandum No. 587, Hughes Aircraft Co. (California: Culver City, February 1959).
See also /RE Trans., AP-8 (1960), 22-26,
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Fig. 6.9 The Continuous Aperture Distribution for the Circular Taylor Pattern of Fig. 6.8

together with the aperture distributions g,(p), for a range of side lobe levels and for a
sequence of 7 values.

6.4 Modified Circular Taylor Patterns:

Ring Side Lobes of Individually Arbitrary Heights

If one returns to Equation 6.53, which is the general expression for a circular Taylor
pattern, and recalls that this equation results from replacing 7 — 1 root pairs of
J(mu)/mu with new root pairs at the positions given by (6.54), it becomes apparent
that there is nothing inviolable about these new root positions. Conceivably, one
could find a set of positions that would cause the innermost 7 — 1 ring side lobes to
have individually specified heights. There are practical applications in which this is
desirable.

A perturbation procedure has been devised that will determine the proper set
of root positions once the height of each side lobe has been specified.® One begins
by choosing a circular Taylor pattern whose average side lobe level in real space
approximates the average side lobe level in real space of the desired pattern. Thus
the starting pattern can be written in the form of (6.53), namely,

2
n

o = Cof @ T (1 - ) (6.60)

90. Graham, R. M, Johnson, and R. S. Elliott, “Design of Circular Apertures for Sum Patterns
with Ring Side Lobes of Individually Arbitrary Heights,” Alta Frequenza, 47 (1978), 21-25,
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in which

fly = P

6.61
10— wpi) (©oh
The root positions Loz,, are known and given by (6.54).
The desired pattern §(u) can be expressed similarly, that is,
A=1
Sw) = Cf (u) [[1 (I —ufub) (6.62)

The root positions u, are unknown and will need to be determined. But if the desired
and starting patterns are not too disparate, v, and C can be given by

= u, + du, (6.63)
=C, + oéC (6.64)
Since, to first order,
0
Pl 2 sy, (6.65)
U Uy I — ?/uy)

if follows that (6.62) can be put in the form

8w _ | _oC "‘21 2(u2/u) ou,

Solu) B o N D

(6.66)

If uz is the peak position of the mth lobe in the starting pattern, §(u2)/So(uz)
is essentially the ratio of the height of the mth lobe in the desired pattern to its height
in the starting pattern. This ratio is a known quantity. Thus if ¥ = u2 is inserted in
(6.66), all terms are known except dC/C, and the 77 — | root perturbations du,.
Since there are 7 lobes (including the main beam) in 0 <C u <C y,,, there is exactly the
right number of u?2 values to use in (6.66) in order to provide a deterministic set of
simultaneous linear equations. Matrix inversion gives the perturbations du, from
which the new root positions can be deduced. When these are inserted in (6.62) a
new pattern can be computed and compared to the ideal. Iteration may be necessary,
but experience has shown that convergence is usually very rapid.

As an illustration of this technique, let the starting pattern be the circular
Taylor pattern already shown in Figure 6.8, and specify that the desired pattern
differ from this only in that the two innermost side lobes should be at —25dB.
Three successive iterations give a pattern in which all side lobes are within 1 dB of
specification. The result is shown in Figure 6.10.
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The aperture distributions for these modified Taylor patterns can be found from
(6.59). For the pattern of Figure 6.10, the aperture distribution is shown in Figure
6.11. It is interesting to compare this result with Figure. 6.9. The fine structure in the
two distributions is comparable, but it can be observed that g,(p) is negative in a
small region for the case of two suppressed inner side lobes.

v

Fig. 6.10 The Circular Taylor Pattern of Fig. 6.8 Modified So That Two Innermost
Ring Side Lobes Are Depressed to —25dB () 1978 Alta Frequenza. Reprinted from
Graham, Johnson, and Eliiott, A/ta Frequenza, pp. 1-7, 1978.)

1.0
: /
%0.5 // \ /
: - A\ /
: |7 \ /
* N/

4
’ i 2 3 '
-

Fig. 6.11 The Continuous Aperture Distribution for the Modified Circular Taylor Pattern
of Fig. 6.10 () 1978 Alta Frequenza. Reprinted from Graham, Johnson, and Elliott, A/ta
Frequenza, pp. 1-7, 1978.)



6.5 Modified Circular Taylor Patterns: Undulating Ring Side Lobes

Just as there are practical applications in which one desires a sum pattern with
ring side lobes of different heights, (§-dependence of side lobe level), so too are there
applications in which it is desirable to have a quasi-uniform side lobe level in every
¢-cut, but with the level different in different ¢-cuts (¢-dependence of side lobe level.)
In this latter case, the ring sidz lobes undulate in height (take on a “roller-coaster”
appearance) as one progresses in ¢. A generalization of Taylor’s original technique
can produce such patterns.

It can be recalled from the development of Section 6.3 that a linearly polarized
aperture distribution K(p, §), given by (6.45), will generally create a pattern F(8, ¢),
expressed by (6.48). Taylor considered the special case n = 0, leading to ¢-independent
patterns. Now it will be necessary to look at the more general case.!?

The substitutions (6.50) convert the pattern expression (6.48) to the form

Fu @)= 3 emF,w (6.67)
in which
Fiw) = [ pe(p)],(up) dp (6.68)
and
8(p) = £y K (p) (6.69)

Equation (6.67) permits the interpretation that the pattern can be represented by a
Fourier series in ¢ with coefficients F,(u).

Suppose one wishes to have every ¢-cut be a circular Taylor pattern, but with
F(u, ¢) displaying ¢-asymmetry. As an example, let

L 4 .1 — g —
Fu ¢):{7[Fa<u) RG]+ IR = R@les(Z8)  —go=é <4 (o0

\Fy(u) otherwise

in which F,(«) and F,(u) are circular Taylor patterns. This composition gives F,(u)
at ¢ = 0°, then a cosinusoidal transition from F,(¥) to F,(u) as ¢ departs from 0°
toward either —¢, or +¢,, and then F,(u) in the regions —z << ¢ << ¢, and ¢, << ¢ <
n. If F,(u) has low side lobes (for instance, 25 dB) and F,(v) has higher side lobes
(for instance, 15 dB), then ¢, controls the extent of the region in which the lower side

1O0R. S, Elliott, “Design of Circular Apertures for Narrow Beamwidth and Asymmetric Side
Lobes,” IEEE Trans. Antennas and Propagat., AP-23, (1975), 523-27,
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lobes prevail. If in a practical situation ¢, need be only 30°, permitting higher side
lobes in the remaining five-sixths of space can augment the directivity.

The form chosen for F(u, ¢) in (6.70) is only suggestive of the kind of pattern
construction which is theoretically possible. One could compose F(u, ¢) out of
combinations of many circular Taylor patterns, linked in many ways. Of course,
the more complicated the composition, the more finely structured will be the aperture
distribution, and the more difficult will be the physical realization.

It is instructive to pursue further the class of sum patterns characterized by
(6.70). The partial functions F,(1) can be found by regular Fourier inversion of (6.67),
namely,

j Flu, §)e 7 dp = i F,(u) j "9 4g = 2 F,(u) (6.71)

Since F(u, ) has been selected in (6.70) to be an even function, its insertion in (6.71)
gives, for k = 0,

Folw) = Fy(@) + [Fw) — Fia) 22 (6.72)
and gives, for k = 0,

Fuw) = F o) — i) — Fla) f 1 cos(3) Jeossap @7

0

The integration indicated in (6.73) yields compact formulas when ¢, = n/l, with
I a positive integer. Then

Fo(u) = lm%fiu) k=P (6.74)

_F) — F,w) > sin(mk/D) 22
By === e =y K (6.75)

The partial aperture distribution corresponding to each of the partial pattern functions
F(u) can be found by taking the inverse transform of (6.68). This has already been
done in Section 6.3 for n = 0, the result being that g,(p) is given by the truncated
series (6.59).

For n # 0 one can proceed by assuming that

8P) = 3 Bond Vanp) (6.76)

in which J(y,.7) = 0 defines the mth root of the nth Bessel function. Then from
integration of (6.68),

F,(u) = ’gl Bnm[up‘]n(ynmp)']n—l(up) - ynmp-]n—x(}’nmp)]n(up)]n (6.77)

2 2
ynm_u 0
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Inspection of (6.77) reveals that F (y,.), with k a positive integer, is at most contributed
to by the kth term of the sum. Thus, returning to (6.68), one finds that

Fn(ynk) = Bnk fo p‘]r%O)nkp) dp

2 n

— B BH0mP) = Joe 0V (i) |

0

7[2
= (7>Bnkjn—l(ynkn)‘,n+l(y"kn) (6'78)
so that
—_ i S Fn(ynm)']n(ynmp) 0 6

g”(p) - (7[2) ’";1 ‘]n—l(ynmn)']n+1(ynmn) " i ( ‘79)

The series in (6.79), unlike (6.59), do not truncate. However, for practical aperture
distributions, they converge very rapidly and g,(p) is significant only for low values
of n.

As a specific illustration of these results, let / = 2 so that ¢, = n/2. If F,(u) is
25dB, 7 =6, and F,(u) is 15dB, i = 3, this choice gives a smooth transition
from a 25dB SLL pattern at ¢ = 0° to a 15dB SLL pattern at ¢ = 90°, then
a constant 15dB SLL to ¢ = 270°, and another smooth transition back to a 25 dB
SLL at ¢ = 360°. A plot of (6.70) for this case is shown in Figure 6.12.

Use of (6.72) through (6.75) gives

Fo(u) = JF(u) + 3F,(u) (6.80)
Fy(u) = F_,(u) = §[F,(u) — Fy(u)] (6.81)
Fu) = Fo(w)=0, k=468, .. (6.82)
Fo(u) = F_(u) = ____2;& ;)f/:z; [Fw) — Fw)] k=135, (683)

These expressions for the partial patterns can be used to determine the aperture
distribution. Since J_,(up) = (—1)"J (up), and since (6.81) through (6.83) indicate
that F_,(u) = F,(u), it follows from (6.68) that for this case g_,(p) = (—1)"g.(p).
When this information is placed in (6.69), and then in (6.45), one obtains

K(p, B) = 35[80(p) — 205 B g:(p) + 0dd 32 2—j) cos nB e, ()] (6:84)
From (6.59)
go(P) = §80.4P) 1 380.4(P) (6.85)

in which g, ,(p) and g, ,(p) are conventional circular Taylor distribution (correspond-
ing to F,(u) and F,(«) which can be read from the tables of R. C. Hansen.!!

11Hansen, “Tables of Taylor Distributions.”



4 244

0 $=0° $=15° ¢ =30° ¢ =45°
-10 ‘
-20
=
-30
—40 it ' I ' I
_SOO 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
u u u u
¢ = 60° $=75° ¢=90°
Q
-10
=20 1 | {
3

-30

~-40 |' I

50 At o

0 4 8 12 16 20 24 0 4 8 12 16 2024 0 4 8 12 16 20 24
u u u

Fig. 6.12 A Sequence of ¢-Cuts for a 15/25 dB Modified Circular Taylor Pattern
(© 1975 IEEE. Reprinted from /EEE AP Transactions, pp. 523-527,1975))
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The remainder of the g,(p) functions appearing in (6.84) can be determined from
(6.79). Computations show for this case that the peak value of g (p) is 119 of g,(0)
and that the peak value of g,(p) is 6 % of g,(0). The higher order modes tail off rapidly:
gs(p) reaches only 0.1% of g,(0) and no attempt was made to compute g,(p) and
beyond.

The aperture distribution computed from (6.84), truncated at n = 5, is shown
in Figure 6.13. It can be seen that, in any pair of opposing f-cuts, the amplitude
distribution is symmetric and the phase distribution is asymmetric. This is typical
of sum patterns with well-defined side lobes (deep nulls) of nonuniform height.

Relative amplitude Relative amplitude
*M \/w
g=180° +0.1 g=0° g=210° +0.1 g=30°
4 e + i 1 i | Il p/a i ‘1, -y It + )'k & 5
1.00.8 06 04 02 0 02 04 0608 1.0 1.0 0.8 06 0.4 0.2 0 0.2 04 06 0.8 1.0

Phase in degrees Phase in degrees
110 +20
0 0 pla
1- 10\/ 110
1-20 1-20

Relative amplitude Relative amplitude
—
g =1240° 10.1 g =60° g=270° +0.1 g=90°
——t——t—— ————t——t 4 —t———
1.0 08 0.6 0.4 0.2 0 0.2 04 0608 1.0 100.8 0.6 04 0.2 0 0.2 0.4 06 0.8 1.0
Phase in degrees Phase in degrees
420 120
_A— 110 T10
6] 0
+-10 1-10
T-20 T-20

Fig. 6.13 The Continuous Aperture Distribution K(p, f) for the Sum Pattern of Fig. 6.12
(© 1975 IEEE. Reprinted from /EEE AP Transactions, pp. 523-527, 1975.)

6.6 Sampling Generalized Taylor Distributions:
Rectangular Grid Arrays

The practical applications of Taylor’s circular patterns (or of their generaliza-
tions discussed in the previous two sections), which involve a continuous aperture
distribution, are few. However, the excitation of discrete planar arrays with circular
boundaries is often determined by conventional sampling of these continuous distri-
butions. If the number of elements is large, so that the sampling interval is small,
this is a satisfactory procedure. But there is always pattern degradation, and the
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designer must judge whether or not the result is still superior in side lobe structure

and beamwidth or directivity to the pattern obtained from an easily determined
discrete separable distribution. Later in this chapter, techniques will be described
which improve on conventional sampling, and thus tilt the decision more
strongly in favor of nonseparable distributions. However, these techniques often use
sampling of the continuous distributions as a starting point, so it is useful to gain an
appreciation of the conventional sampling method and what it can achieve.

A common application involves a rectangular grid array with a circular
boundary, one quadrant of which is shown in Figure 6.14. For the purpose of illus-
tration, imagine that the boundary radius is @ = 54 and that the interelement spacing
is 0.54 in both directions. This can be viewed as a 20-by-20 array with corners that are
cut off to achieve a circular boundary. If this array is to produce a sum pattern with a
side lobe level of —15dB, the circular Taylor distribution of Figure 6.9 can be
sampled to obtain the discrete current distribution. For the mnth element, the distance
from the origin is

o {[(2m = l)d”T - [MT} i (6.86)

which permits determination of p,,, = np,,/a and thus I, = g,(p,..)-
Since this is a nonseparable distribution, but one possessing quadrantal sym-

m

Fig. 6.14 One Quadrant of a Rectangular Grid Array with Circular
Boundary; dx = d, = 0.5, a = 51
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dB

dB

metry, the pattern can be calculated from

S, ¢) = 4 12%1 i’ I,,cos [Qﬂ—}%] cos [MJ (6.87)
with w, = 7 sin @ cos ¢ and y, — = sin @ sin ¢ because, in this example, d, = d, =
/2.

Patterns computed using (6.87) are shown for a series of ¢-cuts in Figure 6.15.
Reasonable agreement with the pattern of Figure 6.8 has been achieved, although
not all side lobes are under control.

Conventional sampling of modified Taylor patterns is also successful if the
number of elements is large. As an illustration, if a discrete array of the type of Figure
6.14, but consisting of a 20-by-20 quadrant with corners that are cut off, is excited by
sampling the distribution shown in Figure 6.13, the result is a pattern some of whose
@-cuts are shown in Figure 6.16. Agreement with the continuous aperture patterns of
Figure 6.12 is seen to be reasonably good. However, some tendency to “average out”
the side lobe level can be observed.

Sampling of these continuous aperture distributions, for a large number of
elements, has even been found to be successful for rectangular grid arrays with ellip-
tical boundaries. If the semimajor and semiminor axes of the boundary are g and b,

—1(:)\ —1(:) | 1 !
AN A Sllinay
| VI~ |

. ! . !

0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
] 8
0 0 \
-10 ~-10
¢ =30° ¢ = 45°
-20 f\ A -20 AW}
LA : N\
-30 Y \ -30 ] ﬁ/ f\\
—40 i —40 a\
\ Y
0° 10° 20° 30° 40° 50° 60° 70° 80° 90° 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°
0 ]

Fig. 6.15 Four ¢-Cuts of the Sum Pattern of the Array Depicted in Fig. 6.14; Excitation
Found by Conventional Sampling of the Continuous Circular Taylor Distribution of Fig. 6.9
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Fig. 6.16 Four ¢-Cuts c. the Sum Pattern of a Rectangular Grid Array with Circular
Boundary; d, = d, = 0.61, a = 104; Excitation Found by Conventional Sampling of the
Continuous Modified Taylor Distribution of Fig. 6.13

all that is needed is a transformation to an equivalent circular apperture via the
one-way stretch

&=¢  n=4n (6.88)

This transforms the position of the mnth element from (&, #,,,) t0 (&l Ho), after
which the modified value

Pron = [ + (7)1 (6.89)

can be deduced, leading to the determination of the current element from I, = g(p...).

Obviously, as the number of elements in the array gets smaller, conventional
sampling of a continuous aperture distribution leads to more pattern degradation.
As an illustration, consider the array which has only eight elements per quadrant, as
suggested by Figure 6.17. If the interelement spacing is to be 0.74 in both directions,
and if a circular Taylor pattern, —22 dB, 7 = 3 is to be approximated, sampling the
continuous aperture distribution results in a pattern for which several ¢-cuts are
displayed in Figure 6.18 with the discrete current distribution shown as an inset. The
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degradation is clearly evident. In Section 6.10 a perturbation procedure will be
presented that can improve on this situation.

6.7 Sampling Generalized Taylor Distributions:
Circular Grid Arrays

It is a more natural arrangement (though not necessarily one leading to so practical
an antenna array from a feeding point of view) to discretize a circular planar aperture
by laying out a grid of concentric circles rather than using a rectangular grid. One
would suspect that this might lead to less pattern degradation when a continuous
aperture distribution is sampled, and this proves to be the case. As an example, let
the rectangular grid of Figure 6.14 be replaced by a family of concentric circles with
radii given by

P — Q’iz—_lﬁ (6.90)

with d the interradial spacing. If one wishes the same spacing d between adjacent
elements along any circle, then

2np,, = (2m — Dnd = N, d (6.91)

in which N,, is the number of elements on the mth circle. It is clear that the values of
N, that satisfy (6.91) are not integers, but one can round the results to the nearest
integer. For example, if @ = 54 and b = /2, there are 10 concentric circles, and the
numbers of elements per circle are given in Table 6.3, under the restriction that N,, be

TABLE 6.3
m 1 2 3 4 5 6 7 8 9 10
Ny 4 8 16 20 28 32 40 44 52 56

Iy 0.144 0.183 0.174 0.140 0.153 0.145 0.047 0.023 0.239 0.509

divisible by 4 (so that there is quadrantal symmetry). This gives a total of 300 elements
in the array, exactly the same number as were used in the rectangular grid array of
Figure 6.14. The layout of one quadrant is shown in Figure 6.19. Because of the
quadrantal symmetry, the sum pattern is given by

10 Nn/4
$@,9) =43 Y I, cos(k&,,sin 8 cos @) cos (kn,,, sin@sind)  (6.92)

m=1 n=
in which &,,, = p,, cos B,., and #,,, = p, sin B,.,, with g, = (2n — 1)n/N,,. If once
again the desire is to approximate the circular Taylor pattern of Figure 6.8, the
currents I, that appear in (6.92) can be determined by sampling the continuous
distribution shown in Figure 6.9. All the currents on a common circle are the same and
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are listed for this application in Table 6.3. Computation gives the pattern shown in
Figure 6.20, which is seen to be closer to what is desired than those due to a rectangular
grid array (shown previously in Figure 6.15). (Only the ¢ = 0° pattern cut is shown in
Figure 6.20 because it was found that, for this application, patterns for ¢ = 0°, 15°,
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Fig. 6.20 The Sum Pattern of the Circular Grid Array of Figure 6.19; Excitation Obtained
by Conventional Sampling of Fig. 6.9
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30°, and 45° were virtually indistinguishable, attesting to the fact that circular grid
sampling of ¢-symmetric distributions is more natural than rectangular grid sampling).

Modified Taylor distributions can also be sampled to provide the excitation for
circular grid arrays. For example, suppose five concentric rings of radii p,, = ma/5,
m=1,2,...,5 contain equispaced elements N, = 8m in number, and that this
circular array is intended to create the sum pattern of Figure 6.10. The reader will
recall that this is a circular Taylor pattern, —15dB SLL, i = 6, except that the
innermost two ring side lobes are at —25 dB. The continuous aperture distribution
which would give that pattern precisely was shown in Figure 6.11. Conventional
sampling gives the current distribution listed in Table 6.4, which in turn produces the
pattern of Figure 6.21. Once again, only the ¢ = 0° cut is shown because the different
¢-cuts are essentially the same. One can observe the general features of the desired

TABLE 6.4
m 1 2 3 4 5
Npm 8 16 24 32 40

I 0.225 0.292 0.189 0.002 0.472

Pattern for circular grid array
with five concentric rings

1 f
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Fig. 6.21 The Sum Pattern for a Circular Grid Array of Five Equispaced Concentric Rings;
a=254;N,, =8m = Number of Equispaced Elements on mth Ring; Excitation Found by
Conventional Sampling of Fig. 6.11 () 1978 Alta Frequenza. Reprinted from Graham,
Johnson, and Eiliott, A/ta Frequenza, pp. 1-7, 1978)
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pattern of Figure 6.10 though there is recognizable degradation—more so than was
seen in Figure 6.20, partly because there are fewer rings and partly because the desired
pattern is more intricate. In the next section, a design procedure will be presented that
can improve substantially on the results of both Figures 6.20 and 6.21.

6.8 An Improved Discretizing Technigue for Circular Grid Arrays

The examples of the previous section indicated that conventional sampling of gener-
alized Taylor continuous aperture distributions causes pattern degradation which is
more serious when the number of elements in the circular grid array is small. It is
possible to remove most of this degradation by employing a different technique—one
which focuses on the starting pattern and ignores the continuous distribution which
creates it.

Assume the existence of a desired pattern §(u), such as Figure 6.10, which is
¢-symmetric and which one wishes to produce with a circular grid array. As an
interim step, let there be a system of concentric ring sources with normalized radii

0
that form the sequence 0 << p, < p, --- < p, < 7, withp = zp/a. If I is the current
level in the mth ring, the finite sum equivalent of (6.51) gives, for the starting pattern,

M 0
So() = 20 3 Lp,dolup,) (6.93)
0
The currents 7, in (6.93) should be selected so that the nulls of §,(x) coincide with
0
the nulls of §(x). With I, arbitrarily set equal to unity, if w,, u,, ..., u,_, are the
innermost M — 1 nulls of §(u), then
M O
80(un) - 2(1 Zl lmpm‘lo(unpm) = 0 (694)
Equations 6.94 comprise M — | simultaneous linear equations in the M — | unknown
0 0 [}
currents 1,, I, ..., I,,. Matrix inversion gives what will be called the starting ring

current distribution.

As an illustration, consider again the second example of the previous section.
If p,, = mn/5, and if §,(«) is to have the same null positions as the pattern shown
in Figure 6.10, solution of (6.94) gives the current distribution listed in the second
column of Table 6.5. Use of these sources in (6.93) produces the pattern displayed in

TABLE 6.5 Ring current distributions

Ring Number n: (},,, (for Figure 6.22a) 1,, (for Figure 6.22b)
1 1.000 1.000
2 1.305 1.479
3 0.633 1.079
4 0.483 0.037
S 0.738 1.303
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Figure 6.22a. Reasonable agreement with the desired pattern of Figure 6.10 has been
achieved, but the outermost side lobes are too low. This situation can be improved.
Let the desired pattern $(u) be expressed in the same form as (6.93), that is,

$W) =20 3 putoupa) (699)

dB

AN
Al ATAYA
o

0 1 2 3 4 5 6 7
u=2a/\)sin 8
(a)

-30

4.4—/>

-10

20 | N\

0 1 2 3 4 5 6 7
u=(2af\)sin 8
(b)

Fig. 6.22 The Sum Pattern for a Planar Array of Five Equispaced Concentric Continuous
Ring Currents; a = 2.54; Currents are Selected (a) to Match Pattern Nulls, and (b) After
Perturbation to Match Side Lobe Heights of Fig. .10 () 1978 Alta Frequenza. Reprinted
from Graham, Johnson, and Elliott, Afta Frequenza, pp. 1-7, 1978.)
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with
Q
I, =164 6I, (6.96)
Then

2 18) = $6] = 3 6LpTu(up,) (697)

Let u? be the position of the nth lobe peak in the pattern §4(), with ug referring to
the main beam, u7 to the first side lobe, and so on. Insertion of u? in (6.97) creates a
set of M simultaneous linear equations in the M unknown current perturbations. The
left side of (6.97) involves §(uZ) — §o(uf), which is approximately the difference
between desired lobe level and starting lobe level. This approximate difference is a

known quantity. Matrix inversion gives d1,, which, when added to ;,,,, gives the new
current distribution I,,. When 1, is placed in (6.95), S§(u) can be computed. If §(u) is
sufficiently close to ideal, this part of the design procedure is completed. If not, §(u)
can be used as a new starting pattern, with the process repeated.

Returning to the example, one finds that a sequence of iterations leads to the
ring current distribution listed in the third column of Table 6.5. The corresponding
pattern is shown in Figure 6.22b, and has all side lobes within } dB of specification.

These ring currents are not physically realizable, but they prove to be a valuable
aid in the determination of the excitation of a circular grid array. To see this connec-
tion, refer first to Figure 6.23, which shows the arrangement of discrete radiators on
the mth ring. In order to insure quadrantal symmetry, the mnth radiator should be
at the angular position f,,, = (2n — Dza/N,,, with 1 < n <{ N,,, and with N, the num-
ber of radiators equispaced along the mth ring,

mt circle

Fig. 6.23 Discrete Radiating Ele-
ments in a Circular Grid Arrange-
ment
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Since the desired pattern is ¢-symmetric, all radiators on a common ring should
have the same excitation, which will be designated by I,,. The pattern for this circular
grid array is therefore

2

m

I ejkpm {cosBmnsinfcosg +sinfnnsindsing)
m

™

z

m

I’ ejumeOs(tﬁ*ﬂm.)
m

Mx Mk
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q
Since
%j e b — % o~ a2n=Dn/Nn N,e’*" if ¢ = sN,,
n=1 n=1 0 1f q = SNm
with s = 0, -1, 42, ..., Equation 6.98 reduces to

M M oo
8, ¢) = m; NI (up,) + ZMZ:l :;: (—1)yN, I, J.y (up,) cos (sN,d) (6.99)

An interesting interpretation can be placed on Equation 6.99. Each ring of the
circular grid array contributes to a ¢-independent part of the pattern, as desired.
Additionally, each ring of the array causes a @-harmonic series of supplemental
patterns with &,, the fundamental component; this part is undesirable. However, for
a given argument up,,, the Bessel function J,,_ diminishes as the order sN,, increases.
Quite logically, if &, is made large enough, one can expect that §(8, ¢) will be essen-
tially ¢-independent. When this is so, a comparison of (6.95) and (6.99) indicates that
the discrete element currents should be related to the previously obtained ring currents
by the equation

I, = Za%':in 1, (6.100)

Consider again the illustrative example, and assume that the five ring currents
are discretized so that N, = 4lm, with / =1,2,3,.... Then, since p, has been
chosen to equal mn/S, for this illustration I, = (za/10)I,.

The patterns computed from the complete expression in (6.99) are shown in
Figure 6.24 for the cases / = 1, 2. Though only the patterns for ¢ = 0°, 30° are shown,
other ¢-cuts display the same features. One can see that with / = 1, the element density
is too sparse to reduce the @-variable component of the field to a negligible value.
However, with I = 2 the field is seen to be essentially the same as for the earlier cases
of the ring currents and the continuous planar distribution. This is a significant
improvement over the patterns of Figure 6.21, which were due to a sampling of the
continuous distribution.

A specific practical example of this result would be a planar array in which
collinear dipoles or slots were arranged so that their centers lay on concentric circles,
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Fig. 6.24 Two ¢-Cuts of the Sum Pattern of a Circular Grid Array of Five Equispaced
Concentric Rings; @ = 2.54; Excitation as in Table 6.5; Upper: N,, = 4m = Number of
Equispaced Elements on mth Ring; Lower: N,, = 8m (© 1978 Alta Frequenza. Reprinted
from Graham, Johnson, and Elliott, A/ta Frequenza, pp. 1-7, 1978.)

the radii of these circles being 0.74, 1.44, . . ., 3.54. Eight equispaced radiators would
lie on the innermost circle, 16 on the next, and so on. The relative currents would be
as shown in the last column of Table 6.5. The theoretical sum array pattern would
then be typified by Figures 6.24c and d with 4 = 7 sin 6.

6.9 Rectangular Grid Arrays with Rectangular Boundaries:
Nonseparable Tseng-Cheng Distributions

The analyses presented heretofore in this chapter have shown the following.

1. If a rectangular grid array with a rectangular boundary is given a separable
distribution, sum and difference patterns can be generated. These patterns are the
product of two conical linear array patterns, associated with the row and column direc-
tions of the planar array. If the two linear array distributions are Dolph-Chebyshev,
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a sum pattern will be produced with uniform height side lobes in each principal plane.
However, these are mound side lobes, and those which occur off the principal planes
are suppressed far below the design level, at a cost in beamwidth and/or directivity.
(Though the subject was not pursued further, the two linear array distributions that
comprise the separable discrete planar distribution could be such that arbitrary side
lobe topography is created in each principal plane. The nature of the pattern is still
to have mound side lobes, reduced in level off axis. Also, continuous separable rectan-
gular aperture distributions could have been considered, but if this were only for the
purpose of being sampled, it was better to begin with discrete separable distributions.)

2. If a circular aperture contains a linearly polarized continous distribution
which is ¢-symmetric, a sum pattern is produced which, for the proper radial depend-
ence of the distribution (Taylor), has quasi-uniform height ring side lobes. There is
a beamwidth and/or directivity advantage over a sum pattern with mound side lobes.
Modified continuous distributions can yield sum patterns with ring side lobes of
individually arbitrary heights, or can cause sum patterns with ring side lobes that
undulate in height through a sequence of ¢-cuts.

3. Conventional sampling of the continuous aperture distributions described
in Paragraph 2 is a useful procedure when the number of elements in the discrete
array is large. It results in patterns with little degradation, and such arrays enjoy the
beamwidth/directivity advantage due to ring side lobes. This method of discretizing
can be applied successfully to circular grid arrays with circular boundaries, and to
rectangular grid arrays with either circular or elliptical boundaries. However, as
smaller and smaller arrays are considered, the pattern degradation worsens and at
some point becomes unacceptable.

4. An alternate discretizing technique is available for circular grid arrays that
overcomes the pattern degradation due to conventional sampling, even when the
array is small.

There remains the problem of rectangular grid arrays—with either rectangular
or circular boundaries—for which one seeks a nonseparable distribution that will result
in a sum pattern with nondegraded ring side lobes. This problem will be addressed in
this section for rectangular boundaries, and in the next section for circular boundaries.

A technique due to F. I. Tseng and D. K. Cheng!? is applicable to rectangular
grid arrays with rectangular boundaries, with the one restriction that the number of
elements in a row equals the number of elements in a column. The interelement
spacings d, and d, need not be equal, and thus the array need not be square. The
distribution is discrete and nonseparable and, in the original Tseng-Cheng formula-
tion, gives a Dolph-Chebyshev pattern in every ¢-cut (and thus ring side lobes).

The technique will be developed for an array of 2N by 2N elements. (An equiva-
lent analysis applies for an odd number of elements per row, but the even case has more
applications, since it also permits a difference pattern.) With quadrantal symmetry
of the aperture distribution assumed, the expression for the sum pattern is similar to

12F 1. Tseng and D. K. Cheng, “Optimum Scannable Planar Arrays with an Invariant Side
Lobe Level,” Proc. IEEE, 56 (1968), 1771-78.
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(6.87), that is,

S0, ¢9) =4 "ﬁ::l ?;‘1 I, cos <2m; lwx> cos (2—n2;mlqu> (6.101)

with y, and y, given generally by (6.36).
Since the main beam pointing direction is defined by y, = w, = 0, if the

substitutions
U= nf"(sin 0 cos ¢ — sin 8, cos ¢,) (6.102)
nd,, . . . .
v = T(sm 0 sin ¢ — sin 8, sin @) (6.103)

are made, (6.101) becomes

S, v) =4 3 31, cos [(2m — 1)) cos [(2n — 1)) (6.104)

m=1n=1
In the manner of Tseng and Cheng, one can introduce the transformation
W = W, COS U COS ¥ (6.105)

Then, since it has been shown in Appendix D that

- 1 & 25— 1
25-1
Cos™ MU = 53— p§:1 <s » ) cos (2p — Du

with the same formula applying for cos 2¢~ 1y, it follows that a general odd polynomial
of order 2N — 1 can be written in the form

N

Pryoi(w) = 21 ay, o w!
&

N
= 3 a,,_,wi 'cos** lucos > v

s=1
N s s

. Ayy 1 (28 — 1)<2s - 1)<ﬁ)2“‘ - o
=2 ,,; ,,; 2“‘3<s oG- 0) 3 cos(2p — Ducos (2q — 1w
(6.106)

If one wishes the pattern §(u, v) to have the characteristics of the polynomial
P,n_,(w), then comparison of (6.104) and (6.106) indicates that

- a“_1<2s — 1><2s — 1)(51*(,)“‘1
I, = (Z") 7211 5 (6.107)

s={(m S —m S —n

inwhich(m,n) =mifm>nand (m,n) =nifm < n.



240

Planar Arrays: Analysis and Synthesis

The specific case treated by Tseng and Cheng was to choose P,y _,(w) to be the
Chebyshev polynomial

N
Tyn-1(w) = ;1 Ay Wit
- — N-s22 22N — 1)(N + 5 — 1) 251
= 3 (vt ( S5 (6.108)

(see Appendix C). Identification of d,,_, from (6.108) and its insertion in (6.107) gives

o nes 2N —1 N+ s —1\2s — I\(25s — I\ (w\ > !
Inn = f‘;?u =D 2(N + s — 1)( 2s — 1 ><s — m>(s - n><7) (6.109)

Equation 6.109 is the Tseng-Cheng formula for the excitation of an even-
numbered planar array whose pattern has the features of a Chebyshev polynomial.

Despite its formidable appearance, (6.109) is a simple formula to program. As
an example of its use, consider a 10 by 10 array in which 4, = 1/2 and 4, = 31/4.
Assume that it is desired to obtain a pencil beam pointing broadside-broadside
(6, = 0°), with 20 dB ring side lobes. Then w, is determined in the usual way, such
that T,x_,(w,) = To(w,) = 10 in this case. If follows that w, = 1.0558. Equation
6.109 then gives the current distribution listed in the second column of Table 6.6.

TABLE 6.6
20dB Innermost
. Tseng-Cheng Side Lobe—30 dB
Iy 0.773 1.000
I3 =143 0.569 0.708
Iy, =113 0.796 0.778
T4y =114 0.029 —0.050
Isy =145 1.000 0.846
12, 0.946 0.980
I3z =123 0.119 0.100
T4y = 124 0.618 0.477
Isy =125 0.667 0.564
Is3 0.486 0.369
T43 =134 0.777 0.642
153 = 135 0286 0242
T4q 0.387 0.325
154 = 145 0071 0060
Iss 0.008 0.007

When these currents are used in (6.104), the patterns shown in Figure 6.25 resuit. One
can see the typical feature of Tseng-Cheng cuts, namely that they are all Dolph
patterns. One can also infer the ringlike nature of individual side lobes.

The analysis presented in this section does not need to be restricted to Chebyshev
polynomials. If the design requirement is a sum pattern with ring side lobes of indi-
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Fig. 6.25 Four ¢-Cuts of the Sum Pattern of a 10 by 10 Rectangular Grid Array with
Rectangular Boundary; dy = 0.5, d), = 0.754; Tseng-Cheng Distribution, —20 dB SLL
(Reprinted from Radio Science, vol. 12, pp. 653-657, 1977, Copyrighted by American
Geophysical Union.)

vidually arbitrary heights, a more general polynomial P,,_,(w) must be selected. It
is often possible to determine this generalized polynomial through a perturbation of
a suitable Chebyshev polynomial.!?

Assume that the coefficients a,,_, of P,5_,(w), as defined in (6.106), differ only
slightly from the coefficients d,,_, of the corresponding T,_,(w), defined in (6.108).
That is, let

Ay,oy = dyy g+ sy (6.110)
Then
N
Py (W) — Ton (W) = Ex Oy W (6.111)

Let w? be the position of the nth peak in the Chebyshev polynomial, as illustrated
in Figure 6.26a for the case To(w). One notes that there are N — 1 such peaks in
w > 0. Further, let w, be that value of w which gives T,y _,(w,) = b, with —20 log, b
the side lobe level in the Dolph pattern. If one inserts successively wf, w3, ..., wg_,,

13R. S. Elliott, “Synthesis of Rectangular Planar Arrays for Sum Patterns with Ring Side
Lobes of Arbitrary Topography,” Radio Science, 12 (1977), 653-57.
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Fig. 6.26 Plots of the Chebyshev Polynomial of Ninth Order and the Corresponding
Modified Polynomial (Reprinted from Radio Science, vol. 12, pp. 653-657, 1977,
Copyrighted by American Geophysical Union.)

and wq in (6.111), the result is N simultaneous linear equations in the N unknowns
8., This is so because the condition P,y_,(wy) = T,y-,(w,) can be imposed, in
which case P,y_,(WP) — T,n_,(w?) is approximately the difference in levels of the
nth side lobe of the desired pattern and the starting (Chebyshev) pattern, a known
quantity.

After one solves for the perturbations §,,_, by matrix inversion, the results can
be placed in (6.110) and then in the first form of (6.106) to see if the resulting polyno-
mial P, ,(w) is close enough to specification. If it is not, the process can be iterated
until the designer is satisfied. The final set of values of a,,.; can be used in (6.107) to
determine the current distribution. Experience has shown that this process converges
rapidly; usually two or three iterations are sufficient.

As an illustration, suppose that the requirement is to design a 10-by-10 array,
with d, = A/2 and d, = 31/4, and that the excitation is to produce a sum pattern with
concentric ring side lobes, all of which are at —20 dB except the innermost which,
due to noise considerations, needs to be at —30 dB. When the procedure just outlined
is followed, one iteration moves from the Chebyshev plot of Figure 6.26a to the
modified polynomial plotted in Figure 6.26b. The coefficients of this polynomial
appear in

Po(w) = 236.4w° — 537.1w" + 409.6wS — 116.1w* + 8.9w (6.112)
which can be contrasted to the Chebyshev polynomial
To(w) = 256w — 576w7 4 432w> — 120w* + 9w (6.113)

When the coefficients contained in (6.112) are used in (6.107), the result is the
current distribution listed in the third column of Table 6.6. That current distribution
causes the patterns shown in Figure 6.27. One can observe that these patterns exhibit
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Fig. 6.27 Four ¢-Cuts of the Sum Pattern of a 10 by 10 Rectangular Grid Array with
Rectangular Boundary; d, =0.51, d, =0.751; Modified Tseng-Cheng Distribution
(Reprinted from Radio Science, vol. 12, pp. 653-657, 1977, Copyrighted by American
Geophysical Union.)

all the desired features. It is also worth noting that the current distribution is not
demanding in terms of the present state of the art.

6.10 A Discretizing Technique for Rectangular Grid Arrays

In Section 6.6 conventional sampling of circular Taylor distributions was introduced
and applied to rectangular grid arrays with circular boundaries. It was seen that the
pattern degradation was small for arrays with many elements, but became unaccept-
able as the array size was reduced. In Section 6.9 a nonseparable Tseng-Cheng
distribution was discussed that yields Dolph (or modified Dolph) patterns in every
¢-cut, and is applicable to small as well as large arrays. However, the Tseng-Cheng
technique requires rectangular boundaries and equal numbers of elements in the two
directions. If the corners of the array are cut off to fit a circular or elliptical boundary
and the remaining elements are excited Tseng-Cheng, serious pattern degradation
occurs.

There remains the need to improve on conventional sampling for situations not
covered by the Tseng-Cheng distribution. This problem parallels the one already
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encountered with linear arrays and overcome by the perturbation technique described
in Sections 5.8 through 5.10. However, in the linear array case, with N elements there
were N — 1 ¢-symmetric conical side lobes needing to be controlled and N — 1
current ratios that could be adjusted to accomplish the task. This neat deterministic
relationship does not carry over to the planar array case. For example, if one is
attempting to produce a sum pattern consisting of a pencil main beam and ring side
Iobes, the problem is essentially one of trying to control the side lobe structure in an
infinitude of @-cuts with the excitation of a finite number of two-dimensionally
positioned elements. The best one can hope for is to minimise the deviation of the
actual side lobe structure from what is desired.

A technique that has proven useful in problems of this type starts with a current

0
distribution I,,, which has been determined by conventional sampling and which
yields the sum pattern

S0, 0) =3 > ;,,m cos (k€,,, sin 8 cos @) cos (kn,,, sin @ sing)  (6.114)

m

Implicit in (6.114) is the assumption that there is quadrantal symmetry in element
placement and excitation. However, there is no restriction on the shape of the
boundary, nor do the elements need to be arranged in a regular grid. If the grid /s
rectangular, &,, = 2m — 1)d,/2 and 7, = (2n — 1)d,/2, but what follows has a
more general applicability.

Imagine that the starting pattern given by (6.114) is not acceptable and needs
to be improved. Let an achievable pattern be given by

$0,9) = X 5 Lun S (6.115)

in which f,,, = cos (k,,, sin 8 cos ¢) cos (kn,,, sin @ sin @) and I, is a current distri-
bution which will improve the pattern. If one can assume that

0
I.=1,-+96L, (6.116)
then the difference between (6.115) and (6.114) is simply

$(6,6) — 806, 9) = 2 X 01,/ ©6.117)

Let a ¢-cut of the starting pattern be designated by ¢, and let the peak of the pth lobe
in this ¢-cut occur at the angle §,,. Then

8(0pq1 ¢q) - So(optp ¢q) = ; z": almnfmnpq (61 18)

in which f,,,,, = cos (k£,,, sin 8,, cos ¢,) cos (kn,,, sin 8, sin ¢,).
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Suppose that a number of pointing directions (@8, ¢,) is chosen to equal
exactly the number of elements in one quadrant of the array. If one of these directions
is at the peak of the main beam, and if § is equated to §, in this direction, then for
the other directions the left side of (6.118) is approximately the difference between
desired and starting side lobe level, a known quantity. Equation 6.118 then becomes
a deterministic set that can be solved for the current perturbations d7,,, by matrix
inversion. The remainder of the procedure follows in the usual way. One places é1,,,
in (6.116) to obtain the new currents, which in turn are used in (6.115) to give the new
pattern. If the result is not satisfactory, iteration can be undertaken.

The success of this method hinges on judicious selection of the ¢-cuts and the
particular lobes in those ¢-cuts for use as the pointing directions (8, ¢,). Experience
has shown that the most easily controlled side lobes are those closest to the main
beam and that the ¢-cuts should be chosen to divide angle space into roughly equal
regions.

As an illustration, one can return to the rectangular grid array with circular
boundary and eight elements per quadrant, depicted in Figure 6.17. Conventional
sampling of the circular Taylor distriubtion for a —22 dB, 7 = 3 pattern led to the
current distribution shown as an inset to Figure 6.18 and the accompanying unaccept-
able patterns. If it is desired to move as close as possible to the ideal Taylor pattern
(¢-independent, with ring side lobes at a quasi-constant height of —22 dB), then
clearly the discrete aperture distribution should be as ¢-symmetric as possible,
implying that I,,, = I,.. Thus, for this case, (6.118) reduces to

80,05 85) — 860> 80) = 0111 f11pg + 0122 S22
+ 00,1 (fa1pg + SFi2p0)
+ 0131 (3150 + Si30a)
+ 813,(fr20q + S2309)

(6.119)

and there are only five unknown current increments to determine.

If the pattern cuts ¢, = 11.25°, 33.75° are chosen, the regions “belonging” to
these ¢-cuts are equal. And if, in addition to the main beam peak position (0°, §),
the positions of the two innermost side lobes in the 11.25° and 33.75° cuts are chosen,
five independent linear equations arise from (6.119) which can be solved simultane-
ously for the values of the §I's. When this is done, a sequence of iterations leads
to the current distribution shown in the inset of Figure 6.28. The accompanying
patterns are seen to be a significant improvement over those of Figure 6.18. Though
not shown, intervening ¢-cuts differ but little from those displayed in Figure 6.28.
The current distribution is also seen to be reasonable, though distinct from the
starting excitation.

In some applications a better starting pattern can be found than was obtained
by conventional sampling if use is made of the idea of collapsed distributions. The
concept of a collapsed distribution can be understood if the coordinate rotation
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Crn = &ra €08 B — 1, sin B

. (6.120)
Nouw = Emn Sin B+ 1, cOs B
is used to transform the general formula for the planar array factor
aa(e’ ¢) — Z Z [m"ejksinﬁ({mcosczh HmnSing) (6]2])
to the form
Q0,8) = 33 1, elksin0e meos6=p) ta'msin(p-=p)) (6.122)
If the special condition f = ¢ is imposed, (6.122) reduces to
@0, $) = 3 5 Lyye/tEm o5 b (6.123)

in which @, is the polar angle measured from the X’-axis (that is, in the X'Z-plane,
8. = (n/2) — @ and sin § = cos 8,,).

In words, (6.123) says that if all elements in the planar array are projected onto
the X’-axis and given their original excitations I,,,, the pattern of the resulting linear
array, in the X'Z-plane is the same as the pattern of the actual planar array in that
same plane (that is, the ¢-plane). This result is true whether one is dealing with sum
patterns or difference patterns, and whether or not the elements are regularly spaced.

Let this concept be applied to the illustrative example of this section, namely

0 0
the array shown in Figure 6.17. With I,,, = I,,,, the normalized starting current distri-
bution can be represented simply, as shown in Figure 6.29. When this distribution

Fig. 6.29 Notation for the Starting
Current Distribution of a 32-Element ﬁ
Planar Array; Sum Mode m
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is collapsed onto the X-axis, one obtains the six-element linear array of relative
excitation

x+z2) WHy+z (A+w+x) (T+wt+x) WHy+2z (x+2)

However, if it is collapsed onto the 45°-line, a nine-element linear array of relative
excitation

22) Q@x+y) Cw+2x) (1 +2wt22)  Q2+2)
(1 + 2w+ 22) (2w + 2x) Cx+y) (22)

is obtained.
If one finds the linear array distributions

which give conical sum patterns with a —22 dB side lobe level, then the planar array
pattern would be forced to be correct in the ¢ = 0° and ¢ = 45° planes if

w4 y+z=a,(l +w+Xx)
x+z=a,(l +w+Xx)
1 +2w+22=050,2+4+ 2y)
2w + 2x = b,(2 4 2y)
2Xx +y=105,2+2y)
2z = 5,2+ 2p)

(6.124)

One could then hope that the pattern in between these two ¢-cuts would not wander
too far from what was desired.

Unfortunately, it would take six controllable currents to satisfy all of these
conditions, and there are only four relative currents available to be adjusted. So let
us be content to satisfy the first four equations of (6.124).

The Brown and Scharp’4 tables give, for a —22 dB side lobe level,

a, = 0.7559 a, = 0.4683 b, = 0.9447 b, = 0.7924

When these values are inserted in the first four equations of (6.124), matrix inversion
gives the starting current distribution shown in the table inset of Figure 6.30. The
accompanying patterns are a considerable improvement over those of Figure 6.18
and are therefore more desirable for use as starting patterns, since they cut down on
the number of iterations needed in the process associated with Equations 6.119,

t4Brown, “Tables.”
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6.11 Circular Bayliss Patterns

250

In the general analysis that introduced Section 6.3, it was shown that, for a planar
aperture with a circular boundary of radius g, if the aperture contained a continuous,
unidirectional lineal current density distribution K(p, ), then the array factor could
be represented by the function

FO,8)=2n 3 (jye™ | Ko\, kpsin O)p dp (6.125)

in which K,(p) is the nth partial aperture distribution, contained in

K(p, B)= 3 K(p)e (6.126)

In the remainder of the analysis of Section 6.3, attention was focused on the special
case n = 0, which led to ¢-independent sum patterns of the circular Taylor type.
Now, if attention is turned to the special case n = -+ 1, Equation 6.125 becomes

D9, ) = 2mj f: [e#K (), (kp sin 8) — e~ K _,(p)J_,(kp sin O)]pdp (6.127)

Since J_,(kp sin 8) = —J,(kp sin 8), if K_,(p) = K,(p), Equations 6.126 and 6.127
reduce to

K(p, B) = 2K (p) cos B (6.128)
(9, ¢) = 47j cos ¢ f 0” K (p)J (kp sin 0)p dp (6.129)

In words, this pair of equations indicates that if one excites the aperture with a
continuous distribution of the type K,(p) cos f§, the resulting pattern will be in the
form f'(f)cos ¢, in which

HORS O" K(p),(kp sin 8)p dp (6.130)

Clearly, the shape of K,{(p) will affect the shape of 1(8).

In any plane that contains the Z-axis, one finds two opposed ¢-cuts (half-planes).
If one half-plane is defined by the angle ¢, the other will correspond to the angle
¢ + 7. From (6.129) and (6.130)

D@, ¢) = 4nj cos ¢ f(6) (6.131)
D@, ¢ + n) = —4zj cos ¢ f(0) (6.132)

Thus the patterns in these two half-planes are mirror images, except for a change of
sign, and taken together they consitute a difference pattern. As one examines the



6.11 Circular Bayliss Patterns 251

pattern in all the planes that contain the Z-axis, it can be seen from (6.131) and (6.132)
that the shape of this pattern is governed by f(8) in all the planes, with the relative
height in different planes controlled by cos ¢. In the plane ¢ = 0°/180°, the pattern is
at its greatest level, and in the plane ¢ == 90°/270° the pattern is at a null level. There-
fore this pattern is useful to provide resolution in the XZ-plane.

Similarly, if K_,(p) = —K,(p), Equations 6.126 and 6.127 reduce to

K(p, ) = 2jK,(p) sin § (6.133)
DG, §) = —4x sin ¢ £(0) (6.134)
The entire argument of the previous paragraph can be repeated, except for a shift of
90° in @. The distribution in (6.133) will give rise to a difference pattern, which can
be used to provide resolution in the YZ-plane. Many modern radar antenna systems
make use of a sum pattern and both of these difference patterns.
Since the shape of both difference patterns is due to f(8), which in turn is
governed by the radial aperture distribution K,(p), attention can be directed to Equa-
tion 6.130. It is convenient once again to introduce the substitutions

u= Qa/\)sin8 p=npla

which convert (6.130) to the form

Sw) = (afm)* " Ki(p) (up)p dp (6.135)

It will prove desirable to express K,;(p) as an orthogonal expansion in the form

Ki(p) = 3 Adi(tnp) (6.136)

in which the u,, coefficients are eigenvalues, to be defined shortly. Substitution of
(6.136) in (6.135) gives

70 = (£)" 5 o [ @er) 100 piy

_ <i>z D Am[ﬂmin(up)Jo(ﬂmzz) - uZpJo(up)Jl(ump)]" (6.137)

n m=0 us — Un 0

Since vJ,(v) = J,(v) + vJ{(v), the preceding result can be converted to

FQ) = <%>2 3 Am[ﬂmpJ’x(ump)Jl(up) - upJ’l(up)Jl(ﬂmp)]”

m=0 Ut — 0
_ (%)2 mijo Amn/‘m-]/l(”ﬂm)Jl(zlzl)__ﬁzgu-]/l(nu)JK”ﬂm) (6.138)
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A study of (6.138) reveals that the condition f(y,) = 0, n %= m, can be obtained if
either u,, is defined by J,(zu,,) = 0 or by J{(my,,) = 0. A return to (6.136) shows that,
if the first option is chosen, K,(x) must equal zero. Since the desirable aperture distri-
butions will be found to be nonzero at the boundary p = aq, it is appropriate to select
the second option and define the eigenvalues y,, by the equation

Jiru,) =0 (6.139)
The first twenty of these eigenvalues are listed in Table 6.7.

TABLE 6.7 Bessel function zeros, J{(T4,,) =0

m Hm m Hm m Hm m Km

0 0.5860670 5 5.7345205 10 10.7417435 15 15.7443679
1 1.6970509 6 6.7368281 11 11.7424475 16 16.7447044
2 2.7171939 7 7.7385356 12 12.7430408 17 17.7450030
3 37261370 8 8.7398505 13 13.7435477 18 18.7452697
4 47312271 9 9.7408945 14 14,7439856 19 19.7455093

With the selection of (6.139), Equation 6.138 reduces to

uJi(mu)

0 = (L) % A i) (6.140)

2 2
My — U

It is instructive to consider the special case that the aperture distribution consists
solely of the m = 0 (or fundamental) term. Then

 (a\*A,J(0.586m) muJ|(mu)
) = (F) (0.586)? [1 - (u/0.586)2] (6.141)

The aperture distribution J,(0.586p) is shown in Figure 6.31 and the pattern is plotted
in Figure 6.32. The typical features of a difference pattern are evident—a nullat u = 0,
then one of the twin main peaks, followed by a sequence of side lobes which steadily
decay in height. (Because |Ji(mu)| ~ u=Y? as u — oo, | f(u)| ~ u™3/2 for u large).
However, for many practical applications, the innermost side lobes are too high, and
the beamwidth of the twin main beams is enlarged because the further-out side lobes
are lower than required. Thus a more complicated aperture distribution is needed in
order to get an improved side lobe structure.

This problem parallels the one already encountered for the sum pattern in
Section 6.3. There it was noted that Taylor was able to modify the generic sum
pattern J,(zu)/mu by an appropriate shift of its innermost 7 — 1 null pairs and achieve
a quasi-uniform side lobe level of specified height. E. T. Bayliss's has shown how to
accomplish the same result for circular difference patterns.

15E, T. Bayliss, “Design of Monopulse Antenna Difference Patterns with Low Sidelobes,”
Bell System Tech. J., 47 (1968), 623-50,
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Bayliss’ pattern function is given by the expression

1T 0 — ()]
D, ¢) =cosp nuJj(mu) 2=t — (6.142)

0 — @my

Except for an inconsequential multiplicative constant, the 8-factor of (6.142) is seen
to be a modification of (6.141), with the innermost 7 null pairs of J{(zu) removed and
7 — 1 new null pairs placed at the positions 4-u,. Unlike Taylor, Bayliss was not able
to find a simple formula from which the roots u, could be computed. He used fitted
polynomials to determine that

62 1/2
m(—") forn=123,4

2 -9
u, A+ n (6.143)
AZ + n2 1/2
ﬂ,-,(—z———_z) forn=35
A* +n
The parameters 4, &,, ..., &, have already been given in Table 5.5 as functions of

side lobe level.

As an illustration of a circular Bayliss pattern, Figure 6.33 shows a plot of Equa-
tion 6.142 for the case of a —30dB SLL with 7 = 4. A characteristic Taylor-like
droop is seen in the envelope of the close-in side lobes, and then the envelope reverts
to a u=3/% decay.

-10

-20

dB

-30

=50

0 1 2 3 4 5 6 7
u=(2a/\)sin 0

Fig. 6.33 Typical ¢-Cut of a Bayliss Circular Difference Pattern; 77 =4, -30dB SLL
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The aperture distribution that causes a circular Bayliss difference pattern can
be deduced by returning to Equation 6.138. Since J{(nu,) = 0, the only possible

nonzero contribution to this sum occurs when u = g, and then only for the term
m = n. From (6.137),

n

7wy = (&) 4. | St do
_ (%)2/1"”75%(7:”") (6.144)

Since f(u,) = 0 for n > 7, the series in (6.136) truncates, and

Ki(p) = 2= 5 )1, () (6.145)

in which f(u,,) can be taken as the difference pattern evaluated at (u,, 0). It is calcu-
lable, with the aid of L’Hospital’s rule, from (6.142).

For the Bayliss circular difference pattern shown in Figure 6.33, the aperture
distribution computed from (6.145) is shown in Figure 6.34, and is considerably
changed from the generic case of Figure 6.31.

L0 —
\\

0.8 7 \

0.6 \

Ki(p)

0.4 /'
0.2
0 " ™ 3 m
4 2 4

p

Fig. 6.34 The Aperture Distribution for the Bayliss Circular Difference Pattern of Fig. 6.33



6.12 Modified Circular Bayliss Patterns

The side lobe structure of the difference pattern produced by a circular aperture need
not be quasi-uniform in height. The perturbation procedure that has already been
used for sum patterns from line sources, for ¢-symmetric sum patterns from circular
apertures, and for difference patterns from line sources, can be applied as well to
the problem of modifying a circular Bayless pattern to yield an arbitrary side lobe
topography.

Let the starting pattern be given in the form (6.142), namely,

Do, ) = Co /(0 ¢)H< ) (6.146)

2
n

=

. . 0
in which the roots u, are known and

Flu, $y— (cos O)mul | (u)

6.147
1T (1 — wu2) (6.147)
The desired pattern can be expressed similarly:
A=1 uz
D, ) = ¢/ $) [T (1 - %) (6.148)

The assumptions that u, = u, +- du, and C = C, + 6C, together with the expansion
in (6.65), lead to

D(uj, 6) 6C | & 2up)Yu;
Do, $) = C, tx 1 — w?ju? o (6.149)
in which uZ is the peak position of the mth lobe in the starting pattern. Since there
are 11 lobes to be adjusted and 7 unknowns, (6.149) is a deterministic set of simulta-
neous linear equations for which D(uz, ¢)/D,(uz, ¢) plays the role of driving function,
being essentially the ratio of desired to starting height for the mth lobe. Matrix
inversion gives the perturbations du,, which permit computation of a new pattern.
Comparison with the ideal determines whether or not further iterations are needed.
An application of this technique to circular difference patterns is posed in
Problem 6.21 at the end of this chapter.

6.13 The Discretizing Technique Applied to Planar Arrays Excited
to Give a Difference Pattern

With some minor modifications, the technique described in Section 6.10, which was
used there in application to sum patterns, can also be used for difference patterns.

0
Imagine that a starting current distribution 7,,, has been determined, either by conven-

256
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tional sampling of a continuous Bayliss distribution (such as the one shown in Figure
6.34) or by a procedure to be described later in this section. Then the starting pattern
can be expressed as

Do(6,4) = T LG (6.150)
in which
om0, §) = sin (k&,, sin @ cos ¢) cos (kn,,, sin & sin @)
if the difference pattern is XZ-oriented, or
£inal0, ) = cos (k¢&,,, sin @ cos ¢) sin (kn,,, sin 8 sin ¢)

if the difference pattern is YZ-oriented.
One assumes that the achievable pattern can also be given in the same form
as (6.150); that is,

D0, 4) = 2 % Lnsti (6.151)
where, once again, I,,, = I,,, + 61,,. Then

:D(epq’ ¢q) — ‘:’Do(gptp ¢q) - ; ; 5Imngmnpq (6152)

and the problem is to choose a judicious set of pointing directions equal to the number
of elements in a quadrant in order to solve for 81, by matrix inversion.

It has already been observed, in connection with the illustrative example of
Section 6.10, that—for small arrays—conventional sampling of continuous aperture
distributions is inferior to working with collapsed distributions as a method for

0
determining a starting set of currents /,,,. Therefore, continuing with that example,

let it be assumed that the starting current distribution is in the form shown in Figure
0 0
6.35. (This distribution lacks the I, = I,,, symmetry of Figure 6.29 because, unlike

the desired sum pattern, the desired difference pattern does not have symmetry about
the 45°-axis.
From the collapsed distribution in the ¢ = 0° plane, one obtains
t+w-tz=a(l +v+y) (6.153)
u+x=a,(l +v+y) (6.154)

whereas the collapsed distribution in the ¢ = 45°-plane yields

t+ut+v—y=b{+t+x—v—2) (6.155)
u+w+y=b(l4+t+x—v—2) (6.156)
x+z=b(+t+x—v—2) (6.157)

in which the a, and b, are relative currents in six- and nine-element linear arrays
excited to give a difference pattern.
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> n
Fig. 6.35 Notation for the Starting
Y Current Distribution of a 32-Ele-
m ment Planar Array ; Difference Mode

Equations 6.153 through 6.157 give five conditions on the seven unknown cur-
rents ¢, u, . . ., z. Two more conditions can be found as follows: Let (p,,,, f...) b€ the
position of the mnth element, expressed in polar coordinates. Then for the rectangular
grid array of Figure 6.35,

cos B.. cos (@2 — B..)
cos B, cos B,

Thus, if one is trying to approximate a Bayliss distribution (which varies as cos f§)
for the example of Figure 6.35,

t =3 (6.158)
u=>5y (6.159)

Equations 6.158 and 6.159 can be used as the two additional conditions on the current
distribution.

If root positions are adjusted graphically on a Schelkunoff unit circle for six-
and nine-element linear arrays, in order to give difference patterns with uniform
20 dB side lobe levels, one finds that

a, =204 a,=135 b, =151 b,=144 b, =091

When these values of @, and b, are placed in (6.153) through (6.159), simultaneous
solution gives the current distribution shown in the table inset of Figure 6.36. The
corresponding patterns, computed from (6.150), are also shown in Figure 6.36 and
comprise an acceptable starting point for the iterative procedure.

For this illustrative example, efforts to improve on the patterns of Figure 6.36
through use of Equation (6.152) proved fruitless when the desired pattern was pre-
scribed to behave in ¢ as cos ¢. However, when the design goal was changed to permit
the main beam peak to subside as cos ¢, but to allow the side lobes to stay at —20 dB
relative to the highest main beam peak (that is, the one seen in the ¢ = 0° cut), the
iterative procedure yielded the improvement shown in Figure 6.37. The need to alter
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the design goal can probably be attributed to the small size of the array, since the
problem has not been encountered with larger arrays. However, this altered goal is
actually more in keeping with typical design specifications, in which all regions of
space are given equal weight in so far as side lobe suppression is concerned.

6.14 Comparative Performance of Separable and Nonseparable
Excitations for Planar Apertures

Many of the results that were obtained in earlier sections of this chapter can be
brought together to provide a comparison of the performance of planar apertures,
excited continuously or discretely to produce a sum pattern with a specified side lobe
level. The principal criteria in this comparative study will be peak directivity and
beamwidth, and it is advantageous to normalize these measures as follows.

Let a planar aperture bounded by an arbitrary contour C be excited by a
continuous distribution that is uniform in amplitude and uniform progressive in phase.
This causes a sum pattern whose main beam points in a direction (6, ¢,). If the
element pattern is assumed to be hemispherically isotropic, it is a simple maiter!® to
show that the peak directivity is

p, = 44 (6.160)

in which A is the projected area of the aperture in a plane transverse to the direction
(6., ¢,) and 2 is the free-space wavelength. The areal beamwidth of this sum pattern
will be designated by the symbol B,,.

Added significance can be attached to the result (6.160) because no other ampli-
tude distribution, combined with the given uniform progressive phase distribution, can
produce this high a peak directivity from the given aperture. Thus D, can be used as
a figure of merit and the peak directivity D of a sum pattern caused by another ampli-
tude distribution can be compared to D,. Concurrently, the areal beamwidth B of the
sum pattern caused by another amplitude distribution can be contrasted to B,,.

With an assumed hemispherically isotropic element pattern, (1.160) and (6.160)
combine to give for the normalized peak directivity

D 8,00, $0)85 (00, $0) 6161
D a2 prln . .
o (i) [T [ 7 8.6, 8856, ¢) sin 0.6 d

in which §,(8, ¢) is the array pattern, and could be produced by either a continuous
or discrete planar aperture distribution.

As an illustration of the use of (6.161), first consider an array of 18 by 18 cle-
ments, with d, = d, = 0.4922, and with the elements uniformly excited in amplitude
and equiphase. The aperture is 8.864 square and §,(6, ¢) can be determined from

16See, for example, S. Silver, Microwave Antenna Theory and Design, MIT Rad. Lab. Series,
Vol. 12 (New York: McGraw-Hill Book Co., Inc., 1939), pp. 177-78.
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(6.37). Insertion in (6.161) gives D/ D, = 0.965. Interestingly, there is a 3.5% loss in
peak directivity just due to discretization.

Next, imagine that these 324 elements are rearranged into a rectangular grid
with a circular boundary. If they are placed so that d, = d, = 0.5004, one finds that
the circular aperture has the same area as the previous square aperture, namely
(8.864)%. With uniform excitation, the normalized directivity is now D/D, = 0.924.
There has been an additional 4.1 % loss in peak directivity due to the inefficient use of
aperture space along the periphery.

Now, picture a 20-by-20 square array, with d, = d, = 0.5001, excited in a sepa-
rable Dolph-Chebyshev distribution to give 15 dB side lobes in both principal planes.
For this case, it is found that D/D, = 0.621. If some of these elements are cut off!”
so that the remaining 324 fit in a circular boundary of 5 radius, then D/D, = 0.748.
This figure is 17.6 % lower than the previous value of 0.924, found when the same array
was uniformly excited, even though the side lobe levels are not substantially different
(—15 dB in the Dolph-Chebyshev case, —13.5 dB in the uniform case).

To see the improvement that can be obtained by going to a nonseparable
distribution, consider a circular aperture of radius 54, excited by a continuous circular
Taylor distribution such that the pattern is —15dB SLL, 7 = 3. In this situation,
D/ D, = 0.967. If this continuous distribution is sampled in order to find the discrete
excitation for a rectangular grid of 324 elements, the resulting pattern has a nor-
malized peak directivity of 0.940. The pattern has ring side lobes (slightly undulating
because of the discretization), at a quasi-uniform height of —15dB. The value
D/ D, = 0.940 is clearly superior to the value 0.748, found when the same 324 elements
were separably excited Dolph-Chebyshev, —15dB SLL. In that case, mound side
lobes at —30 dB existed outside the principal planes, broadening the main beam, and
lowering the directivity. This penalty for using a separable distribution is less severe
as the array is made smaller (because the ratio of the number of off-axis mound side
lobes to on-axis mound side lobes goes down), but there is always a penalty. It can,
and should, be avoided whenever directivity is an important consideration.

Because of its clear superiority when judged by the directivity criterion, the
Taylor circular distribution deserves further attention. The sum pattern produced by
this distribution is given by Equation 6.53 and insertion in (6.161) will give the
normalized peak directivity for a planar aperture with a circular boundary of radus a.
The normalized half-power beamwidth can be found by the following procedure.

If the aperture is uniformly excited, the pattern is given by (6.52), that is,

J(mu)
nu

So(u) = (6.162)

and L’Hospital’s rule can be invoked to determine that §,(0) = 0.500. The 3-decibel
beamwidth can therefore be determined from

Solu,) = 0.707 §,(0) = 0.3535

17This will result in some pattern degradation.
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When this result is used in (6.158), it is found that
nu, = 1.617 = kasin 8,

from which 8, can be deduced. The reference half-power beamwidth is 28, and the
reference areal beamwidth is
B, = 407

The half-power beamwidth for the Taylor circular pattern can be computed from
(6.53) by seeking the value u, at which §(u,) = 0.707$(0). From this, the normalized
areal beamwidth B/B, can be deduced.

The calculations just described lead to Figures 6.38 and 6.39, which show the
normalized peak directivity and normalized beamwidth of a Taylor circular pattern

1.0

0.9
mﬁi\

0.8 —35dB

—40 dB
|
|
0.7 |
<
S (7
S ,
0.6 J -20dB ][
05 1 ~15dB
0.4 : -
0.3L
0 5 10 {5 20 25
n

Fig. 6.38 Normalized Peak Directivity of Circular Taylor Sum Patterns
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as functions of side lobe level and the transition integer 7. Several significant conclu-
sions can be drawn from a study of these figures. Foremost, at a given side lobe level,
the normalized beamwidth narrows as 7 is increased, but not dramatically; however,
the normalized directivity peaks and then plunges precipitously. For this reason, it is
generally wise to pick that value of 7 that maximizes the normalized directivity for the
specified side lobe level. When this is done, the values of D/D, and B/B, can be
tabulated versus side lobe level, as has been done in Table 6.8. This table points up
the other significant conclusion, that the price paid for a lowered side lobe level is
a substantial reduction in directivity and a concomitant increase in beamwidth.

The last column of Table 6.8 indicates that the product of peak directivity and
areal beamwidth is not constant as the side lobe level is varied. However, it is constant
for a given side lobe level as the aperture size is permitted to vary.

For the antenna designer who intends to sample a continuous circular Taylor
distribution to obtain the excitation of a discrete planar array, it is extremely important
to be aware of the penalty for not choosing the optimum value of 7. As an illustration,
for an array of 324 elements in a rectangular grid with a circular boundary, it was
found that when a Taylor 15dB SLL, 7 = 3 was sampled, a normalized peak direc-
tivity of 0.940 was achieved. Had one chosen to sample the Taylor 15 dB SLL, 71 = 6,
the result would have been D/D, = 0.500. This would represent a loss of nearly
3 dB merely because of an improper choice of 4.



6.15 Fourier Integral Representation of the Far Field 265

TABLE 6.8 Normalized peak directivity and normalized areal beamwidth
versus side lobe level at optimum 7 for circular Taylor patterns

Side Lobe Optimum D B D\/ B
Level, dB i Dy B, <D—o><§5>
—20 3 0.982 1.065 1.046
—25 5 0.941 1.134 1.067
—30 9 0.884 1.212 1.071
—35 14 0.821 1.325 1.088
—40 22 0.758 1.445 1.095

6.15 Fourier Integral Representation of the Far Field

Various earlier sections of this chapter have been concerned with the development of
specific techniques for synthesizing planar aperture distributions to produce desired
far field patterns. For continuous apertures with circular boundaries, these develop-
ments included the techniques of Taylor and Bayliss and their extensions. The rectan-
gular boundary case was treated principally for discrete arrays. The planar aperture
with an arbitrary boundary has not heretofore been considered. A powerful technique
which is applicable to the general boundary case involves the use of Fourier trans-
forms. This technique permits many general deductions to be made about the prop-
erties of planar aperture antennas without specifying their shapes and is widely used
in the theoretical research literature.

To appreciate this technique, consider a thin perfectly conducting infinite plane
which contains a collection of arbitrarily shaped holes S,. S,, ..., Sy, as suggested
by Figure 6.40. Regardless of the method of excitation, the currents in this planar
antenna are constrained to lie in the X Y-plane. The fields due to these currents must
therefore have the following properties in the surface z = 0:

H,=H,=E. =0 inS,,S,,...,Sy
E.=E,=H,=0 exceptin Sy, S5, ..., Sy

If the collective area of the holes S|, S,, . .., Sy is small compared to the area
of the metallic part of the conducting plane, the fields in z > 0 can be conveniently
formulated by the procedure introduced in Section 3.2 as an application of the
Schelkunoff equivalence principle. Secondary sources can be placed above the holes
(in the plane z = 0-+) after which the holes can be covered over with perfect con-
ductor. Use of the image principle then results in removal of the infinite ground plane
and a new source system consisting of a doubled magnetic current sheetin S, S,, . . .,
Sy and no electric currents whatsoever. Since the magnetic current sheet is related to
the value of the true tangential electric field in S,, S,, ..., Sy by Equation 1.113, it
follows that the far field in z > 0 is uniquely determined by E,,,, in z = 0.

It can be shown (see Appendix F) that the far field in z > 0 is also uniquely
determined by H,,, in z = 0. This alternate formulation is useful when the collective
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z Fig. 6.40 Infinite Perfectly Con-
ducting Screen with Arbitrarily
Shaped Holes
area of the holes S,, S,, ..., Sy is large compared to the area of the metallic part of

the conducting plane. The Fourier integral formulation to be introduced in this
section will be in terms of E,,,, in z = 0, but it can be developed with equal facility
in terms of Hy,, in z = 0.

Let the electric field in z > 0 be represented by E(x, y, z)e/. With the time
factor suppressed, a two-dimensional Fourier transform of this field function can be
defined by the integral

E(k,, k,, z) = zl—n f f E(x, y, 2)e/*==*i%w dx dy (6.163)
with the inverse transform given by
E(x, y, 2) = Zl‘ﬁf f E(k,, k,, 2)e” %% dk_dk, (6.164)

E(x, y, z) satisfies the homogeneous wave equation (V* + k?)E(x, y,z) =0 in the
source-free region z>> 0. When this operation is performed on (6.164), the result is that

[+ 2 = 2+ k) Bk k) =0 (6.165)
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A general solution of (6.165) can be represented by

E(k,, k,, 2) = g(k,, k,)e 7% (6.166)
in which

ko= [k — (2 + k) (6.167)

The positive real root must be chosen in (6.167) when k? > k2 4 k2 and the negative
imaginary root must be chosen when k? << k2 4+ k2, in order to satisfy the radiation
condition at infinity in z > 0.

Returning tc (6.164), one can see that the electric field in z > 0 can be expressed
in the form

E(x,y, 2) = % f f gk, ke dk dk, (6.168)

in which r is the position vector drawn from the origin to the point (x, y, z) and k =
1Lk, + Lk, + Lk,. Equation 6.168 permits the interpretation that E(x, y, z) inz > 0
can be viewed as the superposition of plane waves with amplitudes g(k,, k,)dk, dk,
and directions of propagation given by k.

In analogy to the time/frequency use of Fourier transforms in electric circuit
theory, the compcnents k, and k, of the propagation vector k are often called spatial
frequencies because of their conjugate relationship to the spatial variables x and y.

Because V.E(x, y,z) =0 in z > 0, if the divergence of (6.168) is taken, one
finds that

Ve(ge ™) =g« V(e ™) =—jgke ™" =0

which requires that g - k = 0. Thus only two of the components of g are independent.
In particular,

gk, k) = kg ks, ky) + kyglky, k) (6.169)

z

This conclusion is consistent with the earlier argument that E(x, y, z) is uniquely
determined in z > O if only E,,,, is specified in the aperture. An important conse-
quence of this result is that the Fourier transform in (6.168) can be simplified by
suppressing the z-component. When additionally the point (x, y, z) is restricted to
lie in the aperture, that is, when (x, y, z) — (&, #, 0+), one can further reduce (6.168)
to

E,(f,ﬂ,0+):E((é,n):21—nf f gk, ke ik<-ikndl dk,  (6.170)

with the ¢ subscripts indicating that only the transverse (x- and y-) components are
being used.
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The inverse transform of (6.170) is

8k, k,) = % f f E(&, n)ek= 1k g dn (6.171)

The utility of the transform pair (9.170) and (6.171) in problems involving
pattern synthesis can be appreciated if the substitutions

k,=ksinfcos¢p Kk, = ksin@sing (6.172)

are introduced!® and specified to apply for k2 + k2 <C k?. When this is done, (6.171)
becomes

gk, k)= 21_7.[ ff E (&, n)e*Gsindeoss tnsintsing) g£ Jp (for k% 4 k2 < k?)
S1,82,000, SN

(6.173)

Equation 6.173 is in the exact same form as the electric vector potential function
F(0, ¢) expressed as Equation 1.122. Therefore g (k,, k,), with k, and k, given by
(6.172) and with k2 + k? < k2, can be identified as the far-field F-function of the
planar antenna.

If g(k., k,) is fully specified, the inverse transform of (6.170) can be used to
determine the required aperture distribution. In principle, this solves the synthesis
problem. However, close inspection uncovers some serious difficulties. When (8, ¢)
is specified in the far field in both amplitude and phase, g (k,, k,} is known exactly
for k2 + k} < k*. However, one must choose g.(k,, k,) for kZ + k2 > k?* so that,
when (6.170) is used, E,(&, n) = 0 except over Sy, S,,...,Sy. To complicate the
situation further, (6, ¢) is often specified in magnitude but not in phase. When this
situation prevails, there is no unique solution to the synthesis problem. Ideally, one
should choose a phase distribution for (6, ¢) which results in a simple, physically
realizable aperture distribution over §,, S,, ..., Sy and which minimizes the aggre-
gate effect of g (k,, k,) in the range k% 4 kZ >> k2. This latter condition arises because
the plane waves in this range are evanescent (k, is imaginary) and do not contribute
to radiation but rather to reactive stored energy. (This point will be elaborated
shortly). The general synthesis problem is thus seen to be formidable. It can be
raised to its ultimate level of difficulty if one also seeks the optimum planar antenna
shape to produce a specified pattern with the simplest physically realizable aperture
distribution.

Despite these difficulties, Equations 6.170 through 6.173 constitute a useful
formulation of the synthesis problem for planar apertures. Indeed, one of the virtues
of this formulation is that it permits a penetrating perception of the difficulties of

18This linking of (k, k,) with the real space angle variables (@, ¢) is consistent with results
obtained by applying the method of stationary phase to the integral transform (6.168). See, e.g.,
R. E. Collin and F.J, Zucker, Antenna Theory: Part I, (New York: McGraw-Hill Book Co., Inc.,
1969), pp. 62-9.
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synthesis. But beyond this, it permits other important deductions to be made which
have wide validity. One of these involves the calculation of radiated power and average

reactive stored energy.
Since V x E = —jou,H in z > 0, it follows from (6.168) that

H(x,y,2) = A?_nj%ﬂ f f V x (ge ") dk, dk,
0 o -0

— | b - —jker
= mf_mf—mg x V(e /%) dk, dk,

— 1 - ” —jk-r
= Tl f ) Lk x ge %" dk, dk, (6.174)

The complex power flow (see Section 1.6) across the aperture plane into the
half space z > 0 is given by

P:.[_’+j2co(W,,,—We):%fm fExH*-l,d{dn (6.175)

in which P is the real power flow and W,, and W, are the time-average magnetic and
electric stored energies. Use of (6.168) and (6.174) in (6.175) yields

~ 8nlwu, wﬂ f J [g(k%, k))e T x k* x g*(k,, k,)e™™ ]
» 1, dCdn dk. dk, dki dk,  (6.176)

This sixfold integral can be reduced through use of the orthogonality relation
f kiR gE = Sk — k!) (6.177)

with § the Dirac delta function. Since the same reduction applies for the # integration,
one finds that

R
P= o | | lekak) x bk x gk k) - Lk, dk,  (6178)

With the aid of (6.169), this result can be put in the revealing form

dk , dk
P= 2wﬂf f [(k* — kD)g. - gF + |ke» 81— (6.179)

A study of the integrand of (6.179) reveals that the expression inside the square brackets
is always pure real. However, k¥ is pure real or pure imaginary according to whether
or not k? = k2 4 k2 is less than or greater than k2. Therefore the real radiated power
comes from that portion of the plane wave spectrum for which k2 4 k2 <C k?, whereas
the average stored reactive energy comes from the remainder of the plane wave
spectrum (the evanescent waves) for which k2 + k2 > k2. This result is consistent
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with the comments made earlier about the synthesis of a physically realizable aperture
distribution.

This formulation of complex power flow in terms of the plane wave spectrum is
useful in the determination of the input impedance or admittance of various planar
antennas. As an example, consider the case of an infinitely long narrow slit in a per-
fectly conducting ground plane, as suggested by Figure 6.41. The electric field in the
slit is assumed to be uniform, X-directed, and given by

|4

E(, n,0+) = l—a— (6.180)

L |
-~ LLL LSS A S Sy

/

X

Fig. 6.41 An Infinitely Long Narrow Slit in an Infinite Perfectly Conducting Ground
Plane

in which « is the slot width and V is the voltage across the gap. From (6.171), one
finds that in this case

1 a/2 oo vV .
— L ikl jky
gt(kxa ky) = 27Z jla/z dé le 1, a e g dﬂ

vV a/2
=1, 3 ok, — 0) e/ =< d¢

-a/2

= 1,2 5k, — 0) Sin k-4l (6.181)
a k.
It is seen that g does not have a y-component, which is consistent with the fact that
E, =0 in z > 0. However, there is a z component which, with the aid of (6.169),
is found to be

gz(kx7 ky) = _2‘:/ 6(ky — 0) —-————Sin (:xa/z)

z

(6.182)
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Because this is a two-dimensional problem, resulting in a delta function depen-
dency of g on k,, it is convenient to compute the complex power flow into the half-
space z > 0 by returning to (6.176). If in this case P represents the flow per unit
length of the slit; then

1 ” * , ,
— s | | e kg k) — kg Kt )
o el kemkSpithmkiin JE dk  dk, dk’, dk,

— o || 00— KOlK (D) — kg (kg ke,

U (7 kok¥ 4 k¥kE i
" dnou, . k* g.(k,)gkk,) dk,
4% k.al?
N lnazf = k(Zk*a/ dak, (6.183)

The input admittance per unit length can be defined by the relation (1/2)VV*Y*=
P, as a result of which

4 sin? (k, a/2)

G”_lnazf e k. (6.184)
_ 4 ([ sin? (k,a/2)

B"_lnazq_m +L )ka/kZ— dk, (6.185)

Plots of the real and imaginary components of the input admittance are shown in
Figure 6.42. The susceptance is positive and this is a capacitance-type aperture. It

4

unit length
I}

Normalized admittance per

Fig. 6.42 Admittance per Unit 0 0.2 0.4 0.5
Length of the Slit Radiator Shown )
in Fig. 6.41 a/\
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can be seen that resonance does not occur in the range
0<a/d<05

There are other simple planar antennas for which formulas for the input admit-
tance can be obtained readily using this plane wave spectrum approach. (See, for
example, Problem 6.24 at the end of this chapter.) For a full exposition of the utility
of a Fourier integral representation of the fields produced by planar antennas, the
interested reader is referred to the pertinent literature.!®
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PROBLEMS

6.1 Find the separable current distribution for a rectangular grid array with a rectangular
boundary if d, = 54/8,d, = 3A/4,2N, = 8, and 2N, = 12, and if 25 dB and 35 dB
Dolph-Chebyshev patterns are desired in the XZ- and YZ-planes, respectively. Assume
the main beam points at 8, = 0° and write an equation for the —3 dB contour of the
main beam. What is the height of the off-axis side lobes?

6.2 In Problem 6.1, if the element pattern is hemispherically isotropic in z > 0 and is zero
in z < 0, find the peak directivity. What is the areal beamwidth ? Find the changes in
directivity and areal beamwidth if the beam is scanned to the position § = 30°, ¢ = 45°.

6.3 Suppose the array of Problem 6.1 is to be used for conical scanning, that is, the position
of the main beam is to be given by # = constant, ¢ = K, with K a rate constant and ¢

19For the original exposition, see H. G. Booker and P, C. Clemmow, “The Concept of an
Angular Spectrum of Plane Waves and Its Relation to That of Polar Diagram and Aperture Dis-
tribution,” Proc. IEEE, 97 (1950), 11-17. The books by D. R. Rhodes, Synthesis of Planar Antenna
Sources, (London: Clarendon Press, Oxford, 1974), and by J. R. Goodman, Introduction to Fourier
Optics, (New York: McGraw-Hill Book Co., Inc., 1968) are also recommended.
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the time. Find the uniform progressive phase factors &, and o, as functions of time in
order to achieve this effect.

If, instead of the conical scan of Problem 6.3, a raster scan is desired for the array, find
o, and &, as functions of time. [A raster scan can be defined by 8 = K, while ¢ changes
linearly in time from —@, to +¢,; then § = K, while ¢ changes linearly in time from
+¢¢ to —¢,; and so on, with K, K, . . . a monotonic sequence of constants.]

A more practical application of a raster scan is one in which the planar array sits in a
vertical plane over a horizontal earth, with § measured from the earth’s zenith and ¢
measured in the earth plane. Repeat the analysis of Problem 6.4 for this case and find
the sequence K, K,, . . . if the main beam positions on successive legs of the raster are
to overlap at the —3 dB points.

For the array of Problem 6.1, sketch the —3 dB contour of the main beam when it is
at the pointing directions (0°, 0°), (30°, 0°), (30°, 30°), (30°, 60°), and (30°, 90°).

Assume that the sum pattern current distribution found for the array of Problem 6.1 is
retained, except that the sign of the excitation is reversed for the two quadrants in which
x << 0. Write an expression for the resulting difference pattern. If a computer is available,
plot this difference pattern in ¢ = 0°/180° and observe the side lobe level. If not, col-
lapse the distribution onto the X-axis (that is, let ¢ = 0°) and determine the side lobe
level by trial and error.

The side lobe level found for the difference pattern in Problem 6.7 will be seen to be
poor. Use the perturbation technique described in Section 6.12 to find a current dis-
tribution that will give no side lobe in any ¢-cut higher than —25 dB relative to the
twin main beam peak of the ¢ = 0°/180° cut.

Design an equispaced planar array under the following specifications.

(a) Rectangular grid, rectangular boundary, separable distribution.

(b) Sum and difference pattern capability.

(c) Sum pattern scannable out to § = 30° in any ¢-cut.

(d) Bx0 = 14°, 8,0 = 20°.

(e) Both principal cuts are Dolph-Chebyshev, —20 dB in XZ and —15dB in YZ.

A circular Taylor pattern, —20 dB SLL, 7z = 3, is desired from a continuous circular

aperture for which a = 3. Find 42, g, and the modified root positions u, and u,.
Write the explicit expression for this Taylor pattern. Determine the orthogonal com-

ponents in the expression for the aperture distribution. If a computer is available, plot
the pattern in 0° < @ << 90° and the aperture distribution in 0 < p <C 31. Note the
characteristic droop of the side lobe structure in the pattern plot.

Use the perturbation technique described in Section 6.4 to determine the modified
Taylor circular aperture distribution which will give a pattern identical to the one found
in Problem 6.10 except that the innermost side lobe is depressed to —30 dB. If available,
use a computer to plot the aperture distribution and pattern.

If undulating ring side lobes are desired for the pattern caused by the circular aperture
described in Problem 6.10, find the modified aperture distribution if the side lobe level
is to vary smoothly from —25dB at ¢ = 0° to —15dB at ¢ = 180° and back again.
Assume all ¢-cuts are to exhibit Taylor-like patterns with 7i = 3.

A rectangular grid array with d, = d, = 0.74 has a circular boundary for which a =
3A. Because of the cut-off corners, there are only 13 elements per quadrant. Find the
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excitation of this array if one uses Dolph-Chebyshev separable —20 dB SLL and merely
sets the excitation of the three cut-off elements equal to zero. Use a computer to plot the
pattern in the cuts ¢ = 0°, 15°, 30°, and 45°.

Repeat Problem 6.13, except use a Tseng-Cheng nonseparable —20 dB SLL excitation.

Repeat Problem 6.13, except use an excitation found by conventional sampling of the
continuous circular Taylor distribution determined in Problem 6.10.

Use the perturbation technique described in Section 6.10 to bring the degraded patterns
of Problem 6.15 as close as you can to the desired pattern found in Problem 6.10.

Determine the beamwidths and directivities of the patterns found in Problems 6.13
through 6.16.

A circular grid array with four concentric rings at radii p/A = 0.7, 1.4, 2.1, and 2.8 is
to be excited with ring currents that will give a pattern approximating a circular Taylor
—20 dB SLL, 7 = 3. Determine the ring currents (a) by conventional sampling of the
Taylor distribution; (b) by matching to the nulls of the pattern found in Problem 6.10;
(c) by perturbation of either of the foregoing patterns, using the technique described in
Section 6.8.

Use the ring currents determined in Part (c) of the previous problem to determine the
discrete element excitation if the inner ring has (a) four elements; (b) eight elements.
Assume other rings have the same element separation. Compute the patterns for these
two cases and plot the ¢-cuts for ¢ = 0°, 15°, 30°, and 45°.

For a 6 diameter continuous circular aperture, find the excitation that will produce a
—20 dB SLL, n = 3, Bayliss difference pattern. Write the explicit expressions for pat-
tern function and aperture distribution. If a computer is available, plot both the pattern
and the distribution.

.Use the perturbation technique outlined in Section 6.12 to modify the Bayliss circular

pattern shown in Figure 6.33 so that the innermost side lobe is at —40 dB, with all others
unchanged. Find the requisite aperture distribution.

For the array of Problem 6.13 use conventional sampling of the distribution found in
Problem 6.20 to produce an approximation to the Bayliss difference pattern. Plot the
resulting pattern for ¢ = 0°, 20°, ..., 80°.

Use the perturbation procedure detailed in Section 6.13 to improve on the patterns of
the previous problem.

For the infinite slit shown in Figure 6.41, assume that the E-field in the aperture is y-
directed and given by E,(§) = K cos (n&/a). Use the plane wave spectrum approach to
find the complex radiated power and from this deduce an expression for the input
admittance per unit length.



self-impedance and
mutual impedance,
feeding structures

Part 1 of this text dealt with pattern analysis of individual antenna elements
(such as a single dipole, helix, or slot), and Part II dealt with pattern analysis
and synthesis of linear and planar arrays of these elements. The treatment
of arrays culminated, in Chapters 5 and 6, with a variety of procedures for
the determination of array element excitations which will produce specified
patterns.

A different class of practical engineering questions now needs to be
addressed. What is the best way to feed a single element ? How does one provide
a match between the element and its feeding line at the design frequency? How
does one minimize the mismatch over a frequency band? And, for arrays, how
does one actually achieve the desired excitation of the elements in order to
produce the specified pattern? Further, how does one achieve it, and at the
same time provide a match to the transmitter (or receiver) at the design fre-
quency? More difficult still, how does one minimize pattern degradation and
mismatch over a frequency band? Most difficult of all, how is this done if the
pattern is to scan?

Before answers to these questions can be attempted, knowledge about the
input impedance of a single antenna element and about the mutual impedances
among elements when they are used in arrays must be acquired. This informa-
tion is vital when a feed line is to be designed to connect to a single element, or
when a network of feed lines is to be designed to connect together the elements
of an array. Thus this part of the text is devoted first to the determination of the
self-impedance of various types of isolated antenna elements and to the deter-
mination of self-impedances and mutual impedances among elements in an
array. This is followed by an introduction to the design of various feeding
structures which have the purpose of providing a match and, in the case of
arrays, do this in concert with establishing the array excitation which will yield
a specified pattern.
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self-impedance and mutual
impedance of antenna elements

Introduction

In this chapter the reader will find a sequence of analyses leading to the determination
of the self-impedance and mutual impedance (or admittance) of cylindrical dipoles,
strip dipoles, monopoles, and slots, these being among the most common antenna
elements used singly or in arrays. A theoretical formulation of the self-impedance of
a patch antenna is also presented.! The chapter begins with the derivation of an
integral equation relating the current density distribution on an arbitrarily shaped
antenna element to the sources which excite it. Specific application of this integral
equation is then made to the center-fed cylindrical dipole of circular cross section,
using an approach pioneered by Hallén.? The method of moments is introduced and
used to solve for the current distribution on the cylindrical dipole for a known applied
voltage. The input current is then used to compute the self-impedance.

When the inquiry is focused on self-impedance, one needs to find only the
input current and not the entire current distribution. A variety of techniques is avail-
able for doing this, and the ones developed in this chapter, all applied to the cylin-

1Theoretical analyses of the mutual impedance between patches, and of the self-impedances
and mutual impedances of helices are extremely difficult and of dubious value. However, these two
elements are often used in arrays, with the necessary data on self-impedance and mutual impedance
obtained experimentally.

2An independent and highly original approach to the determination of the current distribution
on a center-fed dipole and its self-impedance has been provided by Schelkunoff. He started with the
biconical antenna as a prototype and provided an approximate solution to the relevant differential
equations. Compare with S. A, Schelkunoff, Electromagnetic Waves (Princeton, New Jersey: D. Van
Nostrand Co., Inc., 1943), pp. 446-69. For an excellent summary of Schelkunoff’s approach, see
E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating Systems 2nd Ed. (Englewood
Cliffs, New Jersey: Prentice-Hall, Inc., 1968), pp. 572-88. The integral equation approach of Hallén
will be followed in this text because of certain computational advantages and because it provides a
convenient framework for several related developments.
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drical dipole, are the induced EMF method, Storer’s variational approach, and
Hallén’s method. The results are summarized in sets of curves showing the real
and imaginary parts of the self-impedance versus cylindrical dipole length and
radius.

A proof is then presented that a slender strip dipole (rectangular cross section)
is equivalent to a cylindrical dipole of the same length and appropriately chosen
radius, so that all of the preceding developments and results for cylindrical dipoles
including current distribution and input impedance, can be carried over intact to the
strip dipole.

The reciprocity theorem is used next to develop a formula for the mutual
impedance between parallel cylindrical (or strip) dipoles that are arbitrarily positioned
relative to each other. Computations based on this formula lead to a family of curves
relating mutual impedance to the two dipole lengths and their relative positions. A
discussion is undertaken about the meaning of self-impedance and mutual impedance
in dipole arrays consisting of many parallel elements, and it is indicated under what
conditions isolated self-impedance and one-on-one mutual impedance can be used

as approximations in this general case.

The simple extension of all the foregoing results for vertical monopoles fed
above a horizontal ground plane is indicated.

Babinet’s principle and Booker’s extension of it to complementary arrays of
slots and strip dipoles are introduced and used to establish the equivalence between
the field distribution in a slot and the current distribution on a strip dipole. This
permits deduction of the equivalence between the input impedances of a single slot
and dipole, and the equivalences between (1) self-impedance and mutual impedance
of strip dipoles in an array, and (2) self-impedance and mutual admittances of slots
in the complementary array. Thus the utility of all the results on cylindrical dipoles is
extended still further, beyond monopoles and strip dipoles, to two-wire-fed slots. In
Chapter 8, a further extension to waveguide-fed slots will be presented. Because of
these equivalences, the subject of the self-impedance and mutual impedance of
cylindrical dipoles takes on added importance.

The chapter concludes with a formulation of an expression for the self-imped-
ance of a patch antenna (metallic film of rectangular or circular shape bonded to a
grounded dielectric slab).

7.2 The Current Distribution on an Antenna: General Formulation

Consider an electromagnetic system consisting of a transmitter (or receiver), a feeding
network, and an antenna element (such as a dipole, a slot, or a helix). Some simple
examples are shown in Figure 7.1. More complicated examples could be created by
using an ensemble of these elements in arrays.

In the analysis that follows, the feeding network will be idealized by assuming
that it can be replaced by a generator contained in a small feeding volume. As an
illustration, the two-wire-fed dipole of Figure 7.1a will be modeled as shown in
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Two- wm line /
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Two-wire
line

(c) (d)

Fig. 7.1 Some Simple Antenna Elements and Their Feeding Structures

Figure 7.2, with the generator confined to a cylindrical region in the gap between the
two arms of the dipole.

If J(&, 5, {) e’ is the current density distribution of the antenna plus idealized
generator, then the fields at any point (x, y, z) are related to the sources at (x, y, 2)
by the differential relations (compare with Chapter 1)

B=V x A (7.1)

VxB=VV-:A)- VZA*L_*"
Ho

~.

w
2E (7.2)

|

)

(V2 & kA = =3

0

(7.3)

The elimination of J from (7.2) and (7.3) provides a connection between E and A,
namely,

VW-M+k%:%§E (7.4)
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™

Dipole
arm

Idealized
generator

Dipole
arm
Fig. 7.2 A Cylindrical Dipole
Center-Fed by an Idealized Gap
Generator
with A given by
I, 1, De*x
Ay, 2) = [ 26D ay 7.9
v Amug'R

where R = [(x — &)2 + (v — m)* + (z — {)*]/* is the distance from the source point
(&, 11, {) to the field point (x, y, z). Equation 7.5 is a restatement of (1.80) with the
time factor suppressed.

In the analysis of most electromagnetic problems that involve use of the mag-
netic vector potential function (7.5), the collection of points (&, 7, {) is defined to be
all points at which there are sources. The collections of points (x, y, z) is usually a
larger set. It may include points occupied by sources, but often refers principally to
all other points in space. The analyses to be presented shortly differ in that the
collection of points (x, y, z) will be the same set as the collections of points (&, n, {).
To emphasize the equivalence of these two sets, a field point will still be characterized
by the triplet (x, y, z), but a source point will hereafter be identified as (x', y', z)
whenever a distinction needs to be made between source points and field points.

With this explanation as background, Equations 7.4 and 7.5 can be combined
to give

oy Sy ikR ,
(VeVer + k) f WLV 2D gy joe E(x, 7, 2) (7.6)
Vv

in which
R—=[(x = x)? 4 (y =) + = 271 .7
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and Vg retains its normal meaning, that is, differentiation with respect to the variables
x, y, and z. (When needed, Vg will imply differentiation with respect to the variables
x', y', and z').

Equation 7.6 is a cornerstone for what is to follow. If, for a given antenna,
E(x, y, z) is known at all points occupied by the antenna, (7.6) is an integral equation
in the unknown and sought current distribution J(x', y’, z').> Since most antennas
are composed of good conductors, it is usually an excellent assumption to take
E(x, y, z) = 0, except in the region where the antenna is being fed. If a good estima-
tion of E(x, y, z) can be made in the feeding region, modern numerical techniques
applied to (7.6) will yield satisfactory solutions for the current distribution. The
resulting knowledge of the value of the current density at the interface between the
antenna and the idealized generator, together with the specified initial value of the
terminal voltage across the generator, also permits a calculation of the input imped-
ance. This will first be demonstrated for cylindrical dipoles.

7.3 The Cylindrical Dipole: Arbitrary Cross Section

A principal application of Equation 7.6 is to the center-fed dipole. As shown in
Figure 7.3, this is an antenna element consisting of two identical arms, each a cylinder
of length / — d, with the two arms axially aligned and separated by a gap of length

Fig. 7.3 The Center-Fed Cylindrical \
Dipole of Arbitrary Cross Section -

3Alternatively, if J(x', ', z) is known at all points occupied by the antenna, (7.6) can be used
to determine the electric field distribution E(x, y, z) throughout the antenna.
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26. All transverse cross sections of the two cylinders are identical. The cross section
may have an arbitrary shape, as suggested by Figure 7.4a. A perimeter coordinate s
can be used to identify points on the contour C via the parametric equations

x=g(5), y=g0) (7.8)

c —— %

N

Cross section of Circular Rectangular
arbitrary shape cross section cross section

Fig. 7.4 Cylindrical Dipoles of Various Cross-Sectional Shapes

When the need exists to distinguish between the points (x, y, z) and (x’, y’, z) the
transverse coordinates of the latter will be identified by

X' =gs), ¥y = gas) (7.9)

In practice, the two most commonly encountered cross sections are circular and
rectangular. For the former, shown in Figure 7.4b, g, = acos ¢ and g, = asin ¢,
with a the radius. For the latter, shown in Figure 7.4c, x = 4¢/2 and y = +w/2,
with w the width and ¢ the thickness.

Loose usage of the word cylindrical, plus historical precedence and the desire
for word economy, has led to the tradition that the phrase cylindrical dipole refers
exclusively to the circular cross section of Figure 7.4b.

The advent of printed circuits has occasioned an increased interest in thin
dipoles of rectangular cross section which can be laid or printed on grounded dielec-
tric substrates and fed by stripline. But even prior to this practical application,
theoretical interest in such dipoles was stimulated by recognition of their comple-
mentarity to rectangular slots cut in large ground planes. To provide a distinction
between dipoles of circular and rectangular cross section, since both will be treated
in subsequent developments, the name strip dipole will always be used to refer to the
rectangular shape of Figure 7.4c.

The analysis leading to the determination of the current distribution on a dipole
and its input impedance can be carried a good distance before one is forced to par-
ticularize the cross section. Therefore, attention will continue to focus for the remain-
der of this section on the general shape of Figure 7.4a. If 2u is the maximum lineal
dimension of this arbitrary cross section, it will be assumed in all that follows that
ku < 1 and u < I. Thus what ensues is a theory of slender dipoles. This is not a
serious restriction, since most practical applications fit this condition.

The gap 26 between the two arms of the dipole will be taken to be an infinitesi-
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mal.* The equivalent idealized generator will be assumed to be confined within the
cylindrical volume of height 26 and contour C.

Since almost without exception the practical applications of dipoles involve the
use of arms made of good conductors, it is customary to assume in the model that the
arms are perfectly conducting. Consideration should then be given to the question
whether the arms are tubular or solid. If they are solid, currents will flow on the
disclike surfaces at z = 4+ and z = 4-/ and this complicates the analysis. If they are
hollow tubes (which is often the case in practice), currents will flow primarily on the
outer surfaces of the arms, but can penetrate up inside the tubes at z = -4, and can
lapover and down into the tubes at z = -+/. However, if ku < 1, as is being assumed,
these currents inside the tubes do not penetrate very far and can usually be ignored.

The present analysis will be confined to the case in which the dipole arms are
tubular, with negligibly thin walls, and composed of perfect conductors. For this
reason, the equivalent idealized generator will be taken to lie in the cylindrical shell
of contour C and height 28. Because of the slenderness assumption (4 < /), the spatial
disposition of the idealized generator, and the assumption of perfect conductivity, the
current density is lineal, Z-directed, and flows on a surface S, with S a cylinder of

contour C extending from z = —/ to z = +/. For this case, Equation 7.6 becomes
g2 - K,(s', 2') e J*R .

——+k2>f’—’———dS: we E (s, z 7.10

(32 Ry Jo€s Es, 2) (7.10)

With the dipole composed of perfectly conducting tubes, E,(s, z) = 0 except
for —d < z <C 4. But the voltage measured at the dipole terminals is given by

V:—ﬁ&@dﬁ 7.11)

a result that is independent of s. This implies that E, is not a function of s. With § an
infinitesimal, it is appropriate to take E, as a Dirac delta function, that is,

E(z)=0, z%«0 (7.12)
L5m¢=~1 (1.13)

This is equivalent to saying that positive unit voltage is impressed on the dipole.

4This is not always an assumption that models physical reality with sufficient accuracy. Con-
siderable discussion of the “gap problem” can be found in the literature, and the interested reader
may particularly wish to consult King and Thiele among the references listed at the end of this
chapter. The monopole protruding vertically from a large ground plane, as in Figure 7.1b, with the
monopole an extension of the inner conductor of a coax, is perhaps the easiest real situation to model
in terms of an equivalent idealized generator, It is also the configuration for which theory and experi-
ment are most often compared. Thiele argues for the use of a magnetic frill as the equivalent feeding
source for the dipole. The present treatment, which is introductory, will be confined to use of the
infinitesimal gap model.
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With these elaborations, (7.10) becomes
oz 2 ! e_ij K ’ ’ d ’ ! : 14
(B +#) [ § G Kls' s’ e’ = e ) (1.14)

It is interesting to observe that, although the integrand in (7.14) is a function of s
(since R is a function of x and y), the integral itself is not a function of s, since E,
depends only on z.

Equation 7.14 is a generalized version of an integral equation first applied
to dipoles by H.C. Pocklington.s It can be written in the form

J-f G(s, 2,5, 2)K,(s', 2') ds’ dz’ = jwe E,(2) (7.15)

and thus identified as a Fredholm integral equation of the first kind. (Were there an
additive factor on the right side, consisting of a constant times K,(s, z), it would be
of the second kind.) The function G is called the kernel and in the present case is
given by

G(s, 2, 5", 2') = (92 + k2) €2 7.16
(S,Z,S,Z);<W+ )m ( )
The general problem of finding solutions to (7.15) has been widely studied. Several
techniques useful for the particular kernel indicated by (7.16) will be presented in
subsequent sections of this chapter. The appropriate solution of (7.14) is quite obvi-
ously influenced by the shape of the contour C, and attention will first be focused on
the important and common case when C is circular.

7.4 The Cylindrical Dipole: Circular Cross Section,
Hallén’s Formulation

If the contour C is circular, by symmetry the lineal current density distribution X,
on the dipole is only a function of z, and the integral appearing in (7.14) is also only
a function of z. Thus for a dipole whose cross section is a circle of radius a, (7.14)
can be written in the form

d? ) ,
(@ +k )G(Z) = jwe€ E(2) (7.17)
in which
1 2z e_ij
a(z) = J_IJ; IR K,(z)adpd:z (7.18)

In (7.18), R = [(x — X')* + (v — ¥')2 + (z — 2')3]"?, with both points lying in the

sH. C. Pocklington, “Electrical Oscillations in Wire”, Cambridge Phil. Soc. Proc., Vol. 9
(1897), pp. 324-32.
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cylindrical surface. The function @(z) is in the form of a magnetic vector potential
function (lacking only the factor u;') and satisfies the inhomogeneous wave equation.

It is useful to pause at this stage in the analysis and appreciate that if @(z) can
be found by solving the differential equation in (7.17), the solution can then be used
as the driving function in (7.18), which is a simpler integral equation to solve for the
unknown current density distribution K,(z’) than is the earlier Equation 7.14, which
contains a more complicated kernel. )

Solution of (7.17) is not difficult. Since E, is a Dirac delta function, (7.17) is
homogeneous except in the neighborhood of z = 0. Thus for z > 0,

Q(z) = A cos kz 4 Bsin kz (7.19)
whereas for z < 0,

Q(z) = Ccos kz + Dsin kz (7.20)
with 4, B, C, and D constants. One can match these solutions across z = 0 by noting
from (7.17) that, if @(z) is to be finite everywhere, the singularity in E, at z = 0 must

be matched by a singularity in d2@/dz? at z = 0, since it cannot be accommodated
by k*@(0). Therefore

0+8 0+4 0+6
, o d*@ , _da
jCl)fOJ; ) E(2)dz = —jwe, = o dz = rEAN (7.21)

Thus there is a jump of —jwe, in the first derivative of @(z) as the origin is traversed.
Differentiation of (7.19) and (7.20), followed by letting z — 0, yields the relation

kB — kD = —jwe, (7.22)

By symmetry, K,(z') is even in z’, and a study of Equation 7.18 indicates that
this forces @(z) to be even also. Thus 4 = C, B = — D, and

@(z) = Ccoskz — jg’kfo sin k| | (7.23)

a solution which is valid for all z.
Insertion of (7.23) in (7.18) gives

! 2n : .
: e_}kR ' r_ . Je€E, . .
J:;J; TR K,(zYadpdz: = Ccosk:z 55 Sin klz] (7.24)
Since the assumption has been made that a < A, the magnetic vector potential
function @(z), that is, the left side of (7.24), can be computed on the dipole surface
S by assuming that the total current is concentrated along the Z-axis (see Appen-
dix E). For this reason, (7.24) can be replaced by

I jkr :
f e47’” Kz')dz' = Ccoskz — fg)kfo sin k| z| (7.25)
-1
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where I(z') = 2na K.(z') is the total current, and r = [a® + (z — 2)*}"/* is the dis-
tance from an equivalent source point (0, 0, z’) on the Z-axis to a field point (x, y, z)
which is on the cylindrical surface. Equation 7.25 is Hallén’s integral equation.® The
constant C in (7.25) can be evaluated by requiring that /(/) = 0.

Hallén’s equation can be solved either for the complete current distribution
I(z), or merely for the input current /(0), with the latter equal to the self-admittance,
since unit voltage is being applied to the cylindrical dipole. A powerful technique for
solving (7.25) for the complete current distribution is the method of moments, which
is described in the next section.

7.5 The Method of Moments

With the advent of high-speed, large-capacity computers, integral equations such as
(7.25) can be solved rapidly, inexpensively, and with good accuracy by a variety of
numerical techniques. The approach to be described here is a special case of the
method of moments’ and is often called a point-matching technique.

Consider the general one-dimensional Fredholm integral equation of the
second kind:

[[6G 1) = g +910) (7.26)

with y = 0, one obtains a Fredholm integral equation of the first kind, of which
Hallén’s equation in (7.25) is an example.

In (7.26) it is assumed that the kernel G(z, z') is a known function, that g(z) is a
known driving function, that y is a known constant, and that z € [a, b]. The problem
is to determine the unknown function f{(z).

The point-matching technique begins with the assumption that the unknown
function f(z) can be approximated by a linear combination of known functions f,(z),
called basis functions, as follows.

f@OQ=c i@+ e fo(2) + -+ enfi(2) (7.27)

In (7.27), the functions f,(z) are linearly independent and the constants ¢, are unknown
at this stage of the analysis.
If (7.27) is substituted in (7.26) one obtains

S e[ 6t e ds —vof = 5@ (7.28)

in which, because of the linearity assumption, it has been permissible to interchange
the order of the summation and the integration.

6E. Hallén, “Theoretical Investigations into Transmitting and Receiving Qualities of Anten-
nas,” Nova Acta Regiae Soc. Sci. Upsaliensis, (January 1938), 1-44.

7R. F. Harrington, Field Computation by Moment Methods, (New York: The Macmillan Co.,
1968).



7.6 Solution of Hallén’s Integral Equation: Pulse Functions 287

The true function f(z) insures that the two sides of (7.26) are equal for every
value of z € [a, b]. The approximate solution in (7.27) cannot similarly guarantee
equality of the two sides of (7.28) for all z € [a, b], which is why the approximately
equals sign was used. However, one can force the two sides of (7.28) to be equal at
specified match points z,, by appropriate choice of the constants ¢,.® If there are M
such match points, then

Sef] 6l DA e} = 8G)  m=1,2 M,z = (a,0]
(7.29)

Since G(zm, 2'), fo2’), v, and fu(zm) are all known, the quantity within the braces in
(7.29), which shall be called a,,,, can be computed for every value of m and every
value of n. Similarly, g(z,,) = b,, 1s known, and thus (7.29) can be represented by

3 apcs = by (7.30)
n=1

which is recognizable as a system of M linear equations in the N unknownsc,,c,,. ..,
¢y- If M > N, matrix inversion will yield values for the coefficients ¢, which, when
placed in (7.27), will give an approximation to the function f(z) that is sought.

When one reviews this procedure, it is clear that the calculation of a,,, is influ-
enced by the choice of partial functions f,(z) and by the choice of matching points
z,.. Judicious selection of both can reduce the computational difficulties and enhance
the prospect of getting a good approximation to f(z). But judicious selection requires
skill based on experience. A burgeoning body of knowledge is now available con-
cerning solutions to problems of this type and the interested reader is urged to consult
the current literature.” The application of this point matching technique to Hallén’s
integral equation will be described in the next two sections.

7.6 Solution of Hallén’s Integral Equation: Pulse Functions!®

Since, in the center-fed cylindrical dipole problem formulated in Section 7.4, the
current distribution I(z) is even, Hallén’s integral equation (7.25) can be rewritten in
the form

!
f G(z, z)I(z')dz’ = C coskz — 21—”sin k:z (7.31)
0

8More generally, the method of moments involves the selection of a set of known weighting
functions w,,(z); the inner products of these functions with (7.28) are computed. In the point matching
technique being described here, the w,(z) are Dirac delta functions centered at the points z,,. The
interested reader should consult Reference 7 for the general development.

9See, for example, Computer Techniques for Electromagnetics, ed. R, Mittra(Oxford: Pergamon
Press Ltd., 1973).
10The procedures outlined in this and the next section follow closely the development pre-

sented by C. M. Butler in Chapter 2 of Supplementary Notes for a Short Course in the Application of
Moment Methods to Field Problems (University of Mississippi, May 1973).
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with z € [0, /] and 5 = k/we, = r/1,/€, = 377 ohms. In (7.31),

e—jkr’

e—jkr
G(z,2") = 0~ + G077 (7.32)
in which
r=[a*+ (z — z)*]'? (7.33)
r' =[a* -+ (z + z')}}'2 (7.34)

An approximation to /(z), the unknown current distribution in (7.31), can be express-
ed in the form of (7.27). One selection for the basis functions f,(z) can be made as
follows.

Construct a sequence of equispaced points z,, z,, . .., zy, in [0, /] such that
z, = 0 and zy,, = /, thus dividing the interval into N subintervals of equal length.
The nth point is located by

s, = DI (7.35)

and the nth subinterval can be described by the relation
Az, =z,., — 2z, (7.36)
Let the pulse function p,(z) be defined as
p(2=1 if ze Az, p,=0 if z¢ Az, (7.37)
If I(z) is represented by
16)= 3 e,(2) (7.38)

(which is seen to be in the form of (7.27)), then in the interval Az,, I,(z) is approximated
by c,. This situation is suggested by Figure 7.5.

If the matching points z,, are selected to be N in number and to occur at the
midpoints of the subintervals, that is, if

Z, = (_21"7-—;‘)’ (1.39)

then for this case Equation 7.29 gives N simultaneous linear equations, in the form

N ! .
> c,,f G(z,,, 2)p(z)dz = Ccoskz, — 717—’ sin kz,, (7.40)
n=1 0

Because of the characteristics of the pulse functions, the matrix element a,,, can be
identified from (7.40) as

a,, — f " 6(z,, 2) d2’ (7.41)
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Fig. 7.5 The Use of Pulse Functions to Approximate the Current Distribution /(z) on a
Center-Fed Dipole

In the original formulation of Hallén’s integral equation (see Section 7.4), it
was stated that the constant C was to be determined from the boundary condition
I(/) = 0. In the present formulation, that boundary condition is satisfied if one lets
¢y = 0. Then C must be treated as an unknown in the system of linear equations in
(7.40), in effect taking the place of ¢y. The matrix to be solved assumes the form

ayy Gy AN dl_ (4 b,
ay, Gy - Ay Ny dy Cy b,
= . (7.42)
Cn-1 by
_@ni ayny o ann-r dy ]l C _ by _

with d,, = —cos kz,, and b,, = —(jj2n)sin kz,,.

A computer solution to (7.42) has been obtained for the eight combinations of
2//A = 0.25,0.50, 0.75, 1.00 and a/A = 0.01, 0.0001. The magnitude of I(z) is plotted
for these eight cases in Figure 7.6; the phase is plotted in Figure 7.7. These graphs
permit an assessment of the assumption made in Chapter 2 for the purpose of com-
puting the dipole radiation pattern, namely, that the current distribution is sinusoidal
and given by I(z) = [, sin[k(/ — | z])]. If the dipole is very slender, | I(z,,)| is seen to
fit this assumption quite well. To emphasize this point, the case 2//A = 0.5 and a/4 =
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Fig. 7.8 The Current Distribution on a Half-Wavelength Long Center-Fed Cylindrical
Dipole

0.0001 has been replotted in Figure 7.8 and compared to a fitted sine curve. For the
fatter dipole (a/4 = 0.01), the assumptions made in going from (7.24) to (7.25) are
less valid (Compare with Appendix E), and some erratic behavior can be observed
in the plots of Figure 7.6 and 7.7, particularly at the ends of the interval.

Also, if the dipole is very slender and not too long, the phase plots of Figure
7.7 indicate that the assumption of constant phase for the current distribution is not
a bad one. But even for slender dipoles, at the longer lengths this is no longer a valid
assumption, as can be seen from a study of the case 2//4 = 1.00, and 4/4 = 0.0001.
However, for dipoles of the most commonly used lengths (2//4 = 0.5 or less), these
departures from the assumption made in Chapter 2 do not influence the element
pattern significantly. As an example, the field amplitudes for the case 2//A = 0.5 and
a/A = 0.01 are shown in Table 7.1 for the current distribution found by the pulse
function method and for the idealized current distribution used in Chapter 2.

Current distributions computed using pulse functions and the point-matching
procedure agree quite well with experimental results. An illustration of this is offered
in Figure 7.9 where the experimental data of T. Morita!! for a half-wavelength dipole

11T, Morita, “Current Distributions on Transmitting and Receiving Antennas,” Proc. IRE,
38 (1950), 898--904.
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TABLE 7.1 @p(8) versus 0 for idealized current distribution and for
current distribution found using pulse functions
as(0)
6" 1(2) = I, sink({ — z) I(z) Found by Using Pulse Functions
0 0.000 0.000]1.163°
6 0.082 0.08111.141°
12 0.165 0.1621.098"
18 0.249 0.24411.029
24 0.333 0.327|0.940°
30 0.418 0.41110.833°
36 0.503 0.496 10.717°
42 0.587 0.580|0.596"
48 0.668 0.662 |0.475°
54 0.746 0.74010.361°
60 0.816 0.81210.258*
66 0.879 0.87610.169°
72 0.930 0.928 10.096"
78 0.968 0.9670.043
84 0.992 0.99210.011°
90 1.000 1.000}0°
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M
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Fig. 7.9 Comparison of Theory and Experiment: Current Distribution on a Half-Wave-
length Center-Fed Cylindrical Dipole (Solid Curve Experimental Results of T. Morita,
Proc. IRE, vol. 38, pp. 898-904. © 1950 |IEEE. Dots Computer Results Using Pulse

Functions.)
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with a/A = 0.003 is represented by the solid curve. The computer printout is shown
as a sequence of points.

Since the applied voltage has been taken as unitary in computing the current
distributions shown in Figures 7.6 and 7.7, the input current is numerically equal to
the self-admittance. In the pulse function formulation, the input current is approxi-
mated by c,, and therefore 1/c, is a measure of the self-impedance. The fourth column
of Table 7.2 lists the values of 1/¢, for the eight cases under study.

TABLE 7.2 Approximations to input impedance for various cylindrical dipoles
using pulse functions or sinusoidal functions as basis functions

Number Self-Impedance
Normalized Normalized of Pulse Self-Impedance in Ohms
Length Radius Functions  in Ohms (¢y)~! Sinusoidal Basis
2i[A ali N Pulse Functions Functions
0.25 0.01 10 11.3 — j186 10.2 — 185
0.25 0.0001 10 12.9 — j737 12.5 — j739
0.50 0.01 20 97.3 +j27.8 90.2 + j22.2
0.50 0.0001 20 74.0 + j11.3 74.2 + j26.4
0.75 0.01 30 534 + j79.9 477 4 j180
0.75 0.0001 30 424 4 j827 403 + 7882
1.00 0.01 40 178 — j344 40 — j255
1.00 0.0001 40 2724 — j1067 439 — j1445

7.7 Solution of Hallén’s Integral Equation:

Sinusoidal Basis Functions!'?

The observation gleaned in the previous section—that the current distribution on a
cylindrical dipole is approximately sinusoidal—suggests that a judicious choice for
the primitive functions £,(z) might be the spatially harmonic sequence

fz) = sin [g (— z)] (1.43)
which permits the current distribution to be approximated by
Y . [nn
1) = 3 e,sin| T 2] (7.44)
n=1

with the anticipation that the coefficients ¢, will be complex. In this case

12This solution technique was first introduced by H. P. Neff, C. A. Siller, and J. D. Tillman,
“Simple Approximation to the Current on the Surface of an Isolated Thin Cylindrical Center-Fed
Dipole Antenna of Arbitrary Length, IEEE Trans. Antennas Propagat., AP-18 (1970), 399-400.
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{
Ay = f G(z,, 2') sin [%(1 - Z’)] dz' (7.45)
[¢]

and the integration is seen to extend over the entire interval, in contrast to what was
found in the case of the pulse function, where (7.41) called for integration only over
the subinterval Az,. A tradeoff is evident in contrasting the two approaches. Because
the true current distribution /(z) is quasi-sinusoidal, it should take fewer terms in the
series of (7.44) to obtain an approximation of a given level of quality than in the
series (7.38), particularly if the dipole length is close to a multiple of a half-wave-
length. On the other hand, the computation involved in (7.45) is more extensive than
in (7.41) and thus the overall computer cost is often comparable in the two approaches.

Because each of the primitive functions in (7.43) separately satisfies the condi-
tion that /(/) = 0, once again the constant C in (7.27) needs to be treated as an
unknown and one must select N -+~ | matching points, rather than N. If the matching
points are equispaced and one of them is placed at z = /,

_(Cm— N

S Sk S — 2 1.
= G M= L2 N (7.46)

The matrix set (7.30) becomes, for this case,

a, a,, e AN d, c, b,
a,, asy, e AyN d, C,y b,
— . (7.47)
Cn by
Ayii Ay ot Gvein A JILC 0 b
where once again d,, = —cos kz,, and b,, = —(j/2n)sin kz,,.

As an illustration, (7.47) has been inverted for the eight cases 2//1 = 0.25, 0.50,
0.75, 1.00 and a/4 = 0.01, 0.0001. The magnitude of the resulting /(z) is plotted in
Figure 7.10. The results are seen to be very close to those found using pulse functions.
From (7.44) the input current is

10) = 3 ¢, sin (nmf2) = 3 (~ 1y e, (7.48)

For the cases shown in Figure 7.10, the summation in (7.48), whose reciprocal is
also an approximation to the self-impedance, gives the set of values shown in the
last column of Table 7.2. The agreement with the earlier results found using pulse
functions is seen to be quite good at the shorter dipole lengths. An improvement on
both of these computations of self-impedance can be obtained using the methods
outlined in the next two sections.
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7.8 Self-Impedance of Center-Fed Cylindrical Dipoles:
Induced EMF Method

The method of moments, as illustrated in the previous two sections, is a useful
computational technique when applied to the problem of determining the current
distribution on a cylindrical dipole. This can in principle be done with increased
accuracy by choosing more basis functions and more matching points, but at greater
computer cost, with the amount of computer storage available ultimately setting a
level on the accuracy. A complexity which arises is that, for a given a/A, as the interval
is more finely divided (thus increasing the number of basis functions and matching
points needed) (7.25) becomes a poorer approximation to (7.24). The ultimate solution
is to apply the method of moments directly to (7.24). But this is a much costlier
computer operation. Additionally, the method of moments as applied here delivers
the entire current distribution. If one is only interested in the imput current (to
obtain the self-impedance), it is advantageous to carry the analysis further before
embarking on a computational program. For this reason attention will now be
turned to techniques which focus exclusively on the problem of finding the input
current.

The first of these techniques is the so-called induced EMF method, introduced
by L. Brillouin!? in 1922 and elaborated by A. A. Pistolkors'* and P. S. Carter!®. It
involves a self-impedance formula which can be derived with the aid of the reciprocity
theorem. Consider again the cylindrical dipole of length 2/ and radius a, center-fed
across a gap of infinitesimal height 26 by an idealized generator, as suggested in
Figure 7.2. Let a surface S be constructed that would just enclose this dipole without
touching it. Then S consists of a section of a circular cylinder of radius a + €,,
capped by circular discs at z = +({/ + ¢,), with €, and ¢, infinitesimals.

As before, the arms of the dipole will be assumed to consist of perfectly con-
ducting tubular material of negligible wall thickness. Let K,{z) be the lineal current
density distribution along the dipole when the generator is adjusted so that one volt
exists across the gap. (The distribution K,(z) includes the current which flows through
the generator.) If the perfectly conducting tubes are removed and a source distribution
Ke(z) = K,(z) is established in free space in the exact location of the previous source
system, the fields caused by the original system will be duplicated at every point by
the new system.

Next, let 7°(z), with z € [—/, [], be any filamentary current distribution along
the axis of the cylinder S, also established in free space. Since the two source systems
Ks(z) and I%(z) are both entirely contained within S, the reciprocity theorem in the
form of Equation 1.36 applies, and one can write

131, Brillouin, “Origin of Radiation Resistance”, Radioélectricité, 3 (1922), 147-52,
14A. A, Pistolkors, “Radiation Resistance of Beam Antennae”, Proc. IRE, 17 (1929), 562-79.

ISP, S. Carter, “Circuit Relations in Radiating Systems and Applications to Antenna Prob-
lems™, Proc. IRE, 20 (June 1932) 100441,
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[ B x B —E* x HY) . dS =0 (7.49)
K

in which (E*, H*) is the electromagnetic field caused by K4(z) and (E®, H®) is the
electromagnetic field caused by 1°(z).

Since Ez,,, and E},,, are both Z-directed along the cylindrical portion of S, if
one neglects the contributions to (7.49) from the disclike end surfaces (justifiable
when a < 1), the result is that

.[il LG [E%(a, z')HYa, z') — E¥a, z')H%a, z')]adp dz’ = 0 (7.50)

Because E%(a, Z') is a Dirac delta function (compare with Equations 7.12 and 7.13) and
because all quantities in (7.50) are ¢-independent, integration gives

dnaHya, 0) = — | EXa, 2)Hi(a, 2')2na d2’ (1.51)
s . ¢

However, Hi(a, z') = K4Z'), and 27aK4(z’) = I*(z'), with I°(z") the total current
distribution for the dipole. These substitutions convert (7.51) to

2naliy(a, 0) = ~ | " ENa, 2)I(2') d=' (1.52)
=1

For the disclike surface of radius g which lies in the X Y-plane and is centered at the
origin, the integral form of the appropriate Maxwell equation gives

§ H"-dl:J‘J"-dS—,Lja)eOJE"-dS

C Ay N

2naH(a, 0) = I*(0) + 2mjwe, j " E¥p,0)p dp (1.53)
0

For a < A and a < I, the second term on the right side of (7.53) is negligible compared
to 1%(0) and one can write 2raH (a, 0) = I*(0). When this approximation is placed
in (7.52), the result is that

190 = — le E¥a, 2)1%(Z) dz’ (7.54)

Since I*(z) is completely arbitrary, one is at liberty to let 7%(z) = 7%(z). When
this is done, there is no longer any need to retain the superscripts, and (7.54) becomes

0) = — le Eda, 2)I(z') dz' (7.55)

Finally, one can write for the self-impedance
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s Vv _ 1
10 10 1%0) )

E.(a, z)I(z")dz (7.56)
since V = | volt.

Equation 7.56 is a key result of the induced EMF method for determining the
self-impedance of a center-fed cylindrical dipole. It is a peculiar result in some respects,
since it contains /2(0) in the denominator, and one could argue that if /(0) is known
the problem is solved, since /{(0) is numerically equal to the input admittance. How-
ever, that line of reasoning is based on the logic sequence that one volt is applied
across the gap and that the problem is to find the resulting current distribution, or
at least the input current. The reasoning that is used in the induced EMF method is
almost the reverse. One assumes a current distribution for the dipole and thus “knows”
1(0). One then computes £,(a, z') in response to this current distribution and uses
this E,(a, z') in the integrand of (7.56), together with the assumed /(z’), in order to
compute the self-impedance Z. Quite obviously, the accuracy of the value computed
for Z depends on the quality of the assumption for I(z').

An alternate derivation for the central equation of the induced EMF method
is based on power relations. With the aid of Poynting’s theorem, one can argue that

LIO)*(0)Z = %§S E x H* . dS (7.57)
With power flow across the end caps of the dipole ignored, this becomes
I 2n
|10)|2Z = — j j Efa, 2)H*(a, 2)a d dz’
=140
| " Ea, 2)I*(2) d='
-1
from which the self-impedance is given by
1 ! .
Z = ———— | E(a,z)*)d: 7.58
TOT ) EAa ) (7.58)

If a real trial function is chosen for /(z), Formulas 7.56 and 7.58 give the same result
for Z. C. T. Tai'¢ discusses the implications of the differences in these two formulas.
The developments in this text will be based on (7.56).

It was shown in Section 7.4 that, for ¢ < A and a </, Efa, z) can be deter-
mined from

. d? N (e
jwfoEz(a, Z) = <‘gz§ + k ) j m l(z ) dZ (7.59)
-1

16C, T, Tai, “A Variational Solution to the Problems of Cylindrical Antennas” Technical
Report No, 12, (Palo Alto, CA: Stanford Research Institute, August, 1950). See also his article “A
Study of the EMF Method™ Jour. App. Phys., 20 (1949), 717-23.
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in which r = [a? + (z — z')?]"/2. If one defines a kernel function by

N 1 02 e~ ikr
Gz, 2') = W(W+k2) : (7.60)

then (7.59) can be written in the compact form

Ea,2) = —j; GGz, 2)I(Z') d=' (1.61)

When this result is placed in (7.56), one obtains

1 ] i , , ,
2= ) || 0@ O g 7.62)

which is a formula for the self-impedance of a center-fed dipole that is particularly
suitable as the input to a computer program.

When the induced EMF method was first introduced, it was natural to assume
that the current distribution was sinusoidal, since techniques did not yet exist for
determining the distribution more accurately. The results of Section 7.6, 7.7 indicate
that this is not at all a bad assumption. But early workers also assumed initially that
the radius a of the dipole had negligible effect on the input impedance and used
r=|z — 7’| in (7.60), thus in effect setting a = 0. This proved to be a valid assump-
tion insofar as computing the real part of Z in the range 0 < 2//A < 0.6, but gave an
infinite value for the imaginary part of Z except for the particular lengths 2//4 =
(2n 4 1)/2, with n an integer. Thus one should avoid this simplification and use
r = [a? -+ (z — z')?]"/? in (7.60). This presents no difficulties for a modern electronic
computer.

When it is assumed that

Q) = I sin k(I — |¢]) (7.63)
Equation 7.62 becomes

z— g [ ooy st~ ensinka —jonacay .69

By performing the differentiation indicated in (7.60) and then putting the expanded
form for G in (7.64), one is able to show that!”

_ _Jo0
sin? kl

in which

{4 cos? kI - S(kI) — cos 2kl - SQkI) — sin 2kI[2C(kI) — CQRkD)]} (7.65)

Cthy) = W% — 2 Cin(ky) ~ £-Si(2ky) (7.66)

17See, for example, E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating
Systems, 2nd Ed. (Englewood Cliffs, New Jersey: Prentice-Hall, 1968), pp. 540-47.
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S(ky) = % Si(2ky) — 17 CinQky) — ka (7.67)

with Si(x) and Cin(x) tabulated functions.'® The function Si(x) is called the sine
integral, and is defined by

Si(x) = f sinu (1.68)
0o U
whereas the function Cin(x) is sometimes called the modified cosine integral and is
given by
Cin(x) — f ‘”%‘du (7.69)
0

The real and imaginary parts of the self-impedance of a center-fed cylindrical dipole,
as computed from (7.65), are plotted versus 2//4 in Figure 7.11 for a sequence of a/1
values. The single resistance plot reflects the fact that the real part of (7.65) is inde-
pendent of a/A. (This would not be true if a current distribution more complicated
than a pure sinusoid were used in (7.62).) The reactance is seen to be sensitive to a/A,
and one can note that resonance (X = 0) occurs at shorter lengths as a/A is increased.
Also, the X-curves are more gently sloped for larger values of a/A. Fat dipoles are
less frequency sensitive than skinny dipoles.

The curves of Figure 7.11 are in a useful form if one wishes to find, for a given
afA, the length needed to produce a dipole impedance with a specified reactance. In
Chapter 8, the design of dipole arrays will be seen to involve such deductions. How-
ever, another useful form in which to present Equation 7.65 graphically results from
fixing 2//a and then finding Z(k/). The conventional method for doing this is to define
a parameter Q by the equation

Q = 2in(2!/a)

and then to plot Z(k/) for a fixed Q. Figure 7.12 gives a family of curves covering the
practical range of Q values. These curves are useful if one wishes to determine the

behavior of self-impedance with frequency for a specific dipole (2/ and a fixed).
(Since the real part of Z in (7.65) is independent of a/A, R(k/) as it appears in Figure
7.12 is merely a replotting of part of Figure 7.11 to a logarithmic scale. This is done
for later comaprison with the results of Hallén and King.)

C. T. Tai'® has shown that the values of Z computed from (7.65) are fitted
extremely well in the range 0 << 2//A <Z #/2 by the expression

Z — R(kl) - j[120 <1n % 1) cot kI — X(k/)] (7.70)

18See, for example, R. W. P. King, The Theory of Linear Antennas, (Cambridge, Massachu-
setts: Harvard University Press, 1956), pp. 857-64.

19C., T, Tai, “Characteristics of Linear Antenna Elements,” Antenna Engineering Handbook,
ed. H. Jasik (New York: McGraw-Hill Book Co., Inc., 1961), Chapter 3.
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Fig. 7.11 The Resistance and Reactance of a Center-Fed Dipole versus k/ and a/A;
Values Computed by the Induced EMF Method Using Equation 7.65

R ohms

with R(k/) and X(k!) smooth, simple functions which he tabulates and graphs. If
one represents Tai’s functions R(k/) and X(k/) by second-degree polynomials with
coefficients chosen to fit data computed from (7.65) in the range 1.3 << kI << 1.7 and

0.001588 << a/A <€ 0.009525, Equation 7.70 takes on the specific form

Z — [122.65 — 2041kl + 110(k1)?]
;-j[120<1n—25’ _ 1>cotk1 1625 - 140kl — 40(k1)2}

(7.71)

For the specified range of dipole lengths and diameters, the real part of (7.71) does
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Fig. 7.12 The Resistance and Reactance of a Center-Fed Dipole versus k/and Q ; Values
Computed by the Induced EMF Method Using Equation 7.65

not deviate from the induced EMF impedance expression in (7.65) by more than
0.42 ohms, with an rms error of 0.14 ohms. The imaginary part of (7.71) stays within
2.33 ohms of (7.65), with an rms error of 0.20 ohms. Equation 7.71, which can be
used with a pocket calculator, is a much simpler formula to use than is (7.65).

The resonant length /, of the center-fed cylindrical dipole can be deduced from
(7.65) by setting the reactance equal to zero. When this is done, one finds a relation
between 2/ /1 and a/A which, when plotted, appears as shown in Figure 7.13.

The resonant resistance of a cylindrical dipole is also of some interest and can
be found easily by inserting k/, in the real part of (7.65). This results in the curve
shown in Figure 7.14. One can observe that the resonant resistance is in the neighbor-
hood of 73 ohms for very thin dipoles, but falls off from this value steadily as a/4 is
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increased. The limiting figure of 73 ohms agrees with the value obtained by power
pattern integration in Section 2.2.

7.9 Self-Impedance of Center-Fed Cylindrical Dipoles:
Storer’s Variational Solution

A refinement of the induced EMF method has been provided by J. E. Storer?? and
rests on the stationary property of Equation 7.62. The reader will recall that this
equation permits computation of a value for the self-impedance Z of a center-fed
cylindrical dipole once an assumption has been made about the current distribution
I({). It is a pleasant fact that Z, as given by (7.62), is stationary with respect to varia-
tions in I({). This means that if the true current distribution is ;(C), if the true input
impedance is ZO, and if one uses a trial current distribution I({) = IO(C) + oI(¢) in
(7.62), then one will compute an incorrect impedance Z = Zo -+ 0Z, but that to first
order 6Z = 0. In other words, a certain degree of inaccuracy in “guessing” the
current distribution will result in a much smaller degree of inaccuracy in the computed
value of the input impedance.

This assertion of the stationary nature of (7.62) is of sufficient importance
to call for a proof. For the trial current distribution /({) and the true current distri-
bution I'O(C), Equation 7.62 takes the forms

Z=2+6z= 1 f f 6, OO + SIONIC) + SIC) g dt’
[K0) + 81(0)2 1 J -
1.72)
72— f 6, OHRORe) de ag .7)
I1*(0) -1

The difference between these two equations is

L OK0) | [OIO)T? } .- L
0Z = 0 -2 [} -3 = — -
1 2(0){ 1(0) | 1(0)] L L G(L, OGN

+ Ko + s SKeLde (174
] - } f f 6, ykokede ar

1*(0) 1(0) L 1(0)

If one returns to Equation 7.61, which applies for any current distribution, including
the true one, multiplication of both sides by §/({) d{, followed by integration, gives

20J, E. Storer, “Variational Solution to the Problem of the Symmetrical Cylindrical Antenna,”
Cruft Laboratory Report No. 101 (Harvard University, 1950).
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—VSI(0) = —ZK0)S1(0)

f

[ E@osi@a
= [ [ 6. oiersie ag a (1.75)

Since G({, {') is symmetrical, it follows that (7.75) is also valid if { and {’ are inter-
changed. Substitution of both forms of (7.75) in (7.74) results in

_ 91(0) [51(0)]2 } - , , |
=73 1 — 3| = ...
12(0){ 1(0) + 10) L f_l G({, {NSI)ONL) dg df

P [JHOT JHOT T G ploie) arac
102(0){ [ ?(0)] * 10) f_l f_,G(C,C)I(C)I(C)dcdc

(7.76)

If all terms in 67 which are second order or smaller are ignored in (7.76), the right
side reduces to zero, which is to say that dZ = 0 to first order in variations in the
current distribution, as has been alleged. For this reason, Formula 7.62 is attractive
for the purpose of computing input impedance; it is somewhat forgiving of imprecise
knowledge about the current distribution. Indeed, the stationary property of (7.62)
serves to explain why the induced EMF method gives such satisfactory results.
Storer has elected to attempt to improve on the results of the induced EMF
method by assuming that the current distribution can be expressed in the form

I(§) = Af,(0) + B (7.77)

where
S1(©) = sin[k(I — |¢])] (7.78)
SO =1 — cos[k(l — |{])] (7.79)

The particular selection of f,({) is justified by the knowledge that, in the limit as
a/A — 0, the current distribution becomes truly sinusoidal. The form of f,(() is
cusplike and permits an even perturbation on f;({), with either bulging or indenting
near the middle of the interval [—/, [].

C. T. Tai?! has pointed out that Storer’s choice for f,({) is only useful in the
range / < A and proposes instead the function

S2(§) = k(I — |{]) cos k(I — [{]) (7.80)

which is applicable for all values of //A. The trial current distribution (7.77) could
also be enlarged to consist of the linear sum of three or more functions. However,
since Storer’s choice of (7.77) through (7.79) is valid in the length interval of principal
interest and is fully illustrative of the method, what follows will be based on his
formulation.

21C. T. Tai, “A New Interpretation of the Integral Equation Formulation of Cylindrical
Antennas,” IRE Trans. Antennas and Propagat., AP-3, (1955), 125-27,
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When (7.77) is placed in the impedance expression of (7.62), one finds that

_ A%y, + 24By,, + B,
2= =15© | BT (7.81)
in which
rm= | [ 6@ ORQALE A 782

Because of the stationary nature of the impedance expression, if B is held fixed and

A is changed by an amount 04, to first order, Z will be zero. Or, what is the same
thing,

0z

aeam =" (7.83)

If this differentiation is applied to (7.81), the result is that

A — yZZfl(O) — Yszz(O)
B 9:1/:(0) — 7., £,(0) (7.84)

Substitution of this result in (7.81) gives

= Y1122 — P1s
2V ATROF — 2702/, 0 /0) T 73l O)F (7.85)

Storer found that for his choice of trial function, the double integral (7.82)
could be expressed in terms of sine and cosine integrals. The interested reader is
referred to the original report. Calculations of Z from (7.85) for the eight cases
a/A = 0.01, 0.0001 and 2//1 = 0.25, 0.50, 0.75, 1.00 are listed in the fourth column

of Table 7.3.
If one chooses the simpler trial function I({) = Af,({), Equation 7.85 gives

Z=_Y (7.86)

This result is identical with (7.64), as it should be, and the values of Z for the eight
cases under study, as computed from (7.86), are listed in the third column of Table
7.3. The values shown in the third and fourth columns are quite close for short
dipoles, but they begin to deviate from each other as the dipole length is increased.
In particular, Storer’s formula gives a resistive component of Z which is dependent
on a/A, unlike the result obtained using the induced EMF method. Storer’s formula
also gives a finite impedance for 2//1 = 1.

The reader may wish to compare the entries in Table 7.3 to the earlier results
arising from use of the method of moments, and listed in Table 7.2.
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Zeroth and First Order Solutions to Hallén’s Integral Equation

The previous two sections have dealt with the computation of the input impedance
of a cylindrical dipole using a formula derived with the aid of the reciprocity theorem.
That formula, (7.62), was seen to be stationary with respect to variations in the trial
function chosen to represent the current distribution. The induced EMF method
consisted of using a one-term sinusoidal function in (7.62) to approximate the current
distribution. Storer’s variational method permitted a linear sum of arbitrary known
functions to be used for the current distribution, with the relative levels of these
known functions determinable because of the stationary nature of (7.62).

TABLE 7.3 Approximations to the input impedance of a center-fed
cylindrical dipole using Storer’s variational formulation

Input Input
Normalized Normalized Impedance Impedance
Length Radius Induced EMF Two-Term
202 ali Method Trial Function
0.25 0.01 '13.44 — j185.75 11.63 — j184.86
0.25 0.0001 13.44 — j723.45 1293 — j722.62
0.50 0.01 73.13 4 j38.78 101.13 + /32.82
0.50 0.0001 73.13 + j42.51 80.15 + j42.61
0.75 0.01 371.62 4 j502.35 565.84 + j3.10
0.75 0.0001 371.62 + j1069.90 521.15 + j1019.24
1.00 0.01 o0 290.13 — j363.46
1.00 0.0001 o0 2370.31 — j2128.60

A fundamentally different approach to this problem has been pioneered by E.
Hallén?? and exploited extensively by R. W, P. King and his co-workers.?? Hallén’s
development, up to the establishment of his basic integral equation (7.25), has already
been traced in Section 7.4. That equation, which links the unknown current distribu-
tion on the cylindrical dipole to a Dirac delta function distribution of longitudinal
electric field along the dipole, was solved earlier in this chapter using the method of
moments to determine the current distribution (compare with Sections 7.5 through
7.7). If one is interested in obtaining the input impedance without finding the entire
current distribution in the process, Hallén’s integral equation (7.25) can be manipu-
lated to accomplish this.

The development begins with the addition and subtraction of a supplementary
integral to (7.25), which will serve to convert it to a Fredholm integral equation of
the second kind.

22Hallén, “Investigations into Transmitting and Receiving Qualities of Antennas.”
23King, Theory of Linear Antennas, Chapter 2,
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! ; I
J - I(z)e %" — I(2) , , o 1(z) ;.
Ccoskz n sink|z| = f_l — dz’ 4 anr dz (7.87)

in which r = [a* + (z — 2/)?]'/2. Integration of the last term in (7.87) gives

12) 4, I(Z) 741+ [a® + (z 4+ D)2
f 47zr In z— [+ [a*+ (z — DA"7? (7.88)

If the factor for which the logarithm is being computed in (7.88) is multiplied by the
unitary ratio

z—l—[a* 4 (z—- DY 4 P2 a (7.89)

I GC—D" 8 (=0 +2) &

some rearrangenent leads to
1I(z) , . Kz) z\?
f 4nrd i {Q+ln[1 — (—1> ]JrA} (7.90)

Q- 21nﬂ (1.91)

S R e N TR e T D

Q, which can be called the slenderness index, has already been encountered in Section

7.8 in connection with the construction of Figure 7.12. It will be seen to be a measure

of the rate of convergence of the iterative procedure that will be introduced shortly.
The placement of (7.90) in (7.87) gives

in which

and

Kz) = 4_”[0 cos kz — (2177) sin k{z!]

——Ll(z){ln[l 7( ) ] 4 A(z)} fjl&')i"_kr"_’(z)dz] (1.93)
lim {ln[l _ <Tz)2] + A} = In {_z‘i(l +[ 5 (%)T“)} (7.94)

is finite, it follows from (7.93) that

Since

N 4n
1) =0 = —Q[C cos kI — (2?1) sin kl}

7.95
R (€5 TR (799
QjJ, r

in which r' = [a® + (I — 2)?]"2,
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An expression for I(z) which insures a null current at z = / results when (7.95)
is subtracted from (7.93). One obtains

1G) = T H) — %z—){ln[l — (%ﬂ + A(z)}

Lo e (7.96)
_ LU I()e™ % — I(z) 4,0 _f Kz)e dz,]
Q). r = r
in which
Hy(z) = CF,(2) — 2177 G,(2) (7.97)
Fy(z) = cos kz — cos k! (7.98)
Go(z) = sin k|z| — sin k! (7.99)

A careful study of (7.96) reveals that, except in the neighborhood of z =/,
In[1 — (z/1)?) and A(z) are both small, while near z = /, their sum is approximately
In(a/l). Since I(Z) itself is small near z = /, the second term on the right side of (7.96)
is dominated by (4z/Q)H,(z). So, too, is the difference of the two integrals. Thus an
initial estimate of the current distribution on the cylindrical dipole, called the zeroth
order approximation, is

I(2) = FH(2) (7.100)

which, by virtue of (7.97) through (7.99), is seen to be a spatially sinusoidal distribu-
tion. This is consistent with the findings of Sections 7.6 and 7.7, where it was dis-
covered (particularly for g/ small) that moment method solutions were quasi-
harmonic.

Successive approximations to (7.96) can be obtained by an iterative procedure.
Let the first order solution I,(z) be generated by a modification of (7.96) with the
modification consisting of the replacement of /(z) by I,(z) in the right side of (7.96).
That is, let

I,(2) = %" Hy(z) — gg. Hy(2) {m[l - (%)2] n A(z)}

_daf (M Hy@e T — Ho(@) g, [ HoEDe
Q| ), . r

r

(7.101)

If the function H,(z) is defined by

1@ = —Ho@ fin[ 1 = (1) ]+ A - f Hy()e™ = (@) g (7.102)

r
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then the expression for /,(z) can be written in the form
4n 4n
1(2) = & Ho(2) + qz[H.(2) — H,()] (7.103)

The current distribution /,(z) is seen to be comprised of /,(z) plus correction terms,
which rank at a level Q' compared to /,(z).

Similarly, a second-order approximation /,(z) can be generated by using I,(z)
for I(z) in the right side of (7.96). This second-order approximation contains addi-
tional correction terms which rank at a level Q2 compared to I(z).

Proceeding in this manner, one can generate an nth-order approximation to the
current distribution, /,(z), which contains correction terms at the levels Q°1,Q-2, ...,
Q- relative to I,(z). Since the value of the slenderness index Q is typically 10 or
greater, a sequence of approximations obtained in this manner ostensibly should
converge with reasonable rapidity.

A procedure by which one can obtain an expression for the input admittance
of a center-fed cylindrical dipole without the need to find the complete current
distribution is outlined by the following: (a) Decide on the order of the approximation
n and then develop the formula for 7,(z). Equations 7.100 and 7.101 are examples of
this for n = 0 and » = 1. (b) Place this expression for /,(z) in (7.95) and compute
the value of the constant C. Note that C will appear repeatedly in the formula for
1.(2), so this computation will become increasingly more complicated for larger n.
(c) Use the computed value of C in the formula for /,(z) and then solve for the nth-
order approximation to the input impedance from the relation Z, = I, '(0).

As an illustration of this procedure, suppose that a zeroth-order approximation
to the input impedance is desired. If I(z), given by (7.100), is placed in (7.95), the
result is that

H ikt
— Jognkl = L[ Ha@)e
Ceoskl — sin ki = ¢ f e (7.104)

from which

_J sinkl + Gi()/Q
C= ekl T F D0 (7.105)

where F,(z) and G,(z) are defined by
H/(z) = CF,(z) — zf_ﬂc,(z) (7.106)
so that, from (7.102),

! gy
Fil) — _f M;gf‘Ldz' (7.107)

!

r

i Nk
G, () — —f Go(2De ™ (7.108)
-

When the value of C given by (7.105) is inserted in (7.100), one finds that
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Fig. 7.16a Hallén’'s Curves of Resistance of a Center-Fed Cylindrical Dipole versus &/
and Q (Reprinted from E. Hallén, Cruft Laboratory Report No. 46, 1946, Courtesy of
Harvard University.)

R cos kI + Q 'F (I)
Zo = I,(0) j600 sin kI -+ Q71 — cos kNG, (1) + sin kIF ()]

(7.109)

Computations from (7.109) for the eight cases of (2//A, a/A) studied in the previous
four sections give the zeroth-order values for self-impedance, listed in the third
column of Table 7.4, These values are at considerable variance with the corresponding
entries in Tables 7.2 and 7.3, indicating that the zeroth-order approximation is not
sufficiently accurate.
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Fig. 7.16b Hallén’s Curves of Reactance of a Center-Fed Cylindrical Dipole versus &/
and Q (Reprinted from E. Hallén, Cruft Laboratory Report No. 46, 1946, Courtesy of
Harvard University.)

If (7.101) is used, together with the appropriate value of C, the first-order
results shown in the fourth column of Table 7.4 are obtained. These values are in
better agreement with the corresponding data listed in Tables 7.2 and 7.3, particularly
at the shorter lengths.

Hallén, working before the advent of electronic computers with a mechanical
desk calculator, laboriously calculated first-order values for Z = R + jX in the range
0< ki<, for Q = 2In(2l/a) = 9.57, 10.60, 11.98, 13.37, 16.59, and 21.19. His
curves are reproduced in Figure 7.15.
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TABLE 7.4 Approximations to the

Self-Impedance and Mutual Impedance of Antenna Elements

input impedance of a center-fed
cylindrical dipole using Hallén’s integral equation

Input Impedance in Ohms

Normalized Normalized

Length Radius Zeroth-Order First-Order
21[A ali Approximation Approximation
0.25 0.01 19.35 — j359 15.99 — j240
0.25 0.0001 17.46 — j934 14.67 — j756
0.50 0.01 80.36 + j35.73 87.34 + j35.68
0.50 0.0001 76.81 + j41.57 79.08 - j43.52
0.75 0.01 268 + j526 437 + 5318
0.75 0.0001 250 + 71120 433 + /1018
1.00 0.01 1685 — j1357 559 — j594
1.00 0.0001 6923 — j5385 3052 — ;2626

7.11 Self-Impedance of Center-Fed Cylindrical Dipoles:
King-Middleton Second-Order Solution

For the benefit of the reader who has been following the development throughout
this chapter, it is desirable to stop and make an assessment. Hallén’s integral equation
(7.25), which links the unknown current distribution on a center-fed cylindrical dipole
to the unit voltage delta generator that excites it, was first solved (in Sections 7.6
and 7.7) using a method of moments approach. The input current provided a measure
of the dipole’s self-impedance, and representative values were listed in Table 7.2 for
two different types of basis functions used in the computations.

A stationary expression for the self-impedance, Equation 7.62, was derived in
Section 7.8 and used, together with one-and two-term trial functions, to obtain the
representative values shown in Table 7.3.

Finally, a return to Hallen’s integral equation (7.25) led, in Section 7.10, to the
development of an nth order approximation to the self-impedance. Table 7.4 dis-
played representative values for the zeroth- and first-order approximations to Z.

It is disconcerting to see that the six sets of self-~impedance values listed in these
three tables, though showing general and qualitative agreement, cannot really be said
to corroborate each other in a quantitative sense. One can excuse the entries in Table
7.2 on the valid argument that either (1) a sufficient number of basis functions had
not been chosen to provide high accuracy, or (2) improved accuracy would require
return to the more accurate integral equation of (7.24). (The purpose of that exercise
was to illustrate use of the method of moments and to show the nature of the entire
current distribution, but not to determine the input current with precision.) Further,
one can argue that the two-term Storer solutions listed in the last column of Table
7.3 should be more accurate than the one-term induced EMF solutions shown in the
third column of that table. By a similar argument, one can state a preference for the
first-order solutions over the zeroth-order solutions in Table 7.4. By elimination,
the comparison is reduced to the two sets of impedance values given in the third
and fourth columns of Table 7.5.
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TABLE 7.5 Comparison of the input impedance of a center-fed cylindrical dipole using
different computational methods

Input Impedance in Ohms

First-Order
Normalized Normalized Storer’s Approximation King-Middleton
Length Radius Two-Term to Hallén’s Second-Order
2112 aji Approximation Equation Approximation
0.25 0.01 11.63 —j185 15.99 — j240 13.98 — j166
0.25 0.0001 12,93 —j723 14.67 — j756 12.90 — j811
0.50 0.01 101 + j32.82 87.34 + j35.68 92.51 + j38.30
0.50 0.0001 80.15 + j42.61 79.08 + j43.52 79.89 + j43.47
0.75 0.01 566 + j3.10 437 + 5318 543 + j32.2
0.75 0.0001 521 + /1019 433 471018 540 + j1016
1.00 0.01 290 — j363 559 — j594 177 — 7339
1.00 0.0001 2370 — ;2129 3052 — j2626 2233 — 2150

When one considers the difficulty involved in making these calculations, some
satisfaction can be taken in the general agreement between the Storer-type values
and the first order Hallén-type values. But which set is closer to the truth? And how
far from the truth?

It can be argued that if either approach is carried to a more refined level of
approximation, the accuracy of the calculations should improve. In the case of the
Storer method, part of the difficulty is in knowing how to compose the functions
which will serve as three-term, four-term, and n-term trial expressions. The complexity
of calculation increases drastically as more terms are added to the trial function. The
situation is less complicated in Hallén-type solutions. No choice of trial functions
needs to be made, and the computational procedure for higher order solutions can
be organized into a repetitive format.

King and Middleton have given full development to a second-order approximate
solution of a version of Hallén’s integral equation. Their curves of self impedance
for a center-fed cylindrical dipole are shown as Figures 30.5a and b in R. W. P. King’s
text?* and can be compared to the values obtained by Hallén (Figure 7.15). One
finds general qualitative agreement. The tabulated data which accompanies the King-
Middleton curves can be linearly interpolated to provide impedance values for the
eight cases under study here. This gives the entries shown in the fifth column of
Table 7.5. One can observe reasonable agreement between the King-Middleton results
and the two-term Storer values, particularly at the longer dipole lengths. This impres-
sion is reinforced by a study of Figure 7.16, which gives a graphical comparison of
Storer’s results and the King-Middleton calculations for Q = 15 and a 2z range in
ki1.%5 All of this would suggest that higher-order approximations to Hallén’s integral
equation and higher-order Storer variational solutions might be converging to the
true values.

24R, W. P, King, Theory of Linear Antennas, pp. 158-59.
2sStorer, “Symmetrical Cylindrical Antennas,” Figure 3 in particular.
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King and his coworkers have investigated the convergence question by com-
puting the input admittance ¥ = G + jB of center-fed cylindrical dipoles for selected
lengths and diameters out to the 30th iteration.?® They found that, for k, < 0.02,
G converged to a stable value at the second (or at most third) order approximation,
but that B diverged. Since one would expect that the real and imaginary components
of the admittance should exhibit the same convergence properties, this was a sur-
prising result. The cause was traced to the assumption of a delta function generator
feeding two hollow tubes of negligible thickness across an infinitesimal gap, thus
creating a discontinuity in scalar potential in parallel with a knife-edge capacitance
at z = 0.27 The nature of the iterative process is to provide an additional contribution
to B, at each iterative step, proportional to the susceptance of this infinitesimal gap
knife-edge capacitance. Thus the intrinsic susceptance values, attributable to the
dipole itself, actually converge, but the overall values of B grow linearly. This growth
can be represented by (2ma)nk, in which K is a proportionality constant, » is the level
of the iteration, and 2za is the gap circumference. (The gap capacitance is propor-
tional to 2za). Unfortunately, no theoretical method has been found to determine the
value of K and thus remove the effect of the gap capacitance. However, the removal
can be accomplished if one accurate value of B is obtained experimentally for each
thickness of the antenna at a convenient value of k/ (such as the value yielding the
first antiresonance).

This has been done using the very precise experimental results of R. B. Mack?®
and an illustration of the correction is shown in Figure 7.17. The uncorrected King-
Middleton second-order values are indicated by the crosses. With a constant suscep-
tance of —0.7 millimhos removed, the corrected King-Middleton values are shown
by the solid lines. Mack’s experimental data give the dotted curves. The agreement
is seen to be quite good.

R. W. P. King and others??, proceeding in this fashion for a sequence of dipole
radii, have deduced an improved King-Middleton second-order solution and have
provided a table of impedance values versus k/ and a/A. In the important practical
range 0.0016 = a/A =< 0.01 and 1.3 =< kI = 1.7, an empirical double polyfit to their
data yields the equations

a
R (I, 7) -

(o)

26For a review of this work see R. W. P, King, “The Linear Antenna—Eighty Years of Pro-
gress,” 1EEE Proceedings 55 (1967), pp. 2-16.

27The divergence in susceptance values disappears if the gap is finite. See G. E. Albert and
J. L. Synge, “General Problem of Antenna Radiation and Fundamental Integral Equation with
Application to Antennas of Revolution,” Quart. App. Math., 6 (1948), 117-56.

28R, B. Mack, “A Study of Circular Arrays,” Cruft Laboratory Technical Reports Nos. 381—
386, (Harvard University, May 1963),

29R. W. P. King, E. A. Aronson, and C. W, Harrison, Jr., “Determination of the Admittance
and Effective Length of Cylindrical Antennas,” Radio Science, 1 (1966), 835-50.
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Mack28) () 1967 IEEE. Reprinted from R. W. P. King, /EEE Proceedings, pp.2-16,1967.)

The coefficients a,,, and b, are listed in Tables 7.6 and 7.7. Plots of R(k/, a/A) and
X(kl, a/A) for the five values of a/A tabulated in Reference 21 are shown in Figure
7.18. For the interested reader, the tabulation of the improved King-Middieton

TABLE 7.6 a,, coefficients for use in Equation 7.110

m 0 1 2 3 4
0 1.8115E + 02 3.9100E+05  —4.2139E + 07 1.5370E+09  6.1253E+ 10
1 —6.3433E+02  -1.0232E + 06 9.5644E +07  —1.6606E+09  —2.8222E+ 11
2 83517 + 02 1.0004E + 06 ~7.7690E +07  -8.8929E+08  4.0597E + 11
3 —4.6128E+02  —4.3749E + 05 2.719SE + 07 1.3870E + 09  —2.2850E + 11
4 1.0222E + 02 7.3332E+04  -3.6712E+06  -33416E+08  4.3131E+10

318
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TABLE 7.7 b,,, coefficients for use in Equation 7.111

319

m " 0 1 2 3 4
0 _87489E +02  ~1.4335E+05  1.19SSE+08  -2.0911E+10  9.5064E + 11
1 2.7551E + 01 9.4225E+05  -4.1973E + 08 6.6190E+10  -2.9289E + 12
2 9.6056E + 02  —1.2014E+06  4.6413E+08  -T.0841E+10  3.0937E + 12
3 “59137E + 02 58176E+05  -2.1273E+08 32124E+ 10 -13886E+ 12
4 13101E+02  —1.0342E+05  3.6025E+07  -53901E+09  23005E + 11
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Fig.7.18a The Resistance of a Center-Fed Cylindrical Dipole versus k/and a/A ; Improved
King-Middleton Second-Order Approximation
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second-order approximation to self-impedance appearing in the reference of footnote
29 covers the range 0 < k/ < 4. (The above formulas have only been fitted in the
subrange 1.3 << k/ <C 1.7.) This data is the most accurate available for the self-
impedance of an idealized center-fed dipole. The idealization consists of picturing the
dipole as composed of perfectly conducting thin-walled tubes with an infinitesimal
feeding gap. The normalized radius a/A is assumed to be small enough that end effects
at z = 4/ can be ignored. When this idealization is inappropriate, one can resort to
experimentation to determine the input impedance versus parameters of interest (such
as frequency, length, radius). But the trend in experimental data should always
conform to theoretical curves such as those shown in Figure 7.18, which are therefore
useful as a guide even in situations in which they do not strictly apply. Most practical
applications for which the idealization is valid fall in the range for which Equations
7.110 and 7.111 or Figure 7.18 may be used.

Comparison of Figures 7.11 and 7.18 indicates that the results using the induced
EMF method are in better and better agreement with King-Middleton as the dipole
becomes thinner. For a/A < 0.001, the agreement is sufficient to make the use of
Tai’s simple formula in (7.71) adequate for most purposes.

7.12 Self-lmpedance of Center-Fed Strip Dipoles

A dipole shape which is finding widespread practical use is one with transverse cross
section that is a rectangle of width w and thickness 1, with w >> ¢. Strip dipoles, as
such radiators are called, can be fabricated on dielectric substrates and used in linear
and planar arrays at microwave frequencies. Knowledge of the impedance properties
of strip dipoles is needed in the design of the feeding structures for such arrays.
Additionally, strip dipoles in free space are complementary radiators to slots cut in
thin ground planes, and Babinet’s principle (compare with section 7.16) links the
electrical characteristics of the two types of radiators. For such applications, a
determination of the impedance properties of strip dipoles provides knowledge which
can be transferred simply to the complementary slot problem. For these reasons, it
1s desirable to study the behavior of dipoles with a rectangular cross sectional shape.

If the strip is slender (kw ({1 and w (/) it is possible to find an equivalent
cylindrical dipole of radius a and the same length 2/, which has a current distribution
and input impedance that are essentially the same as those of the strip dipole. Thus
all the knowledge developed in the preceding sections about cylindrical dipoles can
be carried over to apply to slender strip dipoles. But first one must establish a relation
connecting the radius of the equivalent cylindrical dipole to the dimensions w and ¢
of the strip dipole.

Actually, this equivalence can be established for a dipole of more arbitrary
transverse cross section than a rectangle.3? The general situation has been depicted
in Figure 7.2a and the development carried out in Section 7.3 led to the conclusion

30The development in the remainder of this section is patterned after a treatment which can
be found in King, The Theory of Linear Antennas, pp. 16-20.,
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that, whatever the transverse shape, the integral equation for the current distribution
on the dipole could be connected to the Z-directed magnetic vector potential @(z),
the latter being given by

1 s
_ e IR N g
Q(z) = J‘_j;c iR K.(s',2')ds" dz (7.112)

in which K,(s’, z') is the lineal current density on the dipole, and R = [(x — x')* +
(y — y)? -+ (z — 2)?]"/2. Because of the assumption of perfect conductivity, both
the field point (X, y, z) and the source point (x’, y’, z’) lie on the surface of the dipole.

If 2u is the maximum lineal extent of the transverse cross section, it will be
assumed that ku ¢ 1 and that » (/. It can then be argued that the lineal current
density K,(s’, z) can be represented as the product of two functions:

K(s', 2') = f(sHI(2") (7.113)
In (7.113), I(z’) is the total current, and thus

L K(s', 2)ds' = Iz') = I(z") §C f(s") ds’ (7.114)

so that f(s’) is the normalized lineal current density. When (7.113) is substituted in
(7.112), the result can be expanded into the form

a(z):[f +f +f ]I(z)ff(s) ds dz’ (7.115)
and, if b = 10u, this can be approximated by
Ct(z);[ + ]I(z) e M 14
f J dnlz =7 ! (7.116)

LI f j i% ds’ dz’

To obtain (7.116), use has been made of the knowledge that kb < 1 and b* > 2.
The mean value theorem has been used to place I(z) in front of the last integral,
which in turn is given by

f_,,bff;c ﬁfz?ds,dz' = 2f§c%1;—)d8'd5’ (7.117)

wherein {’ = z’ — z so that R = [(x — x")* + (y — ¥)? + ()"

Since @(z) is not a function of the transverse coordinates (x, ), nor are the first
two integrals in (7.116), it follows that neither is the third integral in (7.116). But
this implies, together with (7.117), that
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Jb§ f_g-;i)ds' d{’ = constant (7.118)

The {’ integration of (7.118) gives

[ el e p s Gy
o K =V + & =y

~ 2b
I (€ e T e (7.119)

which means that, approximately,

, 2b
iﬂ”mwwwy+u~mw“

Because the constant on the right side of (7.120) is independent of the shape of the
cross section, its value may be determined by considering the special case of a circular
cylinder of radius a.

It has already been noted (see Appendix E) that @(z) can be computed accu-
rately, under the present assumptions, by taking the source point to be on the Z-axis.
Thus for the circular cylinder case, [(x — x')? ++ (y — »")?]'/? can be replaced in
(7.120) by [x? + »?]'/* = a. This allows one to conclude, because of (7.114), that the
constant in (7.120) has the value In(2b/a). As a result, for any shape of the cross
section, (7.120) reduces to '

ds' = constant (7.120)

fcf(s’) Inf(x — x)* +(y—y)*)V%ds' =Ina (7.121)

in which (x, y) and (x', p’) are constrained to lic on the contour of the cross section.

Equation 7.121 may be used to determine the equivalent radius a of a dipole of
circular cross section that gives the same G(z), and thus the same input impedance,
as the dipole of arbitrary cross section, with contour as specified by the parametric
equations of (7.8). As an illustration, consider a transverse cross section of elliptical
shape with major and minor diameters 2a, and 2b,, as shown in Figure 7.19. A point
(x, y) on the contour is given by

x=a,cos80 y=2b,sind (7.122)
Similarly, x = a, cos 8’ and »’ = b, sin 8, and in this instance
ds' = [dE? + dn?]'/* = [a? sin? 0’ + b? cos? 0']'/2 db’

so that (7.121) becomes

j:” £(8") In[a2(cos § — cos §') + b2(sin @ — sin 0')?] .

-[a? sin? @' + b%cos? 8'1'?df = 21Ina
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Y

Fig. 7.19 A Dipole with Elliptical Transverse Cross Section

subject to the condition in (7.114) which, for the elliptical case, takes the form
2n
J £(0")[a? sin? 8’ + b* cos* §')1/2df’ = 1 (7.124)
0

Equation 7.124 is clearly satisfied by

1

16) = 2nfa? sin? 0’ + bZ cos* §']'2 (7.125)

If the substitution of (7.125) in (7.123) leads to a result that is independent of 8, then
(7.125) is the true normalized distribution of the surface current on the elliptic cylinder
dipole. To test this, let ¢ = (8 + 6)/2 and y = (8 — €')/2, so that

cos@ — cos @ = —2sin{(0 + 0)sin}(@ — 0') = —2sindsiny
sinf — sin 8" = 2 sin J(6 — 6") cos }(0 + ') = 2 siny cos ¢

As a consequence of this, (7.123) becomes
2n
dnlna = J In (4 sin? y)(a? sin? ¢ -+ b2 cos® ¢) d6’
° (7.126)
=2 j In (4 sin? y) dy -+ 2j In (a2 sin2 ¢ + b2 cos* ¢) dd
0 [}

Through the use of standard trigonometric identities, (7.126) can be converted to

dnlnag = —2 L In (2 — 2 cos 2¢)d(2¢)

. ) 2 (7.127)
1 2f0 In {92_[(1 + %) — (1 — ;’1’—2) cos 2¢]} dQ4)
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Both integrals in (7.127) can be evaluated from
J" In(a + bcos x)dx = mIn }[a + (a*+b»)"?]
Q

The first integral has a null value. The second serves to reduce (7.127) to

a " | . bA b2
27t]n?1—e :fo In {7“1 -+ a—e2> <I a_f) cosx]}dx

::2nln[7%<l4 f%)] (7.128)

a
as a consequence of which

a = §a, +b,) (7.129)

Equation 7.129 is a key result. It says that the equivalent circular cylinder has
a radius g which is the arithmetic mean of the major and minor radii of the elliptical
cylinder. Since a highly eccentric ellipse is a good approximation to a rectangle, if
one lets 2a, = w and 25, = {, then

a= 4w+ (7.130)

with w and ¢ the dimensions of the rectangular contour. Equation 7.130 can be used
to find the equivalent cylindrical dipole for a specified strip dipole, after which
Equations 7.110 and 7.111 can be used to determine the input impedance of the
strip dipole.

7.13 The Derivation of a Formula for the Mutual Impedance
Between Slender Dipoles

The previous eleven sections of this chapter have been concerned with the self-
impedance of isolated dipoles, that is, a single dipole in otherwise empty space. If a
dipole is to be used in conjunction with a ground plane or in an array of dipoles, it is
necessary also to be able to determine the mutual impedance between dipoles. This
section is concerned with formulating an expression from which the mutual impedance
can be calculated.

Consider two center-fed dipoles, as shown in Figure 7.20. Without any loss in
generality, the first dipole can be centered at the origin and placed to coincide with
the Z-axis. Complete generality in the placement of the second dipole would have its
center at an arbitrary point (x, y, z) and would have its orientation arbitrary as well.
However, for almost all practical applications, the two dipoles will be parallel, and
that assumption will be made here. It is then sufficient to locate the second dipole in
the YZ-plane, that is, with its center at the point (0, y, z).
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Z f
Dipole 2
0, y,2}
=
Dipole 1
» ——————
A | Y

Fig. 7.20 Two Parallei Dipoles

The dipoles will be assumed to have lengths and radii (2/,, a,) and (2/,, a;),
which are generally not the same. The values 4, and a, may be the actual radii of
cylindrical dipoles or the equivalent radii of dipoles of other cross-sectional shapes
(rectangular in the case of strip dipoles).

If voltages ¥, and V, are applied across the central gaps of these two dipoles,
input currents I, and I, will flow into the dipoles. This is a linear bilateral network,
$O one may write

Vi= 11Z11 -+ IZZIZ

(7.131)
Vo=12, + 1,Z,,

If dipole 2 is present but open-circuited, I, = 0 and the first of Equations 7.131
indicates that, under those conditions, the ratio of V, to I, is Z,,. In many practical
applications, this ratio of ¥V, to I is negligibly different from what would occur if
dipole 2 were absent. But in the latter case, the ratio of V| to /; is the isolated self-
impedance of dipole 1, a subject which was extensively investigated in the first half
of this chapter. We can therefore conclude that when the presence of a second (open-
circuited) dipole has negligible effect on the input impedance of the driven dipole,
Z,, (and Z,,) can be determined from the curves of Figure 7.18 or Equations 7.110
through 7.111.

The reciprocity theorem can be used to demonstrate that Z,, = Z,,; this is a
standard proof in circuit theory that will not be repeated here. But once again, if
dipole 2 is present but open-circuited, the second of Equations 7.131 indicates that
Z,, is the ratio of the open-circuit voltage ¥, to the input current /, in the driven
dipole. The reciprocity theorem in the form (1.135) can be used to develop a formula
from which Z,, can be computed.
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To see this, consider first the situation in which dipole 1 is present and energized
but dipole 2 is absent. If perfect conductivity is assumed and end effects as well as
gap effects are idealized, one can picture a source-and-response arrangement as
suggested in Figure 7.21. A cylindrical sheath generator occupies the surface r = a,
and extends from z = —§ to z = 4, with § an infinitesimal. Over this sheath, E,
is uniform, 20 E,(0) is the value of the applied voltage. Because of the assumption of
perfect conductivity, E, = O over the cylindrical surface r = a,, which extends from

z= —Ito z = —4, and also over the cylindrical surface r = a,, which extends from
z=240to z=1,. A Z-directed surface current of lineal density K,(z) flows over the
entire cylindrical surface r = @, from z = —I, to z = +/, and produces an electro-

magnetic field distribution (E, H) throughout space.

O«———z=ll

T K,(z)

Fig. 7.21 A Cylindrical Sheath

Generator Energizing a Cylindrical R
Dipole N 1

If one removes the perfect conductor of which dipole 1 is assumed to be com-
posed, but establishes in free space the same lineal current density K,(z) over the
cylindrical surface r = a,, extending from z = —/, to z = +1,, then (E, H) will have
the same distribution throughout space as before, including the values of E,(z) along
the surface r = a,. This new situation fits the assumption of sources in otherwise
free space that was invoked in the derivation of the reciprocity theorem, and will be
designated as containing the a-source system.

Next, imagine that both dipoles are present, with dipole 2 energized and dipole
1 open circuited. Now K(z) will have a value on the cylindrical surface r = a, over
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the full length 2/, and on the cylindrical surface r = a, over the full length 2/,, except
for the central gap of length 28. Also, E, will be identically zero along either cylin-
drical arm of either dipole, but will have a value in the gap of each dipole.

Once again, the perfect conductor can be removed. If the source distribution
K,(2) is re-established in free space on the surfaces r = a, and r = a,, the field
distribution will be replicated. This new situation will be designated as containing
the b-source system.

Since no magnetic sources are involved and since all the electric sources flow
on surfaces, for this application (1.135) becomes

| E*-KedS = [ E*- K°dS (7.132)
S Ry
When the particular information just developed is placed in (7.132), one obtains

6 2n Iy b2 3
[ [ Ekia g, g, = | [T EKa,dg, dl, (7.133)
-5 J0 =iz J0
which reduces to
Iy
Vi) = — [ EXCIBE) L (7.134)

in which ¥ is the open circuit voltage at dipole 1 in the b-situation, 75(0) is the input
current to dipole 1 in the ag-situation, I3({,) is the current distribution on dipole 2 in
the b-situation, and E4({,) is the free-space longitudinal field distribution on the
surface r = a,, which dipole 2 will occupy in the b-situation but does not occupy in
the a-situation. It has been assumed in making the reduction from (7.134) that a,/4
and a,/A are so small that E? over r = a, is the same as though ¢, = 0 and that
E¢ over r = a, is the same as though a, = 0.

The minus sign in (7.134) requires an explanation. In terms of the notation of
(7.131), if dipole 2 is energized and a load Z,, is placed across the terminals of dipole
1, the equivalent circuit is as shown in Figure 7.22. Because of the assumed positive
direction of I, it follows that V', = —I,Z,. This is true even when Z, - » oo and V,

Fig. 7.22 The Equivalent Circuit with Dipole 2 Transmitting and
Dipole 1 Receiving
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is the open circuit voltage. Therefore, if the positive direction of I; is taken as upward
in Figure 7.22, the positive direction of the open-circuited V', will be downward.
For this reason, in the evaluation of the left side integral of (7.133), one needs to
write

|| g, = -
-5

Since Z,, is the open circuit voltage at dipole 1 in the b-situation, divided by 75(0),
it follows from (7.134) that

1 i a 3
Z12 = —I‘{(T—)I’i((—)j Ez(Cz)Iz(Cz) dCz (7~135)

—Iy

If one knows the current distribution on a driven dipole and the field it produces,
(7.135) can be used to determine the mutual impedance.

7.14 The Exact Field of a Dipole: Sinusoidal Current Distribution

In most practical applications for which one desires to know the mutual impedance
between dipoles, they are not sufficiently separated to be in each other’s far field.
Indeed, they may be only a small fraction of a wavelength apart. Therefore E2({,),
as it appears in the integrand of (7.135), needs to be calculated in the near-field region
of dipole 1. Fortunately, if one assumes that a sinusoidal current distribution exists
on a driven dipole, it is possible to get exact expressions for the fields produced that
are valid in both the near and far fields.

The assumption of a sinusoidal current distribution has already been seen to be
justified for an isolated dipole if a/A is sufficiently small. In the present application
the additional assumption must be made (for the b-situation) that the presence of a
nearby open-circuited dipole does not distort the current distribution of the driven
dipole.

With these assumptions one can write

13y) = Luisin k(I — {{,]) (7.136)
() = L, sink(l; — |4, (7.137)

and (7.135) becomes
Zy, = “din k1, fsin kI, fﬁ; E;ich) sin k(/, — 1{,]) dC, (7.138)

There remains the problem of finding E%({,) before the integration in (7.138) can be
performed.



330 Self-Impedance and Mutual Impedance of Antenna Elements

In terms of the coordinate system arrangement of Figure 7.23, the magnetic
vector potential function due to the current distribution (7.136) on dipole 1 is given by

— s I, sin k(ll — (Cl Dej(a;t—k)a)
Az(x, y’ z, t) - J‘_“ 47:”6112 dCl (7.139)

z

z=l—

P(x, y, 2)

z==l—

Fig. 7.23 Geometric Notation for Dipole 1
in which
R=[x*+ y? 4 (z = {)4" (7.140)

with (x, y, z) the field point and (0,0, {,) the source point. If sin k(/; — |¢,]) is
replaced by its exponential equivalent and e’#* is suppressed, (7.140) becomes

—_In ki 0 gmik(®R-0) o 0 k(R

b=k R+ED B jk(R-01)
. e’ 1 s e J 1
+ ejkh dCl — e jkiy dCI
0 R 0 R

In cylindrical coordinates, the only component of the magnetic field will be
B, given by

(7.141)

dA.

B¢:(VXA)¢:_—(§;

(7.142)

with p = [x? 4 y?]"/2. If the indicated differentiation is performed on the first
integral of (7.141), the result is that
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N *i I, i 0 p-ik(R~)
51 D dpl:jgnﬂale 1 R dCI

Y PR R (e)
S ), 9 \R %

1

m ejkl,

0 .
— _Am —r-c| JkP P
8 L. el el o g (7.143)

This integrand is a perfect differential, and it is not difficult to show that

331

P S fo p {L’*&}dg (7.144)
b j8mugt DA RIR+ 22—, !

Integration and substitution of the limits gives

g4, = _8p1m_lejkll[ e Ikr B e~ Tk (RetI) }
J8muy rtz RR,+z+1)

= Pl e {<r — 2[R, — (2 + h)]e‘f"“‘“’l’}
J8rps P2 RIR = G T L)

(7.145)

But R? — (z + /,)> = r* — 22 = p? and thus one may write

1

7j817mzj4jf"lp [" 7 Z o ikr _ R, *“Igz + 1)) e—jk(Rz+ll):I (7.146)
0 2

The other three integrals in (7.141) may be evaluated by the same procedure.
When the four results are combined, one finds that

s =

m

j47z,u5‘p[e-jkkl + e IFR — (2 cos ki )e*1]

(7.147)

The electric field can be found from Maxwell’s curl equation, V x H = jwe, E,
which in cylindrical coordinates means that

g - L3

R AGE

_ —JjkR, - JjkR; —-jkr
:j301,,,<z p’l - ! +z;11 e ! —(ZCoskll)%%) (7.148)
1 2

and

e
rjmdp (pus'By)

z

— 301, (ﬂ e cos ki, ii) (7.149)
Rl Rz r
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It is this last result, the expression for the vertical component of electric field, which
is needed in the present analysis. As many others have remarked, it is truly an extra-
ordinary result. The E, field of the dipole can be viewed as being composed of three
contributions, each of which is an isotropic spherical wave, one each emanating
from the middle and two ends of the dipole. The result is critically dependent on the
assumption of a spatially sinusoidal current distribution on the dipole, but for
slender dipoles this is not at all a bad assumption. Equation 7.149 will be used in the
next section to establish an integral formula from which the mutual impedance
between parallel slender dipoles can be computed.

7.15 Computation of the Mutual Impedance

Between Slender Dipoles

If one returns to Figure 7.20, it is clear that a point on the axis of dipole 2 has the
coordinates (0, y, z + {,) with the central point of dipole 2 at the arbitrary position
(0, y, z) in the YZ-plane. From (7.149), the vertical component of electric field at
0, y, z + {,) due to dipole 1 in the a-situation can be written as

. e—jkrl e—/'km o e—jkr
E. = 1301m( S skl S ) (7.150)
with
r=D @+ ) (7.151)
ri=b*+ @@+ —1)I"? (7.152)
ry =W+ -+ + )2 (7.153)

When (7.150) is substituted in (7.138) the result is that

. j30
" sin kI, -sin k/,

4] —jkr —jkra —jkr
j (557 4 S = 2eoskty S - sink(ly — 10 )

Z,
NS ra

(7.154)

It is customary to normalize (7.154) to the wavelength. When this is done, the real
and imaginary components are given by

. 30 24 rsin kr, | sin kr, . sin kr
Ri= Gowr, sl <r,//1 T T 2kl =l )

sink(t, — 160 (%)

2J-ln

(7.155)
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X1 = sin k/, -sin kI,

30

A

flz
~l2:2

(cos kr,
rifd

cos kr,

rofA

— 2 cos kl,

)

sin ks — 180 d(%)
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(7.156)

Figure 7.24 shows plots of R, and X,, when the two dipoles are the same length,
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for lengths 2//A = 3, }, and §, and for three directions of separation: broadside
(z = 0, y variable), echelon (z = p, both variable), and end-fire (y = 0, z variable).
One can observe a cyclical, decaying behavior to both R,, and X,,, with the peaks
and nulls of one essentially coinciding with the nulls and peaks of the other. End-fire
separation exhibits the most rapid decay, but at close spacings Z,, for the end-fire
arrangement is just as strong as for the broadside arrangement. These observations
will prove significant when the design of feeding networks for dipole arrays is
undertaken.

Because of the cyclical variations of R,, and Z,, with separation distance
between dipoles, it is illuminating to plot Z,, in polar form. This is done in Figure
7.25 for the same data that was used to construct Figure 7.24. One can see clearly
that | Z,,| decays most rapidly for the end-fire case, least rapidly for the broadside
case, and that the phase angle of | Z,,| retards almost linearly with separation at a
rate corresponding to the speed of light, this effect being essentially independent of
the direction of separation. The value of [Z,,] is clearly influenced by the lengths
of the dipoles.

Under the assumptions that the dipoles are slender and not too close to each
other, the field of one in the vicinity of the other is negligibly different from what
one would compute by collapsing the current distribution onto the dipole axis. Also,
the variation of this field over the surface of the other dipole is negligibly different
from the variation of this field along the axis of the other dipole. For these reasons,
under the stated assumptions it does not matter what the cross-sectional shapes of
the dipoles are. Thus the formulas (7.155) and (7.156) can be used to compute Z,,
between strip dipoles as well as between cylindrical dipoles, as long as the slenderness
criteria are met.

The case of vertical monopoles fed against a horizontal ground plane corre-
sponds, via the image principle, to the broadside separation case for dipoles. The
one difference that affects the computation is that it only takes half the voltage
between the monopole and ground to establish a given current level that it does
between the two halves of a dipole. Thus, for monopoles, one needs to take half the
R,, and X,, values calculated from (7.155) and (7.156).

Several of the assumptions that have been made in the development of the past
three sections can be tested for the special case of two parallel dipoles, each 4/2 long,
separated by a distance b in the broadside position. C. T. Tai®! has investigated this
case rigorously, using coupled integral equations. By exciting the dipoles equally,
either in phase or out of phase, he was able to compute both Z,, and Z,, versus
separation distance. Tai’s results are reproduced in Figure 7.26. One can observe
that, for a separation of 1/2 or more, Z, has settled down to the value of the isolated
self-impedance. It is also clear that Z,, is but little affected by the slenderness index
of the dipoles for Q > 10.

31C. T. Tai, “Coupled Antennas,” Proc. L.R.E., 36 (1948), 487-500. See particularly
Figure 16.
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7.16 The Self-Admittance of Center-Fed Slots
in a Large Ground Plane: Booker’'s Relation

Assume that two thin-walled tubes of perfect magnetic conductor form a dipole and
are fed by an idealized magnetic generator across a central infinitesimal gap. The
shape of this antenna has already been pictured in Figure 7.2, except that now what
is being described is a magnetic dipole, not an electric one.

How could one determine the current distribution on such an antenna? One
way to proceed would be to develop an analysis that is the exact dual of what appears
in Section 7.2. An integral equation like (7.6) would emerge, with the unknown
magnetic current density contained in the integrand and the axial magnetic field
playing the role of driving function. For slender cylindrical magnetic dipoles, Hallen’s
integral equation would apply, and one would conclude that, for the same dimensions
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(2l/4, a/2), the magnetic current distribution on the magnetic dipole is the same as
the electric current distribution on the electric dipole.

Further, the analysis contained in Section 7.12 could be emulated, thus extend-
ing the duality to noncircular cross sections. In particular, one can argue that center-
fed strip dipoles have the same current distribution, whether they be electric or
magnetic.

With this duality in mind, consider the antenna shown in Figure 7.27, consisting
of a rectangular slot of width w and length 2/, cut in a large ground plane, and ener-
gized at its center by a two-wire line. If w/A <1, the electric field in the slot is con-
strained to be essentially transverse, that is, y-directed, and perforce must vanish at
the ends of the slot. Since d£,/dx = 0 in the slot, it follows that B,,,, = 0 in the slot.

If the two-wire line is modeled by a generator placed in the plane of the slot
and attached to the feed points, and if the ground plane is modeled by a “zero-
thickness” perfect conductor of infinite extent, the technique of equivalent sources
described in Section 3.2 can be used to compute the fields in either half of space.

Fig. 7.27 A Rectangular Siot in a Large, Thin Ground Plane,
Center-Fed by a Two-Wire Transmission Line
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For the half-space x > 0, the equivalent sources consist of a lineal magnetic current
distribution

K,(2) = =245 ' E)(2) (7.157)

occupying the strip region vacated by the slot. Since B,,,, = 0 in the original problem,
these magnetic sources can be assumed to be flowing on a zero-thickness strip of
material composed of perfect magnetic conductor.

The actual antenna can be modeled further by assuming that an infinitesimal
transverse slit is cut centrally in the magnetic dipole, across which a delta-function
magnetic generator is placed as the energizing source for the magnetic dipole. If the
magnetic voltage of this generator is adjusted so that the input magnetic current is

WK, (0) = —2u; 'wE,(0) (7.158)

then the fields everywhere in x > 0 will be essentially the same as for the actual
antenna.

One can determine the fields caused by the magnetic strip dipole with the aid
of the relations developed in Section 7.5. In particular,

H, = —jwe F — €, VD, (7159)
in which
w2
o K, e/l kR)
f,f L ang RS (7.160)
T dS 7.161
;Lf_“ “4dme,R (7.161)

Away from the sources, the electric field can be found from
JjoeE, =V x H, (7.162)

It is interesting to compare these results with what one would obtain for the
fields from a center-fed electric dipole of the same dimensions. Suppose that the
sources on the electric dipole are related to those on the magnetic dipole by

K - —KfoKm ps = *Kfopsm (7]63)

Equations 7.163 are consistent with the deduction that the current distributions on
the two dipoles must be the same; the multiplicative constant —xe (with ¥ = 1 ohm),
causes the two sides of (7.163) to be dimensionally consistent. The electric field
caused by the electric dipole is given by

E, = —joA — V (7.164)

where, by virtue of (1.43) and (7.163),
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A = —ke, F ® = —ke D, (7.165)

Thus E, = x(jwe,F + €,V®,,) which, when compared to (7.159), indicates that

E,+xH,=0 (7.166)
Also, away from the sources,
—jouHy =V xE; = —kV x H, = —jowe,xE, (7.167)
so that
H, ~§§E2:0 (7.168)

Equations 7.166 and 7.168, which link the fields (E,, H,) of the electric dipole
to the fields (E,, H,) of the magnetic dipole, are a particular illustration of Babinet’s
principle, which is discussed in detail in Appendix F. The essence of Babinet’s prin-
ciple is that, if two complementary screens (the holes of one are the metallic part of
the other) are excited by conjugate sources, the resulting total fields are related by

E,+xkH,=FE, H,-LE=H x>0 (7.169)

Il

E,—xkH,—E; H,+ZXE -H x<o0 (7.170)

:N] P :NI =

Equations 7.169 and 7.170 are derived in Appendix F. The sources are assumed to
be in z < 0 and (Ei, Hi) is the incident field on screen 1. The field that would be
reflected from screen 1 if it contained no holes is (Ej, H§).

In the present application, the two-wire-fed slot of Figure 7.27 and the center-
fed electric strip dipole can be viewed as complementary screens. The magnetic
dipole was used as a surrogate for the slot in the ground plane; its fields are therefore
(E;, H;). Under the assumption of infinitesimal gap generators, (Ei, H}) is negligible
except at the feed point, and (7.169) is seen to be consistent with (7.166) and (7.168).

The reader may wonder about the change in sign evident in (7.170). With
infinitesimal gap generators, (Ef, H}) is also negligible except at the feed point. Why
then does (7.170) not agree with (7.166) and (7.168)? The reason for this is that the
equivalent magnetic current distribution (7.157) was deduced in order to compute
the fields in x > 0. To determine the fields in x < 0, one would use a current sheet
given by K,.(z) = 2u5'E/(z). Stated another way, the magnetic dipole causes an
E-field with flux lines that are circular, while the slot in a ground plane causes an
E-field with flux lines that are opposing “semicircles” Thus the magnetic dipole
models the slot’s fields on one side of the ground plane, but introduces a phase shift
of 180° in modeling the slot’s fields on the other side of the ground plane.

Equations 7.166 and 7.168 establish the fact that the two-wire-fed slot in an
infinite ground plane and the complementary center-fed electric strip dipole have the
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same radiation pattern (with a 90°-rotation in polarization). But these two equations
apply in the near-field region as well, and this enables one to deduce a connection
between the input admittance of the slot and the input impedance of the strip dipole.

The connection between slot admittance and dipole impedance was discovered
by H. G. Booker??, and his analysis is essentially reproduced in what follows. With
reference to Figure 7.28, imagine two complementary radiators, a center-fed rectan-
gular slot in a large ground plane and a center-fed strip electric dipole, each of
dimensions 2/ by w. The coordinate axes are placed centrally as shown and two
small circular contours are constructed, each with its center at the origin, one in the
XY-plane and the other in the XZ-plane, as suggested in the projections.

If (V,, I,) and (V,, I,) are the applied voltages and input currents to the dipole
and slot, respectively, then

§ H-dl=2¢6 H,-dl=1I, § E +dl =V,
ABCDA ABC abe (1.171)
Hrdhﬂ§ H,-dl= —1, E,-dl=V,

abc

abcda ABC

When the excitation levels are adjusted to conform to (7.163) so that (7.166) and
(7.168) apply, one finds that

m:—q'm-ngg
abc

n NPT
KLMm =11,

and thus that V,/I, = (n?/4)([,/V), or

Va

I

Z,_n

=% (7.172)
Equation 7.172 is Booker’s relation and is often written in the form Z,Z, = 5*/4,
which in words says that /2 = 188.5 ohms is the geometric mean between the input
impedance of a slender strip dipole and the input impedance of the complementary
slender slot. However, (7.172) is the preferred form since it can be generalized to the
case of complementary arrays of slots and dipoles, as shall be seen in the next section
of this chapter.

Booker’s relation is one of the more useful results in antenna theory. It ex-
tends the entire body of knowledge that has been gathered on the self-impedance
of center-fed slender dipoles to apply to a center-fed slender slot in a large ground
plane. Admittedly, the practical applications for a slot which radiates into both

32H. G. Booker, “Slot Aerials and Their Relation to Complementary Wire Aerials (Babinet’s
Principle)”, JIEE, 93, pt. 111A (1946), 620-26.
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/ Strip
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/ \\
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Top view of slot Edge view of slot
or dipole or dipole

Fig. 7.28 Complementary Siot and Strip Dipole Radiators

half-spaces are few, but Booker’s relation provides insight to the design of cavity-
backed slots, and will be seen to play a significant role in the theory of waveguide-fed
slot arrays. Both of these topics are treated in Chapter 8.
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Rectangular arrays of parallel slender slots (usually waveguide-fed) find wide appli-
cation in radar and communication systems and their proper design requires an
understanding of mutual coupling. This problem can be introduced by considering a
set of N arbitrarily placed (but parallel) center-fed slots in a common large ground
plane, as suggested by Figure 7.29. This array can be viewed as an N-port linear
bilateral system. If (¥, I;) are the applied voltage and input current at the mth
slot, then one can write

N

I, =3 ViYs, (7.173)

n=1

with Y2, the self-admittance of the mth slot and Y}, the mutual admittance between
the mth and nth slots.

The complementary array of center-fed strip dipoles is also an N-port linear
bilateral system. If (V¢,I%) are the applied voltage and input current at the mth

Fig. 7.29 An Arbitrary Array of
Parallel Center-Fed Slots in a
Large, Thin Ground Plane
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dipole, then

yi — 3 pizd (1.174)

n=1

in which Z2 , is the self-impedance of the mth dipole and Z2, is the mutual impedance
between the mth and nth dipoles.

Suppose that all slots but the mth are short-circuited at their feed points, and
that all dipoles but the mth are open-circuited. Equations 7.173 and 7.174 give

I, =V:,vys. Ve =137Z2 (7.175)

In this condition the two screens are exactly complementary in the Babinet sense
(including shorting wires across all but the mth slot and open slits across all but the
mth dipole). With the excitation levels adjusted in conformance with (7.163), the
relations in (7.166) and (7.168) apply. Repetition of the analysis embodied in Equa-
tions 7.171 leads to the conclusion that

Lom _ 1

re =7 (7.176)

Thus Booker’s relation applies to the dipole self-impedance/slot self-admittance
ratio in the generalized case of two or more elements.

If the input impedance to the mth dipole with all other dipoles present but
open-circuited is negligibly different from its input impedance with all other dipoles
absent, then Z2_ can be taken to be the isolated self-impedance of the mth dipole,
and all of the results of Sections 7.10 through 7.13 are pertinent. This is a good
assumption if the interelement spacing is A/2 or greater. By the same token, the
self-admittance of the mth slot can be approximated by its isolated self-admittance.

Continuing with the assumption that all slots but the mth are short-circuited
and that all dipoles but the mth are open-circuited, one can also see from (7.173)
and (7.174) that

Is=ViYs,  Vi=TI3Z n#m (7.177)

with 7¢ the short-circuit current at the sth slot and V¢ the open-circuit voltage at
the nth dipole.

Let the ABCD contours shown in Figure 7.28 be erected at the mth slot (and
mth dipole), but let the abed contours, also shown in that figure, be erected at the
nth slot (and nth dipole). Then

ffmuAH"dlizj‘me-dl =1 JbE,-dl:Vg
) . (7.178)
fzbcdﬂHz.dl:zjabcﬂz'dl:_1:' LECE2°dl: an
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Use of (7.166) and (7.168), in conjunction with (7.177), leads to the conclusion that

48
Yim

”TZ (7.179)

Therefore Booker’s relation also applies to the ratio of the dipole mutual impedance
to the slot mutual admittance in the generalized case of two or more elements.
These results can be summarized by the equation

[Z9] (7.180)

in which [Y°] is the admittance matrix of the slot array and [Z9] is the impedance
matrix of the complementary dipole array. It is important to note that the product
Z2,Z:, does not equal n2/4.

The diagonal terms of the [ Y] matrix (self-admittance terms) can be computed
by using Equations 7.110 and 7.111, modified by the multiplicative factor (4/52).
The off-diagonal terms of the [Y*] matrix (mutual admittance terms) can be deter-
mined through use of Equations 7.155 and 7.156, also modified by the multiplicative
factor (4/n2).

7.18 The Self-Impedance of a Patch Antenna

The patch antenna was described in 3.7, with its generic form pictured in Figure
3.14. Simply stated, it consists of a metallic film bonded to a grounded dielectric
substrate. The boundary of the film may be any shape, but rectangular and circular
patches are most common. The maximum dimension of the patch seldom exceeds
one-half of a free-space wavelength. Feeding is usually by means of a microstrip or
coaxial line, as suggested by Figures 3.15 and 3.16.

It was seen in Section 3.7 that when the patch antenna was viewed as a slightly
leaky cavity, approximate expressions for the field distribution could be readily
deduced. From this, secondary sources could be calculated for placement along the
perimeter of the patch-cavity, permitting calculation of the far field pattern. Com-
parison with experimental patterns was seen to be excellent, as evidenced for rectan-
gular and circular patches by Figures 3.18 and 3.19.

The viewing of a patch antenna as a leaky cavity is also fruitful when one
wishes to develop an expression for its self impedance. W. F. Richards, Y. T. Lo,
and D. D. Harrison?? have adopted this model and idealized the feed region in order
to provide a development whose essentials are reproduced in what follows.

If the feed is coaxial, as in Figure 3.16, it can be represented by a cylindrical

33W. F. Richards, Y. T. Lo, and D. D. Harrison, “Improved Theory for Microstrip Antennas,”
Electronic Letters, 15 (1979), 4244,
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band of electric current flowing from the ground plane to the patch, plus an annular
ring of magnetic current at the coaxial opening in the ground plane. The latter can be
neglected with little error, and the former can be idealized by assuming that it is equiv-
alent to a uniform current ribbon of some effective width d, centered on the feed axis
and oriented (for instance) in the X-direction. The choice of a proper value for d will
be considered later.

If a2 microstrip feed is used, as in Figure 3.15, the idealization consists of
replacing the microstrip by a uniform current ribbon of some effective width d,
placed at the boundary between patch and microstrip. The value of d may be some-
what larger than the physical width of the microstrip due to fringing.

The foregoing idealizations permit both types of feed to be modeled by a
uniform current ribbon. If the fields in the leaky cavity are assumed to be insignifi-
cantly different from the fields that would exist if the patch were surrounded by a
perfect magnetic wall (compare with Section 3.7), then the electric field beneath the
patch can be represented in the form of Equation 3.69, with the constant coefficients
A,., calculable from (3.72).

Y
} Rectangular patch
i i Feed
b 4 point
o
vy | ‘
e e X e
}¢ —— B B

Fig. 7.30 A Rectangular Patch Antenna with a Coaxial Feed

For the case of the rectangular patch shown in Figure 7.30, with the actual
coaxial feed centered at (x,, y,), the equivalent current ribbon can be assumed to
stretch from x, — d/2 to x, 4+ d/2 and carry a current of one ampere. For this
geometry, w,., is given by (3.64) and the constituent parts of (3.72) are

a b
nx b
(P, WES = fo fo coser’\ coszmTydx dy = che: (7.181)
x1+d/2
Tr> = L cos X oo STV g (7.182)

d a b

x,—d'2
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In (7.181), ¢, = 1ift = 0, and ¢, = 2 if ¢t > 0. The substitution £ = x — x, converts
(7.182) to

I STy a2 raé rnx . rat . rax
* 1 1 1
CATES 7 s » (cos —g oS — sin—=sin — )d{ (7.183)

If the second term in the integrand of (7.183) is dropped on the basis of the argument
that sin(rné/a) is very small in —(d/2) << & < (d/2),%* then

x\ _ sin (rmd/2a) _ rmx;  S®y,
CAY GrdRay a7 (7.184)

When this information is placed in (3.72) and the resultant used in (3.69), an
approximate expression for the electric field in the cavity is given by

; k) mn 3 H d
E. = jou, 33 ¢"‘"(in{)f k(;xn‘ y‘)Jo('—g—> (7.185)
in which
— (Enn) " cos M (o MY
Gn(x, ) = ( . > cos — = cos — (7.186)
and
Jow) = Sir;” (7.187)

The mode wave numbers which appear in (7.185) are defined by Equation 3.65
and the square of the wave number in the dielectric medium can be expressed as

k2 = el — jo)k? (7.188)

with €, the relative permittivity, with J the loss tangent of the dielectric, and with
ko, = 2mfA,, where A, is the free-space wavelength.

Near resonance the factor k2 — k2, becomes very small for the dominant mode,
even with k, slightly complex, and the field E, is contributed to principally by the
dominant mode term. This being the case, with all other modes neglected, £, is given
by a single term from (7.185). If this simplified field expression is used to deduce the
equivalent magnetic sources at the periphery of the patch, computations can be made
of the radiative loss P,,; and of the surface wave loss P,. Also, within the cavity
region, the power loss P, in the metallic walls can be estimated, as can the power
loss P, in the dielectric, If the sum of these four losses is represented by P, the loss

34This assumption loses its validity for large values of the index r. However, the dominant
mode in practical applications occurs for r, s small.
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tangent of an equivalent nonleaky cavity can be determined from

P
Oerr = 5177 (7.189)

in which w = 2zv is the resonant radian frequency, W, is the stored electric energy

at resonance, and d,;, is the loss tangent of the equivalent dielectric. Under the

reasonable assumption that J,,,, while greater than J, is still quite small compared

to unity, W, can also be computed easily by using the dominant term of (7.185).
If next k,;, is defined by

kirr = €(1 — jb.rr)kS (7.190)

and used in place of k2 in (7.185), then an improved calculation of E, is possible.
Since tE,(x,, y,) is the voltage at the feed, with ¢ the dielectric thickness, and since a
feeding current of one ampere has been assumed, it follows that the self-impedance

is given by

Z = jous LT fetxiap) j, (7d) (7.191)

Near resonance this series is contributed to mainly by the dominant mode term.

Computations using (7.191) can only be carried out after assuming some value
for the equivalent current ribbon width d. Richards et al.3? adjusted the value of d
so that agreement was obtained at one frequency between the theoretical calculation
of Z from (7.191) and the experimental value of Z. They then proceeded to compare
theory and experiment for the rectangular patch shown in Figure 7.31a, using three
different feed points. The results are shown in the Smith chart of Figure 7.31b. The
correlation can be seen to be extraordinarily good. They were also pleased to find
that the same effective ribbon width & was applicable to all three loci.

L Feed points

(o]
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\Q \.](\

~ .20-— Ln*
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i S
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1143 cm——

(a)

(b)

Fig. 7.31 The Input Impedance versus Frequency and Coaxial Feed Position for a
Rectangular Patch Antenna (€ 1979 IEE, London. Reprinted from Richards, Lo, and
Harrison, Electronic Letters, vol. 15, pp. 42-44, 1979.)
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This same approach was used successfully by Richards et al.*? for a circular
patch, as can be seen from a study of Figure 7.32.

< 5.03 cm
1.68 cm |

@ (b)

Fig. 7.32 ThelnputImpedance versus Frequency and Coaxial Feed Position for a Circular
Patch Antenna (© 1979 IEE, London. Reprinted from Richards, Lo, and Harrison,
Electronic Letters, vol. 15, pp. 42-44,1979.)
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PROBLEMS

7.1

7.2

7.3

7.4
75

7.6

7.7

7.8

7.9

7.10

Repeat the analysis of Section 7.2 through 7.4 for the case of a magnetic dipole of
arbitrary cross section and show that, under the same assumptions of slenderness,
Hallén’s integral equation (7.25) is obtained for the distribution of magnetic current on
the dipole, with the roles of E and B interchanged.

Retrace the development of Section 7.12 to show that, for slender magnetic dipoles of
arbitrary cross section, there is an equivalent magnetic dipole of circular cross section
that has the same total current distribution and the same input impedance. Thus show
the complementarity of electric and magnetic strip dipoles and establish Booker’s
relation that #/2 is the geometric mean between the input impedance of the two dipoles.

Use the method of moments and pulse functions spread over 20 equal intervals to find
the current distribution on a slender center-fed cylindrical dipole for a/A = 0.01 and
21/A = 0.45 (.01) 0.55. Tabulate the input impedance versus dipole length and compare
your results to those found by the induced EMF method and by the improved King-
Middleton second-order approximation.

Repeat Problem 7.3, but use four sinusoidal basis functions.

Use the curves of Figure 7.12 (or the accompanying fitted equations) to determine
the impedance bandwidth of a dipole for which Q = 10. Define bandwidth as ( f; — f1)//,,
in which f; is the lowest frequency at which the dipole is resonant and f, and f; are the
upper and lower frequencies straddling f; at which the input VSWR has risen to a value
of 2: 1, assuming a match at f;.

Storer’s two-term trial function for the current distribution on a cyclindrical dipole can
be expressed in a form that contains only one arbitrary constant by combining (7.77)
and (7.84). Do this for his choice of partial functions in (7.78) and (7.79) and then deter-
mine the current distribution explicitly for a/A = 0.01 and 2//A = 0.5. Compare your
result with the method of moments solutions displayed in Figures 7.6 and 7.10.

Develop an expression for the constant C in Hallén’s integral equation suitable for the
first order approximation. Your result should be analogous to (7.105), which was
obtained for the zeroth-order approximation. Use this value of C in Equation (7.99)
and find 7,(0) for a/A = 0.01 and 2//A = 0.45 (.01) 0.55. How do the impedance values
found by this method compare with those found in Problem 7.3?

Use Equations 7.110 and 7.111 to find the resonant length of a center-fed cylindrical
dipole as a function of radius in the interval 0.0016 <C a/A <C 0.01, according to the
improved King-Middleton second-order approximation. Also find the input resistance
at resonance as a function of a/A. Compare these results to those found by the induced
EMF method and shown in Figures 7.13 and 7.14.

Find the input impedance of a center-fed strip dipole in free space if the operating
frequency is 300 MHz. The dipole is 1.25 in. wide, negligibly thick, and 17.70 in. long.
Use the improved King-Middleton second-order approximation to determine your
answer.

Estimate the input impedance of a center-fed rectangular slot in a large ground plane if
the slot is the complement of the strip dipole described in Problem 7.9, and if the center
frequency is the same.
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Self-Impedance and Mutual Impedance of Antenna Elements

7.11 Find the mutual impedance between two center-fed dipoles, parallel and in the broad-
side position, when they are 0.74 apart and of common length 2//A = 0.40 (.01) 0.52.

7.12 Repeat Problem 7.11 if the dipoles are in the echelon position; if they are end-fire.

7.13 What is the mutual admittance between two rectangular slots, parallel and in the broad-
side position, if they are in a large thin ground plane and each is 0.014 wide, 0.474 long,
and they are 0.74 apart? What is their mutual impedance ? Their self-impedance ? What
would be the self-impedance of one of the slots if the other were absent?

7.14 Develop an expression for the input impedance of a circular patch antenna with an
offset coaxial feed.



the design of feeding structures
for antenna elements and arrays

8.1 Introduction

The results of the previous chapter, which was concerned with the self-impedances
and mutual impedances of various antenna elements, will now be utilized in the
design of transmission line systems (feeding structures) to connect these antennas to
a transmitter or receiver. In the case of a single radiating element, the most common
criteria are that it be matched to its feed at some specified frequency, and that the
input impedance and pattern stay within some prescribed limits over a certain fre-
quency band. The impedance specification may require that the feed contain some
frequency compensating features. In the case of an array of radiating elements, the
feed may be a network of transmission lines, with signal division at each junction
designed so that the excitation of all elements, in amplitude and phase, is exactly
what is required to produce the specified pattern in the presence of mutual coupling
among elements. The feed port connected to the transmitter (receiver) is usually
required to be matched.

Individual sections of this chapter will be concerned with the design of a
coaxially fed monopole above a large ground plane, a single dipole parallel to a large
ground plane and fed by a balun, a cavity-backed slot, and a coaxially fed helix
backed by a ground plane. The study of feeding structures for arrays will begin with
the design of a two-wire harness for an end-fire array of driven dipoles in free space.
Yagi-Uda and frequency independent arrays will be considered, as well as one-and
two-dimensional arrays of balun-fed dipoles that are parallel to and in front of a
large ground plane. For the linear dipole array, an introductory treatment of scanning
a sum pattern in the presence of mutual coupling will be undertaken. The equivalent
problem of waveguide-fed slot arrays will then be treated, and the chapter will
conclude with an analysis of feeding structures for two-dimensional slot arrays
designed to produce both sum and difference patterns.
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A relatively simple example of the problem of feed design for an elementary radiator
occurs when a vertical monopole is to be fed against a large horizontal ground plane.
Assume that the feed is a coaxial line with an inner conductor that is extended to form
the monopole, and an outer conductor that is terminated in the ground plane, as
shown in Figure 8.1. It is desired to determine (1) if it is feasible to select a radius for
the monopole that will cause it to be matched to the coaxial line, and (2) how its
input impedance varies with frequency.

1

Monopole

Ground plane ¥

[ —
;

—| b |-

Fig. 8.1 A Coaxially Fed Monopole Protruding through a Large Ground Plane

R. W. P. King! has provided data which takes into account the finite dimen-
sions of the gap for this geometry, and has tabulated the input admittance of the
monopole as a function of its length and radius and the characteristic impedance of
the feeding coaxial line. Linear interpolation of his data plus inversion gives the
resonant resistance values shown in Table 8.1. One can observe that the resonant
resistance is quite insensitive to monopole radius and to characteristic impedance.
Clearly, to obtain a match, one should choose as feed a coaxial line with a character-
istic impedance of about 37 ohms.

Since King gives admittance data for Z, = 25 ohms and 50 ohms, and since the
two sets of data are very close, it is convenient to compute the average and invert this
value, thereby obtaining the input impedance of the monopole versus its length and
radius for a coaxial feed whose characteristic impedance is 37.5 ohms. The results are
shown in Table 8.2. Further linear interpolation gives the dependence of resonant
length and resonant resistance on monopole radius. This data is collected in Table 8.3.

IR, W. P. King, Tables of Antenna Characteristics (New York: IF1/Plenum, 1971), pp. 29-32.
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TABLE 8.1 Resonant resistance of coaxially-fed thin tubular mon-
opoles
Resonant Resistance R,
bja (Z, in ohms)

aji 1.517 (25) 2.301 (50) 3.49 (75) 5.30 (100)
0.001588 36.82 36.80 36.78 36.76
0.003175 37.09 37.01 36.94 36.84
0.004763 37.36 37.20 37.05 36.88
0.006350 37.64 37.38 37.12 36.89

TABLE 8.2 Impedance of thin tubular monopoles in ohmst

a/i = 0.001588

a/l = 0.003175

a/i = 0.004763

all = 0.006350

14 R+ jX R+ jX R+ JjX R+ jX
0.06250 1.49 — j385.35 1.77 — j297.61 1.26 — j250.62 1.45 — j220.01
0.09375 3.58 — j267.69 3.10 —4210.26 3.20 —j178.83 3.50 — j158.03
0.12500 6.23 - j191.37 6.23 — j151.72 6.43 —j129.89 6.51 —j115.04
0.15625 10.85 - j131.82 10.90 — j104.91 11.05 — j 89.80 11.27 —j 79.47
0.18750 17.60 — j 79.58 17.95 — j 62.63 18.26 — j 53.06 18.63 — j 46.52
0.21875 27.87 - j 29.29 28.75 —j 21.11 29,52 — j 16.57 30.20 — j 13.55
0.25000 43,79 4 j 22.82 45.88 1 j 22.47 47,52 4 j21.86 48.87 4 j 21.09
0.28125 69.53 -+ j 80.10 74.08 4 j 70.22 77.42 4 j 63.31 79.94 4 j 57.65
0.31250 113.40 + j145.58 122.85 + j122.55 129.05 + j105.92 132.87 - 92.20
0.34375 193.49 1 j218.63 210.52 + j171.14 218.36 + j135.24  220.08 +,105.86
0.37500 347.46 + j278.96 361.31 + j177.42 351.73 + j105.11 331.48 +/ 53.56
+Monopole is extension of inner conductor of coaxial line for which b/a = 1.868. Characteris-

tic impedance of TEM mode in coaxial line is Zy = 60 In(b/a) = 37.5 ohms. Table entries have
been calculated by linear interpolation and inversion of data found in King, Tables of Antenna

Characterist

ics, pp. 29-32.

TABLE 8.3 Resonantlength and resonant resistance of coaxially-fed tubular monopoles.

Z, = 37.50hms
a/l = 0.001588 ali = 0.003175 ajl = 0.004763 afl == 0.006350
113 0.236 0.234 0.232 0.231
R, (ohms) 36.82 37.05 37.28 37.50

A perusal of Table 8.3 indicates that, for an exact match, one should choose
a/l = 0.00635 and //A = 0.231. However, in order to use the available data maxi-
mally in terms of finding the frequency response of the impedance of the monopole,
let the selection a/4, = 0.00397, //4, =~ 0.233, and R, = 37.17 ohms be made, with
A, the central wavelength.
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Next, define four wavelengths by
(a/A,) = 0.001588 = (a/A,)(Ao/A,) = 0.00397(1,/,), A, = 2.5004,
(a/2;) = 0.003175 = (a/A,)(Ao/A,) = 0.00397(A,/A,), A, = 1.2504, ®.1)
(a/A;) = 0.004763 = (a/A,)(Ao/4;) = 0.00397(1,/4,), A, = 0.8334, '
(a/Ay) = 0.006350 = (a/A,)(Ao/As) = 0.00397(Ao/As), Ay = 0.6254,
The corresponding normalized monopole lengths are
//A, = 0.093 IfA, = 0.186 I/A, = 0.280 /A, = 0.373

When these normalized lengths are used in conjunction with the appropriate columns
of data in Table 8.2, linear interpolation yields the input impedance of the monopole
at the four wavelengths. These data points, plus the resonant resistance value at A,
can be connected by the smooth curves shown in Figure 8.2.
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Fig. 8.2 Input Impedance versus Frequency for a Coaxially Fed Monopole
Protruding through a Large Ground Plane
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This antenna element is seen to be quite narrow band. One way to characterize
the bandwidth is to state the extreme values of VSWR which occur in a specified
frequency range. For this monopole-plus-ground-plane, the VSWR rises from 1.01
at v, to 2.39 at 0.9v,, and to 1.82 at 1.1y,. A 209 bandwidth can thus only be con-
tained within a 2.4 VSWR circle.

8.3 Design of a Balun-Fed Dipole Above a Large Ground Plane

A commonly used antenna element consists of a center-fed dipole parallel to and a
distance / above a large ground plane, as shown in Figure 8.3a. One could feed the
dipole with a two-wire line from the upper half of space, but this is awkward and
seldom acceptable. Usually, it is desirable to have the transmitter (receiver) behind
the ground plane, in which case it becomes difficult to pass a two-wire line up to the
dipole. It must go through a hole in the ground plane that is large enough not to
affect the TEM mode. The presence of the hole is undesirable, and a good mechanical
connection of dipole, feed, and ground plane is not achieved.

Another possibility is to have a rigid coaxial line emerge vertically from the
ground plane, as shown in Figure 8.3b, with its inner and outer conductors connected
to the two arms of the dipole. This is a better design from a mechanical point of view,
but is undesirable electrically. The reason for this is that the coax is an unbalanced
feed for the dipole. In effect, the outer surface of the coax becomes part of one of the
dipole arms and will be excited, thus contributing to the radiation pattern, introducing
an unwanted cross-polarized field component.

This difficulty can be overcome by the design shown in Figure 8.3c. The dipole
is supported by a pair of metal tubes of length # which are electrically connected to
the ground plane at one end and to the arms of the dipole at the other. A center
conductor is brought up inside one of these tubes and looped over to connect electri-
cally to the junction of the other tube with the other dipole arm. The resulting coax
is seen to feed two elements in parallel: (a) the dipole, and (b) a two-wire line of
length A, shorted at its other end by the ground plane. The system is now electrically
balanced. It is for this reason that feeds of this type are called baluns, the word being
a contracted form of balanced/unbalanced.

If &/ = 1/4, the input impedance of the two-wire line is very high, and negligible
current flows on it. For all practical purposes, only the dipole is being fed. And with
h = A/4, another beneficial effect is achieved. Because a large ground plane has been
assumed, the method of images may be invoked, with the ground plane replaced by
an image dipole for the purpose of computing the pattern in the upper half of space.
This image dipole carries a current equal and opposite to the driven dipole (compare
with Section 2.3). Being 1/2 away, it reinforces the field of the driven dipole maximally
in the zenith direction, which is usually desired.

It will be assumed in what follows that # = 1/4. Still to be determined are the
dipole length 2//4 and the transverse dimensions of the coaxial line in order to achieve
a match at the coax input. These quantities can be deduced by first considering the
equivalent situation of two dipoles and no ground plane, for which the equations
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Fig. 8.3 A Center-Fed Dipole Above and Parallel to a Large Ground Plane;
Various Feeding Arrangements

Vi=1012Z,, + LZ,,

(8.2)
V,= 1.Z,, + 12222

can be written. In this case, in order to represent the image dipole properly, Z,, =
Z,, and ¥, = —V,, as a consequence of which I, = —1I,. The first of Equations
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8.2 can be rewritten as

Zt= =20 Z (83)
73, called the active impedance of the first dipole, is its input impedance when the two
dipoles are contraexcited. It is also approximately the input impedance of the single
driven dipole above its large ground plane. (The degree of approximation is governed
by how well the actual ground plane is modeled by an infinite ground plane of perfect
conductivity.)

The mutual impedance term Z,, that appears in (8.3) represents the coupling
between two parallel dipoles of the same length a distance /2 apart. Equations 7.155
and 7.156 can be used to compute Z,, versus the common normalized length 2//A.
The results of such calculations are displayed in Figure 8.4.
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Fig. 8.4 The Mutual Impedance versus Their Common Length for Two Parallel Dipoles
with a Broadside Separation of a Half-Wavelength
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Assume that an infinitesimal gap generator is an adequate model for the center-
feeding of the dipole, and that Z, , ig essentially the same as the isolated self-impedance
of the dipole. If the formula in (7.71) is used to compute the self impedance Z, ,, then
for every a/A, a curve of X, versus k/ can be constructed. Where it crosses the X,
curve of Figure 8.4 defines a resonant length for the dipole of that radius plus ground
plane, since Z¢, as defined by (8.3), will be pure real. This procedure permits the
determination of a curve of resonant length versus dipole radius, with the result
shown in Figure 8.5. With this relationship determined, one is able to deduce R¢ =
R,; — R,, versus either resonant length or dipole radius. This result is also shown
in Figure 8.5. One can observe that both the resonant length and input resistance

0.47 70
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0.46 A \ 65

AN

2\
o
N
W
N
S
R4 ohms

—
20/
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0.43 1 50
0 0.25 0.50 0.75 1.00
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Fig. 8.5 Resonant Length and Input Resistance at Resonance versus Dipole Radius
for a Dipole Paralle! to and a Quarter-Wavelength in Front of a Large Ground Plane

decrease as the dipole is fattened, a characteristic that has already been observed
for a dipole without a ground plane.

The feeding coax that comprises one leg of the balun can be used to convert the
resonant resistance R4 to some desired level. For example, if a/A = 0.005, Figure 8.5
indicates that R? = 63 ohms. Imagine that it is desired to match this to a 50-ohm
coax which runs along behind the ground plane. If the balun coax is air-filled, it
becomes a quarter wave transformer, and should have a characteristic impedance
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given by Z, = [(63)(50)]'/? = 56 ohms. The inner and outer conductors of the balun
coax should thus be in a ratio that satisfies the equation Z, = 60 In(b/a). This means
that b/a = 2.55, which is a reasonable ratio, easy to achieve in a practical design.

8.4 Two-Wire-Fed Slots: Open and Cavity-Backed

If a slender rectangular slot is cut in a large ground plane and center-fed by a two-wire
line, as suggested by Figure 7.1d, a radiator that is essentially the complement of the
center-fed dipole will result. Booker’s extension of Babinet’s principle (compare with
Section 7.16) provides the information that

F:%T (8.4)

in which Y* is the self-admittance of the slot, Z¢ is the self-impedance of the equivalent
dipole, and # = 377 ohms is the impedance of free space. If the slot has a length 2/
and a width w < /, and if the ground plane has a negligible thickness, then the equiva-
lent dipole has a length 2/ and a radius a = w/4 (compare with Section 7.12). Equation
8.4 indicates that the slot admittance is pure real when the impedance of the equiva-
lent dipole is pure real. It follows that the resonant length of the slot can be deduced
from Figure 7.18 if a/A is replaced by w/44.

If the slot is tuned to resonance, its input conductance can be computed by
using (8.4) in conjunction with the information contained in Figure 7.18. For example,
if w/A = 0.0064 then ki, = 1.493 and G* = (2/377)3(70.75) = 1.99 millimhos.
Since the characteristic impedance of a two-wire line is given by

ZO::m0h1{§-+[<g>2—l]”w (8.5)

a match of this resonant slot with its feed can be achieved by choosing the wire diame-
ter d and center-to-center spacing D of the two-wire line so that Z, = R, = 500 ohms.

The slot in a ground plane, center-fed by a two-wire line, and radiating into
both halves of space, gives approximately the same pattern as an electric dipole of
the same length, but with E and H interchanged, that is, with the polarization rotated
90°. The practical applications of such radiators are limited, but a useful antenna
emerges if the slot is forced to radiate only into a half-space by the introduction of a
cavity that “boxes in” the slot on one side, as shown in Figure 8.6. The combination
of slot and rectangular cavity can be fed by a coax, as shown, and if the cavity dimen-
sions are large enough, the electric field distribution in the slot is approximately the
same as before introduction of the cavity.

Assume that this is the case, and that the a-dimension of the cavity is in the
range to permit propagation only of the TE,, mode. If additionally & = w, the field
distribution in the cavity primarily consists of a standing wave of the TE,, type, with
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Fig. 8.6 A Cavity-Backed Slot in a Large Ground Plane

field components given by

E,:Csinn—:sinﬂ(d—z)

H. — _(j(fﬂ )Csin%‘cosﬂ(d 9

0

H, — — ( )Ccos—smB(d—z)
jou.a

The complex power flow into the cavity is then

Vlzj"jbExH-l,dxdy

( B )CZ sin ﬁdcosﬂdf f sin —dx dy

jCO

,Bab) 5
<2Jw C? sin fd cos fd

Since V = E,b = bC sin Bd, the input admittance of the cavity is

= e )

(8.6)

(8.7)

(8.8)



8.5 Coaxially Fed Helix Plus Ground Plane 361

With the current distribution in the radiating face of the ground plane the same as
though the cavity were not present, the admittance of the slot is half what it was
before, or

d
ys = 2Z° (8.9)
The total admittance seen by the coaxial feed is therefore

Y=Y 4 ¥ = % Aj(%)(%%> cot Bd (8.10)

If the cavity dimensions and the slot length are properly adjusted, the susceptive part
of Y* can cancel Y¢ so that the coax sees a resistive load of amount #2/2R?. This is a
high resistance, typically in the range of 1000 ohms. Coaxial feeds with their charac-
teristic impedances in this range are impractical, and stepdown impedance transfor-
mations are narrow band. However, a 7-bar transition, in which the center conductor
of the coax terminates in a transverse bar rather than the upper side of the slot, has
proven very effective in overcoming this impedance level problem. The cavity dimen-
sions must be adjusted experimentally, but an exact match at the design frequency
can be achieved, with the input VSWR held under 1.5 over a 309, bandwidth.?

8.5 Coaxially Fed Helix Plus Ground Plane

A helical antenna with circumference C, that is approximately one free-space wave-
length will radiate in the axial mode, producing an end-fire beam that is circularly
polarized. The helix is usually mounted over a ground plane and excited by a coax,
as shown in Figure 2.11. The ground plane should be at least one-half wavelength
in diameter, but all dimensions of this antenna are surprisingly noncritical, and good
operation can be obtained over an extremely broad band of frequencies.

A typical example is provided by J. D. Kraus® who describes the performance
of a six-turn helix with a 14° pitch angle. The helix diameter was 0.314, at the center
frequency of 400 MHz. Kraus used tubing of 0.024, for the helix but comments that
tubing with diameters ranging from 0.0064, to 0.054, have little effect on the antenna
characteristics. His measured patterns in the frequency range 300-500 MHz are
shown in Figure 8.7. (Outside this range the patterns deteriorated).

The measured input impedance at 400 MHz was 130 ohms and this was trans-
formed to 53 ohms via a quarter-wave section. Kraus measured the input VSWR
versus frequency referred to a 53-ohm line, and the results are given in Figure 8.8.
Also shown is the axial ratio (| E,|/| £,| at end-fire) and the half-power beamwidth
for the E, and E, pattern components. On all counts, this is seen to be a highly

2Radio Research Laboratory Staff, Very High Frequency Techniques, (New York: McGraw-
Hill Book Co., Inc., 1947), Chapter 7.

3J. D. Kraus, Anrennas, (New York: McGraw-Hill Book Co., Inc., 1950), pp. 208-12.
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satisfactory antenna for circularly polarized applications requiring a beam-type
pattern.

8.6 The Design of an Endfire Dipole Array

A linear array of transverse, parallel dipoles, excited to produce an endfire beam,
finds many applications, both as a transmitting antenna and as a receiving antenna.
Chapters 4 and 5 dealt with the questions of current distribution, array length, and
interelement spacing if a linear array is to produce an endfire pattern with a specified
beamwidth and side lobe level. There remains the problem of determining how to
deliver the desired currents to the individual radiators. Often this is done by means
of a properly designed transmission line network. An example of an endfire dipole
array fed in this manner will be presented in this section.

The reader will find that the design of endfire dipole arrays is a rich and diverse
subject. In some designs the dipoles are not equispaced (log-periodic) and in some
designs they may not all be fed by the transmission line (Yagi-Uda). These approaches
will be treated in ensuing sections.

As an example of an equispaced endfire array with all elements directly fed,
consider the antenna system shown in Figure 8.9. The dipoles are spaced 1/3 on
centers and series-coupled to a two-wire transmission line which can be assumed
air-filled. The currents are to be I, = 1]—120°, [, = 1.5]0°, and I, = 1|120°, resulting
in an array factor with —17 dB side lobes, as shown in Figure 8.10.
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Fig. 8.9 An Endfire Array of Three Dipoles, Series-Fed by a Two-Wire Transmission
Line
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If (V,,, 1) is the voltage/current pair at the terminals of the mth dipole, then

3
Vm = Z Iann
n=1

and thus the active (or input) impedances at the three terminals are

I 1
Zi = Z11 + ‘1‘2—212 + 73*213
1 1

= Z,, 4 1.5e 07, 4 eitniZ

Z§ = Zyy + 0.6Te#1Z,, + 0.67Z,,
Z8 =27, + 1.5 7237, + e i*3Z,,

(8.11)

(8.12)

For the purpose of making a first calculation of the mutual impedances, assume that
all three dipoles are 4/2 long. Equations 7.155 and 7.156 can be used to compute Z,,

for 4/2 dipoles spaced A/3 on centers. The results are

le = Zz1 = 223 = Zaz
Ziy = Zy = —25.34 — j5.32 = 25.90|—168.1°

When this information is placed in (8.12), one finds that

= 21.40 — j36.76 = 42.54/ —59.8°

(8.13)
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Z¢=Z,, + 38.76 + j79.98
Z:=2Z,, — 1428 + j24.52 (8.14)
Z8 = Z,, —46.54 — j19.52
Consider the feeding problem from the vantage point of port 2, looking along
the transmission line toward port 1. The equivalent circuit of this part of the antenna

system is suggested by Figure 8.11. Since the input and output currents of a section
of transmission line of length / are related by the equation

Iy = IOUT[COS Bl 4 j% sin /ﬁ] (8.15)
0

with Z, the load impedance through which the output current flows, and Z, the
characteristic impedance of the transmission line, it follows that in this case

1.510° = 1.0[=120°(cos 120° + j <L sin 120°]
0

or that
ZE 154 j0.29 == 1.53]10.9° (8.16)
Z,
A
Iy 11T
V]
ZO

}Af ! ;I
| |
Fig. 8.11 The Equivatent Circuit of the Rearward Part of the Antenna System

If one makes the tentative assumption that the mutual impedance terms are
insensitive to small length adjustments, Equations 8.14a and 8.16 taken in concert
indicate that 2/,, the length of dipole 1, should be adjusted so that Z,, + 38.76 +
j79.98 has a phase angle of 10.9°. Assume that Tai’s empirical formula (7.71) gives
an adequate measure of Z,,. If the dipole cross section (see the inset of Figure 8.9)
is such that w/A = 0.0056 and t/A = 0.0008, then the equivalent cylindrical dipole
(see Section 7.12) has the radius a = (w + ¢)/4 and thus ¢/A = 0.0016. When this
normalized radius is used in (7.71), it is found that if 2/,/2 = 0.439, then Z,, =
50.28 — j62.54 and Z? = 90.04 + j17.44 = 91.71|10.96°. When this information is
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placed in Equation 8.16, one finds that the stretch of two-wire line connecting dipoles
1 and 2 should have a characteristic impedance of 60 ohms. With the transverse
dimensions of the feed line as indicated in the second inset of Figure 8.9, the charac-
teristic impedance is given by Z, = n(b/a). For this section of line, (b/a) = 60/377 =
0.16, which is quite reasonable.

This process can be repeated by drawing the equivalent circuit of the antenna
system from the vantage point of port 3. This is illustrated by Figure 8.12, which
shows that the load impedance consists of Z¢ in series with Z¢, where Z¢ is the active
impedance Z?¢ transformed through an electrical length of 120°, that is,

(Z2/Z,) cos 120° + j sin 120°
®cos 120° + j(Z?]Z,) sin 120°

=39.96 + jl1.54 = 41.60]16.1° (8.17)

VAR VA

Zy z{

|l |
| ! 7]

Fig. 8.12 The Equivalent Circuit of the Forward Part of the Antenna System

A second use of (8.15) gives

[1120° = 1.5|0°[cos 120° ﬂﬁ;_,zi sin 12001 (8.18)
- — 0

in which Z} is the characteristic impedance of the length of two-wire line connecting
dipoles 2 and 3.
Solution of (8.18) yields

Z—Z;TZ—I — 0.667 ~— j0.192 — 0.694|— 16.1° (8.19)
From (8.14) and (8.17) it is known that
Z3+ Z§ = Z,, + 25.68 + j36.06

and from (8.19) this should be an impedance with a phase angle of —16.1°. Another
use of Tai’s formula (7.71) indicates that, if 2/,/A = 0.441, then Z,, = 51.08 —
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J58.32 and Zg + Z¢ = 76.76 — j22.26 = 79.92| —16.2°. A return to (8.19) reveals
that Z; = 115 ohms should be the characteristic impedance of this stretch of two-
wire line.

The input impedance to the entire antenna system is given by

[(Zs + Z%2)/Z;] cos 120° + j sin 120°
cos 120° + jl(Z5 + Z¥)/Z}] sin 120°

= Z,, + 126.54 — j52.84 (8.20)

Zin=25+ 26

If this total input impedance is to be pure real, then a third use of Tai’s formula
(7.71) indicates that the length of dipole 3 should be 2/;/1 = 0.507; then Z,, =
76.58 4~ j52.82 and

Z,y = 203 ohms (8.21)

This input resistance can be matched to the transmitter (receiver) by a quarter-wave
transformer or a tapered line.

The design procedure just described was predicated on the assumption that
Z,; is insensitive to these small dipole length changes. One can check this by repeating
the process, using the new dipole lengths to compute the mutual impedances. When
this is done, one finds that

Ziy = Zy, = 15.16 — j26.12
Z,y = Zy = —21.50 — j4.66
Zyy = Z5, = 18.42 — j31.66

With these values used in the design procedure, it can be determined that

2, 2, 2,
T‘ - 0.449 S 0.442 . 0.507
Z, = 55 Zh = 125 Zon = 225

One can observe that 2/,/4 is 29 higher, 2/,/4 is changed but little, and 2/,/4 is
unchanged. Also, Z, is 8% lower, Z; is 8%, higher, and Z,, has been raised by 109.
Another iteration would show almost negligible further change and will not be
undertaken.

If the gap problem is such that neither the Tai empirical formula (7.71) nor
the more accurate King-Middleton equations (7.110) and (7.111) give a valid repre-
sentation of the self-impedance, experimental data can be taken (at a modeled fre-
quency if that is more convenient) and then formula-fitted. The design procedure is
unchanged except for the substitution of the fitted formula for (7.71). Mutual imped-
ance is not so seriously affected by the gap problem and thus (7.155) and (7.156)
should still be applicable.
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If the end-fire array described in the previous section (three parallel dipoles in free
space, all driven) were enlarged to become an array of four or more driven elements,
an increase in directivity could be achieved. The same design procedure could be
used to determine dipole lengths and transmission line characteristics. However, the
design quickly becomes complicated by the addition of more elements, and the
complexity of feed construction becomes onerous. A nice way out of this difficulty
would result if it were to prove possible to eliminate the feed network, to short all
dipoles save one, and to adjust the lengths and spacings so that the currents induced
in the shorted dipoles (by the field of the driven dipole) would contribute to the
creation of an end-fire pattern.

This possibility was first investigated by S. Uda* in the 1920’s and reported in
an English-language journal by his colleague H. Yagi®, as a result of which such
antennas have come to be known as Yagi-Uda arrays. They have many practical
applications, including wide use by amateur radio enthusiasts.

One can gain considerable insight about such arrays by considering first the
case of two parallel dipoles a distance d apart, one driven and the other parasitic
(shorted). This situation is suggested by Figure 8.13. The mesh equations for this

4
b

Dipoles 11

X
Fig. 8.13 An Array of Two Parallel Dipales, One Driven, One Parasitic

4S. Uda, “Wireless Beam of Short Electric Waves,” J. IEEE (Japan), (1926), pp. 273-82 and
(1927), pp. 1209-19.

5H, Yagi, “Beam Transmission of Ultra Short Waves,” [RE Proceedings., 16 (1928), 715-41.
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array are
V=12, + 1,Z
1 1411 2412 (8‘22)
0=12Z,,+ 1,Z,,
and thus
L _ _Zy,
I = "Z. (8.23)
Since the array factor is given by
a@) =1 + %efkdmﬂ (8.24)
1

it is clear that the shape of the pattern is controlled by the spacing d/A and by
—Z12Zss.

If the lengths of the two dipoles are near first resonance, the phase of the
mutual impedance as a function of d/A is quite insensitive to the values of 2/,/4 and
21,/A. (Even the magnitude of Z,, does not show much sensitivity.) As an illustration
of this, let 2/,/A = 0.475, and let 2/,/A = 0.450, 0.475, and 0.500, successively. If
Equations 7.155 and 7.156 are used to compute the mutual impedance, one obtains
the values entered in Table 8.4.

Because of this insensitivity, the phase of I,/I,, at a given spacing, is governed
primarily by the phase of Z,,, as can be seen from (8.23). Continuing with the present
illustration, one can determine an approximation to Z,, by using either Equations
7.110 and 7.111 or Figure 7.18. With a,/A = 0.0032, this gives the values shown in
Table 8.5. When these values of Z,, are used in conjunction with the entries of
Table 8.4 and Equation 8.23, the current ratios shown in Table 8.6 are obtained.

Since the objective is to produce an end-fire pattern with this two-dipole array,
one can scan the entries of Table 8.5 to see if there is some combination of d/4 and
21,/4 which will enhance end-fire radiation. For the beam to be at § = 0°, enhance-

TABLE 8.4 Mutual impedance versus spacing between two parallel
dipoles: 2/;/A = 0.475

Z1; ohms

djA 2/,/A = 0.450 20,/ = 0475 2/,/4 = 0.500
0.10 53.94|1.52° 58.1913.22° 62.78 14,98
0.15 49.08 | —9.38° 52.73 }TS._MC 56.62 | —17.50°
0.20 44.42{—21.93° 47.67{—21.42° 51.12|—-20.90°
0.25 40,23 | —35.53° 43.18 | —35.28° 46.30 |—35.02°
0.30 36.551—4991° 39.26 | —49.82° 42.11]—49.73%
0.35 33.35|—64.87° 35.84 | —64.89°¢ 38.471—64.91°
0.40 30.57 1 —80.32¢ 32.86 | —80.40° 35.31|—80.48
0.45 28.14|—96.14° 30.28 | —96.26° 32.56|—96.38°

0.50 26.04 | —112.25° 29.02|—112.40° 30.16|—112.56°
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TABLE 85 Self-impedance of a cylindrical dipole
versus length (King-Middleton corrected
second-order approximation;

(a,/4 = 0.0032)

2[2/1 VA ohms

0.450 60.56 — j29.58 = 67.40|—26,03°
0.475 72.06 + j 4.04 = 72.1713.21°
0.500 83.60 + j41.34 = 93.26|26.31°

TABLE 8.6 Relative current versus spacing for two parallel dipoles, one
driven, one parasitic: 2/;/1 = 0.475

LI = —Z13/Z32
dj 2134 = 0.450 205/2 = 0.475 2/,/2 = 0.500
0.10 0.800|—152.45° 0.806|180.01° 0.673/158.67°
0.15 0.728 | —163.35° 0.731168.34° 0.607146.19°
0.20 0.659 | ~175.90° 0.661|155.37° 0.548 [132.79°
0.25 0.597170.50° 0.5981141.51° 0.496|118.67¢
0.30 0.542|156.12° 0.544 126,97 0.4521103.96°
0.35 0.495|141.16° 0.497|111.90° 0.413/88.78°
0.40 0.4541125.71° 0.455196.39° 0.37973.21°
045 0.418 |109.89° 0.42080.53° 0.34957.31°
0.50 0.386193.78° 0.388 (64.39° 0.323 141.13°

ment will occur if I, lags I, by kd radians. Clearly, none of the values in Table 8.6 fit
this condition. However, cancellation in the direction 8 = 180° also corresponds to
a beam at & = 0°. Such cancellation results if I, lags I, by # — kd radians. It can be
observed that if d/A = 0.10 and 2/,/A = 0.450, this condition is almost satisfied.

Similarly, if one wishes to produce an end-fire beam at @ = 180°, this goal will
be helped if I, leads I, by kd radians. Inspection of the entries in Table 8.6 indicates
that this will occur if d/A = 0.30 and 2/,/4 = 0.500.

The criterion of attempting to match the phase of I,/I, with either kd or its
supplement is actually too crude, since a forward optimum and a rearward optimum
cannot be achieved at the same spacing. A more useful way to go about determining
the optimum spacing is to compute the directivity corresponding to each entry in
Table 8.6. When this is done, one finds that for 2/,/4 = 0.450, an end-fire beam
occurs at § = 0°, and that the directivity versus spacing is given by the solid curve
in Figure 8.14. Similarly, for 2/,/A = 0.500, an end-fire beam occurs at 8 = 180°,
with the directivity versus spacing indicated by the dashed curve in Figure 8.14.

An important conclusion can be drawn from this exercise. If a shorted dipole
is spaced an appropriate distance from the driven dipole, an end-fire beam can be
produced. When the parasitic dipole is shorter than the driven dipole, it is called a
director, and the end-fire beam is in the direction from the driven element past the
parasite. When the parasitic dipole is longer than the driven dipole, it is called a
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Fig. 8.14 Peak Directivity versus Element Spacing for an Array of Two Parallel Dipoles;
One Element Driven, the Other Parasitic

reflector, and the end-fire beam is in the direction from the parasite past the driven
element. From Figure 8.14, the optimum spacing (in the sense of maximizing direc-
tivity) is seen to be about 0.124 for the director case and 0.164 for the reflector case.
Pattern cuts in the XZ-plane are shown in Figure 8.15 for these two optimum designs.

Under the assumption that Z,, is insensitive to small changes in 2/,/A. all of
the foregoing is still valid if 2/,/4 is no longer exactly 0.475. Adjustment of 2/,/1 can
make the input impedance pure real, which is often desired. From (8.22),

2
ZlZ

ZIN = 22 )

1
L:Z“—}——ZZ”:Z“ — (8'25)
1, 1,

For the optimum director case, one can deduce from Tables 8.4 and 8.6 that

2
AT

22

= —37.59 —j13.95 (8.26)

Therefore, 2/,/4 should have a value such that the reactive component of Z,, is
+-13.95 ohms. Use of (7.110) and (7.111) or Figure 7.19 leads to the conclusion that,
with a,/A = 0.0032, 2/,/A should be 0.482, and then Z,, = 75.82 4 j13.95 and
Z,;ny = 38 ohms.



372

dix=0.12

20, A =0.482
20, /X = 0.450

(a)

< l
7

/

/
2, /n=0.454
2, /\ = 0.500

(b)

Fig. 8.15 H-Plane Power Patterns for Two-Element Yagi-Uda Arrays
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Similarly, for the optimum reflector case, Tables 8.4 and 8.6 yield the infor-
mation that

2
_Zi

22

= —22.67 + j24.03 8.27)

For this situation, 2/,/A should be chosen so that Z,, has a reactive component equal
to —24.03 ohms. One finds that 2/,/4 should be 0.454, and this gives Z,, = 62.46 —
J24.03, so that Z,y = 40 ohms.

Improved accuracy would result if this design procedure were iterated, but the
values obtained are indicative of the method, and probably of sufficient accuracy
for most purposes.

8.8 Yagi-Uda Type Dipole Arrays: Three or More Elements

A natural extension of the development in the previous section is the three-element
dipole array, with one driven element flanked on each side by a director and a reflec-
tor, as shown in Figure 8.16. The mesh equations for this array are

v, — i 1Z,, (8.28)

w}th V, = V, = 0. Simultaneous solution of the first and third equations of (8.28)
gives

11, — Z;fzzﬁn“_zgiw (8.29)

L1, ZE,ZI'ZZS:.ZZZS%’ (8.30)

whereas the second equation of (8.28) gives the input impedance

v 1 I
Ziy =7 = 2o+ ()20 + (7) 220

— 211222233 - Z%SZII - 2%3222 — Z%ZZZS + 2212213223
211233 - Z%S

(8.31)

Under the assumption that the presence of the director does not materially
affect the proper length of the reflector and vice versa, one can initiate a computer
search in the neighborhood of the two separate designs of the previous section to
find optimum values of 2/,/A and d4,/A. When this is done, a fairly broad range of
dimensions gives good results. Both the reflector and the director can be spaced 0.154
to 0.204 from the driven element without much effect on the pattern. As an example,
if

d,/A = d,;/A = 0.20, 21,/ = 0.450, 21,/ = 0.475, 21,/A = 0.500
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Fig. 8.16 A Linear Array of Three Parallel Equispaced Dipoles

then it is found that

L0635 —143°, L2._0389/143°, Z,y = 25.6/10°
1, Bkl 1, (Eni) (LA

A small adjustment in the length of the driven element will tune the input impedance
to resonance.

An XZ-plane plot of the power pattern for this current distribution is shown in
Figure 8.17. The directivity of this three-element Yagi-Uda array is 7.5 dB above
that of a single dipole.

Experience shows that attempts to place more reflectors behind the driven
element are ineffectual because the total field reaching them is small, but a string of
directors can be placed in front of the driven element, with each additional director
resulting in an increase in directivity. For example, with 20 directors, one driven
element, and one reflector, and with the overall length of the Yagi-Uda array 6.54,
the directivity over a single half-wave dipole is 19 dB. In such designs, successive
directors are about 0.5% shorter, and the interelement spacing increases to about
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dix=0.20

2, /A = 0.450
2,/ = 0475
205 /A = 0.500

Fig. 8.17 H-Plane Power Pattern for a Three-Element Yagi-Uda Array

0.351 at the fifth director and then remains constant. The reader interested in prac-
tical details should consult the Radio Amateur’s Handbook.®

The multi-element Yagi-Uda array has been analyzed as a slow-wave structure,
and a summary of this approach, with bibliography, can be found in E. A. Wolff.”
It has also been treated by G. A. Thiele,® using a point-matching technique within
the framework of the method of moments. His theoretical results for the pattern of
a |5-element array are in extraordinary agreement with experiment.

8.9 Frequency-Independent Antennas: Log-Periodic Arrays

Yagi-Uda dipole arrays, described in the previous two sections, have the advantage
that there is only one fed element. At a single frequency, with many dipoles in the
array, it is possible to get a good end-fire pattern and a real input impedance at a
convenient level. However, such arrays are not particularly broadband, either in
terms of pattern performance or input VSWR.

6See the Radio Amateur’s VHF Manual, 3rd Edition (Newington, Conn: ARRL, Inc., 1972),
pp. 153-55.

7E. A. Wolff, Antenna Analysis (New York: John Wiley and Sons, Inc., 1966), pp. 405-9.

8G. A, Thiele, “Wire Antennas,” Computer Techniques for Electromagnetics, ed. R. Mittra
(Oxford: Pergamon Press, 1973), Chapter 2, pp. 43-48. See particularly Figure 2.21.
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There exists a type of dipole array, with a simple feeding structure, which will
produce patterns similar to those of a Yagi-Uda array, but over a remarkably broad
band of frequencies (6:1 or more), with the added virtue of a low input VSWR
throughout the same frequency range. Such arrays are called log-periodic, and a
satisfactory way to understand their performance is to start with a general analysis
of frequency independent antennas.

It was recognized by V. H. Rumsey® that an antenna with shape specified
entirely in terms of angles will have pattern and impedance characteristics that are
independent of frequency. His analysis of such antennas is reproduced in what follows,
except that the treatment of the three dimensional case is simplified.!?!!

Consider an antenna, with both terminals indefinitely close to the origin of a
spherical coordinate system, being symmetrically disposed along the 6 = 0°, 180°
axis. Assume that the antenna consists of perfect conductors and is surrounded by
an infinite homogeneous and isotropic medium. Let the surface of this antenna be
described by

r= F(8, ¢) (8.32)

Equation 8.32 does not necessarily imply that the material composing the antenna
is indefinitely thin. There may be several branches to the function F(d, ¢), corre-
sponding to inner and outer surfaces.

Suppose that one wishes to scale this antenna to a new frequency that is X
times lower than the original frequency. The antenna must be made K times bigger,
resulting in a surface

r’ = KF(8, ¢) (8.33)

in which K depends neither on 6 nor on ¢.

Imagine that when this is done the new surface is found to be identical to the
old, that is, the surfaces are not only similar, but they can actually be made congruent.
(This implies, of course, that both surfaces are infinite.) A little thought will convince
the reader that congruence, if it occurs, can only be established through a rotation
in ¢. (Translation is barred because both antennas have their terminals at the same
origin. Rotation in # is barred because both pairs of terminals are symmetrically
disposed along the 8 = 0°, 180° axis.) Thus, for congruence,

KF(@,¢) = F0,¢ -+ C) (8.34)

9V. H. Rumsey, “Frequency Independent Antennas,” /RE National Convention Record, Part [
(March 1957), 114-18. Also, see Rumsey’s textbook of the same title (New York: Academic Press,
1966),

1oMuch of the material in this section is taken from a tutorial paper written by the author in
1962, See “A View of Frequency Independent Antennas,” Microwave Journal, (1962), pp. 61-68.
Copyright 1962 Microwave Journal. Reprinted with permission.

11For a review of the highlights in the development of this subject, see E. C. Jordan, G. A.
Deschamps, J. D. Dyson, and P. E. Mayes, “Developments in Broadband Antennas,” /EEE Spectrum,
1 (1964), 58-71.
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in which C is the angle through which the second antenna must be rotated in order to
achieve congruence with the first. Here C depends on K, but neither depends on @
nor ¢.

Congruence implies that the original antenna would perform exactly the same
at the two frequencies, except for a rotation C in the azimuthal coordinate of its
radiation pattern as the frequency is changed from v to v/K. If it should develop that
the range of K is unrestricted, that is, if

0< K <o (8.35)

then the original antenna must have a pattern shape and impedance that are inde-
pendent of frequency. (The pattern may rotate in ¢ with frequency due to the para-
meter C, but its shape will be unaltered.)

If (8.35) holds, the nature of the function F(8, ¢) can be deduced from (8.34).

Differentiation of both sides with respect to C gives

dK d d
EF(¢9, ¢) = BE,F(H, ¢+ C) = «TM——C)F(G’ ¢+ O (8.36)

whereas differentiation of both sides with respect to ¢ gives

4 _ 9 9 n
Combining these two results, one obtains
dK 0

which can be rewritten, with the aid of (8.32), in the form

1 dK _ 1 dr ’
KdC =7 3¢ (8.39)

Since the left side of (8.39) is independent of 8 and ¢, it follows that
r=F(0, ¢) = e*f(8) (8.40)

is a general solution of (8.39), in which a = (1/K) (dK/dC) is a parameter and f(6)
is a completely arbitrary function.

Equation 8.40 was first derived by V. H. Rumsey!? and is the central result of
the analysis. Any antenna that has surfaces which can be described by functions of
the form of (8.40) will have pattern and impedance characteristics that are inde-
pendent of frequency. Several important classes of such antennas can be identified.

12Rumsey, “Frequency Independent Antennas.”
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PLANAR SPIRALS If one chooses f(f) so that
af _ 1@y — 46 (& —
d~0#f(0)fA6<2 e) (8.41)

with 4 an arbitrary positive constant and 6 the Dirac delta function, then (8.40)
becomes

P e g =X (8.42)
F=0 if 6 % (8.43)

In (8.42), roe~*® is a substitution for 4. The antenna surface is seen to lie in the
XY-plane and (8.42) can be recognized as the equation of an equiangular spiral.

Since the parameter A is arbitrary, it follows that in (8.42) r, can be considered
as fixed, with ¢, playing the role of a parameter. If ¢, is given the values 0 and =, the
antenna of Figure 8.18a results. If ¢, is allowed to take on the values 0, z/2, =, and
3n/2, four spiral forms occur, as shown in Figure 8.18b, with several symmetrical
possibilities for connecting the terminals. If ¢, is allowed to assume all values from
0 to @,, and all values from # to & + @,, with ¢, arbitrary, an antenna of the type
shown in Figure 8.18c arises. From these few examples, the variety of possible
combinations for the planar spiral case is seen to be endless.

In the ideal theoretical analysis resulting in (8.36), the antenna shapes shown
in Figure 8.18 are assumed to be infinite. However, investigation of the current
distribution on such antennas reveals that the principal part of the excitation occurs
in a resonant region around r = 1/2. Thus when the planar spiral antennas of Figure
8.18 are truncated at some finite size, one can anticipate that the antenna should
perform satisfactorily down to a frequency at which the wavelength is comparable
to the antenna size. An upper frequency limit can be expected when the actual antenna
terminals no longer behave as a pair of points infinitesimally apart at the origin.
Experiments confirm these frequency limits.

An interesting feature of the planar spiral antenna is that Babinet’s principle
may be applied to it (see Appendix F). With reference to Figure 8.18c, if Z, is the
input impedance of the antenna for a value ¢, = & and Z, is the impedance for a

(a) (b) (c)

Fig. 8.18 Some Simple Shapes for Frequency-Independent Planar Antennas
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value ¢, = 7 — «, the two antennas form complementary screens and thus Z,Z, =
n*/4. For the special case that ¢, = n/2, Z, = Z, = 188.5 ohms. This self-comple-
mentary feature was first pointed out by Mushiake.

CONICAL SHAPES If one returns to the generic equation of (8.40), it is apparent
that an equally acceptable choice for f(8) would result from the requirement that

f'@) = 46(8 — 6) (8.44)

in which f§ is any angle in the range 0 << § <{ m. The previous discussion of planar
spirals can be repeated, except that now the spirals are wrapped on a conical surface.

By symmetry, the planar spiral must exhibit the same pattern shape in 0 <<
0 < m/2 as in ©/2 << 8 < x, which severely limits its practical applications. But the
conical spiral does not suffer from this limitation, and appropriate selection of the
value of # can result in an antenna which produces a single end-fire beam that is
circularly polarized.!?

THE LOG-PERIODIC ELEMENT An interesting and ultimately practical approxi-
mation to a frequency independent antenna has been conceived by R. H. DuHamel
and D. E. Isbell** and is illustrated in Figure 8.19. If successive radii are in the

Fig. 8.19 A Logarithmically Peri-
odic Planar Antenna

13J. D. Dyson, “The Unidirectional Equiangular Spiral Antenna,” Trans. IRE, AP-7 (1959),
329-34.

14R. H. DuHamel and D. E. Isbell, “Broadband Logarithmically Periodic Antenna Struc-
tures,” IRE National Convention Record (1957), pp. 119-28.
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common ratio

=7 = et (8.45)

then if the shape of the original antenna is described by

r=f(0) (8.46)
a new antenna, scaled to give

r = Kf(#) (8.47)

can be made congruent to the original antenna, but only for a restricted discrete set
of values for K. These K values are given by

K = 17 = ¢*me (8.48)

in which m is an integer. Thus, at any two frequencies in the ratio e*"™, the antenna
of Figure 8.19 should give the same pattern and impedance. For this reason, the
configuration is called a logarithmically periodic planar antenna.

If it turns out that the performance does not vary greatly in the frequency range
v, < v < v, with v,/v, == 7 = 2™, then the configuration of Figure 8.19 is broad-
band. DuHamel and his co-workers found experimentally that some choices of the
parameters &, f, and 7 for this antenna gave better frequency characteristics than
others.

LOG-PERIODIC WIRE ANTENNAS One of the most important practical
advances in the subject of frequency-independent antennas was made by DuHamel,
who discovered that the fields fell off very sharply with distance from the conductors
of antennas of the types shown in Figure 8.18c and 8.19. This suggested that perhaps
there was a strong current concentration near the edges of the conductors. If this
were so, then removal of most of the material of the antenna of Figure 8.19 should
not seriously affect the pattern and impedance characteristics. When this removal is
accomplished, the wire antenna of Figure 8.20 results. As anticipated, the perfor-
mance of this antenna is almost identical to that of its parent.

DuHamel found further that one need not adhere strictly to the shape of Figure
8.20. A wire structure of the form shown in Figure 8.21 is equally suitable. The
criterion that must be observed is that the lengths of the transverse elements and
their spacings must increase in the same geometric progression.

The antennas of Figures 8.19 through 8.21 suffer from the same deficiency as
the planar spiral, in that they create bidirectional patterns, for which the practical
applications are limited. But just as Dyson was able to overcome this limitation for
spiral antennas by wrapping the spirals on cones, DuHamel found that it is possible
to enhance the applicability of log-periodic antennas by folding the two halves so
that they lie on the surfaces of a wedge. This is illustrated in Figure 8.22. The result
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Fig.8.20 A Wire Evolvement of the Antenna of Fig.
8.19

381

)€

Fig. 8.21 A Wire Variant of the Antenna of Fig.

8.20

is a vee-type antenna which radiates a unidirectional pattern whose main beam points
off the tip of the antenna. Pattern and input impedance characteristics are comparable
to what Dyson was able to achieve with conical spirals, the principal difference being
that linear polarization is obtained with the log-periodic vee whereas circular polar-

ization occurs with the conical spiral.
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Fig. 8.22 A Log-Periodic Wire
Vee Antenna

An example of the performance of a log-periodic vee-wire antenna of the type
shown in Figure 8.22 is provided by R. H. DuHamel and F. R. Ore.!* For a wedge
angle of 45°, the E-plane and H-plane beamwidths were each 66°, the gain was 9.2 dB,
and the front-to-back ratio was 12.3 dB. The average input impedance was 110 ohms
with a VSWR referred to this value which did not exceed 1.45 over a 10:1 band.
Typical patterns for one frequency octave are shown in Figure 8.23.

Two log-periodic vee-antennas can be placedin space quadrature with a
common apex, as shown in Figure 8.24. If fed with equal signals that are in time
quadrature, they combine to give a single circularly polarized beam when one of the
vees is scaled by a quarter of a period. Such an antenna thus becomes competitive
with a conical spiral and also offers the possibility of polarization diversity.

The front-to-back ratio of the end-fire pattern of a log-periodic vee-antenna is
found to be sensitive to the wedge angle. In the extreme case that the wedge angle
approaches zero, the pattern disintegrates badly. This is an interesting result, because
in this extreme case the antenna is still a log-periodic structure, but fed by a two-wire
line of constant spacing, as suggested by Figure 8.25. The poor performance of this
antenna can be traced to the method of feeding. If one assumes that the frequency of
operation is such that the nth transverse element is close to its half-wavelength
resonance, then the principal excitation of the array involves the (n — 1)st, nth, and
(n + D)st elements, since the other elements to the right or left of these three are
increasingly detuned. Therefore an approximate model for the array is the three-
element structure shown in Figure 8.26a. (The skirt wires have been deleted since
they contribute little to the performance or to the explanation.)

A study of Figure 8.26a quickly reveals what is wrong. This three-dipole array
is similar to a Yagi-Uda array, except that all three elements are driven. But the
director, that is, the (n — 1)st element, should have a current which lags the current
in the nth element. And the reflector, that is, the (n -+ 1)st element, should have a
current which leads the current in the nth element. With feeding from the left, the
situation is just the opposite from what it should be.

1SR, H. DuHamel and F. R. Ore, “Logarithmically Periodic Antenna Designs,” IRE National
Convention Record (1958), 139-52,
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Fig. 8.23 Power Patterns for a Log-Periodic Wire Vee Antenna; Wedge Angle 45°;
Polar Plots, Linear Scale (© 1958 IEEE. After Duttamel and Ore, /RE National Convention
Record, 1958.)
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Fig. 8.24 Two Logarithmically Periodic Wire Vee Antennas in

Space Quadrature

/

\

Fig. 8.25 An Improperly Fed Log-Periodic Dipole Array
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In—l ln In+1

(a)

(b)

Fig. 8.26 Alternate Methods for Feeding a Three-Dipole Array

The remedy is simple. One need only reverse the feeding at successive junctions
of the dipoles with the transmission line, as suggested by Figure 8.26b. Recognition
of this fact has led to perhaps the most practical and widely used of all the log-
periodic arrays, with typical construction indicated by Figure 8.27. Though offering
less directivity than a Yagi-Uda multi-element array, with properly chosen scaling
parameters this log-periodic array can be made extremely broadband (multi-octave),
both in terms of pattern characteristics and input VSWR.1¢

]| 3

Fig. 8.27 A Properly Fed Log-
Periodic Dipole Array U

16D, E. Isbell, “Log Periodic Dipole Arrays,” IRE Trans. Antennas Propagat., AP-8 (1960),
260-67.
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One- and two-dimensional arrays of equispaced dipoles, placed A/4 in front of a
ground plane in order to confine the radiation essentially to a half-space, find wide
application. In very large arrays, all but the elements near the ends or the periphery
“see” approximately the same environment, both in physical location of neighboring
elements and in the local distribution of dipole excitations. Thus most of the dipoles
in these large arrays have roughly the same active impedance, and it is common
practice to make this assumption. However, even when the assumption is valid, the
active impedance is not the same as the self-impedance of an isolated element. Mutual
coupling to nearest neighbors must be taken into account. For small arrays, the
“common environment” assumption has to be discarded, and the active impedance
may vary widely from element to element. Since the “common” active impedance in
large arrays is affected mostly by nearest neighbors, that is, by a small local array,
the same technique for determining active impedance in small arrays can be applied
with equal success to the large array problem.

Consider first a linear array of similarly oriented dipoles that have a common
interelement spacing 4, with all the dipoles parallel to, and a common distance h
in front of, a ground plane. It will be assumed that the ground plane is composed of a
good conductor and extends at least 1/2 beyond the feed points of the end dipoles.
For practical values of ~—that is, A/4 or less—the image principle can be invoked
to good approximation, even for the end dipoles, and thus this antenna is equivalent
to a pair of linear arrays a distance 24 apart.

If there are N dipoles in the array, one can write

N
Ve = 2. Z I,.Z3, (8.49)
in which r = 1 identifies the row of dipoles and r = 2 identifies the row of images.

Since I, , = —1, , (the image currents are equal and opposite to the actual dipole
currents), Equations 8.49 can be rewritten as

N
qu = ;;1 Il,.y'(Z;ZI'r - Z%;) (850)

The active (input) impedance of the gth dipole can be obtained from (8.50) by the
operation

(8.51)

Retention of the notation involving double subscripts and double superscripts is no
longer necessary, and one can write

Zyn (8.52)

N

I
M=
E] la\'
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with the single index m replacing 1, ¢ and the single index # replacing 1, s. In (8.52)
Z,, is a replacement for Z}:§ — Z%:. In words, Z,,, is the mutual impedance between
the mth dipole and the nth dipole minus the mutual impedance between the mth
dipole and the image of the nth dipole. Similarly, Z,, . is the self-impedance of the
mth dipole minus the mutual impedance with its image.

As an illustration of the use of (8.52), consider the problem of the design of the
five-element linear dipole array shown in Figure 8.28. Assume that it is desired to

excite this array with the equiphase current distribution
0.8 0.9 1.0 09 0.8

This will produce a sum pattern with a main beam at broadside and symmetrical
side Iobes at the heights — 14.2 dB and —14.8 dB.

Fig. 8.28 A Five-Element Linear Array of Dipoles Backed by a
Ground Plane
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Let the interelement spacing d equal A/2 and the spacing / off the ground plane
be A/4. If the starting lengths of all five dipoles are taken to be 1/2 for the purpose of
computing mutual impedance, then use of Equations 7.155 and 7.156 yields the
information that

Zi =Ty = Zyy = 25 — (—12.53 — j29.93) = Z*7 4 12.53 +- j29.93
Zyy = Zyy = Zsyy = Zys = (—12.53 — j29.93) — (—24.64 -+ j0.78)
= 12.11 — j30.71
Zis = Zye = Zys = (4.01 +j17.74) — (13.28 + j9.65) = —9.27 -+ j8.09
Zis = Zps = (—1.89 — j12.30) — (—7.21 — j9.39) = 5.32 — j2.91
Z.s = (1.08 + j9.36) — (4.38 - j8.04) = —3.30 +1.32

With the desired current distribution, this gives for the active impedances

Zt =278 =27%7 1+ 17.25 4+ j3.54
7§ = Zg = Z§F + 32.21 — j25.98
Z5 =275 +19.50 — j12.41
It is efficient to have these active impedances pure real. If one assumes that the

mutual impedance terms will change negligibly as the dipole lengths are adjusted,
then the new lengths should be such that

X3t = —3.54 X3 = 2598 Xy = 1241
Equation 7.71 can be used to determine /,, /,, and ;. For a/A = 0.004763, one finds
that
20,14 = 215/ = 0.466 21,/A = 21,/ = 0.489 21,/A = 0.478
This process could be iterated, using the new lengths to recalculate the mutual
impedances, in order to improve on the accuracy. However, one can assume that the

values just found are accurate enough and proceed. With the mutual impedances
taken to be unchanged as the lengths are trimmed to these new values, it follows that

7 =728 = R |+ 17.25 = 76.94
Zi=Z¢ = Ry + 32.21 = 100.67
Z2 = R/ 4 19.50 = 83.82

The relative powers radiated by these dipoles are

P, = P, = (0.8)%(76.94) = 4924 P, = P, = (0.9)*(100.67) = 81.54
P, = (1)%(83.82) = 83.82
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It can be observed that, even though the taper in the current distribution is slight, the
effect of mutual coupling causes almost a 2:1 distribution in radiated power.

Imagine that the balun coax characteristic impedances are adjusted so that the
active resistances R%, ..., R? are transformed to appear as resistances R, ..., R;
at the ground plane end of each balun. With R,, ..., R, presented as shunt obstacles
A/2 apart along a main line coax which runs behind the ground plane (coaxial 7-
joints are used at each coupling junction), one desires that

i: Gi - Gg“'
i=1

in which G, = 1/R, and G¥% is the characteristic conductance of the main line. This
will insure an input match to the array. But the same voltage magnitude exists across
each of the G,, and thus V*G, = P,. Therefore G,/G; = P,/P,. For this example

%

G,

4
c, = 0.973

3 = 0.587 2 —

2

w

S
o

as a consequence of which, 25; G, = 4.120G; = G}¥*, or
i=1

G, = G5 = 0.143G¥* G, = G, = 0.236GM* G, — 0.243GM*

One needs to select GY¥* at a practical level such that the branch line (balun)
characteristic impedances are also at a suitable level. These latter are given by Z5% =
(R¢/G)"* and thus

23.20 20.65 18.57
zg =z = Dan zm=zn- R 7= DS
The choice of a 25-ohm characteristic impedance for the main line (G¥* = 0.04)
results in

Zg,Ll :Zg,Lsz 116 Zg,Lz = Zg,L4: 103 Zg,L3:93

which are reasonable values in air-filled coax. The ratio of outer to inner radii for the
conductors of these branch coaxial lines can be determined from the formula Z3- =
60 In(b/a).

One can conclude that, to the extent the dipole lengths have been determined
correctly and under the assumption that (7.71) and (7.155) — (7.156) adequately
represent the self-impedances and mutual impedances, this transmission line network
will provide an input match and insure the desired antenna pattern. In practice, the
gap problem may be such that (7.71) is not an acceptable representation of the self-
impedance. In such cases, experimental data can be gathered on Z*/ versus 2//4
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and an empirical curve fitted to this data can be used in place of (7.71), with the
design procedure otherwise unaltered.

8.11 Ground Plane Backed Planar Dipole Arrays

The design of a transmission line harness for a two-dimensional set of dipoles arrayed
before a ground plane is basically the same as the procedure detailed for linear arrays
in the previous section. For the mnth dipole in the array, the active impedance is
given by

M N
Z5 = Z Z ”"Zﬁ.‘i. (8.53)
=

in which Z?2¢ is the mutual impedance between the mnth dipole and the pgth dipole
minus the mutual impedance between the mnth dipole and the image of the pgth
dipole. The self-impedance of the mnth dipole minus the mutual impedance with its
own image is Z72. Equation 8.53 is merely a restatement of (8.52), using double
subscript notation because of the shift from linear arrays to planar arrays.

The use of (8.53) in the design of a feeding network will be illustrated for the
case of the two-by-three array shown in Figure 8.29. It is assumed that all six dipoles
are fed through baluns of the type shown in Figure 8.3¢c. The dipoles are 4/4 in front
of a large ground plane, are 0.64 on centers in both directions, and are built of tubular
conductors for which a/A = 0.012. It is desired that the current distribution be
uniform in amplitude and equiphase, which will cause a broadside-broadside sum
pattern with a —13.5 dB side lobe level. An input match is desired where the trans-
mission line harness connects to the transmitter (receiver).

By symmetry, all four corner dipoles in the array will be the same as each other,
and the two middle dipoles will be the same as each other. Thus attention can be
limited to a determination of Z¢, and Z£,. Once again, one can begin by assuming
all dipoles are A/2 long for the purpose of computing mutual impedance and use
(7.155) and (7.156) to determine that

Z1 = Z3 = Zo9f — (—12.53 — j29.93) = Z*% 4 12.53 + j29.93
Z12 = 71t — (—23.31 — j15.87) — (—20.18 + j10.29) = —3.13 — j26.16
Z2 = Z3! = (14.67 — j4.01) — (—10.41 — j3.08) = 25.08 — j0.93
Z3 = Z3? = (—10.55 + j3.43) — (—2.35 + j11.04) = —8.20 — j7.61
Z3 = (—1.23 +/2.52) — (2.13 + j1.84) = —3.36 + j0.68
Z3% = (2.92 4 j0.76) — (2.93 — j2.00) = —0.01 + 2.76

With all desired currents equal, it is found that

Zs, = Z + 2291 — j1.33
7o, = Z5 + 43.16 — j13.31
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Fig. 8.29 A Two-by-Three Planar
Array of Dipoles Backed by a
Ground Plane

As before, assume that the dipole lengths will be adjusted so that Z¢, and Z2, are
pure real, and that this adjustment primarily affects Z3¢/ and Z4/. Thus the dipole

lengths are sought which cause

X347 =133 and X3¢ = 13.31
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to be satisfied. Use of (7.71) yields the values

2, 2y, _
Y 0.462 and = 0.475

and thus
Re, = 5782+ 2291 =80.73 and R3, = 62.81 4 43.16 = 105.97

If one assumes that the three dipoles (1, 1), (2, 1), and (3, 1) are connected in shunt
to a main line coax via the balun quarter-wave sections, the transformed resistances
are R,,, R,,, and R,,, these values being governed by the characteristic impedances
of the respective branch lines. In this example, the relative radiated powers are

P, = (1)*Ry, = 80.73 = P, P,, = (1)?Rg, = 105.97
and these powers are also given by
P, = V3G, Py = V3G, Py = V2G5,

in which V is the common voltage magnitude across the three shunt obstacles G, =
1/R,,, and so on. Thus

G —G., = P,y 10597 = 0762

If GML js the characteristic conductance of the main line feeding the three dipoles,
then to match that line one requires that

3

G., = G¥' = G,,[1 + 2(0.762)] = 2.524 G,

i=1
If, for example, G¥* = 0.02(a 50-ohm coaxial line), then
G,, = 0.0060 G,, = 0.0079 G,, = 0.0060

The needed branch line characteristic impedances are

Z8, =278, = [%]“2 = 116 ohms
thr = [Goor | — 116 ohms

It is a coincidence peculiar to this example that these two values are the same. They
are at a practical level. If this main line coax and its twin (which feeds the other three
dipoles) are joined in a 7-junction, the combined load is 25 ohms, which can be
matched to the transmitter (receiver).
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The accuracy of the foregoing procedure can be improved if all the mutual
impedances are recalculated using the new set of lengths. As stated before in connec-
tion with the linear array application, if the gap problem is such that (7.71) does not
accurately represent Z*¢/, then experimental data can be gathered and an empirical
formula fitted to the data and used in place of (7.71).

8.12 The Design of a Scanning Array

If a controllable uniform progressive phase can be attached to the current distribution
of an array which has been designed to produce a sum pattern, the main beam will
scan. (See Section 4.3.) This scanning feature unfortunately introduces pattern
distortion and input impedance disturbance, both of which usually become more
severe as the scan angle is increased. The causes are changes in mutual coupling
and in the electrical lengths of those segments of the feeding structure which contain
the phaseshifters. Compensation to prevent this performance deterioration can be
added to the feeding structure, but only at the cost of increased complexity.

As an illustration of the problems that can be encountered. consider again the
one-by-five dipole array of Figure 8.28. Imagine that there is a requirement to scan
the sum pattern of this array in the H-plane. One way to accomplish this is to place
identical variable phase shifters between successive junctions in the main line feed,
as shown in Figure 8.30a. An alternate possibility is to place variable phase shifters
in the branch lines, as suggested by Figure 8.30b. (A third method is to cause beam

vV VvV YV V¥V V¥

— A

(a) Phaseshifters in the main line

vV VvV vV Vv Vv
SO OO

(b) Phaseshifters in the branch lines

Fig. 8.30 Alternate Feeding Structures for a Scanning Linear Array
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scanning by varying the frequency, in effect converting the main line to a traveling
wave feed with electrical length that is strongly frequency-dependent. This possibility
will be discussed in Chapter 9.) With the phase shifters placed in the branch lines,
they will not have identical settings for a given beam position; to attempt to achieve
a uniform progressive phase shift in the dipole currents, one must use phaseshifters
with settings that are proportional to their positions relative to the array center. This
imposes a severe requirement on the phaseshifter design. However, these branch
line phaseshifters need not handle the entire transmitter power, unlike the first
phaseshifter in the main line placement of Figure 8.30a. Each method of introducing
phaseshift has its advantages and disadvantages.

Even if one idealizes the phaseshifters by assuming that they are matched and
lossless, their function is affected by the presence of mutual coupling, whether they
are inserted in the main line or the branch lines. To see this, suppose that the array
shown in Figure 8.28 is to scan +10° about broadside, and that the phaseshifters
are perfect and placed in the main line. With all dipole lengths and characteristic
impedances optimized for the beam at broadside, the design results of Section 8.10
may be utilized. To recapitulate, it will be assumed that

Z, = Zsg = (59.69 + j3.54) — (—12.53 — j29.93) = 72.22 + j26.39
Zpy = Z4, = (68.46 - j25.98) — (—12.53 — j29.93) = 80.99 -+ j55.91
Z,, = (64.32 + j12.41) — (—12.53 — j29.93) — 76.85 -+ j42.34
Ziy=Zsy =Zsa=Zys = 12,11 —j30.71  Z,3 = Z,, = Zys = —9.27 + j8.09
Zi = Z,5 = 532 — j2.91 Z,s = —3.30 + j1.32
ZML =25  ZBL = ZBL — 116 B o 7B — 103 ZB =93

The voltages and currents at the dipole terminals are connected by the equations

Vi = Zsl L.Z,, (8.54)

The voltages V', and currents /;, at the inputs to the balun sections (which are all 1/4
long) are related to the dipole voltages and currents by!”

vi = (—yinze, 1= TV (8.55)

BL
ZO,m

The equivalent circuit of the main line with its branching junctions is shown in
Figure 8.31. The electrical length between junctions is 180° + ¢ and thus

17Since the main line coupling taps are A/2 apart, the signals sent up into the branch lines
alternate in phase, requiring a reversal of terminals at successive dipoles. This can be represented
mathematically by the factor (— 1)~ in Equations 8.55.
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i 3 5 i
—_— _— ——— e
o
> f ' < ' ' < ' ' <= ' ' < '
z, 3211, zzs;llz z; 51l13 z 5;114 255:115
(o
Fig. 8.31 Main Line Equivalent Circuit
Vi= —Vicos¢d —jI.Z¥"sing I = —jVi.G¥Lsing — [ cos¢
Vi= —Vicos¢ —jl} + INZY*sin¢ I = —jVi,GMLsing — (I, + I')cos ¢
L= —Vicos$ —j(ls + IDZYEsing 15 = —jViGitsing — (5 + F)eos ¢
Vi= —Vicosd —j(l; + I})Z%* sin ¢ Il = —jViG¥Lsing — (I, + I3)cos ¢

Iiw = I+ 1,1, (856)

If (8.55) is used to eliminate V., and I, from (8.56), the 14 equations in (8.54) and
(8.56) can be used to solve for the remaining 14 unknowns. Since the needed uniform
progressive phase is &, = kd cos 8, for d = 4/2 the phaseshift values ¢ = 0°, 10°,
20°, and 30° should place the main beam (in the absence of distorting effects) at 8, =
90°, 86.8°, 83.6°, and 80.4°. When these values of ¢ are used in the matrix, the current
distributions shown in Table 8.7 result. The input impedance, given by

Vi Vi 1 (Z§5)*

AT 4T [ 8.57
11N 11 + 11 V1 B 11123,1“1 ( )

ZlN ==

is also tabulated. One can observe, even for this modest amount of scanning, that
the current distribution quickly departs from what is desired. The input impedance
also shows considerable variability.

TABLE 8.7 Dipole currents and input impedance for a scanning five-element

linear array

Dipole Dipole Current, Normalized

Number
m ¢ =0 ¢ = 107 ¢ = 20" ¢ = 30"
1 0.810 0.7018.3" 0.54 [65.6 1.171116.9°
2 0.9]0° 0.84]7.1° 0.67(22.6 0.66[72.7"
3 1.0/0 1.00]0 1.0010_ 1.00]0°
4 0.9 |§ 0.94|—-4.0" 1.09]-9.6" 1.46 | —20.7"
5 0.810" 0.85|—-5.5" 1.03{—12.7° 1.49|—-25.6"

Input

Impedance, 2510" 18.3|—-17.3" 10.9110.7" 19.8 149,37

Ohms
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Array patterns can be calculated from these current distributions and are
shown in Figure 8.32. It can be observed that the pattern progressively deteriorates
with scan. The height of the main beam is lowered, null-filling occurs, and there is a
rise in the side lobe level. The position of the main beam does shift as desired, but
not necessarily the proper amount, and attempts to scan the pattern still further are
met by unacceptable degradation. Clearly the presence of mutual coupling, plus the
nonresonant spacing of coupling junctions along the main line when ¢ ¥ 0°, cause
serious problems in the design of this scanning array.

Similar problems of pattern degradation and input mismatch occur with scan
for arrays in which the phaseshifters have been placed in the branch lines.!® For the
specific example just discussed (the five-dipole array of Figure 8.28), the interested
reader might wish to assume that perfect phase shifters are disposed as in Figure
8.30b and calculate the current distribution, pattern, and input impedance as func-
tions of the uniform progressive phase ¢.

These scanning problems are less serious for larger arrays, for then the mutual
coupling trends toward a common value for all elements and the coupling to the
main line per element is lighter, since there are more elements. However, the prob-
lems cannot be ignored and their extent can be calculated by the method just outlined.

If one wishes to overcome this degradation of pattern and input impedance
with scan, it is possible to determine the transfer characteristics that a set of “phase-
shifter/impedance transformer” elements would be required to have when placed in
the main line or the branch lines. This is a straightforward but tedious synthesis
problem. Physical realizability of such composite elements is a much tougher
challenge.

8.13 The Design of Waveguide-Fed Slot Arrays:
The Concept of Active Slot Admittance {Impedance)

Waveguide-fed slot arrays differ from two-wire-fed slot arrays in one very important
respect. In the latter case, the voltage waves on the two-wire lines which feed the
slots can be used to determine both the active impedance of each slot and the far-
field pattern of the array. (The active impedances are deduced from the positions and
relative levels of the maxima and minima of each voltage wave. The pattern is calcu-
lable if the voltage wave is known in amplitude and phase at each slot terminal, for
then the electric field distribution in each slot is also known in amplitude and phase.)

The situation is more complicated with a waveguide-fed slot array. In that
case, the active admittance of each slot can be defined in terms of the propagating
waveguide mode incident on the slot, in conjunction with the propagating mode
back-scattered by the slot. The positions of the maxima and minima of the sum of
these two waves, together with the VSWR, can be used to deduce a normalized
active admittance in the usual way. But the sum of these oppositely traveling modes

181, A, Kurtz and R. S. Elliott, “Systematic Errors Caused by the Scanning of Antenna
Arrays: Phase Shifters in the Branch Lines,” IRE Trans. Antennas Propagat. AP—4 (1956), 619-27.
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at the waveguide cross section that contains the central point of the slot is not so
easily linked to the electric field distribution in the slot as in the case of two-wire
feeding. One must determine this linkage in order to design waveguide-fed arrays,
and it must be done to include the effects of mutual coupling between slots. The
analysis in this and succeeding sections will be concerned with this problem for the
special but practical case in which the slots are fed by waveguides of rectangular
cross section.

Section 3.5 dealt with the subject of a rectangular waveguide in which a single
slot was cut to provide a source of radiation to the outside. Three types of slots were
illustrated in Figure 3.9, each of which interrupts some of the wall current associated
with a TE,, mode. This current interruption induces an electric field distribution in
the slot which can be viewed as the source of radiation. For a rectangular waveguide
with dimensions chosen so that only the TE,;, mode can propagate, the analysis of
Section 3.5 provides a connection between the electric field distribution in the siot
and the modal scattering off the slot when an incident TE,, mode is the source of
excitation. For the longitudinal slot in the broad wall, if a symmetrical standing
wave E-field distribution is assumed to exist in the slot, the TE,, mode scattering is
equivalent to the scattering caused by a shunt element in a two-wire transmission
line. Dual analyses undertaken to solve Problems 3.6 and 3.7 at the end of Chapter
3 reveal that the centered inclined slot in the broad wall is equivalent to a series
obstacle and that the inclined slot in the narrow wall is equivalent to a shunt obstacle.

Linear arrays of any one of these three slot types can be fabricated by milling
a set of equispaced slots in a common wall of a common rectangular waveguide. The
lengths and offsets (tiits) of the individual slots must be selected so that the desired
electric field intensity, in amplitude and phase, is created in each slot. This will insure
the specified pattern. Additionally, it is usually desired that an input match be achieved
for the array. How to achieve desired pattern and input impedance is the linear slot
array design problem, and it must take into account not only the self-admittance
(impedance) of each slot, but also the mutual admittances (impedances), since the
slots couple electromagnetically to each other.

Planar slot arrays can be fabricated by placing linear arrays side by side. The
design problem is the same in kind, but more complicated because of the two-dimen-
sional nature of the mutual coupling and the relative feeding of waveguides.

Whether the design problem concerns a linear slot array or a planar slot array,
it is convenient to define a module of length d, centered around the slot. An example
of such a module is shown in Figure 8.33 for the case of a longitudinal slot in the
broad wall. A tandem arrangement of such modules will create a linear array, and a
parallel arrangement of trains of such modules will result in a planar array.

Inclined slots in a narrow wall are attractive for use as linear slot arrays because
of the ease of machining. However, two-dimensional arrays of such slots are not
popular. Adjacent waveguides must be spaced so that the wraparound portions of
the slots are not shorted out, as they would be if neighboring broad walls were butted
up against each other. Also, such arrays are deep (~ 34/4), which is often undesirable.
Therefore planar arrays are usually constructed using slots in the broad wall. Adja-
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g / z=dJ2

SRR~
=

z=-d/2
Fig. 8.33 Waveguide-Fed Slot Modute

cent waveguides can share a common narrow wall, which is a weight saver, and the
box-beam type of structure has mechanical strength advantages. Longitudinal slots
have a slight advantage over centered inclined slots in many applications due to the
absence of a cross polarized component in the slot field distribution. For this reason,
the analysis which follows will focus on the module shown in Figure 8.33. However,
the analysis is not limited to arrays of longitudinal broad wall slots; analogous
treatments using modules of other slot types are available!®

If the module length is 4 = 4,/2, with A, the guide wavelength for the TE|,
mode, the siot array is said to be standing-wave fed. This is the case that will be
considered in what follows. When d == 1,/2, the slot array is said to be traveling-wave
fed. That case will be treated in Chapter 9.

It will be assumed that, in the cross-sectional planes z = 4-4,/4, that is, at the

!“The analysis presented in this and next three sections is drawn from the article by R. S. Elliott and L. A.
Kurtz, “The Design of Small Slot Arrays,” /EEE Trans. Antennas Propagar., AP-26(1978), 214-19. (© 1978
IEEE. Reprinted with permission.) Arrays of centered inclined broad wall slots have been analyzed by T. C. Eakins,
“Theory of Centered Inclined Slot Arrays with Mutual Coupling” (Master’s thesis, University of California, Los
Angeles, 1978), and by M. Orefice and R. S. Elliott, Technical Report No. 79-1, Dept. of Electrical Engineering,
University of California, Los Angeles. 1979. Also see R. S. Elliott, “An Improved Design Procedure for Smali
Arrays of Shunt Slots,” IEEE Trans. Antennas and Propagation, AP-31 (1983), 48-54. Arrays of tilted stripline-
fed slots have been treated by P. K. Park (Ph.D. dissertation, University of California, Los Angeles, 1979).



400

The Design of Feeding Structures for Antenna Elements and Arrays

ends of the module, only the propagating TE,, mode has a significant value. This
implies that all higher-order mode scattering off the slot has decreased to a negligible
value when the limits of the module are reached. In this case, the fields at the two
ends of the module can be expressed simply by equivalent mode voltages and currents
that represent solely the TE;, mode.

Let there be N modules in the array, arranged in either a linear or planar lattice.
Each module can be viewed as a two-port element, as suggested by Figure 8.34a.
For purposes of subsequent notational convenience, the mode voltage and current
at one end of the nth module are labeled V7, and I, and at the other end, V., and
Iy.,. The array of N modules is a 2N-port system, linear and bilateral, and thus the
mode voltages and currents can be connected by the equations

Vi=ST1Z, m=12...,2N (8.58)

If there are no scattering obstacles along the equivalent two-wire line of Figure 8.34a,
except possibly in the region — € < z <{ ¢, with € an infinitesimal, then the standard

transmission line formulas give
V., =jlZ Vi = jlninZ
e (8.59)
In:]VnGO N+n:j N+nG0

in which Z, = 1/G, is the characteristic impedance of the equivalent transmission
line and (V2, I)), (V% I%.,) are defined as shown in Figure 8.34b. In words, V7

1"1 [}V*'n [r,l 17,1' 1X’+n 11,V+n
—_— ———— — — [— ——— -~
——o o—————o0— t—o——o0
V?’l¢ ?VI,V"’VI TVI; VIIT TVN+H TV;V*’H
o— l—o o— —o— o- —0
z=-A /4 —€ L} +e 2= /4
(a) Two-port representation (b) Equivalent circuit when scattering
of n® module obstacles are confined to a narrow

central region of length 2e

I, Tven
—_— e
o- -0
>
' a % 1]
Y, Y"EELI" |VN+n

o— —O

z=-7,/4 z=0 z=)\ /4

4

(¢) Equivalent circuit when
obstacle is a shunt element

Fig. 8.34 Equivalent Circuits for a Slot Module
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and /" are the mode voltage and current in the plane z = —¢, whereas V., and
I\, are the mode voltage and current in the plane z = €.
Insertion of (8.59) in (8.58) gives

N
=S Viz,1Zd  m—=1,2,...,2N (8.60)
n=1

If the electric field distribution in the sth slot is a symmetrical standing wave, regard-
less of whether that field distribution is caused by internal 7E;, modes going in
either direction past the slot or by external electromagnetic field coupling with other
slots or both, the analysis of Section 3.5 shows that the scattering is symmetrical,
and thus is equivalent to the scattering off a shunt element in a two-wire line. This
assumption of a symmetrical standing wave electric field is usually a good one,
particularly when the slots are standing-wave fed and approximately a half-wave-
length long and will be made in what follows. Therefore the equivalent circuit of the
nth module will be taken as shown in Figure 8.34c, and the active admittance Y3
will be defined as representing the shunt element which gives the same scattering in
the equivalent circuit as the slot does in the waveguide.

With Figure 8.34c applicable, one can see that V', = V., is the mode voltage
across the shunt element Y2, and that /] + I, is the total current flowing through
Y2 In recognition of this, (8.60) can be put in the more useful form

N "
I!’; _'__ Ijl/l+m _ ’; l/n(Zmn + Z)\H—m,n —;gzm,N+n + ZN+m,N+n) m = ]’ 2, e, N (861)

If one makes the substitutions
V,=V, IL=1+1Ty,

Zmn * ZN+m.n + Zm,N+n + ZN+m,N+n

Ymn - Z(Z)

then (8.61) becomes
1, = i VoY (8.62)
n=1

in which 7, is the total mode current flowing in the equivalent active shunt admittance
Yz, V, is the mode voltage appearing across Y2, and [Y,,,] is the matrix that connects
the set of mode voltages and the set of mode currents. From (8.62), one can readily
deduce that

|4
N ’ Vn
= Ymm ‘L Z <7) Ymn (8'63)

In (8.63) the prime on the last summation sign serves to indicate that the termm = n
is not included. Here, Y,,,, is generally referred to as the self-admittance of the mth
slot and Y, is called the mutual admittance between the mth and nth slots. The active
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admittance is thus seen to be the self-admittance plus the mode-voltage-weighted
sum of the mutual admittances. It is sometimes convenient to write (8.63) in the form

Ya=Yum + Yo (8.64)
in which

vz =3 (L)
) <7m - (8.65)

is called simply the mutual coupling term.

The reader may be puzzled by the part of this analysis in which the mode
voltage and current at each end of the module (where clean TE,, modes are assumed
to exist) were expressed in terms of mode voltages and currents at the center of the
module (where clearly a single mode picture is not valid). The reason for this is
mathematical convenience. Each module is a two-port element, but this transforma-
tion succeeds in treating it as though it can be characterized by the single-mode
voltage/current pair (V,, ). This pair should be looked upon as a convenient artifice
from which one can deduce the TE,, mode presence halfway between slots through
use of Equations (8.59).

It can be appreciated from the foregoing development that the self-admittance
Y,, and the mutual admittances Y,,, are independent of the mode voltages and
currents at both ends of the module. In particular, they are independent of —13.,,/
Vi.n thatis, of the admittance “seen” looking beyond the module.

8.14 Arrays of Longitudinal Shunt Slots in a Broad Wall
of Rectangular Waveguides: The Basic Design Equations

In a development that exactly parallels the one found in Section 3.6, and which
extends from Equations 3.48 through Equation 3.52, one can show that the scattering
off the shunt element Y2/G, shown in Figure 8.34c is symmetrical, and given by

—c= _LYy (8.66)

Equation 8.66 arises because the mode voltage is given by V(z) = Ae /%7 + Be/#,
Since the obstacle Y¢/G, is taken to be at z = 0, it follows that ¥, = V(0) = 4 + B.

It was also shown in Section 3.6 that the complex amplitude of the scattered
TE,, mode is related to the electric field intensity in a longitudinal shunt slot via
Equation 3.47. If one takes the origin at the center line of the upper broadwall, as
shown in Figure 8.33, and simplifies the notation by letting § = f§,,, Equation 3.47
can be rewritten in the form

-2y
Jop(fik)ab

B,, = C,, = (cos B, — cos kL) sin ”;‘" (8.67)
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in which Vi = wE (x,, 0, 0) is the peak voltage at the center of the slot, with w the
slot width and E (x,, 0, {,) the electric field distribution in the slot aperture.

The back scattered waves B,, and B in (8.67) and (8.66) can be related by
requiring that the TE,, wave and its mode voltage equivalent have the same phase
at any cross section z, and that the back scattered power level be the same in both
cases. It is a simple matter to show that these conditions will be met if

Ya

e |7 8 (ab)? B .oax,| Vi
G~ {j[mm] (cos Bl, — cos kl,,)ksm 2 }7 (8.68)

n

Equation 8.68 is the first of two design equations that will be used to determine the
lengths and offsets of the slots in an array, such that the desired pattern and input
admittance level are achieved.

Under the present assumption that the radiating slots in a common waveguide
are resonantly spaced, that is, 1,/2 apart, it follows that the mode voltage V, has a
common value (except for an alternation in sign) for all the slots in a common wave-
guide. If the pattern requirements are such that the slot voltages V: are to have the
same phase for all n, then Equation 8.68 indicates that all the active admittances
Y2/G, should have the same phase. [The alternation in phase of ¥, is compensated
by an alternation in direction of offset x,, which causes an alternation in the sign of
sin (nx,/a).]

In such circumstances, the usual choice is to make Y¢/G, pure real for all a.
But a return to (8.63) reveals that, if Y2 is to be pure real, in general Y,,, the self-
admittance of the nth slot, will not be pure real. In other words, when mutual coupling
1s taken into account in the design of slot arrays, resonant self-conductance data is
not sufficient to permit a proper design. Indeed, in many practical applications, the
needed value of Y,, will be quite far off resonance. This same effect has already been
noticed in the case of some dipole arrays considered earlier in this chapter.

To obtain the design equation that will be companion to (8.68), it is useful to
link the waveguide-fed slot array to an equivalent array of dipoles via Babinet’s
principle. To accomplish this, assume that the waveguide-fed slot array is imbedded
in an infinite, perfectly conducting ground plane and radiating into a half-space.
Imagine as an interim step the existence of a dual antenna consisting of an identical
array of slots, also imbedded in an infinite, perfectly conducting ground plane, and
also radiating into a half-space, but center-fed by a network of two-wire lines. If the
same electric field distribution is established in corresponding slots in the two arrays,
the half-space radiation patterns will be the same. It will be assumed that this is the
case. However, the admittance characteristics will nor be the same. The reason for
this is that there is higher-order mode scattering off a waveguide-fed slot, which
contributes primarily to the susceptive component of Y,,, and which depends on the
slot offset x,. No such effect exists in the two-wire-fed slot, and to model this higher-
order mode scattering one must place a load admittance Y% across the terminals of
the corresponding two-wire-fed slot. When this is done, the circuit equations for the
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two-wire-fed slot array are

I,=7% Visinkl Y., (8.69)
n=1

in which the prime superscripts are used to distinguish this array from the waveguide-
fed array, for which (8.62) applies. In (8.69), Y/, (with m == n) has its customary
meaning, being the mutual admittance between slots m and » when they are two-
wire-fed and radiating only into a half-space. However,

Y =Y + YE (8.70)

with Y/ the conventional self admittance of the nth slot when it is two-wire-fed and
radiating into a half-space, and with YZ the load admittance representing higher
order mode scattering.

Next, consider the complementary array of strip dipoles, center-fed by two-wire
lines, and radiating into a full space. The circuit equations for this dipole array are

N
Vi= > Ii¢sinklZ, 8.71)
n=1

in which the current distribution in the mth dipole has been assumed to be in the
form 7¢sin k(I, — |{[). The superscript d is used to distinguish the fact that the
terminal voltage and current (V2, I, sin k/,,) appearing in (8.71) refer to the dipole
array.

If the distribution of dipole currents /¢ matches the distribution of slot voltages
Vs in the two slot arrays, all three will produce the same radiation pattern in a half-
space, except for an interchange of E and H in the dipole case (See Section 7.16).
However, for the dipole array to model the admittance characteristics of the two
slot arrays, it is necessary to place a load impedance Z£ in series at the terminals of
the nth dipole. When this is done,

zZ, =2Z,+ Zt (8.72)

with Z, the conventional self-impedance of the nth dipole when it is center-fed and
radiating into a full space. In (8.71), Z,,, (with m 3= n) is the conventional mutual
impedance, calculable from Equations 7.155 and 7.156.

Booker has shown (see Section 7.16) that the admittances of the unloaded
two-wire-fed slots (radiating into a half-space) are related to the impedances of the
unloaded complementary strip dipoles (radiating into a full space) by the relations

Y :.(%)Zn Y., — (%)Z,,,,, (8.73)

If, for the loaded complementary arrays, the dipole current distribution is the same
as the two-wire-fed slot voltage distribution, then the input admittance to the mth
slot is given by



8.14 Arrays of Longitudinal Shunt Slots in a Broad Wall of Rectangular Waveguides 405

oo Iy oy g Vasinkl,
Yo =Ygk, = Yn T ¥n *E Visnkl T

= ()7t e R ()

(2 L , 1% sin ki,
*<ﬂ )[z +( )Y + Z o Zn ] (8.74)
The active (or input) impedance of the mth dipole can be deduced from (8.71), as
follows:
" |84 L I¢sin ki,
Zi= prg = I T T Y I¥sin kL, 2 ®.75)

If the admittance and impedance characteristics of these two loaded complementary
arrays are to be similar, comparison of (8.74) and (8.75) leads to the conclusion that

YE— (%)z,ﬁ (8.76)
n
In words, the load admittance Y%, placed across the terminals of the mth two-wire-
fed slot in order to model higher-order-mode scattering off the corresponding wave-
guide-fed slot, and the load impedance Z%, placed in series at the input to the mth
dipole in order to model the same effect, are linked to each other by Booker’s relation.
If the two-wire-fed slot array and its complementary dipole array are to model
the waveguide-fed slot array in admittance characteristics as well as pattern, it is
necessary that the complex power flows equate at each element. That is,

GV VEYS) = (3Visin ki 1)) = (AVALE sin ki) 8.77)
But
N
(V5sin ki, I;)* = Ve sin ki, I, = V% sin ki, Z Visinkl,Y,,

d
= ViV sin? ki, Z %/%(ﬂ )Z,,,,,

- <%)Z,:V,,‘,V§; sin? ki, (8.78)

When (8.77) and (8.78) are combined, the result for the nth element can be written
in the form

v yxysys — (%) YoZevsvs sin? ki, (8.79)

In (8.79), V,, V:, and Y¢ are, respectively, the mode voltage, slot voltage, and active

admittance of the nth waveguide-fed slot, and Z* is the active impedance of the
corresponding loaded sth dipole.
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When (8.68) is multiplied by its complex conjugate, one obtains

8G,(a/b)

VSV = BT

(cos BI, — cos kI) sin® (”%) vy (8.80)

If (8.79) and (8.80) are equated, the result can be arranged to give

Y, 1 4(a/b) (cos Bl, — cos kl,)* . ,7mx,
G, Zﬁ/73[0.617r(/?/k) snZ kL sin? = ] (8.81)

in which the manipulation 0.615/7z = 73 ohms has been introduced.

Equation 8.81 is a key result of the analysis and is the second design equation.
Together with (8.68), it can be used to determine the lengths and offsets of all longi-
tudinal shunts slots in the broadwall of a set of rectangular waveguides in order to
produce a desired pattern and a specified input admittance. This will be demon-
strated presently.

The reader familiar with Stevenson’s pioneering analysis of the admittance
(or impedance) properties of a single resonant slot in a thin-walled rectangular
waveguide will recognize the factor inside the brackets in (8.81) as his expression
for the normalized conductance of a longitudinal shunt slot that has been tuned to
resonance.?? Thus the interpretation can be put on (8.81) that the normalized active
admittance of the nth longitudinal shunt slot in an array is given by Stevenson’s
expression for the resonant normalized conductance, divided by the active impedance
of the corresponding loaded dipole, normalized to 73 chms.

The single slot case is a simple reduction of (8.81). One obtains

Yy 73 4(alby  (cos Bl — cos kl)2 02 X
G, Z°+ ZL[0.617z(,B/k) sinz &l p ] (8.82)

in which Z¢ = R¢ - jX*¢ is the self-impedance of the complementary dipole, and
Z% = R* + jX* is the load impedance in series with it, the presence of which models
the effects of internal higher order mode scattering off the slot.

Equation 8.82 is consistent with several experimental observations. If the
loaded dipole is shortened below resonance, that is, if X¢ 4 X* < 0, the correspond-
ing waveguide-fed slot has a positive susceptance. (This behavior is opposite to that

of a two-wire-fed slot.) At resonance, X¢ = — X%, and (8.82) becomes
G _ 713 [ 4(a/b) (cos BI, — cos k! )2 2 nx] (8.83)
G, R’ R 0.61nB/k sin® ki, a ’

in which G,/G, is the normalized resonant conductance, and 2/, is the resonant length.
As the offset of the slot increases, more higher order mode scattering occurs, X*
increases, and it takes a larger value of X* to tune out X*. This requires a longer

20A. F. Stevenson, “Theory of Slots in Rectangular Waveguides,” J. Appl. Phys., 19 (1948),
24-38, (Stevenson assumed k/ = 7/2.)
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dipole, consistent with the observation that the resonant length of the slot increases
with offset.

Equation 8.83 suggests that Stevenson's expression (the factor in brackets) is
only approximate and is less accurate as the slot width is increased or the slot offset
is increased. This is because R¢ is affected by both the length and width of the strip
dipole. Only for an infinitesimally wide slot on the centerline (for which R* = 0)
would one find that R + Rt = 73 ohms.

8.15 The Design of Linear Waveguide-Fed Slot Arrays

The two design equations which were developed in the preceding section can be
rewritten in the abbreviated forms

Ye ) Vi
G. = K, f,sin ki, v (8.84)
Yo K f:
G = 4 (8.85)
in which, by inspection,
[ 8 (a/b)]‘/z _292(a/b)
K==l @) 5 oot (8:56)
and
__cos pl, —cos ki, . mx,
[ = ekl sin = (8.87)

The active admittance of the nth equivalent loaded dipole is given by
zZe=2Z, +2% (8.88)
in which

X, V3 sin ki
7z = m > Dim 7 .
"= Visinkl, ™ (8.89)

is the mutual coupling, and
Z,=2,+2y (8.90)

is the loaded self-impedance of the dipole. Before one can make use of the design
equation of (8.85), it is necessary to determine Z,, as a function of the length and
offset of the complementary waveguide-fed siot.

If one assumes that the input admittance to the nth slot is the same whether
all other slots are (1) present and short-circuited, or (2) absent, then this is equivalent
to saying that the input impedance to the nth loaded dipole is the same whether ali
other loaded dipoles are (1) present and open-circuited, or (2) absent. Experiments
show that this is a good assumption. It permits one to infer from (8.85) that

_K,f2
Z, =g (8.91)

n
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in which Y,/G, (x,, [,) is the isolated self-admittance of the nth slot. Thus if one
measures Y/G, for an isolated slot as a function of its length and offset, (8.91) can
be used to deduce the function Z_, (x,, /,) needed for use in (8.85).2!

R.J. Stegen has found that the admittance data of anisolated slot can be presented
in a universal form that is extremely useful for computational purposes.2? Using
standard X-band brass RG52/U waveguide and a frequency of 9.375 GHz, he mea-
sured Y/G, with slot offset and length as parameters and assembled the data in a
pair of curves, which are reproduced in Figure 8.35. If one lets y = //I, represent
the abscissa scale, then

h(y) = hi(y) + jha(¥) (8.92)

can symbolize the complex sum of these universal curves. With g(x) taken to mean
the normalized resonant conductance as a function of offset, it follows that

Y
- = 8(h(y) (8.93)
)

< -
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Fig. 8.35 Normalized Self-Admittance Components for a Longitudinal Shunt Slot (After
Stegen??)

21Recently it has become feasible, using the method of moments, to make an accurate theo-
retical determination of Y/G, for a rectangular slot, including the effects of slot width and wall thick-
ness. See T. V. Khac, “A Study of Some Slot Discontinuities in Rectangular Waveguides,” (Ph.D.
dissertation, Monash University, Australia, Nov. 1974).

22R. J. Stegen, “Longitudinal Shunt Slot Characteristics,” Hughes Technical Memorandum
No. 261, Hughes Aircraft Co. (California: Culver City, November 1951). Stegen’s curves are repro-
duced as Figures 9.5, 9.7, 9.9, and 9.10 in Antenna Engineering Handbook, ed. H. Jasik (New York:
McGraw-Hill Book Co., Inc., 1961).
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Stegen’s curve of g(x) for this same family of slots is shown in Figure 8.36. To inter-
pret the variable y, one also needs to know the relation between resonant length and
offset. This is characterized by the function

v(x) = kI (x) (8.94)

and for Stegen’s measurements is shown in Figure 8.37. It is important to note that
all four curves, represented by 4,(y), h,(»), g(x), and v(x) are simple in form and
can be easily polyfitted.

With these identifications, one can return to (8.91) and rewrite it in the form

— KZfI%(xm yn)
Z,(x,,p,) = AN (8.95)
0.7 ‘
0.6 ‘ /
|
0.5 T\ ;
04 |
S | |
© | |
oo L | |
.
0.2 ‘» i
0.1} f i [L
| |
0 I

0 0.050 0.100 0.150 0.200 0.250

Slot offset, x inches

Fig. 8.36 Normalized Resonant Conductance versus Offset for a Longitudinal
Shunt Slot; See Fig. 8.35 for Legend (After Stegen22)
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Fig. 8.37 Resonant Length versus Offset for a Longitudinal Shunt Slot; See Fig. 8.35
for Legend (After Stegen22)

in which

_ Jeos [(BIk)y,o(x )] — cos [y, v(x)]| . 7X,
SlXm ya) = { 0 oG] sin = (8.96)

The design of a linear array can now be undertaken. If there are to be N slots,
spaced A,/2 apart, and a certain pattern is desired, then the techniques described in
Chapter 5 can be used to determine the slot voltage distribution V5. Let it be assumed
that this has been done. Next, make an initial estimate of the lengths and offsets of
the slots. (This estimate is not critical. One could begin by ignoring mutual coupling,
choosing each slot to be self-resonant with the proper distribution of conductances
to insure the proper pattern and input match. Or, more simply, one could guess an
average slot offset and assign that value and the corresponding resonant length to
every slot in the array.) Once a selection has been made of the initial values of slot
lengths and offsets, Equations 7.155 and 7.156 can be used to compute all the mutual
impedances Z,,, between dipoles in the equivalent array. These Z,, values can be
placed in (8.89), together with the desired array excitation, to permit computation of
a set of starting values for the mutual coupling terms Z3.

In most applications, the desired slot voltage distribution will be equiphase
and (8.84) indicates that in such cases the active admittances will have a common
phase also. The design procedure is not limited to this situation, but for the purpose
of illustration, let us assume this to be the case, and specify further that all the active
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admittances should be pure real. 1f the Z2 values are not too sensitive to changes in
slot length and offset (and experience shows that they are not), one can use the
starting values of Z% and impose the condition that

X, = —X° (8.97)

Equation 8.95 can be used as the basis for a search for the length/offset combi-
nation (x,, y,) that will satisfy (8.97). When one conducts this search, the discovery
is quickly made that there is a continuum of couplets (x,, y,) which satisfy (8.97).
There is a corresponding continuum of active admittance values Y2/G, that can be
calculated from (8.85).

Let (x,, y,) be one of the couplets that satisfies (8.97), and let Y3/G, (x}, v3)
be the corresponding value of active admittance for the nth slot. For any other slot-
for example, the mth—there is similarly a continuum of acceptable length/offset
combinations and a corresponding continuum of active admittance values. But of
all of these, there is only one couplet (x),, y.)) that can be paired with (x/, y.) such
that (8.84) gives the proper slot voltage distribution. What one requires is that

YGo(xX Vo) Sl yi) sinkl, V3V,
Yrrat/GO(x:m y;n) - fm(x;m y;n) Sin klm Vr:/ Vm

(8.98)

Equation 8.98 serves to identify sets of acceptable length/offset combinations such
that all members of a set (one for each slot) satisfy (8.98) as well as (8.97).

Of all these sets, the proper one to choose is the one which causes the sum of
the normalized active admittances to be unity, since this is the condition for an input
match.

It is too costly in computer time, and not even desirable, to identify more than
one set of acceptable length/offset combinations. If the set that has been identified
gives > Y2/G, > 1, in the next iteration one will know that smaller offsets should be
chosen; if 3} Y&/G, < 1, larger offsets will be needed. But in any event, the process
will need to be iterated, because the new lengths and offsets can be used to compute
an improved set of Z?% values.

For large N, this iterative process can be completely computerized, with the
program commanded to stop when the lengths and offsets determined in one iteration
differ from those of the previous iteration by amounts less than the machining toler-
ance that can be specified. The writing of a complete computer program for this
iterative process requires care and it is heipful to go through a simple case “by hand”
as a background step.

One such case which can be instructive involves the design of a four-slot linear
array with the specifications that the slot voltage distribution be equiphase and in
the ratio 1:2: 2: 1 and that an input match be achieved. Let it be assumed that this
is to be done for longitudinal shunt slots in standard X-band waveguide, as depicted
in Figure 8.38, and at 9.375 GHz, so that Stegen’s curves can be used.
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Fig. 8.38 A Four-Element Array of Longitudinal Shunt Slots in the Broad Wall of a
Rectangular Waveguide

As a first step, polyfits to the curves shown in Figures 8.35 through 8.37 should
be obtained. For the present purposes, it is sufficient to use the simple representations

h(y) = 1 —275(y — 1)? (8.99)
hy(y) = —14(y — 1) (8.100)
g(x) = 1.177 sinz%x (8.101)
v(x)=1.517 + 1.833x2 (8.102)

The second step involves selection of initial lengths and offsets. This will be done by
ignoring mutual coupling (initially). Then all four slots should be self-resonant such
that the sum of their normalized conductances is unity and such that the slot voltage
distribution is 1:2:2: 1. Under these initial assumptions, Equation 8.84 becomes

glx,) Ky . 1.177 sin (x,/a) sin v(x,)
= L — Ld L 8.103
5w, s = oc TR kyu(e,)] — cos olx,) (8.103)
Because of the desired symmetrical slot voltage distribution, slots 1 and 4 will have
the same length and opposite offsets, as will slots 2 and 3. The mode voitage F, will
have the same magnitude at each slot, but it will alternate in sign. Thus, when (8.103)
is written successively for the first and second slots and a ratio is taken, one obtains

sin (mx,)/a) sin v(x,) sin (#x,/a) sin v(x,) (8.104)

cos [(B/k)w(x)] — cosw(x;) —  “cos [(Bk)v(x )] — cos v(x,)

Equation 8.104 will insure the desired slot voltage distribution. In addition, to get
an input match,

Zlg(xi) = 1 = 2[g(x,) + g(x,)]

in2 (% o ogin2 (BX2) ] L
1.177[5111 ( : ) + sin < x )] - (8.105)

For a = 0.900 inches and vy = 9.375 GHz, one finds that f/k = 0.714. If one uses
these values in (8.104) and (8.105), simultaneous solution gives

or,
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X, = —x,=0082in.  20,/A=2I,/A =0487 g(x,) = g(x,) = 0.093

i (8.106)
Xy = —x; = —0.180in. 2L,/A =21,/A = 0.502 g(x,) = g(x,) = 0.407

These are the starting lengths and offsets of the slots in the array. If there were no
mutual coupling, they would give the desired slot voltage distribution and an input
match.

With these assumed lengths and offsets, one is able to compute Z,, for the
equivalent dipole array, using Equations 7.155 and 7.156. It is found that the initial
values of mutual impedance are

Z,, = 0.37 — j8.39 Z,, =149 +j1.28

(8.107)
Z, = —0.67 +j047  Z,,— —2.88 — ;78I

From this, one can compute the following initial values of Z2:

1.000
0.999 ©

0.999
1.000

+ (—2.88 —j7.81) = —1.95 — j11.37

= [2(0.37 — j8.39) + 2(1.49 + j1.28)]~200 + (—0.67 + j0.47) = 3.05 — j13.75

Z— [%(0.37 —j8.39) + L (1 49 + 1. 28)]

Since K, = 480 for this waveguide size and frequency, Equation 8.85 becomes

Y" 480 12
= [480 /g (x Yh(y)] + (8.108)

The objective is to select (x,, ¥,) and (x,, y,) so that

4801+
— L = 1375 .10
meCeoh (8.109
48012
s = 4 11.37 8.110
ok (&-110)
under the pattern restriction that
21Go _ _ Vi sinly,vxy)] Yi/G, _ 1.000 Y9/G, (8.111)
fa Visinl(y,v(x)] £ 0999 1,

and under the input admittance restriction that

1

2—_
G2 (8.112)

With the aid of Equations 8.99 through 8.102, a trial-and-error solution of (8.109)
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through (8.112) is found to be

x, = 0.086 in. y; = 1.0125 21,/A = 0.4933 % = 0.0988
° (8.113)

x, = —0.176in.  y, = 1.0099  2,/A = 0.5058 ’G’_z — 0.4010

These results can be iterated. The lengths and offsets in (8.113), when used in
(7.155) and (7.156), will produce an improved set of Z,,. However, if this is done,
one finds that the new Z¢ are

Zb =295 —j13.73  Zb—= —1.71 — j11.43

and these values are so close to the previous set that negligible further change will
be found if the iteration process is carried further. Thus (8.113) can be accepted as
the design with external mutual coupling taken into account.

A comparison of (8.113) and (8.106) reveals that there is a 59, change in the
offset of slots 1 and 4, a 24 7 change in the offset of slots 2 and 3, and a 19; length-
ening of slots 2 and 4. These changes may seem small enough that one could argue
in this application that mutual coupling be neglected. But the effect of these changes
on aperture distribution and input admittance are significant, as shall be seen in
Section 8.17.

The smallness of these changes can be traced to the fact that these slots, being
in a common waveguide, are almost end-fire to each other, so that mutual coupling
is lower and-falls off faster than when the slots are broadside. One can anticipate
a bigger problem with mutual coupling in planar arrays, as will be seen in Section
8.16.

As a final comment on the design of linear slot arrays, the modern trend is to
make the b-dimension of the waveguide smaller to save on weight and depth. How-
ever, this lengthens the slots and places adjacent ends of successive slots closer
together, thus increasing the mutual coupling, and making it even more essential
that its effect be included.

8.16 The Design of Planar Waveguide-Fed Slot Arrays

When a family of waveguide-fed linear slot arrays is arranged as shown in Figure
8.39, a planar array results. This introduces a new variable into the design procedure.
The individual waveguides containing the radiating slots (hereafter referred to as
branch line waveguides) may be excited in a variety of ways. Perhaps the most common
is to run a main line waveguide transversely across the back of the array and use
coupling slots to energize the branch lines. Another method is to use a corporate
feed, consisting of a set of 7-junctions which serve to split the power in a sequence
of steps down to the level of the individual branch lines. But whatever method is
used, the mode voltages in the various branch line waveguides can be adjusted in
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7,777,
/a4

Fig. 8.39 A Planar Array of Longitudinal Shunt Slots

relative level by the coupling mechanism. This is an additional parameter that can
be exploited in the design procedure.

It is convenient to go to double subscript notation in the design of planar arrays.
Thus the basic design equations become

Ya . V.r

m r 11
G K [ sin o(x,,,) 7 (8.114)
Y:m - Kzfrznn
ek s (8.115)

in which K, and K, are still given by (8.86) and

— COS[(ﬂ/k)ymnv('xmn)] _, COS[ym,,U(Xm,,)] s BX oy
Fon= | i CEmnl] <o }sm s (8.116)

in which

Viwn = bual 1(Xm,) (8.117)

is the normalized slot length, and (x
slot in the nth branch line waveguide.

In most respects, the design of a planar slot array proceeds exactly as for a
linear slot array, which was described and illustrated in the previous section. One
assumes that every branch line array is resonantly spaced (this restriction will be
lifted in Chapter 9). This implies that the mode voltages are given by

21,.) are the offset and length of the mth

mn?

Vyw = (— 1)V, (8.118)
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in which V, is the reference mode voltage in the nth branch line. For this reason
(8.114) can be rewritten in the form

Y. Von

G = Ky | frunl sin 0(X,0,) 3 (8.119)
since the alternation in direction of offset causes the compensating relation
X . TX
Tmn _ ( 1 m mn .
sin =2 (—D™isin -2 (8.120)

When (8.115) and (8.119) are used to design a planar array, one must assume
an initial set of slot lengths and offsets in order to compute an initial set of Z2,
values. But one must also assume an initial branch line mode voltage distribution in
order to use (8.119). It may be that, as the design proceeds and a series of iterations
converges on a final set of slot lengths and offsets, one finds that the set of offsets in
a particular branch line is inconveniently small or large (outside the trustworthy
range of experimental design data). This can be altered by a change in the V, distri-
bution. If one wishes to increase the average offset in a branch line without increasing
the slot voltage level, this can be accomplished by lowering the coupling to that
branch line, which serves to lower that particular branch line mode voltage. Con-
siderable adjusting back and forth is usually needed in the course of the design in
order to insure that the final spread of offsets in the branch lines is in an optimum
range, and that all the coupling coefficients between the main line feeding structure
and the branch lines are also in an optimum range. As a consequence of this adjust-
ment, it is most unlikely that the sum of the normalized active admittances in any
branch line is unity; the branch lines do not have to be matched in order to achieve
a match in the main line.

A simple illustration of the design of a planar slot array, one which dramatically
demonstrates the strong effect of mutual coupling, involves the two-by-four slot
antenna shown in Figure 8.40. It was desired to excite this array so that all eight slot

-
 —) ——
4,1 3,1 2,1 I, 1
——/—DO — D
» Y
——/—/ [ c——
4,2 3,2 2,2 1,2
| CEE— _— DO
L
X

Fig. 8.40 A Two-by-Four Array of Longitudinal Shunt Slots
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voltages would be equal and in phase. Additionally, in order to insure that all slot
offsets would be in the favorable dynamic range, the condition

S Yoy v Yoo ;
m\;l G = mzl G =2+ 40 (8.121)
was imposed.

Waveguide dimensions a = 0.924 inch, b = 0.123 inch, and ¢ = 0.025 inch
were used, together with a slot width of 0.064 inch. Experimental design data in the
form of curves similar to those found in Figure 8.35 through 8.37 was available at
v = 8.930 gigahertz and polynomial expressions were fitted to the data, resultingin
expressions akin to Equations 8.99 through 8.102. Equations 8.115 and 8.119 were
then used to determine the proper slot lengths and offsets, with ¥, = V, taken to be
the mode voltage distribution. The procedure was identical to the one outlined for
the one-by-four array in Section 8.15, except that a computer program was used
instead of hand calculations. The results are shown in Table 8.8.

TABLE 8.8 Lengths and offsets for two-by-four

slot array
Slot Number Offset x,,, Length 2/,
mn (Inches) (Inches)
1,1 0.060 0.669
2,1 —0.122 0.708
3,1 0.060 0.667
4,1 —0.099 0.693
1,2 0.099 0.693
2,2 —0.060 0.667
3,2 0.122 0.708
4,2 —0.060 0.669

A study of this table of slot lengths and offsets reveals several interesting and
surprising things. First, there is a 2:1 range in slot offsets. (Were one to ignore mutual
coupling or assume it was the same for each slot, all offsets would be the same.)
Second, no slot in this array is self-resonant; each slot is detuned appropriately to
make the individual active admittance resonant. Third, there is a quadrant 1 to
quadrant III and quadrant II to quadrant IV symmetry to the lengths and offsets,
but no symmetry about the X-axis nor about the Y-axis. This can be traced to non-
symmetrical effects caused by staggering the offsets and always occurs in array
designs that yield symmetrical patterns. And fourth, it is clearly evident that the
presence of broadside neighbors has substantially increased the effect of mutual
coupling.

At first it might seem puzzling, for example, that the required offsets of the
2, 1 slot and the 3, I slot are so radically dissimilar when the slot voltages are to be
the same. However, a return to Figure 8.40 indicates that the environment of the
2, 1 slot is significantly different from the environment of the 3, | slot.
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An experimental determination of the active input admittance to each branch
line waveguide yielded the results

S Y ; o Y2
LB 190450 N e 194

(8.122)
which were 5% and 3% from the design values. The experimental H-plane pattern
at 8.930 GHz, with the array embedded in an 8-inch by 10-inch ground plane, is

shown as the solid curve in Figure 8.41. The theoretical pattern (dotted curve) is
also shown for comparison.

0
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Angle from broadside, degrees

Fig. 8.41 The H-Plane Pattern of the Two-by-Four Slot Array Depicted in Figure 8.40;
Comparison of Theory and Experiment

8.17 Sum and Difference Patterns for Waveguide-Fed Slot Arrays;
Mutual Coupling Included

If Y4/G, is eliminated from (8.84) and (8.85), one obtains for a linear slot array

Visin ki, Z8 — (Ik(z) V.1, (8.123)
1

With the aid of (8.88) and (8.89), this can be rewritten as

N
S Vi sinkl, Z,, = <_2> V7
m=1

e (8.124)
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Equations 8.124 can be identified as a set of simultaneous linear equations (with the
slot voltages as independent variables) that can be put in the matrix form

Z,, Z ... Zy]|[Visinkl [ /1]

V3 sin kl, |f2]

’ = (8.125)
Zyy Zyny ... Zyyl|Visinkly [l

in which it has been recognized that ¥, f, = V|f,|, with V the reference mode voltage
in the linear array. The common factor (K,/K,)V has been suppressed in going from
(8.124) to (8.125).

If the length and offset of every slot is specified, all the impedance terms in the
Z-matrix of (8.125) are known, as are all the elements | f,,| in the column matrix. An
inversion of (8.125) will give the slot voltage distribution for this set of lengths and
offsets.

As an example of the use of (8.125), consider again the four-element linear slot
array analyzed in Section 8.15. Because of symmetry considerations, for that case
(8.125) takes the form

Z,, Z,, Z,; Z|[Visinkl |f1]
Zy, Zy,, Zyy Zys| Visinkl, _ [ 21 (8.126)
Zy Z,s Zy, Zy, || Visinkl, [/l
Zis Zys Z,, Zy )| Visinkl, | /1l

which reduces to

[(Zn + Z,) (Z12+le)][VfSink11}:):lf1[jl (8.127)
(Z,, +2Z,y) (Zzz+z7.3) V3sin kl, Ifz'

For the starting lengths and offsets given in (8.106), the mutual impedances are
given by (8.107) and

2 2
Zn = g(x%/{(lyl) - 480()(%;31884) = 7174 +jO 6128
: , .
Zss :f(éilf:&z) _ 4800(%6524) — 77.61 + jO
As a consequence of (8.128), the matrix (8.127) becomes
[(71.07 +j047) (516 —j7.11)j(V{ sin ki, [0.11847 (8.129)
L(5.16 — j7.11) (74.73 — j7.81) || V5 sin kIZJ O.2564J
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Inversion gives
Vi=0.001415]11.6° Vi = 0.003293(7.9° (8.130)

so that the slot voltage ratio is

K% = 2.33|-3.7° (8.131)
Vi

The reader will recall that the desired ratio is 2.00|0°. One can see that, whereas there
is only a 59 or less error in the starting lengths and offsets, this results in a 16.5%
magnitude error and a 3.7° phase error in the slot voltage distribution.

For the slot voltages given in (8.130) and the self-impedances and mutual
impedances listed in (8.128) and (8.107), one can determine that

Zs = 82.00 — j16.85, Zg= 77.14 — j10.71 (8.132)

Use of (8.85) reveals that

Yr_Yi_ : i _ Y5 _ -
G =gi=00ms jooter gl —7E— 04014 4 j0.0557
and thus
3 g_ ~ 0.9604 + j0.1438 = 0.97]8.5° (8.133)
i=1 0 -

The input admittance has a susceptive component which is 159 of the conductance.
There is a mismatch of 3% in magnitude and 8.5° in phase.

Were one to repeat these calculations for the final offsets and lengths given in
(8.113), it would be discovered that the slot voltage distribution is correct in both
amplitude and phase. Confirmatton of this assertion is left as an exercise.

For a planar slot array, elimination of Y2,/G, from (8.115) and (8.119) gives

Ve, sin ki, Z2, = (%) Vol o] (8.134)
1

a result which is identical to (8.123) except for the use of double subscript notation
and the added feature that the mode voltage V, may differ from branch line to branch
line. Equation 8.134 can be expanded to give

Z Z V;q Sin klpqziflnrll == Vn | fm"! (8-135)
P ]

with the constant (K,/K,) suppressed.

If the slot lengths and offsets are known, the impedance matrix appearing in
(8.135) is known, as are the column matrix elements ¥,] f,..|. Inversion of (8.135)
will give the slot voltage distribution.
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A common use of (8.135) is in application to planar arrays, which are divided
into four quadrants and fed to produce sum and difference patterns. In such cases
it is convenient to use the indexing scheme shown in Figure 8.42. Because of the
quadrant I to quadrant III and quadrant II to quadrant IV symmetry in such arrays
{already noted for the two-by-four array discussed in Section 8.16), it is unnecessary
to apply (8.135) to the entire array. If there are M-by-N slot modules,?? for the sum
pattern Vi, = Vi, ., ~i1-, and (8.135) becomes

M/

2 N
2 X Viasin ko288 4 Zatr M) = V|

o (8.136)

(Zpattern: lgmg-z- lgngN)

Symmetry conditions indicate that, in (8.36), V, = Vi,

If the slots are assumed to be parallel to the X-axis in Figure 8.42, then the
E-plane and H-plane difference patterns correspond to the quadrants being excited
as shown in Figure 8.43. For A, (that is, the E-plane difference pattern), Vi, =

n=1 n=2 n=3 n=4

— Y. n
m=1[| 1,1 1,2 1,3 1,4
g
m=2{ 2,1 2,2 2,3 2,4 | &
5
o
m=3| 3,1 3,2 3,3 3,4
m=4| 4,1 4,2 4,3 4,4
g
m=5] 5,1 5,2 5,3 5,4 |5
E
<o
m=6[ 6,1 6,2 6,3 6,4
Quadrant IV Quadrant |
X, m

Fig. 8.42 Indexing Notation for Slot Arrays Showing Indi-
vidual Modules; M =6, N =4

23This does not necessarily mean a rectangular array, since some of the modules may be
“empty,” such as when corner slots are eliminated so that the array will fit in a circular boundary.
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,, -
\_

m

(a) Sum channel (b) E- plane (c) H-plane
difference channel difference channel

Fig. 8.43 Quadrant Excitations for Sum and Difference Patterns of Planar Arrays

—Virs1-pns+1-o For this case (8.135) becomes

M/2 N
2, Viasin klo(Z25 — ZMrimeNimay = | fl

r=1

(8.137)

(AE pattern: 1 < m < A—;

lgn§N>

For A, (that is, the H-plane difference pattern), it is also true that V;, =
—~Virs1-mn+1-g For this case (8.135) becomes

M/2 N .

3 XY Vigsin kl(ZE2 — Zut N = V| ful

pot e (8.138)
(AHpattern: 1gmg%f lgngN)

However, in contrast to the A case, in (8.138) the relation V, = Vy,,_, applies.
As an illustration of the use of these formulas, if the slot lengths and offsets for
the two-by-four array discussed in Section 8.16 are used to compute the Z}; and f;;
entries needed in (8.136) through (8.138), inversion gives the slot voltage distributions
listed in Table 8.9. When these excitations are used to compute the patterns, the

TABLE 8.9 Slot voltage distributions for two-by-four array

Slot Voltage V3,

Slot No.

mn Z AE AH

1,1 1.002 + j0.002 0.231 4 j0.063 1.051 + j0.003
2,1 1.000 — j0.006 0.968 + j0.203 1.315 — j0.053
3,1 1.002 — j0.005 0.031 +0.139 —1.113 + j0.187
4,1 1.004 — j0.003 0.791 +0.128 —1.066 + j0.011
1,2 1.004 — j0.003 ~0.791 —j0.128 1.066 — j0.011
2,2 1.002 — j0.005 ~0.031 —/0.139 1.113 —j0.187
3,2 1.000 — j0.006 —0.968 — j0.203 —1.315 4+ j0.053
4,2 1.002 +0.002 ~0.231 — j0.063 —1.051 —j0.003
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result for the sum channel is shown in Figure 8.41. The results for the difference
channels are shown in Figure 8.44. Element factors have been included in all these
patterns.
The difference patterns exhibited in Figure 8.44 clearly illustrate a basic diffi-
culty in the design of planar arrays for use in sum and difference applications. If the
slots are excited by a common feeding structure for all three channels, and if one
designs the feeding structure to obtain a good sum pattern, one must accept some
poor difference patterns. It is similarly true that, if one were to design the feeding
structure in order to produce a good A, pattern, for example, then the resulting ¥
and Ay patterns are inferior. The only way now known to overcome this deficiency
is to use separate feeding structures for the three channels, but this is extremely
complicated and costly.
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Fig. 8.44 A, and Ag Difference Patterns for the Two-by-Four Slot Array of Fig. 8.40
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PROBLEMS

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

Repeat the monopole design of Section 8.2, assuming that the gap problem can be
ignored, and that the Tai-type impedance expression (7.71) is applicable.

What is the impedance bandwidth (1.5: 1 VSWR criterion) for the monopole designed
in Problem 8.17

Repeat the dipole-over-a-ground-plane design of Section 8.3, using the improved King-
Middleton approximation for self-impedance. Equations 7.110 and 7.111 can be used
if a computer is available, or data can be read from Figure 7.18.

A rectangular slot is cut in a large ground plane of negligible thickness. If the slot is
1 in. wide and is to be center-fed by a two-wire line, what should its length be for reso-
nance at 300 MHz? What is its input resistance at resonance?

If a cavity is used to box in one side of the slot of Problem 8.4 and if the depth of the
cavity is less than A,/4, would you expect to have to lengthen or shorten the slot to
reachieve resonance ?

What physical argument would you use to explain the low input VSWR over a wide
frequency range for a ground-plane-backed helix?

Find the optimum spacing of a two-dipole array, with both elements driven, in order
to achieve an end-fire array pattern with maximum directivity but only one main lobe.
Assume dipole radii @ = 0.00324, and determine the lengths of the two dipoles in order
to achieve a match with a two-wire line at a reasonable impedance level. Assume series
coupling to the line, as in Figure 8.9.

How would the design of the dipole array in Problem 8.7 be altered if only one element
were driven?

For a three-element Yagi-Uda array, find the optimum lengths of reflector and director
if the driven element is 0.4754 long, if the interelement spacing is 0.154, and if all three
dipoles have a radius a = 0.00324.

A refinement of the explanation for the need to reverse the feeding at successive elements
in a log periodic array of the type shown in Figure 8.27 results from assuming a “locally
periodic” behavior along the structure. This permits the identification of transmissive,
active, and reflective regions (akin to the director-driven element-reflector model
adopted in Section 8.9). Assume this more extensive model and show that the feeding
portrayed in Figure 8.26a is incorrect, and that the proper method of feeding is as
shown in Figure 8.26b. [Compare with P. E. Mayes, G. A. Deschamps, and W. T.
Patton, “Backward-wave Radiation from Periodic Structures and Application to the
Design of Frequency-Independent Antennas,” Proc. IRE, 49 (1961), 962.]

A linear array of six balun-fed dipoles stands A/4 in front of a large ground plane. The
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dipoles are 0.64 on centers and in the end-to-end, or tandem orientation. If a —20 dB
SLL Dolph-Chebyshev broadside array pattern is desired, together with an input match
to 25 ohms, design a coaxial feed for this array. Your design should include a specifica-
tion of the length of each dipole and the characteristic impedance of each balun sec-
tion. Assume that all dipoles have a radius a = 0.00324.

8.12 Repeat Problem 8.11 for a six-by-six array.

8.13 Assume that the master input to the six-by-six array of Problem 8.12 is fitted with a
perfect magic 7. Find the E-plane difference pattern and the corresponding input
impedance.

8.14 Repeat Problem 8.13 for the H-plane difference pattern.

8.15 With the phaseshifters in the branch lines, repeat the analysis of Section 8.12 and show
the effect of mutual coupling on pattern and input impedance as the main beam is
scanned =+ 10° from broadside.

8.16 Design a resonantly spaced three-element longitudinal shunt slot array in standard X-
band guide. The frequency of operation is to be 9.375 GHz and the excitation is to be
uniform, with an input match.

8.17 Repeat Problem 8.16 for a three-by-threc array.
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9.1

traveling wave antennas

Introduction

A traveling wave antenna is one in which the radiating aperture and feeding structure
are intimately contiguous, if not continuously connected. As the name implies, the
aperture distribution has features similar to those of a traveling wave; the amplitude
of excitation may be tapered, but the phase progression is uniform, or nearly so.

Traveling wave antennas may be one- or two-dimensional. Examples of the
former are long wires and their derivatives (Vees and rhombics), polyrods, and leaky
waveguides. Examples of the latter include corrugated and dielectric-clad surfaces
(both planar and curved) and arrays of leaky waveguides.

This chapter offers an introduction to the analysis and design of some of the
practical types of traveling wave antennas. It begins with a discussion of the long wire,
followed by an extension to rhombics and Vees. Structures which will support slow
waves are then analyzed (notably grounded dielectric slabs and corrugated surfaces)
and the launching and termination of these waves is considered, leading to an inter-
pretation of the behavior of slow wave antennas. After this, leaky waveguides are
introduced, with particular attention given to long continuous slots in either the nar-
row or broad wall of a rectangular waveguide (the latter offset from the center line),
and to the quasi-continuous case of many closely spaced, nonresonant transverse
slots in the broad wall (serrated rectangular waveguide). A design procedure is
developed that will yield the aperture geometry necessary to achieve a desired pattern
together with an input match.

Trough waveguides are considered next and their beam-scanning capabilities
are explored. The chapter closes with a discussion of arrays of longitudinal shunt
slots in the broad wall of a rectangular waveguide. The design procedure developed
in Chapter 8 for resonantly spaced arrays (d = 4,/2) is extended to apply to non-
resonant spacing, which results in a traveling wave excitation. Mutual coupling is
generally severe in the traveling wave case and this effect is included in the analysis.

429
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Traveling wave antennas typically have good input impedance characteristics
(the reflected wave is effectively suppressed by some means) and therefore the emphasis
in this chapter will be on pattern characteristics.

9.2 The Long Wire Antenna

One of the simplest of the traveling wave antennas is the long horizontal wire a dis-
tance s above the earth, fed at one end against ground and perhaps terminated at the
other end in a matched load, as shown in Figure 9.1. If / is not negligible compared
to a wavelength, this wire and its image do not behave like a two-wire transmission
line, but rather comprise an efficient radiating system. The traveling wave of current
proceeding outward along the wire is attenuated due to the radiation, and thus the
power absorbed in the matched load may be reduced to an acceptable level by making
the wire long enough. Indeed, the leakage may be sufficient to obviate the need for a
terminating load. The net current distribution on the wire is then not a standing wave,
but is essentially an outward traveling damped wave.

If the earth is highly conductive, the image current lies a distance # below the
XY-plane and is also an outward traveling wave, 180° out of phase with the current
on the wire. The pattern due to wire plus image can be obtained by multiplying the
element pattern of the wire by the array factor sin(k% cos ).

Assume that the current distribution on the wire can be represented adequately
by

I, 1) = Lei 9.1

with y = a + jf the complex propagation constant. Equations 1.101 and 1.102 can
be used to determine the element pattern of the wire, and give

@, (0, ¢) = cos 8 cos ¢ F(0, ¢) (9.2)
Q,.(0,4) = —sind (8, $) (9.3)
z

Earth’s surface
in z = 0 plane

Fig. 9.1 A Long, Terminated Hori-
zontal Wire Antenna; End-Fed
(Beverage Antenna)
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in which

f(e’ ¢) — 10 J‘Lefyfejkf sin G cos ¢ df
0
e*L(y—jk sinfcos¢) ___ 1

=l (y — jk sin @ cos §)

(9.4)

This field is a figure of rotation about the wire and is given either by (9.2) for ¢ = 0
(XZ-plane) or by (9.3) for § = n/2 (X Y-plane).

In practical applications (wires composed of good conductors in an air environ-
ment), f = k; a is due almost entirely to radiation leakage and due hardly at all to
ohmic losses. Further a < k (for example, with L = 104 and 10 dB of attenuation
in the current level along the wire, a is only 1.8 % of k). Thus f(8, ¢) is given to good
approximation by!

e*jkL(lﬁsinecos ¢) 1

16.9) = = e —ncos ) ©-3)
and its magnitude can be expressed in the form
170, $)| = L,L|*2 X 9.6)
with
X:”—f(l ~ sin 6 cosd) ©.7)

The factor (sin X)/X can be interpreted as due to a continuous line source
which is uniformly excited in amplitude, possessing a uniform progressive phase
which places the main beam at end-fire. This result is modified by the multiplicative
factors cos @ cos ¢ and —sin ¢ in (9.2) and (9.3), as a result of which the actual main
beam peak lies off end-fire by an amount which depends on the length of the wire. A
typical element pattern is shown in Figure 9.2a for the case L = 54. All lobes shown
are conical, since the pattern is a figure of revolution about the wire.

If the earth is a good conductor and # = A/4, the array factor of wire plus
image is

@,(0) = sin (% cos 0) (9.8)
and is plotted in Figure 9.2b. This pattern is a figure of revolution about the zenith
axis. The field pattern of wire plus image is the product of the two plots shown in
Figure 9.2. It is identically zero in the X Y-plane and has a shape in the XZ-plane
somewhat similar to the upper half of Figure 9.2a, except that the side lobes are raised
relative to the main beam because of the weighting of the array factor.

If the earth is not a good conductor, but rather is more appropriately repre-

1E. Hallén, “Properties of Long Antennas,” Journ. App. Phys., 19 (1948), 1140-47.
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6=0°
30°
20°
10°
0°
(@ (®)

Fig. 9.2 The Element Pattern and Array Pattern of a Traveling Wave Wire Antenna;
L =52 h=0.251

sented as having a complex dielectric constant ¢’ — je'’, the height of the wire can be
adjusted so that the wave reflected off the earth’s surface combines in additive phase
with the direct wave from the wire in the direction of maximum radiation.

9.3 Rhombic and Vee Antennas

A rhombic antenna, as its name implies, is composed of four long, straight wires
arranged to form a rhombus, as shown in Figure 9.3. It is fed at one corner and
terminated in a matched load at the opposite corner. Traveling waves of current, 180°

Yy

Fig. 9.3 A Rhombic Antenna
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out of phase, are launched onto legs 1 and 2. If one neglects corner effects, these
traveling waves of current continue outward on legs 3 and 4 and are absorbed in the
matched load, thus insuring that no traveling waves are set up in the reverse direc-
tion. When the legs of the rhombus are long enough (54 or more), sufficient radiation
has occurred before the traveling waves reach the far corner that an acceptably small
portion of the total supplied power is absorbed in the matched load.

If s is a coordinate measured along one of the wires, the traveling wave of cur-
rent can be expressed in the form I(s) = I,e™?* in which y = a + jf is the complex
propagation constant. In practical applications (wires composed of good conductor
in an air environment), # = k; a is due almost entirely to radiation leakage and due
hardly at all to ohmic losses. As in the case of the Beverage antenna, discussed in the
previous section, o << k and therefore the pattern can be determined to a good approx-
imation by assuming y = jk.

The rhombic antenna can be viewed as an array of four long wire antennas and
the field distribution determined by pattern multiplication. Alternatively, one can
return to Equations 1.101 and 1.102 and form the basic expressions for @, and @,.
With the latter course adopted, the position coordinates are given by:

leg 1: £ =s5,cos¢y, 7 =3,sind,

leg2: € =s,cos¢,, 7= —s,sing,

leg3: &= (L4 s;)cosd,, n=(L—s;)sing,
legd: &€= (L +s,)cosd,, n=—(L—s,)sing,

The contribution to @, from leg | is

Qp,1(0,8) = LL [cos 8 cos ¢ cos P, e 7 + cos 8 sin @ sin @, Joe~**]

. ejk sin @[sy cos ¢o cos §+ 5 sin @ sin @] dSl

L .
= I, cos @ cos (¢ — ¢0)J. g JksillsinGcosig=dall g,
o

1 . e—jkL[l—sin 8cos(p—do)]

= I, cos 8 cos (¢ — ¢°)jk[l —sin 0 cos@ = dl 9.9)
In like manner, one finds that

a 9 . ] 9 1 _ e—jkL[l—sin 9 cos ($+do)) 9 ]0
9.2( s¢) = — 1y COS COS(¢ —+— ¢0) jk[l - sin 0COS(¢ + ¢0)] ( . )
Gy, (0, §) = —ekti1smocsis-001g, (9, §) ©.11)
Qo (8, §) = —e HuliTimocss 10, (6, 6) 9.12)

The sum of these four contributions gives

) . .

18,6, $)| = 4"’;’“ cos 0 sin ¢ sin ¢, S“/‘{A S“;B (9.13)
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in which
A= ”79[1 — sin @ cos (¢ — )] ©9.14)
B:”—f—‘[l —sinBcos(p + ¢)] (9.15)

Proceeding in a similar fashion, one finds that

18,0, ¢)| = ﬂfﬁ sin ¢, (cos ¢ — sin @ cos ¢,) sir;A Si%B (9.16)

The pattern of principal interest occurs in the XZ-plane. For a rhombic a dis-
tance A above a perfectly conducting ground plane, this pattern is given by?

sinz[%l—‘(l — sin @ cos ¢0)]

L
)

4LI,

|2,(8,0)] = %5

sin @, sin (kh cos 8)

9.17)
(1 — sin 8 cos ¢,)

As a function of 8, Equation 9.17 is seen to be the product of the three factors

SNV Gna¥  sin(khcos ) (9.18)
in which Y = (L/A)(1 — sin 8 cos ¢,). The first of these factors has already been
plotted in Figure 3.3a. When it is multiplied by sin z ¥, the result can be displayed as
in Figure 9.4a. For the typical case L/A = 6, /A = 1.5, and ¢, = 20°, the factor
sin(kk cos 6) appears as Figure 9.4b. Multiplication gives the pattern shown in Figure
9.4c. This pattern is seen to consist of a main beam tilted 10° above the horizon, plus
a family of side lobes with an envelope that undulates and decays. The number of side
lobes depends on L/4 and the side lobe level is customarily no better than — 13 decibels.

The design of a thombic antenna can be optimized by manipulation of Equa-
tion 9.17. First, the height 4 can be selected by requiring that d@,/dh = 0 at 8, with
@, the desired position of the peak of the main beam. This gives

cos(khcos 8,) =0
kh,, cos 8, = m(n/2) m=1,35,...

hy m
A~ dcosd, ©.19)

2A. A. de Carvalho Fernandes, “On the Design of Some Rhombic Antenna Arrays,” /RE
Trans. Antennas Propagat., AP-7 (1959), 39-46. See also E. Bruce, A. C. Beck, and L. R. Lowry,
“Horizontal Rhombic Antennas,” Proc. IRE, 23 (1935), 24-46.
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as a consequence of which the minimum optimum height of the rhombic over a highly
conducting earth is

hy 1
A~ 4cosd, (9-20)
The position of the peak of the main beam can be found from §@,/d8 = 0.
This gives

kh sin 6 cos (kh cos 8) sin Y + kL cos 8 cos ¢, sin (khcos 6) [cos Y — S?YY} =0

which can be rearranged into the form

B 1 L
h = cos ¢, cot 6 tan (kk cos 6) {k(l —sinfcosd,)  tan[kL/2(1 — sin @ cos ¢0)]}

9.21)

If 4 has been chosen so that (9.19) is satisfied, then tan(kh cos 8,) is infinite, and the
only way that the right side of (9.21) can be finite is if

tan[% (1 — sin @, cos qbo)] = kL(1 — sin @, cos ¢,) (9.22)
Equation 9.22 has the solutions

%(1 — sin @, cos ¢,) = 0.371, 1.465, 2.480, . . .

and thus the minimum optimum length of a rhombic arm can be computed from

L 0.371
2~ 1T —sinf, cosd, (9:23)
The best choice for corner angle can be determined from
08400,0% _ g 9.24)
I,
which leads to the result
cos ¢, = sin @, (9.25)

As an illustration, if the main beam is to be 15° above the horizon, then §° =
75° and the corner angle at the feed should be 2¢, = 30°. The optimum leg length is
5.51 and the proper height above ground is one wavelength.

The Vee antenna, as one might suspect, is a simplification of the rhombic, with
legs 3 and 4 removed. If the Vee is parallel to a ground plane, matched loads can be
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run to ground from the outer ends of legs 1 and 2, but if the leakage is great enough
this is not necessary, and without a ground plane it is not possible. The fields can be
deduced from an analysis which parallels what has already been done for the rhombic.
For example, @40, ¢) is given by the sum of (9.9) and (9.10). The important pattern
cut is |@,(f, 0°)|; the reader may wish to determine @, as an exercise.

9.4 Dielectric-Clad Planar Conductors

A flat metallic conductor, onto which a sheet of homogeneous isotropic dielec-
tric has been bonded, as shown in Figure 9.5, is capable of supporting a traveling
wave and can thus serve as a transmission line or an antenna, depending on the
termination. The electromagnetic behavior of this composite structure can be ex-
plained by first assuming that it is infinite in extent in both the X~ and Z-directions.?

Region II (air)

Ground plane

Fig. 9.5 A Dielectric-Clad Ground Plane

Let any field component either in region I (the dielectric) or region Il (air) be expres-
sible in the form

S (el (9.26)
This implies that there is a suitable x-independent source at z = — oo which is caus-

ing a wave to travel across the diclectric-clad surface with a propagation constant f.
For region I, Maxwell’s equations decompose into the following two sets.

TE ™
. __Jjou,dH, _ jwe JE,
E.= h: dy H. h? dy
(9.27)
H:_MaH, E:_iﬁdEz
7 h dy 7 h? dy

H :fl(y)ej(wt—ﬁz) Ez = g‘(y)ej(mt~ﬂz)

~

3S. S. Attwood, “Surface Wave Propagation Over a Coated Plane Conductor,” Jour. App.
Phys., 221 (1951), 504-9,
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Here k* = w?u,c and b} = k* — 2. Similarly, in region II,

TE
_ _jou,dH,
E==50 %
= —-—.‘Zﬁ aHz
i, hy dy

H, = fy(y)e/e s

with k2 = w?pu.€, and h3 = ki — B

T™
_ Jjw€, OE,
H, h: dy
, (9.28)
g _ _IBIE.
’ h: dy

E. = gi(3)e/er s

The longitudinal field components satisfy the wave equation, as a result of

which

(3,“’7 + B) (3 = 0

(di;—z + B fu(3) = 0

(ady—zi + h%) g:(y)=0 029)

(4 + m) e = 0

The appropriate solutions. with no sources at y = +oo and with no wave motion in

the -y direction in region I, are

fi(y) = Aje™ ™ + Be™

[2(p) = Ayem
in which

o = jh, = «/ﬂ—ZT/\_S

is a pure real number.

g:(y) = Cie™ ™ 5 D,e™

9.30
8:(y) = Cre™ ( )

(9.31)

For TE waves, H, = 0 at y = —d, whereas for TM waves, £, = 0 at y = —d,

and thus
B, = A e/

When this information is used in (9.27) and (9.28), one finds that

TE—Region I

E, =1%o g sin (hy(y + d))erers
1

H, = lh_ll? Asin[h,(y + d))e/e -2

H, = Acos[h (y + d)]e/w5

and D, = —C, e/ (9.32)
TE—Region 11
Ex — _]wﬂo Azej(wt—ﬂz)—ay
[+
(9.33)

Hy — _%Azej(whpz%my

H. = Azej(wr~ﬂz)~ay
z

where the substitution 4 = 24,e/*¢ has been made. Similarly,
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TM—Region 1 TM—Region II

H, =12 Coosth(y — dlers = IO, grorsn
1

E, — *{Tﬁ Ccos [ (y + d)]e/#?  E, = ‘%ﬂcze"””””‘” (9:34)
1
E, = Csin[h,(v + d)]e/=F3 E, = Cyellepi-o

with C = 2jC,e/™?,
The matching of tangential E and H at the air-dielectric interface gives the
following.

TE ™
i A2 i CZ
A= s C=Snha 039
tan f,d = ~% tan h,d = fihix_
0 1

When the defining relations for @ and 4, are placed in (9.35), one obtains

[ (BT ) - Y] 7o oo

e[ (Bl —1 T
s (e/eg)~<ﬁ/ko)2} ™ (37

Equations 9.36 and 9.37 permit calculation of the normalized propagation con-
stant fB/k, as a function of the relative permittivity of the dielectric layer and its
thickness for 7E and TM waves traveling across the composite surface. A study of
these equations reveals important characteristics of this type of wave propagation.
First, in the range

B ¢
1 < ko Ve (9.38)
the right side of each equation is pure real and has a value which lies in the interval
[~ o0, 0] for TE waves, and in the interval [0, oo] for TM waves. Therefore positive
real values of & can be found, for each value of 8/k, in the range of (9.38), which will
equate the two sides of either (9.36) or (9.37). For TE waves, the angle for which the
tangent is being taken must lie in the second, fourth, sixth, . . . quadrant, whereas for
TM waves, it must lie in the first, third, fifth, . . . quadrant.

Second, with the range of f/k, prescribed in (9.38), the phase velocity of these
waves, which is given by

p @ o 1« (9.39)

"B ko (Blko) — (Biko)

1s less than the speed of light. For this reason, the dielectric-clad ground plane is often
referred to as a slow wave structure.
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Third, since & = /B% — ki, it follows that the larger B/k, is in the range of
(9.38), the greater is the value of & and the more rapid is the exponential decay of
these waves in the direction normal to the surface. The electromagnetic energy being
transported is tightly bound to the surface if §/k, is even modestly greater than unity.
For this reason, these slow waves are sometimes also called trapped waves.

The fundamental TM mode occurs when d has a value such that the angle

€ A
& (@) ] e

lies in the interval (0, n/2). For the fundamental TE mode, this angle must be in the
interval (/2, ), which requires a larger value of d for the same f/k,. The additional
thickness of the dielectric layer lessens the attractiveness of T£ slow wave propagation.

For a relative dielectric constant €/, = 2.5, plots of f/k, versus d are shown in
Figure 9.6 for both the fundamental TM and TE modes; they illustrate the difference
in dielectric thickness requirements for the two types of slow waves.

A discussion of the launching of slow waves on these composite structures, and
of the potential use of dielectric-clad planar conductors as transmission lines or
antennas, will be deferred to Section 9.7.

T T
1.3 Tﬁ/ T -

VA4 e
A/

0 0.1 02 03 04 05 06 07 0.8 0.9 1.0
d/\

Blk,

2.5

#l

Fig. 8.6 Propagation Constants of Slow Waves on a Dielectric-Clad Ground Plane as
Functions of Dielectric Thickness

9.5 Corrugated Planar Conductors

Slow waves of the TM type discussed in the previous section can also be supported by
corrugated ground planes, with the teeth and gaps that comprise the corrugations
running transverse to the direction of propagation.* This situation is suggested by

4C. C. Cutler, “Electromagnetic Waves Guided by Corrugated Conducting Surfaces,” Bell
Telephone Laboratories, Report MM-44-160-218 (October 1944).
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Fig. 9.7 A Planar Conductor with a Corrugated Surface

Figure 9.7, where wave motion is assumed in the Z-direction and the corrugations are
parallel to the X-axis.

If G 3> T and if there are many teeth per wavelength, the existence of TM waves
in region I (the air-filled half-space above the corrugated structure) will excite stand-
ing TEM waves in the gaps which make up region 1. In the nth gap, identified by the
coordinate z,, these fields are given by

E, = D, sin k(y + d)e’*
(9.40)

H, — %‘ D,cos k(y + d)ei

where once again k2 = @?y €. In (9.40). € is the permittivity of the medium filling the
gap (usually air).

The region II fields are given by (9.34) and the matching of tangential E and
H in the plane y = 0 gives

_ Cyemitm
" sin kd
(9.41)
_fta
tan kd = "

When the defining relations for & and k are used in (9.41) the result is that

(S h] - TE ] e

Equation 9.42 is similar in form to (9.37). However, the range of #/k, for a cor-
rugated ground plane is less restricted than for a dielectric-clad ground plane. One
can observe from (9.42) that positive real values of d which cause the angle (¢/€,)'*k,d
to lie in the interval [0, /2] result in a value of B/k, in the range

1= Blhy < (9.43)

A plot of B/k, versus corrugation depth 4 is shown in Figure 9.8 for the case
€ = €,. The leveling off of f/k, observed in Figure 9.6, due to the finite upper limit
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in (9.38), is absent from the curve of Figure 9.8. However, the values of f/k, needed
in practical TM surface wave antennas can be obtained easily either with a grounded
dielectric slab of reasonable thickness and permittivity or with a corrugated surface
of reasonable tooth/gap dimensions. This will become evident from the development
found in Section 9.7.

9.6 Surface Wave Excitation

For TM slow waves supported by a corrugated ground plane, the analysis of the
previous section left unanswered the question of how the waves are to be created. If
the half-plane z = 0, y > 0 were singled out in Figure 9.7, on which the current sheets

K, = JP€0 ¢, giot=ay K,..= —iczef“’”“y 0<z< oo (9.44)
o L7
could be placed, the fields described by Equations 9.34 would be produced in z > 0,
as can be seen through recourse to Schelkunoff’s equivalence principle and Equations
1.112-1.115. The sources in (9.44) are not physically realizable but they can serve as
a useful guide in gaining an introductory appreciation of several types of surface wave
launchers.

To see this, consider a rectangular waveguide whose bottom broad wall is cor-
rugated. This structure can be analyzed in a manner similar to the procedure followed
in Section 9.5 for the corrugated slab.® One finds that the dominant mode is a modified
TE,, with phase velocity that has been slowed by the presence of the corrugations. If
the side walls are permitted to recede to infinity, the solution for waves propagating

sR. S. Eiliott, *On the Theory of Corrugated Plane Surfaces,” /RE Trans. Antennas Propagat.,
AP-2 (1954), 71-81.
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between parallel plates, with one plate corrugated, is obtained.® For G >»> T and
G < A, the fields in 0 < y < b, that is, in the region above the corrugations and
extending to the upper wall (see Figure 9.9), are given by

H. = ﬁ;& C"2 cosh [a(b — y)]ej(wlfﬂz)

£, = 1 ¢y cosh [ — yyjerrso (9.45)

E. = Cj sinh [a(b — y)Jeit#?

When these fields are matched at the boundary y = 0 to those in the gap regions,
the refation

tan kd = £ % tanh ab (9.46)
€, k

can be established.

!

b

F e
B O 0 e

Fig. 9.9 Parallel Plate Transmission Line; Bottom Wall Corrugated

If e=** < 1, then tanh ab = | and (9.46) reduces to (9.35). This means that a
given corrugation depth produces the same propagation constant whether the upper
plate is present or not. Further, it means that the fields in (9.45) are very close to those
described by (9.34). To see this, let C sinh ab = C, so that the levels of the two sets
of fields are equivalent. Then (9.45c) becomes

E. =C, sinh [a(b — y)] ollwt=p2)

sinh ab
b~ ~a(b-y)
—C ex(o—y) __ p-alb-y gt
2 eab P

(9.47)

-~ Cz[eﬂt.v — e—a(Zb—w]e/'(wl-ﬂ-')

~ Czej(wt*ﬁ2)~ay 0 < y < b

6ibid.
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which agrees with (9.34a) for region II. In like manner, (9.45b) and (9.45c¢) are approxi-
mately equal to their counterparts in (9.34), if e7*? < 1.

The significance of this result is, for a given corrugation depth d (and thus a
given f/k, and &), if b is made large enough to cause the condition e~*® < 1, then it
does not matter whether the top wall is present or not. The trapped waves. which are
concentrated near the lower (corrugated) wall, would not be seriously affected if the
upper wall were suddenly to stop, as suggested by Figure 9.10.

Y

O

Fig. 9.10 Corrugated Slab Fed by a Corrugated Parallel Plate Transmission Line

This immediately suggests two potentially satisfactory wave launchers. A line
source, such as an array of longitudinal shunt slots, could be designed to excite a
TEM mode in a parallel plate region with the upper wall flared to achieve the proper
aperture height b, and with the lower wall corrugated with gradually increasing gap
depth until the ultimate depth is achieved. Alternatively a conventional rectangular
waveguide could be used to feed a horn with side walls that flare out till they reach
the desired separation in the x-dimension, with an upper wall that flares to achieve
the proper aperture height b, and with a lower wall corrugated with gradually in-
creasing gap depth until the ultimate depth is achieved. Either of these possibilities
is suggested in cross section by Figure 9.11.

An estimate of the effectiveness of TM surface wave launchers of these two types
can be made by the following argument. Assume that the gradualness of the deepen-
ing of the corrugations and the gentleness of the flare of the upper wall (and perhaps

Fig. 9.11 Flared Feed for a Corrugated Surface




9.6 Surface Wave Excitation 445

the side walls) are sufficient to provide a good match to the line source or rectangular
waveguide. Conditions at the mouth of the feed can then be idealized by the parallel
plate picture of Figure 9.10. In that picture, if the proper equivalent sources are placed
on the half-plane z = 0, y > 0, the fields in z > 0, y > 0 will be the same as those
caused by the actual feed. With e™*? < 1, the termination of the upper wall sets up a
negligible reflection, so the fields in the mouth should be given quite accurately by
(9.45). With b/A large enough to cause e ** < 1, the spillover from the feed in z < 0,
» > b should be small enough to permit the assumption that the fields are negligible
on z =0, y > b. If this is so, the equivalent sources that should be placed on the
half-plane z = 0, y > 0 are

K

r

— J9€0 ¢4 cosh [a(b — e

0<y<b

. (9.48)

K, = _JB C cosh [a(b — y)]e’*
Ui,

,=0 K,.=0 b<y <o

The ideal surface wave described by Equations 9.34 requires the sources in (9.44).
How close do the sources in (9.48) come to meeting this requirement? An answer can
be provided to this question if one compares cosh [a(b — y)]/coshab to e * in
0 <y < b and compares zero to e in b < y < oo.

As an illustration, let €/e, = 1, f/k, = 1.10, and b/A = 1. Then a/k, = 0.458,
e ** = 0.056, tanh ab = 0.994, and d/A = 0.068. The conditions assumed in the
approximations are seen to be met reasonably well even though f/k is only modestly
above unity and even though the feed mouth is only one wavelength tall. A comparison
of the equivalent sources in (9.44) and (9.48) for this case is provided by the entries
in Table 9.1. One can see good agreement over the bottom half of the mouth but the
discrepancy grows as y -— b. However, the field values are diminishing as y — b,
which lessens the seriousness of this deviation.

The agreement between (9.44) and (9.48) improves as f/k, or b/ increases. The
development in Section 9.7 will show that the value of f/k, needed for optimum pat-

TABLE 9.1 Equivalent source distributions for TM surface waves

ﬂ/k0=1.10 b/A=1

Sources Sources Sources Sources
y/2 (9.48) (9.44) yiA (9.48) (9.44)
0 1.000 1.000 0.7 0.156 0.133
0.1 0.751 0.750 0.8 0.131 0.100
0.2 0.567 0.562 0.9 0.116 0.075
0.3 0.427 0.422 1.0 0.112 0.056
04 0.325 0.316 2.0 0.000 0.003
0.5 0.250 0.237 3.0 0.000 0.000

0.6 0.195 0.178 4.0 0.000 0.000
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tern performance is dictated by the length of the corrugated surface and is usually
not much greater than unity. This leaves b/A as the only control parameter to improve
the launching efficiency for this type of feed. Practical considerations limit the aper-
ture height and thus the effectiveness of surface wave excitation. However, experi-
mental results to be presented in Section 9.7 will indicate that modest values of b/A
are adequate to cause acceptable surface wave generation.

This entire discussion could be repeated for the launching of either TM or TE
slow waves on a grounded dielectric slab. The conclusion would once again be
reached that horn-type feeds can be designed to be satisfactory launchers. As in the
corrugated case, the wall flare from line source or waveguide to the feed mouth should
be gradual and the dielectric should extend inside the feed, where its thickness is
gradually brought to zero to assist in a good match.

What has been presented here is only a brief introduction to surface wave
excitation. Other more complex feeding schemes have been devised, and elaborate
analyses have been developed for the computation of excitation efficiency. The inter-
ested reader should consult the comprehensive review of this subject by F.J.
Zucker? and the discussions by H. M. Barlow and J. Brown,? by R. E. Collin;? and by
C. H. Walter.1?

9.7 Surface Wave Antennas

If the feed shown in Figure 9.11 is properly designed, a slow wave will be launched,
traveling over the corrugated surface in the +Z-direction. Were a mirror-image feed
placed some distance to the right in order to absorb this slow wave, the intervening
section of corrugated slab could be viewed as a transmission line, albeit an imperfect
one. There would be losses: ohmic heating of the conductors, radiation from the first
feed in modes other than the surface wave, spreading of the fields in the X-direction,
and imperfect reception by the second feed. A serious question could be raised about
the necessity for a slab which is wide in the X-dimension. Clearly, this structure does
not serve as a good transmission line,'! but when properly designed it can become a
good antenna,

7F. J. Zucker, “Surface-Wave Antennas,” Antenna Theory, Part II, ed. R, E. Collin and
F. J. Zucker (New York: McGraw-Hill Book Co., Inc,, 1969), Chapter 21, pp. 313-20.

8H. M. Barlow and J. Brown, Radio Surface Waves (Oxford: Clarendon Press, 1962), pp.

92-136.

9R. E. Collin, Field Theory of Guided Waves (New York: McGraw-Hill Book Co., Inc., 1960),
pp. 485-506.

10C, H, Walter, Traveling Wave Antennas (New York: McGraw-Hill Book Co., Inc., 1965),
pp. 282-311,

11The cylindrical equivalents of the grounded dielectric slab and corrugated planar conductor,
namely the dielectric-sheathed wire and the corrugated rod, do make good transmission lines when
fed by properly designed conical horns. The dielectric-coated wire has been intensively investigated
for such purposes. See G. Goubau, “Surface Waves and Their Application to Transmission Lines,”
J. Appl. Phys. 21 (1950), 1119-28.
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As an introduction to the subject of slow wave structures used as antennas,
assume that the corrugated suiface and feed of Figure 9.11 are infinite in the x-dimen-
sion and that all fields are x-independent. Assume further that the regular pattern of
corrugations does not persist all the way to z = + oo, but rather terminates a distance
L from the feed mouth in a ground plane which does extend to infinity. This situation
1s suggested in Figure 9.12a.

Next imagine a closed surface S consisting of the half-plane z = 0, y > 0, the
half-plane y = 4, z > 0, with § a positive infinitesimal; the cylindrical section of
infinite radius which connects these two half-pianes at infinity and encloses the three
quadrants in which z or y is negative; and the two end-cap surfaces x = +oo. The
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Fig. 9.12 Equivalent Sources for a Corrugated Surface Antenna with an Infinite Ground
Plane Extension
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volume V inside S contains all the sources and Schelkunoff’s equivalence principle
can be invoked. The proper set of secondary sources on S will produce fields in the
quadrant z > 0, y > 0 identical to those caused by the actual sources.

It will be assumed that the feed is efficient enough that the true fields in the
quadrant z < 0, y > 0 are negligible. A useful by-product of this assumption is that
a semi-infinite ground plane extending to z = —oo can replace the actual external
feed structure, as pictured in Figure 9.12b. This permits use of the image principle,
with the currents in the ground plane accounted for by doubling the equivalent
magnetic sources over the corrugated surface, canceling the equivalent electric sources
over the corrugated surface and placing images of the aperture sources on the half-
plane z = 0, y < 0, as suggested by Figure 9.12c.

The current sheets given by (9.48) will be taken as an adequate approximation
to the true secondary sources which should be placed on the half-plane z = 0, y > 0.
The images of these current sheets need to be placed on the half-plane z = 0, y < 0.
The magnetic sources which are to occupy the position vacated by the corrugated
surface can be deduced from (9.34) and are given by

Kpe = —2u5'Cyellw=52 0<z2<L (9.49)
The far field can be expressed as the sum of two terms, in the form
Ef0) = E0) + E{O) (9.50)

with £ and £} the contributions from the corrugated surface and feed, respectively,
and with @ measured from the Z-axis in the YZ-plane. With the aid of the results of
Appendix G, one can show that

s(Oy — Vi 1= LR (g k) ~sin &) SIN TTL/A (Blk — sin 6)
EN0) = 2jkLC, u5'e 4 ZLI%(Blk —sin 0) (9.51)

o1 Blk 4 sin 8 . cos 8 sin (kb cos 8)
E{6) = 204" e[smh ab -+ o ] (9.52)

The part of the field attributable to the corrugated surface is seen to be in the
form sin z Y/zn Y, with Y = (L/A)[(B/k) — sin 6]. This general pattern has been plotted
in Figure 3.3a, and consists of a main beam and a family of side lobes which decay in
height with distance from the main beam. However, a feature of the present applica-
tion is that B/k > 1; therefore this pattern does not reach the peak corresponding to
Y = 0. It is important to be sure that §/k is not so large that all of the main beam of
(sin #Y)/= Y lies in the invisible range.

W. W. Hansen and J. R. Woodyard have shown!? that if

(% _ 1) % -2 (9.53)

12W, W. Hansen and J. R. Woodyard, “A New Principle in Directional Antenna Design,”
Proc. IRE, 26 (1938), 333-45.
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then patterns of the type in (9.51) will have minimum beamwidth. This condition is
usually adopted in the design of corrugated surface antennas and simplifies (9.51) to
the form

sy _y sin (mL/AY(B/k — sin 8)
Ei0) = —2kLCupi" S T (9.54)

which has a main beam peak at end-fire and a family of side lobes, the first of which
is at a height —9.5 decibels relative to the main beam.

The feed pattern (9.52) is quite broad and exhibits no nulls in the visible range
for practical values of f/k and b/A. It also makes a maximum contribution at end-fire.
The ratio Eyn/2)/E{(rn/2)is a measure of the feed suppression and depends on the
relation between the constants C, and C%, which in turn depends on the aperture
height &/A. If one connects C, and C; by equating the power emerging from the feed
to the power transported by the surface wave, it is a simple matter to compute the
feed suppression. This has been done!? and the results are plotted in Figure 9.13. It
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Fig. 9.13 Feed Suppression for a Corrugated Surface Antenna

is evident that, for a given &/A, there is more feed suppression if L/ is greater. But
it is also evident that, for corrugated surfaces of practical length, the feed suppres-
sion rapidly reaches the asymptotic value of 6 decibels as b/A is increased.

The presence of this asymptote can be understood by returning to (9.52) and
realizing that, as b/A increases, sinh &b dominates {cos § sin(kb cos 8)]/(a/k) and

13Elliott, “Theory of Corrugated Plane Surfaces,” p. 76.
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C, sinh ab — C,. The limiting value of the feed suppression ratio is therefore

o BS@D) _ 2CuskLi@)
WL E{f2) ~ 2o (Blk  DACATKY — 1]

by virtue of the Hansen-Woodyard relation (9.53).

That it is desirable to suppress feed radiation is apparent from this limiting
ratio. If the field attributable to the corrugated surface is only twice the value at end-
fire of the field due to the feed and if they are out of phase, then at the peak of the
first side lobe of E§(8), the two contributions are in phase. With the feed pattern broad,
this can result in a first side lobe as high as the main beam, an unacceptable situation.

But to make /4 small enough to suppress the feed radiation adequately is to
go against the prescription for efficient launching of the surface wave given in Section
9.6, namely, to make b/4 large. Clearly, a tradeoff situation exists. That it is possible
to get effective excitation of the surface wave and still have acceptable feed suppres-
sion will be demonstrated shortly, when theory and experiment are compared.

First, it is necessary to reconsider several of the assumptions made in this
analysis. The source distribution (9.49) tacitly implies the neglect of any reflected
surface wave caused at z = L by the juncture of the corrugated surface and the ground
plane. This can be justified on the basis of the Hansen-Woodyard relation (9.53),
which can be rewritten as

(9.55)

A

57 (9.56)

B+
from which one can see that, even for corrugated surfaces that are only 54 long, f/k
should be no greater than 1.1. This in turn implies that the corrugations are shallow
and that the transition to ground plane is not severe.

The assumption that the surface is infinite in its x-dimension is a good one if
the actual surface has a width greater than or equal to 54, for then the finite width
has negligible effect on the propagation formula in (9.42) and any of its consequences.
The pattern in the YZ-plane can be computed as though the transverse width were
infinite. Patterns in planes containing the X-axis will be governed by the x-dependency
of the aperture distribution.

Experiments performed by M. J. Ehrlich and L. Newkirk'4 provide a test of the
foregoing analysis. They used a corrugated surface which was 21 wide and 7.331
long embedded in a ground plane 404 wide and 701 long, with the tooth/gap dimen-
sions adjusted to give B/k, = 1.07, consistent with the Hansen-Woodyard relation.
Patterns were taken using a receiving horn which was mounted on a rotatable arm
504 long, thereby simulating the far-field measurements for the case of an infinite
ground plane. With b/4 = 0.73, the experimental pattern which they obtained at
9.840 GHz is shown as the solid line in Figure 9.14. The theoretical pattern computed
from (9.54) is shown dotted for comparison.

14M, J. Ehrlich and L. Newkirk, “Corrugated Surface Antennas,” IRE Convention Record,
Part 2 (1953), 18-33.
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The agreement between theory and experiment for this case is good enough to
permit the inference that the dominant contribution to the radiation pattern is coming
from the corrugated surface and that the feed radiation is adequately suppressed, even
though b/4 is only 0.73. However, the null positions and side lobe heights do not
quite agree, and the theoretical pattern gives a main beam which is too broad. When
the feed radiation is included in the theoretical computation, better correlation is
achieved.!' The principal remaining defect is the assumption that a pure surface wave
is traveling across the corrugated surface, and that therefore (9.54) is the proper
representation of the equivalent sources. F. J. Zucker offers an example of the mea-
sured field distribution immediately above a 44 surface wave antenna, indicating that
the amplitude is far from uniform, particularly near the feed end.!¢

Despite the approximations, the foregoing analysis provides a satisfactory
explanation, at an introductory level, of the principal characteristics of corrugated
surface antennas. The same approach can be applied equally well to surface wave
antennas in which the basic trapping structure is a grounded dielectric slab, support-
ing either a TE or TM mode.

Other methods of analysis have been favored by some workers. F. J. Zucker!”
has shown a preference for the “discontinuity radiation” point of view, in contrast to

1sEliott, “Theory of Corrugated Plane Surfaces,” Figure 5.
16Zucker, “Surface-Wave Antennas,” Figure 21.5.
171bid., pp. 302-4 and Problem 21.9.
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the foregoing (which he calls the Kirchhoff-Huyghens approach), but argues quite
correctly that the two procedures, given the stated approximations, lead to identical
results.

Finally, it must be mentioned that the analysis so far has assumed a surface
wave antenna of length L followed by an infinitely long ground plane. If the ground
plane is finite in length (or nonexistent), the slow wave traversing the antenna will be
diffracted at the terminus, resulting in a pattern in which the peak of the main beam
is lifted off the surface with some radiation leaking into the lower hemisphere, as
typified by the experimental pattern shown in Figure 9.15. An estimate can be made
of the angular position of the peak of the main beam as a function of the lengths of
the trapping surface and its ground plane.'®

For some applications of surface wave antennas, it is not desirable to have the
main beam tilted up above end-fire. In such situations, a desirable feature of trapped
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Fig. 9.15 Experimental £-Plane Pattern for a Corrugated Surface Antenna;
L =7.332, G/T = 3; Ground Plane Extension of One-Half Wave Length

18Elliott, “Theory of Corrugated Plane Surfaces,” Figures 6 and 7.
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waves can be exploited. Trapped waves will cling to a curved surface, although some
leakage occurs (the more so the more radical the curvature). By using a section of a
corrugated or dielectric-clad cylinder in lieu of a planar trapping structure, one can
position the main beam at end-fire by proper choice of the length of the arc and the
radius of curvature. The leakage of trapped wave causes null-filling in the pattern,
which is desirable in some applications.!® The same effect can be achieved with a
spherical cap that is dielectric-clad or corrugated. The resulting ¢-symmetric pattern,
devoid of deep nulls, is useful in beacon antenna applications.2°

All of the slow wave antennas that were described in this section have the prop-
erty of a uniform repetitive tooth/gap geometry over the entire aperture, a feature
used to justify the assumption of an aperture distribution derivable for dielectric-clad
surfaces from (9.33) and (9.34) and for corrugated surfaces from (9.34). The aperture
distribution can be modified by modulating the trapping structure. A variety of
methods for doing this have been discovered and C. H. Walter can be consulted for a
survey and bibliography.?!

9.8 Fast Wave Antennas

A waveguide mode typically propagates at a phase velocity greater than the speed of
light. If the waveguiding structure which supports this mode is properly “opened up,”
the energy contained in the mode can be leaked to the exterior region, resulting in
what is called a /leaky wave antenna. In practice, one wishes to govern the rate of
leakage to achieve a desired apreture distribution. With the aperture many wave-
lengths long, the leakage rate is everywhere low and the phase velocity of the leaky
mode differs but little from the phase velocity of its nonleaky counterpart. As a con-
sequence, there is a quasi-uniform progressive phase distribution to the aperture dis-
tribution, corresponding to the passage of a fast wave over the aperture. Thus such
structures are also called fast wave antennas.

Four examples of fast (leaky) wave antennas are shown in Figure 9.16. The first
three give an E-field distribution in the slot that is essentially transverse to the
longitudinal Z-axis, which translates into an E,-polarization in the far field. The last
example gives a longitudinal E-field in the aperture, thus causing an E,-type far-field
pattern. The local value of transverse width of the long continuous slot determines
the local rate of leakage for the first two examples. The local value of offset from the
center line determines the local leakage rate for the meandering slot, and the local
value of transverse slot length determines the local rate of leakage for the serrated
waveguide. The first three examples are clearly continuous slots with respect to the
longitudinal coordinate, whereas the fourth is only quasi-continuous. However, if the

19R, S, Elliott, “Azimuthal Surface Waves on Circular Cylinders,” J. Appl. Pliys., 26 (1955),
368-76.

20R, S, Elliott, “Spherical Surface Wave Antennas,” [EEE Trans. Antennas Propagat., AP-4
(1956), 422-28,

21Walter, Traveling Wave Antennas, pp. 373-84.
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Fig. 9.16 Four Types of Fast (Leaky) Wave Antennas

metal region between adjacent nonresonant slots is narrow and if there are many
slots per guide wavelength, this structure may also be treated as though the aperture

were continuous.
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To see how a desired aperture distribution can be achieved in principle for
structures such as these, let some representative field component in the waveguide be
expressed as a decaying wave, such that the power present at the cross section z is
given by

P(z) — B exp [—2 G ch (9.57)

with B the original field amplitude and « the field attenuation per unit length. Because
it is assumed that the transverse dimension governing leakage rate is controllable, «
is a function of longitudinal position (.

Differentiation of (9.57) gives

| dP(2) _
ON L (9.58)

as the point relation connecting o and P.

If the aperture distribution, collapsed onto the Z-axis, is represented by A({)e™ /4%,
with 4({) adjusted in level so that

PG) = Pi — | 1AQ) g (9.59)
then the input power P,, is given by
L
Pry = | 1AQ)F dC + Progw (9.60)
In (9.60), L is the length of the aperture and P, , is the power left inside the wave-
guide at the end of the aperture, which travels on to be absorbed by an internal

matched load which terminates the waveguide.
If one lets

Proap :fPlN (9~6l)

so that f'is the fraction of the input power absorbed in the load, then (9.60) becomes

Pl = 1) = [14QP at 9.62)

and as a result (9.59) is converted to

P = [k a - [ 1o a 969
Differentiation of (9.63) gives

PP (9.64)
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and thus (9.58) becomes

a(z) = — O (9.65)
o [ @ d = [ aor

Equation 9.65 is a useful design result. If the desired pattern is specified, A(z)
is known and this equation can be used to determine a(z), once a value is chosen for
/- (This will be discussed more fully later.) The task then remains to relate the trans-
verse dimensions of the aperture to the newly found a(z).

The connection between the rate of attenuation & and the transverse geometry
of a particular type of leaky wave antenna can be determined either theoretically or
experimentally. The theoretical approach can be illustrated for the case of an infinitely
long slotted circular waveguide for which all cross sections are identical and typified
by Figure 9.17. General field expressions can be written for the interior and exterior

Fig. 9.17 Notation for a Slotted
Cylinder Excited by a TEy; Mode

regions and matched across the slot boundary. When the internal field is assumed to
be basically a TE,, mode (that is, to converge to the conventional TE,, mode for a
circular waveguide when ¢, — 0), the complex propagation constant & + jf# can be
deduced as a function of ¢, and the normalized cylinder radius.

V. H. Rumsey?? and R. F. Harrington?3 have used a variational method to
obtain a numerical solution for this geometry and their results are shown as the solid
curves in Figure 9.18. It can be observed that, with a/4 held fixed, o is sensitive to
$,, but B/k is not.

A transverse resonance method has also been employed by Goldstone and
Oliner to obtain a theoretical solution for the propagation constant of a TE,, slotted
cylinder?* and the results are in substantial agreement with those displayed in Figure
9.18. The slotted rectangular waveguide shown in Figure 9.16b has been analyzed by

22V, H. Rumsey, “Traveling Wave Slot Antennas,” J. App. Phys., 24 (1953), 1358-65.
23R. F. Harrington, “Propagation Along a Slotted Cylinder,” J. Appl. Phys., 24 (1953), 1366~
71. See also Walter, Traveling Wave Antennas, pp. 163-72.

24L. O, Goldstone and A. A. Oliner, “Leaky Wave Antennas II: Circular Waveguides,” IRE
Trans. Antennas Propagat., AP-7 (1959), 280-90. See also Walter, Traveling Wave Antennas, pp.
172-83, 195.
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the same technique, and L. O. Goldstone and A. A. Oliner present theoretical curves
for the complex propagation constant versus slot width for standard X-band wave-
guide.??

Experimental determination of a -+ jf# versus transverse geometry can be
achieved by a variety of methods. Near-field measurements using a small movable
probe placed in front of the aperture are practical if & is not too small and the aper-
ture is not too long. An alternative near-field method with the same restrictions
employs a scatterer in place of the probe and a precisely constructed magic 7.2¢

For o small and the aperture long, a far-field measurement technique can be
used to determine the complex propagation constant. To see how this is accomplished,
assume a leaky wave antenna for which the transverse cross section is unchanged
over the entire aperture length L. With ¢ small, discontinuity effects at the two ends
of the aperture can be ignored and with a matched load placed inside the waveguide
beyond z = L, the collapsed aperture distribution is given by

A(Q) = Kellor=po-a (9.66)

with K, «, and f constants. The far-field pattern corresponding to (9.66) can be
deduced easily from (1.128) through (1.131) and, with the element factor suppressed,
the normalized radiation intensity is

o(0) — sin[(wL/A)[cos 8 — Bk + (jalk)]] |2 (9.67)
(wL/M)[cos 6 — Blk + (ja/k)] '
With o small, this is a pattern with a main beam pointing at the angle
8, = arccos (%) ' (9.68)

plus a family of side lobes interspersed by fairly deep “nulls.” With L large, 8, can be
determined quite accurately. One can conclude that if any long fast wave antenna of
constant cross section and slight leakage is terminated by a matched load, and if the
angle off endfire at which the peak of the main beam occurs is measured, (9.68) can
be used to deduce the imaginary component of the propagation constant.

This experiment can be improved by replacing the matched load by a short
circuit, for then if the generator is matched the aperture distribution becomes

A(Q) = Keio~r + Ke xkeierntr (9.69)

The radiation pattern now takes on the appearance suggested by Figure 9.19, with
a rearward main beam as well as a forward main beam. These two beams are sepa-

25L. O. Goldstone and A. A. Oliner, “Leaky Wave Antennas [: Rectangular Waveguides,”
IRE Trans. Antennas Propagat., AP-7 (1959), 307-19. See particularly Figure 7.
26Walter, Traveling Wave Antennas, pp. 158-59.



9.8 Fast Wave Antennas 459

VA
\60\7/

Fig. 9.19 Principal Plane Pattern __00"\
of a Leaky Wave Antenna Termi-

nated in a Short Circuit, Showing

Forward and Rearward Main Beams

rated by an angle

"=gm — 20, =m — 2arccos (é) (9.70)

A measurement of 8" avoids the need to align the leaky wave antenna and permits
deduction of 8. But additionally, the rearward main beam is N dB below the forward
main beam, with N given by

N = 10 log,, e”**¢ (9.71)

and thus o can also be determined from this experiment.

K. C. Kelly?” has used this method to determine & and f for a family of 12 ser-
rated waveguides. He used standard X-band rectangular waveguide (a = 0.900 inch,
b = 0.400 inch, and t = 0.050 inch) with a series of closely spaced nonresonant slots
milled into one of the broad walls, as suggested by Figure 9.20. For all members of
the family, G = 2/32 inch, T'= 3/32inch, and L = 103 inches. For any one member
of the family, / is constant and the members are distinguished by different values of /
in the sequence 0.225 inch, 0.250 inch, . . ., 0.500 inch. The values of & and £ found

27K. C. Kelly and R. S. Elliott, “Serrated Waveguide—Part Il: Experiment,” [RE Trans.
Antennas Propagat., AP-5 (1957), 276-83.
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Fig. 9.20 Serrated Waveguide Geometry

by reduction of the pattern data are shown in Figure 9.21, where o varies smoothly
with / and has a considerable dynamic range, while § only changes 10% as / increases
from zero to 0.500 inch.

R. F. Hyneman?® has provided a theoretical analysis of a limiting case of the
structure shown in Figure 9.20, namely when G/(G + T) = 1 and t — 0. He assumed
square-ended slots and also found that §/k was insensitive to /. His curves for & versus
//a and a/2 are shown in Figure 9.22.

In general, agreement between theory and experiment is excellent for all leaky
wave antennas for which the dependence of y = a -+ jf on transverse geometry has
been analyzed. The experimental points indicated in Figure 9.18 for the case of the
TE,, slotted cylinder, and in Figure 9.22 for the limiting case of a serrated waveguide
are convincing examples of this.

With the relation between & and transverse dimensions established, one can
turn to the design of a leaky wave antenna. As an example, suppose the collapsed
aperture distribution

AQ) = [1 + sin (”TC)} oIt (9.72)

is selected, with §, the propagation constant when no leakage occurs and L the length
of the aperture. If (9.72) is used in (9.65), one obtains

! [l -+ sin (mz/L)}?
o(z) = L {[5.546/(1 —f)] — 4/l +(Brz/4L) — cos (az/L) — & sin (27zz/L)]} ©.73)

28R, F. Hyneman, “Closely Spaced Transverse Slots in Rectangular Waveguide,” /RE Trans.
Antennas Propagat., AP-7 (1959), 335-42.
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Fig. 9.21 Experimentally Determined Complex Propagation Constant
of X-Band Serrated Waveguide () 1957 IEEE. Reprinted from K. C.
Kelly and R. S. Elliott, /RE AP Transactions, 1957.)

A study of (9.73) reveals that a(z) is inversely proportional to the length of the aper-
ture, but that if L is fixed, a greater dynamic range of a(z) results from the choice of
a smaller value of /. This point is illustrated by the curves of Figure 9.23, which are
plots of (9.73) for f = 109, and 20°;. Given the finite range of transverse dimensions
over which « is a well-behaved function, there is a lower limit on the fraction of the
input power which must be delivered to the matched load. Ceteris paribus, the greater
the value of L, the smaller f need be.

The proper value of f for a given aperture length and a given type of leaky wave-
guide can be deduced by trial and error. For example, if the aperture distribution of
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(9.72) is to be achieved with a serrated waveguide of length L = 10.140 inches for
which Kelly’s data of Figure 9.21 is applicable, choice of f = 0.1 results in the design
curve shown in Figure 9.24. (Data in the range 0.500 < / <C 0.535 has been inferred
by extrapolation, and the conversion | decibel = 8.686 nepers has been used.)

When a serrated waveguide was machined to conform to the design data con-
tained in Figure 9.24 and the principal plane pattern was measured at the design fre-
quency of 9 GHz, the results shown in Figure 9.25 were achieved. Since the theoretical
side lobe level for the aperture distribution of (9.71) is —17.7 dB, it can be seen that
the design is quite satisfactory. Some null-filling and irregularity in the heights of
individual side lobes can be attributed to the fact that §/k is not quite a constant over
the aperture.

Leakage rate curves of the type shown in Figure 9.23 can be generated with f
as parameter for any desired aperture distribution. This information can then be
combined with the knowledge of & versus transverse dimensions for any type of leaky
waveguide to produce a design curve similar to Figure 9.24. This procedure has been
used successfully with all four leaky waveguide types shown in Figure 9.16.
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Leaky waveguides can be placed side by side to form planar arrays. Proper
design must account for mutual coupling between waveguides, which is severe for
the structures shown in Figures 9.16a, b and ¢ and mild for the structure shown in
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Reprinted from K. C. Kelly and R. S. Elliott, /RE AP Transactions, 1957.)

Figure 9.16d. C. H. Walter?® indicates several methods for including the effects of
mutual coupling and K. C. Kelly3® reports on the design and performance of ten
side-by-side serrated waveguides.

9.9 Trough Waveguide Antennas

The trough waveguide is a versatile structure that has modified forms capable of
supporting traveling waves with phase velocities above, at, and below the speed of
light. In the fast wave case, the leakage is also controllable, making the trough wave-
guide an attractive candidate for leaky wave antenna applications.

The symmetrical form of a trough waveguide is shown in Figure 9.26. The
E-field distribution for the fundamental mode is suggested in the figure. This structure
can be viewed as half of a strip transmission line operating in its first higher TE mode,
a mode for which the plane bisecting the stripline is an electric null plane. Because
of the antisymmetry of the E-lines, the symmetrical trough waveguide cannot
radiate. However, a variety of modifications to the structure, each of which intro-
duces an asymmetry, will cause an unbalance in the E-lines and thus can produce
radiation.

One of the common modifications for creating an asymmetry is illustrated by
Figure 9.27, in which the trough depth on one side of the center fin has been reduced

29Walter, Traveling Wave Antennas, pp. 367-71.
30Kelly, “Closely Spaced Transverse Slots,” p. 282,
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Fig. 9.26 A Symmetrical Trough Fig. 9.27 An Asymmetrical Trough Wave-
Waveguide guide

by an amount 4. W. Rotman and A. A. Oliner®! have investigated this geometry both
theoretically and experimentally and have found the dependence of f/k and « on
trough dimensions to be as shown in Figure 9.28. In this modified form, the trough
waveguide is a fast wave structure with phase velocity which is relatively independent
of d/A but with a leakage rate which covers a useful dynamic range as d/4 is varied.
Agreement between theory and experiment is seen to be quite satisfactory. These
curves can be used to design a leaky trough waveguide antenna, employing the
technique developed in Section 9.8. It is interesting to observe that if both d and d,
are varied, the leakage rate can be controlled in just the right way to achieve a desired
aperture distribution with £ held constant over the aperture.

If the center fin of the symmetrical trough waveguide is serrated, as shown in
the insert to Figure 9.29, the phase velocity can be modified. A. A. Oliner and W.
Rotman?? have determined the dependence of f/k on the various dimensions of this
structure and their curves, which are reproduced in Figure 9.29, show a range that
embraces both fast and slow waves. Rotman has been led by this discovery to suggest
an arrangement of three serrated center fins, side by side and virtually touching, with
only the middle fin movable. As this middle fin is translated longitudinally through
one serration period G + 7, the phase velocity can be swept through a sizeable
dynamic range. With an introduced asymmetry, such as that shown in Figure 9.27,
leakage can occur and mechanical scanning of the main beam from endfire to broad-
side is conceptually possible. Alternatively, with a single serrated center fin, fre-
quency scanning of the main beam is possible, as can be seen from the curves of
Figure 9.29.

31W. Rotman and A. A. Oliner, “Asymmetrical Trough Waveguide Antennas,” /RE Trans.
Antennas Propagat., AP-7 (1959), 153-62,

32A. A, Oliner and W, Rotman, “Periodic Structures in Trough Waveguides,” /RE Trans.
Microwave Theory Tech., MTT-7 (1959), 134-42,
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9.10 Traveling Wave Arrays of Quasi-Resonant Discretely
Spaced Slots [Main Beam at 0, = arccos (B/k)]

The three types of radiating slots that can be cut in the walls of a rectangular wave-
guide, and which were described in Section 3.5, can be spaced 1,/2 apart and alter-
nately offset (or tilted). This gives rise to a standing wave array for which a design
procedure was presented in Section 8.15. However, the slots need not be spaced a half
guide-wavelength apart. If the spacing d 5= 4,/2, and a matched termination is placed
beyond the last slot, a traveling wave array results. The excitation of such arrays quite
naturally permits a uniform progressive phase in the aperture distribution. This,
together with a properly controlled amplitude taper, will produce a sum pattern with
the main beam at some angle other than broadside. There are many practical applica-
tions in which this is desirable.

Mutual coupling must be taken into account if precise control of the aperture
distribution is to be achieved. For the case of longitudinal shunt slots in the broad
wall, this can be accomplished by an extension of the design procedure developed in
Section 8.15. It will be recalled that the two basic equations are

Ye _ K, g, Yasin kL, Ve sm ki, (9.74)
GO n
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Ys K, fi

Gy (K fHgGeh(y )+ Z%

9.75)

Definitions of the various quantities appearing in (9.74) and (9.75) can be found in
Section 8.15.

For a linear array of longitudinal slots in a common waveguide, if d = 4,/2,
the mode voltage ¥V, has the same magnitude at all slots, merely alternating in sign
as successive slots are reached. But for d 5= 1,/2, the situation is more complicated.
The equivalent circuit in this more general case is shown in Figure 9.30, with a
matched load assumed to exist beyond slot 1.

%Y}b %Yﬂ L Ya_a Y3 Yi+G,
F—vﬁd—r*‘—ﬁd——»‘

Fig. 9.30 The cquivalent Circuit of a Traveling Wave Array of N Slots

If ¥, is the total admittance seen looking into the nth junction toward the
matched load, then
Y, Yi (¥,_,/Gy)cos fd + jsin fd 76
G: = G, " cos pd + j(¥,,/Go)sin pd 076

with B the propagation constant of the TE,, mode. The mode voltages at successive
junctions are related by

V,=V,_,cos Bd + jI,_,Z, sin Bd

=V, [cos Bd +j (%;1) sin ﬁd:l 9.77)

When the design equation of (9.74) is written separately for th nth and (n — 1)st slots
and the ratio is taken, one obtains

Yo /Gy,  fo-i Vioisinkl,_, V,

Yi/G, T Visinkl, V..,

(9.78)

The ratio V,/V,_, can be eliminated from (9.78) through use of (9.77). Rearrangement
gives
YsG, _ _Yi /G, ViV,
fosin kI, f,_,sin kl,_, cos Bd + j(¥,_,/G,) sin fd

(9.79)
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Equation 9.79 is a recurrence relation which, in conjunction with (9.75), will permit
determination of the length and offset of the nth slot, once the length and offset of
the (n — 1)st slot are known.

A design procedure can now be formulated. One begins by assuming an initial
set of lengths and offsets for the slots. This is solely for the purpose of computing
initial values of the mutual coupling terms Z¢, through use of Equations 8.89, 7.155,
and 7.156, with the implicit understanding that the desired slot voltage distribution
V: has been specified. It is entirely adequate for this first calculation to take all the
slots to be on the center line and a half-wavelength long.

Next, one guesses a value for Y4/G. (How to make a judicious guess will be
indicated shortly.) Equation 9.75 can then be used, with insertion of the initial values
of Z% and Y?/G,, to determine an improved estimate of (x,, /;).

If the slot spacing d has been selected (more about this, too, shortly), the right
side of (9.79) is known for the case n = 2. Simultaneous solution of (9.75) and (9.79)
will yield an estimate of Y4/G, and (x,, /,). But then the right side of (9.79) becomes
known for the case n = 3. The process can be repeated to find an estimate of Y4/G,
and (x,, /), and ultimately an estimate of Y%/G, and (x, /y).

This new set of slot lengths and offsets can be tested for adequacy in several
ways. First, and most obvious, the maximum and minimum offsets should be in the
range in which reliance can be placed on the design data. If one or the other of these
extremes is out of range, the next guess for Y4/G, will have to be adjusted in the proper
direction.

Second, the procedure just described requires the calculation of Y,_,/G, at each
stage, so the information is available to permit a determination of the normalized input
admittance to the array. This is obtained simply by using n = N in (9.76). If Y,/G,
is not close enough to a match, this is probably an indication that the spacing 4 needs
to be adjusted. This point will be elaborated later in the discussion.

Third, a computation can be made of the fraction f of the input power that is
absorbed in the load. The normalized power radiated by each slot is

P, = %(RseV,,V;" (lG’—o)* (9.80)

Therefore, since the normalized power into the matched load is 4, V'}, it follows that

_ ViV
S ‘m (9.81)

An efficient design requires that f be as small as feasible. A raising of the value of
Y4/G,, with the concomitant increase in the offset x,, will serve to increase all the
offsets and all the normalized active admittances, and thus Y P,, thereby lowering f.
This argument leads to the conclusion that the guess for the value of Y4/G, should be
adjusted so that the maximum offset x, (usually for the central slot) is at the upper
end of the reliable data range, for then f will have its minimum feasible value.
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It is highly unlikely that the initial choices of d and (particularly) of Y¢/G, will
lead to a meeting of the design criteria, but even if one were so fortunate as to obtain
this outcome, the process should be iterated, because now a more realistic set of slot
lengths and offsets is known, permitting an improved set of Z? values to be cal-
culated. A succession of iterations will normally need to be undertaken, with the
process terminated when three goals are achieved: (1) the input admittance is accept-
ably close to a match, (2) the fraction of power dissipated in the matched load has
been minimized, and (3) the final set of (x,, /,) values is closer to the penultimate set
than fabrication tolerances.

Further consideration can now be given to the problem of making an initial
guess of the value of Y4/G,. If there are many slots in the array, the power radiated
by slot 1 will be small compared to the total radiated power (particularly so with a
tapered aperture distribution). Thus P, & 3 P,. This means that it is feasible to have
P, much less than the power dissipated in the load. In quantitative terms,

1

1 V,VT(£>*:P1<<PL:7

. £
: & A% (9.82)
This implies that Y4/G, < 1, which is vital, for then the offset of the first slot will be
at a level suitably low to prevent the slots in the center of the array from being exces-
sively offset.
If Y9/G, < 1, then
Y,

Y, _Yi_ G~
G- g=! (9.83)

and a return to Equation 9.77 indicates that V, = V,e/%. This argument can be
cascaded, because with N large, Y%/G, <1, and so on, so that (approximately)
V, = V,_,e’?% In words, for a traveling wave array of many slots, the mode voltages
essentially have a common magnitude and a uniform progressive phase which cor-
responds to the passage of a wave along the aperture characterized by the function
exp[j (@t — B2)]

Under these conditions, Equation 9.79 indicates that the same uniform progres-
sive phase can be obtained for the slot voltage distribution if the active admittances
are chosen to have approximately the same phase. Thus this type of array is suitable
for applications in which a sum pattern is desired with the main beam at an angle 8,
for this can be achieved by an aperture distribution that gives

8(0) — Z V'slejnkdcose — Z I V:I ejnd(k cos 8- ) (984)

from which it follows that

)

= cos §, (9.85)
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The pattern requirement that the main beam point at an angle 8, thus serves to tie
down the value of f.*?

With all of the active admittances essentially at a common phase, and all the
mode voltages possessing approximately the same amplitude, one can observe that

Py _ W VHYE/G)* | Y/G,|

P, IV VHYHG)F ~ | YiG,] (9.86)

But the powers radiated by the individual slots are also roughly proportional to the
squares of the slot voltages. Thus

Iﬁ
G,
Suppose that one identifies the slot with the largest desired slot voltage (call it the nth
slot) and ignores mutual coupling for the purpose of making a preliminary calcula-
tion. If this slot is given the largest offset consistent with being in the acceptable
dynamic range of offsets, and the corresponding resonant length, then g(x,) is an
estimation of its normalized admittance. If g(x,) is used for | Y¢/G,|in (9.87), one can
compute a starting value for | Y#/G,|. The phase that can be attached to this starting
admittance is somewhat arbitrary, but probably should not be far from zero degrees.

An initial selection of the element spacing d also needs to be made. An eco-
nomical design calls for the minimum number of slots consistent with the beamwidth
requirement and the desire not to have an additional main beam appearing at reverse
end-fire. For NV large, the constraint in (4.30) can be used to estimate 4. For N modest,
placement of the roots on a Schelkunoff unit circle will permit an estimation of the
maximum value of d. (See Section 4.4).

The value of d chosen initially may need to be modified slightly as the iterations
proceed. The reason for this can be appreciated by considering the factors which

influence the input admittance. One can recall from Section 8.14 that the back-
scattered wave from the #nth slot, referenced at the center of the nth slot, is given by

2

~|V:
=|V;

) 4

G (9.87)

ey in~_ 1 L n,-iBN-
B, Ve =y g (9.88)
It follows that
B:, — B“e—jﬂ(N~n)d ~ ~_£_ VN§e~jZﬁ(N~n)d (9.89)
0

is the wave back-scattered from the nth slot, referenced at the input. One can deduce
from (9.89) that there will be a match if

N Ya X
S et = 0 (9.90)
n=1 Go

33For a distinctly different solution to this problem, in which 8, = arccos(f/k), see
Section 9,11,
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For a given set of active admittance values, there is a unique set of 4 values that satisfy
(9.90). If &V is large enough (10 slots or more), one of these values of d will be close to
the original selection of &, so that only a minor adjustment need be made. Indeed, for
N very large, the left side of (9.90) is small for all values of d in the admissible range.

The theory just presented has been tested by the design of an array of 21 lon-
gitudinal shunt slots.?* Standard X-band waveguide was used (a = 0.900 inch, b =
0.400 inch, ¢ == 0.050 inch) with a central frequency of 9.375 GHz. The slots were
0.063 inch wide and round-ended, and thus Stegen’s design data, embodied in
Figures 8.35 through 8.37, was applicable. Since f/k = 0.714 for these dimensions
and frequency, it was decided to design for a sum pattern with the main beam at
8, = arccos 0.714 = 44.5°. A Dolph-Chebyshev distribution was specified that
would give a —30dB side lobe level. The interelement spacing was chosen to be
d = 0.5454, which is comfortably below the constraint (4.30), and thus the uniform
progressive phase in the aperture distribution was fd = 140°. The relative slot voltage
magnitudes were taken from the tables of L. B. Brown and G. A. Scharp?’ and are
listed in Table 9.2. The theoretical array pattern corresponding to this distribution is
shown dotted in Figure 9.31.

TABLE 9.2 Desired slot voltage distribution main beam at 45°;
30-dB Dolph-Chebyshev pattern

n LVl n [Val n Vol

1 0.3337 8 0.8829 15 0.7995
2 0.2789 9 0.9465 16 0.7014
3 0.3780 10 0.9864 17 0.5946
4 0.4849 11 1.0000 18 0.4849
5 0.5946 12 0.9864 19 0.3780
6 0.7014 13 0.9465 20 0.2789
7 0.7995 14 0.8829 21 0.3337

An original guess of 0.085 was made for the value of Y4%/G,, and the design
procedure was initiated. Three iterations brought the slot offsets to stability within
0.001 inch; the resulting values for lengths and offsets are shown in Table 9.3. The
normalized theoretical input admittance was 0.955 + j0.009, and 12.3%; of the power
was predicted to be absorbed in the dummy load. These figures could have been
improved by adjusting Y4%/G, to a higher value and by changing & slightly, but since
the sole purpose of the design was to validate the theory, it was decided to avoid fur-
ther computer costs and accept this as an adequate test.

A longitudinal shunt slot array was constructed using the lengths and offsets

34R. S. Elliott, “On the Design of Traveling-Wave-Fed Longitudinal Shunt Slot Arrays,”
IEEE Trans. Antennas Propagat., AP-27 (1979), 717-20.

351, B. Brown and G. A. Scharp, “Chebyshev Antenna Distribution, Beamwidth, and Gain
Tables,” Nav. Ord. Report 4629, (California: Corona, 1958).
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Fig. 9.31 Theoretical and Experimental Patterns for a 21-Element Traveling Wave
Array of Longitudinal Shunt Slots; v = 9.375 GHz () 1979 IEEE. Reprinted from /EEE
AP Transactions, 1979.)

listed in Table 9.3. The experimental pattern at 9.375 GHz is shown as the solid curve
in Figure 9.31 and the input VSWR versus frequency is displayed in Figure 9.32,

The experimental performance can be summarized by noting that the pattern

has a well-defined main beam in the proper position and with the proper beamwidth;
the side lobe level is poorer than theoretical—the innermost sidelobe on one side is
at —22 dB, the three innermost side lobes lie between —22 and —24 dB, and the
remainder are all at least 25 dB down from the main beam; however, the outer side-
lobes do not fall off as they should considering the element pattern behavior in the

TABLE 9.3 Slot lengths and offsets

n

NN A LN -

Xp 217 n Xy 202 n X 2[2
0.078 in. 0.605 in. 8 0.081 in. 0.612 in. 15 0.055 in. 0.613in.
0.028 in. 0.604 in. 9 0.081 in. 0.613 in. 16 0.030 in. 0.617 in.
0.061 in. 0.603 in. 10 0.079 in. 0.613 in. 17 0.027 in. 0.619 in,
0.071 in. 0.607 in. 11 0.075 in. 0.612 in, 18 0.026 in. 0.620 in.
0.078 in. 0.609 in. 12 0.070 in. 0.612 in. 19 0.024 in, 0.619 in.
0.081 in. 0.610 in. 13 0.066 in. 0.613 in. 20 0.022 in. 0.616in.
0.081 in. 0.610in. 14 0.062 in. 0.613in. 21 0.025 in. 0.621 in.
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Fig. 9.32 Input VSWR versus Frequency for a 21-Element Traveling Wave Array of
Longitudinal Shunt Slots (€ 1979 IEEE. Reprinted from /EEE AP Transactions, 1979.)

H-plane; the input VSWR is very good over a five percent frequency band, being 1.05
at the design frequency and hitting a low of 1.01 at 9.675 GHz; though not shown, the
pattern held up well in this frequency band.

The inability to achieve a —30 dB side lobe level is laid to the presence of
internal mutual coupling, a factor which was not accounted for in the design. L. A.
Kurtz has shown?¢ experimentally that the TE,, mode scattered off a slot may be
strong enough to affect materially the slot voltages of its two adjacent neighbors. In
the present design, where the slots are all on the same side of the center line, and
where the tip-to-tip spacing is only about one-sixteenth of an inch, it is estimated
that this internal TE,, mode effect is strong enough to cause as much as a 59, error
in some of the slot voltages, an effect which can easily account for the loss of about
5 dB in the side lobe level. The TE,, mode problem can also explain why the power
into the load was higher than the predicted 12.3 percent. It measured 22.9 percent
at 9.375 GHz and hit a low of 17.8 9/ at 9.475 GHz.

9.11 Traveling Wave Arrays of Quasi-Resonant Discretely
Spaced Slots (Main Beam Near Broadside)

In the design procedure described in Section 9.10, the argument was made that, for
long arrays with small individual slot admittances, a natural phase progression e/*
occurs in the ratio of mode voltages at successive slots. As a consequence, if the active

36Private communication.
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admittances are made cophasal, the slot voltages also progress as e/#¢ and this aper-
ture distribution produces a pattern whose main beam points at the angle 8, =
arccos(f/k). The slot offsets in such an array are all on the same side of the center line.

There is no fundamental reason why the design procedure should be limited
to placing the main beam at 8, = arccos(f/k). However, if it is desired for such arrays
to place the main beam at an angle 8, % 8,, one finds that, as 8, departs from 8,,
the required active admittances are no longer cophasal. Here, 8, need not be far
removed from 8, before the required phases of the active admittances force the needed
self-admittances into the range of unreliable design data. It is therefore more staisfac-
tory to adjust the value of § by changing the a dimension of the waveguide in order
to accommodate the requirement of §,.

An exception occurs if one is willing to c