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foreword to the revised edition 

The purpose of the IEEE Press Series on Electromagnetic Wave Theory is to publish 
books of long-term archival significance in electromagnetics. Included are new titles as 
well as reprints and revisions of recognized classics. The book Antenna Theory and De- 
sign, by Robert S. Elliott is one such classic. 

In the case of antennas and Robert S. Elliott, I should like to be personal. Much of 
the material that forms the basis of Antenna Theory and Design I studied as a graduate 
student under Bob Elliott's guidance at UCLA in the late 1950's and early 1960's. This 
material became the fundamental background for me during my ten-year antenna design 
and development career at Hughes Aircraft Company and, what was then, North American 
Rockwell. The notes I compiled in his courses later became the foundation for two anten- 
na courses when I nioved on to the University of Arizona in 1968. 

Antenna theory can be studied, assimilated, and then written down in a textbook 
with little practical experience. Antenna design is another matter entirely. Bob Elliott's ca- 
reer has been in actuality two careers in one. He has contributed significantly to antenna 
and microwave component design and development at Hughes Aircraft Company and 
Rantec Corporation while also forming and leading a strong, internationally recognized 
antenna and microwave program at UCLA. The book, Antenna Theory and Design, re- 
flects the breadth and depth of coverage that such a background would suggest. As a re- 
sult, the book is useful to academics and also to practitioners in industry and government 
laboratories. 

Professor Elliott has been an internationally well-known contributor to electromag- 
ne t i c~  for many years. He is universally regarded among his peers and students as an elec- 
tromagnetic scholar. As an example, his clear and groundbreaking exposition on electro- 
magnetics and its relationship to the special theory of relativity appears in the 
widely-regarded book, Electromagnetics; History, Theory, and Applications. This scholar- 
ly work was added to the IEEE Press Series on Electromagnetic Wave Theory in 1993. 

Professor Elliott is a Fellow of the IEEE (1961). Prior to his retirement from active 
teaching, he was the Hughes Distinguished Professor of Electromagnetics at UCLA. 
Among his teaching awards, he was elected Best Teacher, UCLA Campus-Wide ( 1  983) 
and has been elected Best Teacher, UCLA College of Engineering, four times. Among his 
many professional honors, he was elected a Fellow of the National Academy of Engineer- 
ing (1988). The IEEiE Antennas and Propagation Society (APS) awarded him the APS 
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Distinguished Achievement Award (1985). In addition, he has received two APS Prize Pa- 
per awards. In 2000, he was awarded an IEEE Third Millennium Medal. 

I have received many comments from Bob Elliott's colleagues and former students 
since beginning this reissue project. The one that most typifies this book is, "Many of the 
insights in his text are originally his and are still considered the fundamental way of look- 
ing at things." 

It is with pleasure that I welcome this classic book into the series. 

Donald G. Dudley 
University of Arizona 

Series Editor 
IEEE Press Series on Electromagnetic Wave Theory 



preface to the revised edition 

This textbook first appeared in 1981 an4 although it has been out of print for the past 
decade, a continuing demand has led to the decision that it be reissued. Like Electromag- 
net ic~,  its predecessor in this Classic Series, it seems to have become something of a col- 
lector's item. 

The primary appeal is apparently due to the fundamental treatment of both theory 
and design for a wide variety of antenna elements, arrays, and feeding systems. The seri- 
ous reader will find in this text the basic coverage of all aspects of the antenna discipline 
needed as background for someone desiring to pursue a career in electronic systems, or as 
preparation for advanced study leading to a desired career as an antenna engineer. 

The decision to reissue has provided an opportunity to eliminate errors that have 
been discovered in the final printing of the original text. Several colleagues and former 
students kindly contributed to the compiling of a list of errata. Most of the errors found 
were minor, a few were more serious, notably the entries in Tables 7.6 and 7.7. J.H.Ander- 
son verified all suggested corrections and assembled the errata in a common format, thus 
facilitating their removal. His help is warmly acknowledged. 

The opportunity was also taken to update the references in Sections 5.14 and 8.13 
because of seminal advances in the design of slot arrays and in the synthesis of shaped an- 
tenna patterns. 

The author wishes to thank the IEEE Press for its decision to reissue Antenna Theo- 
I?, and Design and trusts that their faith in this project will not go unrewarded. 

Robert S. Elliott 
Los Angeles 
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A nine-month sequence in antenna theory and design is offered on a yearly basis at 
the author's institution. The first and second quarters are open to seniors and first- 
year graduate students; the third quarter is at the graduate level. The sequence pre- 
supposes a background at the intermediate level in electromagnetic theory and a 
knowledge of introductory transmission line theory, including Smith charts and 
waveguide modal analysis. The present book has evolved from the lecture notes for 
the antenna sequence. 

It has been the author's experience, in teaching this sequence for the past five 
years, that the various topics which seemed to provide a balanced treatment were not 
to be found at an introductory level in a single textbook currently available. Further, 
some recent developments, the importance of which is widely recognized, were only 
available in the research literature. Student frustration over nonuniformity of notation 
from article to article and over the economic hardship associated with buying a 
multiplicity of texts that would only be partially used, provided the original motiva- 
tion for the lecture notes. The editing of these notes by successive groups of students 
is appreciated, and it is hoped that their criticisms have benefited the final product. 

The topic coverage has been influenced by the author's experience and by the 
needs of local industry in the Los Angeles area. The reader will find emphasis on 
microwave antennas, particularly on arrays for use in radar and communication sys- 
tems. The practical applications of such antennas have grown to occupy a major 
portion of the field, so it is hoped this emphasis will find wide appeal. However, other 
topics have not been neglected, as can be observed from the Table of Contents. 

The text is divided into four parts. Part I commences with a review of electro- 
magnetic theory and then proceeds to the establishment of integral relations between 
a collection of sources (the antenna) and the radiated field caused by these sources. 
A convenient division of antennas into two types emerges from this development. The 
first type, for which the actual sources are known quite well, includes dipoles, loops, 
and helices, and their pattern characteristics are studied in turn. The second type, for 
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which the close-in fields are known with reasonable accuracy, can be analyzed in 
terms of equivalent sources. This category includes horns, slots, and patches, all of 
which are considered in some detail. 

Part I1 is concerned with the analysis and synthesis of one- and two-dimen- 
sional arrays. The antenna elements studied in Part I form the constituent parts of 
these arrays, and focus is on the pattern characteristics. The synthesis procedures of 
Dolph and Taylor are introduced and extended to pattern requirements involving 
arbitrary side lobe topography. 

In Part 111 the emphasis is shifted to the impedance properties of antenna ele- 
ments, used either singly or in arrays. Halltn's integral equation formulation of the 
self-impedance of a cylindrical dipole is developed and extended to strip dipoles. 
Several types of solution are studied, including those obtained by the method of 
moments and by functional expansion. Babinet's principle is used to extend these 
results to slots. Mutual impedance, so important in the design of arrays, is formulated 
with the aid of the reciprocity theorem and then calculated for the most commonly 
used antenna elements. All of this information of self-impedance and mutual impe- 
dance is then employed in the design of feeding structures for single elements and for 
linear and planar arrays, including those which scan. 

Part IV is devoted to antennas with continuous (or quasi-continuous) apertures. 
Long wire antennas such as the rhombic and V are studied and the properties of 
many surface wave structures are analyzed. These include slow wave types such as 
dielectric-clad and corrugated ground planes and fast wave types, notably leaky wave- 
guides. The book concludes with an introductory treatment of reflectors and lenses, 
antenna types to which many of the principles of optics can be applied. 

The three courses that form the antenna sequence at the author's institution span 
three months each, with four hours of lecture offered per week. The first course covers 
Chapters 1 ,  2, and 4 plus the first six sections of Chapter 5, the first fifteen sections of 
Chapter 7, the first twelve sections of Chapter 8, and the first three sections of Chapter 
9. It thus concentrates on wire antennas (dipoles, monopoles, loops, and helices) after 
introduction of the fundamentals. The second course covers Chapter 3, the remainder 
of Chapters 7, 8, and 9, and all of Chapter 10. It emphasizes aperture antennas (slots, 
patches, reflectors, and lenses). The third course is devoted to pattern synthesis and 
relies on the last half of Chapter 5 and all of Chapter 6, plus some of the current 
literature. 

For someone wishing to give a balanced offering of antenna topics in a one 
semester course, a combination which should prove satisfactory would contain Sec- 
tions 1. l through 1.6, Sections 1.10 through 1.18, Sections 2.1 through 2.6, Sections 3.1 
through 3.6, Sections 4.1 through 4.4, Sections 5.1 through 5.3, Section 7.8, Sections 
7.13 through 7.15, Sections 8.1 through 8.6, Sections 10.1 through 10.5, and Sections 
10.10 through 10.1 1. This would provide exposure to the fundamentals, to wire anten- 
nas, to aperture antennas, to the elements of array theory, to the problem'of feeding 
arrays in the presence of mutual coupling, and to the application of geometric optics 
to the design of reflector and lens antennas. 

Various friends have been kind enough to read portions of the manuscript and 



offer their comments. The author wishes to acknowledge his indebtedness to Profes- 
sors N. Alexopoulos, C. Butler, D. G. Dudley, G. Franceschetti, Y. T. Lo, C. T. Tai, 
and P. G. Uslenghi, and to his industrial colleagues J. Ajioka, V. Galindo-Israel, 
W. H. Kummer, and A. W. Love. Among the many students who have uncovered 
errors and assisted in modifications of the text, the efforts of D. Kim and J. Schaffner 
deserve explicit mention. 

A special and warm expression of gratitude is reserved for my longtime col- 
league and friend, Alvin Clavin, Manager of the Radar Laboratory at Hughes Canoga 
Park. He had the confidence to offer me consulting work at Hughes when I had been 
away from the field for a decade, thus rekindling my interest in the subject. This tribute 
extends to the entire Hughes organization, which has been so generous in supporting 
many of the antenna research efforts which have found their way into the pages of 
this book. My association with the engineering staff at Hughes has been rich and 
valuable, and particular gratitude must be expressed for the counsel of Louis Kurtz 
and George Stern. The computer assistance given me at Hughes by Ralph Johnson 
and Annette Sato is also gratefully acknowledged. 

ROBERT S. ELLIOTT 
Los Angeles 





sourcelf ield relations 
single antenna elements 

This initial part of the text, consisting of three chapters, is concerned first with 
establishing the general relations between a collection of sources (the antenna) 
and the radiated field produced by those sources (the far-field pattern). The 
source/field formulas are then used to deduce the pattern characteristics of the 
most commonly encountered antenna elements (dipole, loop, helix, horn, slot, 
and patch). These radiators will be seen to  be ideally suited to  many applications 
in which a single element will suffice. They have the added advantage of being 
useful in arrays, a subject which is discussed in Part 11. 
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1 .I Introduction 

This chapter is concerned primarily with establishing formulas for the electromagnetic 
field vectors E and H in terms of all the sources causing these radiating fields, but at  
points far removed from the sources. The collection of sources is called an  utltenna 
and the formulas to be derived form the basis for what is generally referred to as 
antenna pattern analysis and synthesis. 

A natural division into two types of antennas will emerge as the analysis 
develops. There are radiators, such as dipoles and helices, on which the current dis- 
tribution can be hypothesized with good accuracy; for these, one set of formulas will 
prove useful. But there are other radiators, such as slots and horns, for which an 
estimation of the actual current distribution is exceedingly difficult, but for which the 
close-in fields can be described quite accurately. In such cases it is possible to replace 
the actual sources, for purposes of field calculation, with equivalent sources that 
properly terminate the close-in fields. This procedure leads to an  alternate set of 
formulas, useful for antennas of this type. 

The chapter begins with a brief review of relevant electromagnetic theory, 
including an inductive establishment of the retarded potential functions. This is fol- 
lowed by a rigorous derivaticn of the Stratton-Chu integrals (based on a vector 
Green's theorem), which give the fields at  any point within a volume V in terms of the 
sources within V and the field values on the surfaces S that bound V. This formulation 
possesses the virtue that it applies to either type of antenna, or to a hybrid mix of the 
two. Simplifications due to the remoteness of the field point from the antenna will 
lead to compact integral formulas, from which all the pattern characteristics of the 
different types of antennas can be deduced. 

A general derivation of the reciprocity theorem is presented; the result is used to 
demonstrate that the transmitting and receiving patterns of an  antenna are identical. 
The concept of directivity of a radiation pattern is introduced and a connection is estab- 
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lished between the receiving cross section of an antenna and its directivity when trans- 
mitting. The chapter concludes with a discussion of the polarization of an  antenna 
pattern. 

A. REVIEW OF RELEVANT ELECTROMAGNETIC THEORY' 

I t  will generally be assumed that the reader of this text is already familiar with elec- 
tromagnetic theory at  the intermediate level and possesses a knowledge of basic trans- 
mission line analysis (including the use of Smith charts) and of waveguide modal 
representations. What follows in the next several sections is a brief review of the 
pertinent field theory, primarily for the purposes of introducing the notation that 
will be adopted and highlighting some useful analogies2 

Throughout this text MKS rationalized units are used; the dimensions of the 
various source and field quantities introduced in the review are listed on the inside of 
the front cover. 

1.2 Electrostatics and Magnetostatics in Free Space 

A time-independent charge distribution 

expressed in couloumbs per cubic meter, placed in what is otherwise free space, gives 
rise to an electrostatic field E(s, y, z ) .  Similarly, a time-independent current distribu- 
tion 

J(x, Y, z )  ( I . lb)  

expressed in amperes per square meter, produces a magnetostatic field B(x, y, z). To  
heighten the analogies between electrostatics and magnetostatics, it is sometimes 
useful to refer to the "reduced" source distributions 

in which 6 ,  is the permittivity of free space and p i '  is the reciprocal of the perme- 
ability of free space. 

Coulomb's law can be introduced as the experimental postulate for electrostatics 
and described by the equations 

]The reader who prefers to omit this review should begin with Section 1.7. 

zThe pairing of B with E (and thus of H with D), the use of p i ' ,  the introd,~ction of reduced 
sources, and the parallel numbering of the early equations in this review all serve to emphasize the 
analogies that occur between electrostatics and magnetostatics. This is done in the belief that percep- 
tion of these analogies adds significantly to one's comprehension of the subject. See R. S. Elliott, 
"Some Useful Analogies in the Teaching of Electromagnetic Theory," IEEE Trans. on Education, 
E-22 (1979), 7-10. Reprinted with permission. 
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in which R is the directed distance from the source point (c, q ,  () to the field point 
(x, y, z), and F is the force on a charge q placed at (x, y, z), due to its interaction with 
the source system p ( t ,  q, 5). 

Similarly, the Biot-Savart law can be introduced as the experimental postulate 
for magnetostatics and is represented by the equations 

One can show by performing the indicated vector operations on (1.4a) that 

V x E = O  (1.5a) 

In like manner, the curl and divergence of (1.4b) yield 

Equations 1.5 are Maxwell's equations for static fields. 
Integration of (1.5b) and use of the divergence theorem gives Gauss' law, that is, 

js E d S  = (5) dV = total reduced charge enclosed (1.6a) 

Similarly, integration of (1 .5~)  and use of Stokes' theorem yields Ampere's circuital 
law: 

fc B dl = Is (5) dS = total reduced current enclosed (1.6b) 

In like manner, integration of (1.5a) and (1.5d), followed by the application of Stokes' 
theorem or the divergence theorem results in the following relations. 
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From (1.7a) it can be concluded that E (x, y, z) is a conservative field and that $ E dl  
between any two points is independent of the path. Equation 1.7b permits the con- 
clusion that the flux lines of B are everywhere continuous. 

Equation 1.4a can be manipulated into the form 

in which 

is the electrostatic potential function. In like manner, Equation 1.4b can be rewritten 
in the form 

where 

is the magnetostatic vector potential function. One can see that the reduced sources 
(1.2) play analogous roles in the integrands of the potential functions (1.8a) and 
(1.8b), as well as in the integrands of the field functions (1.4a) and (1.4b). 

There is no compelling reason to introduce either D  or H  until a discussion of 
dielectric and magnetic materials is undertaken, but if one wishes to do it at this 
earlier stage, where only primary sources in what is otherwise free space are being 
assumed, then it is suggestive to write 

with the subscripts on D  and H denoting that the medium is free space. Then it fol- 
lows logically from (1.5) that 

V * D o = p  V X H , = J  

and from (1.6) that 

f Do d S  = 5 p dV = total charge enclosed (1.12a) 
S v 

f Ho dl  = 5 J  + d S  = total current enclosed (1.12b) 
C S 

Equations 1.12 are the forms in which one is more apt to find Gauss' law and Ampere's 
circuital law expressed. It is apparent from (1.12) that Do and H, play analogous roles 
in the two laws. 
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When flux maps are introduced, (1.12a) leads to the conclusion that the lines of 
Do start on positive charge and end on negative charge. If one chooses to defer the 
introduction of D and H until materials are present, a flux map interpretation of 
(1.6a) includes the idea that the lines of E start on reduced positive charge and end on 
reduced negative charge. 

It has already been noted in connection with equation (1.7b) that the flux lines 
of B are continuous. Since H, differs from B only by a multiplicative constant, the 
flux lines of H, are also continuous. 

1.3 The Introduction of Dielectric, Magnetic, 
and Conductive Materials 

The electrostatic behavior of dielectric materials can be explained quite satisfactorily 
by imagining the dielectric to be composed of many dipole moments of the type 
p = l,qd, in which q is the positive charge of the oppositely charged pair, d is their 
separation, and 1, is a unit vector drawn from -q to +q. If P(x, y,  z )  is the volume 
density of these elementary dipole moments, one can show3 that their aggregated 
effect is to cause an electrostatic field given by 

with S the dielectric surface and V its volume. In (1.13a), Vs operates on the source 
point and V, operates on the field point. 

Similarly, the magnetostatic behavior of magnetic materials can be explained in 
terms of a collection of current loops with magnetic moments of the type m = l,na21, 
where nu2 is the area of the loop, I is the current, and 1, is a unit vector normal to 
the plane of the loop in the right-hand sense. If M(x, y, z) is the volume density of 
these elementary loops, one can show4 that their aggregated effect is to cause a mag- 
netostatic field given by 

In the more general situation that there is a primary charge distribution p(x, y, z) 
somewhere in space and secondary (or bound) charge distributions P,, on the dielectric 
surface and - V  . P throughout its volume, the total electrostatic field is E = El + 
E,, with E, given by (1.4a) and E, given by (l.13a). No additional information would 
be conveyed by using Do = E,,E in this situation. However, it is extremely usefulS to 

3See, for example, R. S. Elliott, Electromagnetics (New York: McGraw-Hill Book Co., Inc., 
1966), pp. 330-37. 

dElliott, Electromagnetics, pp. 404-7. 

slbid., pp. 339-40. 
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generalize the concept of D through the defining relation 

This insures the desirable feature that 

at all points in space (both within and outside the dielectric), thus permitting the 
assertion that the flux lines of D start and stop on primary charge alone. If there are no 
primary charges inside the dielectric, the D lines are continuous there. Outside the 
dielectric, (1.14a) reduces to D = e ,E ,  which is consistent with (1.10a). 

Since V x E = V x El + V x E,, and since El and E, are both expressible as 
the gradient of a scalar function, it follows that in this more general situation of pri- 
mary and secondary charge distributions, 

However, one can see from the defining relation (1.14a) that V x D = V X P 
and thus the generalized D, unlike E, may not be an irrotational field everywhere. 

Many dielectric materials are linear (or nearly so), in the sense that P = x,E,E 
holds, where X ,  is a constant called the dielectric susceptibility. When this can be 
assumed, Equation 1.14a reduces to 

where e is the permittivity of the dielectric medium. The quantity 6 / 6 ,  = 1 + X ,  is 
more useful and is known as the relative permittivity, or dielectric constant. 

Similarly, in the more general situation that there is a primary current distribn- 
tion J(x, y, z) somewhere in space and secondary (or bound) current distributions 
M x 1, on the surface of the magnetic material and V x M throughout its volume, 
the total magnetostatic field is B = B, + B,, with B1 given by (1.4b) and B, given by 
(1.13b). No additional information would be conveyed by using H, = p,'B in this 
situation. However, it is extremely useful6 to generalize the concept of H through the 
defining relation 

H = p i l B  - M (1.14b) 

This insures the desirable feature that 

6op. cit., Elliott, Electrornagnetics, pp. 408-10. 
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at all points in space (both within and outside the magnetic material) thus permitting 
the assertion that H is irrotational except at points occupied by primary sources. 

Since V B = V B, + V B,, and since B, and B, can both be expressed as 
the curl of a vector function, it follows that in this more general situation of primary 
and secondary current distributions, 

However, one can see from the defining relation (Equation 1.14b) that V H = 

-V M, and thus the generalized H, unlike B, may have discontinuous flux lines. 
Most magnetic materials are nonlinear, but in the exceptional case that linearity 

can be assumed, M is linearly proportional to B and Equation 1.14b reduces to 

in which X, is the magnetic susceptibility and p is the permeability of the magnetic 
material. 

Equations 1.15 are Maxwell's equations for static fields when dielectric and 
magnetic materials are present. They are supplemented by Equations 1.14, one of 
which links E, D, and the secondary sources P, with the other linking B, H, and the 
secondary sources M. 

The integral forms of (1.15a) and (1.15~) lead to 

f s D  d S  = primary charge enclosed (1.17a) 

f c  H dl = primary current enclosed (1.17b) 

Thus the generalized D and H satisfy Gauss' law and Ampere's circuital law, respzc- 
tively, in terms of the primary sources alone. This is their principal utility. On the other 
hand, E and B enter into a calculation of the force on a charge q moving through the 
field. In the most general static source situation (primary and secondary charge and 
current distributions), Equations 1.3, 1.4, and 1.13 combine to give 

which is the Lorentz force law. 
When conductive materials are present and Ohm's law is applicable, 

at points occupied by the conductor, with o the conductivity of the material.7 

70p. cit., Elliott, Electromagnetics, pp. 473-81. 
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If the sources become time-varying, represented by 

p(x, y, z, t) coulombs per cubic meter (1.20a) 

J(x, y, z, t) amperes per square meter (1.20b) 

and are assumed to  exist in otherwise empty space, then Equations 1.5 need to be 
generalized. Faraday's EMF law and the continuity equation linking charge and 
current lead to  the result that 

in which c is the speed of light and E(x, y, z ,  t )  and B(x, y, z,  t )  are now functions of 
time as well as space. Equations 1.21 are Maxwell's equations in their most general 
form for primary sources in empty space. If one uses (1.10) and the fact that p o ~ , c Z  = 

1, these equations convert readily to the more familiar set 

If dielectric, magnetic, and conductive materials are present and are represented 
by time-varying dipole moments, current loops, and drifting electron clouds, respec- 
tively, if the defining relations in (1.14a) and (1.14b) are extended to  apply when the 
fields and secondary sources are time-varying, and if Ohm's law (1.19) is still valid in 
the time-varying case (and all of these are good assumptions in practical situations), 
then Maxwell's equations becomes 

sop. cit., Elliott, Electromagnerics, pp. 393-94, 464, 509. 
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where now D and H have their generalized meanings, as given in the supporting 
Equations 1.14, and J is linked to E by (1.19) at  all points occupied by conductor. 

1.5 The Retarded Potential Functions 

In antenna problems, one desires to find the field values at  a point in terms of all the 
time-varying sources that contribute to the fields. This implies an integration of (1.22) 
or (1.23), a relatively difficult undertaking that will be deferred until Section 1.7. A 
simpler but less rigorous approach will be followed in this section, in which E and B 
are not found directly, but are found instead through the intermediation of potential 
functions whose relations to the sources are obtained intuitively. 

Let the time-varying sources be given by (1.20) and be assumed to exist in a 
finite volume V in otherwise empty space. Then Maxwell's equations in the form 
(1.21) are point relations that connect E(x, y, z,  t) and B(x, y, z ,  t) to the sources. 
Since V B = 0, it is permissible to introduce a new vector function A(x, y, z ,  t )  by 
the defining equation 

B = V X A  (1.24) 

Because the divergence of the curl of any vector function is identically zero, it is 
apparent that (1.24) automatically satisfies (1.21d). 

If (1.24) is inserted in (1.21a), one obtains 

where the dot over A implies time-differentiation. Since the curl of the gradient of 
any scalar function is identically zero, the most general solution to (1.25) results from 
the introduction of a new scalar function @(x, y, z,  t )  such that 

Equation 1.26 not only satisfies (1.21 a) but, taken in conjunction with (1.24), provides 
a solution for E and B if the newly introduced functions A and Q, can be related to 
the sources. This can be done by forcing (I .24) and (1.26) to satisfy the two remaining 
Maxwell equations, that is, (1.21b) and (1.21c), notably the equations containing the 
sources. 

If (1.24) and (1.26) are used in (1.21), the result is that 

Equation 1.27 is a hybrid second-order differential equation (hybrid in the sense that 
it contains both A and @) and as a consequence would be extremely difficult to solve. 
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Fortunately, a simplification is possible because, up to this point, only the curl of A 
has been specified, and a vector function is not completely defined until some specifica- 
tion is also placed on its divergence. It is convenient in this development to choose 

for then (1.27) reduces to 

Equation 1.29 is an inhomogeneous second-order differential equation in the unknown 
function A, with the negative of the reduced current distribution (which is assumed to 
be known) playing the role of driving function. It is variously called the Helmholtz 
equation or the wave equation, the latter name arising because the solutions to (1.29) 
away from the sources are waves that travel at the speed of light. 

The task remains to insure that (1.24) and (1.26) satisfy the remaining Maxwell 
equation (1.21b). Substitution gives 

This is also a hybrid differential equation, but use of (1.28) converts it to 

Thus A and cD satisfy the same differential equation, the only difference being the 
driving function; in (1.30) it is the negative of the reduced charge distribution (which 
is assumed to be known) which appears and governs 0. 

The development has now reached the point that if (1.29) and (1.30) can be 
solved for A and cD, then (1.24) and (1.26) can be used to determine E and B, and the 
goal will have been achieved. 

A solution of (1.30) can be inferred from the limiting electrostatic case. If the 
sources cease to vary with time so that p(x, y, z, t )  - p(x, y, z), then (1.25) and (1.30) 
reduce to 

E = -V@ (1.31) 

in which cD is now a time-invariant function, that is, Q(x, y, z ,  t )  - @(x, y, z). But if 
one returns to Section 1.2, it can be observed that (1.8a) and (1.31) are identical. 
Further, if the divergence of (1.8a) is taken and the result is combined with (1.5b), 
Equation 1.32 is reproduced, and its solution must be (1.9a), namely, 
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Thus the limiting (time-invariant) solution to (1.30) is (1.33). How can this be used to 
deduce the general (time-variant) solution to (1.30) ? 

It  can be argued that a change in the charge density at  a source point (5, q, c) 
causes a distrubance which is not immediately felt at  a field point (x, y, z), since that 
disturbance, traveling at  the speed of light, must take a time interval Rlc to traverse 
the intervening distance R. Thus if one wishes to find the value of 45 at  the point 
(x, y, z) at  the time t ,  that is, @(x, y, z, t), one should use the charge densities a t  the 
source points (5, q, c) at the earlier times t - (Rlc). This suggests that a solution to 
(1.30) might be 

This is admittedly a highly intuitive argument, and a rigorous solution to this problem 
will be presented in the development beginning in Section 1.7. However, if (1.34) is 
inserted in (1.30), one finds that it is indeed a solution. 

By a similar argument it can be inferred that 

Equations 1.34 and 1.35 are known as retardedpotential functions because of the use 
of retarded time in the integrands. In conformance with the names already given to 
their limiting forms in electrostatics and magnetostatics, 45 is called the electric scalar 
potential function and A is called the magnetic vector potential function. 

1.6 Poynting's Theorem 

One of the most useful theorems in electromagnetics concerns the power balance in a 
time-varying electromagnetic field. To introduce this theorem, let it be assumed that 
there is a system of impressed sources Ji that produces an electromagnetic field E', 
Bi, and that this impressed field causes a response system9 of currents Jr to flow, 
creating an additional field Er, Br. If all these sources are in otherwise free space, the 
impressed and response fields both satisfy Maxwell's equations in the form (1.21). 
The total current density and field at any point are therefore 

9The decomposition of the total current system into impressed and response current densities 
is arbitrary, but often forms a natural division. For example, the currents that flow in a dipole may be 
considered to be a response to the impressed currents that flow in the generator and transmission line 
feeding the dipole. 
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If power is being supplied to the field, it must be at the ratet0 

But from Maxwell's equations (1.22), 

dD J i = V  x H , - - 2 - J r  
at 

so that 

d 3 P  = [-E . V x H, ; 

Application of the vector identity 

coupled with the use of (1.22) gives 

As a consequence, (1.36) may b: rewritten as 

This result gives the power balance in a volume element dV. The left side of 
(1.37) is the instantaneous power being supplied by the impressed sourczs to dV.  The 
factor 

is the time rate of change of density of stored energy. ' The factor E Jr represents 
the power density being absorbed from the field by the response current density J r .  If, 
for example, the response current is flowing in a conductor, this term accounts for 
ohmic loss. Alternatively, if Jr is due to  freely moving charges, E Jr accounts for 
their change in kinetic energy. 

When the law of conservation of energy is invoked, it follows that the term 
V (E x H,) may be interpreted as the volume density of power leaving dV. 

This conclusion can be seen from another point of view by integrating (1.37). 
With the aid of the divergence theorem, one is able to write 

loop. cit., Elliott, Electrottlagnetics, p. 283. 

1 lop. rit., Elliott, Electronlngnetics, pp. 193-95, 283-84. 
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The left side of (1 .38)  represents the entire instantaneous power being supplied bji all 
the sources. The first integral on the right side of this equation accounts for the time 
rate of change of the entire stored energy of the field. The second integral stands for 
the power being absorbed by the system of response currents. The last integral there- 
fore represents the entire instantaneous power flow outward adross the surface S 
bounding the volume V. For this reason, one may define the Poynting vector as 

and place upon it the interpretation that it gives in magnitude and direction the 
instantaneous rate of energy flow per unit area at a point. This is Poynting's theorem. 

Since the units of E and H ,  are volts per meter and amperes per meter, respec- 
tively, it is seen that the units of 6 are watts per square meter. 

Cases in which the currents and fields are varying harmonically in time occur so 
frequently and have such importance as to deserve special discussion. Expressing all 
quantities in the form of a complex spatial vector function multiplied by ejw', such as 

one may write 

6 = E X H, z +(Eej"' + E*e-j"l) X (Xoej"' + XfC;fe-jw') 

= -$(E X 3C8 + E* X X O )  + $(E X 3CfC,ej2"' + E* X 3Cte-j2"') (1.40) 

= : @ e ( E  x H t )  + : @ e ( E  x H , )  

The term + @ e ( E  x H r )  is independent of time and thus represents the time-average 
value of 6, giving 

@ = h @ e ( E  x H t )  (1.41) 

The term & @ e ( E  x H , )  contains the factor ej2"' and thus represents the oscillating 
portion of Poynting's vector. Therefore 6 may be interpreted a t  a point as consisting 
of a steady flow of energy density plus a flow which surges back and forth at frequency 
2 0 .  

Similarly 

1~ ~2 := hEOE . E = +e0[+(Eej"' + E*e-j"') (Eejw' + E*e-j"')] z 0 - +C0E E* + + c 0 @ e ( E  . E )  

and 

+ , y i l ~ Z  ,= ; i , y i lB  1 B* + + p i l @ g ( B  B )  

The terms + E , E  E* and + p ; ' B  B* are independent of time and reprzsent the timz- 
average stored energies; their time derivatives are zero. The terms +t-,@e(E E )  and 
- $ p i l @ e ( B  B)  oscillate at a frequency 2 0  and they represent the variablecomponents 
of the stored energy. 

Finally, 

E Jr = * @ e  E Jr* + + @ e  E Jr 
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Here again, the term $(Re E Jr* represents the time-average power density being 
absorbed by the response currents; the term E Jr oscillates at a frequency 2 0  
and represents the energy density being cyclically absorbed and released by the 
response currents. 

With this formulation, Equation 1.38 may be rewritten in two parts. The time- 
average power balance is seen to be 

while the time-variable part, oscillating at a frequency 20,  may be written 

Thus, on the time average, the sources supply power only to that component of the 
response currents in phase with the electric field, represented by the first integral in 
(1.42), and to the net energy flow out of the volume V across the surface S. In addition, 
the sources may have to furnish energy and take it back at the cyclic rate 2 0  if the 
right side of (1.43) is not zero. However, in many practical circumstances, the indi- 
vidual integrals in (1.43) may not be in phase, but may be adjusted purposely so that 
they cancel each other, thus "matching" the generator. 

B. INTEGRAL SOLUTIONS OF MAXWELL'S EQUATIONS 
I N  TERMS O F  THE SOURCES 

The next four sections and two related appendices are devoted to a rigorous solution 
of Maxwell's equations in integral form, giving the fields at any point within a volume 
V in terms of the sources within V and the field values on the surfaces S that bound V. 
One advantage to this development, beyond its rigor, is that the results are in a perfect 
form to delineate approaches to the two types of antennas mentioned in the introduc- 
tion, namely those on which the current distribution is known quite well (such as 
dipoles and helices), and those for which the close-in fields are known quite well 
(such as slots and horns). Another advantage of the development is that it delivers 
the retarded potential functions as an exact consequence of the central  result^.'^ 

lzSome authors, in contradistinction to using the Stratton-Chu formulation (which gives E 
and B directly as integrals involving the sources), prefer to present a rigorous proof that the retarded 
potential functions A and @ are given by the integrals shown in (1.34) and (1.35). Then E and B follow 
from (1.24) and (1.26). That approach is comparable in complexity to the Stratton-Chu development, 
and suffers from the ultimate disadvantage of requiring an ad hoc introduction of fictitious magnetic 
sollrces without rigorous validation. The concept of fictitious magnetic sources arises naturally from 
the Stratton-Chu solution, and their results provide a sound basis for Schelkunoff's equivalence 
principle. See Section 1.12. 
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However, the reader who is not interested in delving into the complexities of this 
development, and who is satisfied with the intuitive introduction of the retarded 
potential functions given in Section 1.5, may wish to  move directly to Section 1.11. 
This can be done without any loss of continuity. 

1.7 The Stratton-Chu Solution 

Since Maxwell's equations are linear in free space, no loss in generality results from 
assuming that time variations are harmonic and represented by ej"'. The angular 
frequency o may be a component of a Fourier series or a Fourier integral, thus bring- 
ing arbitrary time dependence within the purview of the following analysis. Accord- 
ingly, iff  ( x ,  y, z,  t )  is any field component or source component, it will be assumed 
that f ( x ,  y, z,  t )  =: f ( x ,  y ,  z)ejwr. 

Further, it will be assumed that all of the sources are in what is otherwise free 
space. This does not preclude the presence of a dielectric material if it is represented 
by a P dipole moment distribution, nor the presence of a magnetic material if it is 
represented by an M magnetic moment distribution, nor the presenc: of a metallic 
conductor if it is viewed as consisting of a positive ion lattice and an electron cloud, 
coexisting in free space. With dielectric or magnetic materials present, P = J, and 
J, = V X M are the bound current density contributions to the total current density 
J. In the case of the metallic conductor, the electrostatic fields of the lattice and cloud 
are assumed to cancel each other, thermal motions are assumed to be random with a 
null sum, and only the oscillatory motion of the electron cloud is germane, making a 
contribution aE to the total current density J, with a the conductivity of the metal. 
All of these assumptions concerning the representation of electrical behavior of 
materials are valid in the practical realm of the actual materials used to construct 
most antennas. For this reason the ensuing analysis has wide applicability. 

Maxwell's equations (1.21), for time-harmonic sources in otherwise free space, 
can be written in the form 

Since cZp,eo = 1, the result if the divergence of the second of these equations is taken 
is the continuity relation 

V J = - j o p  (1.45) 

In all five of the above equations, the time factor ejor is suppressed and the fields are 
complex vector functions, as is the current density. The charge density is a complex 
scalar function. 
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If the curl of either (1.44a) or (1.44b) is taken and then (1.44b) or.(1.44a) is used 
to eliminate E or B, one obtains the vector wave equations 

in which k = w/c is called the propagation constant, for a reason that will emerge 
shortly. These last two equations can be integrated through use of a technique first 
introduced by Stratton and Chu, and based on a vector formulation of Green's 
second identity. 

Consider a region V, bounded by the surfaces S, . . S,, as shown in Figure 1.1. 
Let F and G be two vector functions of position in this region, each continuous and 
having continuous first and second derivatives everywhere within V and on the 
boundary surfaces Si. Using the vector identity 

FIG. 1.1 Notation for Vector Green's Theorem. 

135.  A. Stratton and L. J. -Chu, "Diffraction Theory of Electromagnetic Waves," Phys. Rev., 
56 (1939), 99-107. Also, see the excellent treatment in S. Silver, Microwave Antenna Theory and Design, 
MIT Rad. Lab. Series, Vol. 12 (New York: McGraw-Hill Book Co., Inc., 1939), pp. 80-9. The pre- 
sent development is a reproduction, with permission, of what appears in R. S. Elliott, Electromagnetics 
(New York: McGraw-Hill Book Co., Inc., 1966), pp. 272-80 and 534-8, and differs from Silver's 
treatment principally in the nonuse of fictitious magnetic currents and charges. 
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and letting A = F while B = V x G, one obtains 

If A = G and B == V x F, then 

When the difference in these results is integrated over the volume V, one obtains 

If 1, is chosen to be the inward-drawn unit normal vector from any boundary surface 
Si into the volume V, use of the divergence theorem gives 

This result is the vector Green's theorem. 
Suppose that the fields E and B of (1.46) and (1.47) both meet the conditions 

required of the function F in V ;  let G be the vector Green's function defined by 

in which a is an arbitrary constant vector and R is the distance from an  arbitrary 
point P(x ,  y, z )  within V to any point (5 ,  q ,  c) within V or on Si .  

As defined by (1.49), G satisfies the conditions of the vector Green's theorem 
everywhere except at  P. Therefore, one can surround P by a sphere C of radius 6 and 
consider that portion V' of V bounded by the surfaces S ,  . . . S,, C. Letting E = F, 
one finds that 

j (E V, x vs x y a  - y a  V, x V, x E) d~ 
V' 

(1.50) 
( y a  x V, x E - E x V, x y a )  1, d S  

I . SN,x 

in which, since y is a function of (x, y, z )  as well as (l, q,  c), it is necessary to distin- 
guish between differentiation with respect to these two sets of variables by subscripting 
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the operators so that 

and 

It is shown in Appendix A that both sides of this equation may be transformed 
so that a is brought outside the integral signs, with the following result: 

Since a is arbitrary, it follows that the integrals on the two sides of the above equation 
can be equated, yielding 

+ (1, x E) x Vsy - jwy(1, x B)] dS (1.52) 

where, for convenience, the surface integral over the sphere C is displayed separately. 
It is further shown in Appendix A that the right side of (1.52) reaches the limit 

-4nE(x, y, z) ,  with (x, y, z )  the coordinates of the point P, as C shrinks to zero. 
Therefore the limiting value of (1.52) is 

This important formula gives E at any point in the volume V in terms of the sources 
within V plus the field values on the surfaces that bound V. 

By letting B = F, one may proceed in a similar fashion to deduce a companion 
formula for B(x, y, z).  Alternatively, the curl of (1.53) may be taken and then (1.44a) 
used to obtain B. By either procedure, one finds that 



Equations 1.53 and I .54 comprise a solution of Maxwell's equations in terms of 
the time-harmonic charge and current sources within V and the field values on the 
boundary surfaces Si. 

1.8 Conditions at Infinity 

Let it now be assumed that the surface S,  of Figure 1.1 becomes a large sphere of 
radius (TI centered a t  the point P. Initially, (TI will be taken great enough to enclose all 
the sources J and p of the fields; ultimately will be permitted to become infinitely 
large. Under these circumstances, consider the contributions to (1.53) and (1.54) of 
the surface integrals over S,. 

If 1, is a unit vector directed outward along the radius of the spherical surface 
S,, so that 1, = -I,, one may write for the appropriate part of (1.54) 

[*(I. x E) + (I, x B) X V s y  + (1. B) VSV] ds 
SN 

C 

Similarly, the appropriate part of (1.53) becomes 

If (TI - W, since the surface of the sphere increaszs as (TI2, the surfacz integral in (1.55) 
will vanish if 

lim (TIB is finite (1.57) 
a+- 

Similarly, the surface integral (1.56) will vanish if 

lim (RE is finite 
m .- 
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Relations 1.57 through 1.60 are known as the Sommerfeld conditions at injnity. 
Expressions (1.57) and (1.59) are commonly called the jniteness conditions (End- 
lichkeit Bedingungen) and Expressions 1.58 and 1.60 are customarily called radiation 
conditions (Ausstrahlung Bedingungen). The finiteness conditions require that E and 
B diminish as @ - I ,  while the radiation conditions require that they bear the relation to 
each other found in wave propagation in regions remote from the sources. (See 
Section 1.1 1 .) 

It is now possible to demonstrate the extremely important result that real 
sources, confined to a finite volume, always give rise to fields that satisfy the Som- 
merfeld conditions. T o  see this, consider Equations 1.53 and 1.54 when the only 
boundary surface is the large sphere S,, with radius that will be permitted to become 
infinitely large. It shall be assumed that the real sources J and p are finite and con- 
fined to a finite volume V,. With the surface S, becoming an infinite sphere, the 
volume V in (1.53) and (1.54) also becomes infinite, but no convergence difficulties 
arise with the volume integrals because the sources are all within V,. 

If one borrows from the results of Section 1.6, the fields over S, will consist of 
outgoing waves with power density E x H, watts per square meter. S i n e  the surface 
area of S, is increasing as ( R 2 ,  if there is even the most minute loss in V,  the law of 
conservation of energy requires that E and H, diminish more rapidly than @ - I ,  and 
thus Conditions 1.57-1.60 are satisfied. One can then conclude that in an unbounded 
region, B(x, y, z )  and E(x, y, z )  are given solely by the volume integrals that appear in 
(1.53) and (1.54). 

A check on this conclusion for the limiting case of no loss in V may be obtained 
through an ordering of the terms that comprise the volume integrals. T o  see this, 
assume that there are no  bounding surfaces except the infinite sphere S,, and that the 
surface integrals involving S, in (1.53) and (1.54) are zero. Then, for this situation, 
Equations 1.53 and 1.54 reduce to 

where the second version of the integrand in (1.61) has been achieved with the aid of 
the continuity equation (1.45). It can now be ascertained whether or not E and B, 
when computed from (1.61) and (1.62), satisfy Sommerfeld's conditions at infinity. 

Let an arbitrary point in V ,  be selected as the origin and let r be the vector 
drawn from the origin to the field point P(x, y, 2 ) ;  the vector drawn from the source 
element to P will be labeled R. Then 

( J  . V,) V,yl = (J Vs) 1, jk + [ ( YkR1 



1.8 Conditions a t  l n f ~ n ~ t y  

in which spherical coordinates (r, 8', 4') centered a t  P have been used and 

Performing the indicated differentiations, one obtains 

The functions yl, V,y, and ( J  Vs)Vsyl are all seen to involve polynomials in the 
variable R-I. Retain for the moment only first-order terms; then substitution in (1.61) 
and (1.62) gives 

But 

R = [(x - O2 + ( y  - q)' + ( Z  - c)2]112 
= [(r sin 8 cos 4 - o2 + ( r  sin 8 sin 4 - 11)' + (r cos 8 - ()2]1/2 

in which now conventional spherical coordinates (r, 8,  4)  centered at  the origin have 
been introduced. As P becomes remote, R can be expressed in the rapidly converging 
series 

R = r - (c sin 8 cos 4 + sin 8 sin 4 + C O ~  8)  + O(r-') (1.65) 

Similarly, 
R - 1  r - ~  + O(r-2) lim l R  = 1. 

, -*- 

and thus as r becomes very large, Equations 1.63 and 1.64 may be written 

in which 2 == 5 sin 8 cos 4 $ q sin 8 sin $ + ( cos 8. 
If one were to go back and include all the terms in the expressions for Vsyl and 

(J Vs)V,yl, they would alter the results in (1.66) and (1.67) only a t  the level ofO(r-'). 
Therefore these two expressions for B and E may be taken as exact. 

In considering Expressions 1.66 and 1.67 with respect to the Sommerfeld con- 
ditions, one notices that the terms of O(r-2) and below satisfy all four conditions and 
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thus concern may be focused on the explicit first-order terms. But 

jk lirn r B  = - lirn e-jk' 
I-- 4n r-- 

and, since the volume integral is a function of the source coordinates and the angular 
direction to P, but not of r,  this limit is finite. A similar argument establishes that 
lim r E  is also finite and thus both finiteness conditions are satisfied. 
1-- 

Further, 

The integrand in (1.69) is identically zero and therefore Condition 1.60 is satisfied. 
In like manner, Condition 1.58 is also found to be satisfied. This supports the argu- 
ment that any system of real sources confined to a finite volume Vo gives rise to an 
electromagnetic field at infinity that satisfies Sommerfeld's conditions, that the surface 
integral over an infinite sphere S, gives a null contribution, and that in an unbounded 
region the electromagnetic field at any point P, near or remote, is given precisely by 
(1.61) and (1.62). 

Suppose now that parts of the volume Vo  are excluded from V by the finite, 
regular closed surfaces S ,  . . . Si . . . . These surfaces may exclude some of the sources 
from V or not, but their presence does not alter the results at infinity. However, now 
the more general expressions in (1.53) and (1.54) apply, and one may conclude by 
saying that these expressions are valid even if the volume V is infinite, so long as real 
sources in a finite volume are assumed. If the volume V is infinite, the surface at 
infinity need not be considered. 

This solution for E and B, given by Equations 1.53 and 1.54, is in a form that is 
convenient for the purpose of drawing a distinction between two types of radiators. 
Type I antennas will be taken to be those for which the actual current distribution is 
known quite well, such as dipoles and helices. Type I1 antennas will be those that 
have actual current distributions which would be difficult to deduce, but which could 
be enclosed by a surface over which the fields are known with reasonable accuracy. 
These include horns and slots. 

For type I antennas, there will be no volume-excluding surfaces and (1.53) and 
(1.54) will contain only volume integrals. For type I1 antennas, the volume-excluding 
surfaces (usually only one) will be chosen to surround all the actual sources so that 
there are none to be found in the remaining part of space V. Thus for type I1 antennas, 
(1.53) and (1.54) will contain only surface integrals. In the developments that follow 
later in this chapter, it will be seen that it is useful to replace the field values occurring 
in the integrands of these surface integrals by equivalent sources. Thus for the remain- 
der of this book, type I radiators will be referred to as actual-source antennas and 
type I1 radiators will be called equivalent-source antennas. 



1.9 Field Values in the Excluded Regions 

Because of its bearing on the analysis of type I1 (equivalent-source) antennas, it is 
important to consider the values of the fields E and B at points inside the excluding 
surfaces shown in Figure 1.1. In particular, let the field point (x, y, z )  lie anywhere in 
the volume V ,  which has been surrounded by the closed surface S,. A simple applica- 
tion of the general results in (1.53) and (1.54) gives 

Another way to view this situation is to imagine that V ,  is the volume region 
comprising the collection of field points and that S ,  is the sole surface, performing the 
function of excluding all the rest of space. From this viewpoint, a second application 
of the general results in (1.53) and ( I  .54) yields 

The negative signs in front of the surface integrals in (1.72) and (1.73) are occasioned 
by the fact that now the normal to the surface S, is oppositely directed. 

If the difference between these two sets of formulas for the fields within V ,  is 
formed, one obtains 
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The right sides of (1.74) and (1.75) are seen to be exactly the same as the right sides of 
(1.53) and (1.54). Therefore one can conclude that if the range of the field point ( x ,  y ,  z )  
is unrestricted, when (x, y, z)  lies within V ,  Equations 1.53 and 1.54 will give the true 
fields E and B. However, when ( x ,  y, z )  lies outside V ,  Equations 1.53 and 1.54 will 
give a nu!l result. 

1.10 The Retarded Potential Functions: Reprise 

If the volume V is totally unbounded, Equations 1.53 and 1.54 give 

Since V,y/ = - V,y, and since J and the limits of integration are functions of (C, q, 0, 
but not of ( x ,  y, z ) ,  these integrals may be written in the forms 

Therefore it is convenient to introduce two potential functions by the defining 
relations 

@(x,  y ,  z ,  t )  = 
J-" P(& dV 

in which the time factor ej"' has been reinserted and e- jkR/R has been substituted for 
y. The function A is called the magnetic vector potential function and cD is called the 
electric scalar potential function. 

Since k = ole, one may write 

exp [ j ( o t  - k R ) ]  = exp J @  t - - [ . (  31 
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Therefore each current element in the integrand of (1.80) and each charge element in 
the integrand of (1.81) makes a contribution to the potential at (x, y, z )  at time t which 
is in accord with the value it had at the earlier time t - Rlc. But this is consistent with 
the idea that it takes a time Rlc for a disturbance to travel from (5, q,  c )  to (x, y, z). 
For this reason, (1.80) and (1.81) are often called the retardedpotentials. 

From (1.78) and (1.79), 

in which the subscripts on the del operators have been dropped, since A and @ are 
functions only of (x, y, 2) and not also of (5, q,  c). 

The differential equations satisfied by A and @ may be deduced by taking the 
divergence of (1.82) and the curl of (1.83), which leads to 

These relations are valid whether J and p are harmonic functions of time or more 
general time functions representable by Fourier integrals. A proof may be found in 
Appendix B. 

All of the results in this section can be seen to be consistent with those obtained 
in Section 1.5 by a different line of reasoning. 

C. THE FAR-FIELD EXPRESSIONS FOR TYPE I 
(ACTUAL-SOURCE) ANTENNAS 

In antenna problems, one is interested in determining the fields at points remote from 
the sources. This introduces several simplifications in the field/source relations, as can 
be seen in the development in the next section. 

1 . I 1  The Far-Field : Type I Antennas 

The typical situation for an actual-source antenna is suggested by Figure 1.2. The 
sources are assumed to be oscillating harmonically with time at an angular frequency 
o and to be confined to some finite volume V. There are no source-excluding surfaces 
S,. For convenience, the origin of coordinates is taken somewhere in V. It is desired 
to find E and B at a field point (x, y, z)  so remote that R ))) max [tZ + q2 + c2]1/2. 
Said another way, the maximum dimension of the volume V that contains all the 
sources is very small compared to the distance from any source point to the field 
point. 
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J x  

FIG. 1.2 Notation for Far-Field Analysis. 

Because (x, y, z )  is outside of V and thus is a source-free point, it follows that 
Maxwell's equations (1.44) reduce to 

As seen either in the development of Section 1.5 or Section 1.10, B can be related to 
the time-harmonic current sources by the equation 

B = V X A  (1.87) 

in which 

with k = o ! c  = 2 ~ / 1  the wave number and R the distance from the source point 
(5, q ,  [) to the field point (x, y, z). From (1.86) and (1.87) it follows that, at source- 
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free points (x ,  y, z), 

E = (c2/ jw)  V x V x A 

For this reason it is not necessary to find 0. The charge distribution on the antenna 
need not be known for far-field calculations; the current distribution will suffice. The 
procedure is reduced to finding A from (1.88) and E and B from (1.89) and (1.87). 

The distance between source point and field point is given by 

R = [(x - 5)' + ( y  - n)' + ( Z  - [ ) 2 ] 1 / 2  

= [(r sin 8 cos $ - 5)' + (r sin 8 sin C$ - r,~)' + (r cos 8 - ( ) 2 ] 1 / 2  

= [ r2  - 2 4 5  sin 8 cos 4 + q sin 8 sin C$ + ( cos 8 )  + r 2  + q2 + c 2 ] 1 / 2  
(1.90) 

= r  - (5 sin 6' cos I$ + q sin 8 sin I$ + cos 8 )  + O(r-I )  

in which the last result is obtained via a binomial expansion. If (1.90) is inserted in 
(1.88) and terms of O(r-2) are neglected, one obtains the far-field approximation 

in which 

6: = 5 sin 8 cos q5 + q sin 8 sin $ + cos 8 (1.92) 

The distance 6: can be interpreted as the dot product of: (I) the position vector 
drawn from the origin to (5, a, c ) ;  and (2)  a unit vector drawn from the origin toward 
(x ,  y, z) .  The result in (1.91) can be given the interpretation that A(x, y, z, t )  is expres- 
sible as the product of an outgoing spherical wave 

a n d  the directional weighting function 

The radiated power pattern of the antenna, given by the function 6 ( 8 ,  $ )  watts per 
square meter can be expressed in terms of this weighting function a ( $ ,  4) .  To see this 
relation, one can first perform the curl operations indicated by (1.87) and (1.89). 
When this is done and only the terms in r - I  are retained, it is found thatI4 

14The subscript zero has been dropped on H as a simplification, since it is unambiguously 
clear that the region is free space. 
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in which 1. is a unit vector in the radial direction and 77 = ( p , / ~ , ) ' ~ ~  = 377 ohms is the 
impedance of free space. The transverse part of A is AT = l,Ae t 1,A,. It can be 
concluded from a study of (1.95) and (1.96) that the radiated E and H fields are 
entirely transverse, that E differs from AT only by a multiplicative constant, that H is 
perpendicular to E, and that 

The complex Poynting vector yields an average power density which can be 
written (see Section 1.6) 

1 @(8, $) = Tale(E x H*) 

It is customary to call that part of the radiation pattern associated with E, the 8- 
polarizedpattern, or the vertically polarizedpattern, and to call that part of the radia- 
tion pattern associated with E# the $-polarized pattern, or the horizontally polarized 
pattern. From (1.95) and (1.98), it can be seen that these two patterns are given by the 
functions 

Often one is interested only in the relative power densities being radiated in different 
directions (8, $), in which case the factor i[k2q/(4nr)2] can be suppressed. 

Since the unit vectors in spherical and cartesian coordinates are connected by 
the relations 

1, = 1, cos 8 cos $ -t 1, cos 6' sin $ - 1, sin 8 

1, = -1, sin $ + 1, cos $ 

it follows that the transverse components of (1.94) can be written in the forms 

ado ,  4)  = 1 [cos 8 cos B JAC q, i )  + cos 8 sin $ ~ ~ ( 5 ,  q, 
(1.101) 

- sin 6' Jz(5, q, l)]ejke d5 dq d l  

a+(o7 4) = jv [-sin $ JJ5,  % i )  + cos $ Jy(5, q, i)lejkc d5 dq d( ( 1.102) 

These two equations are the key results of this development and form the basis of 
pattern analysis and synthesis for actual-source antennas. If one starts with known 
current distributions, a, and a+ can be determined from (1.101) and (1.102) and then 
used in (1.99) and (1.100) to deduce the radiation patterns. This is the analysis prob- 
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lem. Conversely, if desired patterns are specified, (1.101) and (1.102) become integral 
equations in the sought-for current distributions. This is the synthesis problem. 

The results of this section can be summarized by saying that when one is doing 
pattern analysis of a type 1 (actual-source) antenna, the steps to  follow are these. 

1. Place the known current distribution in (1.101) and (1.102) and determine 
ao(e, $1 and a,(e, $1. 

2. If the far-field power patterns are desired, use (1.99) and (1.100). Then I a,(8, $) l 2  
and I a@,  4) I"il1 give the vertically and horizontally polarized relative power 
patterns, respectively. 

3. If the E and H fields are desired, use (1.95) and (1.96). 

For pattern synthesis, (1.101) and (1.102) become integral equations in the unknown 
current distribution with a,(O, $) and a,(B, $) specified.I5 

D. THE FAR-FIELD EXPRESSIONS FOR TYPE II 
(EQUIVALENT-SOURCE) ANTENNAS16 

A distinction has already been made between antennas for which the actual source 
distribution is known to reasonable accuracy and those for which it is not. In the 
latter case, it is fortunately often true that the fields adjacent to the antenna are fairly 
well known; it is then useful to  surround the antenna by surfaces that exclude all the 
real sources. If the Stratton-Chu formulation is used, the fields E(x, y, z)ejwt and 
B(x, y,  z)ejwr can then be determined from Equations 1.53 and 1.54 with only surface 
integrals involved. 

An alternate (and equivalent) approach that is rich in physical insight is one in 
which substitute sources are placed on the surfaces enclosing the antenna. These 
sources must be chosen so that they produce the same fields at all points exterior to 
the surfaces as the actual antenna does. The next two sections are concerned with 
developing this alternate approach. 

1 .I 2 The Schelkunoff Equivalence Principle 

The concept of equivalent or substitute sources is an old and useful idea that can be 
traced back to C. Huyghens,17 but the development to  be presented here is patterned 
after S. A. Schelkunoff.18 

1 soften i t  is a vexing problem to specify the phase distribution of as and a+ since all that may 
really be desired is some specified ao(O, 4)I or la,(B, $)I. In such cases, one can search for that phase 
distribution of a, and ad which results in the simplest physically realizable current distribution. This 
can be a much more formidable synthesis problem. 

16Reading the material in Part D of this chapter can be deferred without any loss in continuity 
until Chapter 3 is reached. 

17C. Huyghens, TrairP de la LutiliPre, 1690 (English translation: Chicago: The University of 
Chicago Press, 1945). 

18s. A. Schelkunoff, "Some Equivalence Theorems of Electromagnetics and their Applica- 
tion to Radiation Problems," Bell System Tech. Jour., 15 (1936), 92-1 12. 
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In pursuing this idea, one finds that if the equivalent sources are to reproduce 
faithfully the external fields, electric sources alone will not suffice. It is necessary to 
introduce fictitious magnetic sources. In anticipation of this, consider the situation in 
which real electric sources (p, J )  create an electromagnetic field (El, B,) and magnetic 
sources (p,, J,) create an electromagnetic field (E,, B,). The properties of these 
fictitious magnetic sources are so chosen that Maxwell's equations are obeyed in the 
form given below. Away from the sources, no distinction can be made that would 
allow one to determine which type of source had given rise to either field. The two 
sets of sources and fields satisfy 

V x El  = -joB, (a) V X E , = - - J " - - ~ ~ B  
Po ' 2 (e) 

The divergence of (1.103e) combined with (1.103h) reveals that V J, = - JwP,. ' In 
other words, the manner in which the magnetic sources have been introduced insures 
that the continuity equation applies for magnetic as well as electric sources. 

In a development paralleling what is found in Section 1.5, it is useful once again 
to  introduce potential functions, this time by means of the defining relations 

B 1 = V x A  (a) E , = - V X F  (b) (1.104) 

As before, A will be called the magnetic vector potential function; by analogy, it is 
appropriate to call F the electric vector potential function. Equation 1.104a insures 
compliance with (1.103d); similarly, (1.104b) is in agreement with (1.103g). Equations 
1.103a and 1.103f then lead to 

from which 

with O and cD, called the electric and magnetic scalar potential functions, respectively. 
If the total fields are E = El + E, and B = Bl + B,, then 
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Equations 1.103b and 1.103e can next be converted to the forms 

If the divergences of A  and F  are selected to satisfy 

then these hybrid equations reduce to 

J V 2 A  + k 2 A  = -- (a) V2F + kZF  = -A (b) (1.108) 
pi1 pi1 

Finally, (1.103~) and (1.103h) transform to 

V Z @  f k2@ = -k (a) V 2 @ , + k 2 @ , = - P r n  (b) (1.109) 
€0 0 

The solutions for A  and @ have already been given (see Section 1.10) and the 
solutions for F and @, are obviously similar. If the electric and magnetic sources are 
confined to reside in surfaces, then lineal current densities K amperes per meter and 
K, magnetic amperes per meter replace J and J,. In like manner, the areal charge 
densities p, coulombs per square meter and p,, magnetic coulombs per square meter 
replace p  and p,. The potential functions are then given by 

Suppose one desires to find the values that these surface sources should have in 
order to give a specified electromagnetic field external to S but a null field within S. 
As suggested by Figure 1.3a, let a contour C, be constructed such that the leg ab is 
just outside S and parallel to B,,,,; the leg cd is parallel to ab and just inside S ;  both 
legs have infinitesimal lengths dl. Since (1.103b) and (1.103f) combine to give 
V x B = ( J / p i l )  + (jw/cZ)E, integration of this result and the application of 
Stokes' theorem yields 

in which S, is the membranelike surface stretched over the infinitesimal rectangular 
contour C,. 
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True fields 
outside S 

True fields 
outside S 

Fig. 1.3 Determination of Equivalent Surface Sources 

As the legs bc and da are shrunk toward the limit zero, with ab always outside S 
and cd always inside, the electric flux enclosed goes to zero, the current enclosed is 
Kdl, and the line integral in (I. 1 11) gives B,,,,dl, since there is no contribution from 
inside. In Figure 1.3a, K emerges from the paper if B,,,, is in the direction from a to b. 
One obtains the result that 

with 1, a unit outward-drawn normal vector. 
Similarly, if (1.103a) and (1.103e) are added and the result integrated, with the 

contour taken so that its leg ab is parallel to Eta,,, one finds that 

Next, imagine that an infinitesimal pillbox has been erected, straddling S as 
shown in Figure 1.3b. I f  the view in the figure were to be rotated 90°, one would see an 
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infinitesimal disclike area dS, with the upper surface of the pillbox just outside S and 
the lower surface just inside S. Since (1.103~) and (1.103g) combine to give V E = 

plea, integration plus use of the divergence theorem yields 

in which S, is the total surface of the pillbox, enclosing the volume V,. 
Because there is to be no field inside S,  as the height of the pillbox is reduced 

toward the limit zero, with one pillbox face always on each side of S, in the limit 
Ends = (p,/e,) dS, with En the normal component of E. Thus 

In like manner, if (1.103d) and (1.103h) are combined and this process is repeated, 
one finds that 

Schelkunoff's equivalence principle in essence asserts that, if the equivalent 
sources given by (I. 1 12) through ( I .  1 15) are inserted in the potential functions (1. l lo), 
and the results are used in (1.106) and (1.107), the calculation of E and B will give the 
true fields at all points external to S and null fields at all points internal to S. 

It is not immediately obvious that this should be so, since all that has been done 
so far is to choose equivalent sources that would correspond to the situation that the 
true fields exist infinitesimally outside S and that no fields exist infinitesimally inside 
S,  with no obvious indication that this will produce the proper field values at points 
further removed from S. However, Schelkunoff's assertion can be affirmed by fol- 
lowing his suggested procedure. If the factor elo' is suppressed, if y replaces e-jkR/R, 
and if equations (1.1 12) through (1.1 15) are substituted in (1.1 lo), the result is that 

When these expressions for the potential functions are used in (1.106) and (1.107), 
and the vector transformations V,y = -Vsy and V, x [ly(l, x E)] = V,y x (1, X E) 
= (1, x E) x Vsy are employed, one finds that 

E ( ~ , Y ,  z )  = [(In *E)Vsy t (1, X E) x Vsy - jwy(1. x B)] dS (1.1 17) ' Js 
1 

B(x, Y ,  Z )  = 4n - [ F ( l ,  X E) + (I.  X B) X Vsy L (I. B ) v , ~ ]  d~ (1 .I 18) 
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where V, and V, are the del operators for the field point variables and source point 
variables respectively; they have been defined by Equations 1.51. 

These integral solutions for E  and B  at the field point (x, 41, z), in terms of the 
field values over the surface S, are seen to be identical to the Stratton-Chu solutions 
1.53 and 1.54 for the case that all the real sources have been excluded from the exterior 
volume V. Since it has already been shown in Sections 1.7 and 1.9, via a direct integra- 
tion of Maxwell's equations, that (1.53) and (1.54) give the true fields at all points 
exterior to S, whereas they give a null result at all points interior to S, it follows that 
Schelkunoff's equivalence principle has been established. 

1 . I3  The Far Field : Type II Antennas 

In a development paralleling what was done in Section 1.11 for actual-source antennas, 
the potential expressions ( I .  110) for equivalent-source antennas can be simplified if 
the field point (x, y, z) is remote from all the sources. The details need not be repeated, 
but the thread of the argument proceeds as follows. 

Away from the sources, (1.103b) and (1.103e) give 

c2 c2 
E l = - V x B i = , v x ~ x ~  JW 10 

1 1 
B ~ = - - V X E , = - V ~ V ~ F  

JW JW 

so that (1.106) and (107) simplify to 

As before, one can dispense with the need to know the charge distributions if the 
fields are only sought at source-free points; knowledge of the current distributions, 
which determine A  and F, is sufficient. 

The far-field forms of these vector potential functions can be written as the 
product of the outgoing spherical wave factor (1.93) with the directional weighting 
functions 

When (1.119) and (1.120) are applied to the far-field forms of A and F  and only the 
terms in r - *  are retained, the result is 
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with AT and FT the transverse components of the vector potential functions. Once 
again it can be noted that the far field E and H are both transverse to the radial direc- 
tion and are perpendicular to each other, and that 1 E/H I = q. 

In this case of equivalent sources, the complex Poynting vector gives as the 
average power density 

1 
a ( e j  6 )  = -@e{[-/oAT 2 + jk( l r  X FT)] x [(:)(I. x A:) + j o e , ~ ~ ] ]  

1 k2q 1 - - -- 2 (4nr)~ae([aT - c ( l r  X %T) 

(1.125) 
= lr-- k2"a,a~ + apy + $(S,SZ + s g y )  

2 ( 4 ~ r ) ~  

A study of (1.123) reveals that the vertically polarized (E,) pattern is related to a, and 
5,, whereas the horizontally polarized (E,) pattern is governed by a, and 5,. Thus 
the component patterns are given by the functions 

Once again, the factor + [ /~~q / (4n r )~ ]  can be suppressed when only relative levels are of 
interest. 

As before, the transverse components of a and 5 can be obtained by expanding 
(1.121) and (1.122) into components. This gives 

a ~ e ,  9)  = j [COS e cos Q K,(F, V, i )  + cos e sin Q KAC, V, i )  

- sin 0 K2(c, q, c)]ejkz dS (1.128) 

a,(e, $1 = 5, [-sin Q K,(c, n, i )  t cos Q Ky(5, n. i)lejkz d~ (1.129) 

5,(0,9) = js [cos 0 cos Q K,.(c, n, i) + C O ~  e sin m Kym(c, V ,  

- sin 8 K,,(C[, q, [)]ejk": dS (1.130) 
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These four equations are the key results of this development and form the core of 
pattern analysis and synthesis for most equivalent-source antennas.lg If one starts 
with known equivalent-current distributions, a,, a,, 5,, and 5, can be determined 
from (1.128) through (1.131) and then used in (1.126) and (1.127) to deduce the 
radiation patterns. This is the analysis problem. Conversely, if desired patterns are 
specified, (1.128) through (1.13 1) become integral equations in the equivalent current 
distributions that are sought. This is the synthesis problem. 

The results of this section can be summarized by indicating the procedure for 
doing pattern analysis of a type I1 (equivalent-source) antenna. 

1. Surround the antenna with a closed surface S over which the actual fields are 
known, at least to a good approximation. 

2. Use (I. 1 12) and (1.1 13) to find the equivalent lineal current densities K({, q, [) 
and K,(t, tt, tl) on S. 

3. Find aT(8, 4) and 9,(8,1$) from (1.128) through (1.13 1). 
4. If the component power patterns are needed, use (I.  126) and (1.127) to deter- 

mine them. 
5. If the far fields E and B are required, use (1.1 19) and (1.120). 

For pattern synthesis, (1.128) through (1.131) assume the roles of integral equations 
in the unknown equivalent-current distributions, with aT(8,$) and ST(B, 4) specified.20 

E. RECIPROCITY, DIRECTIVITY, AND RECEIVING CROSS SECTION 
OF AN ANTENNA 

This penultimate part of Chapter 1 is concerned with the development of several 
concepts that have proven to be extremely useful in antenna theory. The first of these 
is the concept of reciprocity, based on a simple deduction from Maxwell's equations. 
The second (directivity) is a measure of the ability of any antenna to radiate prefer- 
entially in some directions relative to others. The last concept (receiving cross section) 
introduces a measure of the ability of an antenna to "capture" an incoming elec- 
tromagnetic wave. 

19Occasionally a design problem will be encountered in which the antenna is very long in one 
dimension and the sources are essentially independent of that dimension. It is then convenient to 
assume that the problem is two dimensional and use cylindrical coordinate expressions equivalent to 
(1.128) through (1.131). See Appendix G for the development of these expressions. 

2oThe synthesis problem is actually quite a bit more complicated than this simple statement 
would suggest. Often it is only 6r,s(B,  $) and (Pr,$(B, 4) that are specified. The division into a~(B,4)  
and ST(Br $) is immaterial to the desired result, but it may be critical in terms of physical realizability 
of a synthesized antenna. Another difficulty is that thephase of the far-field pattern is seldom specified. 
This offers the antenna designer an added degree of freedom, but complicates the synthesis problem. 
One should strive for a phase distribution of the far-field pattern that permits the simplest physically 
realizable antenna. This can be a formidable undertaking. 
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One of the most important and widely used relations in electromagnetic theory is the 
reciprocity theorem, which will be invoked many times in this text as various subjects 
are presented. A derivation of this theorem is based on the idea that either of two sets 
of sources, (Ja, J:, pa, p:) or (Jb, JL, pb, p:), can be established in a region, producing 
the fields (Ea, Ba) and (Eb, Bb), respectively. It is assumed that the two sets of sources 
oscillate at a common frequency. There may be dielectric, magnetic, and conductive 
materials present in which some or all of these sources reside, but if so the electro- 
magnetic behavior of these materials must be linear. The equivalent situation of free 
and bound sources in free space will be used to represent the behavior of the materials, 
as a consequence of which Maxwell's curl equations in the free space form, 

can be used to connect the fields and current sources for each set. Equations 1.132 are 
a restatement of (1.103) in combined form, with D = t 0 E  and H = f i iLB.  These curl 
equations can be dotted as indicated to give 

Since 

V * ( E a X H b - E b X H a ) = H b - V  X E a - E a . V X H b - H a . V  x E b  

+ E b *  V X Ha 

it follows from (1.133) that 

in which integration has been taken over a volume V large enough to contain all the 
sources of both sets, and in which the divergence theorem has been employed. Equa- 
tion 1.134 is a statement of the reciprocity theorem for sources in otherwise empty 
space, but with the possibility that some might be bound sources representing the 
behavior of linear materials. Several special forms of this reciprocity relation have 
proven useful and can be described as follows. 
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1. If S is permitted to become a sphere of infinite radius, with the sources con- 
fined to a finite volume V, the fields at infinity must consist of outgoing spherical 
waves for which E, = qH, and E, = --qH,. Under these conditions the surface 
integral in (1.134) vanishes and one obtains 

Equation 1.135 is a principal reduction of the reciprocity theorem, which is used in 
circuit theory to demonstrate a variety of useful relationships. It will be used in this 
text to establish the equality between transmitting and receiving patterns for arbitrary 
antennas and to develop a basic formula for the mutual impedance between antenna 
elements. 

2. Another important reduction of the reciprocity theorem can be derived by 
returning to Equation 1.134 and considering the situation illustrated in Figure 1.4a. 

Fig. 1.4 Geometries for Two Applications of the Reciprocity Theorem 

The volume V is enclosed between the surfaces S ,  and S,, with S ,  completely sur- 
rounding S, .  If all the sources are excluded by S , ,  so that none of them lie in V,  then 
the right side of (1.134) has a null value. And, if S ,  is once again permitted to become 
a sphere of infinite radius, the fields at infinity again consist of outgoing spherical 
waves for which E ,  = qHb  and E,  -qH,, and the integral over S, in (1.134) 
vanishes. One is left with 
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In (1.136), d S  is drawn outward from V, but no change in (1.136) occurs if d S  is instead 
drawn outward from V,, the volume enclosed by S, .  Thus (1.136) can be interpreted 
by saying that if a surface S ,  is constructed to enclose all the sources of both sets in a 
finite volume V,, then the fields caused by these sources satisfy the relation in (1.136). 

Equation 1.136 will be used in Chapter 7 in the establishment of the induced 
EMF method for computing the self-impedance of a dipole. 

3. A variant on the previous reduction is suggested by Figure 1.4b. The closed 
surface S ,  excludes all the sources, that is, the volume V, is source free. Application 
of (1.134) to this situation once again gives (1.136). This result will be used in Chapter 
3 in the derivation of a formula for the scattering from a waveguide-fed slot. 

1.1 5 Equivalence of the Transmitting and Receiving Patterns 
of an Antenna 

The reciprocity theorem can be used to establish the very important result that the 
transmitting and receiving patterns of an antenna are the same. Consider the situation 
indicated by Figure 1.5, in which two antennas are sufficiently separated so that each 

{x 
Fig. 1.5 Disposition of Two Antennas in Each Other's Far Field 



The Far-F~eld  Integrals. Rec~procity. D~rect~vi ty  

is in the far-field region of the other. Spherical coordinates are arranged to place 
antenna 1 at the origin and antenna 2 at the point (r, 8, $I). Both antennas can be as 
simple or complicated as one wishes, so long as they are composed of linear materials. 
It will be assumed that a transmitter is connected to one antenna via a suitable 
transmission line and a receiver is connected to  the other antenna, also via a suitable 
transmission line.21 

In accord with the notation used in Section 1.14, let the a-set of sources occur 
when a transmitter is attached to antenna 1 and a receiver to antenna 2. The b-set of 
sources will represent the situation when the positions of transmitter and receiver are 
interchanged. The combination of transmitter and receiver used in the b-situation 
need not be the same as in the a-situation. 

It will be assumed that a cross section 1 can be found in the transmission line 
connecting antenna 1 to the transmitter (receiver) at which a single, clean propagating 
mode exists, and that similarly a cross section 2 can be found in the transmission line 
connecting antenna 2 to the receiver (transmitter) where a single, clean propagating 
mode exists.21 

For the a-situation, let electric and magnetic current sheets be placed at cross 
section 1 so that the fields on the antenna side are undisturbed, but so that, with the 
transmitter turned off, the fields on the transmitter side have been erased. From 
Equations 1.1 12 and 1.11 3, these port sources are given by 

in which 1, points along the transmission line toward antenna 1 and Ea and Ha are 
evaluated in cross section 1 .  In like manner, let electric and magnetic current sheets 
be placed at cross section 2 so that the fields on the antenna side are not altered, but 
so that, with the receiver turned off, the fields on the receiver side have been erased. 
These port sources satisfy 

with 1, pointing along the transmission line toward antenna 2, and with Ea and Ha 
evaluated in cross section 2. 

The effective replacement of the transmitter and receiver by equivalent sources 
at ports I and 2 leaves intact all the a-sources and fields between these cross sections, 
including the radiation field transmitted by antenna 1 and received by antenna 2. 

In precisely the same manner, equivalent electric and magnetic current sheets 
can be found which, when placed at cross sections 1 and 2, can serve as proxies for 
the transmitter and receiver in the b-situation. 

These two sets of sources and the fields they produce satisfy the reciprocity 
theorem in the form of (1.135). The volume V over which the integration is to be 
performed must encompass all the original sources between the two cross sections 
plus the equivalent sources in the two cross sections. 

2lAs a special case of this analysis, the transmission lines may be lumped circuits. 
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Consider any point between the cross sections that is occupied by sources. If 
these sources flow in conductive material, 

with a the conductivity at  that point. Similarly, if the material is dielectric, 

with xe the dielectric susceptibility at  that point. And if the material is magnetic, 

in which X ,  is the magnetic susceptibility a t  that point. 
In (1.139) through (1.141), the parameters a, x,, and X ,  can be functions of 

position, depending on the composition and disposition of the materials that com- 
prise the two antennas and their feeds, but, with the assumption that all materials are 
linear, these parameters are independent of the levels of the fields. Thus, for every 
source point between the cross sections, equal contributions are made to  the integrals 
on the two sides of (1.135). What remains are the contributions made by the equiva- 
lent sources in the cross sections. 

Equation 1.135 reduces to  

with S ,  and Sz the cross sectional surfaces at  ports 1 and 2. By virtue of the set of 
relations of the type (1.137), this can be converted to the form 

It  is demonstrated in textbooks dealing with transmission line theoryzz that any 
propagating mode can be represented by a voltage wave and a current wave, defined 
so that 

Eta&, Y, z) = V(z) g(x, Y) (1.144) 

Htang(x, Y, 2 )  = I(z) h(x, Y) (1.145) 

with Z the propagation axis and with the functions g(x, y) and h(x, y) characteristic of 
the given mode. The level of these characteristic functions is adjusted so that 

ZzSee, for example, S. Silver, Microwave Antenna Theory and Design, MIT Rad. Lab. Series, 
Volume 12 (New York: McGraw-Hill Book Co., Inc., 1939), p. 55. 
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with S a cross-sectional surface. The functions V(z) and I(z) in (1.144) and (1.145) are 
called the mode voltage and mode current and are given generally by 

with A and B constants to be determined by the boundary conditions, with P the 
propagation constant and Y o  the characteristic admittance of the mode. 

When this representation is applied to the modes at S ,  and S,, one finds that 

Substitution in (1.143) together with use of (1.146) gives 

This is a key result of the analysis and can be interpreted as saying that the mode 
voltages and currents at the two ports satisfy the reciprocity theorem. 

Next, let Z ,  , be the impedance of antenna 1 referenced at port 1, and let Z,, be 
the impedance of antenna 2 referenced at port 2. Then 

Further, let Z,, be the impedance of the receiver transformed to port 1 in the b- 
situation, and let Z,, be the impedance of the receiver transformed to port 2 in the 
a-situation. Then 

Vt = -I?Z,, V", --ZRZ (1.151) 

When (1.150) and (1.15 I) are placed in (1.149), one finds that 

The transformed receiver impedances are obviously independent of the direction (8 ,$)  
from antenna 1 to antenna 2 and, since the two antennas are in far fields of the other, 
so too are the driving point impedances Z , ,  and Z,,. Thus 

with K - [ I  + (ZR,/Z2,)1/[1 t (Z,,/Z1 ,)I, a constant. 
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If Vf is held fixed and I," is measured as a function of (0 ,4)  while antenna 2 is 
moved along some programmed path on the spherical surface of radius r, the trans- 
mitting field pattern of antenna 1 is recorded. Reciprocally, if V,6 is held fixed and 1; 
is measured as a function of (0,$) while antenna 2 is moved along the same pro- 
grammed path, the receiving field pattern of antenna I is recorded. But Equation 
1.153 leads to the conclusion that 

In words, the normalized transmitting field pattern and the normalized receiving 
field pattern of any antenna are identical. 

Some features of this proof are worth noting. No specification of the size, shape, 
or type of either antenna was necessary, nor were there any restrictions on the types 
of transmission lines feeding the two antennas, except that each should exhibit a 
single, clear propagating mode at the chosen ports. The materials of which the 
antennas and their feeds were composed were arbitrary except that they needed to be 
linear. It was not necessary for either antenna to be matched to its transmission line, 
nor was there any requirement that the transmitter or receiver be matched to either 
transmission line. Also, there was no restriction on the orientation of antenna 2 as it 
moved along its programmed path. It could be continuously reoriented to measure 
EB(O, $1, or E,(0, I$), or E,(0, $1, or some arbitrarily shifting polarization. All that is 
needed is for antenna 2 to replicate its orientation at each point along the path after it 
has shifted from receive to transmit. One can conclude from this that the proof is very 
general. 

Equation 1.154 establishes the equivalence of the transmitting and receiving 
field patterns of any antenna. A simple extension shows that this equivalence applies 
to the power patterns as well. If (1.154) is multiplied by its complex conjugate, the 
result can be used to deduce that 

The quantities 11,"12 R,,/2 and IIPIZ RR,!2 that appear in (1.155) are the powers 
absorbed in the receiver when antenna 1 is transmitting and receiving, respectively. 
Since each is linearly proportional to the power density of the waves passing the 
receiving antenna, it is proper to infer that they are measures of the transmitting and 
receivingpower patterns of antenna 1. With K' = (RR,/R,,) I KV,b/Vf I Z ,  one can write 

Care must be taken in interpreting (1.156). For example, if antenna 2 is linearly 
polarized and always oriented as it moves along its programmed path, in order to 
receive or transmit only 0-polarized waves, then ( 1.156) becomes 
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from which one can conclude that the normalized 0-polarized component of the 
power pattern of antenna 1 is the same for receive and transmit. Similarly, if antenna 2 
is linearly polarized but aligned to receive or transmit only $-polarized waves, ( I .  156) 
reduces to 

S2c(0, $1 = K'Sc(e, $1 (1.158) 

and once again equivalence is demonstrated in the component power patterns for 
antenna 1 .  And if, for example, antenna 1 is linearly polarized with only an  E, electric 
field, then (1.158) gives a null result, as it should. If antenna 1 does not radiate an E, 
field, it cannot detect an incoming E, field. 

The sum of Equations 1.157 and 1.158 shows that the total power patterns are 
equivalent : 

s::;,(e, $1 = ~~s: ; , , , (e ,  $1 (1.159) 

Acceptance of the conclusion that the normalized total power patterns of any 
antenna are the same for transmit and receive, and thus that one need not determine 
both, still leaves a measurement difficulty that should be noted. This concerns the fact 
that not any antenna can be chosen to play the role of antenna 2, make one traverse 
of the programmed path, and a t  each point in the path be oriented so that the received 
powers in (1.155) coincide with the power densities in (1.159). This will occur only if 
antenna 2 is polarization-matched to antenna 1. For example, if antenna 1 is circularly 
polarized, antenna 2 must be circularly polarized in the proper screw sense in order to 
have the received powers in the a- and b-situations that can be interpreted as the total 
radiated and received power patterns of antenna 1. 

However, if one is content to use as antenna 2 a linearly polarized antenna, 
make two traverses of the programmed path, one with 0-orientation and the other 
with $-orientation, and keep transmit power and receiver sensitivity stable, then the 
separate measurements give the component power patterns. Their sum gives the total 
power pattern, and Equations 1.157 through 1.159 indicate that it does not matter 
whether the measurements are made with antenna 1 transmitting and antenna 2 
receiving, or vice versa. 

1 .I 6 Directivity and Gain 

Often a principal goal in antenna design is to establish a specified radiation pattern 
6(0 ,$)  watts per square meter through a suitable arrangement of sources. The 
specified pattern frequently embodies the intent to enhance the radiation in certain 
directions and suppress it in others. A useful measure of this is the directivity, which 
is simply the radiated power density in the direction (0, 4) divided by the radiated 
power density averaged over all directions; that is, 

D(e, $1 = 
@(e, $1 (1.160) 

(1/4xr2) Jon J:'@(0', @)r2 sin 8' dBf d$' 
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Equation 1.160 contains the implications that the origin for spherical coordinates has 
been chosen somewhere in the immediate vicinity of the antenna, and that power 
densities are being evaluated on the surface of a sphere whose radius r is large enough 
to ensure being in the far field of the antenna. 

Jf the radiation intensity is defined by 

then, since 6(0,$) is measured in watts per square meter, it follows that P(0,$) is 
measured in watts per steradian. Substitution in (1.160) gives the equivalent expres- 
sion 

D(0, $) = 
4np(e, $1 

Jon J " P(P, $11 sin 81 doJ d$* 

The value D(8, $) is a pure numeric. It will have a value less than unity in 
directions in which radiation has been suppressed, and a value exceeding unity where 
the radiation has been enhanced. If (e,, $,) is the direction in which the radiation 
intensity is greatest, then D has its largest value a t  ( d o ,  4,) and D(Oo, 6,) is the peak 
directivity. 

In characterizing an antenna, one must be careful to distinguish between direc- 
tivity and gain. Directivity is used to compare the radiation intensity in a given direc- 
tion to the average radiation intensity and thus pays no heed to the power losses in 
the materials comprising the antenna. Gain includes these losses, and the definition of 
gain is therefore 

in which P,,,is the total power accepted by the antenna from the transmitter, measured 
in watts. The denominator of (1.163) is the value, in watts per square meter, that 
the radiated power density would have if all the power accepted by the antenna were 
radiated isotropically. Since the power accepted is greater than the actual power 
radiated, the denominator of (1.163) is larger than the denominator of (1.160), and, 
as a consequence, G(0, Q) < D(B,$). 

Most antennas are constructed of linear materials; in this case, one may argue 
that 

. n  2n 

Pa,, = KL jo 6'(01, $')r2 sin 0' dB1 dm' (1.164) 

with K,  a pure real constant that has a value somewhat greater than unity. When this 
is so, Equation 1.163 becomes 
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The gain and directivity differ by a multiplicative factor that is independent of direc- 
tion. In particular, the peak gain occurs in the same direction (O,, 6,) as the peak 
directivity. 

Often, gain and directivity are expressed in decibels (dB). From (1.165), 

The gain in any direction is seen to be 10 logloK, decibels below the directivity in that 
direction; 10 logl0KL thus represents the power losses in the materials forming the 
antenna. 

For some applications it is useful to introduce the concept of partial directivity 
and partiul gain. As an example of how this is done, a return to Equations 1.98 
through 1 .I00 or 1.125 through 1.127 helps to recall that 

If this relation is inserted in Equation 1.160, it can be seen that it is possible to write 

in which 

D1(8,$) = 
@r,de, 6) (1.169) 

(l/4nr2) l' j 2'@(8r, $')r2 sin 8' dBf d$' 
0 0 

and 

D"(8, $) = @r,+(e9 4) (1.170) 
(l/4nr2) jn I @(el, $')r2 sin 8'  dB1 d$' 

0 0 

are the partial directivities associated with the 8-component and $-component pat- 
terns, respectively. Similar definitions follow readily for the partial gains. 

An example of the utility of this concept would be when an antenna is to be 
designed to give peak radiation at an angle (8,, $,), but all the radiation should be 
8-polarized; any $-polarized radiation is unwanted, but for practical reasons some 
may be unavoidable. In such a circumstance it is the peak partial directivity D1(OO, $,) 
that is a pertinent measure, not the peak total directivity D(B0, 4,). 

The division of the total power pattern into components can be done in other 
ways than the 8/$ partition indicated above. For example, the decomposition could 
equally well be into right-handed and left-handed circularly polarized component 
power patterns. In that case one could identify right-handed and left-handed partial 
directivities and gains. 

1 .I 7 Receiving Cross Section 

A receiving antenna will absorb energy from an incident plane wave and feed it via a 
transmission line to its terminating impedance. A useful measure of its ability to do 
this results from introducing the concept of the absorption cross section of the antenna 
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or, as it is more commonly known, its eq~rivaient receiving cross-sectional area. If S is 
the power density of the incoming plane wave in watts per square meter and P, is the 
absorbed power in watts, then the equation 

serves to define the receiving cross section, in square meters, as a function of the angle 
of arrival of the incoming signal. In order to have A,(8, $) be a maximum measure of 
the capture property of the antenna, it is customary to assume that the incomingplane 
wave is polarization matched to the antenna, and that the antenna is terminated by a 
matched receiver. With these assumptions, Equations 1.155 and 1.159 are applicable 
and one can write 

An integration of (1.172) gives 

K' lL2' @~:,,(8', $')rZ sin 8' dBf d$' (1.173) A,(&, $') sin 8' dB' d$'= 

If the ratio of (1.172) to (1.173) is taken, one obtains 

in which D(8, 4) is the directivity of antenna 1 when it is transmitting, as given by 
(1.160). Then is the average receiving cross section of antenna 1, defined by 

n Zn 

i, = So S, a,(el. 40 sin ef  def d4' 

It is a remarkable fact that the average receiving cross section is the same for 
all lossless antennas that are polarization matched. This can be demonstrated as 
follows. 

Consider again the situation of two antennas, depicted as in Figure 1.5, with 
antenna 1 transmitting and antenna 2 receiving in the a-situation and the reverse 
occurring in the b-situation. T o  obtain maximum power transfer, assume that in the 
a-situation the transmitter attached to antenna 1 has an internal emf V,  and an internal 
impedance that has been adjusted to equal Z,*,, with Z ,  , the driving point impedance 
of antenna 1. Similarly, in the b-situation, let the transmitter attached to antenna 2 
have an internal emf V, and an internal impedance Z & ,  with Zz2 the driving point 
impedance of antenna 2. 

In the a-situation, I f  = V,/2RI,  and the power delivered to antenna 1 is 
If IZR, , = 1 V, 12/8R, ,. If the losses in the antenna can be neglected, all of this 
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power is radiated, with an average density in watts per square meter given by 

When antenna 2 is located at the point ( r ,  8 ,  $), the power density in the wave arriving 
from antenna 1 is given in watts per square meter by 

in which D, (8 ,  4) is the directivity of antenna 1 .  If use is made of (1.171) with S = 

@(8, $), it can be argued that the power absorbed by the receiver attached to antenna 2 
is given by 

P, = 1 Vc12/8Rl D,(B, Q)A,, , (B,  $1 watts 4nr2 

with A,,,(B, 4)  the receiving cross section of antenna 2. Use of (1.174) converts this to 

The power absorbed is also given by (1/2)@e I,"Z;*ZR2 but, with a matched receiver, 
Z,, = Z;,, and thus 

f'r = &11,"12 R22 (1.177) 

When (1.176) and (1.177) are combined, the result can be written in the form 

If this analysis is repeated for the b-situation one finds that 

The currents and voltages in the two situations are related generally by Equation 
1.152. In the circumstance being considered here, V ;  = C Z ,  , = (V8 /2R ,  , ) Z , , ,  V,b = 

Z,bZ2, = (V8/2R2, )Z2, ,  Z R l  = ZT1, and ZR2  = 25; as a consequence of this, (1.152) 
reduces to 

I$ = If (1.180) 

Hence, upon comparing (1.178) and (1.179), one can see that 

- - 
Ar,1 = Ar,z 
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Since antennas I and 2 are completely arbitrary (except that they must be polariza- 
tion-matched), Equation 1.18 1 is a general result. 

The value of the constant for linearly polarized antennas can be deduced as 
follows: Let antenna 1 be completely arbitrary and located a t  the origin, as shown in 
Figure 1.5, except that it is linearly polarized and has been oriented to  transmit an  E 
field that has only a 8-component. Antenna 2 is a single current element of length dl, 
located a t  the point (r, 8 ,4 ) ,  and oriented parallel to 1, so that  the two antennas are 
polarization matched. 

In the a-situation, let antenna 1 be transmitting with antenna 2 absent. In the 
b-situation, the current element I,I,b dl (antenna 2) is present and radiating, and 
antenna 1 is receiving. Port 2 is taken to  be the 8-directed line segment of length dl 
located a t  (r, 8 ,  4). In this case the reciprocity relation (1.149) becomes 

which can be rewritten in the form 

Since f i  = Vf/Z, , when antenna 1 is transmitting, and I t  = - V,b/Z,, = - V f / Z r l  
when antenna 1 is receiving, (1.182) assumes the form 

When (1.183) is multiplied by its complex conjugate, the result is 

In the a-situation, antenna I accepts an amount of power given by 

from the transmitter and, if losses in antenna I are neglected, all of this power is 
radiated. The power density a t  (r, 8 ,  $) in the a-situation is, therefore, 

When ( E; I 2  is eliminated from (1.184) and (I .  l85), one obtains the result that 
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I n  the b-situation, the receiver attached to antenna 1 absorbs the power 

since Z,, = Z:,. This absorbed power can also be expressed in terms of the power 
density in the waves radiated by the current element and the receiving cross section of 
antenna 1. From Equations 1.99 and 1.101 the maximum23 power density radiated by 
a single current element is 

and thus the power absorbed by antenna 1 is also given by 

If (1.187) a n d  (1.189) a r e  c o m b i n e d  a n d  t h e  resul t  so lved f o r  I VP 12, f u r t h e r  c o m b i n a t i o n  
with (1.186) gives 

and thus the universal value of the average receiving cross section for linearly polarized 
antennas is A2/4n. 

Equation 1.190 is a n  extremely useful result. I t  permits computation of the 
optimum power level in a receiver which is attached to a n  antenna of peak directivity 
D(0,, $,) when the power density in the incoming signal is known. This value is 
diminished slightly by the losses in the antenna. It is also diminished by the multipli- 
cative factor ( 1  - 1 r I 2 )  when the receiver and the antenna are mismatched, with r 
the reflection c o e f f i ~ i e n t . ~ ~  

F. POLARIZATION 

This concluding section of Chapter 1 is concerned with characterizing the polarization 
of a n  electromagnetic field far from the sources which produce it. Such characteriza- 
tion is important in many practical applications. Prominent examples include the 
following. (1) For  purposes of optimizing propagation through a selective medium 
(such as the ionosphere), or  optimizing back-scattering off a target, it may be desirable 
to  specify the polarization the wave should have. This places a constraint on the 
design of the transmitting antenna. (2 )  When a sum pattern is required to have a 

2 3 I t  is the maximum value that should be used since the current element is oriented so that 
its maximum power density is directed at  antenna 1. 

W e e ,  for example, Silver, Microwave .Antenna Theory, and Design, pp. 51-53. 
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specified polarization and low side lobes, it is important to  check that the antenna 
being proposed does not produce a cross-polarized pattern at  a height which exceeds 
the desired side lobe level. This possibility exists, for example, with parabolic reflector 
antennas. (3) The polarization of an incoming wave may have to  be accepted, which 
places a constraint on the design of an antenna that will receive this wave optimally. 
(4) The polarization of an  incoming wave may be unpredictable, in which case it may 
be desirable to design a receiving antenna which will respond equally to  all polariza- 
tions. T o  be equipped to deal with these and similar problems, it is important to  be 
able to describe the polarization of an electromagnetic wave unambiguously. 

1 .I 8 Polarization of  the Electric Field 

It has been shown in Sections 1.1 1 and 1.13 that the far field of a transmitting antenna 
can be viewed as the product of a n  outgoing spherical wave and a complex directional 
weighting function. For the electric field (which is conventionally used as the vehicle 
for describing polarization), this complex directional weighting function is given by 
(1.95) for type I antennas and by (1.123) for type I1 antennas. In  either case, at  a far 
field point (r, 9, $), the electric field can be represented by 

when time-harmonic sources are used in the transmitting antenna. 
The functions E,(r, 9, $) and E,(r, 9, $) that appear in (1.191) are, in general, 

complex. If this is recognized by the notation 

then it can be appreciated that what is really meant by (1.191) is that 

E(r, 9, $, t )  = &e[l,(E; + jE;) + 1,(EL $ jE&)]ejwr 
(1.193) 

= l,(EL cos wt - Et sin wt) + 1,(E& cos o t  - E& sin o t )  

with EL, E t ,  E i ,  Ry all real functions of r, 9, and $. 
Equation 1.193 can be rewritten in the form 

E = l ,Acos (o t  + a )  + l ,Bcos (o t  + P)  (1.194) 

in which 

A = J ( E ~  + (E;;)~ B = J ( E ~  + (E;)~ 

E" u - arctan 2 
E:, 

E" p = arctan -f 
E , 

With no loss in generality, the origin of time can be selected so that u = 0 (that is, 
E t  = 0). Then (I .  194) becomes 

E = 1,A cos or + 1,B cos ( a t  -1- P )  (1.196) 
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Equation 1.196 is a particularly convenient representation of the electric field for the 
purpose of identifying its polarization. 

(a) LINEAR POLARIZATION If B = 0, the electromagnetic wave is said to be 
linearlypolarized in the 9-direction. Similarly, if A = 0, the wave is 4-polarized, But 
more generally, if /I = 0 but A ,  B # 0, the 9 and 4 components of the electric field are 
in phase. The polarization is then tilted, but it is still linear, as can be seen from the 
time plots of Figure 1.6a. Therefore the most general example of linear polarization 
occurs when E, and E, are in phase. 

(b) CIRCULAR POLARIZATION If A = B and /I = -90°, Equation 1.196 
becomes 

E = A(1, cos o t  + 1, sin o t )  (1.197) 

In this case the magnitude of E is constant with time. The angle that E makes with the 
l e  direction is ot and this angle changes linearly with time. The locus of the tip of E is 
a circle, as indicated in Figure 1.6b. For this reason, the field is said to be circularly 
polarized. 

The sequence in Figure 1.6b is drawn as though the observer were looking 
toward the transmitting antenna from afar, along a longitudinal line in the (9,4) 
direction. The progression of E with time is seen to be counterclockwise, which is the 
direction of rotation a right-hand screw would have if it were being turned to progress 
in the direction of propagation. For this reason, (1.197) is said to represent a right- 
handed circularly polarized wave. If one were to write 

E = A(1, cos a t  - 1, sin a t )  (1.198) 

so that E, leads Eo by 90°, instead of lagging by 90" as in (1.197), then a left-handed 
circularly polarized wave would be described. 

(c)  ELLIPTICAL POLARIZATION The most general case of (I. 196) occurs when 
A # B, /I # 0. The magnitude of E is given by 

If the time derivative of this function is set equal to zero, the extrema of I E(t) I can be 
identified. They occur at angles ot = 6 governed by 

tan 2 6 = - BZ sin 2P 
A2 + BZ COS 2 p  

If 6, is the angle in the first quadrant which satisfies (1.200), then 6, = 6, + n/2 also 
satisfies (1.200). 

Substitution of the angles 6, and 6, in (1.196) reveals both the direction and 
magnitude of each of the two extrema of E(t). The two directions are at right angles 
to each other and form the principal axes of the locus. It is left as an exercise to show 
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that this locus is an ellipse.2s Its semimajor and semiminor diameters can also be 
found by substituting 6, and 6, in (1.199). This gives 

7 I + 

w t = o  

2SThe components Eg and E6 that occur in (1.196) are analogous to the voltages applied to the 
two sets of deflecting plates in an oscilloscope in order to create a Lissajou figure on the screen. 

I I. 

Fig. 1.6 Phasor Plots of E Versus Time for Electromagnetic Waver, of Various Polariza- 
tions 
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A typical plot of (1.196) is shown in Figure 1 . 6 ~ .  As in the case of circular 
polarization, the direction of rotation of E can be either clockwise (left-handed ellip- 
tical polarization) or  counterclockwise (right-handed elliptical polarization). This is 
determined by whether the phase angle j3 is lead or lag. 

REFERENCES 

COLLIN, R. E. and F. J. ZUCKER, Antenna Theory, Part I (New York: McGraw-Hill Book 
Co., Inc., 1969). 

ELLIOTT, R. S., Electromagnetics (New York: McGraw-Hill Book Co., Inc., 1966). 

ELLIOTT, R. S., "The Theory of Antenna Arrays," Chapter 1 in Volume I1 of Microwave 
Scanning Antennas, ed. R.  C. Hansen (New York: Academic Press, 1966). 

SILVER, S., Microwave Antenna Theory and Design, MIT Rad. Lab. Series, Volume 12 (New 
York: McGraw-Hill Book Co., Inc., 1939). 

PROBLEMS 

1.1 Complete the Stratton-Chu derivation by letting F = B and repeating the analysis that 
was used in Section 1.7 to obtain B, thus establishing Equation 1.54 of the text. 

1.2 Alternatively, take the curl of Equation 1.53 to find - j w B  and in this manner verify 
Equation 1.54 of the text. 

1.3 Use the expression for the curl of a vector in spherical coordinates and begin with 
Equation 1.91 in the form 

Then use (l.lOb), (1.87), and (1.89) to deduce that, in the far-field 

thus confirming (1.95) and (1.96). 

1.4 Demonstrate the validity of equations (1.11 3) and (1.11 5) in the text. 

1.5 Use equivalent-source Equations 1.112 through 1.1 15 in the retarded potential functions 
(1.1 10) and show in detail that the results agree with the surface integrals in the Stratton- 
Chu formulation for E(x, y, z )  and B(x, y,  2). 

1.6 Begin with the far-field expressions (1.123) and (1.124) and show that the power radiated 
has a density given by (1.125). 

1.7 Enumerate the theorems in circuit analysis that can be proven with the aid of the reci- 
procity relation (1.134). Sketch the proof of each. 

1.8 An antenna A, when transmitting, radiates a circularly polarized field in the direction 
(8, $), which is right-handed. If antenna A is receiving an elliptically polarized electro- 



magnetic wave, incident from the direction (8, $), state the conditions of ellipticity which 
will maximize the received signal. State those which will minimize it. 

1.9 Show that IE(t)l, as given generally by Equation 1.199, has as  its locus an ellipse with 
axes that occur at  angles 8 ,  and 62 = 6 ,  + nj2, with these angles satisfying (1.200). 
What is the ellipticity ratio? 
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2.1 Introduction 

In this chapter the formulas that have been developed for the fields caused by an 
assumed known distribution of current will be applied to a succession of simple but 
practical radiators. These type I (actual-source antennas) include dipoles, loops, and 
helices. The center-fed dipole of length 21 will be taken up first, with emphasis on the 
two cases of greatest interest, when 21 112, and when 21 << I. After a discussion of 
images, these results will be extended to a monopole over a ground plane and a dipole 
in front of a ground plane. Next, the small current loop will be examined, followed by 
the helix, the latter being an example of a traveling wave current distribution. 

These antenna configurations have many practical applications as single radiat- 
ing elements but also are widely used in arrays, a subject which will be introduced in 
Chapter 4. 

2.2 The Center-Fed Dipole 

The practical center-fed dipole usually consists of a pair of tubular conductors of 
diameter d aligned in tandem so that there is a small feeding gap at the center, as 
shown in Figure 2.1. The total length is 21 )> d. A voltage is applied across the gap, 
often by means of a two-wire transmission line. The resulting current distribution on 
the pair of tubular conductors gives rise to a radiating field. If a good estimation can 
be made of this current distribution, the formulas of Section 1.1 1 can be used to deduce 
the field. 

One can gain insight to the current distribution by considering the case of a two- 
wire transmission line that is opened out, as shown in Figure 2.2. Without any flare, 
the open-circuit termination causes a standing-wave distribution of current, oppositely 
directed in the two conductors. Pairs of current elements, which are equal, opposite, 
and close together, radiate negligibly, which is the behavior of a good transmission 
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line. If the origin of the X-axis is taken a distance I back from the end of the trans- 
mission line, the current distribution can be given by 

/(x, t )  = I, sin [ k ( l  - x)]ejw' 

With a flare of 45", as shown in the second panel of Figure 2.2, the inductance 
and capacitance per unit length change with position along the flared segment, and 
thus so too does the characteristic impedance; however, to first order, the wave 
number is still constant at  the free-space value k .  For this reason, one can argue that 
the current distribution is little altered by the flare. This is still assumed to be the case 
in the third panel of Figure 2.2, where the current distribution is also shown as that of 
a standing wave with sinusoidal spatial distribution. Note that the pair of current 
elements, which had canceled each other's radiation tendencies in the first panel where 
they were oppositely directed and close, are more widely separated and reinforcing in 
the third panel, \.chich serves to illuminate why a dipole radiates. 

Modern methods, pioneered by the work of E. Hallknl and S. A. Schelkunoff2 
and using powerful computational techniques such as the method of moments, have 
led to more precise knowledge of the current distribution on a cylindrical dipole, but 
the deviation from a sinusoidal function is found not to be great, and for pattern 
calculations can be ignored. (Compare with Section 7.6, and particularly Figures 7.8 
and 7.9). 

With the dipole diameter d@< 2 ,  it becomes feasible to treat the dipole as a 
filamentary conductor and replace JdV by Id1 as the current element. The geometry is 

1E. Hallen, "Theoretical Investigations into the Transmitting and Receiving Qualities of 
Antennas," Nova Acfa Upsala, 11 (1938), 1-44. 

2s. A. Schelkunoff, Elec.tromugnetic Waves (Princeton, N.J.: D. Van Nostrand Co., Inc., 
1943), pp. 441-52. 
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Fig. 2.2 The Dipole as a Transmission Line that is Opened Out 
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Fig. 2.3 Center-Fed 
Assumed Sinusoidal 
tribution 

Dipole with 
Current Dis- 

then as shown in Figure 2.3. The sources are I(c'd5 with 

I(5' = 1, sin [k( l  - 1 5 111 

Since all the sources lie along the Z-axis, 

d: = c cos 8 (2.3) 

and a return to Equations 1.101 and 1.102 reveals that, for a filamentary center-fed 
dipole, a, = 0, whereas 8, is given by 

aR(8)  = -Im sin 8 I' sin [k( l  - 1 c l)]ejkCco" d 
-1  

c (2.4) 

Because the current distribution is symmetrical around 5 = 0,  the odd part of 
exp ( j k r  cos 8) can be discarded, yielding 

aR(8) = -21, sin 8 I is in  [k( l  - ()I cos (kc con 8)  d l  (2.5) 

This integrates to give 

21, 
= - - [cos ( k l  cos 8 )  - cos ( k l ) ]  k sin 8 (2.6) 

Two cases of special interest can now be considered. 

1. The half-wavelength dipole, 21 = 112. 
For this length, 

21, cos [ (n /2)  cos 191 a,(e) = - - 
k sin 8 
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With the outgoing spherical wave factor of (1.93) restored, use of (1.95) and (1.96) 
gives 

j(or-kr) 
Eo = j601, - cos [(n/2) cos 81 

r [ sin B I 
j(or-kr) cos [(n/2) cos 81 

..=jke7[ I 
A polar plot of Eo(8)/E,(n/2) is shown in Figure 2.4. It is seen to be doughnut-shaped 
(the three-dimensional pattern results from rotating Figure 2.4 about the Z-axis, since 
E, is $-independent), with a null along the 8 = 0°, 180" axis. This type of pattern finds 
wide use in omnicoverage applications when vertical polarization is required and a 
null can be tolerated in one direction. 

Eo - sin B 

Fig. 2.4 Normalized E-Field Pattern of a Half-Wavelength 
Center-Fed Dipole 
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The power pattern can be deduced with the aid of (1.99) and is given by 

The total radiated power is 

Prod = jo2' 1: @r.e(8, $) r 2  sin e dB d$ 

= Jon @,,(B) 2nr2 sin 0 dB 

sin 0 

Numerical integration gives 

The peak directivity of a half wavelength dipole (see Section 1.16) is 

Since 1 = 1214, the peak input current to the dipole (at [ = 0) is I,,, and the 
feeding transmission line can be said to be delivering the power 

to a resistance R,,, placed across its terminus. This is called the radiation resistance of 
the half-wavelength dipole, and solution of (2.13) gives 

0.6091 - Rrad = -- - 73 ohms 
n 

Nothing has appeared in the development to indicate whether or not the current 
and voltage at the end of the transmission line are in phase, so there is no information 
at this stage about the reactance of the dipole. This subject will be explored in Part 
111, which is concerned with the impedance of antennas. There it will be found that 
the current distribution on the dipole needs to be known more accurately in order to 
solve for the input impedance, and that this impedance is a function of the length 21 
and diameter d of the dipole. However, for 21 1212 and 21 >> d, the real part of the 
impedance is close to 73 ohms. 
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Now attention can be turned to the second special case. 
2. The short dipole, 21 <( 1. 
The terms cos ( k l  cos 8 )  and cos ( k l )  that appear in Equation 2.6 can be expanded 

in power series which converge rapidly if k l  is small. One obtains 

The input current to the dipole is given by 

I = I,,, sin ( k ~ )  = I, k l  - (9 + . . .I [ 3! 

Even for 21 as large as 114, it is seen to be a good approximation to write 

ae(8 )  = -k121m sin 8 = -I1 sin 8 (2.1 7 )  

Thus the short dipole also gives a vertically polarized field pattern that is doughnut- 
shaped, a little bit broader than Figure 2.4, but not significantly so. Where the short 
dipole differs radically from the half-wave dipole is in its input impedance. To see the 
effect on radiation resistance, (1.99) can be used to obtain 

If (2.18) is integrated over a full sphere of radius r, the result is 

The peak directivity for a short dipole can be obtained as in Equation 2.12 and is 
found to be 1.5, not much less than the value for a half-wavelength dipole. 

Since the radiation resistance can be defined by P,,, = (1/2)12R,,,, Equation 
2.19 yields 

in which L = 21 is the length of the short dipole. 
As an example, if 21 = 118, R,,, = 3 ohms, a value considerably lower than the 

value of 73 ohms found for a half-wavelength dipole. The effect on the reactive com- 
ponent of the input impedance of a dipole is even more drastic as it is shortened. For 
a finite dipole diameter d, the reactance is positive at 21 = 112, goes through zero at a 
dipole length slightly below 112, and then becomes increasingly negative as 21 is 
shortened further. For 21 = 118, it is not unusual for X to be as much as 1000 ohms 
capactive. This can be tuned out by a suitable inductance placed at the feeding point, 
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but the dipole reactance changes so rapidly with frequency a t  these short lengths that 
the combination is quite narrow band. This subject will be explored in more depth in 
Part 111, vihere a study of the input impedance of a dipole is undertaken. 

2.3 Images in a Ground Plane 

The results of the previous section can be extended to the case of a monopole over a 
large highly conductive ground plane, or a dipole in front of it, by invoking the method 
of images. Because of these present applications and others to be encountered in later 
chapters, it is desirable a t  this point to digress and discuss the images of both electric 
and magnetic current elements. 

Consider first an electric current element, situated at  the origin, and oriented in 
the z-direction. The magnetic vector potential function due to  this single element is 

The use of (1.89) in spherical coordinates gives 

2 Id/ e.i(or-kr) 
d E  - Lpp j k  1 

j w 4 n p ; '  r 
cos 8 + l o ( - k 2  + + ;) sin 81 (2.22) 

When this expression is converted to Cartesian components, one obtains 

~ E - c . . ~  Id' eiiwr-kr) { [ ( - k '  i 2 4- 4) sin B cos B [I, cos 4 4 1 ,  sin $1 
j w  4 n p i 1  r r r 

Let the result of (2.23) be applied to the case of an electric current element 
normal to and a distance d above an  infinite, perfectly conducting ground plane, as 
shown in Figure 2.5a. This current element will induce a current distribution in the 
ground plane such that E,,,, = 0 along the ground plane. But the same effect could 
be achieved if the ground plane currents were not there and an image current element 
were a distance d below the ground plane and in phase with the actual element. T o  
see this, one should observe from Figure 2.5a that for any point in the ground plane 
r '  = r, 8' = n - 8, and $' = $. SincedE'is also expressible in the form of (2.23), if 
I 'dl '  = /dl, it follows that dE: = -dE, and dE: = -dE, because sin ( n  - 8) = sin 8,  
but cos ( n  - 8)  = -cos 8 .  Thus d E  + dE' has only a z-component, as required. The 
result is independent of d. 

If this exercise is repeated, but with ldl  parallel to the ground plane as shown in 
Figure 2.5b, then the proper image is oppositely directed. This can be demonstrated 
by noting that now, for any point on the ground plane, r '  = r ,  8' = 8 ,  and $' = 
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Fig. 2.5 Images in an Infinite Ground Plane 

2n - $. Thus if I'dl' = -Idl, it follows that dEk = -dE, and dEt = -dE,. But 
dE: = dE, because sin (2n - $) = -sin $. Therefore d E  + dE' has only a y-compo- 
nent, as required, and this result is independent of d. 

If a magnetic current element 1,dl replaces the electric current element, one can 
write, as a special case of (1. l lob), 

Use of (1.120) gives an expression identical to (2.23),except that dB replaces d E  on the 
left and a factor c2 is deleted on the right. Now the boundary conditions require that 
B ,,,,,, - 0 on the ground plane instead of E ,,,, = 0. For this reason, in Figure 2 . 5 ~  
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the image is seen to be oppositely directed, whereas in Figure 2.5d the image is seen to 
be codirected with the current element. 

These results can be summarized by saying that the image of an electric current 
element is codirected if the element is perpendicular to an electric ground plane, and 
is oppositely directed if the element is parallel to the ground plane. The image of 
a magnetic current element is oppositely directed if the element is perpendicular to an 
electric ground plane, and is codirected if the element is parallel to the ground plane. 

Since any antenna can be viewed as a collection of these elementary current 
elements, the results just stated are also true in aggregation, that is, at the macroscopic 
level. 

2.4 A Monopole Above a Ground Plane 

When the results of the previous section on images are invoked, the development of 
the fields due to a center-fed dipole, considered in Section 2.2, can be extended to the 
case of a monopole above a ground plane. Figure 2.6 shows the arrangement; the 
images, taken together with the monopole, are seen to replicate the dipole. Thus the 
value of a,(@ in z > 0 is given by (2.6), the fields and power pattern for a quarter- 
wavelength monopole are given by (2.8) through (2. lo), and the corresponding results 
for a short monopole are given by (2.17) and (2.18). 

One notable difference is that the monopole is only radiating into a half-space, 
so the field pattern is only the upper half of Figure 2.4. Implicit in this result is the 
assumption of an infinite, perfectly conducting ground plane. For a finite ground 
plane composed of a good conductor, diffraction at the edges causes some radiation to 
"spill over" into z < 0 with maximum radiation occurring at an angle above the 
horizon. For an extensive but lossy earth, radiation along the horizon is diminished 
due to the ohmic losses in the earth, and once again maximum radiation occurs at an 
angle above the horizon. The monopole fed against a ground plane has its most 

sin [ k ( l  

Ground 

Fig. 2.6 Vertical Monopole above 
1L-' a Ground Plane 
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prominent application in broadcast antennas (such as the AM band) where omni- 
azimuthal coverage is desired. 

Another distinction between the monopole above an infinite, perfectly con- 
ducting ground plane and a center fed dipole in a full space is that, for the monopole, 
P,,, is half that of the center-fed dipole for the same value of I,. As a consequence, 
R,,, for a monopole is only half the value of R,,, for the corresponding dipole. 
Another way to see this is to observe from Figure 2.6 that the voltage applied between 
the monopole and ground is only half the voltage applied between the monopole and 
its image. 

2.5 A Dipole in Front of a Ground Plane 

The method of images can also be used to determine the pattern of a center-fed dipole 
which is parallel to and a distance h in front of a large ground plane, as shown in 
Figure 2.7. If the current in the dipole is given by (2.2), the current in the image is the 
negative of (2.2). A point on the dipole can be assigned the coordinates (0 ,  h, 5) in 
which case the corresponding point on the image has the coordinates (0, -h,  0. 
Equation 1.102 gives Ct, = 0 and Equation 1 .lo1 indicates that 

ae(O, Q) = -I, sin 0 I' sin [k( l  - 1 5 I)] "" @ sin ++CcO") d 
- I  

5 

= -2jI. sin 0 sin ( k h  sin 0 sin Q )  J 1  sin [k( l  - 1 i I)] ejkcCos ' d 
-I 

5 (2.25) 

Fig. 2.7 Center-Fed Dipole Parallel 
t o  a Ground Plane Plus Image of 
Dipole 



2.6 The Small Current Loop 

The integral in (2.25) is the same as the one encountered earlier in (2.4) and thus 

a,(8, 4 )  = - 4". [cos (kl cos 8) - cos kl] sin (kh sin 8 sin 4) (2.26) 
k sin 0 

Therefore the pattern of a dipole plus ground plane, in the half-space y > 0, is the 
pattern of a n  isolated dipole multiplied by the factor 2j  sin (kh sin 8 sin 4). In  the 
half-plane 4 = n/2, for h = 114, the normalized pattern is similar to Figure 2.4. In 
three dimensions, the pattern is ball-like. 

2.6 The Small Current Loop 

If a circular wire loop of radius a small compared to a wavelength is fed by a two- 
wire-line, as shown in Figure 2.8, it is a good approximation to assume that the current 
is Iej"' everywhere on the loop, with Z a constant. Since the coordinates of a point on 
the loop are given by 

and since 

/dl = la(-1, sin ty + 1, cos y) dy 

Fig. 2.8 The Small Current Loop 
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it follows that (1.101) becomes, for this case, 

Since the integrand is cyclical in 271, the limits on the integral in (2.27) can be shifted 
to range from 0 to 271, which is to say that the result is independent of ). When one 
examines the even and odd nature of the functions sin y ,  cos (ka sin 8 cos y), and 
sin (ka sin 8 cos y/) which comprise the integrand, it is a simple matter to show that 

Proceeding similarly, one finds that, for the small loop, (1.102) takes the form 

Once again, the limits of integration can be shifted, indicating a, is not a function of 
4; elimination of the odd terms in the integrand leaves 

a,(@ = 2jIa I' sin (ka sin 8 cos ty) cos ty dy (2.30) 
0 

If ka is assumed to be small, sin (ka sin 8 cos y )  Z ka sin 6 cos y and (2.30) becomes, 
to good approximation, 

a4(8) = j(na21)(k sin 8) (2.31) 

The far-field pattern is horizontally polarized and has a power density which, 
from (1.100), is 

By comparing this result with (2.18), one can conclude that a short dipole and a 
small loop have similar patterns, with a difference of 90" in polarization. Thus the 
applications for a small loop are similar to those for a short dipole-situations in 
which an omni-azimuthal coverage is needed and in which a null can be tolerated 
along some axis. The distinction is that the short dipole gives vertical polarization, 
whereas the small loop gives horizontal polarization. 

Integration of (2.32) over a sphere of radius r ,  with the result equated to &12R,,,, 
yields 

R,,, = 320n6 - M4 
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As an example, if (al12) = 0.03, R,,, = 0.25 ohms. By contrast, from (2.20), a short 
dipole of length 21/12 = 0.06 has a radiation resistance of 0.7 ohms. The radiation 
resistance of a small loop can be raised by a factor n2 if n closely wound turns are 
used. 

The preceding analysis is also applicable for large ka as long as one is able to 
assume a uniform current Iej"' on the entire loop. For this more general case, (2.30) 
gives 

a,(8) = j2nIaJl(ka sin 8 )  (2.34) 

with J ,  a Bessel function. As k a  increases, more and more fine structure appears in 
the pattern, through the behavior of J l (ka  sin 8).  As an illustration of this, Figure 2.9 
shows a polar plot of the field pattern of a loop for which a = 2.512, and this is con- 
trasted to the pattern when a = 0.0512. 

The achievement of a uniform current Iejo' in a large loop requires complicated 
feeding arrangements. Some examples of how this can be approximated are given by 
J. B l a ~ s . ~  

Fig. 2.9 Normalized E-Field Patterns of a Small Loop and a Large Loop; Linear Scale 
(From Antennas by J. D. Kraus. Copyright 1960, McGraw-Hill. Used with permission of 
McGraw-Hill Book Company.) 

2.7 Traveling Wave Current on a Loop 

Prior to a discussion of the practical problem of radiation from helices, it is useful to 
consider the hypothetical situation of a loop with circumference one wavelength, 

~ t h  I,Y the angle measured from the X- supporting a current distribution Ie j (m'-ka~)  w' 
axis, as shown in Figure 2.8. This can be viewed as a wave traveling along the wire at 

3J. Blass, "Loop Antennas," Antenna Engineering Handbook, ed. H .  Jasik (New York :  
McGraw-Hi l l  Book Co., Inc., 1961), Chapter 6. 
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the speed of light, repeating itself every 2n radians, as required by the physical bound- 
ary conditions. For this case, because k a  = 1, Equation 1.101 becomes 

a,(g, $) = - la  cos 9 sin ( y  - $) e jCn  """"-+I ee-j+' d y  6" 

Since the integrand is cyclical in 211, the limits of integration can be changed to range 
from 0 to 2n. Thus a,(g, $) is a function of $ only in the multiplicative factor e-j4. 
This is reasonable in view of the $-symmetry of the structure and the assumed traveling 
wave distribution. 

When the even and odd nature of the terms in the integrand of (2.35) is explored, 
it is found that 

n /2  

a,(B, $) = (4jIu cos O)e-j+ sin2 y cor (sin B cos y )  d y  (2.36) 

In like fashion, (1.102) becomes, for this case, 

n / 2  

a,(@, $) = 41ae-j" cos2 y cos (sin 9 cos y )  d y  (2.37) 
0 

Polar plots of normalized /a, I and I a, 1, which are also normalized plots of 1 E, 1 and 
I E, 1, are displayed in Figure 2.10. One needs to imagine that these field patterns are 
sweeping azimuthally as ej("'-"'. It is interesting to observe that, whereas the small 
loop gave a doughnut pattern with nulls at 6 = 0°, 180' (see Figure 2.4 as a prototype), 
the k u  = 1 loop gives a "figure-eight" pattern for E,, with a null at 0" = 90°, and an 
almost omnidirectional pattern for E,. 

Fig. 2.10 Normalized E-Field 
Patterns of a Traveling Wave Loop 

I Antenna ; Linear scale 



2.8 The End-F~re Hel~x 

From (1.95). (2.36), and (2.37), it is a simple matter to deduce that 

j ( w t - k r )  

E(r, 0", $, t )  = E(r,  1 go", $, t )  = copoIae-j# - 
4r (1s j l , )  

The factor 1, cos w t  + 1, sin w t  that appears in (2.38) can be given the following 
interpretation: If a measurement is made of E at either pole of a large sphere centered 
on the loop, the polarization of E will rotate synchronously with a period z = 2n/o, 
but the magnitude of E will be independent of time. 

This is an example of circular polarization. Figure 2.10 indicates that, as one 
departs from 8 = 0" or 180°, E, decreases more rapidly than does E,, but Equations 
2.36 and 2.37 reveal that the two component polarizations are still 90" apart in time 
phase. The polarization becomes elliptical. In a 8-region not too far from either pole, 
the ellipticity is not great and the polarization remains almost circular. 

2.8 The End-Fire Helix 

A practical radiator of wide applicability is the helix, mounted against a ground plane 
and fed by a coaxial line, as shown in Figure 2.11 Experiments have shown4 that if the 
circumference of the helix is approximately one wavelength and if there are several 

Ground 
Plane 

Fig. 2.11 Coaxially Fed Helical Antenna w ~ t h  Ground Plane 

4See, for  example, J. D. Kraus, Anlennas (New York :  McGraw-Hill Book Co., Inc., 1950), 
Chapter 7. 
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turns per wavelength, a primary component of current on the helix is a wave traveling 
along the wire at approximately the speed of light, and that the radiation pattern is 
beamlike off the end of the helix and essentially circularly polarized. 

To construct a model that will explain this behavior, assume that the parametric 
equations of the helix are 

where the notation of Figure 2.8 is once again applicable, with the helix replacing the 
loop. An infinitesimal length along the helix is given by 

dl = (-1,a sin y/  + 1,a cos y/ 4- 1,b) dry (2.40) 

Assume that there is an outgoing current wave traveling along the helix at the phase 
velocity v = pc and decaying in amplitude to account for radiation leakage. Then 

where s is the distance measured along the helix from the beginning of the turn closest 
to the ground plane, I. is the input current, and a + j p  is the complex propagation 
constant. 

It is desirable to convert (2.41) to a function of the angle y/. If one imagines that 
the helix is unwrapped by rolling out the cylinder on which it is wound, one turn of 
the helix becomes a straight line of length L, as shown in Figure 2.12. Since one turn 
of length L corresponds to a change of 2 n  in the value of y / ,  it follows that (s/L) = 

y//2n. Thus 

Fig. 2.12 An Unwrapped Turn of 
a Helix 



2.8 The End-F~re Helix 75 

With the use of (2.39), (2.40), and (2.42), Equations 1.101 and 1.102 can be written, for 
a helix of N turns, in the forms 

The repetitive nature of the structure can be used to convert (2.43) and (2.44) into 
expressions that are more easily interpreted. If (t,, q , ,  C , )  is a point on the helix in 
the first turn corresponding to an  angle y~ = y / ,  , then at  an  angle y/ = y ,  + 271n there 
is a point (l,, qn, in) on the nth turn for which 

Further, from (2.42) 

When this information is substituted in (2.43) and (2.44), the result is that 

in which 

gl(O, $) = - Io  IZx P - j h v [ a  cos 0 sin (y - 4 )  + b sin O ] e j k m n  e c O s ( ~ - + )  d v/ (2.50) 
0 

The function f (O), which is common to a, and a,, is called the array factor of 
the helix and accounts for the fine structure in the field patterns. I t  is seen to be a sum 
of N phasors, one each due to the N individual turns of the helix. These phasors rotate 
in the complex plane as 13 is varied, and in general are not coaligned. However, they 
will have a maximum sum at  O = 0" if 
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in which m is an integer. Since P = (o lv )  = (2nv)lpc = k/p, this expression can be 
solved for p to give 

As seen from Figures 2.1 1 and 2.12,2nb is the axial progression of one turn. Typically, 
helices are found to radiate end-fire (beam at 8 = 0") when (L/l) is somewhat greater 
than unity, (2nbll) 0.3, and p is somewhat less than unity. Therefore the proper 
value to take for m in order to model this behavior is m = 1. With this choice for m, 

aL h(8) = 1 + kb(1 - cos 8 )  - j - 
2 n 

(2.54) 

The effect of a turns out to be small in practical situations and results primarily 
in null-filling. For example, if the current wave is assumed to be damped to -1OdB 
of its input value by the time it reaches the end of the helix, then ecaNL = 0.316 and 
aL/2n = 0.183/N. For N 2 5, inclusion of the term involving a in (2.52) causes only 
a minor change in f(8). As an illustration of this, Figure 2.13 shows polar plots of 
f (8) for (2nalL) = 1, (2nbJl) = 0.3, and N = 6, with and without the a term in h(B), 
and under the assumption that e-aNL = 0.316. 

Figure 2.13 also shows that the dominant part off (0) is in the neighborhood of 
8 = 0". But in this neighborhood, with a ignored, h(8) 1 and (2.50) and (2.51) 

(a) Unattenuated current wave (b) lOdB attenuation in current wave 

Fig. 2.13 Array Factor f(0) for a Six-Turn Helix; Polar Plots; Linear Scale 
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approximate the earlier equations (2.35) and (2.36), namely, the field patterns for a 
single loop of circumference 2na = 1, carrying a current wave traveling at the speed 
of light. 

In summary, this analysis suggests that the field patterns of a helix radiating 
end-fire are, to good approximation, the product off (8) with the patterns shown in 
Figure 2.10. Since g,(8, $) and g,(8, $) are in time-phase quadrature, a, and a, for a 
helix combine to give a rotationally symmetric pattern, consisting of a main beam at 
end-fire plus sidelobes, the pattern being essentially circularly polarized in the neigh- 
borhood of 8 = 0". Because g,(8, $) and g2(8, $) are broad patterns (compare with 
Figure 2.10), the fine structure in a, and a, comes from f(8). For the example of a 
six-turn helix just cited, the product of Figure 2.13a with Figures 2.10a and b gives 
the polar plots of a, and a, shdwn in Figure 2.14. Both of these patterns are figures of 
rotation. 

Fig. 2.14 Approximate Normalized E-Field Patterns for a Six-Turn Helix 

The actual current distribution on the helix is found experimentally to be more 
complicated than has been assumed here. Since the total current at the end of the helix 
is perforce zero, there must also be a damped wave traveling back toward the ground 
plane. In addition, there are quasi-static mode currents corresponding to monopole- 
type radiation. But a current wave of the type assumed in (2.41) is the dominant factor 
in explaining end-fire radiation and theoretical patterns such as those shown in 
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Figure 2.14 are in good agreement with experiment. The interested reader should 
consult J. D. KrausS for a detailed discussion of this topic. A different approach to the 
analysis of the helical antenna can be found in E. A. W01ff.~ 
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PROBLEMS 

2.1 Show in detail that, for a filamentary center-fed dipole with an assumed current distribu- 
tion I ( [ )  = I,,, sin[k(l - 1 [I)], the magnetic vector potential function, with the outgoing 
spherical wave factor deleted, is given by 

@,(8) = - _2'" [COS (k l  cos 8 )  - cos(kl)] 
k sln 8 

2.2 With the contribution of a magnetic current element to the electric vector potential func- 
tion given by (2.24), determine dB in Cartesian form and use the result to demonstrate 
that the images shown in Figures 2 . 4 ~  and 2.4d are correct. 

2.3 Find the expression for the power density radiated by a dipole in front of a ground plane. 
Numerically integrate this result over a half-space and use the answer to estimate the 
radiation resistance when the dipole is one-half wavelength long and h = 114. 

2.4 If the earth is assumed to be a perfectly conducting ground plane, the radiation field of a 
vertical quarter wave monopole is unattenuated. The rms value of the electric field along 
the horizon is given by 

6.17 - . . 
E = 7 JP,,, mlll~volts per meter 

with r in miles and Prad in watts. Verify this relation and derive the corresponding result 
for a short monopole. 

2.5 A small current loop, a = 0.021, is to be designed to have a radiation resistance of 
25 ohms. How many turns should be used? 

2.6 Find the pattern of a small loop of radius a << 1 parallel to and a distance h above a 
perfectly conducting ground plane. 

SKraus, Antennas. 

6E. A. Wolff, Antenna Analysis (New York: John Wiley and Sons, tnc., 1966), Chapter 9. 
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3.1 Introduction 

The material in this chapter is sibling to what was presented in Chapter 2. There, 
various type I (actual-source) antennas were introduced and their radiation patterns 
deduced. Here, several simple but practical type I1 (equivalent-source) antennas will 
be analyzed. First to be treated will be the open-ended waveguide, which will then be 
allowed to evolve into a horn antenna. Next, a center-fed slot in a ground plane will 
be studied and its equivalence to a center-fed strip dipole established. Attention will 
then turn to waveguide-fed slots, their excitation, and their radiation patterns. Finally, 
a metallic patch bonded to a grounded dielectric slab will be viewed as an aperture 
antenna and analyzed in terms of equivalent sources along its perimeter. 

As in the case of the antennas studied in Chapter 2, these configurations find 
many practical applications as single radiating elements, but are also used in arrays. 
This is particularly true of waveguide-fed slots, but arrays of horns are not unusual, 
and patches, stripline-fed slots, microstrip dipoles are all employed as array elements 
because of such desirable features as having a low profile, being lightweight, and being 
inexpensive to manufacture. 

3.2 The Open-Ended Waveguide 

A prototype for the horn antenna is a section of rectangular waveguide, open at  its 
end and terminated in a large ground plane, as shown in Figure 3.1. It will be assumed 
that the dimensions u and b are chosen so that only the TE,,  mode will propagate, 
and that the waveguide section is long enough so that only a TE, ,  mode is incident on 
the waveguide mouth. Back-scattering will be in many modes, including a TE, ,  mode, 
since the open-ended waveguide is not inherently matched to free space. 

Efforts to deduce the complete current distribution in this structure, including 
currents in the ground plane, the waveguide walls, and the probe-followed by efforts 
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to sort out which of these currents contribute to radiation and which do not-is a 
forbidding task. This is a classic example of a situation in which the fields can be 
estimated more easily than the actual sources. For this reason, a source-excluding 
surface S is shown surrounding the antenna in Figure 3.1. So that advantage may be 
taken of the image principle, this surface is chosen to lie within the ground plane, but 
to have a slight bulge at the mouth of the waveguide. Thus the actual sources are all 
excluded, except for those that have been induced in the ground plane by the elec- 
tromagnetic waves emerging from the open-ended waveguide. 

I Waveguide 
1 Y Z  

/ - --------- 1 
T , , , I 

/ 
/ 

I 
/ 2 I 

Fig. 3.1 Open-Ended Waveguide Flush-Mounted in a Large Ground Plane 

The large ground plane will be modeled by assuming it is infinite in extent. Then 
Scan be viewed as composed of a rectangular boss S ,  at the waveguide mouth plus an 
otherwise infinite plane S, lying in the ground plane and just below its outer surface, 
plus an infinite hemisphere S,, which encloses the transmitter. 

The radiation pattern will be determined by following the procedure outlined at 
the end of Section 1.13. The lineal current densities on S are given by K = 1, x H 
and K, = -p;'l ,  x E. But E and H are identically zero over the hemisphere S,. 
Therefore equivalent sources, in the form of electric and magnetic current sheets, 
need to be placed only on the rectangular boss S, .  With the transmitter turned off, 
these current sheets-plus the actual sources in the ground plane-will maintain 
the actual fields in z > 0, while causing no fields in z < 0, including the region 
inside the waveguide. 
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For this reason, the mouth of the waveguide can now be closed off with con- 
ductor, causing the ground plane to become an infinite plane sheet with no holes. The 
seemingly peculiar situation emerges in which the two lineal current sheets in the boss 
S ,  combine to induce the actual current distribution everywhere in the hole-free 
ground plane except where the waveguide mouth had been. In that part of the hole- 
free ground plane, they combined to induce no current at  all. This is a surprising 
effect, but one must remember that these are not physically realizable equivalent 
sources, but instead, convenient mathematical constructs. 

With the presence of a hole-free infinite ground plane, the method of images 
can be invoked. The fields in z > 0 can be computed either from the two lineal current 
sheets on S ,  plus the actual currents in the ground plane, or by the lineal cur- 
rent sheets on S, plus their images. But from the results of Section 2.3, the image 
of K = 1, x H is counterdirected, whereas the image of K, = - -p i1  1, x E is 
codirected. Therefore, as the boss is lowered so that S ,  approaches infinitesimally 
close to  the surface of the ground plane, K and its image cancel; however, K, and its 
image add. This simple formulation can be summarized by saying that the radiation 
pattern in z > 0 can be deduced solely from the magnetic lineal current distribution 
-2p i1  1, x E in the mouth of the waveguide. 

Next to be considered is an estimation of ET in the waveguide mouth. With 
the origin of coordinates taken at  the middle of a transverse cross section rather 
than at a corner, the electric field cf  the incident TE,, mode can be expressed in the 
form 

If the reflection coefficient for the TE,, mode is I-, the back-scattered wave is 

I t  will be assumed that these two fields comprise the bulk of E, in the apzrture. 
Then 

at a source point (5, q ,  O), with C' = C(l + r). As a consequence, 

~5 K, = 1,2p;'C1 cos - 
a 

Use of the generic integral forms (1.130) and (1.13 1) gives 
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012 b l 2  

s,(e, $) = 2 p , 1 ~ '  cos e cos 4 COS g , , k  sin @tc cos ( + n  s in  $1 d{ dq ~~a,2 l b 1 2  a 
(3.5) 

012 bl2  

s,(e, $) = -2po1C' sin $ COSd e j k s i n B ( C c o s 6 + n r i n  6)  d{dv (3.6) 

The integral common to (3.5) and (3.6) reduces to 

j-:,: cos 5 cos (F sin cos 4) d< J-b:i2 cos (q sin o sin $ ) dv (3.7) 

which readily integrates to give 

cos ( n X )  sin ( n  Y )  
3.46, $1 = 4nPi  abC1 cos 0 cos $ n2 - 4(nX)2 (3.8) 

cos (nX)  sin ( n Y )  'Ae ,  6) = 4 n ~ ; 1 a b C '  sin 4 n 2  - 4(nX)2 ( n Y )  (3 .9)  

in which 

a X = - sin 0 cos $ 1 
(3.10) 

b Y = - sin 8 sin $ 1 
(3.11) 

From (1.123), since A - 0 ,  it follows that E, = - K F ,  and E, = KT,, with K a 
common multiplier that includes the outgoing spherical wave factor. Therefore, in 
the XZ-plane ($ = 0°, 180°), Equations 3.8 and 3.9 indicate that there is only an E, 
component, given in normalized form by 

cos (Y sin e\ 
E,(B) = n2 cos 8 \ / 

n2 - 4 (y sin 8 )  

In the YZ-plane ($ = 90°, 270°), there is only an E, component, given by 

sin (F sin 8) 
= 7 sin e 

Polar plots of these two principal-plane field patterns, for the typical values 
(~11) = 0.7 and (bl1) = 0.35, are shown in Figure 3.2. Plots for intermediate $-cuts 
show a smooth transition, with the net polarization always parallel to the YZ-plane. 
The pattern is seen to be quite broad, consistent with the small size of the aperture. 
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(a) E,(6, 0°/1800) (b) E ,  (6, 90°/2700) 

Fig. 3.2 Normalized E-Field Patterns of an Open-Ended Rectangular Waveguide with 
Large Ground Plane; Polar Plots; Linear Scale; a = 0.71, b = 0.351 

3.3 Radiation from Horns 

The functions [cos (nX)]/[nz - 4(n X)2] and [sin (n Y)]/n Y that occur in both (3.8) and 
(3.9) are plotted versus X and Y in Figure 3.3. The two functions are seen to have 
similar features-an even symmetry and a central main lobe, with minor lobes that 
alternate in sign and diminish in height as X or Y is increased. From (3.10) and (3.1 1) 
one sees that the range of X and Y, as the pointing direction (8,$) varies through the 
half-space z > 0, is 

Thus if one wants the radiation from this rectangular aperture to consist of a main 
beam and side lobes, clearly what is needed is to make a/k  and b / l  suitably large 
(how large depends on the desired narrowness of the main beam). For example, in the 
YZ-plane only the factor [sin (n Y)]/(n Y) is involved, and Figure 3.3 indicates that the 
null between the main beam and first side lobe occurs a t  an  angle 8, given by 

A sin 8, = - 
b 

(3.14) 

Thus the larger 611, the smaller 8, and the narrower the main beam in the YZ-plane. 
Similarly, in the XZ-plane, only the factor [cos (nX)]/[nz - ~ ( Z X ) ~ ]  is involved, and 
Figure 3.3 indicates that the null between the main beam and first side lobe occurs at  
an angle 8, given by 

3 1 sin o2 = -- (3.15) 
2 a 

Here again, the larger a l l ,  the narrower the main beam in the cut $ = O", 1803 
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X = (a/X) sin tJ cos $ 

Fig. 3.3 Rectangular Plots o f  Principal Factors in Horn Pattern Formulas 

One reaches the important conclusion that all  controls the beamwidth in the 
XZ-plane, and bl l  controls the beamwidth in the YZ-plane. But how does one get 
these larger values of al l  and bll  for a rectangular waveguide without setting up the 
uncontrolled propagation of higher order modes? Clearly, the answer is to provide a 
smooth transition from a size in which (a l l )  < 1 and (b l l )  < 0.5 to a size where 
a'll and b'lf. are large enough to produce the desired narrow beam pattern. 

A common method for achieving this, because of its constructional simplicity, 
is to use a pyramidal horn, pictured in Figure 3.4. Ceteris paribus, the longer L, the 
smoother the transition. Practical limitations usually force adoption of some mini- 
mum L, below which the performance of the horn is degraded unacceptably. This 
typically corresponds to a flare angle of about 20". 

It should be noted that the presence of a significant flare angle has several effects 
on the pattern. First, forward-scattered modes of higher order are set up at the flare 
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Fig. 3.4 A Pyramidal Horn Antenna 

discontinuity. Some, with lower indices, do not have to travel too far before they are 
no longer cut off, and their presence at the ultimate a' by b' aperture affects the 
equivalent-source distribution and thus the pattern (though the effect is not necessarily 
bad). Second, the flare means that the dominant mode (expanding TElo) that reaches 
the horn mouth has a curved phase front, which tends to broaden the main beam of 
the pattern somewhat and also to fill  in the nulls. 

Strictly speaking, the field pattern formulas in (3.8) and (3.9) apply only if TElo 
modes with plane phase fronts are exclusively present in the aperture, and if the horn 
mouth is terminated in an infinite ground plane. In practice, horns are used without 
ground planes more often than with ground planes. However, if a'll and b'll  are 
reasonably large, Figure 3.3 shows that the radiation at 0 = 90' is small, and it 
ceases to be important whether the ground plane is there or not. Thus, despite the 
fact that (3.8) and (3.9) assume the presence of a ground plane and ignore the presence 
of higher-order modes. as well as any phase curvature to the TE,, mode, they provide 
a good first approximation to the field patterns of a pyramidal horn. As an example 
of this, Figure 3.5 shows the comparison of theory and experiment1 for the principal 
plane cuts of a pyramidal horn for which a'/A = 1.82 and b'/A = 1.47. 

Refinements which can account for many of the effects that have been ignored 
in this introductory treatment can be found in the literature. W. C. J a k e ~ , ~  has 
provided a comprehensive overview of the subject and A. W. Love3 has compiled an 
excellent collection of journal paper reprints. 

This entire discussion could be repeated for an open-ended circular waveguide 
and the conical horn that evolves from it in order to produce a narrow beam of radia- 
tion. 

IC. W. Horton, "On the Theory of the Radiation Patterns of Electromagnetic Horns of 
Moderate Flare Angles," Proc. IRE, 37 (1949), 744-49. 

2W. C. Jakes, Jr., "Horn Antennas," Antenna Engineering Handbook, ed. H. Jasik (New York: 
McCraw-Hill Book Co., Inc., 1961), Chapter 10. 

3Electromagnetic Horn Antennas, ed. A. W. Love (New York: IEEE Press, 1976). 
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Theory 

---- Experiment 

Theory 
---- Experiment 

(a) E-plane pattern (b) H-plane pattern 

Fig. 3.5 Normalized Power Patterns of a Pyramidal Horn Antenna; Polar Plots; Loga- 
rithmic Scale; a' = 1.822, b' = 1.472 (0 1949 IEEE. Reprinted from C. W. Horton, 
Proc. IRE, pp. 744-749, 1949.) 

3.4 Center-Fed Slot in Large Ground Plane 

An extremely important antenna element, not so much in its own right, but more 
because of its derivatives, is the narrow rectangular center-fed slot in a large ground 
plane, as shown in Figure 3.6. The length and width are 21 and w, with 21 >> w. A two- 
wire line can be imagined to be feeding the slot at  the central points P ,  and P,. 

With w ((( A, the slot itself resembles a section of two-wire line, the two "wires" 
being semi-infinite ground planes with adjacent edges at  x = &w/2,  with these 
"wires" shorted at  z = * I .  A standing wave of voltage exists on this section of line 

Fig. 3.6 Center-Fed Slot in  a Large 
Ground Plane 
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such that the electric field in the slot is given to good approximation by 

in which V,,, is the peak voltage. 
If the generator and two-wire line which attaches to the points PI and P, are in 

y < 0, the fields in y > 0 can be determined by the same technique used in connection 
with Figure 3.1. The actual large ground plane is modeled by a n  infinite ground plane. 
A source-excluding surface S is constructed that consists of a boss S ,  in front of the 
slot, plus an  otherwise infinite plane S,  inside the ground plane, plus an infinite 
hemisphere in y < 0. Use of the image principle reduces all the sources to  a lineal 
magnetic current sheet on S ,  given by 

K, = -2pi11, x 1 , L  II' sin [k(l - 1 [I)] 

- 1, sin [ k ( ~  11 111 
it3 

Equation 3.17 is identical in form to Equation 2.2. For this reason, a narrow 
center-fed slot in a large ground plane is often referred to as a magnetic dipole. The 
analysis of Section 2.2 can be repeated with the principal result that 

-4pi1Vm 
s,(e> = k sin 8 [cos (kl cos 8) - cos (kl)] 

For a slot one-half wavelength long, use of (1.123) and (1.124) gives 

v e ~ ( w ~ -  k r )  

E $ =  ';;'-[ cos [(n/2) cos 81 
sin 8 

cos [(71/2) cos 81 

which are in the same form as (2.8) and (2.9), but w ~ t h  the polarization rotated 90 . 
The field pattern shown in Figure 2.4 thus also applies for a half-wavelength slot in a 
lsrge ground plane. 

Since there is no A for this antenna, (1.125) yields 

8 V 'I? cos2 [(n/2) cos 811 p,,4(e) ,= --_ 
(471r)' [ s i n 2 8  j 

If the presence of the transmitter and two-wire feed in y < 0 can be assumed to have 
little influence on the far-field in y < 0, then (3.19) through (3.21) apply on both 
sides of the ground plane. Under this assumption, the total power radiated is 
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Since, for this case of 1 = 1214, the peak input voltage to the slot (at the terminals 
P,/P,) is Vm, the feeding transmission lines can be said to be delivering the power 

to a conductance G,,, placed across its terminus. The value R,,, = l/G,,, is called the 
radiation resistance of the center-fed half wavelength slot. From (3.23), 

nv14 - 486 ohms R,,, = -- - 
0.609 

An interesting relation results if (3.24) is multiplied by (2.14), for then 

This is a special case of Booker's relation4. It will be shown in Chapter 7 that 

for any length 21 of a narrow dipole, as long as the complementary slot in a ground 
plane has the same length. 

The analysis undertaken in Section 2.2 for a short dipole could be repeated here 
for a short slot. All of the results are similar, with E and H interchanged; this is left 
as an exercise. 

The practical applications of a two-wire fed slot, cut in a large ground plane 
and radiating into both half-spaces, are few. However, if the slot is "boxed in" on one 
side by a metallic-walled cavity and the dimensions of the cavity are properly chosen, 
the radiation in one half-space is hardly affected, whereas in the other half-space, it is 
virtually eliminated. The presence of the cavity affects the input impedance of the slot. 
This is a subject which will be treated in Chapter 8. 

3.5 Waveguide-Fed Slots 

Most antenna applications involving slots unify the feeding and radiating structures 
by placing the slots in one of the walls of a rectangular waveguide. This insures a 
nonradiating transmission line, permits precise machining of the slots, and provides a 
mechanically rigid structure. Usually the slots are arranged in arrays, which compli- 
cates the feeding because of mutual coupling. That subject will be treated in Chapter 

4H. G .  Booker, "Slot Aerials and Their Relation to Complementary Wire Aerials (Babinet's 
Principle)", J.I.E.E. (London), 93, part IIIA (1946), 620-26. 
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8. For now, the discussion will be limited to the behavior of a single slot, cut in one of 
the walls of a rectangular waveguide and excited by a TE,, mode. 

With axes chosen as shown in Figure 3.7, the normalized field components for a 
TE,,  mode, traveling in the positive z-direction, are 

Fig. 3.7 Rectangular Waveguide 

The normalization in (3.27) consists of choosing the peak magnitude of the longitu- 
dinal component to be unity, but adjusting the phase by 90" through the presence of 
the factor j. This causes the transverse components to have pure real amplitudes, a 
convenience since they enter into the Poynting vector calculation of power flow. 
Figure 3.8a shows the electric field distribution at a fixed time, and Figure 3.8b 

(a) Electric field and (b) Magnetic field (c) Current flow 
charge distribution 

Fig. 3.8 Field and Source Distributions in a Rectangular Waveguide for 
TElo Mode (From Electromagnetics by R. S. Elliott. Copyright 1966, 
McGraw-Hill. Used with permission of McGraw-Hill Book Company.) 
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illustrates the corresponding distribution of magnetic field. The charge and current 
distribution in the waveguide walls can be determined using the same procedure which 
led to Equations 1.112 and 1.114. Figure 3.8a shows the instantaneous distribution 
of charge on the upper broad wall and Figure 3 . 8 ~  pictures the corresponding instan- 
taneous current distribution. Over time, these patterns will propagate longitudinally 
at the phase velocity of the TE,, mode. 

If a narrow slot is cut in one of the waveguide walls such that its long dimension 
runs parallel to a current line, the presence of the slot causes only a minor perturba- 
tion in the current distribution, and negligible coupling to outer space occurs. Thus 
the longitudinal slot on the center line in Figure 3.9a causes little disturbance, as can 
be seen by studying the current distribution in Figure 3 . 8 ~ .  Such a slot is useful for 
making measurements of the E-field inside the waveguide, since a vertical probe can 
be inserted through this slot to sample the field. If the probe is permitted to move 
longitudinally, VSWR data can be obtained. 

(a) Longitudinal (b) Inclined slot (c) Inclined slot 
slots i n  broad i n  broad wall i n  narrow wall 
wall 

Fig. 3.9 Some Practical Slot Configurations in the Walls of a Rectangular 
Waveguide (From Electromagnetics by R. S. Elliott. Copyright 1966, McGraw- 
Hill. Used with permission of McGraw-Hill Book Company.) 

However, the longitudinal slot displaced from the center line in Figure 3.9a will 
interrupt X-directed current; the more the displacement, the greater the interruption. 
The electric field developed in this slot has as one of its manifestations a displacement 
current which "replaces" the interrupted conduction current. This electric field can be 
represented by its equivalent magnetic current sheet, and can radiate into outer space. 

Similarly, the inclined broad wall slot in Figure 3.9b interrupts Z-directed cur- 
rent, the more so the greater the inclination. This is another candidate for use as a 
radiating element. Finally, the inclined slot in the narrow wall, shown in Figure 3.9c, 
will interrupt Y-directed current, the more the inclination, the greater the interrup- 
tion. This slot is a third candidate for use as a radiating element. 

A desirable feature shared by all three of these radiating-type slots is that there 
is mechanical control over the amount of radiation, through choice of the amount of 
displacement or inclination. What is needed is a set of design equations which reveal 
this connection, a problem that is addressed in the next section. 



3.6 Theory of Waveguide-Fed Slot Radiators5 

I t  is assumed that the reader is familiar with waveguide mode theory, and thus it will 
be stated without proof that the field components in rectangular guide can be expressed 
in the normalized form 

TE,, rnode TM,, mode 

Hz = jH  p'Y"z 
02 E, = I jE,,eT 

Et = Este'Yoz E, = Eatef y a z  

Ht  = &HateTycz H ,  = +HateTy~' 

In (3.28) the subscript u is shorthand for the double index mn,  and 

m n x  nny Ha, = cos -- 
a cOs T 

m n x  . nny 
E,, - sin -- 

a sln b 

The upper signs in (3.28) need to  be taken for propagation in the positive Z-direction; 
the lower signs for propagation in the negative Z-direction. The transverse field vectors 
are given by 

TE,, modes 

TM,, modes 

sThe results to be presented in this section were first obtained by A. F. Stevenson in a classic 
paper "Theory of Slots in Rectangular Waveguides", J. Appl. Phys., 19 (1948), 24-38. However, the 
development follows an approach used by J. E. Eaton, L. J. Eyges, and G. G. MacFarlane, Microwave 
Antenna Tl~eory and Design, ed. S. Silver, vol. 12, MIT Rad. Lab Series (New York: McGraw-Hill 
Book Co., Inc., 1949), Chapter 9. 
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This information needs to be applied to scattering off a slot cut in one of the 
walls of the waveguide. Without at this point specifying which type of slot it might be 
from among those illustrated in Figure 3.8, imagine that the slot is contained in the 
region bounded by z = z ,  and z = z,, with z ,  > z , .  If the waveguide is assumed to 
be infinitely long and a TE,, mode is launched from z = -m, traveling in the positive 
2-direction, the incidence of this mode on the slot will cause a profusion of reactions. 
Backward and forward scattering of all TE,, and TM,, modes is possible. Radiation 
into outer space via the electric field set up in the slot is possible. 

If the waveguide walls are assumed to be perfectly conducting, and if the a- and 
b-dimensions are chosen so that all modes except TE,, are cut off, then a power 
balance can be written that will connect the slot's excitation to its displacement or 
inclination. This can be done because (1) the power contained in the incident wave is 
calculable; (2) the power radiated is also calculable if the electric field in the slot is 
known; and (3) the forward and backward scattered waves in the TE,, mode can be 
determined if the electric field in the slot is known. It is this last determination that 
completes the linkage in the power balance equation. 

To see the relation between scattering off the slot and the electric field distribu- 
tion in the slot, consider two fields (El, HI) and (El, Hz), both time-harmonic at the 
common angular frequency w, and both satisfying Maxwell's equations in a region V 
bounded by a closed surface S. Let S be a rectangular parallelopiped with end faces 
S ,  at z = z ,  and S ,  at z = z,; the remainder of S is a surface S ,  which is skintight 
against the four interior faces of the waveguide between z ,  and z,. With S a source- 
free region, the reciprocity theorem in the form of (1.136) is applicable and the two 
fields are connected by the relation 

Let (El, HI) be the scattered field due to the interaction of the slot and the 
incident mode. (E,, H z )  does not relate to the actual situation, but its use is an artifice 
to obtain the scattering coefficient. It will be taken to be a single normalized mode, 
that is, a member of either the TE or TM families given in (3.28), traveling in the 
positive 2-direction and designated by the subscript b = m'n'. The transverse com- 
ponents of the scattered field (El, HI)  can be represented by 

in which the summation is over all TE and TM modes. The forward-scattered mode 
amplitudes C, and the backward-scattered mode amplitudes B, are yet to be deter- 
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mined. I t  should be noted that (E,, HI)  cannot be represented by (3.35) in the region 
z ,  < z  < z ,  because of the presence of the slot. 

Since the tangential component of E, is identically zero over the entire sub- 
surface S,, and since the tangential component of El is identically zero over all of 
the subsurface S ,  except that part occupied by the slot, it follows from (3.34) that 

J,l, (El x H,) dS = I ,  f I ,  (3.36) 

in which 

and 

1 2  = j, (E, x H, - El  x H,) dS 
1 

Because of the orthogonal properties of these modes, the only contribution to I ,  
comes when a = mn not only equals b = m'n', but also when the indices mn and 
m'n' refer to the same type of mode (both TE or  both TM). The proof is left as an  
exercise, the result being that 

The same argument applies to the evaluation of I,, except that in the special case 
a = mn = b = m'n' the integrand is identically zero, and therefore I, - 0. When 
these results are placed in (3.36), a formula emerges from which the back-scattered 
mode amplitude B, can be computed as follows. 

If this process is repeated with the only change being that (E,, H,) is assumed to 
be propagating in the negative Z-direction, one finds that 
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It is important to note that, although the denominators of (3.40) and (3.41) are equal, 
the numerators are not necessarily equal, because H, in (3.40) is associated with a 
+Z propagating mode, whereas the H, in (3.41) is associated with a -2 propagating 
mode. 

Equations 3.40 and 3.41 have wide applicability. As an illustration of their use, 
consider an offset longitudinal shunt slot in the upper broad wall, depicted in Figure 
3.10. It will be assumed that the waveguide walls have negligible thickness and are 
composed of perfect conductor. The slot is rectangular with length 21 and width w 
where 21 >> w. The origin of coordinates has been taken so that the XY-plane bisects 
the slot. The transverse dimensions of the waveguide are chosen so that only the TE, ,  
mode can propagate. 

Fig. 3.10 An Offset Longitudinal Slot in the Upper Broad Wall of a Rectangular Wave- 
guide 

The forward- and backward-scattering off this slot in the T E , ,  mode will be 
determined with the aid of (3.40) and (3.41). First, it is a simple matter to show that 

Second, the narrowness of the slot permits the assumption that 

El = 1 X E l X ( C )  

and thus 

- ( n / ~ ) ~  cos (nx , / a )  B , ,  = -7 J ~ P , P ~  oab 
I-l V ( ( )  e-jfitoc dl 

in which V ( [ )  = wE,,(c) is the voltage distribution in the slot. 
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In like manner, one can show that 

- (n /a )kos  (nx, la) 
CIO = 

jwpOBl J:, V(5) ejsloc dc 

The slot voltage distribution function V(c) depends on the manner in which the 
slot is excited. Let it be assumed that a matched generator is placed at a position 
z << -1 and a matched load is placed at a position z >> I, so that the generator launches 
a TE,, mode of amplitude A , ,  in the guide propagation in the +Z direction. The TE,, 
modes scattered off the slot, of amplitudes B,, and C,,, cause no additional reflections 
because of the matched generator and the matched load. 

Despite the fact that the generator-launched TE,, mode incident on the slot has 
a phase progression across the slot, detailed analysis shows that, if 21 z 1,/2, the 
dominant component of V(5) is a symmetrical standing wave of the form 

The similarity of (3.46) to (3.17) should be noted; it is as though the slot were essen- 
tially being excited at its center by a two-wire line. 

With the approximation in (3.46) assumed, Equations 3.44 and 3.45 become 

B,, = C , ,  = 
2 V , ( ~ / U ) ~  cos (nx, la) 

j w ~ ~ B ~ ~ a b  
sin [ k ( l -  01 cos B, ,i d~ 

(3.47) 
nx B,, = C,,  = 2Vm ( C O S ~ , ~ ~ - c o s k 1 ) c o s - J  

j w o ( P l  ,lk)ab a 

It is important to observe that the assumed symmetry of V(c) resulted in the scattering 
off the slot being symmetrical, that is, B,, = C , , .  This implies that the slot is equiva- 
lent to a shunt obstacle on a two-wire transmission line. To see this, consider the 
situation suggested by Figure 3.1 1. A transmission line of characteristic admittance 
Go is shunted at z = 0 by a lumped admittance Y. The voltage and current on the 

Fig. 3.11 A Shunt Obstacle on a Two.Wire Transmission Line 
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line are given by 

The form selected for (3.48) is consistent with a matched generator being to the left of 
Y and a matched load to the right of Y in Figure 3.11. 

The boundary conditions are 

which,  when inserted i n  (3.48), give 

Thus B = C(the scattering is sjlrnrnetrical), and 

The usefulness of (3.52) lies in the fact that, by analogy, if one can find the ratio 
-2Bl , / (Alo + B l o )  for the slot, one can then say that the slot has an equivalent 
normalized shunt admittance equal to that ratio. 

The slot is said to be resonant if Y/Go is pure real. Since no loss in generality 
results from taking A, ,  to be pure real, it follows that the resonant normalized con- 
ductance of the slot is given by 

where B, ,  is perforce pure real also. What this implies is that, for a given displacement 
x l  of the slot, it is assumed in (3.53) that the length 21 of the slot has been adjusted so 
that B l o  is either in phase with, or out of phase with, A ,  ,. (It will be seen subsequently 
that B, ,  is out of phase with A,,). 

Attention will now be restricted to this special case of a resonant slot.= The 
assumption of resonance permits a deduction from (3.53) via a power balance equa- 

6The more general case of a nonresonant slot will be considered in Chapter 8. 
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tion. The incident power is given by 

Pi,,, = - me ( A ,  ,E ,,,, x A:,Hh,.) . 1, d S ,  = m4$l;~b A ,  ,A:, (3.54) S,. 
In  like manner, one finds that the reflected and transmitted powers are 

If use is made of the information that B , ,  = C , ,  and that all three amplitudes are 
pure real, then 

m p O P 1 O a b  [A:,  - B:, - ( A , ,  + = power radiated 
4(nIal2 

But experiment shows that resonance occurs when 21 1, /2,  in which case, if the 
upper wall of the waveguide is imbedded in a large ground plane, the radiated power 
is given by one-half of (3.22). Thus 

If V ,  is eliminated from (3.47) and (3.58), the result is 

G 
- - -- 

nx 
G' 

2 B l ~  = 2.09 0 (cos P,,l - cos kl)'  cos2 2 (3.59) 
A , ,  7 B10 ( P I  elk) a 

When the substitution x = x ,  - ( ~ 1 2 )  is made in (3.59) and the approximation 
k l  n / 2  is used, one obtains 

in which x is the offset from the center line of the broad wall. 
Equation 3.60 is a celebrated result first obtained by A. F. Stevenson7; it indi- 

cates that the normalized conductance of a resonant longitudinal shunt slot in the 
broad wall of a rectangular waveguide is approximately equal to a constant times 
the square of the sine of an angle proportional to its offset. 

7Stevenson, "Theory o f  Slots." 
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Figure 3.12 gives a typical plot of experimental data showing resonant length of 
a longitudinal shunt slot versus offset. I t  can be seen that although the resonant 
length is offset-dependent, it stays close to  the value 21 = L0/2 assumed in (3.60). 

Slot w i d t h  = O.n"'C I I I I I I 1 
1 a = O .  

""&-I 111b11 

900 i nch  1 I 1 *fin. 1 

1 ~ x ~ e r i m e n t a l  points determined by 
admittance measurements. 

1 I 

1 Experimental points f r o m  radiat ion 
I 

pattern measurements. 
I I I 

Slot displacement o f f  waveguide centerline, x inches 

Fig. 3.12 Resonant Length versus Offset for Longitudinal Shunt Slot (After R. J. Stegen, 
"Longitudinal Shunt Slot Characteristics," Hughes Technical Memorandum No. 261, 
Nov. 1951, Hughes Aircraft Co., Culver City, California) 

Figure 3.13 shows a plot of (3.60) versus experimental data. The agreement is 
quite good, serving to justify the approximations that were made in the theory. A more 
accurate analysis, which will give a better fit to the experimental data, will be presented 
in C h a ~ t e r  8. 

The assumption that the voltage distribution in the slot is given by (3.46), plus 
the experimental information that 21 Z L0/2 for a practical range of offsets, means 
that the radiation pattern is insensitive to offset and the same as a half-wavelength 
dipole (with the polarization rotated 90"). Thus when the slot is imbedded in a large 
ground plane, the H-plane pattern is given by Figure 2.4 and the E-plane pattern is 
almost semicircular. But the power level in these patterns is governed by the offset of 
the slot through the factor sin2 nxla. Slot offset thus serves as a transformer, providing 
a means for controlling the radiation level through the amount of coupling to the 
incident feeding TE,, mode. This will prove to be a very useful feature when slot 
arrays are studied in Chapter 8. 

The procedure followed in this section can be repeated for the cases of inclined 
slots in the broad and narrow walls. The analysis, though lengthy, is not difficult if the 
foregoing is used as a guide, and these two cases are left as exercises. 
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Slot offset in inches 

Fig. 3.13 G,/Go versus Offset for Resonant Longitudinal Shunt Slot 
(After R. J. Stegen, "Longitud~nal Shunt Slot Characteristics," Hughes Tech- 
nical Memorandum No. 261, Nov. 1951, Hughes Aircraft Co., Culver City, 
California) 

3.7 Patch Antennas 

A radiating element with the attractive characteristic that it has a low profile is the 
patch antenna, illustrated in Figure 3.14. It consists of a thin metallic film bonded to a 
grounded dielectric substrate, and has the additional advantages of being lightweight, 
conformable, economical to manufacture, and easily wedded to solid state devices. 
The patch can be any shape, but the regular geometric shapes (such as rectangles or 
circular discs) are most commonly used. Feeding is achieved either via microstrip, as 
shown in Figure 3.15, or through use of a coaxial line with an inner conductor that 
terminates on the patch, as illustrated by Figure 3.16. The placement of the feed is 
important to the operation of the antenna. 

The flow of electromagnetic power in the patch antenna can be visualized easily. 
Guided waves transport the energy along the microstrip or coax to the feed point. 
The energy then spreads out into the region under the patch; some of it crosses the 
boundary of the patch, to be radiated into space. If the fields in this exit region can be 
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Fig. 3.14 Components of a Patch Antenna (Feed Not Shown) 

Fig. 3.15 A Microstrip-Fed Rectangular Patch 

determined, equivalent sources may be placed on the boundary, from which the 
radiation pattern can be deduced. 

In practice, the permittivity of the dielectric layer is usually not great ( E / c ,  < 4) 
and its thickness t is small, so the region under the patch behaves very much like a 
portion of a parallel plate transmission line. Waves that leave the feed point see almost 
an open circuit when they arrive at the perimeter of the patch and considerable reflec- 
tion occurs, so that the fraction of the incident energy emerging to be radiated is 
small. This suggests that the patch behaves more like a cavity than a radiator, and 
pinpoints its principal disadvantages-that it is not a highly efficient antenna and that 
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point 

Fig. 3.16 A Coax~a l l y  Fed C~rcu lar  
Disc Patch feed 

it is narrow band. The efficiency can be improved by using patches in arrays, but 
narrow-bandedness puts a limitation on the applications. 

The assumption that the electromagnetic properties of the patch antenna can be 
deduced by viewing it primarily as a cavity (perhaps leaky cavity would be a better 
description) has been a fruitful one. Y.T. Lo and his co-workerss have been able to  
obtain good correlation between experiment and a theory based on this assumption, 
both for pattern and impedance when t << 1. Their analysis is essentially reproduced 
in what follows. 

Let attention be confined to the region under the patch, and assume that in this 
region the electric field is z-directed and that the spatial variations of all field com- 
ponents are z-independent, with the Z-axis perpendicular to  the patch. Maxwell's 
equations in this region take the form 

The appearance of J in (3.61) and its assumed nature require some explanation. 
Except in the subvolume occupied by the feed, J - 0 (The lower surface of the patch 
and the upper surface of the ground plane are excluded from the region being ana- 
lyzed.) If the feed is the inner conductor of a coaxial line, then J = l,J,(u, v)ejw', with 
21 and v the transverse coordinates. If the feed is a microstrip, its presence will be 
modeled by a lineal current sheet K = l,K,ejwr at  the segment of the boundary where 
the patch joins to the strip line. In either case, since the current distribution is assumed 
to be z-independent because of the thinness of the dielectric layer, the continuity 
equation gives V J = - j o p  - 0. As a consequence of this, the volume charge 

8Y. T. LO, D. Solomon, and W. F. Richards, "Theory and Experiment on  Microstrip Anten- 
nas" lEEE Trans. Antennas Propa~at., AP-27 (1 979), 137-46. 
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density distribution is identically zero in the region, which is the reason for writing 
V E - 0 in (3.61). 

A familiar sequence of operations gives 

with k, = the wave number in the dielectric r n e d i ~ m . ~  If the driving function 
J, is specified, in principle (3.62) can be solved for E, subject to the boundary condi- 
tions, after which H can be determined from (3.61). From this, the equivalent sources 
along the boundary of the patch can be deduced. 

An effective approach to the solution of (3.62) is to  begin by finding the charac- 
teristic solutions to  the homogeneous wave equation 

To do this, assume first that the region is bounded on the top (patch) and bottom 
(ground plane) by perfect electric conductors and along its perimeter by a perfect 
magnetic conductor (to simulate an open circuit). Then if the patch is rectangular, as 
depicted in Figure 3.15, the solutions to  (3.63) that fit the boundary conditions are 
given by 

mnx nny E, = Ymn = cos - 
a cOs b 

rnn 
k m n  = J(:) + (y)l 

That (3.64) is a solution to (3.63), subject to  the condition (3.65), can be verified by 
substitution. That it also satisfies the assumed boundary conditions can be seen by 
returning to (3.61) and noting that 

sin 
(3.66) 

mnla mnx nny 
- 1' -sin - 

P o  a cOs b 

This solution gives H, = 0 for y = 0, b and H, r 0 for x = 0,  a, as required. 
Similarly, if the patch is a circular disc, as shown in Figure 3.16, the charac- 

teristic solutions which should be selected are 

Wince E = t' + j f"  = ~ ' ( 1  - j6) with 6 the loss tangent (usually small), kd will be slightly 
complex. 
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with Jn the Bessel function of the first kind and order n, and with k,, chosen to satisfy 

The solutions in (3.64) or (3.67) are seen to comprise sets of orthogonal functions, 
with each member satisfying the boundary conditions. With a source present that is 
z-directed and z-independent, these sets can be assumed to be complete and an arbi- 
trary linear sum of the member functions can be used to represent the general solution 
to (3.62). This same procedure can be followed for many regular patch shapes and 
Y.T. Lo catalogs some of the most useful geometries. l o  Proceeding generally, one can 
assume that the solution to (3.62) is expressible in the form 

The constant coefficients A,, can be determined by noting that 

which can be rearranged to give 

If (3.70) is multipled by Y,*, and the result integrated over the domain of the patch, one 
obtains 

Since the functions Y,,  and Y,, are orthogonal over this domain, (3.71) reduces to 

.imp, <J,wT,> A,, = - 
kd2 - k,"8 (yr,y,h,) 

in which 

The placement of the feed clearly influences the relative values of the excitation coeffi- 
cients A,,. 

Insertion of (3.72) in (3.69) gives a general solution for theE-field in the region 
below the patch, that is, 

1 OLo, "Microstrip Antennas," p. 138. 
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Since E is z-directed and z-independent, the magnetic field can be expressed in the 
form 

As an illustration of the use of this formulation, assume that a rectangular 
patch is being fed by a microstrip, as indicated in Figure 3.15. The microstrip will be 
assumed to be equivalent to a lineal electric current density 

1, c < x < d , j > = O ,  - t < z < O  
K = {  

0 elsewhere 

When (3.76) is used in (3.74), one finds that 

- [4 sin (mn(d - c)/2a)] [cos (mn(d + c)/2a)] COS + C mnb(k,2 - k i , )  a 
(3.77) 

m= 1 

+55 [8 sin (mn(d - c)/2a)] [cos (mn(d + c)/2a)] cos -- mnx cos y] 
m =  1 "=I  mnb(k,2 - k i n )  a 

with k,, given by (3.65). 
For a specified frequency of operation, k, = o J E i s  a constant. If the dimen- 

sions a and b of the patch are properly chosen, one of the km, wave numbers can be 
made almost to coincide with k,, which for a dielectric with a small loss tangent is 
nearly pure real. In this case (3.77) indicates that the mnth amplitude coefficient 
becomes very large. The patch is then said to be resonant in the mnth mode, and this 
mode dominates the E, distribution. 

Let a closed surface S be chosen to bound the dielectric region under the patch, 
as shown in Figure 3.17. The upper face of S lies inside the metallic patch and the 

Patch 
- - - - -- - - - - 

Ground plane 

Fig. 3.17 The Choice of a Source-Excluding Surface S 

lower face of S lies inside the ground plane, so the true fields on these two faces are 
null and no equivalent sources will appear on these faces of S. With resonance in the 
mnth mode postulated, the equivalent magnetic sources on the perimeter faces of S 
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can be deduced using ( I .  1 13) and are found (with a multiplicative constant suppressed) 
to  be 

mnx y = 0 K, = 1, cos - 

The analysis postulates H, = 0 along the boundary, so there are no equivalent electric 
sources on the perimeter faces. 

T o  the extent that the assumptions in the analysis are valid, the equivalent 
sources (3.78), plus the actual sources outside S, can be used to  calculate the true 
fields exterior to S. The actual sources outside S consist of the P bound sources in the 
dielectric, the electric currents in the ground plane, and the electric currents on the 
upper face of the patch. These latter will be ignored on the argument that the fringing 
field is negligible. The image principle can be invoked to  account for the ground plane, 
with the result that -P image sources occur in an extra layer of thickness t and +K, 
image sources occur in a vertical extension of the peripheral faces of S to  a depth t. 
With t small, and F / F ,  not too large, the P bound sources and their negatives images 
make a minor contribution to the radiated field, which will be ignored. What is left 
are the equivalent magnetic sources (3.78) extending a distance 2t in the Z-direction. 

With the outgoing spherical wave factor in (1.93) suppressed, (1.123) indicates 
that the far field is given by 

where 5,  and 5, can be calculated from (1.130) and (1.131). When the equivalent 
sources of (3.78) are inserted in these integral expressions, one finds that 

3e(e96) = (2t Cos e)[cos $ g,(e, $) f sin 6 gz(e, $)I (3.80) 

T+(e, $1 = -2t[sin $ g ~ ( e ,  6 )  - cos 4J gz(e, $)I (3.81) 

in which 

i)m e l k q  s in  H cin 6 $cosyrl 
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As a test of this theory, Lo and others constructed a rectangular patch with 
dimensions a = 11.43 centimeters and b = 7.62 centimeters on a copper-clad Rexolite 
2200 substrate, & inch thick, with E/E, = 2.62 and a loss tangent of approximately 
0.001. To account for fringing, they took the effective dimensions to be 

t t 
a,,, = a + - =  11.51cm be,, = b f -=  7.70cm 2 2 

From (3.65), 

n k, ,  = - 
n 

0.1 151 
k , ,  = --- 

0.0770 

so this patch should be resonant in the (1, 0) mode at a frequency such that 

from which v;'," = 804 MHz. Similarly, one finds that v',9" = 1202 MHz. 
Imput impedance measurements (to be discussed in Chapter 7) indicate resonant 

frequencies for these two modes at 804 MHz and 1197 MHz. Both values are seen to 
be close to the above predictions. The principal plane patterns when the patch is 
operating in each of these modes, and fed by a 50-ohm microstrip at the point (8.57 
cm, O), are shown in Figure 3.18. The agreement between theory and experiment is 
excellent. The patterns are broad, which is consistent with the fact that the resonant 
dimension for each mode is Ld/2, with Ad = L / ( ~ / E , ) ' / ~  the wavelength of a TEM 
mode in the dielectric (L is the free space wavelength). These features of small physical 
size and broad radiation patterns combine to make the rectangular patch, excited in 
one of these dominant modes, attractive for use in arrays. 

Y.T. Lo and his co-workers have duplicated this analysis and its experimental 
validation for circular disc patches fed by microstrip.I1 The agreement between 
theory and experiment for the (1, 1) and (2, 1) modes was once again excellent. Their 
results are reproduced in Figure 3.19. 

Many interesting innovations in the design of patch antennas have been dis- 
covered by various workers, including novel patch shapes and methods of feeding. 
As examples, if a square patch is fed by two microstrip lines, one each attached to 
adjacent sides of the patch, circularly polarized radiation will occur if the microstrips 
are connected through a 90" hybrid. The same effect can be achieved with a slightly 
elliptical disc patch that has an offset coaxial feed. Various scatterers can also be 
placed in the dielectric region under the patch in order to modify the radiation 
pattern. And the possibility of dual frequency operation has already been seen in the 
patterns of Figures 3.18 and 3.19. 



b = 7.62 c m  

e = ( c + d / 2 = 8 . 5 7 c m  
(Feed point) 

vr = 804 MHz (Resonant 
frequency o f  (1,O) 
mode) 

vr = 1197 MHz (Resonant 
frequency o f  (0, 1) 
mode) 

(a) (c) 
--- E* 

X X X X X Theory 
1 ------ Experiment 

Fig. 3.18 Principal Plane Patterns for a Rectangular Patch Antenna (0 1979 IEEE. 
Reprinted from Lo, Solomon, and Richards, IEEEAP Transactions. pp. 137-146, 1979.) 



@ = 0" --- 
(a) Em 

v, = 794 MHz (resonant 
frequency of (1,  I )  
mode) 

v, = 1324 MHz (resonant 
frequency of (2, I )  
mode) 

X X X X Theory ---- Experiment 

Fig. 3.19 Principal Plane Patterns for a Circular Disc Patch Antenna (0 1979 IEEE. 
Reprinted from Lo, Solomon, and Richards, IEEE AP Transactions, pp. 137-146, 1979.) 
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A discussion of the impedance properties of patch antennas will not be under- 
taken until Chapter 7, but it is significant to  mention here that the input impedance 
level is generally higher the further the feed point is from the center of the patch. 
This provides the opportunity to position the feed point to match the characteristic 
impedance of the feed line. However, the situation is complicated when patches are 
used in arrays, for then mutual impedances must also be considered. 
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PROBLEMS 

3.1 Assume a TE,, mode is present in the aperture of Figure 3.1 and find the expressions 
for the corresponding far field. Sketch the principal plane patterns for the TE30 mode. 
(This mode is often present due to forward scattering in a horn, and its presence can 
actually be helpful in narrowing the main beam. Do your results serve to explain how 
this can happen?) 

3.2 Repeat the analysis of Section 3.2 for a circular waveguide, terminated in a ground 
plane, with a radius that is small enough to prevent all but the dominant mode from 
propagating. 

3.3 Are the results of Section 3.2 valid when a -+ m, that is, for an infinitely long slot of 
width b ?  If not, return to first principles and solve for the fields due to the excitation 
E(5, q,  c) = l ,Eo in a slot for which -co < < w, -(b/2) < < (b/2), and = 0. 

3.4 Assume a rectangular slot of length 21 and width w is cut in a perfectly conducting 
infinite ground plane. If 21 )) w but 21 (( A, find expressions for the far field, the power 
pattern, and the total power radiated. Then find a formula for the radiation resistance, 
Rrad.  Does Rrad satisfy Booker's relation when taken in conjunction with the short 
dipole of Section 2.2? 

3.5 Verify the scattering formulas (3.40) and (3.41). 

3.6 For the inclined slot in the broad wall shown in Figure 3.9b, demonstrate that the 
scattering is antisymmetrical (Clo = -Blo) and thus that the equivalence is a series 
obstacle in a two-wire line. For the resonant-length case, show that 
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in which is the angle of tilt, and 

ice)] cos (B) cos !+) 
- - 

J ( 0 )  1-K: * 1 - K ;  

This result is due to A. F. Stevenson.' 

3.7 For the inclined slot in the narrow wall shown in Figure 3.9c, demonstrate that the 
scattering is symmetrical (Clo = B l 0 )  and thus that the equivalence is a shunt obstacle 
in a two-wire line. For the resonant length case, show that 

with 6 the angle of tilt. This result is also due to A. F. Stevenson.lZ 

3.8 Find the characteristic solutions and wave numbers for the dielectric region under a 
patch when the shape of the patch is a right isosceles triangle. 

3.9 Verify that Equation 3.75 gives H in the dielectric region under a patch of general shape. 

3.10 Find the modal expansion for E(p, 8) in the dielectric region under a circular disc patch 
which is fed at the edge by a microstrip line. From this, deduce the equivalent sources 
and expressions for and 5,  when the mnth mode is dominant. 

3.11 Repeat Problem 3.10 for the case that the circular disc patch is fed off center by a coaxial 
line intruding from below, as in Figure 3.16. 

1 zstevenson, "Theory o f  Slots." 



array analysis BB and synthesis 

In Part I of this text, approximate expressions were deduced for the source 
distributions on various practical antenna elements (dipole, loop, helix, horn, 
slot, patch) and then the source/field formulas were used to determine the 
pattern characteristics. All of these elements have practical applications when 
used singly, but they also are widely used in arrays, and it is this latter class of 
applications which is the subject of the next three chapters. Since analysis is 
simpler and highly informative, it is taken up first. One- and two-dimensional 
arrays are studied in turn, with various relative element excitations assumed, 
which permits calculation of the array pattern. Conventional measures such as 
beamwidth, directivity, and side lobe level are introduced. Then attention is 
turned to array synthesis, with the desired pattern specified, the need being to 
find the relative element excitations which will achieve what is desired. 





4.1 Introduction 

Part I of this text had two principal objectives. The first was to establish formulas 
that would connect the radiated fields of any antenna to its sources. This was done in 
Chapter 1, where it was found to be desirable to divide antennas into two types, those 
in which the actual sources were used and those in which it was advantageous to 
introduce equivalent sources. Wire antennas of various shapes, notably monopoles, 
dipoles, loops, and helices, are practical examples of type I (actual source) antennas, 
and their far-field patterns were deduced in Chapter 2. Aperture antennas such as 
horns, slots, and patches are prominent examples of type I1 (equivalent-source) 
antennas. Their radiation patterns were determined in Chapter 3. 

All of these elements can be used singly, in which case the pattern results of 
Chapters 2 and 3 are applicable. But they need not be used singly, and when the 
antenna consists of more than one element, it is called a n  array. In most practical 
applications, the elements will be of a common type, equispaced, and oriented to be 
capable of congruence through a simple translation. The discussion in this text will be 
limited to arrays that meet these conditions. The specialized literature should be con- 
sulted for discussions of arrays in which one or more of these restrictions is lifted. 

The relative physical positioning of the elements and their relative electrical 
excitations are two parameters that can be used to exercise control over the shape of 
the radiation pattern of an array. In this chapter and the next, the positioning will be 
chosen so that the elements are equispaced along a straight line. Interelement spacing, 
the number of elements, and their relative excitations are then the principal variables 
available to the antenna designer. In Chapter 6 the scope of the discussion will be 
enlarged to include planar arrays. 

There is an adage that the best way to learn synthesis is first to learn all you can 
about analysis. That truism certainly can be argued in the case of someone who is 
approaching antenna array theory for the first time and is the basis for devoting the 
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present chapter to the analysis of linear arrays, deferring till Chapter 5 the subject of 
synthesis. Thus this chapter begins with a development of formulas for a, and a, (or 
5, and 5$ for the general case of arbitrarily positioned elements, but then immediately 
moves to  the study of equispaced linear arrays with known excitations. A variety of 
excitations will be assumed and the patterns deduced. Schelkunoff's unit circle repre- 
sentation will be introduced and used extensively. 

The analysis of the effects on pattern caused by varying the excitation will reveal 
many opportunities available to the antenna designer. These include the ability to 
form a pattern with a main beam and side lobes, to control angular placement of the 
main beam, to  select beam sharpness by choosing the length of the array, to create a 
difference pattern, and to produce a shaped pattern devoid of nulls. All of these array 
fundamentals will form a useful basis for the synthesis procedures which follow. 

4.2 Pattern Formulas for Arrays with Arbitrary Element Positions 

I t  was established in Section 1.11 that a current density distribution J(5,  q ,  ()ejw', 
contained in a finite volume V, causes a far-field pattern given by 

ae(O, $) = J [cos 0 cos QJAC s. C )  + cos 0 sin $J,(C q,  C) 

- sin OJz(t, q, ()]ejk' dC; dq d l  

in which 
d: = C; sin 0 cos $ + q sin 0 sin $ + C cos 0 (4.3) 

I t  was also shown that E,/a, = E,/a,, so a,(0, $) can be viewed as the vertically 
polarized component of the far-field and a,(B, $) as the horizontally polarized 
component. 

It is further evident from the development in Sections 1.12 and 1.13 that, if 
magnetic currents are introduced as secondary sources, 3,(13, $) is given by (4.1) with 
J, replacing J ,  and 3,(8, $) is given by (4.2) with J, replacing J .  When only that 
part of the field due to magnetic sources is being considered, E,/3, = E,/3, so 3,(9, $) 
can be viewed as the vertically polarized component of the far-field and 3,(0,Q) as 
the horizontally polarized component. With these relations in mind, one can see that 
the development about to be presented applies equally well for a and 5, and thus 
equally well for type I and type I1 antenna arrays. 

Imagine that the current distribution of an array resides in N + 1 identical 
discrete radiating elements.' The word element could mean a dipole, a helix, a horn, 

'The analysis presented in this and the next two sections follows closely some earlier writing 
by the author, contained in "Beamwidth and Directivity of Large Scanning Arrays," Microwave 
Journal, 6 (1963), 53-60 and 7 (1964), 74-82, and also in Microwave Scanning Antennas, ed. R. C. 
Hansen, vol. 2, (New York: Academic Press, 1966), Chapter 1 .  Reprinted wi th joint permission. 
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or a slot, as examples. However, it might equally well mean a collection of helices or 
a hybrid collection of dipoles and slots. To say that the elements are identical is to 
impose the condition that any two of them can be made congruent by a simple 
translation plus rotation. To require additionally, as will be done here, that the ele- 
ments are similarly oriented in space, is to impose the tighter condition that any two 
are capable of congruence through a translation alone. It is then possible to select a 
reference point in the ith element, Pi(xi, y,, zi), and find a point Pj(xj, y,, z j )  that 
occupies the same position in the jth element. This collection of N + 1 reference 
points can serve to describe the relative positions of the different elements. It is con- 
venient to establish local coordinate systems at each of these reference points. To do 
this, let 

define any point Qi(ri, qi, Ci) in the ith radiator, relative to  its characteristic point 
Pi(xi, yi, 2,). This situation is shown in Figure 4.1. Then, for example 

Fig. 4.1 Positional Notation for Antenna Arrays 
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whereas, for any point in the jth radiator, 

Since all of the elements are assumed to be identical and similarly oriented, if 
I, is the complex total current at the "terminals" of the ith radiator and Ij is the 
complex total current at the "terminals" of the jth r a d i a t ~ r , ~  it follows that, if t, = 

t,, qi = q,, and ci = c,, then 

because J, is being determined at corresponding physical points in the two elements. 
Equation 4.5 implies that the elements are sufficiently separated to  insure that the 
current distribution is the same (except for level) on each. 

With the aid of Equation 4.5, one can rewrite (4.2) as follows: 

+ cos $J,(xi + t i ,  Y, + qi, zi + Ci)]ejkE d t i  dqi dci 

= a,,,(e, +>a,,,(e, +) (4.6) 
in which 

a,,a(e, $1 = 5 !Lejk(xs s i n  ~ C O S  4 + y, s i n  0 s i n  .+ + =, =Os e) 
, = o  I, 

and 

a , ,  $) = J V O  [-sin +~ , ( t , ,  I,, i o )  + cos $~,(t , ,  no, C.)I 

. ejk(Co s i n  BFOS q5 + q~ s i n  @ s i n  $ + CO COSO) d t  d 
(4.8) 

0 rtodCo 

In the above, the origin of principal coordinates has been chosen to coincide 
with the characteristic point P,(x,, yo,  z,). This entails no loss in generality. The 
choice of a different origin for the principal coordinates merely introduces a phase 
change in a,,,(e,$). 

Similarly, ae(e,$) can be recast in the form 

ae(e, $1 = ae,,(e> $)aO,e(e, $) 
in which 

ZThese terminals may be a convenient cross section in the waveguide feeding a slot, or the 
junction of a coaxial cable and a helix-plus-ground plane, as examples. 
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and 

- sin eJ=(to, Zlo, lo)] (4.1 1 )  
jk (<o  sin Bcos 6 + 'lo s in  Bain qi + CO cos 8 )  d t  d 'e o Zlo 40 

One can observe that a,,,(B, $) and a,,,(B, $) involve only the current distribu- 
tion in one of the elements. For that reason, they are called the element patterns or 
element factors. It can also be noticed that a,,, and a , ,  are identical and involve the 
relative current levels in the different elements as well as the relative placements of 
the elements. With the unnecessary $ and 9 subscripts dropped, a,@, $) given by 
either (4.7) or (4.10) will be called the array pattern or arrayfactor. It should be noted 
that a,(B, $) is a summation of directionally weighted phasors and has no vector 
characteristics. The polarization of the field pattern comes from the element factors 
a,,, and a,,,. 

In most practical applications, the elements are small, perhaps a half-wavelength 
long in their maximum dimensions, in which case @,,,(B, $) and a , , (B ,$ )  are broad 
patterns, as has been seen for most of the elements studied in Chapters 2 and 3. 
When this is so, the fine structure in a,(B, 6) and a,(9, $) comes from the array 
factor. This will be assumed to be the case in all subsequent developments in this 
chapter, but it is wise to remember the multiplication of patterns embodied in (4.6) 
and (4.9) and not to ignore the element factors unless it is justified. 

4.3 Linear Arrays-Preliminaries 

Let ri be the distance from Po(xo,  yo,  z,) to P,(x,, y,, z,), with the line connecting Po to 
Pi having direction cosines cos a,, cos pi, and cos y,. If all the elements lie along a 
common line, then a, p, and y are the same angles for every Pi. The antenna thus 
f o r m e d  i s  ca l led  a linear array. I n  th i s  case  t h e  a r r a y  f ac to r  c a n  b e  wri t ten  

N a,(e, $) = C L e j k r n ( c o s  a s i n  Bcos 4 + cos fi sin B r i n  4 + cos y cos 8 )  (4.12) 
n = o  I, 

In the special but important and common case that the elements are equispaced 
and 2N + 1 in n ~ m b e r , ~  the zeroth element can be taken as the central one. If one 
writes r ,  = nd, in which d is the common spacing, (4.12) becomes 

N 

a,(e, $) = 
L e j k n d ( c o s  a sin Bcos 6 + cos f i  s i n  B s i n  C + c o s y  cos 8 )  (4.1 3) 

n = - N  IO 

3Equispaced arrays of an even number of elements 2N will be considered later in the develop- 
ment. 
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Equation 4.13 is the general expression for the array factor of a uniformly spaced 
linear array.4 It is instructive to consider several special cases of this equation. 

(a)  UNIFORML Y EXCITED BROADSIDE ARRA YS Imagine first an equispaced 
array, laid out along the Z-axis, with radiating elements at the positions zi = 0, i d ,  
&2d, . . . , 5 N d .  In this case, cos u = cos j? = 0 and cos y = 1, so (4.13) simplifies 
to 

a pattern which is rotationally symmetric ($-independent). If all the currents are equal 
and in phase, this reduces further to 

Equation 4.15 is a sum of phasors with the common magnitude unity, possessing 
phase angles which depend on 8 but which, for a given 8, are progressive multiples 
of the basic angle 

A plot of these phasors for the case (2ndi1) cos 8 = nil2 and 2N + 1 = 15 is shown 
in Figure 4.2. It is apparent that their sum is a maximum when cos 8 = 0 or 9 = 7112, 
for then all the phasors are aligned. As 6' departs from 4 2  toward either 0 or n, the 
phasors begin to fan out, those with positive index going one way, those with negative 
index the other. If dl1 is large enough, when 

2 71 (2ndl1) cos 8 = i- 2N' 1 

Fig. 4.2 Phasor Contributionsfor a 
Uniformly Excited Linear Array 

4Nonuniformly spaced linear arrays have some practical applications, but are beyond the 
scope of this introductory treatise. The interested reader will find a starter bibliography in Microwave 
Scanning Antennas, ed. R. C .  Hansen, Vol. 2 (New York: Academic Press, 1966), 53-59. 
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the phasors are equispaced in the complex plane and their sum is zero. This occurs a t  
a direction 8 ,  given by 

COS 8 ,  = 

If the length of the array is defined by L = (2N -+ l)d, this can be written as 

8 ,  = arccos i- ( 3 
For example, if L = 1 then 8 ,  = 0,  n and a polar plot of a,(8) is as shown in 

Figure 4.3a. On the other hand, if L < 1 ,  the phasors never fan out far enough to  give 
a null value for a,(@ and a typical plot is almost circular, as suggested by Figure 
4.3b. It should be recognized that these are polar plots in the $ = 0" half-plane. 
Since in this example, a, is independent of $, a three-dimensional plot of a, could be 
obtained by rotating the patterns shown in Figure 4.3 around the Z-axis. 

t I 
(a) L = h ( b )  L << X 

Fig.  4.3 €-Field Patterns in Polar Form for Short, Uniformly Excited Linear Arrays; Linear 
Scale 

The most interesting case occurs when L >> 1 ,  in which event 

1 8 ,  = arccos i- =-i- ( t ) - ;  L (4.1 8) 

and the phasors have fanned out to give a pair of nulls a t  angles only 1IL radians 
away from the maximum a t  8 = n/2. The beamwidth between nulls is 21/L radians 
and is governed by the normalized length of the array. 

In this case of uniform excitation, investigating values of 8 even further removed 
from n/2 than 8 ,  corresponds to looking at  the sum of phasors that have fanned out 
beyond one complete rotation in the complex plane. A secondary maximum will 
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occur when the phasors are fanned out to occupy one and one-half sheets of 
the complex plane, as shown in Figure 4.4a, whereas a second null will occur when 
they have fanned out to occupy two complete sheets of the complex plane, as 
shown in Figure 4.4b. The phasors lying in the second sheet are dotted to assist in 
identification. 

Fig. 4.4 Phasor Positions versus Polar Angle 0 for a Long, Uniformly Excited Linear 
Array; L = 7.51 

It can be noticed that only one-third of the phasors contribute to the net sum at 
the secondary maximum and that the sign of the sum is negative. This secondary 
maximum, or first side lobe, is thus 13.5 decibels (dB) below the primary maximum, 
or main lobe. The field throughout this first side lobe is out of phase with the field 
throughout the main lobe. 

The second pair of nulls occur at angles 0, given by 

2nd 472 y, = - cos 0, = i.----- 
2 2 N +  1 

or when 

Thus the nulls near the principal maximum are approximately equispaced AIL radians 
apart when L >> A. 

If 0 is varied beyond 0, toward either 0 or n, the phasors fan out further and 
encroach upon the third sheet of the complex plane. A tertiary maximum occurs when 
the phasors occupy two and one-half sheets, and a third null occurs when the phasors 
occupy a full three sheets of the complex plane. Only one-fifth of the phasors con- 
tribute to the tertiary maximum and the sign of their sum is positive. This tertiary 
maximum, or second side lobe, is even lower than the first side lobe, being 17.9 d B  



below the principal maximum. The third pair of nulls occur at angles 8,  given by 

or when 

31, n 32 0, = arccos - - - 5 - 
L - 2  L  

This process of letting the phasors fan out can be continued until the angle 9 
has reached 0" or 180°, at which extremities all of real space has been covered and 
the phasors have separated the maximum amount. The pattern, for this case of L  )) 2, 
is therefore as suggested in Figure 4.5, in which I a,(9) I has been plotted for the half- 
plane $ = 0". The phase of the field changes by 180" in passing through each null. 
Put differently, the lobes alternate in sign. The three-dimensional pattern is a figure of 
revolution, and is seen to be an omnidirectional beam, pointing in the direction 9 = 

90". This is a pattern shape of practical importance in engineering applications and is 
commonly called a beacon pattern. Because the beam lies in a plane transverse to the 
array axis, it is also commonly referred to as a broadside pattern. 

+ 
X 

Fig. 4.5 E-F~eld Pattern in Polar 
Form for a Uniformly Excited 
Broadside Linear Array; L = 7.51; 
Linear Scale 

Figure 4.5 was drawn for the special case 2N + 1 = 15 elements, d = 112, and 
L = 7.51. It is seen to possess a single main beam and symmetrical side lobes which 
diminish in height as their angular distance from the main beam increases. An inter- 
esting effect would have arisen if the spacing had been greater. Imagine that the 
phasors are able to fan out so far before 9 = 0" or 180" is reached that the angular 
spacing between adjacent phasors in the complex plane is 360". In this event, all the 
phasors once again are aligned and sum to give a second main beam. This will occur 
at an angle 9' given by 

, 2nd y = --- cos 9'  = 2n 1 

or when 

9' = arccos A- ( :) 
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and thus will only occur if d 2 A. By spacing the elements close enough together 
(d < A), the pattern can be limited to one main beam. 

If d )) A, the phasors can fan out to be 360°, 720°, 1080°, . . . , apart, and a 
sequence of main beams will occur, with the side lobe structure repeated in between. 
This gives what is known as an interferometer pattern, which has some useful applica- 
tions, particularly in radio astronomy. However in most practical applications it is 
desirable to  prevent these extra main beams by making d sufficiently small. It will be 
seen shortly, upon considering patterns with a single main beam which points in a 
direction other than 8 = 90°, that the requirement d < A is not stringent enough. 

(b) BROADSIDE ARRAYS WITH TAPERED EXCITATION All of the foregoing 
has assumed equal, in-phase currents. Next, consider the situation when all the cur- 
rents are in phase, but the amplitudes are symmetrically tapered. By this it is meant 
that the central element is fed by the largest current; its nearest neighbors contain 
currents equal but somewhat smaller than the central current, and so on, and finally 
the two end elements have equal currents that are the smallest in the array. 

For this case, the phasor diagram of Figure 4.2 is modified as shown in Figure 
4.6. Upon reflection, it can be appreciated that if L >> 1, the phasors must fan out 
slightly beyond one sheet before they sum to zero and give a pattern null. Thus a 
tapered distribution suffers the penalty of some increase in beamwidth to the first 
null. However, this sacrifice is balanced by a compensating advantage. When the 
phasors have fanned out to occupy slightly more than one and one-half sheets a 
secondary maximum is reached. But this maximum is contributed to principally by 
that third of the phasors representing the outermost elements, that is, by the phasors 
with the smaller amplitudes. Thus the secondary maximum, or first side lobe, is lower 
than it was in the case of the uniform current distribution considered earlier. Similarly, 
the tertiary maximum is lower, because it is contributed to principally by that fifth 
of the phasors representing the outermost elements, and so on. One reaches the 

Fig. 4.6 Phasor Diagram for a 
Linear Array wi th Tapered Excita- 
tion 
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important conclusion that side lobe level can be controlled by tapering the array 
excitation, at some cost in beamwidth. Several synthesis techniques for accomplishing 
this will be explored in Chapter 5. 

Note that if L << 1 ,  tapering the excitation has negligible effect on the pattern, 
because the phasors never fan out far enough to  give a pattern much different from 
Figure 4.3b. It is for this reason that the pattern of a half-wavelength dipole is essen- 
tially the same as the pattern of a very short dipole. The half-wavelength dipole can 
be thought of as an array of infinitesimal dipoles, touching end t o  end, and with 
L = 112, thus falling within the scope of the present discussion. 

( c )  SCANNED ARRAYS Next, consider the case of a uniformly spaced linear 
array laid out along the Z-axis so that Equation 4.14 continues to  apply, but now 
assume that the currents have equal amplitudes and a uniform progressive phase, 
that is, let 

in which a, is a constant, called the uniform progressive phase factor. Under this 
assumption, (4.14) becomes 

which differs from (4.14) only in an angular shift of origin. Whereas (4.14) gave a 
family of phasors that align at 8 = 7-42, (4.23) gives the same family of phasors, but 
now they align at an angle 9,  given by 

Thus a, can be used a s  a parameter t o  position the main beam in space. If a, is varied 
(for example, electronically), the beam will scan. 

Once again, the position of the first null on either side of the main beam can be 
determined by permitting the phasors to fan out until they uniformly occupy the 
complex plane. This will occur when 

(2N + I)(ltd cos 8, - a,) = 1 2 n  (4.25) 

The two values of 8, that satisfy (4.25), 8; and 9 ,  are the two central null angles, one 
on each side of the beam position 8,. Since a, = kd cos O,, further development of 
(4.25) gives 
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If L >) 1, one can let 8: = 8, - A8; and 8;' = 8, + A8': and write 

A. cos 8, cos A8; + sin 8, sin AO; - cos 8, = - L 

1 cos 8, cos AO', - sin 8, sin dB;' - cos 8, = -- 
L 

Since cos A8: s 1, cos A8;' g 1 ,  sin A8; r A&, and sin A8;' AO;', these last two 
equations sum to give 

This result is seen to embrace the earlier special case in which all the currents were 
equal and in phase, and which gave a beamwidth between nulls of 21/L. (In that case, 
8, = n/2 and csc 19, = 1). 

Equation 4.26 indicates that the beam broadens as it is scanned off broadside, 
the beamwidth between nulls being governed by the projected length of the array 
transverse to the beam direction. 

Proceeding further with this case, when one permits the phasors to spread out 
so that they occupy one and one-half sheets of the complex plane, secondary maxima 
occur, giving the first side lobe on each side of the main beam, and at a relative height 
of -13.5 dB. When the phasors occupy two full sheets, the second pair of nulls 
occurs. A spread over two and one-half sheets produces tertiary maxima, and so on. 
Thus one finds a sequence of side lobes of steadily diminishing amplitudes, terminated 
when the limits of-real space (8 = 0°, 180") are reached. A typical pattern computed 
from the magnitude of (4.23) is shown in Figure 4.7, with 2M + 1 = 15, 411 = 112, 
and a, = 1112. One can observe that, with the beam tilted up, the side lobe heights are 
still symmetrical, but that there are more side lobes below the main beam than above. 
Once again, this is a plot of / a,(8) / in the half-plane $I = 0". The three-dimensional 
pattern can be found by rotating Figure 4.7 about the Z-axis. 

Since Equation 4.23 is a series with a geometric progression, it can be summed 
to give 

sin [(nL/L)(cos 8 - cos 8,)] a,(e) = . 
sin [(nd/l)(cos 8 - cos O , ) ]  

t 

Fig. 4.7 Polar Field Plot for a 
Linear Array Excited with Uniform 
Amplitude, Uniform Progressive 
Phase ; L = 7.51 ; Linear Scale 
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The proof is left as an exercise. Equation 4.27 is usually more convenient to use for 
calculating patterns such as the one shown in Figure 4.7. 

In this case also, if the phs~sors can fan out so that adjacent phasors are 360" 
apart before the limits of real space are reached, a second main beam will occur. This 
will happen if 

kd cos 8' - u, =: &2n, cos 8 '  = cos 8, (Ild) (4.28) 

Equation 4.28 is seen to be a gereralization of (4.21). If 8, = n/2, one obtains 8' = 

a rccos ( i I /d )  as before. Howevt:r, if 8, assumes another value, and one wishes to  
prevent the appearance of a second main beam, then it is apparent that the spacing d 
must be chosen so that 

The second of these inequalities is more demanding and requires that 

Equation 4.30 is the criterion for avoiding multiple beams in large scanning linear 
arrays. As an example of its use, one can see that if :he beam is scanned close to 
end-fire, the elements must be spaced only one-half wavelength apart if a second main 
beam is to be prevented from appearing. 

This discussion of a scanne8d beam can be readily enlarged to include the case 
of a tapered amplitude distribution together with a uniform progressive phase for 
the currents I,,. The main beam will still point at an angle 8, given by (4.24); it will be 
somewhat broader due to tapering, and the side lobes will be lower. 

(d)  EXTENSION TO AN EVLN NUMBER OF ELEMENTS-DIFFERENCE 
PATTERNS -If the number of elements in an equispaced linear array is even, for 
instance, 2N-the array can be laid out along the Z-axis so that the elements are at 
the positions *d/2, +3d/2, . . . , and the array factor in (4.10) becomes 

From this point, the discussion of'the preceding parts of this section can be repeated 
with little change. If all the currents are equal and in phase, a,($) is represented by a 
family of phasors lying at the angles *y/2, &3y/2,  . . . , with y = kdcos 0 as before. 
These phasors fan out to give, in sequence, nulls and side lobe heights, and the con- 
clusions about side lobe levels, null positions, possible multiple beams, all still prevail, 
now with L = 2Nd. Earlier arguments can be repeated for tapered excitation and 
when a uniform progressive phase is introduced. 
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What adds to the interest in linear arrays with even numbers of elements is the 
opportunity to excite the two halves of the array out of phase with each other, some- 
thing which is neither convenient nor desirable with an odd number of elements 
because of the awkward presence of the middle element. As an example of this pos- 
sibility, let all the currents be equal in amplitude, but let I - ,  = - I , ,  for all n. Then 
(4.31) gives a family of phasors that appear in the complex plane as shown in 
Figure 4.8. 

Fan direction ,f \, Fan direction 
/ \ 

Fig. 4.8 Phasor Diagram for Difference Mode; Uniform Excitation 

For 8 = n/2, half of these phasors lie along the positive real axis, the other half 
lie along the negative real axis, and the sum is zero; that is, there is a null in the 
pattern at broadside. As 8 departs from 7112 toward 0 (or n), these phasors fan out 
into the upper (or lower) half of the complex plane. When (2N - l)y1/2 g 37114, their 
phasor sum S is a maximum, given by S I j J T N .  (Proof of this is left as an exer- 
cise). When (2N - l)y1/2 z 272, their phasor sum is zero. As the phasors fan out fur- 
ther onto the second sheet of the complex plane, this summation process is repeated, 
with only one-third of the phasors effectively participating. Thus secondary maxima 
of approximate heights f j f l N / 3 ,  . . . , are reached. A typical difference pattern for 
uniform but asymmetrical excitation is shown in Figure 4.9. Twin main lobes are 
found straddling 8 = n/2, with symmetrically decaying side lobes; the first pair is 
9.5 dB below the level of the main lobes. 

Patterns of the type found in Figure 4.9 are more readily computed from 

This result is obtained by summing (4.3 1) for the special case In = -I_, = I , ,  for all n. 
The high side lobe level (-9.5 dB) of this pattern is due t c  the choice of equal 

amplitudes. If a tapered current distribution of the type shown in Figure 4.10 were 
selected, the side lobe level could be reduced. The reader might wish to confirm this 
by sketching the phasor diagrams as they would appear for 8 values corresponding to 
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Fig. 4.9 Polar Field Plot for a 14-Element Linear Array, 
d = 112, with Uniform Asymmetric Excitation ; Broadside 
Difference Pattern ; Linear Scale 

Fig. 4.10 Bar Graph of Taperecl Current Distribution to Give Difference Pattern wi th 
Reduced Side Lcbes 

successive lobe maxima. A synthesis procedure for determining the proper taper to 
produce a specified side lobe level will be presented in Chapter 5. 

A uniform progressive phase can be given to the current distribution, with the 
two halves of the array still excited out of phase with each other. The effect on Equa- 
tion 4.31 is to replace k d  cos 8 by kd(cos 8 - cos e,), with the current ratios pure real 
and 8, the null angle between the two principal lobes. The current distribution can, 
in this case, also have a taper to reduce side lobes. 

Patterns such as those shown in Figures 4.5 and 4.9 form a useful pair in radar 
applications. With the two halves of the array fed in phase (the sum mode), one 
obtains a pattern with a single main beam; this is useful for acquiring a target, but 
not too useful for telling exactly where the target is. However, if the target is close 
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enough and the excitation is switched to the mode in which the two halves of the 
aperture are excited out of phase (the difference mode), then, unless the target is 
exactly in the null between the two principal lobes of the difference pattern, a return 
signal will be detected in the radar receiver. This signal can be used either to tilt the 
array mechanically or to introduce a uniform progressive phase shift in the excitation, 
the result being to place the target in the central null of the difference pattern. The 
sensitivity of this process is high, so the target's angular position can be determined 
with considerable accuracy. 

4.4 Schelkunoff's Unit Circle Representation 

The development of the previous section can be reinforced and extended with the aid 
of an extremely useful formulation due to S. A. Schelk~noff .~ The synthesis tech- 
niques to  be considered in Chapter 5 also benefit from Schelkunoff's method of 
representation. 

Consider an equispaced linear array of N + 1 elements (N can be even or odd), 
laid ou t  a long the  Z-axis. F r o m  (4.7), the  array factor  can  be  written in  the  f o r m  

In (4.33), a uniform progressive phase factor a, has been factored out of the current 
distribution and shown explicitly because many applications involve current distribu- 
tions of this type. However, no loss in generality results from this, since the ratio 
I J I ,  appearing in (4.33) can still be complex. 

If one lets 
w = e j r  (4.34) 

ry = kd cos 6 -- a= (4.35) 

Equation 4.33 can be converted to the form 

I N  I" a0(.) = 5 LW. = - c -,vn 
.=o I ,  I. "-0 I N  

(4.36) 

from which 

From this, by the fundamental theorem of algebra, 

5s. A. Schelkunoff, "A Mathematical Theory of Linear Arrays," Bell Sysrern Tech. J., 22 
(1943), 80-107. 
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Equations 4.37 and 4.38 rweal several interesting things. First, I f(w)j differs 
from the magnitude of a,(@ by only a multiplicative constant and thus can serve as a 
surrogate for the array factor. St:cond, the array factor can be represented as a poly- 
nomial in w of degree one less than the number of elements in the equispaced array. 
Third, this polynomial has N roc~ts which are linked to the array excitation, since the 
current ratios comprise the coeEcients of the polynomial. 

The placement of these roots in the complex w-plane can be related to the field 
pattern in real 8 space, as will be seen in what is to follow. In this manner, the analysis 
and synthesis of array patterns due to equispaced arrays can be tied to  a study of the 
properties of polynomials, a dist nct asset for the antenna designer. 

To develop this approach further, observe that as 8 varies in real space from 0 
to n, the definitions in (4.34) and (4.35) require that y vary from y, = kd - a, t o  
yf = -kd - a, and that w trace out a path along a unit circle in the complex plane, 
as illustrated in Figure 4.1 1. The total excursion of w is from eJr* to  e"1, proceeding 
clockwise as 8 goes from 0 to  n. Thus y, (read y-start) and yf (read y/-finish) mark 
the initial and terminal points of the w-excursion, the angular extent of which is 2kd 
rad~ans. 

Fig. 4 11 Schelkunoff's Unlt Circle 

Further inspection of (4.38) reveals that if the roots w, are placed on the unit 
circle, in the range of w, then 1 f(w,)I = 0, and a pattern with N nulls will result. 
Alternatively, if all the roots w, are placed of the unit circle, or a t  least outside the 
range of w, a pattern devoid of r~ulls will b: produced. Both types of patterns have 
their uses. Synthesis of null-free patterns is a more difficult topic and generally is 
beyond the scope of this introductory treatise, though some discussion of it will be 
found in Chapter 5. In what follows, attention will be focused on situations in which 
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the roots w, have all been placed on the unit circle through proper choice of the cur- 
rent distribution. 

(a) UNIFORMLY EXCITED BROADSIDE ARRAYS If the excitation currents 
have equal amplitudes and a common phase, (4.35) reduces to y/ = kd cos 8 and 
(4.36) simplifies to 

DeMoivre's theorem permits the conclusion that f (w) has roots at the positions 

(Note that the root w = 1 is excluded because of the factor in the denominator). 
Thus a uniform amplitude/equiphase excitation of the equispaced array does put all 
the roots on the unit circle. As has already been seen in Section 4.3, this results in a 
pattern with lobes interspersed by nulls. 

An illustration of (4.40) is given in Figure 4.12 for the case of a five-element 
array. The roots are found at the positions &2n/5 and 5 4 4 5 .  The value of I f(w)I 
can be found by taking the product of the four distances d l ,  d,. d,, d,, which is an 
example of the use of (4.38). As the point w moves along the unit circle (which corre- 
sponds to permitting 0 to vary in real space), these four distances change, as does 
their product. Whenever w coincides with one of the roots w,, the distance d, = 0 and 
/ f (w,) I = 0;  that is, a null has been encountered in the array factor. 

This presupposes that the range of w includes the roots w,. For example, if 
d = 112, then y / ,  = n and tyf = -n; all four of the roots are within the range of w. 

Fig. 4.12 Root Positions on a 
Schelkunoff Unit Circle for a Uni- 
formly Excited Five-Element Linear 
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As w moves clockwise from ejK through ejO to e- jK,  the product d,d,d,d, traces out 
half a side lobe, a null at w,, a full side lobe, a null at w,, a main beam, a null at w,, a 
side lobe, a null at w,, and finally another half side lobe, as illustrated in Figure 4.13. 
The nulls in real space can be determined from y, = 2nm/(N + 1) = kdcos em, 
which is in agreement with the earlier results of Section 4,3. 

Fig. 4.13 Polar Field Plot for a Uniformly Excited Five-Element 
Linear Array, d = ,I/:!; Broadside Sum Pattern; Linear Scale 

If only a quick sketch of the pattern is needed, a graphical construction using 
the unit circle of Figure 4.12 (suitably enlarged) can be helpful. The height of a side 
lobe or main lobe occurs when w is approximately halfway between roots. The product 
d,d, . . . d, when w is at such halfway points gives the relative lobe heights. This can 
be determined with reasonable accuracy if care is taken in measuring the distances. 
Knowledge of these lobe heights and the null positions 8, is all that is needed to be 
able to produce a decent polar representation of the field pattern. The reader might 
wish to try this for the five-element array by constructing an enlarged version of 
Figure 4.12 and checking that the side lobe heights are - 13.5 dB and -17.9 dB (in 
agreement with the conclusions of Section 4.3), and that the pattern resembles Figure 
4.13. 

If d = 1, then y, = 2n and. yf = -2n; w ranges two full revolutions around 
the unit circle. The result for a five-element array is the pattern shown in Figure 4.14. 
If one wishes to avoid these extra main beams at 9 = 0, n, a suitable restriction for a 
five-element array would be to have v, coincide with w, and let w range more than 
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Fig. 4.14 Polar Field Plot for a 
Uniformly Excited Five-Element 
Linear Array, d = 1; Broadside 
Sum Pattern; Extra Main Beams 
at End-Fire; Linear Scale 

one full revolution around the unit circle, past w, and on to y/,-, which is allowed to 
coincide with w,. In the more general case of N + 1 elements, this means choosing 

Equation 4.41 can be viewed as the maximum element separation for a uniformly 
excited broadside array if multiple main beams are to be avoided. For N large, it 
agrees with the result found in Section 4.3. For N + 1 = 5, the elements should be 
no further than 0.81 apart. The pattern for this case is shown in Figure 4.15. 
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Fig. 4.15 Polar Fielcl Plot for a Uniformly Exc~ted Five-Element 
Linear Array, d = 0 . 8 1 ;  Broadside Sum Pattern; Maximum 
Spacing for Multiple Beam Avoidance; Linear Scale 

It is instructive to compare the patterns of Figures 4.13 and 4.15. Both are for 
uniformly excited five-element arrays, and each has a single main beam a t  broadside. 
But Figure 4.15 shows a narrower main beam and three additional side lobes. This is 
due to the increased length of the array (412 versus 2.512). 

(b) BROADSIDE ARRAYS WITH LOWERED SIDE LOBES The fact that (4.38) 
N 

can be written in the form 1 f(w)j = Il dm, with dm the distance between w and u),, 
m =  1 

has already been noted in the discussion in this section. With w approximately halfway 
between the successive nulls w m  and w,,,, the product of these distances gives the 
relative height of the mth side lobe. I t  follows that if these two roots are brought 
closer together, the height of this side lobe will be reduced. For broadside arrays, if 
the heights of all the side lobes are to be reduced, the roots must cluster closer around 
-n, indicating that the main beam region on the unit circle (from w ,  t o  w,) must be 
enlarged. In other words, the main beam is broadened as the price paid to reduce the 
side lobes. This tradeoff has already been noted in Section 4.3. 

As an example of this effect, consider again the five-element equispaced array. 
With uniform amplitude/equiphase excitation, this array could be represented by the 
Schelkunoff unit circle shown in Figure 4.12. For element spacings of d = 12/2,12, 0.812, 
the patterns of Figures 4.13 through 4.15 were obtained. All of these patterns have 
the same side lobe topography, since they arise from a common unit circle diagram. 
The innermost side lobes are at -1 1.9 dB and the next set is at -13.7 dB. 
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Suppose it is desired to produce patterns in which all the side lobes are at -20 
dB. This would require displacing the four roots of Figure 4.12 so that they are closer 
together and clustered closer to -n. 

This design problem can be solved graphically by trial and error. At present, 
the roots are at i-72" and &144". Suppose the new positions &87" and & 149" are 
tried. (This places the roots 62" apart, instead of 72".) When a large unit circle is 
constructed with roots placed in these positions, the product of distance measure- 
ments gives the innermost side lobe at - 18.5 dB and the other side lobes at -21.3 
dB. This suggests that the roots w ,  and w ,  have been shifted too close together, but 
that the shift in w ,  and w 4  might be just about right. One could continue to try revised 
root positions, perhaps 1 8 7 "  and 147", thus converging to the root positions that 
will give the desired -20 dB level for all side lobes. The interested reader might wish 
to pursue this and demonstrate that the proper root positions are f 89" and 145.5". 

With the correct root positions known, one can return to (4.38) and write 

If this result is compared to (4.37), it can be observed that the relative current distri- 
bution is 

1 1.6 1.95 1.6 1 

The central element is seen to be most strongly excited. The distribution has a sym- 
metric taper, consistent with the discussion in Section 4.3. 

( c )  SCANNED ARRAYS The only change, if an equispaced linear array is to have 
a uniform amplitude/uniform progressive phase excitation, is that one needs to return 
to the more general definition of y/ given in (4.39, with a, = kdcos 8, and 8, the 
central angle of the main beam. The Schelkunoff unit circle is unaffected; all the roots 
are where they were before. Only the starting and ending values of y are altered. They 
are now 

Y, = kd(i - cos e,), y l f  = -kd(i + cos 0,) (4.43) 

The total excursion is still 2kd, and the height of the main beam still occurs at y = 0. 
However, the fact that the main beam is scanned raises anew the question about 
multiple main beams. 

As an example, one can return to the case of the five-element array, for which 
the unit circle of Figure 4.12 applies. If the main beam is to point at 8 = 120" (that is, 
30" beyond broadside) and if the element spacing is d = A12, then *, = 3 d 2 ,  $, = 

- d 2 ,  and the pattern is as shown in Figure 4.16. On the other hand, if the element 
spacing is d = 1, then y/, = n, y/, = -371, and the pattern assumes the shape shown 
in Figure 4.17. If one wishes to avoid the presence of a second main beam, it is 
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Fig. 4.16 Polar Field Plot for a Five-Element Linear Array 
Exc~ted wi th  Uniform Amplitude, Uniform Progressive 
Phase, d =  1212; Sum Pattern with Main Beam Scanned 
to  Oo = 120"; Linear Scale 

apparent that the spacing should be chosen such that 

as before, but now (4.43) imposes the requirement that 

or that 
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Fig. 4.17 Polar Field Plot for a Five-Element Linear Array 
Excited with Uniform Amplitude, Uniform Progressive Phase, 
d = ,? ; Sum Pattern with Main Beam Scanned to Bo = 120"; 
Extra Main Beam at B = 60"; Linear Scale 

which is the criterion for avoidance of multiple beams if a uniformly excited linear 
array is scanned. For N large, this agrees with (4.30). For the five-element array, with 
0, = 60°, the maximum spacing should be 81/15. 

(d) DIFFERENCE PATTERNS For equispaced linear arrays of an even number 
of elements, f ( w )  has an  odd number of roots. If one of these roots is placed at  I,U = 0 
and the others are arranged in complex conjugate pairs as suggested by Figure 4.18, a 
symmetrical difference pattern will result, with twin main beams straddling a null at  
O,, and with the same side lobe topography on both sides of the main beams. A 
special case of this occurs when I,, = - I _ ,  = 1, for all n, for which it has been seen 
that the pattern is given by (4.32). In addition to the central null at  0 = ~ 1 2 ,  (4.32) 
indicates nulls at  the positions 
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cos 0, = mn 
21 

Since L = 2Nd, with 2N the number of elements in the array, and since y = kd cos 0, 
this result can be converted to  the form 

with Roots Placed to  Give a 
Symmetric Difference Pattern 

Thus the roots are equispaced on the unit circle, but they are all double roots except 
for the single root a t  y = 0. This is an inefficient root placement. For example, the 
pattern shown in Figure 4.9 is for a 14-element array, d = 112, with uniform asym- 
metric excitation, and shows only two and one-half side lobes on each side of the 
twin main beams. I t  has already been remarked that this pattern does not have 

impressively low side lobes (the innermost pair of side lobes is only 9.5 dB below the 
height of the twin main beams). If the roots were repositioned appropriately on the 
unit circle, so that they occurred singly, there could be five and one-half side lobes on 
each side of the pattern, with a concomitant lowering of the side lobe level at  no  
expense in terms of broadening the twin main beams. 

Further lowering of the side lobe level could be accomplished by clustering the 
roots closer to y = n (with one root held at  y = 0 to insure a difference pattern). 
This would be at  the expense of some broadening of the twin main beams. Such designs 
can be achieved graphically by trial and error in the manner already described for the 
sum pattern. They can also be obtained by a synthesis technique that will be presented 
in Chapter 5. 

(e)  SUPERGAIN ARRAYS Since the total excursion of w along the unit circle is 
2kd, the intriguing possibility arises that one could make the interelement spacing d 
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smaller and smaller, simultaneously repositioning the roots on the unit circle so that 
they always remained within the range of w, and in such a way that the pattern in 
real space was unaltered. In this manner, for example, a sum pattern with a main 
beam of a prescribed beamwidth and side lobes of prescribed heights could be gen- 
erated by an equispaced linear array of a specified number of elements, but with the 
total length of the array arbitrarily small. The current distribution in this compressed 
array will need to be investigated. It clearly will not be uniform, because the earlier 
analysis of that case revealed that, for a uniformly excited array, the null-to-null 
beamwidth of the main beam of a sum pattern is 212/L. (See Equation 4.1 8 and the 
related discussion.) 

As a specific illustration of this possibility of a reduced-length array, consider 
once again the five-element equispaced linear array, excited to give a broadside sum 
pattern with symmetrical side lobes. If the roots are placed on the unit circle at the 
positions ty, = *72", *144", it has already been seen that the excitation will be 
uniform. For d = 1212, the pattern will have a main beam plus one and one-half side 
lobes on each side of it. Suppose next that the interelement spacing is reduced to a 
fraction f of 112 and that the roots are simultaneously repositioned to be at & y / , ,  

i y 2 ,  with y, = 72 f degrees. This will clearly keep the roots within the range of w. 
As a generalization of (4.42), 

f(w) = (w2 - 2w cos tyl  f 1)(w2 - 2w cos Iy2 + 1) 

and thus the current distribution is 

1 -2(cos ty, + cos 2ty,) 2(1 + 2 cos ty, cos 2ty1) 
(4.46) 

-2(cos ty, + cos 2ty,) 1 

When y/, = 72", all of these currents are unity and + + $ + 
(1)2]R denotes the ohmic losses, with R some appropriate ohmic representation of the 
resistivity and shape of an element. The field strength at the peak of the main beam is 
measured by the sum of the currents and therefore the total radiated power can be 
represented by (5)2K, with K a factor that depends on pattern shape. Assume that, 
with tyl  = 72", the ohmic losses are 1 % of the power radiated. Then (5)2K = 100(5R) 
or K = 20R. 

Now assume that ty, = lo,  that is, there has been a 72-fold contraction in the 
length of the array and in the root placement on the unit circle. For this case, (4.46) 
gives, for the current distribution, 

The ohmic losses have become 70R and the field strength at the peak of the main 
beam is only 0.371 x so the radiated power is 0.13764 x 10-12K. The ratio of 
the power radiated to the ohmic losses is 
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T h e  ohmic losses, which were assumed t o  be  only 1 % of the radiated power a t  d = 

112 spacing, a re  in  contrast a trillion times a s  large a s  the  radiated power a t  d = 11144 
spacing. 

Even with a modest reduction in spacing t o  d = 114, the  ohmic  losses a r e  four  
times a s  large a s  the radiated power. This  simple example serves t o  illustrate the drastic 
penalty one  must pay in loss of  efficiency if reduction of  length is contemplated for  
linear arrays. Further  study shows tha t  mechanical a n d  electrical tolerances become 
severe a n d  frequency bandwidth is sharply curtailed a s  the interelement spacing is 
contracted. F o r  all these reasons, supergaining (as this process is called) has proven 
t o  be  impractical. 
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PROBLEMS 

4.1 Begin with Equations 4.1 and 4.5 and show that a,(e, I$) can be written as the product 
of the array factor (4.10) and the element factor (4.1 1). 

4.2 Assume that a uniformly spaced linear array of 2N + 1 elements is uniformly excited. 
If 2N :- 1 is very large, show that the height of the first side lobe occurs when the cor- 
responding 2 N  -1- 1 phasors uniformly occupy one and one-half sheets of the complex 
plane. D o  this by letting the position of the outermost phasor, N y ,  be a variable. 
Approximate the phasor diagram by a continuum density of phasors and show that 
this first side lobe is 13.5 dB below the height of the main beam. 

4.3 Show that Equation 4.27 is a transformation of equation (4.23). 

4.4 Assume that a uniformly spaced linear array of 2 N  elements is uniformly excited, but 
in the difference mode. If 2N is very large, show that the height of the principal lobe 
occurs when the corresponding 2N phasors have fanned out such that the outermost 
one is a t  the position (2N - l ) y / 2  E 3x14. D o  this by letting the position of the outer- 
most phasor be a variable. Approximate the phasor diagram by a continuum density of 
phasors and show that the pair of side lobes that is closest in is approximately 9.5 dB 
below the level of the twin principal lobes. 
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4.5 Show that Equation 4.32 can be derived from (4.31) when I, = - I _ ,  = I,, for all n. 

4.6 Show the equivalence of Expressions 4.27 and 4.39. 

4.7 A six-element equispaced linear array is to be given uniform amplitude/equiphase 
excitation. Construct a suitably large Schelkunoff unit circle (say r = 4 inches) and mark 
the root positions. If d = 4 2 ,  find the null positions in &space. Use the fact that 
j f (w) 1 = dl . . . dS to determine the relative lobe heights, and make a rough polar plot 
of the field pattern. 

4.8 For the six-element array discussed in the preceding problem, use trial and error to 
determine the proper root positions to yield an array pattern with a single main beam 
and all side lobes at -20 dB. Find the corresponding current distribution. 

4.9 For the six-element array discussed in the two preceding problems, use trial and error 
to determine the proper root positions to yield a difference pattern with all side lobes at 
-20 dB. Find the corresponding current distribution. Note that this current distribu- 
tion is substantially different from what you would get by reversing the phase of half of 
the array excitation found for the sum pattern in Problem 4.8. 

4.10 It has been shown in the text that, for an equispaced linear array of 2N elements, a 
difference pattern will result if the nulls are placed on the unit circle at the positions 
W, = 2nrnlN with rn = 0, il, . . . , iN - 1. Show that this gives I, = - I - ,  = 1, 
for all n, for the current excitation, and that the pattern is represented by Equation 4.32. 

4.11 Design a six-element equispaced array to give a sum pattern with its main beam at end- 
fire and all side lobes at -30 dB. This can be done graphically by trial and error. Then 
deduce the maximum spacing between elements if not even a trace of a second main 
beam is to be present at reverse endfire. 

4.12 It has been shown in the text that if an equispaced linear array of 2N elements is excited 
uniformly but asymmetrically, a difference pattern results with the roots occurring on 
the unit circle at positions y/, = 2nrn/N, rn = 0 ,  i 1 ,  . . . , 5 N - 1. All roots are 
double except y o .  This is an inefficient root placement. One way to correct this is to 
place the roots singly at $,,, = 2 r n ~ l ( 2 N  - l ) ,  m = 0, =kN - 1 ,  . . . , 1. Show that if this is 
done, all side lobes are the same height as the twin main beams and that all currents in 
the array are zero except the end two, which are equal and opposite. (The result is called 
an interferometer pattern.) 

4.13 With reference to the preceding problem, another possible root placement that avoids 
double roots is to let W, = n m / ( N  + l) ,  rn = 0, 1-2, &3, . . . , & N .  Show that this 
gives larger y-regions on the unit circle for the twin main beams than it does for the side 
lobes. Plot the polar field patterns for the case 2 N  = 14, d = 21.2, and compare with 
Figure 4.9 of the text. Find the current distribution and compare with Figure 4.10 of 
text. 



5.1 Introduction 

In the previous chapter the basic analysis of equispaced linear arrays was presented 
under the assumption that a known current distribution existed in the array and that 
one desired to find the resulting array pattern. A variety of practical distributions 
were assumed (uniform amplitude with and without uniform progressive phase, 
tapered amplitude with and without uniform progressive phase, the two halves of the 
array excited out of phase) and it was discovered that useful sum and difference 
patterns were caused by these distributions. In conjunction with the introduction of 
the Schelkunoff unit circle, the subject of synthesis was even touched on when a 
graphical trial-and-error technique was suggested in which root placement could be 
systematically altered until a desired pattern was achieved. 

In the present chapter the synthesis problem will be addressed directly. In 
synthesis, one begins by specifying the desired array pattern. Since the discussion here 
is restricted to linear arrays,' the desired pattern must be a function of 8 alone and 
not 4, that is, in the form a,(@ or so(@. But the class of functions a,(@ or is 
large. It includes sum patterns with uniform side lobes, with symmetrically tapered 
side lobes, and with asymmetric side lobes. It includes difference patterns with the 
same variety of side lobe topographies. I t  includes patterns with neither nulls nor side 
lobes. For all of these patterns, the synthesis question is basically the same: Given 
a,(@ or  5,(0), what is the requisite current distribution in an  equispaced array? 

This question will be answered in succeeding sections of this chapter for some 
of the more widely used classes of prescribed patterns. Dolph's technique, which uses 
Chebyshev polynomials to deduce discrete current distributions that yield sum pat- 
terns with uniform side lobes, will be taken up first. Taylor's procedure, which 
accomplishes basically the same result but for continuous line sources, will also be 

'This restriction will be lifted in Chapter 6 with the introduction of planar arrays. 
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presented. A perturbation method, which can be used to modify either a Dolph or 
Taylor pattern in order to  produce sum patterns with arbitrary side lobe topographies, 
will be introduced and then extended to  applications involving difference patterns. 
The Woodward technique, which synthesizes patterns requiring null-filling, will also 
be described. 

The chapter is not devoted entirely to synthesis procedures. The concepts of 
half-power beamwidth and peak directivity of a linear array pattern are introduced 
and applied specifically to  the case of sum patterns, since these two quantities often 
form a key part of the design specifications on which the pattern synthesis must be 
based. 

5.2 Sum and Difference Patterns 

Many applications of linear arrays involve the need to produce sum and difference 
patterns with the main beam of the sum pattern pointing at  an  angle go,  with the twin 
main beams of the difference pattern straddling do ,  and with both patterns exhibiting 
a symmetrical side lobe structure. When there are 2N elements in the array, equispaced 
by an  amount d, the array factor can be written in the form2 

Under the above stipulations, all the current amplitudes in (5.1) can be taken as pure 
real. For the sum pattern, I,, = I-, and (5.1) becomes 

s(8) = 2 5 cos [(2n - 1) 
n= 1 

For the difference pattern, I, = - I - ,  and (5.1) takes the form 

An array with 2 N  + 1 elements (an odd number) is not suitable for the creation 
of a difference pattern because of the awkward presence of the central element. How- 
ever, as seen in Chapter 4, it can be used to produce a sum pattern. Under the assump- 
tion of symmetrical side lobes, the pattern from such an  array is given, as a reduction 
from Equation 4.13, by 

S(0) = 1 + 2 2 # c o s [ ? n ( ~ ) ( c o s  8 - cos 8,) 
n = l  0 

2For convenience a,(@ is used, but the results apply equally well for 5,(8). 
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A major class of synthesis problems can be stated in terms of these equations. If a 
sum pattern with a specified side lobe topography is desired, how does one determine 
the current distribution I, , / / ,  in (5.2) or  I,,//, in (5.4) to achieve the desired result? 
Or, if a difference pattern with a certain side lobe topography is desired, how does 
one find the current distribution In//, in (5.3) to bring this about 1 Several sections of 
this chapter are concerned with answers to these questions. 

5.3 Dolph-Chebyshev Synthesis of  Sum Patterns 

The discussions of Chapter 4 revealed some useful information about the design of 
equispaced linear arrays, excited so as to give an array factor with one main beam 
plus side lobes (sum pattern). This information can be summarized as follows. 

1. For 2N f 1 elements, if the 2N roots are placed on the unit circle in complex 
conjugate pairs, a symmetrical sum pattern will result. If the positions of these root 
pairs are adjusted, the side lobe heights can be altered. T o  reduce the level of the side 
lobes, the root pairs need to be clustered closer to ry = n, at  the expense of broadening 
the main beam. 

2. For 2N elements, if the 2N - 1 roots are placed on the unit circle with one 
root at  ry = -n and the remainder in N - 1 complex conjugate pairs, a symmetrical 
sum pattern will result. If the positions of the root pairs are adjusted, the side lobe 
heights can be altered. T o  reduce the level of the side lobes, the root pairs need to be 
clustered closer to y = n, at  the expense of broadening the main beam. 

3. With the roots occurring in complex conjugate pairs, f ( w )  is a polynomial 
with pure real coefficients. These coefficients appear in symmetrical pairs in the 
polynomial, thus evidencing the fact that the current distribution in the array is 
symmetrical in amplitude. 

With these observations as background, the problem of proper positioning of 
the root pairs can be addressed. If one argues that side lobes occur in spatial regions 
in which it is desirable to  suppress radiation, and assumes that the suppression of 
a//  side lobes is equally important, then an optimum design is one in which all side 
lobes are at the same height. The reduction of a single side lobe further than this 
common level could only be at  the expense of additional broadening of the main 
beam, and would deny the assumption that the region of this side lobe is no more 
important than the region of any other side lobe. 

This problem of seeking the proper root positions (and thus the proper array 
excitation) to give a sum pattern with uniform side lobes at  a specitied height was 
solved by C. L. Dolph in a classic paper.' To  do this, he took advantage of a useful 
property of Chebyshev polynomials, which are solutions of the differential equation 

3C. L. Dolph, "A Current Distribution for Broadside Arrays Which Optimizes the Relation- 
ship between Beamwidth and Side Lobe Level", Proc. IRE, 34 (1946), 335-48. 
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I t  is shown in Appendix C that, if the index m is an even integer 2N, then a solution 
to (5 .5)  is 

If rn is an odd integer 2N - 1, then 

with ( : ) the binomial coefficient r!/s!(r - s)!. Both (5.6) and (5.7) can be put in the 

revealing form 
T,,,(u) = cos(m cos-I u )  - 1 s u s 1  

= cosh ( m  cosh-' u) u >  1 ( 5 . 8 )  
= (-1)"' cosh(m cosh-' juJ) u <  1 

which is easily verified by substitution in (5.5). Thus T,(u), with m an integer, is a 
function that oscillates in a cosinusoidal manner in the range 1 u 1 < 1 and then rises 
hyperbolically in 1 u ( > 1. It is this property of the Chebyshev polynomials that makes 
them so useful in antenna array design. Figure 5.1 shows the typical features of 

Fig. 5.1 Chebyshev Functions (Reprinted from Microwave 
Scanning Antennas, Volume 2,  R. C. Hansen, Editor, Courtesy 
of Academic Press, Inc. 0 1966 Academic Press.) 
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Chebyshev functions. For m = 2N there is symmetry about u = 0, with N root pairs 
in I u 1 < 1 .  Here T2,(1) = TzN( -  1 )  = 1. There are no roots outside I u 1 = 1 ,  so just 
beyond I u I - 1 the function rises rapidly, with steeper slope for larger values of 2N. 
For m = 2N - 1 ,  there is antisymmetry about 8 = 0 ,  with a root at u = 0 and N - 1 
root pairs in / u 1 < 1, where Tz,- , ( I )  = -TzN-,(-  1 )  = 1. There are no roots beyond 
I u J  = 1 ,  so the function rises rapidly, with steeper slope for larger values of 2N - 1. 

These plots reveal why the Chebyshev polynomials were ideal for Dolph's 
purpose. If the variable u can be made to  correspond in some manner to  the real 
angle variable 9 ,  so that an appropriate segment of Tm(u) can be made to relate to 
a,(9), then a pattern with uniform side lobes will result. 

To  develop this correspondence, one can return to the basic equation for the 
array factor, assume a uniform progressive phase and symmetrical amplitude distri- 
bution, and write as alternate forms of (5.4) and (5.2) 

in which, as before, 

y/ = kd(cos 9 - cos 9,) 

Equation (5.9) applies for an odd number of elements and is equivalent to a poly- 
nomial of order 2N in the variable cos ( ~ 1 2 ) .  Equation 5.10 applies for an  even 
number of elements and is equivalent to a polynomial of order 2N - 1 in the variable 
cos (y//2). Thus if one selects the transformation 

W u = U ,  COS- 2 
(5.12) 

then (5.6) and (5.9) can be equated for arrays with an  odd number of elements, and 
(5.7) and (5.10) can be equated for arrays with an  even number of elements. 

What this transformation accomplishes can be appreciated by returning to 
Figure 5.1. As 9 ranges from 0 to 9 ,  to n, and as yl ranges from y / ,  = kd(1 - cos 9,) 
to zero to y / ,  = -kd(l + cos a,), u will range from u, - u,  cos (r/l,/2) to u, to 
uf  = uo cos ($ , /2) .  The pattern trace is shown by the arroweddotted path in Figure 
5. la .  If u,  is chosen so that Tm(uo) = 6,  with 20 log,, b the desired side lobe level, then 
a pattern will result consisting of a main beam a t  the relative field height b plus a 
family of side lobes all a t  the height unity. 

Dolph's design procedure can now be articulated. One begins by selecting the 
number of elements, which determines the degree of the Chebyshev polynomial that 
is to be used (m is one less than the number of elements). Next, it is necessary to find 
u, from Tm(uo) = 6, with b fixed by the desired side lobe level. Then, from (5.8), the 
roots of Tm(u) can be determined readily and are given by 

up = + cos (2p - 
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When these values are inserted in (5.12), the corresponding root positions y, on the 
unit circle can be computed. At this point f(w) is known in factored form and can 
be multiplied out to give the current distribution. 

As an example, consider a five-element array that is to be excited to give a sum 
pattern with all side lobes at -20 dB. Then it is T4(u) which should be used, and 
T,(u,) = b = 10. From (5.8), 

cosh (4 cosh-I u,) = 10 

which is satisfied by u, = 1.2933. Also, from (5.8), one finds that the roots of T4(u) 
are +0.9239 and *0.3827. Thus, from (5.12), the roots on the unit circle are at the 
positions 

If the calculation that produced Equation 4.42 is repeated (where this same problem 
was being solved by a graphical trial-and-error method), the present more accurate 
y values give 

with the coefficients of the various powers of w representing the relative current 
distribution. 

With the uniform progressive phase factor a, embedded in the definition of 
w (compare Equations 4.34 through 4.39, the coefficients 

represent the relative magnitudes of the currents in the five-element array. This implies 
that the DoIph-Chebyshev distribution is the same in magnitude regardless of where 
the main beam points. All that changes when the main beam pointing direction 8, 
is altered is the uniform progressive phase, which must be attached to the amplitude 
distribution. 

If the avoidance of extra main beams is of concern, the precautions noted in 
Section 4.4 must be observed. The interelement spacing should be chosen so that the 
y-excursion on the Schelkunoff unit circle only traverses the main beam region once. 

The case of an end-fire Dolph-Chebyshev distribution is worth special mention, 
and the example cited above can serve as a typical illustration. To place the main 
beam at end-fire, y, = 0" and yf = -(360° - 88.82") = -27 1.18". The interelement 
spacing should not exceed 

if even a vestige of a second main beam cannot be tolerated at reverse end-fire. With 
this spacing, the uniform progressive phase is a= = kd = 2.369 radians and the 
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end-fire Dolph-Chebyshev current distribution for this array is 

It is possible to determine the Dolph current distribution for the general case 
without the intermediate steps of finding the roots up, yp,  and wp followed by mul- 
tiplying out the factors off (w). To  do this, one needs to insert (5.12) in (5.6) or (5.7) 
and make use of the relations 

c0s2.- 1 W 2 - - - 2"-2 5 (2n-  l ) cos (2q-  1)Y 
q = ~  n - q  2 

A derivation of these two formulas can be found in Appendix D .  In Equation 5.14, 
E, = I if q = 0, otherwise 6, = 2. 

With the use of (5.13) through (5.15), the expressions for the Chebyshev poly- 
nomials become 

The coefficients of cos 2my/2 are in the same ratio in (5.9) and (5.16) for all rn, and 
likewise the coefficients of cos (2m - l )y/2 are in the same ratio in (5.10) and (5.17) 
for all m. Therefore the relative current distribution for an  array with 2 N  f 1 elements 
1 s 

and, for an  array with 2 N  elements is 

Although they look formidable, (5.18) and (5.19) are simple to program. T o  use 
them, one still needs to start with the knowledge of the number of elements in the 
array and the desired side lobe level, so that u, can be determined. For arrays with a 
large number of elements, the time saved in using (5.18) or (5.19) is considerable when 
compared to the procedure that first determines the root positions. 
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Discussions in Chapter 4 have revealed that the angular extent of the main beam in 
a sum pattern is inversely related to the length of a linear array. Further, it has been 
seen that, for a given length array, the main beam broadens as the side lobe level is 
lowered. In synthesis problems, these relationships must be approached from the 
other end. Often the design specifications include statements about the desired beam- 
width of a sum pattern, as well as the side lobe level. The designer must not only 
determine the requisite current distribution, but also the array length and number of 
elements, both chosen to avoid multiple beams (dl1 should not be too great) and 
supergaining (LIA should not be too small). 

Because of the importance of beamwidth as a design specification, it is desirable 
to sharpen these earlier discussions by introducing a more precise definition of 
beamwidth. The one normally used is that the beamwidth is the angular separation 
between 8 directions at which the radiated power density is down to one-half its 
maximum value. For an equispaced array of 2N + 1  element^,^ laid out symmet- 
rically along the Z-axis, let 8 = 8, - 8, be this beamwidth, in which 8, and 8, are 
the two values of 8 which satisfy the relation 

In (5.20), the current amplitudes I, are assumed to be pure real, the current phase 
progression is governed by a,, d is the interelement spacing, and 8, is the pointing 
angle of the main beam. 

The amplitude distribution I,,/I, can be described by a Fourier series, namely, 

in which P is the highest spatial harmonic needed to represent the distribution. 
Attention will be restricted to sum patterns in which the side lobe topography is 
symmetric, which means that I,/I,, is also symmetric, and thus that a, = a_, is pure 
real for all p. Since a, = kd cos 8,, insertion of (5.21) in (5.20) gives 

= 2 sin {(zL!A)[cos 8, - cos 8, i- (PAIL)]) (5.22) 
.= - P  sin {(nd/A)[cos 8, - cos 8, + (pl/L)]j 

4A11 the results obtained in this section are equally valid for 2N elements. 
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in which L = (2N + I)d is the length of the array. It has been shownS that, for large 
arrays with conbentional distributions, Equation 5.22 can be transformed to 

where 

is a substitution variable from which the beamwidth can be deduced. Several cases 
will now be considered. 

CASE I :  UNIFORM DISTRIBUTION This is the simplest case of all and 
extremely useful as a reference. Only a, has a value and (5.23) yields two solutions for 
K such that sin Kn = 0.707Kn and Kn = & 1.392, and therefore 

from which it follows that the half-power beamwidth is given by 

@ = 8, - 8 cos-I [cos 8, - 0.443 11 
L 

-cos- cos 8, t 0.443 - ! L 

in the range 0 < Q0 < d 2 ,  8, 2 0. 
As the main beam is scanned from broadside (8, = n/2) to end-fire (8, = 0), 

a cross section of the beam takes on a succession of positions, as indicated in Figure 
5.2. As the conical beam closes toward end-fire, a position is reached a t  which 8, = 0, 
and from this position to end-fire, there is no half-power point on one side of the beam. 
For this reason 6 ,  = 0 can be called the scan limit. Equation 5.25 will not give a real 
value for 8 ,  beyond this limit. 

When the end-fire position is reached, the concept of beamwidth once again 
takes on meaning. Equation 5.26 is still valid and one can write 

The beamwidths given by (5.27) and (5.28) are plotted in Figure 5.3 as functions of 
array length and scan position. These curves will prove useful beyond the present case 
of uniform amplitude excitation, as will be seen shortly. 

sR. S. Elliott, "Beamwidth and Directivity of Large Scanning Arrays", Appendix B, Micro- 
wave Jorrrnal, 6 (1963), 53-60. Also in Microwcrve Scanning Antennas, ed. R .  C. Hansen, Vol. 2 (New 
York : Academic Press, 1966), Chapter I .  



Endfire 

Fig. 5.2 Conical Beam Shape versus Scan 

Each of these expressions for beamwidth (Equation 5.27, which is valid to 
within one beamwidth of end-fire, and Equation 5.28, which is valid at end-fire) has 
an  approximate form when L >> A. Using small-angle expansions, one obtains 

A 0 = 0.886- csc 8, (at or near broadside) (5.29) L 
1,2 

B = 2[0.886+] (at end-fire) 

For L 2 512, Equation 5.29 is in error by less than 0.2% at broadside and is in error 
by less than 4 %  when the main beam has been scanned to within two beamwidths of 
end-fire. For L 2 51, Equation 5.30 is in error by less than I o,. 
CASE 2: DOLPHICHEBYSHEV DISTRIBUTION It has been shown in the 
literature6 that when the current distribution is chosen so that the pattern is equivalent 

6R. S. Elliott, "An Approximation to  Chebyshev Distributions," IEEE Trans. Antennas 
Propagat., AP-I 1 (1963), 707-9. 
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Array length L/X in wavelengths 

Fig. 5.3 Half-Power Beamwidth versus Linear Array Length and Scan Angle for 
Uniform Excitation (Reprinted from Microwave Scanning Antennas, Volume 2. 
R .  C. Hansen, Editor, Courtesy of Academic Press, Inc. 0 1966 Academic 
Press.) 

to the Chebyshev polynomial T,,(u, cos y//2), then the Fourier coefficients are given by 

It follows from (5.31) that (2N + ])a, - T,,(u,) = b, with 20 log,, b the side lobe 
level. Thus 

For large arrays, and for side lobe levels in the range from -20 decibels to -60 deci- 
bels, only a, and a ,  are significant in determining the beamwidth. If (5.8) and (5.31) 
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are used in conjunction for p = 1, it is found that a ,  is given quite precisely by 

(2N + l)a,  = cosh [(arccosh b)2 - n2]li2 (5.33) 

With all other Fourier coefficients insignificant in the calculation of beamwidth, (5.23) 
becomes for this case 

Inspection of (5.34) reveals that the solution for K when a ,  # 0 differs from the solution 
for K when a ,  = 0 only through the presence of the ratio a,/a,. But (5.32) and (5.33) 
indicate that a,/a, depends on side lobe level but not on scan position nor the number 
of elements in the array. Thus it becomes convenient to introduce a beam-broadening 
factor f which is simply the ratio of the half-power beamwidth when a given array is 
excited Dolph-Chebyshev to the half-power beamwidth when it is uniformly excited. 
Computations of beamwidth from (5.34), with a ,  and a ,  given by (5.32) and (5.33), 
can be compared to the computations that produced Figure 5.3. The result is the 
f-curve shown in Figure 5.4. The f-number can be interpreted as the cost in beam- 
broadening to convert all the side lobes to a common height and reduce them to a 
specified level. 

The extended utility of Figure 5.3 can now be appreciated. If one wishes to 
determine the beamwidth of a linear array of normalized length L/R excited to give 

15 20 25 30 35 40 45 50 55 60 

Side lobe level in dB 

Fig. 5.4 Beam-Broadening versus Side Lobe Level for Linear Arrays with Dolph- 
Chebyshev Excitation 
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a sum pattern with the main beam at O,, a reading from Figure 5.3  will give the 
half-power beamwidth for uniform amplitude excitation. For Dolph-Chebyshev 
excitation with a specified side lobe level, that reading should be multiplied by the 
f-number read from Figure 5.4 .  One can also work backwards with the aid of these 
two figures to deduce the array length needed when the scan position, beamwidth, and 
side lobe level are specified for a Dolph-Chebyshev sum pattern. 

5.5 Peak Directivity of the Sum Pattern of a Linear Array 

The peak directivity D ( O o )  of the sum pattern produced by a linear array is a frequently 
encountered design specification. It can be deduced as a special case of the general 
definition of directivity, given as equation ( 1 . 1 6 0 )  and repeated here for convenience: 

D ( O , 4 )  = 1 
@(O, 4 )  ( 5 . 3 5 )  

4Rr2 [ l ' @ ( O f ,  Q ' ) r 2  sin 0 '  dO1 dm1 

The power density in the sum pattern of a linear array is given by7 

The array and element factors that appear in ( 5 . 3 6 )  have previously been defined by 
Equations 4 . 6  through 4.1 1.  

If the array is large, the element patterns broad, and the side lobe level of the 
sum pattern low, the principal contribution to the integral in the denominator of 
( 5 . 3 5 )  is in the neighborhood of the main beam. When this is the case, the factor 
ae , ,a~ ,  + a,,,a$,, can be brought out in front of the integral and given its value at 
( e , ,  6 ) .  If this is done, 

D(O0) = q, 1 / n T j : w > a ( ~ ) 5 : ( ~ )  sin B do d$ 

which further simplifies to 

2 , , (e0)  ,,*( 00) 

D(oO) = j n " , a ( ~ ) \ b ( ~ )  sin B ~ O  
( 5 . 3 8 )  

Equations 5.37 and 5 . 3 8  represent the peak directivity of the a r r a y  factor, or 
what is the same thing, the peak directivity of the sum pattern when the element 
factor is assumed to be isotropic. They are approximate and cannot be used with 
good accuracy for small arrays. 

7Equation 5.36 assumes a type I (actual-source) array. The development can be duplicated 
exactly when the array is represented by an equivalent magnetic current distribution. 
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Continuing with the assumption that the array is large (LIIZ )) I), one can 
return to the definition 4.35 and write 

Use of these relations in (5.38) gives 

If d = 112 or any multiple t h e r e ~ f , ~  (5.41) reduces very simply to 

which is a most interesting formula in several respects. The directivity given by (5.42) 
is a measure of the coherence of radiation from the linear array. The numerator is 
proportional to the total coherent field, squared, whereas the denominator is propor- 
tional to the sums of the squares of the individual fields from the various elements. 

Furthermore the peak directivity, as expressed either by (5.41) or (5.42), is seen 
to be independent of scan angle. On the face of it this seems surprising, since it has 
already been observed that the main beam broadens as it is scanned away from 
broadside, a manifestation which usually signifies lowered directivity. However, for 
a linear array, as the conical beam is scanned toward end-fire, the "cone" occupies a 
smaller solid angle in space, an effect that just cancels the beam-broadening. 

Although Equation 5.42 is independent of scan angle, it is not independent of 
current distribution. If one uses the Fourier series description of the excitation 
embodied in (5.21), it is evident that 

so that 

For half-wave spacing, L = (2N + 1)12/2, so that (5.42) can be rewritten as 

T h i s  restriction will be lifted shortly. 
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For element spacings in the range 112 d < 1 ,  if L is held fixed, computations using 
(5.41) show that the directivity is quite insensitive to element spacing. Since this is 
the range which avoids either supergaining or multiple beams, (5.46) can be adopted 
as a practical expression for the peak directivity of a large equispaced linear array, 
symmetrically excited to give a sum pattern with symmetrical side lobes, with no 
restriction on the pointing direction of the main beam. Several special cases can now 
be considered. 

CASE I :  UNIFORM DISTRIBUTION Once again this is the simplest case of all 
and gives 

which is sometimes referred to as the standard directivity of a linear array. I t  is the 
maximum directivity which can be obtained from a linear array of length L, using an 
aperture distribution which has uniform progressive phase. 

CASE 2: DOLPH-CHEBYSHEV DISTRIBUTION If one makes use of (5.31), 
(5.32), and (5.46), the directivity for a Dolph-Chebyshev distribution can be written as 

Unlike the computation of beamwidth for a Dolph-Chebyshev array, in which only 
the first two Fourier coefficients were significant, it develops that all the Fourier 
coefficients that appear in the denominator of (5.48) should be included. Indeed, if 
the array becomes large enough, the sum of the squares of these coefficients becomes 
proportional to 2N + 1 and thus the directivity tends to a limit. 

I t  is a tedious computation to determine all the Fourier coefficients in (5.48), 
particularly for large arrays. Fortunately, this is not necessary, I t  has been showng 
that an excellent approximation to (5.48) for large arrays is 

in which 20 log,& is the side lobe level and f is the beam-broadening factor. 
Equation (5.49) has the limit 

which is reached when LIIZ - -  m.  Thus the maximum directivity for a Dolph- 
Chebyshev array is 3 dB more than the side lobe level. This means, for example, that 
if one wishes to design a linear array to have uniform side lobes and a directivity of 
43 dB, it is necessary also to design it to have a side lobe level reduced at  least to 
-40 dB. 

sElliott, "Beamwidth and Directivity of Large Scanning Arrays," Appendix C. 
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Actually, maximum directivity is approaches rather rapidly at first, as LII is 
increased, but then additional directivity is bought very dearly in terms of increased 
array length. This point can be appreciated by studying Figure 5.5, which is a plot of 
(5.49) for various values of side lobe level. An optimum directivity (and thus array 
length) can be selected for a given side lobe level by specifying a point on the appro- 
priate curve of Figure 5.5 at which the curve has just barely begun to bend significantly. 
For example, one might not wish to design an array for a 20 dB side lobe level for 
which LII exceeded 100 and the directivity exceeded 100. 

Fig. 5.5 Peak Directivity versus Linear Array Length and Side Lobe Level for Dolph- 
Chebyshev Excitation (Reprinted from Microwave Scanning Antennas, Volume 2, 
R .  C. Hansen, Editor, Courtesy of Academic Press, Inc. 0 1966 Academic Press.) 

This phenomenon of a directivity limit is not observed for a uniformly excited 
array, with directivity given by (5.47). The difference is that the uniformly excited 
array has tapered side lobes. The Dolph-Chebyshev feature of uniJorm side lobes, 
while giving minimum beamwidth, is responsible for the directivity limitation. As 
L/A is increased, more and more side lobes are found in real space. For a uniformly 
excited array, these side lobes that are farther out are at increasingly lower levels 
and thus make increasingly smaller contributions to the denominator of (5.38), which 
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is not so for a Dolph-Chebyshev pattern, where all side lobes make the same contri- 
bution. However, current antenna practice is to combine large arrays with low side 
lobe levels, so this directivity limitation is not so serious as to preclude the use of 
Dolph-Chebyshev designs. For example, Figure 5.5 shows that, for arrays as long as 
100012, very little bending has occurred in the curve for a 40 dB side lobe level. 

5.6 A Relation Between Beamwidth and Peak Directivity 
for Linear Arrays 

Equations 5.29 and 5.46 indicate that for a linear array both the peak detectivity and 
the reciprocal of half-power beamwidth depend linearly on the array length. .Upon 
eliminating L/L from these two expressions, one obtains 

in which 8, is the broadside half-power beamwidth. 
If the beamwidth is expressed in degrees instead of radians, and if the distri- 

bution is uniform, Equation 5.51 reduces to the simple relation 

For a Dolph-Chebyshev distribution, until an array length is reached a t  which 
the directivity begins to limit, the factor in brackets in (5.51) is unity. Thus (5.52) is 
a good working relation between broadside beamwidth and peak directivity for the 
array excitations studied thus far, and this can be rounded off by saying that the 
product of broadside beaniwidth in degrees and peak directivity for a linear array is 
approximately one hundred. 

5.7 Taylor Synthesis of Sum Patterns 

A horn of aperture size u by 6, with u/12 >> I and 6/12 << I can be viewed as a continuous 
line source, as can some of the traveling wave antennas to be discussed in Chapter 9. 
For such structures, there is the need to develop a synthesis procedure that will permit 
determination of the line source distribution corresponding to a specified pattern. 
When the desired pattern contains a single main beam of a prescribed beamwidth and 
scan position, together with a family of side lobes a t  a common specified height, this 
problem parallels the one solved by Dolph for discrete linear arrays. The solution was 
achieved by T. T. Taylorlo in an elegant paper of far-reaching importance, since 
Taylor distributions can be sampled and thus applied to the design of discrete arrays 

luT. T. Taylor, "Design of Line Source Antennas for Narrow Bearnwidth and  Low Side 
Lobes," IRE Trr1n.s. Antc,nnu.s rmd Propu,<~ul., AP-7 ( 1  955), 16 -28. 
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as well. Further, as shall be seen in Chapter 6,  Taylor was able to extend his technique 
to circular planar apertures. These Taylor circular distributions, as they are called, 
can also be sampled, and thus can give the excitation coefficients for discrete planar 
arrays with a circular boundary. Since there is no  similar extension of Dolph's 
technique to circular planar apertures, it is important for the antenna designer to be 
cognizant of the principal features of Taylor's procedure. 

If one returns to the development of the far-field vector potential functions 
given in Chapter 1 for a continuous line source of small cross section S stretching 
along the Z-axis from -a to +a, Equations 1.101 and 1.102 take the forms 

a,(O) = in  S[cos 9 cos ) J,(l) + cos 6 sin ) J,([) - sin 9 J,(l)]ejkc d[ (5.53) 
- (1 

= 1' - a s[-sin ) J,(i) + cos ) J,(l)]rikc d[ (5.54) 

where 6: == [ cos 9 .  
If the direction of the current density is the same in every aperture element d l ,  

that is, if 

with C , ,  C2,  and C,  constants, then (5.53) and (5.54) become 

a,(@ = ( C ,  cos 9 cos ) + C,  con 9 sin ) - C3 sin 9 ) s  I a  g( l ) e j k i cos8d  
- (1 

l (5.56) 

a,(O) = ( - C ,  sin 4 7- C ,  cos 4)s ia g([)r jk icose  d c (5.57) 
- '2 

The factors in front of the integrals in (5.56) and (5.57) are called the element factors 
for a, and a,, The integrals, which are seen to be common, give the array factor for 
the line source. This partitioning exactly parallels what has already been observed for 
discrete linear arrays. 

Were one to  deal with a continuous line source being represented by magnetic 
currents, the foregoing could be repeated to the point of partitioning 5 ,  and 5 ,  into 
element factors and a common array factor, the latter being an  integral identical in 
form to the integral found in (5.56) and (5.57). For this reason, Taylor chose to start 
his analysis by considering the general array factor 

Equation 5.58 indicates that the synthesis problem is one of finding the aperture 
distribution g([),  given the desired pattern S(9).  But before proceeding to the specific 
class of patterns 539) treated by Taylor, it is instructive to consider a special and 
idealized analysis problem, namely, given that g(C) has uniform amplitude, uniform 
progressive phase, what pattern results? 
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If g( [ )  = Ke-'PC with K and /3 constants, the integration of (5.58) is extremely 
simple, and gives 

sin [ka(cos I9 - /Ilk)] 
'(I9) = Ka k a (cos I9 - /3/k) 

a result which should be compared with (4.27), a formula that was obtained for a 
uniformly excited discrete array. Since L = 2a, one can see that these two pattern 
expressions are identical (as they should be) in the limit when dl1 --+ 0. 

With the substitution 

a universal power pattern can be constructed from (5.59) by the definition 

sin nu 

in which 0, = arccos(P/k) is the pointing angle of the main beam. A decibel plot of 
f (u) can be found in Figure 5.6. One sees a sum pattern with symmetrical side lobes 

- 15 -10 - 5 0 5 10 15 

2a 
u = -- (cos 8 - cos 8 " )  

X 

Fig. 5.6 Sum Pattern for Continuous Line Source wi th Un~forrn Excitation 
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whose field heights trail off as u-I, the pair of side lobes closest in being down 
13.5 dB. As 0 moves in real space from 0 to 0, to n, (5.60) indicates that u moves to 
the left in Figure 5.6 from (2a / l ) ( l  - Plk )  to 0 to - (2a/ l ) ( l  + Plk) .  The number of 
side lobes in the "visible" range of u thus depends on the aperture length 2a/12. All of 
this is consistent with what has been learned earlier about discrete linear arrays. 

What Taylor sought can be appreciated from a study of Figure 5.6. Suppose, 
for example, one could find a way to depress the nine innermost side lobes on each 
side of the main beam to a common height of -30 dB, meanwhile leaving alone all 
the side lobes that are further out. Clearly, this would give a satisfactory design, 
particularly if the further out side lobes were all in the "invisible" range of u. 

An approximation to such patterns can be constructed in the following way: 
Select an integer f i  and say that for I u 1 2 ii, the nulls of the new pattern are to occur 
at integral values of u,  just as in Figure 5.6. But the next pair of nulls in toward the 
main beam will need to occur at u = k u, - ,  , where I u,-, I > ti - I ,  in order to depress 
the intervening side lobes somewhat. Similarly, the penultimate pair of nulls needs 
to be shifted to u = i u , - , ,  where Iu,_, I > n - 2,  and so on. The function that 
expresses this new pattern is 

which can be seen to remove the innermost n - 1 pairs of nulls from the original 
sin nulnu pattern and replace them with new pairs at modified positions *u,. 

Taylor found that the new null positions should be determined from the formula 

with A a measure of the side lobe level (SLL) in that cosh nA = b, with 20 log, ,b = 

SLL. 
An example of a Taylor pattern is shown in Figure 5.7, with ii = 6 and the 

design side lobe level -20 dB. This plot exhibits the characteristic features of all 
Taylor patterns. One can observe that, for lul = ii and beyond, the nulls occur at 
the integers, and that the far-out side lobes decay in field value as u-I .  The close-in 
side lobes are not precisely at the design level -20 dB. The closest in pair are slightly 
below it, the next pair out are a bit lower, and so on, so that there is a slight droop to 
the envelope of the near-in side lobes. However, one finds that this droop is less if 
f i  is selected to be a larger number, and Taylor has shown that the beam broadening 
associated with this droop is negligible in practical circumstances. 

With a Taylor pattern defined by (5.62) and (5.63), it becomes a simple matter 
to find the corresponding aperture distribution from (5.58). If one lets g( [ )  = h(c)e-j", 
with h(c) represented by the Fourier series 

mnc  h([)  = 2 B, cos 
m=O 
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F i g .  5.7 Taylor Sum Pattern for Continuous Line Source, E = 6, -20 dB SLL 

then substitution in (5.58) gives 

mnc . ~ ( u )  = B, J-1 cos _ dc 
m = o  

The odd part of the integrand of (5.65) can be discarded, which leaves 

If u is an  integer, the integral in (5.66) is zero unless m = u ;  as a consequence, 

However, (5.62) indicates that S ( m )  = 0, m 2 f i ,  so this Fourier series truncates, and 
thus the continuous aperture distribution is given by 
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The aperture distribution corresponding to the Taylor pattern of Figure 5.7 
and computed from (5.68) is shown by the solid curve in Figure 5.8. For comparison, 
a bar graph is superimposed showing the Dolph excitation for a 19-element discrete 
array and the same design side lobe level. This reveals a common finding. The Dolph 
distribution typically has a wider swing near the aperture ends than does the Taylor. 
This can be traced to the requirement that all the side lobes in the Dolph pattern are 
at a common height, whereas in the Taylor pattern they droop somewhat. The 
Taylor distribution (discretized) is physically easier to  achieve, which adds to its 
attractiveness. 

-a - ?! - a - a 0 - a a 3a a 
- - 

4 2 4 4 2 4 

Aperture position { 

Fig. 5.8 Taylor Aperture Distribution for Pattern of Figure 5.7; Dolph-Chebyshev Bar 
Graph Overlay 

5.8 Modified Taylor Patterns 

Optimum designs of sum patterns often call for the maximum directivity (minimum 
beamwidth) from a line source of specified length, subject to some specification on 
the side lobe level. However, all directions in space may not be equally important 
insofar as side lobe suppression is concerned. Since every side lobe that is suppressed 
costs something in beam broadening, Taylor patterns (which arise when equal impor- 
tance is attached to all directions) may not be optimum in some applications.ll One 

11These remarks are equally applicable to Dolph-Chebyshev patterns, and the development 
to be presented here will be extended to the discrete array case in Section 5.10. 
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is led to consider designs which permit high side lobes in unimportant regions, while 
maintaining low side lobes in critical regions, that is, patterns with arbitrary side lobe 
topography. 

A perturbation procedure may be used to modify a Taylor pattern so that all 
the side lobes have individually arbitrary heights.I2 It is best to  begin by expressing 
the Taylor pattern of (5.62) in the more general form 

sin nh " = - ( h ~ -  11 
So@) = cop nu ' " - I  

The subscripts R and L in (5.69) are used to identify the right side and the left side 
of the pattern. As generalizations of (5.63), the root positions are given by 

o A t  + ( n  - f)l 112 
U, = -n, I n = -1, -2,. . . , ( n  - 1 (5.71) 

A; + (n, - i)* 
In (5.69) through (5.71), ii, and ii, are positive integers that denote the transition roots 
on the two sides of the main beam (there is a root at -EL and a t  each integer less 
than -6,; there is a root a t  ii, and a t  each integer greater than ii,). The side lobe 
level parameters on the two sides of the pattern are A, and A,. The prime on each 
product sign in (5.69) indicates that the factor for which n = 0 has been excluded. 
Co is a constant. 

It is readily seen that if ii, = ii, = ii and & = & = A, Expression 5.69 reduces 
to  the standard Taylor form of (5.62). The advantage of (5.69) is that it permits the 
two sides of the Taylor pattern to be treated separately, since A, need not equal A,, 
and ii, need not equal ii,. 

In what is to  follow in Section 5.9 the root positions :, will be perturbed in 
order to modify individual side lobe heights. But before passing on to that develop- 
ment, it is interesting to pause and observe that useful patterns can be generated merely 
by choosing the parameters on the two sides of the main beam to  be different. For 
example, if ii, = 8, ii, = 3 ,  A: = 1.291 77, and A2 = 0.58950, the left side corresponds 
to  a 15 dB Taylor and the right side to a 25 dB Taylor. This modified 15/25 Taylor, 
computed from (5.69), is shown in Figure 5.9. It can be seen that some averaging has 
taken place (the innermost side lobe on the left side, at 1 6 . 7  dB, is lower than its 
counterpart in the symmetrical Taylor 15/15; the innermost side lobe on the right 
side, at --24.3 dB, is higher than its counterpart in the symmetrical Taylor 25/25). 
However, this efTect is systematic, and one could achieve 15/25 by designing for 
13.5126. 

The asymmetry of the side lobe structure in Figure 5.9 caused a small shift in 

1ZR. S. Elliott, "Design of Line-Source Antennas for Sum Patterns with Sidelobes of Indi- 
vidually Arbitrary Heights", lEEE Trans. Antennas Propagat., 24 (1976), 76-83. 
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Fig. 5.9 An Asymmetric Taylor Sum Pattern (0 1975 IEEE. Reprinted from IEEE A P  
Transactions, pp. 100-1 07, 1975.) 

the position of the main beam. This can be compensated easily by a slight change in 
the uniform progressive phase of the distribution. 

Patterns of the type shown in Figure 5.9 are useful in applications where side 
lobe reduction is important on one side of the main beam but not the other. Speci- 
fically, this pattern has the advantage that the beamwidth is narrower and the direc- 
tivity is higher than one finds in a symmetrical Taylor 25/25. 

The aperture distributions corresponding to these modified Taylor patterns can 
be expressed in the Fourier form 

Substitution in (5.58) gives 
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in which 

Integration of (5.73) gives 

and thus 

A plot of the distribution h ( [ )  needed to produce the pattern of Figure 5.9 is 
shown in Figure 5.10. The amplitude distribution of the Taylor 210/20 is shown for 
comparison. It  is well within the state of the art to achieve a discrletization of either 
one of these distributions. 

Fig. 5.10 The Aperture Distribution for the Pattern of Fig. 5.9 (0 1975 IEEE.  Reprinted 
from IEEE A P  Transactions, pp. 100-1 07, 1975.) 

5.9 Sum Patterns wi th  Arbitrary Side Lobe Topography 

I~nagine that a sum pattern S (u )  has been prescribed in which the height of every side 
lobe is individually specified. S(tr) can be expressed in the form of (5.69), that is, 
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with 

sin rrulnu 
f (u)  = 

n = - ( e L - I )  

Let a starting pattern S,(u) be selected such that the side lobe levels on the two sides 
of its main beam separately approximate the average side lobe levels on the two sides 
of the main beam in the desired pattern. Then all the roots in in the starting pattern 
are known, being calculable from (5.70) and (5.71). 

Assume that the roots in the desired pattern are given by 

with the perturbations dun small. Then if 

the desired pattern becomes 

But 

('":) du - ( )  2 + . . . (5.8 1) 0 n 
1 - ulu, 1 - ulu, 

Therefore 

S(u)  = (C,  + 6C) f  (u )  ( 1  - t ) ( l  + ( 1 )  du - . . . 
n=-(8,-1) 

0 n 
1 - ulu, 

and, to first order, 

6C eR- 1 1 S(u) = So@) + -So(u) + So(u) C' --- co 0 n 
" = - ( " L -  1 )  I - U / U "  

which can be put in the useful form 

6C "-1 S(.) 1 - _+ C.  ( ~ 1 : : )  6. -- so(~> 0 n CO n = - ( n ~ - l ) l - ~ I ~ ,  
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Including the main beam and all side lobes, there are ii, + ii, - 1 lobes between 
the anchored roots at -fi, and +w,. Let the positions of the peaks of these lobes in the 
starting pattern be designated by u;, m = - (f i ,  - l), . . . , - 1, 0, I ,  . . . , (ii, - 1). 
Insertion in (5.83) gives 

If the lobe peak positions in the desired pattern are close to those in the starting 
pattern, S(u;) is essentially the height of the mth lobe in the desired pattern, a known 
quantity. Then all the terms appearing in (5.84) are known except the (fi, + ii, - 2) 
pel-turbations dun and the unknown dC/C,. Since there are (fi, + n, - 1) values of 
m to insert in (5.84), this is a deterministic set of linear equations. Matrix inversion 
will yield the root perturbations t3u, which, with the aid of (5.78), give the new root 
positions. When these are used in (5.76), the new pattern may be computed and 
inspected to see if it is close enough to desired. If not, the process can be repeated 
with the new pattern used as starting pattern. 

Experience shows that, for desired patterns in which the variation in heights 
of successive side lobes is not extreme, convergence of this process is rapid; usually 
several iterations are sufficient. For specified patterns of extreme variability, an interim 
desired pattern might need to be postulated to assure convergence. 

As an example of the use of this technique, assume that a symmetrical sum 
pattern is desired, with the three innermost pairs of side lobes at  -40 dB, the next 
four pairs at  -20 dB, and all furlher outside lobes decaying as I u I- ' .  It is convenient 
to use as starting pattern a symmetrical 30130 Taylor with n, = n, = 8. This pattern 
is shown in Figure 5.1 la. Three iterations yield the result displayed in Figure 5.1 1b. 
The expanded range, showing the tailing off of the outer sidc lobes, can be seen in 
Figure 5.1 1c. After the third iteration, all side lobes were within one quarter of a 
dEl of specification. 

The aperture distribution which will produce this desired pattern can be deter- 
mined froin (5.75), with S(m) replacing S,(m), and is shown in Figure 5.12. Because 
the pattern is symmetrical, h(c) is an equiphase distribution. 

A second example involves a desired pattern which is Taylor 20120, fi = 8, 
except that the innermost three lobes on one side of the main beam are to be at  
-30 dB. With the unmodified Taylor used as starting pattern, three iterations produce 
the result shown in Figure 5.13. The corresponding aperture distribution is seen in 
Figure 5.14. Because of the asymmetry in the pattern, h(c) exhibits an asymmetric 
phase distribution to go with the symmetric amplitude distribution.' 

A third example provides more of a challenge for the perturbation procedure. 
Suppose that the desired pattern has the innermost seven side lobes on one side of 

13Resolution of (5.75) into its real and imaginary components indicates that, for a sum pat- 
tern, the amplitude distribution is alnuys symmetrical, whereas the phase distribution is ulways 
asymmetrical if the pattern is asymmetrical, and is always zero if the pattern is symmetrical. 
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Fig. 5.11 The Evolution of a Symmetric Sum Pattern wi th Reduced 
Inner Side Lobes (0 1976 IEEE. Reprinted from IEEEAP Transactions, 
pp. 76-83, 1976.) 



Fig. 5.12 The Aperture Distribution forthe Pattern of Fig. 5.1 1 b (0 1976 IEEE. Reprinted 
from IEEE A P  Transactions, pp. 7(j-83. 1976.) 

Fig. 5.13 A Taylor 20/20 Sum Pattern Modified to Contain Three Depressed Lobes 
(0 1977 IEEE. Reprinted from IEEE AP Transactions, pp. 61 7-621, 1977.) 
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Fig. 5.14 The Aperture Distribution for the Pattern of Fig. 5.1 3 (0 1977 IEEE.  Reprinted 
from IEEE AP Transactions, pp. 61 7-621, 1977.) 

the main beam at a common height of -25 dB, whereas the innermost seven lobes 
on the other side are cascaded in 5 dB steps, the closest-in at -45 dB, the next at 
-40 dB, and the last at - 15 dB. All further out side lobes on both sides are to decay 
as l u l - l .  

Though it is not quite optimum, let the pattern of Figure 5.9 serve as starting 
pattern. It is found that six iterations are needed to bring all side lobes within one 
quarter of a dB of specification. The patterns resulting from each iteration are shown 
in Figure 5.15 and the requisite aperture distribution in Figure 5.16. It can be 
observed that in this case also, because of the asymmetry in the pattern, there 
is an asymmetric phase distribution coupled to the symmetric amplitude distribu- 
tion. Both display considerable fine structure because of the severity in the side lobe 
topography. 

I t  is interesting to observe that this perturbation procedure is capable of 
achieving Taylor's original goal-to find a continuum equivalent to the Dolph- 
Chebyshev discrete excitation-a distribution that will produce a pattern with all side 
lobes in real space at a common specified height. However, this is a point of academic 
interest only. The Taylor pattern suffers an inconsequential loss in beamwidth and 



Fig. 5.1 5 The Evolution of a Sum Pattern wi th a Uniform/Cascaded Side Lobe Structure; 
Six Successive Iterations 
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Fig. 5.16 The Aperture Distribution for the Pattern of Fig. 5.1 5f 

directivity due to the slight droop in near-in side lobes, and requires an aperture 
distribution that is easier to achieve than the continuous distribution which would 
produce uniform side lobes. 

5.10 Discretization of  a Continuous Line Source Distribution 

Continuous line source distributions, such as those shown in the even-numbered 
Figures 5.8 through 5.16 can be sampled at  N f 1 equispaced values of to determine 
the excitation of a linear array consisting of N + 1 equispaced elements. Obviously, 
if N + 1 is large enough, the sampling interval will be so small that all the fine detail 
in the continuous aperture distribution will be captured. Under these circumstances, 



5.10 Discretization of a Cont~nuous Line Source Distribution 173 

the pattern from the discrete array will differ but little from the pattern due to the 
continuous aperture distribution. However, in many practical applications, N + 1 
will be small enough that the sampling results in an excitation which gives a badly 
degraded pattern. It  is possible to circumvent this difficulty by working directly with 
the desired pattern, rather than its continuous aperture distribution. 

Suppose, as an example, one wishes to produce the pattern shown in Figure 
5.13 with a linear array of N + 1 elements spaced 112 on centers. The array length is 
2a = (N + 1)1/2. The full excursion of u is (4all) = N + 1. Thus there are N nulls 
in the visible range of Figure 5.13, which exactly matches the number of roots which 
can be placed on a Schelkunoff unit circle for an array of N + 1 elements. 

Since w = ejw, with ty = Icd(cos 8 - cos 8,) = n(cos 8 - cos O,), and since 
u = (2a/l)(cos 8 - cos 8,), it follows that 

Therefore, if u, is a null in the pattern, then 

is the corresponding root on the unit circle. 
The nulls u, for the pattern of Figure 5.13 are known to good precision. (The 

pattern was computed from Equation 5.76 after the null positions were found using 
the perturbation procedure). Thus it is a simple matter to calculate the roots w,, from 
(5.86). Once these w, roots are known they can be placed in (4.38). When the factors 
are multiplied out, the discrete current distribution is determined. 

If another spacing than 112 is used, this does not affect the root placement, 
nor f (w), nor the current distribution, only the extent of the w-excursion on the unit 
circle and the number of side lobes in visible space. Thus Equation 5.86 can be used 
to determine the root placement regardless of the element spacing. 

As a specific example of this procedure, suppose a 19-element equispaced linear 
array is to be excited so as to produce the pattern of Figure 5.13. Corresponding 
values of u, and w, are listed in Table 5.1 and the normalized current distribution, 

TABLE 5.1 Null positions for pattern of Figure 5.13 
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TABLE 5.2 Discretization of Figure 5.14 

I" 1" I" I" 
Root Conventional Root Conventional 

n Matching Sampling n Matching Sampling 

0 1.0OOF 1 .OOO 10" +5  0.730 14 12.50" 0.714 1 i13.90" 
i l 0.986 1 13.92" 0.981 114.04' 1 6  0.673 1 i 18.31" 0.596 1 i20.96" 
1 2  0.914 13~6.58" 0.906 116.60" i 7  0.448 / 128.12" 0.387 1 +27.99" 
5 3  0.852 (h7.32" 0.847 ( i7 .43" i 8  0.373 / 119.37" 0.518 1 8.90 
i 4  0.804 1 d~8.59" 0.787 lI9.31" 5 9  0.727 / d~ 2.29" 0.782 10" - 

found by expanding n(w - w,), is given in the second column of Table 5.2. For 
comparison, the current distribution found by conventional sampling of the con- 
tinuous aperture distribution of Figure 5.14 is shown in the third column of Table 
5.2. Significant differences can be noted between the two excitations, particularly in 
the outer elements. 

The patterns produced by both current distributions listed in Table 5.2 have 
been computed using Equation 4.14 and are shown in Figure 5.17 for an element 
spacing of 0.71. The pattern due to conventional sampling of the continuous aperture 
distribution is seen to be degraded to an unacceptable level. Only one of the three 
innermost side lobes is depressed, and it is depressed too far, whereas the remainder of 
the side lobe structure does not stay below -20 dB. In contrast, the pattern resulting 
from root matching is an excellent approximation to the desired pattern. (The rise 
in the outer side lobes of both patterns in Figure 5.17 is due to the fact that they are 
repeats of closer-in side lobes. With d/A = 0.7, the w-excursion is 1.4 revolutions 
around the Schelkunoff unit circle). 

An experimental test of the current distribution obtained by root matching, 
and listed in Table 5.2, will be described in Chapter 8 in conjunction with the design 
of a 19-element waveguide-fed slot array. 

This discretizing technique can be applied equally well to an unmodified Taylor 
pattern. For example, if a 19-element array is required to produce the Taylor 20120, 
f i = 6 pattern of Figure 5.7, with the main beam at broadside, the 18 nulls in u-space 
can be computed from (5.63). It is found that 

Thus the roots w, occur in complex conjugate pairs at the angular positions 

Except for a multiplicative constant, the pattern is given by 

9 

f(w) = 11 (w" 2w cos yn -t 1)  
n =  1 



Fig. 5.17 The Sum Pattern of a 19-Element Linear Array, d = 0.71; Design Goal: 
Achieve Pattern of Fig. 5.13; Excitation: in (a), Conventional Sampling; in (b), Root 
Match~ng (0 1977 IEEE. Reprinted from IEEEAP Transactions, pp. 61 7-621,1977.) 
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which, when multiplied out, gives the equiphase current distribution shown in 
Table 5.3. 

TABLE 5.3 Current distribution for discretized Taylor 
20/20, E = 6 

The pattern corresponding to this discrete current distribution is shown in Figure 
5.18 and is seen to be an exellent approximation to Figure 5.7. (Once again, the side 
lobes begin to repeat because of the element spacing.) 

This determination of the discrete excitation by root matching, though superior 
to  conventional sampling, is not sufficient if the side lobe topography becomes too 

Fig. 5.18 The Sum Pattern of a 19-Element Linear Array, d = 0.71; Design Goal :Achieve 
Pattern of Fig. 5.7; Excitation Found by Root Matching 
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severe. To illustrate this, imagine that the pattern of Figure 5.15 is to be produced by 
a 15-element array with 0.47512 spacing. Conventional sampling of the aperture 
distribution of Figure 5.16 leads to the badly degraded and unacceptable pattern 
displayed in Figure 5.19a. When the current distribution is determined by root 
matching, considerable improvement results, as can be seen in the pattern of Figure 
5.19b. However, this pattern is not an adequate approximation to the ideal of Figure 
5.15. In such circumstances, a perturbation procedure can be used to improve the 
approximation to any degree desired.I4 

To see this, assume that-for an equispaced array of N + I elements-a 
0 

current distribution I, has been found by root matching and produces the pattern 
(see Section 4.4) 

and that this pattern is not quite a satisfactory approximation to some ideal that has 
been specified. 

Let (5.87) be called the starting pattern and assume that the desired pattern can 
be expressed in the same form, that is, 

If the starting and desired patterns are not too disparate, one can write 

and expect that the perturbations 61, will be small compared to the starting currents 
0 

/,. When (5.89) is used in  (5.88), the result is that 

Let w; be the positions in w-space of the lobe peaks in the starting pattern, 
with wg the peak position of the main beam, and w:, . . . , w$ the peak positions of 
the N side lobes.I5 Then 

14R. S. Elliott, "On Discretizing Continuous Aperture Distributions", lEEE Trans. Antennas 
Propupat., AP-25 (1977), 617-21. 

l5These peak positions can be found by a peak-finder computer routine, or with reasonable 
accuracy, can be taken to lie halfway between successive w roots. 



Fig. 5.19 The Sum Pattern of a 15-Element Linear Array, d = 0.4751; Design Goal: 
Achieve Pattern of Fig. 5.1 5f ;  Excitation: In (a), Conventional Sampling; In (b), Root 
Matching (0 1977 IEEE. Reprinted from IEEE AP Transactions, pp. 61 7-621, 1977.) 
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If the perturbations are small, w: is close to the peak position of the mth lobe in the 
desired pattern. And if the condition 

is imposed, the two patterns will have been adjusted so that their main beam heights 
are essentially equal. In that case 

is a pure real numberI6 representing the difference in height of the inth side lobe in 
the desired pattern and in the starting pattern. This difference is a known quantity. 

If (5.92) and (5.93) are used in (5.91), the result is N + 1 simultaneous linear 
equations in the unknown complex quantities 61,. Matrix inversion gives the pertur- 
bations in the relative currents, and use of (5.89) gives the new current distribution. 
If this is inserted in (5.88), the new pattern can be computed and compared to the 
desired pattern. If the agreement is satisfactory, the procedure has been completed. 
If not, f (w) can be used as the new starting pattern, and the process repeated. Experi- 
ence has shown that in practical applications only a few iterations are needed to give 
satisfactory convergence. 

If the individual side lobes in the ultimate desired pattern have heights that 
vary markedly from their average value, it may be desirable to select a sequence of 
interim desired patterns, thus moving toward the final goal in a series of gradual 
steps. Since the computer program is simple, this is not a costly operation. 

As an example, this perturbation procedure can be applied to the pattern of 
Figure 5.19b, which is not sufficiently close to the ideal of Figure 5.15. Three iterations 
are sufficient to bring all side lobes within $ dB of specification, as shown in Figure 
5.20. The final normalized current distribution is listed in Table 5.4. 

TABLE 5.4 Discrete current distribution for 15-element array, 
0.4751 spacing, to give pattern of Figure 5 . 2 0 ~  

1 6 1 0  insure that the right side of (5.91) is also pure real, it is desirable either to index the ele- 
ments from the center of the array, or to extract a factor (w)N/2 ,  in order to establish the phase center 
appropriately. Since a sum pattern with asymmetrical side lobes, interspersed by deep nulls, requires 
element excitations which occur as a sequence of complex conjugate pairs relative to the array center, 
one could parallel the development which begins with (5.87) and express the pattern in terms of sines 
and cosines of multiples of y. This leads to a real matrix equivalent of (5.91), which some users of 
this technique might prefer. 



Fig. 5.20 The Sum Pattern of a 15-Element Linear Array, 
d = 0.4751; Design Goal : Achieve Pattern of Fig. 5.1 5f; Excita- 
tion Found by Perturbation Procedure, Starting with Fig. 5.19b 
(0 1 977 IEEE. Reprinted from IEEE AP Transactions, pp. 61 7- 
621, 1977.) 
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Section 5.7 was concerned with a synthesis problem solved by Taylor, namely, the 
determination of a continuous line source distribution that would produce a sym- 
metric sum pattern, with pairs of near-in side lobes at  a quasi-uniform height. The 
requisite distribution was found to be symmetrical in amplitude and nonzero at  the 
end points. 

An analogous synthesis problem exists for difference patterns. Can one find a 
continuous line source distribution that will produce a symmetric difference pattern, 
with twin main beams surrounded by pairs of near-in side lobes at  a quasi-uniform 
specified height? 

An approach to the ultimate answer to this question can be patterned after the 
development in Section 5.7. In retrospect, the Taylor line source distribution g (0 ,  
given by Equation 5.68, is seen to be the product of two factors: (1) a uniform pro- 
gressive phase term e-'PC which serves the purpose of determining the pointing 
direction of the main beam, and ( 2 )  a pure real amplitude distribution function 

In (5.94), h ( c )  is represented by all even terms in a Fourier series that are nonzero a t  
the endpoints. The special case of a uniform distribution h([) = constant corresponds 
to taking only the first term of this Fourier series, and results in the generic pattern 
shown in Figure 5.6, which can be modified by root displacement to give the Taylor 
pattern. 

By analogy, it can be anticipated that the line source distribution being sought 
for a Dolph-like difference pattern is representable by a Fourier series consisting of 
all odd terms that are nonzero at  the end points, that is, 

' nc h ( c )  = m - O  2 B.. sin [ ( m  I- T )  _] 

The generic difference pattern should result from taking only the zeroth term of this 
Fourier series, that is, from the aperture distribution 

g ( c )  = sin g) e j P ;  

When (5 .96)  is used in the array factor common to (5 .56)  and (5.57),  it can be seen that 
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= 2j sin (2) sin [ k c  (COS 6 - $)I d l  

with u once again given by (5.60). Integration of (5.97) gives, with the suppression of 
an inconsequential mutiplicative constant, 

nu COS nu D(u) = 
(U - 3>(u + 3) 

This generic pattern is shown in Figure 5.21. It is seen to consist of twin main beams 
that straddle a null at u = 0, plus symmetric pairs of side lobes with heights that 
diminish as 1 u I-'. The innermost pair is only 10 dB below the main beam. However, 
if the near-in null pairs could be shifted outward in some programmed manner, a 
useful difference pattern would result. For example, if the innermost four pairs of side 
lobes could be adjusted to be at a common height of -20 dB, with all further-out 

-7 .5  -5 -2 .5  0 2 . 5  5  7 . 5  

u = (2a /X) (cos  0  - cos Oo) 

Fig. 5.21 Generic Difference Pattern for a Continuous Line Source 
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side lobe pairs unaffected, one would accomplish the equivalent of what Taylor did 
to obtain a -20 dB SLL sum pattern. 

The nulls in. the generic difference pattern given by (5.98) occur (1) at u - 0, 
and (2) when cos nu -= 0, that is, when 

(The n = 0 nulls are removed by the two factors ocurring in the denominator of 
(5.98)). Thus if one wishes to anchor the nulls which occur at &(E + &) and beyond, 
while moving the intervening null pairs so as to depress the near-in side lobes, it is 
clear that (5.98) should be modified to the form 

n -  1 

II ( 1  - u2/u,Z) 
D(u) = nu cos nu = , " = I  

The synthesis problem is now focused on the need to find the new null locations + z r ,  
such that the near-in side lobe pairs are at a quasi-uniform specified level. 

This problem was solved by E. T. Bayliss.I7 Unlike Taylor, who was able to 
determine his null relocation formula (5.63) through recourse to the ideal space factor 
cos nJu2 - A2, Hayliss was not able to find a limiting form for the ideal difference 
pattern. Thus he was obliged to undertake a parametric study with the aid of a com- 
puter, the results of which have yielded the following formulas for root placement. 

The parameters A and <, are related to the side lobe level and their appropriate values 
can be read from Table 5.5. A typical Bayliss pattern for E = 10 and a prescribed 
30 dB side lobe level, is shown in Figure 5.22. These patterns exhibit many of the 

TABLE 5.5 Parameter value versus side lobe level for Bayliss 
difference pattern 

Side Lobe Level in dB 

17E. T. Bayliss, "Design of Monopulse Antenna Difference Patterns with Low Side Lobes", 
Bell System Tech. J., 47 (1968), 623-40. 



- 15 -10 -5 0 5 10 1 5  

z i  = (?a/X)(cos 0 - cos B o )  
Fig. 5.22 Bayliss Difference Pattern for Continuous Line Source, n = 10, -30 d B  SLL 
(0 1976 IEEE. Reprinted from IEEE A P  Transachons, pp. 31 0-31 6, 1976.) 

same characteristics observed in Taylor sum patterns. The near-in side lobes droop 
off slightly and the far-out side lobes decay as luj-I. The near-in nulls have been 
displaced outward to  lower the near-in side lobes. For lnl 2 i the null positions 
occur a t  the half integers. 

The aperture distribution that will produce a Bayliss pattern can be determined 
by multiplying (5.95) by e-jfl' to obtain g(r) ,  inserting the result in the first form of 
(5.97), and using (5.100) for D(u). One finds that 

3 )  = 2 rn B sin [ - r) $1 sin (u  2) tic 

If u is halfway between two integers, say n + +, this integral is zero unless 17 - rn, 
in which case 

D(m + 4) = jaB, (5.103) 

Further, since a)(m + 4) = 0 for m 2 E ,  as can be seen from (5.100), the Fourier 
series truncates. Therefore the aperture distribution for a Bayliss pattern is given by 

5- 1 r 
' )  1 3 7  g(() = e-'flc C 9 ( m  ~: sin 1 (,n :~ T) 

m -0 a _I 

with the factor (.ja)-' suppressed, and with 9(rn - 3) evaluated from (5.100). 
For  the pattern shown in Figure 5.22, use of (5.104) yields the distribution 

shown in Figure 5.23. One observes a symmetrical amplitude distribution which is 
nonzero a t  the end points, but which goes to zero at the midpoint, which is where a 
phase reversal of 180" takes place. 
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Phase 

- I 

Fig. 5.23 Bayliss Aperture Distribution for Pattern of Fig. 5.22 

5.12 Difference Patterns wi th  Arbitrary Side Lobe Topography 

The perturbation procedure used in Section 5.9 to shift the nulls of a Taylor pattern, 
so as to create a sum pattern with the heights of all side lobes individually specified, 
can be applied to Bayliss difference patterns for the same  purpose.'"^ a generaliza- 
tion of (5.100), the starting pattern can be written in the form 

with 
n cos nu 

f (u )  - ti,,-I " 11 -- ul(n + ;)I 
n = - n , .  

The desired pattern can be expressed in the same form, that is, 

D(u) - (C, 1 dC)(u - duo) f (u) Ei ( 1  z) (5.107) 
,J - ( n L - l )  4, i dun 

in which u, = in f dun is the new root position and C := C, + 6C is the amplitude 
factor of the new pattern. 

18R. S. Elliott, "Design o f  Line Source Antennas for Difference Patterns with Side Lobes o f  
Individually Arbitrary Heights", IEEE Tran.~. Antenna.r Propa~at.  AP-24 (1976). 31016. 
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One new feature can be observed in the formulation of (5.107). Whereas the 
starting pattern Do(u) has a null at u = 0, the desired pattern has a null at the shifted 
position u = duo. This is necessary if one wishes to have a deterministic set of pertur- 
bations. Between the anchored roots at u = -tiL and u = ti, there are ii, + tiL lobes 
with heights to be adjusted. Including the null between the two main lobes, there are 
ti, + ti, - 1 movable nulls which, combined with the adjustable amplitude factor 
C, provide just the proper number of degress of freedom. 

When the expansion in (5.81) is used, to first order, 

If the peak positions u; of the lobes in the starting pattern are placed in (5.108), a 
set of ti, + ti, simultaneous linear equations results and matrix inversion gives the 
values of the perturbations. As in the sum pattern case, D(u;)/D,(u;) can be identified 
as being essentially the ratio of the desired height of the mth lobe to its starting 
height. 

An example of the use of this technique is the modification of a Bayliss 30130, 
5 = 10, so that the four innermost pairs of lobes are at -40 dB. Three iterations give 
the pattern shown in Figure 5.24. The corresponding aperture distribution can be 

- 15 - 10 -5 0 5 10 15 

u = (2a /X) (cos  8  - cos 8 , )  

Fig. 5.24 A Modified Bayliss Difference Pattern; Inner Side Lobes Symmetrically 
Depressed (0 1976 IEEE. Reprinted from IEEEAP Transactions, pp. 310-316, 1976.) 
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Fig. 5.25 The Aperture Dlstribut~on for the Pattern of Fig. 5.24 (0 1976 IEEE. Reprinted 
from lEEE A P  Transactions, pp. 31 0-31 6, 1976.) 

found in Figure 5.25. It is significantly different from the distribution for the 
unperturbed Bayliss 30130 (compare with Figure 5.23), but not difficult to achieve in 
practice. 

5.1 3 Discretization Applied t o  Difference Patterns 

The discretizing technique introduced in Section 5.10 does not distinguish between 
sum patterns and difference patterns. If one starts with a desired pattern with known 
null positions, the excitation of the discrete array can be determined so that the nulls 
of its pattern coincide with those of the starting pattern. And, if that is not sufficient 
to cause the lobe heights to agree, the perturbation procedure introduced via Equations 
5.87 through 5.93 can be used to effect the desired result. 

As an example of the application of this technique to difference patterns, let 
the Bayliss 30130, n = 10, of Figure 5.22 be selected as starting pattern. The null 
positions can be calculated from (5.101) and are listed in Table 5.6. If a 10-element 
equispaced linear array is to approximate this pattern, the Schelkunoff unit circle 
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TABLE 5.6 Roots of the Bayliss 30130 pattern 

n 1 2 3 4 5 6 7 8 9 

u, 2.1456 2.7224 3.5553 4.4838 5.4525 6.4450 7.4494 8.4614 9.4787 

should show a root at w = 1 + j O  plus root pairs which can be calculated from 

Thus the nine roots on the Schelkunoff unit circle occur at the angles 

The pattern is given by 

and is shown for 0.7A element spacing in Figure 5.26. The corresponding current 
distribution is found by multiplying out the factors appearing in (5.110), and is 
listed in the second column of Table 5.7, normalized so that the field magnitude of 
the peaks of the twin main beams is unity. 

TABLE 5.7 Normalized currents for patterns of Figures 5.26-27 

Element Number 
n I,, for Figure 5.26 I, for Figure 5.27 

1 k0.0687 '-0.0725 
2 i0.1686 &0.1764 
3 k0.1903 ~ 0 . 1 9 0 3  
4 ";0.1365 i0.1322 
5 k0.0695 k0.0615 

It can be seen from Figure 5.26 that the discretizing of the Bayliss E = 10, 
SLL - 30 dB pattern is not completely satisfactory, since all the side lobes are above 
-30 dB, one pair being as high as -26.5 dB. One could use the perturbation proce- 
dure to place all these side lobes at -30 dB, if that were desired. But imagine instead 
that the desired pattern calls for the innermost pair of side lobes to be at -35 dB, all 
others at -30 dB. Then from the pattern of Figure 5.26, one can deduce that the 
lobe peaks occur at y; = f 28.1 ", i87.6", 1 11 3.0°, 1144.7", 180". Since the 
desired pattern is symmetrical, the perturbations in the currents occur in equal and 
opposite pairs, and it is only necessary to construct a 5 x 5 matrix from Equation 
5.91. With the starting lobe heights read from Figure 5.26, and the desired lobe heights 
known, the left side of (5.91) is known for each of the five values of m. Inversion of 
the matrix gives 61n values which, when added to the starting current distribution, 
gives the new discrete currents. These currents give an inadequate approximation to 
the desired pattern and one finds it necessary to repeat the process by using the result 



Fig. 5.26 The Difference Pattern of a 10-Element Linear Array, d = 0.71; Design Goal : 
Achieve Pattern of Fig. 5.22; Excitation Found by Root Matching 

as a new starting pattern. Three successive iterations are sufficient and yield the 
desired current distribution listed in the third column of Table 5.7. This distribution 
gives the difference pattern shown in  Figure 5.27. 

Fig. 5.27 The Difference Pattern of a 10-Element Linear Array, d = 0.71; Design Goal: 
All Side Lobes at -30 dB Except Inner Pair at -35 dB;  Excitation Found by Perturbation 
Procedure, Starting with Fig. 5.26 



5.14 Design of Linear Arrays t o  Produce Null-Free Patterns 

Some antenna applications require patterns without nulls. An example is the airport 
beacon antenna which must radiate uniformly in $ to be able to  communicate with 
aircraft arriving from all directions. It must also radiate without nulls in 6 if it is t o  
maintain contact with incoming aircraft which fly at  constant height, and thus appear 
a t  a constantly changing angle 8 with respect to  the antenna. 

A method due to P. M. W ~ o d w a r d ' ~  is useful in such applications. Imagine a 
continuous line source that is uniformly illuminated by a traveling wave distribution 
of the form 

I t  has already been seen in the development leading to (5.61) that, within a multipli- 
cative constant, the field pattern for this distribution is given by 

sin nu 
fAu> = K" -- nu 

in which u = (2a/l)(cos 6 - P, /k ) ,  with 2a the aperture length. This pattern is 
plotted in Figure 5.6 and shows a main beam at  u = 0, or  a t  an angle 8, in real space 
given by 8, = arccos(j3,/k). 

Imagine a continuous aperture distribution composed of a sum of waves of the 
type in (5.1 11) with P, adjusted so that each partial distribution places its main beam 
a t  an angle 8, corresponding to the closest-in null of its neighbor. If the amplitudes 
K, are also properly adjusted, the peaks of the main beams can have an  envelope of 
prescribed shape. Additionally, there will be null filling. The effect is as suggested in 
Figure 5.28 where only the main beams have been sketched to avoid confusion. 

This type of synthesis can be accomplished if the pattern is represented by 

sin n(u - n )  
F(u) = C K" n(u - n )  

n = O  

with u defined by 

2a u = - (cos 8 - cos do) 
1 

(5.1 14) 

where 8, is the pointing angle of the main beam of the zeroth partial aperture distri- 
bution. One can observe from (5.1 13) that u = 1 is both the first null of the zeroth 
partial pattern and the peak of the first partial pattern. Similarly, u = 2 is both the 
first null of the first partial pattern and the peak of the second partial pattern, and so 
on. The values of K, must be selected to fit the specified envelope. 

19P. M. Woodward, "A Method of Calculating the Field Over a Plane Aperture Required to 
Produce a Given Polar Diagram", J,  IEEE (London), pt. IIIA, 93 (1947), 1554-58. 
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cos e 
Fig. 5.28 Woodward-Type Null-Filling 

As an example, consider the design of an airport beacon antenna which is to 
be 8A long and have the main beam of its zeroth partial patterns pointing just far 
enough above the horizon (that is, above I3 = 90") so that one closest-in null lies 
along the horizon. From (5.1 14) one can see that this means 

- 1 - 8 (0 - cos 0,) 

8, - arccos (9) - 82.82" 
Thus in this application 

u - 8 c o s e - 1  

and the zeroth partial pattern has seven nulls in the range 0" 5 I3 < 82.82". 
Imagine that these nulls are to be filled by the other partial patterns such that 

in this range the envelope is csc(9O0 - 13). This is a particularly practical selection 
because it would ensure that an airplane flying at a constant height would continue 
to receive a constant level signal from the beacon as its range changed. It follows that 

K, = csc(9O0 - 0,) and 8, = arccos[(n + 1)/8] n - 1, 2, . . , 7 

A tabulation of the partial beam positions and the amplitudes K,, is shown in Table 
5.8. A plot of (5.113) for this case is shown in Figure 5.29. One can see a ripple around 
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0" 18" 36' 54" 72" 90" 108" 126" 144" 162" 180' 

e 

Fig. 5.29 Null-Filled Cosecant Squared Pattern 

TABLE 5.8 

n 0 1 2 3 4 5 6 7 

the desired envelope of about &2.4 dB, but no nulls. The aperture distribution is 

and is displayed in Figure 5.30. Note that there is considerable fine structure in both 
the amplitude and phase distribution. This would not be a simple aperture excitation 
to achieve, and some pattern degradation from the ideal would have to be anticipated. 

The pattern of Figure 5.29 would be improved if the ripple could be reduced. 
H. J.  Orchard et aLzo have devised a synthesis procedure that can produce null-filled 
patterns with minimum ripple and arbitrary side lobes. 

?OH. J. Orchard, R. S. Elliott, and G. J .  Stern. "Optimizing the Synthesis of Shaped Beam Antenna 
Patterns." Proc. IEEE. Part H. I32 ( 1985). 63-68. 



Aperture variable 

Fig. 5.30 The Aperture Distribution for the Pattern of Fig. 5.29 
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PROBLEMS 

5.1 Show that the choice of a,, in the development of the even-degree Chebyshev polynomial 
in Appendix C also insures that T2,(1) = 1. Similarly, show that the choice of a ,  for 
an odd-degree Chebyshev polynomial insures that TzN-  , ( I )  = 1. 
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5.2 Design a six-element equispaced linear array to give a broadside sum pattern with all 
side lobes at -20 dB. Do this by using (5.12) and (5.13) to deduce the root positions on 
the unit circle and then the current distribution. What is the maximum interelement 
spacing so as to avoid completely a second main beam? If the main beam is to point at 
6, = 45", find the maximum interelement spacing and current distribution. 

5.3 Repeat the preceding problem for a seven-element array. 

5.4 Use Equations 5.18 and 5.19 to obtain an independent calculation of the current dis- 
tributions for Problems 5.2 and 5.3. 

5.5 Design a four-element equispaced linear array to give a Dolph-Chebyshev end-fire 
pattern with side lobes of -15 dB. Find the maximum element spacing, current dis- 
tribution, and 3 dB beamwidth. 

5.6 Show that, for 2N + 1 large, Equation 5.31 is given to good approximation by Equa- 
tion 5.33 for the special case p = l .  

5.7 Find the 3 dB beamwidth of a 36-element linear array, with 3114 spacing, if it is uni- 
formly excited and is designed to radiate a broadside sum pattern. What is your answer 
if the sum pattern is end-fire? If the sum pattern is broadside, but 30 dB Dolph- 
Chebyshev ? 

5.8 Find the directivity for each of the three arrays described in Problem 5.7. 

5.9 With the aid of Figures 5.3 and 5.4, find the half-power beamwidth of an equispaced 
array consisting of 241 elements A/2 on centers, excited to give a Dolph-Chebyshev sum 
pattern, with the main beam pointing at 6, = 30" and with side lobes of -30 dB. What 
is the directivity? 

5.10 A continuous line source is to be designed to give a Taylor pattern at 6, = 45' for 
ti = 6 and a side lobe level of -20 dB. Find P/k ,  A,  and the positions &u,, of the five 
innermost pairs of pattern nulls. Write an expression for the pattern in u-space. Deter- 
mine the corresponding aperture distribution g(c). 

5.11 Use the perturbation procedure described in Section 5.9 to modify the Taylor pattern 
of Problem 5.10 so that the innermost side lobe on one side of the main beam is at 
-30 dB. Find the requisite aperture distribution. 

5.12 A 10-element discrete array, 0.71 spacing, is to be excited to produce the Taylor pattern 
described in Problem 5.10. Use the discretizing procedure described in Section 5.10 and 
determine the excitation in amplitude and phase. The pattern is given by 

in which I,, is the amplitude distribution. If a computer plotter is available, graph S(6) 
and compare it to Figure 5.7. Plot I,, as a bar graph overlay of the continuous aperture 
distribution of Figure 5.8. 

5.13 The pattern due to the discrete array of Problem 5.12 will be found to be somewhat 
degraded from the desired pattern shown in Figure 5.7. Use the perturbation procedure 
outlined in Section 5.10 to determine a modified excitation that will reproduce the 
desired pattern to within *0.25 of all side lobe heights. 
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5.14 A continuous line source is needed to produce a Bayliss difference pattern with ii = 7 
and a side lobe level of 20 dB. Find the null positions and plot the pattern in ( u ( 7.5. 
If the principal null is to point at broadside determine the aperture distribution. 

5.15 A 10-element equispaced linear array, 0.51 spacing, is to be excited to produce a dif- 
ference pattern all of whose lobes are at exactly -20 dB. Use the Bayliss 20120 of Prob- 
lem 5.14 as starting pattern and deduce the discrete current distribution. 



planar arrays: 6 analysis d synluesis 

6.1 Introduction 

The previous two chapters have dealt with the analysis and synthesis of equispaced 
linear arrays. Under certain circumstances, much of what was developed there can be 
carried over to apply to planar arrays. However, practical considerations will at times 
require the use of design techniques that are peculiar to planar arrays. Thus this 
chapter will be seen to consist of a mixture of extensions and new approaches. 

Two basic types of planar arrays will be considered. The first consists of elements 
that form a rectangular grid. The second is composed of elements that lie on concentric 
circles. For both types of arrays it will be assumed that the elements are equispaced, 
though not necessarily with the same spacing in the two orthogonal directions. Often 
it will be assumed that the array can be divided into four symmetrical quadrants for 
the purpose of permitting excitations that will give sum and difference patterns. The 
boundary of the rectangular grid arrays will at different times be assumed to be 
square, rectangular, circular, or elliptical; the boundary of the circular grid arrays 
will always be taken to be circular. 

For rectangular grid arrays, if the boundary is square or rectangular, and if 
the aperture distribution is separable, the pattern is the product of the patterns of 
two orthogonal linear arrays, and all of the ideas previously developed about linear 
arrays can be extended readily. This case will be taken up first because of its simplicity 
and because it reveals so many basic ideas about planar arrays. However, separable 
distributions suffer from some gain limitations which can be overcome by $-symmetric 
patterns. For this reason, Taylor's extension of his line-source analyis to the case of a 
planar aperture with a circular boundary, containing a continuous $-symmetric 
distribution, forms an ideal second topic. Sampling of the Taylor circular distribution 
can give excitation coefficients for either rectangular grid or circular grid discrete 
arrays. 

Extension of Dolph's technique to planar arrays has not been effected for the 
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general case, but Tseng and Cheng have shown how it can be done for rectangular 
grid arrays, with a rectangular boundary, if the number of elements in each direction 
is the same. Their design procedure will be developed in an ensuing section. 

Perturbation methods have been devised that will modify a circular Taylor 
pattern so that the different ring side lobes have arbitrary heights, or  so that the 
pattern is Taylor-like in every $-cut, but $-nonsymmetric. The resulting continuous 
aperture distributions can be sampled and applied to discrete arrays, and these 
methods will also be fully developed. 

As has already been noted in the linear case, sampling continous distributions 
will result in some pattern degradation. For circular grid arrays, it will be shown how 
this degradation can be reduced considerably. The problem is much more difficult 
with rectangular grid arrays, but an  approximate procedure will be presented which 
provides some improvement. 

Difference patterns are amenable to many of these synthesis techniques, and 
some attention will be given to such applications. 

A general formulation of the synthesis of a continuous planar aperture distri- 
bution needed to produce a specified far-field pattern can be given in terms of Fourier 
integrals. A presentation of this technique and some fundamental deductions which 
can be drawn from it form the concluding section of this chapter. 

6.2 Rectangular Grid Arrays: Rectangular Boundary 
and Separable Distribution' 

(a)  PRELIMINARIES Consider a planar array in which the elements are arranged 
in a rectangular grid, with a rectangular boundary, as shown in Figure 6.1. Let there 
be 2N,  I rows of elements, each row parallel to the Y-axis, with common spacing 
d ,  between rows. Let each row contain 2Ny + 1 elementsz with common spacing d,. 
By the mnth element will be meant the element whose positional coordinates are tm = 
md, and q, = nd, in which - N ,  m 2 N ,  and - N y  2 n 5 N,. The current 
representa t ive  of t h e  lrlnth e lement  will be  des ignated I,,. W i t h  th i s  no ta t ion ,  t h e  

array factor in (4.7) can be written 

I f  the representative current is magnetic, (6.1) can be replaced by an identical equation 
for 5,(6, 4). Thus the following analysis applies equally well for arrays of elements 
which are replaced by equivalent magnetic sources. 

'The analysis in this section follows closely some earlier writing by the author, contained in 
"Beamwidth and Directivity of Large Scanning Arrays: Part 11," Microwave Journal, 7 (1964), 74-82. 
Also, in Microwave Scanning Antennus, ed. R. C. Hansen, Vol. 2, (New York: Academic Press, 1966), 
Chapter 1. Reprinted with joint permission. 

zThe even case of 2N, by 2Ny elements can be treated in a completely analogous manner. 
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Fig. 6.1 Planar Array; Elements Arranged in  a Rectangular Grid 

If each row has the same current distribution-even though the current levels 
are different in different rows-that is, if Im,/Imo = Io, / Ioo,  then the current distribu- 
tion is said to be separable and the array factor can be expressed in the form 

in which 

and 

Im = Imo/Ioo, 1" = IO"/IOO 

are the normalized current distributions in a row of elements parallel to the X-axis 
and the Y-axis, respectively. 

Equation 6.2 is another example of the principle of pattern multiplication. The 
factors in (6.3) and (6.4) can be recognized as representing linear arrays parallel to 



6.2 Rectangular G r ~ d  Arrays. Rectangular Boundary and Separable D ~ s t r ~ b u t ~ o n  199 

the X- and Y-axes, since 1, . 1, = cos 8, = sin 8 cos 4 and 1, 1, = cos 8, = 

sin 8 sin 4.  Thus, underthe stated restriction that the aperture distribution is separable, 
the array factor for a rectngular grid array with a rectangular boundary is the product 
of the array factors for two linear arrays, one laid out along the X-axis, and the other 
laid out along the Y-axis. Many of the results which have been developed for linear 
arrays in Chapters 4 and 5 can thus be interpreted to apply for this type of planar 
array as well. 

(6) BEAM POSITION OF THE SUM PATTERN If I,,,, differs in phase from I , ,  
by the factor exp[-j(ma, + nu,)] then 

aa(e, 4 )  = 1% I m e j m ( k d z  s i n  8.0. 1 - ..I I n e j n ( k d l  s in  8.1. 1 - Z V )  

- N ,  

and the distribution has a uniform phase progression a, in the X-direction and a 
uniform phase progression a, in the Y-direction. The amplitude distributions I ,  and 
I,, are now pure real. If they are also symmetric, the factor a, represents a pattern 
that consists of a conical main beam and side lobes, rotationally symmetric about 
the X-axis. The main beam of a, makes an angle 8: with the positive X-axis that 
satisfies the relation 

kd, cos 8: - a, = kd, sin 8 cos 4 -- a, = 0 

a cos 8' - -- = sin 8 cos 4 (6.7) 
" - kd, 

Similarly, the factor a, gives a pattern that consists of a conical main beam and side 
lobes, rotationally symmetric about the Y-axis. The main beam of a, makes an angle 
8; with the positive Y-axis satisfying the relation 

cos 8' - 5 = sin 8 sin 4 
- kd, 

The criterion developed in Chapter 4 applies to these two patterns with respect to the 
avoidance of multiple conical main beams in a, and a,. Neither d, nor d, should 
exceed one-half wavelength if the two conical patterns are to be scanned to the 
vicinity of endfire. 

The planar array factor a, == a,a,, since it is the product of the two linear 
array factors, is principally the intersection of the two conical main beams, plus those 
side lobes of each conical pattern which intersect with the conical main beam of the 
other conical pattern. Of course, it is possible to scan one conical main beam so close 
to the X-axis and the other conical main beam so close to the Y-axis that the two 
conical main beams do not intersect. This is an impractical situation, and a criterion 
will be developed shortly for avoiding it. 

If the two conical main beams do intersect, their product gives two pencil beams, 
one pointing in the half-space z > 0, the other pointing in the half-space z < 0. 
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Almost invariably, the element pattern will be selected to give negligible radiation in 
the half-space z < 0 (through use of a ground plane, for example). There is then left 
a single main pencil beam, pointing in the direction (O,, (5,), with 0, and (5, satisfying 
two equations that can be deduced from (6.7) and (6.8), namely, 

For given spacings d, and d,, and given interelement phase shifts a, and a,, Equations 
6.9 and 6.10 give a unique pointing direction (O,, (5,) in z > 0. Radiation patterns 
from planar arrays, exhibiting this feature of a single pencil beam, are called sum 
patterils. 

Equation 6.10 can be used as the criterion for avoiding the situation that a, 
and a, contain conical main beams that do not intersect. This situation would just be 
reached if sin2 0, = 1. Thus, the elliptical relation 

limits the range of a, (or a,) for specified values of kd,, kd,, and a, (or a,). In  the 
remainder of this analysis, the existence of a single main pencil beam will be assumed. 

( c )  BEAMWIDTH OF THE SUM PATTERN Since the significant side lobes are 
in the two cones defined by (6.7) and (6.8), these cones are the pattern cuts which 
should be taken to determine the side lobe level. However, the profiles of the main 
pencil beam obtained in these two cuts are not, in general, due to two orthogonal 
slices through the pattern. (For example, if the pencil beam lies close to the XY-plane 
at (5, = n/4,  these two cuts are almost coincident.) Thus it is desirable to define 
beamwidth in another fashion, one which will reveal more information about the 
structure of the pencil beam. 

In what is to follow, it will be shown that the - 3  dB contour of the pencil beam 
is approximately elliptical. The beam cross section is suggested in Figure 6.2. At a 
given large distance r from the planar array, the size and shape of this elliptical contour 
are dependent on the pointing direction (Oo, (5,), as is the tilt of the axes of the ellipse. 
The two orthogonal planes which contain, respectively, one or the other of the 
ellipse axes, plus the origin, may be used to define the pattern cuts in which the 
beamwidth is measured. These two orthogonal measurements of half-power beam- 
width then serve to specify the major and minor diameters of the elliptical contour, 
and thus give an indication of the size and shape of the beam cross section. 

From (6.6), the central point in the main beam has the intensity 
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z 

Fig. 6.2 Orthogonal Beamwidthsof a Pencil Beam (Reprinted from Microwave Scanning 
Antennas. Volume 2, R. C. Hansen. Editor, Courtesy of Academic Press, Inc. 0 1966 
Academic Press.) 

In a nearby direction 8, + 68,$, $- 695, the intensity will be down by 3 dB if 
N r  N v  

a(e ,  + se ,  4, -4- s4 )  = o.707a(e0, 4,) = 0 . 7 0 7 ~  c I,I, 
- N ,  - N v  

= 9 I, enp(jmkd,[sin(8, + 68) c o s ( ~ ,  + 695) - sin 8, cos $,I} (6.12) 
- N ,  

x 9 I. exp(jnkdy[sin(8, + 68) sin($, + 6 0  - sin 8, sin $,I) 
- N u  

For large arrays, 68 and 695 are small, and (6.12) reduces to 
N z  Nv N Z  

0.707 C C I,I, == C I,  exp(jmkd,[cos 8, cos 95, 68 - sin 8, sin 95,695]} 
- N ,  - N v  - N ,  

(6.13) 
x 9 In exp(jnkdY[cos 8, sin 95, 68 + sin 8, cos 0, d$]} 

- N v  

The right side of (6.13) consists of a family of phasors, symmetrically spread out in 
the complex plane, much as in the case of the linear array described in Section 4.3. 
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This sum is to be 0.707 times the sum of the phasors when they are aligned. For 
conventional distributions, the phasors do not need to fan out very far for this to 
occur. The outmost phasor normally does not reach a position of more than 7712 
radians. Thus, if one lets 

R, = kd,[cos 8, cos 4,68 - sin 8, sin 4,641 

and 

R, = kd,[cos 8, sin 4 ,68  + sin 8, cos 4, 641 

the phase factor exp[j(mR, + nR,)] can be expanded in a power series that will 
converge reasonably rapidly even for the largest values of m and n. When this is done, 
(6.13) becomes 

Since the distributions I, and I,, have been assumed to be symmetrical, all summations 
which contain m or n to an odd power are zero. Thus, through third order, 

The two sums that appear on the right side of (6.14) can be evaluated by con- 
sidering the situation in which the beam lies in either the XZ- or the YZ-plane. When 
the XZ-plane is chosen, 4, = 0, and (6.14) becomes 

When the pencil beam lies in the XZ-plane, it is caused by the intersection of: (1) a 
conical beam that makes an angle (7712) - 8, with the X-axis; and (2) a conical beam 
that makes an angle (7712) with the Y-axis. The pattern cut in the XZ-plane is therefore 
identical to the one that would be obtained if there were only a single linear array laid 
out along the X-axis. But this pattern contains two points that lie in the -3 dB 
contour of the pencil beam, namely the points (8 = 8, &$8,, 4 = 0), where 8, is the 
half-power beamwidth of the X-directed linear array when its conical main beam 
makes an angle (n/2) - 8, with the positive X-axis. For this reason, the couplet 
(68 = &Ox,  64 = 0) must satisfy (6.15), which gives 

N Z  Nv N z  Nv  
0.586 C C I,I, = (&kd, cos 8, 8JZ C C mZI,I,, 

- N .  -Nu - N ,  - N v  
(6.16) 
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For the special case 8, = 0, (6.16) yields 

in which @,, is the broadside beamwidth of the X-directed linear array. 
Similarly, with the pencil beam placed in the YZ-plane, one finds that 

If these two results are inserted in (6.14), rearrangement gives 

Since (68, 64), and thus (R, R,), defines the set of pointing directions in which the 
field is 0.707 times the peak value, Equation 6.19 can be viewed as describing the 
-3 dB contour on the pencil beam. T o  see this more clearly, let u- and v-axes be 
erected along lines of longitude and latitude on the sphere of radius r, as shown in 
Figure 6.2. Then 

Substitution of these variables in (6.19) gives 

(u cos 8, cos 4, - v sin 4,)' (U cos 8, sin $,, + v cos 4,)' - (6,20) 4- - 

(r8*o/2)2 (r@Yo/2)2 

This can be recognized as the equation of an ellipse in (u, v)-space. Introduction of 
the axes u' and 71' via the rotation p (compare with Figure 6.2), such that 

u = u' cos p + v' sin p, v = u '  sin p + v' cos p 

permits (6.20) to be written in the form 

In (6.21) d,, and d,, are the diameters of the ellipse measured along its two principal 
axes. The rotational angle P is given by 

tan 2P == 
2 cos 8, sin 24, (6.22) 

(1 + cos2 8,) cos 24, $- [(dl;, $- 8~o) / (@fo  - 6'y2,)] sin2 8, 

At a constant zenith angle 8,, P rotates smoothly through 90" as 4, changes through 
90". Individual expressions for d,, and d,, are unwieldy, but their product is given by 
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the simple expression 

d,,d,, = r 2  sec 8,  8xoi9yo 

Thus the area of the ellipse is independent of 4,. 
If the pencil beam lies in the XZ-plane in the direction (8,, O), the u'- and v'-axes 

are aligned with the u- and v-axes and (6.20) gives 

d, = d,. = r sec 8,  Ox,, dy = d,,, = reyO (6.24) 

In the pattern cuts containing the u-axis or the v-axis, the half-power beamwidths 
are therefore 

8,, = 6 = Q x 0  sec 8,  and 8. = 4 = Oy0 (4 ,  = 0) r r 

Similarly, if the pencil beam lies in the YZ-plane in the direction (8, n/2), the 
uf-axis points in the -v-direction and the v'-axis is aligned with u. For this case (6.20) 
gives 

d, = d,, = r sec 8,  8,,, do = d,. = r8,0 (6.26) 

In the pattern cuts containing the u-axis or the v-axis, the half-power beamwidths 
are now 

8. = d. = Oy0 sec 8,  and 8. = % = 8,, ( 4  = ) (6.27) 
r r 

To use either Equation 6.25 or Equation 6.27, one needs first to determine 
8,,, Oy0, and the zenith pointing angle 8,. For uniform distributions, Ox,  and 8,, 
can be determined by using L,/A and L,,/A and reading the appropriate beamwidth off 
the broadside curve of Figure 5.3. For Dolph-Chebyshev distributions, these beam- 
widths need to be modified by the $factor read from Figure 5.4. After this it is a 
simple matter to determine 8, and 8,. 

It is useful to define an areal beamwidth B by the relation 

Through use of (6.23) this becomes 

B = - - = 8x08yo sec 0, (:)(:I 
The areal beamwidth, which is a measure of the area inside the -3 dB contour of the 
pencil beam cross section, is seen to be independent of 4,. As one would expect, it 
has the same functional dependence on 8,  that the projected aperture does. 

The general effect of scanning a pencil beam can be constructed as suggested 
in exaggeration by Figure 6.3. At broadside-broadside, the cross section of the beam 
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Fig.  6.3 Beam Shape versus Scan Posit~on for a Pencil Beam (Reprint- 
ed from Microwave Scanning Antennas, Volume 2, R.  C. Hansen, Editor, 
Courtesy of Academic Press, Inc. 0 1966 Academic Press.) 

is approximately elliptical (position PI) with dimensions proportional to L;' and 
L;'. As the beam scans in the XZ-plane, the beam cross section elongates in that 
direction (position P,). Scanning in the YZ-plane causes elongation in the other beam 
dimension (position P,). For a constant angle 8,  from the zenith, as the beam ismoved 
from 4 ,  = 0 to 4 ,  -- n/2, the two half-power beamwidths smoothly change and the 
elliptical cross section smoothly rotates, these two effects combining in such a way 
that the areal beamwidth remains constant. 

Thus for narrow pencil beams from large rectangular grid arrays with rectan- 
gular boundaries, if the distribution is separable, the entire subject of beamwidth can 
be based on the results previously obtained for linear arrays. The relations derived 
in this section are quite good to within several beamwidths of the limiting condition 
of no main beam a t  all, defined by (6.1 1). 

(d)  PEAK DIRECTIVITY OF THE SUM PATTERN The peak directivity of this 
type of planar array (compare with Section 1.16) is given by 

D -  4na(eo, 40)@*(807 $0) I: ioZz a(8, m)a*(B, 4 )  sin 8  dB dm 

in which it is assumed that the element pattern is such as to eliminate the total pattern 
in the half-space 8  :, n/2 but is broad enough to be ignored in 8  ( n/2. It has been 
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shown in the literature3 that, for large arrays which are not scanned closer than 
several beamwidths to end-fire, an approximate reduction of (6.30) is 

D = n cos 8, 2LJA 2Ly/IZ 
C (apiao)" Cbq/bo>2 

in which the Fourier coefficients a, and bp describe the aperture distribution in the 
X- and Y-directions, and L, = (2N, + l)d, and Ly = (2N + l)dy are the dimensions 
of the array. This equation has the simple interpretation that the maximum peak 
directivity of a planar array is 

D = nD,Dy cos 8, (6.32) 

in which D, and Dy are the directivities of the two linear arrays. The factor cos 8, 
accounts for the decrease in projected aperture with scan. Unlike the directivity of a 
linear array, which was found to be independent of scan angle, the directivity of a 
planar array is dependent on the zenith coordinate 8,. However, it is independent 
of the azimuthal coordinate 4,. 

Because of the form of (6.31), many of the remarks that have been made about 
the directivity of linear arrays can be applied as well to this type of planar array. For 
aperture distributions with a uniform progressive phase and a symmetric amplitude, 
(6.31) indicates that maximum directivity results from the choice of uniform excita- 
tion. Dolph-Chebyshev distributions suffer from a gain limit for very large arrays, 
and the curves of Figure 5.5 are applicable to  such planar arrays. 

(e)  A RELA TION BETWEEN BEAM WIDTH AND PEAK DIRECTIVITY As in 
the case of linear arrays, one finds from (6.29) and (6.31) that, for this type of planar 
array, peak directivity and the reciprocal of areal beamwidth depend linearly on the 
area of the planar aperture. Elimination of L,Ly/IZZ from these two expressions results 
in 

where f, and fy are the beam broadening factors for the linear arrays of 2N, f 1 and 
2Ny f 1 elements that comprise the two dimensions of the array. The quantity in 
brackets is unity for a uniform distribution, and is essentially unity for a Dolph- 
Chebyshev distribution until gain limiting sets in. Thus, for these practical aperture 
distributions, 

3R. S. Elliott, "Beamwidth and Directivity of Large Scanning Arrays", Appendix D, Micra-  
wave Journal, 7 (1964), 74-82. Also, Microwave Scanning Antennas, ed. R. C. Hansen, vol. 2 (New 
York: Academic Press, 1966), Chapter 1. 
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in which the areal beamwidth is now expressed in square degrees rather than square 
radians4 It  is important to remember that, in (6.34), both quantities are measured at  
the same tilt angle 8,. 

(f) SUM AND DIFFERENCE PATTERNS To this point in the discussion, the 
array factor given by Equation 6.6 has been interpreted under the assumption that 
the normalized current distributions I, and I,, were symmetrical, the result in z > 0 
being a sum pattern consisting of a pencil beam and a family of side lobes. In such 
circumstances, an alternate expression for the array factor is 

NZ NY 

~ ( 8 , $ )  = ( I  + 2 c I. cos m y ,  
m =  1 

(6.35) 

in which 

y ,  = kd, sin 8 cos $ - a,, y ,  = kd, sin 8 sin $ - a, (6.36) 

For the case of an even number of elements in each dimension, 2N,  by 2Ny, (6.35) is 
replaced by 

In this latter case, two difference patterns can be generated, one by causing I, = --I-,, 
while leaving I,, = I-,, the other by doing the reverse. The first condition gives 

2m - 1 2n - 1 
~ ~ ( 8 ,  +) = 4 j [ E  m =  I I, sin ( T ~ x ) ]  [9 I. cos ( T ~ y ) ]  

n=  I 
(6.38) 

while the second condition gives 

I n  t h e  q5 = O0, 180" plane,  a),(Q, q5) gives t h e  p a t t e r n  of an X-directed l inear  a r r ay ,  

identical to the result in (5.3). As one examines a succession of $-cuts in 0" $ < 90°, 
a difference pattern is always observed, with the level of the entire pattern diminishing 
until, at  q5 = 90°, there is no pattern at  all. This behavior is repeated in the other 
three quadrants as $ is varied. The behavior of 9,(8, $) is similar, except that its 
highest level occurs in $ = 90°, 270°, diminishing to zero in $ = 0°, 180". In radar 
applications, the sum pattern of (6.37) can be used to acquire the target by proper 
pointing of the pencil beam, and then the difference patterns a), and a), can be used 
to boresight the target more acc,urately. 

4Equation 6.34 is frequently encountered in the literature with the incorrect coefficient 41,253. 
(See, for example, J.  D. Kraus, Antennas (New York: McGraw-Hill Book Co., Inc., 1950), p. 25.) 
The higher figure results from the improper assumption that the 3 dB contour is rectangular. Since 
the area of a rectangle is 4/72 times the area of its inscribed ellipse, the ratio of these two coefficients 
is readily understood. 
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A proper selection of the current distributions in (6.37), (6.38), and (6.39) can 
yield sum and difference patterns with prescribed side lobe topography. With the 
assumption being made here of separable distributions, this selection is the same as 
for linear array applications, and all of the procedures discussed in Chapter 5 are 
applicable. 

(g) AN ILLUSTRATIVE EXAMPLE Assume that the assignment has been given 
to design a planar array under the following specifications. 

1. Rectangular grid, rectangular boundary, separable distribution. 
2. Sum pattern scannable ~ t 4 5 "  in XZ-plane and f 30" in YZ-plane. 
3. When the sum pattern is broadside-broadside ( 8 ,  = 0°),  the 3 dB beamwidths 

are to be 5" in the XZ-plane and 24" in the YZ-plane. Both principal cuts are 
to be Dolph-Chebyshev, with -30 dB side lobe levels. 

4. The array should be capable of generating both difference patterns as well as 
the sum pattern. 

The last condition implies that an even number of elements should be chosen 
in each dimension. One can determine the lengths L,/A and L,/A through use of 
Figures 5.3 and 5.4. The results are 

To avoid multiple main beams when scanning in the XZ-plane, (4.30) indicates thatS 

Since L ,  = 2N,d,, it follows that 

Thus the tentative choice 2N,  = 20 can be made, but this will need to be checked 
through a computation of final sum patterns at the limiting scan positions. 

Similarly, 

- 0.67 
I 4- sin 30" - 

51t should be observed that, in Chapter 4, linear arrays that extended along the Z-axis were 
considered. Now, linear arrays along the X- and Y-axes are being considered, so cos O o  must be 
replaced by sin 0,. 
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A tentative choice of 2 N y  = 36 can also be made. With L,/A = 11.5 and L y / A  = 23, 
this also means that the tentative values 

-- d x  - - 0.58 and % = 0.64 
il 

are being selected. 
From (6.36) one can learn that 

aTaX = 2n(0.58) sin 45" = (0 .41)2n radians = 148" 

a,""" = 2n(0.64) sin 30" = (0.32)2n radians = 1 1  5" 

A check of Equation 6.1 1 gives 

This indicates that, even if a, and a, take on their maximum values simulatneously, 
the two conical beams will intersect to  give a pencil beam. 

The normalized Dolph-Chebyshev current distributions can be computed from 
(5.19) for a 30 dB side lobe level with 20 and 36 elements, or can be obtained from the 
l i t e r a t ~ r e . ~  The results are shown in Table 6.1. 

TABLE 6.1 

Since the distribution is separable, I,, = I,I,,, and one can prepare a schedule of 
element excitations as suggested in Table 6.2. Only one quadrant needs to be shown 
since the excitation is symmetric. 

One cannot take this design much further without knowing the nature of the 
elements making up the array. Then a feeding network would need to be devised to 
deliver these currents to the individual radiators. This is a complicated problem that 
must take into account not only the self impedance of the elements, but also their 
mutual impedances. The need to scan is an added complication. These problems will 
be addressed in Chapter 8 of this text. 

6L. B. Brown and G .  A. Scharp, "Chebyshev Antenna Distribution, Beamwidth, and Gain 
Tables", Nav. Ord. Report 4629, (California: Corona, 1958). 
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TABLE 6.2 

The areal beamwidth of this array can be computed from (6.29), and at 
broadside-broadside is given by 

B = 8,, 8,, = (5)(2.5) = 12.5 square degrees 

From (6.34), the broadside-broadside directivity is 

As the beam is scanned, the areal beamwidth broadens as sec 8, and the directivity 
decreases as cos 0,. 

(h)  THE NATURE OF THE SIDE LOBE REGION It has been observed that 
planar arrays of this type (rectangular grid, rectangular boundary, separable distri- 
bution) when excited with a symmetrical amplitude distribution, give a sum pattern 
with a pencil beam and side lobes, and that this pattern can be represented as the 
product of two conical patterns, one each from two orthogonal linear arrays. The 
nulls in this sum pattern thus conicide with the nulls in either of the conical patterns. 
On the surface of a large sphere centered at the array midpoint, these nulls are the 
intersections of two families of conical surfaces with the spherical surface, the conical 
axes of these families being the X- and Y-axes. To a person looking down on this 
spherical surface from a remote point on the Z-axis, if the pencil beam is pointing 
broadside-broadside, the grid of null intersections looks as shown in Figure 6.4. It is 
clear from a study of this figure that the main beam is surrounded by mound-type 
side lobes. Those side lobes that occur in the principal planes (XZ or YZ) are depressed 
by an amount governed by the design of the X-oriented and Y-oriented linear arrays. 
Thus, for example, if the X-oriented array is to be -20 dB SLL Dolph-Chebyshev, 
and the Y-oriented array is to be -30 dB SLL Dolph-Chebyshev, then all the mound 
side lobes that occur vertically above or below the main beam in Figure 6.4 (such as 
the side lobe occurring in the half-tone region A) are 20 dB in power level below the 
main beam. Similarly, all the side lobes that occur horizontally to  the right or left of 
the main beam in Figure 6.4 (such as the side lobe occurring in the half-tone region B) 
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Fig. 6.4 Grid of Null Contours for the Sum Pattern of a Planar Array; Separable Aperture 
Distribution; Mound-Type Side Lobes 

are 30 dB in power level below the main beam. However, an off-axis side lobe, such as 
one which occupies region C in Figure 6.4, are the result of the intersection of a 
conical side lobe of the X-directed linear array with a conical side lobe of the Y- 
directed linear array. In this example, all of these off-axis mound side lobes are 
therefore 50 dB in power level below the main beam. 

This pinpoints the principal objection to  separable distributions for planar 
arrays. Side lobe reduction is bought at the price of beam broadening (with a con- 
comitant lowering of directivity). If the design requirement for this pattern were that 
side lobes be at --20 dB in the XZ-plane and at -30 dB everywhere else, then the 
separable distribution overachieves in most of the side lobe region, at the expense of 
resolution and directivity. 

To improve on this situation, one must go to nonseparable aperture distribu- 
tions. As an example, if the entire side lobe region is of uniform importance, what 
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would be most desirable is to see a Dolph-Chebyshev pattern in every $-cut, that is, 
a pattern consisting of a pencil beam and a family of concentric ring side lobes of a 
common height, as suggested by the grid of null contours shown in Figure 6.5. But 

Null contour 

Fig. 6.5 Grid of Null Contours for a $-Symmetric Sum Pattern of a Planar Array; Non- 
separable Aperture Distribution; Ring-Type Side Lobes 

to  obtain a $-symmetric pattern, one must have a $-symmetric aperture distribution. 
Clearly, a rectangular grid array, with a rectangular boundary and a separable 
aperture distribution, does not fit this criterion. Several things are wrong. First, a 
#-symmetric aperture distribution more naturally fits a circular boundary. Second, 
it more naturally fits a circular grid arrangement of the elements. Despite these natural 
drawbacks, it will be seen in Section 6.9 that, under certain circumstances, a rectan- 
gular grid array, with a rectangular boundary and a nonseparable distribution, can 
create a sum pattern which is Dolph-Chebyshev in all $-cuts. 
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But first attention will be turned in Section 6.3 to the creation of a $-symmetric 
sum pattern under the more natural condition of a circular boundary. 

6.3 Circular Taylor Patterns 

Consider a planar aperture with a circular boundary of radius a, as suggested by 
Figure 6.6. If this aperture contains a lineal current density distribution which is 
unidil-ectional, then for this case (1.128) and (1.129), or (1.130) and (1.131), can be 
written in the forms 

a,(0, $) = cos 0 sin q5 1 K,(C, q)ejk' dC d q  (6.40) 

in which S, is reduced to 

b: = sin 0 cos $ q sin 0 sin $ (6.42) 

The integral common to (6.40) and (6.41) can be viewed as the array factor for 
a linearly polarized planar aperture distribution. It is convenient to recast this integral 
in the polar coordinates illustrated in Figure 6.6 and defined by 

X 

Fig. 6.6 Cartesian/Cyl~ndrical/Spher~cal Coordinates 
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If K,(r, 11) is designated as K ( p ,  P), the common integral becomes 

The aperture distribution can be represented by the Fourier series 

If (6 .45)  and the Bessel expansion 

j k p  sin O c o s ( Q - P )  = 5 ( j )mJ, , , (kp sin O)ejm'Q-8) ,"= - m  
(6 .46)  

are inserted in (6 .44) ,  the result is that 

~ ( 0 ,  Q) = 2 2 I' K , , ( ~ ) (  j ) m ~ m ( k p  sin B)ejmQej(n-m)P 
m ; - m n : - i a  0 0 

P d p  d/I (6 .47)  

The /I-integration in (6 .47)  only has a nonzero value when m = n. This reduction gives 

F(0,  $1 = 2n 2 sin 0 ) p  d p  
n = - m  

(6 .48)  

It is clear from a study of (6 .48)  that, if a $-independent pattern is desired, 
n should be restricted to the value zero. Returning to (6 .45) ,  one sees that this corre- 
sponds, quite logically, to choosing an aperture distribution that is P-independent. 

If attention is restricted to this case, then the aperture distribution is K o ( p )  and 
the pattern is given by 

F ( 0 )  = 2nja K o ( p ) J o ( k p  sin 0 ) p  d p  (6 .49)  

When one makes the substitutions 

Equation 6.49 transforms to 

It is useful to note at this point that u is a surrogate for the pointing direction in real 
space, and that p is a surrogate for the radial aperture coordinate. 

A particular example of the use of (6 .51)  is of special importance. If the circular 
aperture is uniformly excited, a condition that can be represented by letting go(p)  = 1 ,  
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then integration of (6.51) gives the sum pattern 

This pattern is plotted in Figure 6.7 and shows a main beam plus a family of side 
lobes that decay in height as the side lobe position becomes more remote from the 
main beam. Since this pattern is rotationally symmetric, the main lobe is a pencil 
beam, surrounded by ring side lobes. How many of these side lobes are in visible 
space depends on the aperture size. Since u = (2all) sin 8,  the range of u correspond- 
ing to  visible space is 0 < u < 2al l .  

This result should be compared to  Figure 5.6 where, for the analogous case of 
a uniformly excited line source, the pattern was seen to  be given by sin nulnu. 

Continuing with the analogy, one can ask what form the function g , ( p )  should 
take in order to  modify the side lobe structure of Figure 6.7 so that the near-in side 

Fig. 6.7 Array Factor Pattern for a Uniformly Excited Circular Aperture 
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lobes are at a quasi-constant controlled height. T. T. Taylor undertook the solution 
to this problem in a companion paper to his earlier treatment of the line s ~ u r c e . ~  
The essence of his analysis consisted in moving the innermost f i  - 1 nulls of Figure 
6.7 to achieve the desired level for the intervening side lobes. If the roots of J,(u) 
are defined by 

then a modification of (6.52) can be written as 

One can see that (6.53) accomplishes the purpose of removing the first n - 1 root 
pairs of (6.52) and replacing them by 6 - 1 root pairs at the new positions i u , .  
Taylor found that the new root positions should be such that 

where once again, -20 log,, cosh nA is the desired side lobe level. 
A typical circular Taylor pattern is shown in Figure 6.8, with f i  = 6 and a design 

side lobe level of -15 dB. The near-in side lobes are seen to droop somewhat. (The 
far-out side lobes share-with those of Figure 6.7-the property of decaying as u-'I2.) 

To find the aperture distribution go(p) that will produce this type of pattern, 
it is helpful to  express go(p) as a series in the form 

When this is done, (6.51) becomes 

Since, in (6.56), S(y,,) is at most contributed to by the kth term in the sum, one can 
write 

7T. T. Taylor, "Design of Circular Apertures for Narrow Beamwidth and Low Side Lobes", 
Trans. IRE, AP-8 (1960), 17-22. 
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Fig. 6.8 Taylor Sum Pattern for a Circular Aperture, ri = 6, -15 dB SLL 

from which 

Because S(ylk) = 0 for k 2 ii, the series in (6.55) truncates, and the aperture distri- 
bution is given by 

where S(ylm) can be computed from (6.53). A plot of (6.59) for the aperture 
distribution corresponding to the pattern of Figure 6.8 is shown in Figure 6.9. 
This distribution, like the pattern, is a figure of revolution. 

R. C. Hansen8 has provided tables of the roots u, of circular Taylor patterns, 

8R. C. Hansen, "Tables of Taylor Distributions for Circular Aperture Antennas," Hughes 
Technical Memorandum No. 587, Hughes Aircraft Co. (California: Culver City, February 1959). 
See also I R E  Trans., AP-8 (1960), 22-26. 
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Fig. 6.9 The Continuous Aperture Distribution for the Circular Taylor Pattern of Fig. 6.8 

together with the aperture distributions go(p) ,  for a range of side lobe levels and for a 
sequence of f i  values. 

6.4 Modified Circular Taylor Patterns: 
Ring Side Lobes of Individually Arbitrary Heights 

If one returns to Equation 6.53, which is the general expression for a circular Taylor 
pattern, and recalls that this equation results from replacing f i  - 1 root pairs of 
J,(nu)/nu with new root pairs at the positions given by (6.54), it becomes apparent 
that there is nothing inviolable about these new root positions. Conceivably, one 
could find a set of positions that would cause the innermost r i  - 1 ring side lobes to 
have individually specified heights. There are practical applications in which this is 
desirable. 

A perturbation procedure has been devised that will determine the proper set 
of root positions once the height of each side lobe has been ~pecified.~ One begins 
by choosing a circular Taylor pattern whose average side lobe level in real space 
approximates the average side lobe level in real space of the desired pattern. Thus 
the starting pattern can be written in the form of (6.53), namely, 

9 0 .  Graham, R. M. Johnson, and R. S. Elliott, "Design of Circular Apertures for Sum Patterns 
with Ring Side Lobes of Individually Arbitrary Heights," Alra Freqrdenza, 47 (1978), 21-25. 
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in which 

The root positions z?, are known and given by (6.54). 
The desired pattern S(u) can be expressed similarly, that is, 

The root positions u, are unknown and will need t o  be determined. But if the desired 
and starting patterns are not too disparate, u, and C can be given by 

Since, to  first order, 

if follows that (6.62) can be put in the form 

SC , = - I  2(u2/C:) Su S(u) , = - + C Soo- 0 n Co I 1 - U2/u,2 

If u; is the peak position of the mth lobe in the starting pattern, S(u:)/So(u:) 
is essentially the ratio of the height of the n ~ t h  lobe in the desired pattern to  its height 
in the starting pattern. This ratio is a known quantity. Thus if u = u; is inserted in 
(6.66), all terms are known except 6C/Co and the fi - 1 root perturbations 6u,. 
Since there are n lobes (including the main beam) in 0 < u < y,,, there is exactly the 
right number of u; values to  use in (6.66) in order to  provide a deterministic set of 
simultaneous linear equations. Matrix inversion gives the perturbations Sun from 
which the new root positions can be deduced. When these are inserted in (6.62) a 
new pattern can be computed and compared to  the ideal. Iteration may be necessary, 
but experience has shown that convergence is usually very rapid. 

As an  illustration of this technique, let the starting pattern be the circular 
Taylor pattern already shown in Figure 6.8, and specify that the desired pattern 
difTer from this only in that the two innermost side lobes should be a t  -25 dB. 
Three successive iterations give a pattern in which all side lobes are within $ d B  of 
specification. The result is shown in Figure 6.10. 
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The aperture distributions for these modified Taylor patterns can be found from 
(6.59). For the pattern of Figure 6.10, the aperture distribution is shown in Figure 
6.1 1 .  I t  is interesting to compare this result with Figure. 6.9. The fine structure in the 
two distributions is comparable, but it can be observed that g,(p) is negative in a 
small region for the case of two suppressed inner side lobes. 

Fig. 6.10 The Circular Taylor Pattern of Fig. 6.8 Modifled So That Two Innermost 
Ring Side Lobes Are Depressed to -25 dB (0 1978 Alta Frequenza. Repr~nted from 
Graham, Johnson, and Elliott, Alta Frequenza, pp. 1-7, 1978.) 

Fig. 6.11 The Continuous Aperture Distribution for the Modified Circular Taylor Pattern 
of Fig. 6.10 (0 1978 Alta Frequenza. Reprinted from Graham, Johnson, and Elliott, Alta 
Frequenza, pp. 1-7, 1978.) 
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Just as there are practical applications in which one desires a sum pattern with 
ring side lobes of different heights, (8-dependence of side lobe level), so too are there 
applications in which it is desirable to have a quasi-uniform side lobe level in every 
$-cut, but with the level different in different $-cuts ($-dependence of side lobe level.) 
In this latter case, the ring sid: lobes undulate in height (take on a "roller-coaster" 
appearance) as one progresses in $. A generalization of Taylor's original technique 
can produce such patterns. 

It can be recalled from the development of Section 6.3 that a linearly polarized 
aperture distribution K ( p ,  P), given by (6.45), will generally create a pattern F(8, $), 
expressed by (6.48). Taylor considered the special case n = 0, leading to $-independent 
patterns. Now it will be necessary to look at the more general case.I0 

The substitutions (6.50) convert the pattern expression (6.48) to the form 

in which 

and 

Equation (6.67) permits the in,;erpretation that the pattern can be represented by a 
Fourier series in 4 with coefficients F,(u). 

Suppose one wishes to have every $-cut be a circular Taylor pattern, but with 
F(u, 4) displaying 4 -a symmet ry .  A s  a n  example ,  let  

1 
-[~.(u) -i- F~(.)I + -[~.(u) 2 - F~(.)I COS(;!) -4, $ < 6, 

(6.70) 
otherwise 

in which F,(u) and Fb(u) are circular Taylor patterns. This composition gives F,(u) 
at 4 = Oc,  then a cosinusoidal transition from F,(u) to Fb(u) as $ departs from 0" 
towardeither -6, or $$,, and then Fb(u) in the regions -n I $ I $, and $, 2 $ 
n. If F,(u) has low side lobes (for instance, 25 dB) and Fb(u) has higher side lobes 
(for instance, 15 dB), then $, controls the extent of the region in which the lower side 

'OR. S. Elliott, "Design of Circular Apertures for Narrow Beamwidth and Asymmetric Side 
Lobes," IEEE Trans. Antennas and Propagat., AP-23, (1975), 523-27. 
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lobes prevail. If in a practical situation Q, need be only 30°, permitting higher side 
lobes in the remaining five-sixths of space can augment the directivity. 

The form chosen for F(u, 4) in (6.70) is only suggestive of the kind of pattern 
construction which is theoretically possible. One could compose F(u, Q) out of 
combinations of many circular Taylor patterns, linked in many ways. Of course, 
the more complicated the composition, the more finely structured will be the aperture 
distribution, and the more difficult will be the physical realization. 

It is instructive to pursue further the class of sum patterns characterized by 
(6.70). The partial functions Fn(u) can be found by regular Fourier inversion of (6.67), 
namely, 

Since F(u, Q) has been selected in (6.70) to be an even function, its insertion in (6.71) 
gives, for k = 0, 

and gives, for k # 0, 

The integration indicated in (6.73) yields compact formulas when 4, = rill, with 
1 a positive integer. Then 

The partial aperture distribution corresponding to each of the partial pattern functions 
F,(u) can be found by taking the inverse transform of (6.68). This has already been 
done in Section 6.3 for n = 0, the result being that g,(p) is given by the truncated 
series (6.59). 

For n # 0 one can proceed by assuming that 

in which J,(y,,n) = 0 defines the mth root of the nth Bessel function. Then from 
integration of (6.68), 
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Inspection of (6.77) reveals that Fn(ynk), with k a positive integer, is at  most contributed 
to  by the kth term of the sum. Thus, returning to  (6.68), one finds that 

so that 

The series in (6.79), unlike (6.59), d o  not truncate. However, for practical aperture 
distributions, they converge very rapidly and g,(p) is significant only for low values 
of n. 

As a specific illustration of these results, let 1 = 2 so that 4, = n /2 .  If Fa(u) is 
25 dB, f i  = 6 ,  and Fb(u) is 15 dB, ti = 3, this choice gives a smooth transition 
from a 25 dB SLL pattern at  4 = 0" to a 15 dB SLL pattern a t  4 = 90°, then 
a constant 15 dB SLL to 4 = 270°, and another smooth transition back to  a 25 dB 
SLL at  4 = 360". A plot of (6.70) for this case is shown in Figure 6.12. 

Use of (6.72) through (6.75) gives 

These expressions for the partial patterns can be used to determine the aperture 
distribution. Since J-,(up) = (-l)"Jn(up), and since (6.81) through (6.83) indicate 
that F_,(u) = F,(u), it follows from (6.68) that for this case g-,(p) = (- l )"g,(p) .  
When this information is placed in (6.69), and then in (6.45), one obtains 

K(P, P)  = $ [ g 0 ( p )  - 2 cos B g 2 ( p )  + odd ,,= 2 I 2(-j)" cos n p  g.(p)] (6.84) 

From (6.59) 

~ O ( P )  *gO,cz(~) f $gO,b(p) 

in which g,,,(p) and goSb(p)  are conventional circular Taylor distribution (correspond- 
ing to F,(u) and Fb(u) which can be read from the tables of R. C. Hansen." 

1 IHansen, "Tables of Taylor Distributions." 



Fig. 6.12 A Sequence of 4-Cuts for a 15/25 dB Modified Circular Taylor Pattern 
(0 1975 IEEE. Reprinted from IEEEAP Transactions, pp. 523-527, 1975.) 
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The remainder of the g,(p) functions appearing in (6.84) can be determined from 
(6.79). Computations show for this case that the peak value of g , ( p )  is 1 1  of g,(O) 
and that the peak value of g,(p) is 6 "/,f g,(O). The higher order modes tail off rapidly: 
g,(p)  reaches only 0.1 % of g,(O) and no attempt was made to compute g , (p )  and 
beyond. 

The aperture distribution computed from (6.84), truncated at  n = 5, is shown 
in Figure 6.13. I t  can be seen that, in any pair of opposing p-cuts, the amplitude 
distribution is symmetric and the phase distribution is asymmetric. This is typical 
of sum patterns with well-defined side lobes (deep nulls) of nonuniform height. 

Relative amplitude Relative aniplitude 

, I , 1 ~ 1 a  I , , , , , , , , I ~ c l  

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
Phase in degrees Phase in degrees 

P /a 
- 10 
-20 - 20 

Relative amplitude Relative amplitude 

110 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
l # , , , I  

1.0 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1.0 
I l l ,  I I 

Phase in degrees I I Phase in degrees 
t 20 t 2 0  

Fig. 6.13 The Continuous Aperture Distribution K ( p ,  P) for the Sum Pattern of Fig. 6.12 
(0 1975 IEEE. Reprinted from IEEE A P  Transactions, pp. 523-527, 1975.) 

6.6 Sampling Generalized Taylor Distributions 
Rectangular Grid Arrays 

The practical applications of Taylor's circular patterns (or of their generaliza- 
tions discussed in the previous two sections), which involve a continuous aperture 
distribution, are few. However, the excitation of discrete planar arrays with circular 
boundaries is often determined by conventional sampling of these continuous distri- 
butions. If the number of elements is large, so that the sampling interval is small, 
this is a satisfactory procedure. But there is always pattern degradation, and the 
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designer must judge whether or  not the result is still superior in side lobe structure 
and beamwidth or  directivity to the pattern obtained from a n  easily determined 
discrete separable distribution. Later in this chapter, techniques will be described 
which improve on conventional sampling, and thus tilt the decision more 
strongly in favor of nonseparable distributions. However, these techniques often use 
sampling of the continuous distributions as a starting point, so it is useful to gain an  
appreciation of the conventional sampling method and what it can achieve. 

A common application involves a rectangular grid array with a circular 
boundary, one quadrant of which is shown in Figure 6.14. For the purpose of illus- 
tration, imagine that the boundary radius is a = 5 1  and that the interelement spacing 
is 0.51 in both directions. This can be viewed as a 20-by-20 array with corners that are 
cut off t o  achieve a circular boundary. If this array is t o  produce a sum pattern with a 
side lobe level of -15 dB, the circular Taylor distribution of Figure 6.9 can be 
sampled to obtain the discrete current distribution. For  the mnth element, the distance 
from the origin is 

which permits determination of p,,, = np,,/a. and thus I,, = g,(p,,) .  
Since this is a nonseparable distribution, but one possessing quadrantal sym- 

Fig. 6.14 One Quadrant of a Rectangular Grid Array with Circular 
Boundary; d, = d, = 0.51, a = 51 
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metry, the pattern can be calculated from 

S (0 ,  Q) = 4 $ 2' I.,, cos [(2m - 2 cos [(2n ')vy] (6.87) 
m = l  n = l  

with ty, = n sin 0 cos $ and tyy = R sin 0 sin $ because, in this example, d, = dy = 

112. 
Patterns conlputed using (6.87) are shown for a series of Q-cuts in Figure 6.15. 

Reasonable agreement with the pattern of Figure 6.8 has been achieved, although 
not all side lobes are under control. 

Conventional sampling of modijied Taylor patterns is also successful if the 
number of elements is large. As an illustration, if a discrete array of the type of Figure 
6.14, but consisting of a 20-by-20 quadrant with corners that are cut off, is excited by 
sampling the distribution shown in Figure 6.13, the result is a pattern some of whose 
$-cuts are shown in Figure 6.16. Agreement with the continuous aperture patterns of 
Figure 6.12 is seen to  be reasonably good. However, some tendency t o  "average out" 
the side lobe level can be observed. 

Sampling of these continuous aperture distributions, for a large number of 
elements, has even been found to be successful for rectangular grid arrays with ellip- 
tical boundaries. If the semimajor and semiminor axes of the boundary are a and b, 

Fig. 6.1 5 Four 4-Cuts of the Sum Pattern of the Array Depicted in Flg. 6.1 4 ;  Excitation 
Found by Conventional Sampling of the Cont~nuous C~rcular Taylor Distribution of Fig. 6.9 
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Fig. 6.16 Four 4-Cuts r .  the Sum Pattern of a Rectangular Grid Array wi th Circular 
Boundary; d, = d, = 0.51. a = 101; Excitation Found by Conventional Sampling of the 
Continuous Modified Taylor Distribution of Fig. 6.13 

all that is needed is a transformation to an equivalent circular apperture via the 
one-way stretch 

This transforms the position of the mnth element from (c,,, q,,) to (r;,, q;,,), after 
which the modified value 

can be deduced, leading to the determination of the current element from I,, = g(pk,). 
Obviously, as the number of elements in the array gets smaller, conventional 

sampling of a continuous aperture distribution leads to more pattern degradation. 
As an illustration, consider the array which has only eight elements per quadrant, as 
suggested by Figure 6.17. If the interelement spacing is to be 0.712 in both directions, 
and if a circular Taylor pattern, -22 dB, ii = 3 is to be approximated, sampling the 
continuous aperture distribution results in a pattern for which several $-cuts are 
displayed in Figure 6.18 with the discrete current distribution shown as an inset. The 



Fig. 6.17 One Quadrant of a 32-  
Element Planar Array; Rectangular 
Grid, Circular Boundary m 

Fig. 6.18 Three $-Cuts of the Sum Pattern of the 
0.72; Excitation Found by Conventional Sampling 
tribution, ii = 6. -22 dB SLL 

Array Shown in Fig. 6.17; d, = d, = 
of a Continuous Circular Taylor Dis- 
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degradation is clearly evident. In Section 6.10 a perturbation procedure will be 
presented that can improve on this situation. 

6.7 Sampling Generalized Taylor Distributions 
Circular Grid Arrays 

I t  is a more natural arrangement (though not necessarily one leading to so practical 
an antenna array from a feeding point of view) to discretize a circular planar aperture 
by laying out a grid of concentric circles rather than using a rectangular grid. One 
would suspect that this might lead to less pattern degradation when a continuous 
aperture distribution is sampled, and this proves to be the case. As an example, let 
the rectangular grid of Figure 6.14 be replaced by a family of concentric circles with 
radii given by 

with d the interradial spacing. If one wishes the same spacing d between adjacent 
elements along any circle, then 

in which Nm is the number of elements on the mth circle. It  is clear that the values of 
Nm that satisfy (6.91) are not integers, but one can round the results to the nearest 
integer. For example, if a = 512 and b = 1212, there are 10 concentric circles, and the 
numbers of elements per circle are given in Table 6.3, under the restriction that N, be 

TABLE 6.3 

divisible by 4 (so that there is quadrantal symmetry). This gives a total of 300 elements 
in the array, exactly the same number as were used in the rectangular grid array of 
Figure 6.14. The layout of one quadrant is shown in Figure 6.19. Because of the 
quadrantal symmetry, the sum pattern is given by 

1 0  N m / 4  

s(0, 4) = 4 C C I,, cos (kt,, sin 0 cos 4) cos (kq,, sin 0 sin 4) (6.92) 
m = l  n = l  

in which r,, = p ,  cos am, and q,, = pm sin a,,, with a,, = (2n - l)z/Nm. If once 
again the desire is to approximate the circular Taylor pattern of Figure 6.8, the 
currents I,, that appear in (6.92) can be determined by sampling the continuous 
distribution shown in Figure 6.9. All the currents on a common circle are the same and 
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1 Fig. 6.19 One Quadrant of a 
Circular Grid Array wi th  Circular 
Boundary; d = 0.51, a = 51, X 

are listed for this application in Table 6.3. Computation gives the pattern shown in 
Figure 6.20, which is seen to be closer to what is desired than those due to  a rectangular 
grid array (shown previously in Figure 6.15). (Only the 4 = 0" pattern cut is shown in 
Figure 6.20 because it was found that, for this application, patterns for 4 = 0°, 15", 

Fig. 6.20 The Sum Pattern of the Circular Grid Array of Figure 6.1 9;  Excitation Obtained 
by Conventional Sampling of Fig. 6.9 
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30°, and 45" were virtually indistinguishable, attesting to the fact that circular grid 
sampling of$-symmetric distributions is more natural than rectangular grid sampling). 

Modified Taylor distributions can also be sampled to provide the excitation for 
circular grid arrays. For example, suppose five concentric rings of radii p, = ma/5, 
m = 1,  2 ,  . . . , 5 contain equispaced elements N ,  = 8m in number, and that this 
circular array is intended to create the sum pattern of Figure 6.10. The reader will 
recall that this is a circular Taylor pattern, -15 dB SLL, ii = 6, except that the 
innermost two ring side lobes are a t  -25 dB. The continuous aperture distribution 
which would give that pattern precisely was shown in Figure 6.1 1 .  Conventional 
sampling gives the current distribution listed in Table 6.4, which in turn produces the 
pattern of Figure 6.21. Once again, only the $ = 0" cut is shown because the different 
$-cuts are essentially the same. One can observe the general features of the desired 

TABLE 6.4 

I ' ~!t tern .rlcircu~ar Jnd a n a l  
1 

wlth five concentric rings 1 PHI = 0 , 
I I 
I 

I 

-20 I 

m 
-0 

-30 

/ 
/ ( 

I 

- 40 I 

-50 1 I 
0 10 2 0 30 40 5 0 60 7 0 8 0 90 

Theta in degrees 

Fig. 6.21 The Sum Pattern for a Circular Grid Array of Five Equispaced Concentr~c Rlngs ; 
a = 2.51; N, = 8m = Number of Equispaced Elementson mth Ring; Excitation Found by 
Conventional Sampling of Fig. 6.1 1 (0 1978 Alta Frequenza. Reprinted from Graham, 
Johnson. and Elliott, Alta Frequenza, pp. 1-7, 1978 ) 
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pattern of Figure 6.10 though there is recognizable degradation-more so than was 
seen in Figure 6.20, partly because there are fewer rings and partly because the desired 
pattern is more intricate. In the next section, a design procedure will be presented that 
can improve substantially on the results of both Figures 6.20 and 6.21. 

6.8 An lmproved Discretizing Technique for Circular Grid Arrays 

The examples of the previous section indicated that conventional sampling of gener- 
alized Taylor continuous aperture distributions causes pattern degradation which is 
more serious when the number of elements in the circular grid array is small. It is 
possible to  remove most of this degradation by employing a different technique-one 
which focuses on the starting pattern and ignores the continuous distribution which 
creates it. 

Assume the existence of a desired pattern S(u), such as Figure 6.10, which is 
$-symmetric and which one wishes to produce with a circular grid array. As an 
interim step, let there be a system of concentric ring sources with normalized radii 

0 

that form the sequence 0 < p ,  < p ,  . - < p ,  5 x, withp = npla. If I, is the current 
level in the mth ring, the finite sum equivalent of (6.51) gives, for the starting pattern, 

0 

The currents I, in (6.93) should be selected so that the nulls of So(u) coincide with 
0 

the nulls of S(u). With I ,  arbitrarily set equal to unity, if u , ,  u,, . . . , u,-,  are the 
innermost M - I nulls of S(u), then 

Equations 6.94 comprise M - 1 simultaneous linear equations in the M - I unknown 
0 0 0 

currents I , ,  I,, . . . , I,. Matrix inversion gives what will be called the starting ring 
current distribution. 

As an illustration, consider again the second example of the previous section. 
If p, = mn/5, and if So(u) is to have the same null positions as the pattern shown 
in Figure 6.10, solution of (6.94) gives the current distribution listed in the second 
column of Table 6.5. Use of these sources in (6.93) produces the pattern displayed in 

TABLE 6.5 Ring current distributions 

0 
Ring Number 111 I, (for Figure 6.22a) 1, (for Figure 6.22b) 
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Figure 6.22a. Reasonable agreement with the desired pattern of Figure 6.10 has been 
achieved, but the outermost side lobes are too low. This situation can be improved. 

Let the desired pattern S(u) be expressed in the same form as (6.93), that is, 
M 

S(u) = 2a m =  C 1 ImpmJo(upm) (6.95) 

u = ( 2 a / h )  sin 0 

(a) 

u = (2a /X)  sin 0 

(b) 

Fig. 6.22 The Sum Pattern for a Planar Array of Five Equispaced Concentric Continuous 
Ring Currents; a = 2.51; Currents are Selected (a) to  Match Pattern Nulls, and (b) After 
Perturbation to Match Side Lobe Heights of Fig. 6.1 0 (0 1978 Alta Frequenza. Reprinted 
from Graham, Johnson, and Elliott. Alta Frequenza, pp. 1-7, 1978.) 
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with 
0 

I, = I, + 61, 

Then 

Let U;  be the position of the nth lobe peak in the pattern So(u),  with u,P referring to 
the main beam, uf to the first side lobe, and so on. Insertion of u,P in (6.97) creates a 
set of M simultaneous linear equations in the M unknown current perturbations. The 
left side of (6.97) involves S(u:) - So(u,P), which is approximately the difference 
between desired lobe level and starting lobe level. This approximate difference is a 

0 

known quantity. Matrix inversion gives 61, which, when added to I,, gives the new 
current distribution I,. When I, is placed in (6.95), S(u) can be computed. If S(u)  is 
sufficiently close to  ideal, this part of the design procedure is completed. If not, S(u)  
can be used as a new starting pattern, with the process repeated. 

Returning to the example, one finds that a sequence of iterations leads to the 
ring current distribution listed in the third column of Table 6.5. The corresponding 
pattern is shown in Figure 6.22b, and has all side lobes within dB of specification. 

These ring currents are not physically realizable, but they prove to  be a valuable 
aid in the determination of the excitation of a circular grid array. T o  see this connec- 
tion, refer first to  Figure 6.23, which shows the arrangement of discrete radiators on 
the mth ring. In order to insure quadrantal symmetry, the mnth radiator should be 
a t  the angular position /Im, = (2n - I)n/Nm, with 1 n N,, and with Nm the num- 
ber of radiators equispaced along the mth ring. 

Fig. 6.23 Discrete Radiating Ele- 
ments in a Circular Grid Arrange- 
ment 
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Since the desired pattern is $-symmetric, all radiators on a common ring should 
have the same excitation, which will be designated by I;. The pattern for this circular 
grid array is therefore 

Since 

with s = 0, 1,  1 2 ,  . . . , Equation 6.98 reduces to 

An interesting interpretation can be placed on Equation 6.99. Each ring of the 
circular grid array contributes to a $-independent part of the pattern, as desired. 
Additionally, each ring of the array causes a $-harmonic series of supplemental 
patterns with N ,  the fundamental component; this part is undesirable. However, for 
a given argument up,, the Bessel function JSNm diminishes as the order sNm increases. 
Quite logically, if Nm is made large enough, one can expect that S(0, $) will be essen- 
tially $-independent. When this is so, a comparison of (6.95) and (6.99) indicates that 
the discrete element currents should be related to the previously obtained ring currents 
by the equation 

Consider again the illustrative example, and assume that the five ring currents 
are discretized so that N, = 41m, with 1 = 1, 2, 3, . . . . Then, since p, has been 
chosen to equal mz/5, for this illustration I ;  = (na/lOl)Im. 

The patterns computed from the complete expression in (6.99) are shown in 
Figure 6.24 for the cases I = l , 2 .  Though only the patterns for $ = 0°, 30" are shown, 
other $-cuts display the same features. One can see that with 1 = 1, the element density 
is too sparse to reduce the $-variable component of the field to a negligible value. 
However, with I = 2 the field is seen to be essentially the same as for the earlier cases 
of the ring currents and the continuous planar distribution. This is a significant 
improvement over the patterns of Figure 6.21, which were due to a sampling of the 
continuous distribution. 

A specific practical example of this result would be a planar array in which 
collinear dipoles or slots were arranged so that their centers lay on concentric circles, 



6.9 Rectangular G r ~ d  Arrays wlth Rectangular Boundaries: Nonseparable Tseng-Cheng Dlstr~butlons 237 

u = (2a,'h) sin 0 u = (2alh) sin 8 

-50 -50 
0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  

u = (2aih)  sin 0 u = (2alh)  sin 8 

Fig. 6.24 Two 4-Cuts of the Sum Pattern of a Circular Grid Array of Five Equispaced 
Concentric Rings; a = 2.56; Excitation as in Table 6.5; Upper: N, = 4/71 = Number of 
Equlspaced Elements on mth  Ring ; Lower: N, = 8m (0 1978 Alta Frequenza. Reprinted 
from Graham, Johnson, and Elliott, Alta Frequenza, pp. 1-7, 1978.) 

the radii of these circles being 0.71, 1.41, . . . , 3.512. Eight equispaced radiators would 
lie on the innermost circle, 16 on the next, and so on. The relative currents would be 
as shown in the last column of Table 6.5. The theoretical sum array pattern would 
then be typified by Figures 6 . 2 4 ~  and d with u = 7 sin 0. 

6.9 Rectangular Grid Arrays wi th  Rectangular Boundaries : 
Nonseparable Tseng-Cheng Distributions 

The analyses presented heretofore in this chapter have shown the following. 
1 .  If a rectangular grid array with a rectangular boundary is given a separable 

distribution, sum and difference patterns can be generated. These patterns are the 
product of two conical linear array patterns, associated with the row and column direc- 
tions of the planar array. If the two linear array distributions are Dolph-Chebyshev, 
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a sum pattern will be produced with uniform height side lobes in each principal plane. 
However, these are mound side lobes, and those which occur off the principal planes 
are suppressed far below the design level, at  a cost in beamwidth and/or directivity. 
(Though the subject was not pursued further, the two linear array distributions that 
comprise the separable discrete planar distribution could be such that arbitrary side 
lobe topography is created in each principal plane. The nature of the pattern is still 
to have mound side lobes, reduced in level off axis. Also, continuous separable rectan- 
gular aperture distributions could have been considered, but if this were only for the 
purpose of being sampled, it was better to begin with discrete separable distributions.) 

2. If a circular aperture contains a linearly polarized continous distribution 
which is $-symmetric, a sum pattern is produced which, for the proper radial depend- 
ence of the distribution (Taylor), has quasi-uniform height ring side lobes. There is 
a beamwidth and/or directivity advantage over a sum pattern with mound side lobes. 
Modified continuous distributions can yield sum patterns with ring side lobes of 
individually arbitrary heights, or can cause sum patterns with ring side lobes that 
undulate in height through a sequence of $-cuts. 

3. Conventional sampling of the continuous aperture distributions described 
in Paragraph 2 is a useful procedure when the number of elements in the discrete 
array is large. It  results in patterns with little degradation, and such arrays enjoy the 
beamwidthldirectivity advantage due to ring side lobes. This method of discretizing 
can be applied successfully to circular grid arrays with circular boundaries, and to 
rectangular grid arrays with either circular or elliptical boundaries. However, as 
smaller and smaller arrays are considered, the pattern degradation worsens and at  
some point becomes unacceptable. 

4. An alternate discretizing technique is available for circular grid arrays that 
overcomes the pattern degradation due to conventional sampling, even when the 
array is small. 

There remains the problem of rectangular grid arrays-with either rectangular 
or circular boundaries-for which one seeks a nonseparable distribution that will result 
in a sum pattern with nondegraded ring side lobes. This problem will be addressed in 
this section for rectangular boundaries, and in the next section for circular boundaries. 

A technique due to F. I. Tseng and D. K. Cheng12 is applicable to rectangular 
grid arrays with rectangular boundaries, with the one restriction that the number of 
elements in a row equals the number of elements in a column. The interelement 
spacings d, and d, need not be equal, and thus the array need not be square. The 
distribution is discrete and nonseparable and, in the original Tseng-Cheng formula- 
tion, gives a Dolph-Chebyshev pattern in every $-cut (and thus ring side lobes). 

The technique will be developed for an array of 2N by 2N elements. (An equiva- 
lent analysis applies for an odd number of elements per row, but the even case has more 
applications, since it also permits a difference pattern.) With quadrantal symmetry 
of the aperture distribution assumed, the expression for the sum pattern is similar to 

I z F .  I. Tseng and D. K. Cheng, "Optimum Scannable Planar Arrays with an Invariant Side 
Lobe Level," Proc. IEEE, 56 (1968), 1771-78. 



6.9 Rectangular Grtd Arrays w ~ t h  Rectangular Bounda r~es :  Nonseparable Tseng-Cheng Dis t rbut ions 239 

(6.87), that is, 

with y, and y, given generally by (6.36). 
Since the main beam pointing direction is defined by y, = y, = 0 ,  if the 

substitutions 

ndx u = -(sin 1 0 cos 4 - sin 8 ,  cos $,) (6.102) 

~ d ,  v = -(sin 8 sin $ - sin 8,  sin $,) 
1 (6.103) 

are made, (6.101) becomes 

N N  
S(u,  V )  = 4 C C I,, cos [(2m - I)u] cos [(2n - I)v] 

m = l  n = l  
(6.104) 

In  the manner of Tseng and Cheng, one can introduce the transformation 

w = w0 cos u cos v (6.1 05) 

Then, since it has been shown in Appendix D that 

I c o z s -  u = ( - I )  cos (2p - I)u 
p = 1  S - p  

with the same formula applying for cos 2'-'v, it follows that a general odd polynomial 
of order 2 N  - 1 can be written in the form 

If one wishes the pattern S(u,  v )  to have the characteristics of the polynomial 
P,,- ,(w), then comparison of (6.104) and (6.106) indicates that 
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The specific case treated by Tseng and Cheng was to choose P2,_,(w) to be the 
Chebyshev polynomial 

(see Appendix C). Identification of d2,-, from (6.108) and its insertion in (6.107) gives 

N 2 N - 1  N + s - 1  2 s - 1  2 s - 1  w "-I  

I,, = C 2 ( N + s -  I ) (  2 s - I  ) i s - r n ) i s - n ) ( f )  (6.109) 
s =  (rn.n) 

Equation 6.109 is the Tseng-Cheng formula for the excitation of an even- 
numbered planar array whose pattern has the features of a Chebyshev polynomial. 

Despite its formidable appearance, (6.109) is a simple formula to program. As 
an example of its use, consider a 10 by 10 array in which d, = 1212 and d, = 31214. 
Assume that it is desired to obtain a pencil beam pointing broadside-broadside 
(8, = 0°), with 20 dB ring side lobes. Then w, is determined in the usual way, such 
that T,,-,(w,) = T,(w,) = 10 in this case. If follows that w, = 1.0558. Equation 
6.109 then gives the current distribution listed in the second column of Table 6.6. 

TABLE 6.6 

20 dB Innermost 
I," Tseng-Cheng Side Lobe-30 dB 

When these currents are used in (6.104), the patterns shown in Figure 6.25 result. One 
can see the typical feature of Tseng-Cheng cuts, namely that they are all Dolph 
patterns. One can also infer the ringlike nature of individual side lobes. 

The analysis presented in this section does not need to be restricted to Chebyshev 
polynomials. If the design requirement is a sum pattern with ring side lobes of indi- 
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Fig. 6.25 Four 4-Cuts of the Sum Pattern of a 1 0  by 1 0  Rectangular Grid Array wi th 
Rectangular Boundary; d, = 0.51, d, = 0.751,; Tseng-Cheng Distribution, -20 dB SLL 
(Reprinted from Radio Science, vol. 12, pp. 653-657, 1977, Copyrighted by American 
Geophysical Union.) 

vidually arbitrary heights, a more general polynomial P,,_,(w) must be selected. I t  
is often possible to determine this generalized polynomial through a perturbation of 
a suitable Chebyshev polynomial.13 

Assume that the coefficients a,,-, of P,, , (w) ,  as defined in (6.106), differ only 
slightly from the coefficients a",,_, of the corresponding T,,_,(w), defined in (6.108). 
That is, let 

a 2 $ - ]  = dl$- l  + 62s-1 (6.1 10) 

Then 
N 

Let w; be the position of the nth peak in the Chebyshev polynomial, as illustrated 
in Figure 6.26a for the case T,(w). One notes that there are N - 1 such peaks in 
w > 0. Further, let w, be that value of w which gives T,,_ ,(w,) = b, with -20 loglob 
the side lobe level in the Dolph pattern. If one inserts successively wf', w:, . . . , wi- , ,  

13R. S. El l io t t ,  "Synthesis o f  Rectangular Planar Arrays fo r  Sum Patterns w i th  R i n g  Side 
Lobes o f  A rb i t ra ry  Topography," Radio Science, 12 (1977), 653-57. 
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Fig. 6.26 Plots of the Chebyshev Polynomial of Ninth Order and the Corresponding 
Modified Polynomial (Reprinted from Radio Science, vol. 12, pp. 653-657. 1977, 
Copyrighted by American Geophysical Union.) 

and w, in (6.1 l l ) ,  the result is N simultaneous linear equations in the N unknowns 
8,,- ,. This is so because the condition P,,- ,(w,) = T,,- ,(w,) can be imposed, in 
which case P,,-,(w,P) - T,,-,(w,P) is approximately the difference in levels of the 
nth side lobe of the desired pattern and the starting (Chebyshev) pattern, a known 
quantity. 

After one solves for the perturbations d,,-, by matrix inversion, the results can 
be placed in (6.110) and then in the first form of (6.106) to see if the resulting polyno- 
mial P,,- ,(w) is close enough to specification. If it is not, the process can be iterated 
until the designer is satisfied. The final set of values of a,,-, can be used in (6.107) to 
determine the current distribution. Experience has shown that this process converges 
rapidly; usually two or three iterations are sufficient. 

As an illustration, suppose that the requirement is to design a 10-by-10 array, 
with d, = 212 and d, = 3114, and that the excitation is to produce a sum pattern with 
concentric ring side lobes, all of which are at -20 dB except the innermost which, 
due to  noise considerations, needs to be at -30 dB. When the procedure just outlined 
is followed, one iteration moves from the Chebyshev plot of Figure 6.26a to the 
modified polynomial plotted in Figure 6.26b. The coefficients of this polynomial 
appear in 

P,(w) = 236.4w9 - 537.1w7 + 409 .6~ '  - 116.1w3 -t 8 . 9 ~  (6.1 12) 

which can be contrasted to the Chebyshev polynomial 

When the coefficients contained in (6.1 12) are used in (6.107), the result is the 
current distribution listed in the third column of Table 6.6. That current distribution 
causes the patterns shown in Figure 6.27. One can observe that these patterns exhibit 
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Fig. 6.27 Four 4-Cuts of the Sum Pattern of a 1 0  by 1 0  Rectangular Grid Array with 
Rectangular Boundary; d,  = 0.51, d, = 0.752; Modified Tseng-Cheng Distribution 
(Reprinted from Radio Science, vol. 12, pp. 653-657, 1977, Copyrighted by American 
Geophysical Union.) 

all the desired features. It is also worth noting that the current distribution is not 
demanding in terms of the present state of the art. 

6.10 A Discretizing Technique for Rectangular Grid Arrays 

In Section 6.6 conventional sampling of circular Taylor distributions was introduced 
and applied to rectangular grid arrays with circular boundaries. It was seen that the 
pattern degradation was small for arrays with many elements, but became unaccept- 
able as the array size was reduced. In Section 6.9 a nonseparable Tseng-Cheng 
distribution was discussed that yields Dolph (or modified Dolph) patterns in every 
$-cut, and is applicable to small as well as large arrays. However, the Tseng-Cheng 
technique requires rectangular boundaries and equal numbers of elements in the two 
directions. If the corners of the array are cut off to fit a circular or elliptical boundary 
and the remaining elements are excited Tseng-Cheng, serious pattern degradation 
occurs. 

There remains the need to improve on conventional sampling for situations not 
covered by the Tseng-Cheng distribution. This problem parallels the one already 
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encountered with linear arrays and overcome by the perturbation technique described 
in Sections 5.8 through 5.10. However, in the linear array case, with N elements there 
were N - 1 $-symmetric conical side lobes needing to be controlled and N - 1 
current ratios that could be adjusted to accomplish the task. This neat deterministic 
relationship does not carry over to the planar array case. For example, if one is 
attempting to produce a sum pattern consisting of a pencil main beam and ring side 
lobes, the problem is essentially one of trying to control the side lobe structure in an 
infinitude of $-cuts with the excitation of a finite number of two-dimensionally 
positioned elements. The best one can hope for is to minimise the deviation of the 
actual side lobe structure from what is desired. 

A technique that has proven useful in problems of this type starts with a current 
0 

distribution I,,, which has been determined by conventional sampling and which 
yields the sum pattern 

0 

&(8, $) = x x I,, cos (kc,, sin 8 cos $) cos (kq,,, sin 8 sin 4) (6.114) 
m n 

Implicit in (6.114) is the assumption that there is quadrantal symmetry in element 
placement and excitation. However, there is no restriction on the shape of the 
boundary, nor do the elements need to be arranged in a regular grid. If the grid is 
rectangular, c,, = (2m - l)d,/2 and q,, = (2n - l)d,/2, but what follou~s has a 
more general applicability. 

Imagine that the starting pattern given by (6.114) is not acceptable and needs 
to  be improved. Let an achievable pattern be given by 

in which fm, = cos (k t , ,  sin B cos $) cos (kq,, sin 8 sin 6) and I,, is a current distri- 
bution which will improve the pattern. If one can assume that 

then the difference between (6.1 15) and (6.114) is simply 

Let a $-cut of the starting pattern be designated by $, and let the peak of the pth lobe 
in this $-cut occur at the angle 8,,. Then 

in which f,,,, = cos ( k t , ,  sin 8,, cos 4,) cos (kll,, sin 8,, sin 6,). 
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Suppose that a number of pointing directions (O,,, $,) is chosen to equal 
exactly the number of elements in one quadrant of the array. If one of these directions 
is at  the peak of the main beam, and if S is equated to So in this direction, then for 
the other directions the left side of (6.1 18) is approximately the difference between 
desired and starting side lobe level, a known quantity. Equation 6.118 then becomes 
a deterministic set that can be solved for the current perturbations 61," by matrix 
inversion. The remainder of the procedure follows in the usual way. One places SI,, 
in (6.116) to obtain the new currents, which in turn are used in (6.1 15) to give the new 
pattern. If the result is not satisfactory, iteration can be undertaken. 

The success of this method hinges on judicious selection of the $-cuts and the 
particular lobes in those $-cuts for use as the pointing directions (O,,, $,). Experience 
has shown that the most easily controlled side lobes are those closest to the main 
beam and that the 4-cuts should be chosen to divide angle space into roughly equal 
regions. 

As an illustration, one can return to the rectangular grid array with circular 
boundary and eight elements per quadrant, depicted in Figure 6.17. Conventional 
sampling of the circular Taylor distriubtion for a -22 dB, ii = 3 pattern led to the 
current distribution shown as an inset to Figure 6.18 and the accompanying unaccept- 
able patterns. If it is desired to move as close as possible to the ideal Taylor pattern 
($-independent, with ring side lobes at  a quasi-constant height of -22 dB), then 
clearly the discrete aperture distribution should be as $-symmetric as possible, 
implying that I,, = I,,,. Thus, for this case, (6.1 18) reduces to 

and there are only five unknown current increments to determitle. 
If the pattern cuts 4, = 11.25", 33.75" are chosen, the regions "belonging" to 

these $-cuts are equal. And if, in addition to the main bean  peak position (0°, $), 
the positions of the two innermost side lobes in the 11.25" and 33.75" cuts are chosen, 
five independent linear equations arise from (6.1 19) which can be solved simultane- 
ously for the values of the 61's. When this is done, a sequence of iterations leads 
to the current distribution shown in the inset of Figure 6.28. The accompanying 
patterns are seen to be a significant improvement over those of Figure 6.18. Though 
not shown, intervening $-cuts differ but little from those displayed in Figure 6.28. 
The current distribution is also seen to be reasonable, though distinct from the 
starting excitation. 

In some applications a better starting pattern can be found than was obtained 
by conventional sampling if use is made of the idea of collapsed distributions. The 
concept of a collapsed distribution can be understood if the coordinate rotation 
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5," = 5;" cos a - rlk" sin a 
vmn = 56, sin + rl;, cos 

is used to transform the general formula for the planar array factor 

to the form 

If  the special condition = q5 is imposed, (6.122) reduces to 

in which 9,, is the polar angle measured from the XI-axis (that is, in the X'Z-plane, 
Ox, = (7~12) - 9 and sin 9 = cos Ox,). 

In words, (6.123) says that if all elements in the planar array are projected onto 
the XI-axis and given their original excitations I,,, the pattern of the resulting linear 
array, in the X'Z-plane is the same as the pattern of the actual planar array in that 
same plane (that is, the $-plane). This result is true whether one is dealing with sum 
patterns or  difference patterns, and whether or not the elements are regularly spaced. 

Let this concept be applied to the illustrative example of this section, namely 
0 0 

the array shown in Figure 6.17. With I,, - I,,,, the normalized starting current distri- 
bution can be represented simply, as shown in Figure 6.29. When this distribution 

Fig. 6.29 Notation for the Star t~ng 
Current D~str ibution of a 32-Element 
Planar Array; Sum Mode m 
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is collapsed onto the X-axis, one obtains the six-element linear array of relative 
excitation 

However, if it is collapsed onto the 45"-line, a nine-element linear array of relative 
excitation 

is obtained. 
If one finds the linear array distributions 

which give conical sum patterns with a -22 dB side lobe level, then the planar array 
pattern would be forced to be correct in the 6 = 0" and $ = 45" planes if 

One could then hope that the pattern in between these two $-cuts would not wander 
too far from what was desired. 

Unfortunately, it would take six controllable currents to satisfy all of these 
conditions, and there are only four relative currents available to be adjusted. So let 
us be content to satisfy the first four equations of (6.124). 

The Brown and Scharp14 tables give, for a -22 dB side lobe level, 

When these values are inserted in the first four equations of (6.124), matrix inversion 
gives the starting current distribution shown in the table inset of Figure 6.30. The 
accompanying patterns are a considerable improvement over those of Figure 6.18 
and are therefore more desirable for use as starting patterns, since they cut down on 
the number of iterations needed in the process associated with Equations 6.1 19. 

14Brown, "Tables." 





6.1 1 Circular Bayliss Patterns 

In the general analysis that introduced Section 6.3, it was shown that, for a planar 
aperture with a circular boundary of radius a, if the aperture contained a continuous, 
unidirectional lineal current density distribution K(p, P), then the array factor could 
be represented by the function 

F(9, #) - 2n 2 (j)"ejn4 Kn(p)J,,(kp sin 0)p dp 
"=-- JOa 

in which K,,(p) is the nth partial aperture distribution, contained in 

In the remainder of the analysis of Section 6.3, attention was focused on the special 
case n = 0, which led to #-independent sum patterns of the circular Taylor type. 
Now, if attention is turned to the special case n = *1, Equation 6.125 becomes 

B(0,Q) = 2nj  I' [ e j 6 ~ l ( p ) ~ , ( k p  sin 9) - e-j6K-,(p)J-,(kp sin g)]p dp (6.127) 
0 

Since J- ,(kp sin 9) = -J,(kp sin e), if K- ,(p) = K,(p), Equations 6. I26 and 6.127 
reduce to 

B(9, Q) = 4nj cor Q ja K , ( ~ ) J , ( ~ ~  sin 9)p dp (6.129) 

In words, this pair of equations indicates that if one excites the aperture with a 
continuous distribution of the type K,(p) cos P, the resulting pattern will be in the 
form f (9)cos 4, in which 

Clearly, the shape of K,(p) will affect the shape off (9). 
In any plane that contains the Z-axis, one finds two opposed #-cuts (half-planes). 

If one half-plane is defined by the angle $J, the other will correspond to the angle 
Q + n. From (6.129) and (6.130) 

%(9, $1 = 4nj cos # f (8) 

B(9, Q + n) = -4nj cos Q f (8) 

Thus the patterns in these two half-planes are mirror images, except for a change of 
sign, and taken together they consitute a difSerence pattern. As one examines the 
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pattern in all the planes that contain the Z-axis, it can be seen from (6.131) and (6.132) 
that the shape of this pattern is governed by f  ( 8 )  in all the planes, with the relative 
height in different planes controlled by cos 4.  In the plane 4 = 0°/1800, the pattern is 
at its greatest level, and in the plane4 = 90°/2700 the pattern is at  a null level. There- 
fore this pattern is useful to provide resolution in the XZ-plane. 

Similarly, if K - , ( p )  = -K, (p) ,  Equations 6.126 and 6.127 reduce to 

K(P, P )  = 2jK1(p)  sin P 
9 ( 8 , 4 )  = -4n sin 4 f ( 8 )  

The entire argument of the previous paragraph can be repeated, except for a shift of 
90" in 4.  The distribution in (6.133) will give rise to a difference pattern, which can 
be used to provide resolution in the YZ-plane. Many modern radar antenna systems 
make use of a sum pattern and both of these difference patterns. 

Since the shape of both difference patterns is due to f ( 8 ) ,  which in turn is 
governed by the radial aperture distribution K l ( p ) ,  attention can be directed to Equa- 
tion 6.130. It is convenient once again to introduce the substitutions 

u  = (2a l l )  sin 8  p  = npla 

which convert (6.130) to the form 

It will prove desirable to express K , ( p )  as an orthogonal expansion in the form 

in which the ,urn coefficients are eigenvalues, to be defined shortly. Substitution of 
(6.136) in (6.135) gives 

f ( u )  =: (f)' m = O  t am SoK J , ( P . ~ ) J ~ ( U ~ )  P ~ P  

Since vJo(v)  = J , ( v )  + vJ ; ( v ) ,  the preceding result can be converted to 

2 - 
= (f) Z A m  n ~ m  J ; ( n ~ m )  J l (nu)  - nu J ; ( n u ) J l ( n ~ m )  (6.138) 

m=O u Z  - p; 
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A study of (6.138) reveals that the condition f(p,) = 0, n # m, can be obtained if 
either pm is defined by Jl(npm) = 0 or by J;(npm) = 0. A return to (6.136) shows that, 
if the first option is chosen, K,(n) must equal zero. Since the desirable aperture distri- 
butions will be found to be nonzero at the boundary p = a, it is appropriate to select 
the second option and define the eigenvalues pm by the equation 

The first twenty of these eigenvalues are listed in Table 6.7. 

TABLE 6.7 Bessel function zeros, J;  (np,) = 0 

With the selection of (6.139), Equation 6.138 reduces to 

It is instructive to consider the special case that the aperture distribution consists 
solely of the m = 0 (or fundamental) term. Then 

The aperture distribution J1(0.586p) is shown in Figure 6.31 and the pattern is plotted 
in Figure 6.32. The typical features of a difference pattern are evident-a null at u = 0, 
then one of the twin main peaks, followed by a sequence of side Iobes which steadily 
decay in height. (Because I J;(nu)] - u-'I2 as u -+ m, I f(u)l N u-~ ' '  for u large). 
However, for many practical applications, the innermost side lobes are too high, and 
the beamwidth of the twin main beams is enlarged because the further-out side lobes 
are lower than required. Thus a more complicated aperture distribution is needed in 
order to get an improved side lobe structure. 

This problem parallels the one already encountered for the sum pattern in 
Section 6.3. There it was noted that Taylor was able to modify the generic sum 
pattern Jl(nu]/nu by an appropriate shift of its innermost i - 1 null pairs and achieve 
a quasi-uniform side lobe level of specified height. E. T. Baylissls has shown how to 
accomplish the same result for circular difference patterns. 

lsE. T. Bayliss, "Design of Monopulse Antenna Difference Patterns with Low Sidelobes," 
Bell System Tech. J.,  47 (1968), 623-50. 
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v = 0 . 5 8 6 ~  

Fig. 6.31 The Aperture Distribution for the Generic Circular Difference Pattern 

Fig. 6.32 The Difference Pattern for a Circular Planar Aperture Excited by the Generic 
Aperture Distribution of  Fig. 6.31 
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Bayliss' pattern function is given by the expression 

fi [ I  - (U/U")~]  
D(u,  4 )  = cos 4 nuJ ; (nu )  ;:: (6.142) 

II [ l  - ( ~ I P " ) ~ ]  
n = O  

Except for an inconsequential multiplicative constant, the 8-factor of (6.142) is seen 
to be a modification of (6.141), with the innermost f i  null pairs of J',(nu) removed and 
i i - 1 new null pairs placed at the positions i u , .  Unlike Taylor, Bayliss was not able 
to find a simple formula from which the roots u,  could be computed. He used fitted 
polynomials to determine that 

The parameters A,  c,, . . . ,c, have already been given in Table 5.5 as functions of 
side lobe level. 

As an illustration of a circular Bayliss pattern, Figure 6.33 shows a plot of Equa- 
tion 6.142 for the case of a -30 dB SLL with f i  = 4.  A characteristic Taylor-like 
droop is seen in the envelope of the close-in side lobes, and then the envelope reverts 
to a w3i2 decay. 

0 1 2 3 4 5 6 7 

u = (2a/X) sin 0 

Fig. 6.33 Typical 4-Cut of a Bayliss Circular Difference Pattern; f i  = 4, -30 dB SLL 
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The apertur~: distribution that causes a circular Bayliss difference pattern can 
be deduced by returning to Equation 6.138. Since J;(np,)  = 0,  the only possible 
nonzero contribui.ion to this sum occurs when u = p,, and then only for the term 
m = n. From (6.137), 

Since f ( p , )  = 0 for n 2 f i ,  the series in (6.136) truncates, and 

in which f (p,) can be taken as the difference pattern evaluated at (p,, 0). It is calcu- 
lable, with the aid of L'Hospital's rule,.from (6.142). 

For the Bayliss circular difference pattern shown in Figure 6.33, the aperture 
distribution computed from (6.145) is shown in Figure 6.34, and is considerably 
changed from the generic case of Figure 6.31. 



6.12 Modified Circular Bayliss Patterns 

The side lobe structure of the difference pattern produced by a circular aperture need 
not be quasi-uniform in height. The perturbation procedure that has already been 
used for sum patterns from line sources, for $-symmetric sum patterns from circular 
apertures, and for difference patterns from line sources, can be applied as well to 
the problem of modifying a circular Bayless pattern to yield an arbitrary side lobe 
topography. 

Let the starting pattern be given in the form (6.142), namely, 

in which the roots in are known and 

The desired pattern can be expressed similarly: 

The assumptions that u, = in + dun and C = Co + dC, together with the expansion 
in (6.65), lead to 

in which u; is the peak position of the mth lobe in the starting pattern. Since there 
are f i  lobes to be adjusted and f i  unknowns, (6.149) is a deterministic set of simulta- 
neous linear equations for which D(u;, $)/D,(u;, $) plays the role of driving function, 
being essentially the ratio of desired to starting height for the mth lobe. Matrix 
inversion gives the perturbations dun, which permit computation of a new pattern. 
Comparison with the ideal determines whether or not further iterations are needed. 

An application of this technique to circular difference patterns is posed in 
Problem 6.21 at the end of this chapter. 

6.13 The Discretizing Technique Applied to  Planar Arrays Excited 
to  Give a Difference Pattern 

With some minor modifications, the technique described in Section 6.10, which was 
used there in application to sum patterns, can also be used for difference patterns. 

0 

Imagine that a starting current distribution I,, has been determined, either by conven- 
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tional sampling of a continuous Bayliss distribution (such as the one shown in Figure 
6.34) or by a procedure to be described later in this section. Then the starting pattern 
can be expressed as 

in which 

g,,(8, $) = sin (kt, sin 8 cos $) cos (kq,, sin 8 sin $) 

if the difference pattern is XZ-oriented, or 

g,,,(8, $) = cos (kc,, sin 8 cos $) sin (kq,, sin 8 sin $) 

if the difference pattern is YZ-oriented. 
One assumes that the achievable pattern can also be given in the same form 

as (6.150); that is, 

4) = C C ~mngm, 
m n 

(6.151) 

where, once again, I,, = jm, + 61,". Then 

and the problem is to choose a judicious set of pointing directions equal to the number 
of elements in a quadrant in order to solve for 61," by matrix inversion. 

It  has alrea.dy been observed, in connection with the illustrative example of 
Section 6.10, tha1:-for small arrays-conventional sampling of continuous aperture 
distributions is inferior to working with collapsed distributions as a method for 

0 

determining a sta.rting set of currents I,,. Therefore, continuing with that example, 
let it be assumed that the starting current distribution is in the form shown in Figure 

0 0 

6.35. (This distritmtion lacks the I,, = I,,, symmetry of Figure 6.29 because, unlike 
the desired sum pattern, the desired difference pattern does not have symmetry about 
the 45"-axis. 

From the collapsed distribution in the $ = 0" plane, one obtains 

whereas the collapsed distribution in the $ = 45"-plane yields 

in which the ai and bj are relative currents in six- and nine-element linear arrays 
excited to give a difference pattern. 
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Fig. 6.35 Notation for the Starting 
Current Distribution of a 32-Ele- 
rnent Planar Array; Difference Mode 

Equations 6.153 through 6.157 give five conditions on the seven unknown cur- 
rents t ,  u, . . . , z. Two more conditions can be found as follows: Let (p,,, Dm,) be the 
position of the mnth element, expressed in polar coordinates. Then for the rectangular 
grid array of Figure 6.35, 

Thus, if one is trying to approximate a Bayliss distribution (which varies as cos P) 
for the example of Figure 6.35, 

t = 3v (6.158) 

Equations 6.158 and 6.159 can be used as the two additional conditions on the current 
distribution. 

If root positions are adjusted graphically on a Schelkunoff unit circle for six- 
and nine-element linear arrays, in order to give difference patterns with uniform 
20 dB side lobe levels, one finds that 

When these values of ai and bj are placed in (6.153) through (6.159), simultaneous 
solution gives the current distribution shown in the table inset of Figure 6.36. The 
corresponding patterns, computed from (6.150), are also shown in Figure 6.36 and 
comprise an acceptable starting point for the iterative procedure. 

For this illustrative example, efforts to improve on the patterns of Figure 6.36 
through use of Equation (6.152) proved fruitless when the desired pattern was pre- 
scribed to behave in 4 as cos 4. However, when the design goal was changed to permit 
the main beam peak to subside as cos 4, but to allow the side lobes to stay at -20 dB 
relative to the highest main beam peak (that is, the one seen in the 4 = 0" cut), the 
iterative procedure yielded the improvement shown in Figure 6.37. The need to alter 
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the design goal can probably be attributed to  the small size of the array, since the 
problem has not been encountered with larger arrays. However, this altered goal is 
actually more in keeping with typical design specifications, in which all regions of 
space are given eclual weight in so far as side lobe suppression is concerned. 

6.14 Comparative Performance of Separable and Nonseparable 
Excitations for Pllanar Apertures 

Many of the results that were obtained in earlier sections of this chapter can be 
brought together to provide a comparison of the performance of planar apertures, 
excited continuously or discretely to produce a sum pattern with a specified side lobe 
level. The principal criteria in this comparative study will be peak directivity and 
beamwidth, and it is advantageous to  normalize these measures as follows. 

Let a planar aperture bounded by an arbitrary contour C be excited by a 
continuous distribution that is uniform in amplitude and uniform progressive in phase. 
This causes a sum pattern whose main beam points in a direction (O,, 4,). If the 
element pattern is assumed to  be hemispherically isotropic, it is a simple matter16 to 
show that the peak directivity is 

in which A is the projected area of the aperture in a plane transverse to the direction 
(go,  4,) and 1 is the free-space wavelength. The areal beamwidth of this sum pattern 
will be designated by the symbol Bo. 

Added significance can be attached to the result (6.160) because no other ampli- 
tude distribution, combined with the given uniform progressive phase distribution, can 
produce this high a peak directivity from the given aperture. Thus Do can be used as 
a figure of merit and the peak directivity D of a sum pattern caused by another ampli- 
tude distribution can be compared to Do. Concurrently, the areal beamwidth B of the 
sum pattern caused by another amplitude distribution can be contrasted to B,. 

With an assumed hemispherically isotropic element pattern, (1.160) and (6.160) 
combine to give for the normalized peak directivity 

E -  .- s.<eo, ~ o ) S , * < ~ O ,  40) 

( A / ~ z )  J "  J " ~ ~ ( 0 ,  ~ ) sz (o ,  $1 sin o d 4  
0 0 

in which S,(O,4) is the array pattern, and could be produced by either a continuous 
or discrete planar aperture distribution. 

As an illustration of the use of (6.161), first consider an array of 18 by I8 ele- 
ments, with d, = d, = 0.4921, and with the elements uniformly excited in amplitude 
and equiphase. The aperture is 8.861 square and &(O, $) can be determined from 

16See, for example, S. Silver, Microwave Anlenttu Theory and Design, MIT Rad. Lab. Series, 
Vol. 12 (New York: McGraw-Hill Book Co., Inc., 1939), pp. 177-78. 
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(6.37). Insertion in (6.161) gives DID, = 0.965. Interestingly, there is a 3.5 % loss in 
peak directivity just due to discretization. 

Next, imagine that these 324 elements are rearranged into a rectangular grid 
with a circular boundary. If they are placed so that d ,  = d, = 0.5001, one finds that 
the circular aperture has the same area as the previous square aperture, namely 
(8.861)2. With uniform excitation, the normalized directivity is now DID, = 0.924. 
There has been an additional 4.1 % loss in peak directivity due to the inefficient use of 
aperture space along the periphery. 

Now, picture a 20-by-20 square array, with d ,  = d, = 0.5001, excited in a sepa- 
rable Dolph-Chebyshev distribution to give 15 dB side lobes in both principal planes. 
For this case, it is found that DID, = 0.621. If some of these elements are cut off17 
so that the remaining 324 fit in a circular boundary of 51 radius, then DID, = 0.748. 
This figure is 17.6 % lower than the previous value of 0.924, found when the same array 
was uniformly excited, even though the side lobe levels are not substantially different 
(- 15 dB in the Dolph-Chebyshev case, - 13.5 dB in the uniform case). 

To see the improvement that can be obtained by going to a nonseparable 
distribution, consider a circular aperture of radius 512, excited by a continuous circular 
Taylor distribution such that the pattern is -15 dB SLL, ri = 3. In this situation, 
DID, = 0.967. If this continuous distribution is sampled in order to find the discrete 
excitation for a rectangular grid of 324 elements, the resulting pattern has a nor- 
malized peak directivity of 0.940. The pattern has ring side lobes (slightly undulating 
because of the discretization), at a quasi-uniform height of -15 dB. The value 
DID, = 0.940 is clearly superior to the value 0.748, found when the same 324 elements 
were separably excited Dolph-Chebyshev, -15 dB SLL. In that case, mound side 
lobes at -30 dB existed outside the principal planes, broadening the main beam, and 
lowering the directivity. This penalty for using a separable distribution is less severe 
as the array is made smaller (because the ratio of the number of off-axis mound side 
lobes to on-axis mound side lobes goes down), but there is always a penalty. It can, 
and should, be avoided whenever directivity is an important consideration. 

Because of its clear superiority when judged by the directivity criterion, the 
Taylor circular distribution deserves further attention. The sum pattern produced by 
this distribution is given by Equation 6.53 and insertion in (6.161) will give the 
normalized peak directivity for a planar aperture with a circular boundary of radus a. 
The normalized half-power beamwidth can be found by the following procedure. 

If the aperture is uniformly excited, the pattern is given by (6.52), that is, 

and L'Hospital's rule can be invoked to determine that So(0) = 0.500. The 3-decibel 
beamwidth can therefore be determined from 

l7This will result in some pattern degradation. 
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When this result is used in (6.158), it is found that 

n u ,  = 1.617 = ka sin 8, 

from which 8, ca.n be deduced. The reference half-power beamwidth is 28, and the 
reference areal beamwidth is 

B,  = 48: 

The half-power heamwidth for the Taylor circular pattern can be computed from 
(6.53) by seeking the value u ,  at which S(u , )  = 0.707S(O). From this, the normalized 
areal beamwidth BIB, can be deduced. 

The calculations just described lead to Figures 6.38 and 6.39, which show the 
normalized peak directivity and normalized beamwidth of a Taylor circular pattern 

Fig. 16.38 Normalized Peak Directivity of Circular Taylor Sum Patterns 
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Fig. 6.39 Normalized Areal Beamwidth of Circular Taylor Sum Patterns 

as functions of side lobe level and the transition integer f i .  Several significant conclu- 
sions can be drawn from a study of these figures. Foremost, at a given side lobe level, 
the normalized beamwidth narrows as ti is increased, but not dramatically; however, 
the normalized directivity peaks and then plunges precipitously. For this reason, it is 
generally wise to pick that value of ii that maximizes the normalized directivity for the 
specified side lobe level. When this is done, the values of DID, and BIB, can be 
tabulated versus side lobe level, as has been done in Table 6.8. This table points up 
the other significant conclusion, that the price paid for a lowered side lobe level is 
a substantial reduction in directivity and a concomitant increase in beamwidth. 

The last column of Table 6.8 indicates that the product of peak directivity and 
areal beamwidth is not constant as the side lobe level is varied. However, it is constant 
for a given side lobe level as the aperture size is permitted to vary. 

For the antenna designer who intends to sample a continuous circular Taylor 
distribution to obtain the excitation of a discrete planar array, it is extremely important 
to be aware of the penalty for not choosing the optimum value of ti. As an illustration, 
for an array of 324 elements in a rectangular grid with a circular boundary, it was 
found that when a Taylor 15 dB SLL, ti = 3 was sampled, a normalized peak direc- 
tivity of 0.940 was achieved. Had one chosen to sample the Taylor 15 dB SLL, ii = 6, 
the result would have been DID, = 0.500. This would represent a loss of nearly 
3 dB merely because of an improper choice of ti. 
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TABLE 6.8 Normalized peak directivity and normalized areal beamwidth 
versus side lobe level at optimum rS for circular Taylor patterns 

Side Lobe Optimum D - B 
Level, dB n Do % 

6.15 Fourier Integral Representation of the Far Field 

Various earlier sec~iions of this chapter have been concerned with the development of 
specific techniques for synthesizing planar aperture distributions to produce desired 
far field patterns. For continuous apertures with circular boundaries, these develop- 
ments included the techniques of Taylor and Bayliss and their extensions. The rectan- 
gular boundary case was treated principally for discrete arrays. The planar aperture 
with an  arbitrary boundary has not heretofore been considered. A powerful technique 
which is applicable to the general boundary case involves the use of Fourier trans- 
forms. This technique permits many general deductions to be made about the prop- 
erties of planar aperture antennas without specifying their shapes and is widely used 
in the theoretical research literature. 

T o  appreciate this technique, consider a thin perfectly conducting infinite plane 
which contains a collection of arbitrarily shaped holes S , .  S,, . . . , S,, as suggested 
by Figure 6.40. Regardless of the method of excitation, the currents in this planar 
antenna are constrained to lie in the XY-plane. The fields due to these currents must 
therefore have the following properties in the surface z = 0: 

E = E  - = H  - = - 0 except in S , ,  S,, . . . , S, 

If the collective area of the holes S , ,  S,, . . . , SN is small compared to the area 
of the metallic part of the conducting plane, the fields in z > 0 can be conveniently 
formulated by thc procedure introduced in Section 3.2 as an application of the 
Schelkunoff equivalence principle. Secondary sources can be placed above the holes 
(in the plane z = Of)  after which the holes can be covered over with perfect con- 
ductor. Use of the image principle then results in removal of the infinite ground plane 
and a new source system consisting of a doubled magnetic current sheet in S , ,  S,, . . . , 
SN and no electric currents whatsoever. Since the magnetic current sheet is related to 
the value of the true tangential electric field in S , ,  S,, . . . , S,  by Equation 1 . 1  13, it 
follows that the far field in z > 0 is uniquely determined by E,,,, in z = 0. 

I t  can be shown (see Appendix F) that the far field in z > 0 is also uniquely 
determined by H,,,,, in z -- 0. This alternate formulation is useful when the collective 
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Fig. 6.40 Infinite Perfectly Con- 
ducting Screen wi th Arbitrarily 
Shaped Holes 

area of the holes S , ,  S , ,  . . . , S ,  is large compared to the area of the metallic part of 
the conducting plane. The Fourier integral formulation to be introduced in this 
section will be in terms of E,,,, in z = 0, but it can be developed with equal facility 
in terms of H,,,, in z = 0. 

Let the electric field in z > 0 be represented by E(x ,  y, z)ejw'. With the time 
factor suppressed, a two-dimensional Fourier transform of this field function can be 
defined by the integral 

E(k, ,  k,,  z )  = 2n J-- J E ( x ,  y ,  z)ejkrX+jkw dx  d y  
- - 

with the inverse transform given by 

I " "  
2n 1- J-- ~ ( k , ,  k,,  z ) e - j k - - j k o  E(x,  y, z )  = - d k ,  d k ,  (6.164) 

E(x ,  y ,  z )  satisfies the homogeneous wave equation (V2 + k2)E(x,  y, Z )  = 0 in the 
source-free region z > 0. When this operation is performed on (6.164), the result is that 

[& + k 2  - ( k :  -+ k ; ) ] ~ ( k , ,  k,,  1) EZ 0 (6.165) 
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A general solutiort of (6 .165)  can be represented by 

E(k, ,  k,, z )  = g(k,,  ky)e- jk .= (6 .166)  

in which 

k ,  = [ k 2  - (kf + k:)]1'2 (6 .167)  

The positive real root must be chosen in (6 .167)  when k 2  > kf + k: and the negative 
imaginary root m ~ ~ s t  be chosen when k 2  < k f  f k:, in order to satisfy the radiation 
condition a t  infinity in z > 0 .  

Returning to (6 .164) ,  one can see that the electric field in z > 0 can be expressed 
in the form 

in which r is the position vector drawn from the origin to  the point ( x ,  y ,  z )  and k = 

I,k, + I,k, + I,k,. Equation 6.168 permits the interpretation that E ( x ,  y ,  z) in z > 0 
can be viewed as the superposition of plane waves with amplitudes g(k,, k , )dk,  d k ,  
and directions of propagation given by k. 

In  analogy to the timelfrequency use of Fourier transforms in electric circuit 
theory, the components k ,  and k ,  of the propagation vector k are often called spatial 
frequencies because of their conjugate relationship to the spatial variables x and y. 

Because V-IZ(x,  y, z) = 0 in z > 0 ,  if the divergence of (6 .168)  is taken, one 
finds that 

which requires that g k r 0 .  Thus only two of the components of g are independent. 
In particular, 

This conclusion is consistent with the earlier argument that E ( x ,  y, z) is uniquely 
determined in z ;> 0 if only E,,,, is specified in the aperture. An important conse- 
quence of this result is that the Fourier transform in (6 .168)  can be simplified by 
suppressing the z-component. When additionally the point ( x ,  y, z) is restricted to  
lie in the aperture, that is, when (x, y, z) + ( 5 ,  tl, 0 + ) ,  one can further reduce (6 .168)  
to 

with the t subscripts indicating that only the transverse ( x -  and y - )  components are 
being used. 
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The inverse transform of (6.170) is 

g,(k,, k,) = & J-- J Ed<, n)e'kz'+'kvq d5 dv 
-m 

The utility of the transform pair (9.170) and (6.171) in problems involving 
pattern synthesis can be appreciated if the substitutions 

k, = k sin 8 cos $ k, = k sin 8 sin $ (6.172) 

are introduced1* and specified to apply for kl; f k: I k2. When this is done, (6.171) 
becomes 

SS E,(<, g ) e j k ( E ~ i n & ~ ~ O + v ~ i ~ s i n d ,  d< dg (for kf + k,2 < kZ) 
SI,S~....,SN 

Equation 6.173 is in the exact same form as the electric vector potential function 
5(8, 4) expressed as Equation 1.122. Therefore g,(k,, k,), with k, and k, given by  
(6.172) and with kf + k,2 < k2, can be identified as the far-field $-function of the 
planar antenna. 

If g,(k,, k,) is fzllly specified, the inverse transform of (6.170) can be used to 
determine the required aperture distribution. In principle, this solves the synthesis 
problem. However, close inspection uncovers some serious difficulties. When $(8,$) 
is specified in the far field in both amplitude and phase, g,(k,, k,) is known exactly 
for k: + k,2 < k2. However, one must choose g,(k,, k,) for kf I k,Z > kZ so that, 
when (6.170) is used, E,((, g) = 0 except over S, ,  S,, . . . , S,. To complicate the 
situation further, 5(8,$) is often specified in magnitude but not in phase. When this 
situation prevails, there is no unique solution to the synthesis problem. Ideally, one 
should choose a phase distribution for F(8, 4) which results in a simple, physically 
realizable aperture distribution over S , ,  S,, . . . , S, and which minimizes the aggre- 
gate effect of gt(k,, k,) in the range kf + k: > k2. This latter condition arises because 
the plane waves in this range are evanescent (k, is imaginary) and do not contribute 
to radiation but rather to reactive stored energy. (This point will be elaborated 
shortly). The general synthesis problem is thus seen to be formidable. It can be 
raised to its ultimate level of difficulty if one also seeks the optimum planar antenna 
shape to produce a specified pattern with the simplest physically realizable aperture 
distribution. 

Despite these difficulties, Equations 6.170 through 6.173 constitute a useful 
formulation of the synthesis problem for planar apertures. Indeed, one of the virtues 
of this formulation is that it permits a penetrating perception of the difficulties of 

'8This linking of (k,, k,) with the real space angle variables (0, 4) is consistent with results 
obtained by applying the method of stationary phase to the integral transform (6.168). See, e.g., 
R. E. Collin and F. J. Zucker, Antenna Theory: Part I,  (New York: McGraw-Hill Book Co., Inc., 
1969), pp. 62-9. 
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synthesis. But beyond this, it permits other important deductions to be made which 
have wide validity. One of these involves the calculation of radiated power and average 
reactive stored energy. 

Since V x E, = - jmpoH in z > 0, it follows from (6.168) that 

V x (ge-jk") dk, dk, 

- - A J J k x ge-jk.' dk, dk, 
2 ~ j W o  -- -- 

The compler: power flow (see Section 1.6) across the aperture plane into the 
half space z > 0 is given by 

in which IS is the real power flow and W,,, and We are the time-average magnetic and 
electric stored energies. Use of (6.168) and (6.174) in (6.175) yields 

lZ d t  dq dk, dk, dkk dki (6.176) 

This sixfold integral can be reduced through use of the orthogonality relation 

with 6 the Dirac delta function. Since the same reduction applies for the q integration, 
one finds that 

[g(kx, ky) x k* x g*(kx, ky)l 1, dkx dky (6.178) 

With the aid of (6. r169), this result can be put in the revealing form 

dk, dkY 
[ ( k 2  - k?)gt • g? t- 1 kt • gt 1 2 ]  7 (6.179) 

A study of the integrand of (6.179) reveals that the expression inside the square brackets 
is always pure real. However, kT is pure real or pure imaginary according to whether 
or not k: = k:  f X.: is less than or greater than k 2 .  Therefore the real radiated power 
comes from that portion of the plane wave spectrum for which k: + k: k 2 ,  whereas 
the average stored reactive energy comes from the remainder of the plane wave 
spectrum (the evanescent waves) for which k:  + k: > k2. This result is consistent 
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with the comments made earlier about the synthesis of a physically realizable aperture 
distribution. 

This formulation of complex power flow in terms of the plane wave spectrum is 
useful in the determination of the input impedance or admittance of various planar 
antennas. As an example, consider the case of an infinitely long narrow slit in a per- 
fectly conducting ground plane, as suggested by Figure 6.41. The electric field in the 
slit is assumed to be uniform, X-directed, and given by 

Fig. 6.41 An Infinitely Long Narrow Slit in  an Infinite Perfectly Conducting Ground 
Plane 

in which a is the slot width and V is the voltage across the gap. From (6.171), one 
finds that in this case 

2v 
= 1,- 6(ky - 0 )  sin (kxa/2)  

a  k x  

It is seen that g does not have a y-component, which is consistent with the fact that 
E, - 0 in z > 0. However, there is a z component which, with the aid of (6.169), 
is found to be 

2 V  sin (kxa/2)  
g,(k,, k y )  = -7 d(k, - 0 )  

kz 
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Because this is a two-dimensional problem, resulting in a delta function depen- 
dency of g on ky,  it is convenient to compute the complex power flow into the half- 
space z > 0 by returning to  (6.176). If in this case P represents the flow per unit 
length of the slit; then 

The input admittance per unit length can be defined by the relation (1/2)VV*Y,* = 

P, as a result of which 

Plots of the real and imaginary components of the input admittance are shown in 
Figure 6.42. The susceptance is positive and this is a capacitance-type aperture. It 

Fig. 6.42 Admittance per Unit 0 0.2 0.4 0.5 
Lenath of the Slit Radiator Shown - 
in Fig. 6.41 a / h  
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can be seen that resonance does not occur in the range 

There are other simple planar antennas for which formulas for the input admit- 
tance can be obtained readily using this plane wave spectrum approach. (See, for 
example, Problem 6.24 a t  the end of this chapter.) For  a full exposition of the utility 
of a Fourier integral representation of the fields produced by planar antennas, the 
interested reader is referred to  the pertinent literature.19 
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PROBLEMS 

6.1 Find the separable current distribution for a rectangular grid array with a rectangular 
boundary if d ,  = 52/8, d,  = 344,  2Nx = 8, and 2Ny = 12, and if 25 dB and 35 dB 
Dolph-Chebyshev patterns are desired in the XZ- and YZ-planes, respectively. Assume 
the main beam points at Bo = 0" and write an equation for the -3 dB contour of the 
main beam. What is the height of the off-axis side lobes? 

6.2 In Problem 6.1, if the element pattern is hemispherically isotropic in z > 0 and is zero 
in z < 0, find the peak directivity. What is the areal beamwidth? Find the changes in 
directivity and areal beamwidth if the beam is scanned to the position 6 = 30°, 4 = 45". 

6.3 Suppose the array of Problem 6.1 is to be used for conical scanning, that is, the position 
of the main beam is to be given by 6 = constant, 4 = Kt,  with K a rate constant and t 

I9For the original exposition, see H. G .  Booker and P. C. Clemmow, "The Concept of an 
Angular Spectrum of Plane Waves and Its Relation to That of Polar Diagram and Aperture Dis- 
tribution," Proc. IEEE, 97 (1950), 11-17. The books by D. R. Rhodes, Synthesis of Planar Antenna 
Sources, (London: Clarendon Press, Oxford, 1974), and by J. R. Goodman, Znrroducrion to Fourier 
Optics, (New York: McGraw-Hill Book Co., Inc., 1968) are also recommended. 
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the time. Finti the uniform progressive phase factors a, and a, as functions of time in 
order t o  achieve this effect. 

6.4 If, instead of the conical scan of Problem 6.3, a raster scan is desired for the array, find 
a, and a, as functions of time. [A raster scan can be defined by 8 = K1 while $ changes 
linearly in time from -4, to +$,; then 8 = K ,  while $ changes linearly in time from 
+$, to  -4,; and so on, with K, ,  K,, . . . a monotonic sequence of constants.] 

6.5 A more pract~cal application of a raster scan is one in which the planar array sits in a 
vertical plane over a horizontal earth, with 8 measured from the earth's zenith and $ 
measured in the earth plane. Repeat the analysis of Problem 6.4 for this case and find 
the sequence lC1, K,, . . . if the main beam positions on successive legs of the raster are 
to  overlap at  the -3 dB points. 

6.6 For  the array of Problem 6.1, sketch the -3 dB contour of the main beam when it is 
a t  the pointing directions (Oo, 0°), (30°, O0), (30°, 30°), (30°, 60°), and (30°, 90"). 

6.7 Assume that the sum pattern current distribution found for the array of Problem 6.1 is 
retained, except that the sign of the excitation is reversed for the two quadrants in which 
x < 0. Write a n  expression for the resulting difference pattern. If a computer is available, 
plot this difference pattern in $ = 0"/180° and observe the side lobe level. If not, col- 
lapse the distribution onto the X-axis (that is, let $ = 0') and determine the side lobe 
level by trial and error. 

6.8 The side lobe level found for the difference pattern in Problem 6.7 will be seen to be 
poor. Use the perturbation technique described in Section 6.12 to find a current dis- 
tribution that will give no side lobe in any $-cut higher than -25 dB relative to  the 
twin main beam peak of the $ = 0°/180" cut. 

6.9 Design a n  equispaced planar array under the following specifications. 
(a) Rectangul,lr grid, rectangular boundary, separable distribution. 
(b) Sum and difference pattern capability. 
(c) Sum pattern scannable out to 8 = 30' in any $-cut. 
(d) Qxo  = 14", Qro  = 20". 
( e )  Both principal cuts are Dolph-Chebyshev, -20 dB in XZ and -15 dB in YZ. 

6.10 A circular Taylor pattern, -20 dB SLL, ri = 3, is desired from a continuous circular 
aperture for which a = 31. Find A 2 ,  6, and the modified root positions u ,  and u,. 
Write the explicit expression for this Taylor pattern. Determine the orthogonal com- 
ponents in the expression for the aperture distribution. If a computer is available, plot 
the pattern in 0" 5 8 5 90" and the aperture distribution in 0 5 p 5 31. Note the 
characteristic droop of the side lobe structure in the pattern plot. 

6.11 Use the perturbation technique described in Section 6.4 to determine the modified 
Taylor circular aperture distribution which will give a pattern identical to the one found 
in Problem 6.10 except that the innermost side lobe is depressed to -30 dB. If available, 
use a computer to  plot the aperture distribution and pattern. 

6.12 If undulating ring side lobes are desired for the pattern caused by the circular aperture 
described in Problem 6.10, find the modified aperture distribution if the side lobe level 
is to vary smoothly from -25 dB at  $ = 0" to -15 dB at  $ = 180" and back again. 
Assume all $-cuts are to  exhibit Taylor-like patterns with ri = 3. 

6.13 A rectangular grid array with d, = d, = 0.71 has a circular boundary for which a = 

31. Because of the cut-off corners, there are only 13 elements per quadrant. Find the 
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excitation of this array if one uses Dolph-Chebyshev separable -20 dB SLL and merely 
sets the excitation of the three cut-off elements equal to  zero. Use a computer to plot the 
pattern in the cuts $ = 0°, 15", 30°, and 45". 

6.14 Repeat Problem 6.13, except use a Tseng-Cheng nonseparable -20 dB SLL excitation. 

6.15 Repeat Problem 6.13, except use an excitation found by conventional sampling of the 
continuous circular Taylor distribution determined in Problem 6.10. 

6.16 Use the perturbation technique described in Section 6.10 to bring the degraded patterns 
of Problem 6.15 as  close as  you can to the desired pattern found in Problem 6.10. 

6.17 Determine the beamwidths and directivities of the patterns found in Problems 6.13 
through 6.16. 

6.18 A circular grid array with four concentric rings at  radii p/A = 0.7, 1.4, 2.1, and 2.8 is 
to be excited with ring currents that will give a pattern approximating a circular Taylor 
-20 dB SLL, ri = 3. Determine the ring currents (a) by conventional sampling of the 
Taylor distribution; (b) by matching to the nulls of the pattern found in Problem 6.10; 
(c) by perturbation of either of the foregoing patterns, using the technique described in 
Section 6.8. 

6.19 Use the ring currents determined in Part (c) of the previous problem to determine the 
discrete element excitation if the inner ring has (a) four elements; (b) eight elements. 
Assume other rings have the same element separation. Compute the patterns for these 
two cases and plot the $-cuts for 6 = 0°, 15", 30°, and 45". 

6.20 For a 6A diameter continuous circular aperture, find the excitation that will produce a 
-20 dB SLL, ri = 3, Bayliss difference pattern. Write the explicit expressions for pat- 
tern function and aperture distribution. If a computer is available, plot both the pattern 
and the distribution. 

6.21 Use the perturbation technique outlined in Section 6.12 to modify the Bayliss circular 
pattern shown in Figure 6.33 so that the innermost side lobe is a t  -40 dB, with all others 
unchanged. Find the requisite aperture distribution. 

6.22 For  the array of Problem 6.13 use conventional sampling of the distribution found in 
Problem 6.20 to produce a n  approximation to the Bayliss difference pattern. Plot the 
resulting pattern for 4 = 0°, 20°, . . . , 80". 

6.23 Use the perturbation procedure detailed in Section 6.13 to improve on the patterns of 
the previous problem. 

6.24 For the infinite slit shown in Figure 6.41, assume that the E-field in the aperture is y- 
directed and given by E,(& = K cos ( ~ < / a ) .  Use the plane wave spectrum approach to 
find the complex radiated power and from this deduce an expression for the input 
admittance per unit length. 



nnn self -impedance - I and 
111 mut~ial impedance, 

1, 1. I I 

teedlng structures 

Part 1 of th(s text dealt with pattern analysis of individual antenna elements 
(such as a single dipole, helix, or slot), and Part I1 dealt with pattern analysis 
and synthesis of linear and planar arrays of these elements. The treatment 
of arrays culminated, in Chapters 5 and 6, with a variety of procedures for 
the determination of array element excitations which will produce specified 
patterns. 

A different class of practical engineering questions now needs to be 
addressed. What is the best way to feed a single element? How does one provide 
a match between the element and its feeding line at  the design frequency? How 
does one minimize the mismatch over a frequency band? And, for arrays, how 
does one actually achieve the desired excitation of the elements in order to 
produce the specified pattern? Further, how does one achieve it, and at  the 
same time provide a match to the transmitter (or receiver) at the design fre- 
quency? More difficult still, how does one minimize pattern degradation and 
mismatch over a frequency band? Most difficult of all, how is this done if the 
pattern is to scan? 

Before answers to these questions can be attempted, knowledge about the 
input impedance of a single antenna element and about the mutual impedances 
among elements when they are used in arrays must be acquired. This informa- 
tion is vital when a feed line is to be designed to connect to a single element, or 
when a network of feed lines is to be designed to connect together the elements 
of an array. Thus this part of the text is devoted first to the determination of the 
self-impedance of various types of isolated antenna elements and to the deter- 
mination of self-impedances and mutual impedances among elements in an 
array. This is followed by an introduction to the design of various feeding 
structures which have the purpose of providing a match and, in the case of 
arrays, do this in concert with establishing the array excitation which will yield 
a specified pattern. 





7.1 Introduction 

In this chapter the reader will find a sequence of analyses leading to the determination 
of the self-impedance and mutual impedance (or admittance) of cylindrical dipoles, 
strip dipoles, mor~opoles, and slots, these being among the most common antenna 
elements used singly or in arrays. A theoretical formulation of the self-impedance of 
a patch antenna is also presented.' The chapter begins with the derivation of an 
integral equation relating the current density distribution on an arbitrarily shaped 
antenna element to the sources which excite it. Specific application of this integral 
equation is then made to the center-fed cylindrical dipole of circular cross section, 
using an approach pioneered by H a l l h 2  The method of moments is introduced and 
used to solve for the current distribution on the cylindrical dipole for a known applied 
voltage. The input current is then used to compute the self-impedance. 

When the inquiry is focused on self-impedance, one needs to find only the 
i n p u t  cu r ren t  a n d  n o t  t h e  ent i re  cu r ren t  d is t r ibut ion.  A variety o f  techniques  i s  avail- 
able for doing this, and the ones developed in this chapter, all applied to the cylin- 

'Theoretical analyses of the mutual impedance between patches, and of the self-impedances 
and mutual impedances of helices are extremely difficult and of dubious value. However, these two 
elements are often used in arrays, with the necessary data on self-impedance and mutual impedance 
obtained experimentally. 

zAn independent and highly original approach to the determination of the current distribution 
on a center-fed dipole: and its self-impedance has been provided by Schelkunoff. He started with the 
biconical antenna as a prototype and provided an approximate solution to the relevant differential 
equations. Compare with S. A. Schelkunoff, Elecfromagrzetic Waves (Princeton, New Jersey: D. Van 
Nostrand Co., Inc., 1943), pp. 446-69. For an excellent summary of Schelkunoff's approach, see 
E. C. Jordan and K.  (3. Balmain, Electromagnetic Waves and Radiating Systems 2nd Ed. (Englewood 
Cliffs, New Jersey: Prentice-Hall, Inc., 1968), pp. 572-88. The integral equation approach of Hallen 
will be followed in this text because of certain computational advantages and because it provides a 
convenient frameworlc for several related developments. 
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drical dipole, are the induced EMF method, Storer's variational approach, and 
HallCn's method. The results are summarized in sets of curves showing the real 
and imaginary parts of the self-impedance versus cylindrical dipole length and 
radius. 

A proof is then presented that a slender strip dipole (rectangular cross section) 
is equivalent to a cylindrical dipole of the same length and appropriately chosen 
radius, so that all of the preceding developments and results for cylindrical dipoles 
including current distribution and input impedance, can be carried over intact to the 
strip dipole. 

The reciprocity theorem is used next to develop a formula for the mutual 
impedance between parallel cylindrical (or strip) dipoles that are arbitrarily positioned 
relative to each other. Computations based on this formula lead to a family of curves 
relating mutual impedance to the two dipole lengths and their relative positions. A 
discussion is undertaken about the meaning of self-impedance and mutual impedance 
in dipole arrays consisting of many parallel elements, and it is indicated under what 
conditions isolated self-impedance and one-on-one mutual impedance can be used 
as approximations in this general case. 

The simple extension of all the foregoing results for vertical monopoles fed 
above a horizontal ground plane is indicated. 

Babinet's principle and Booker's extension of it to complementary arrays of 
slots and strip dipoles are introduced and used to establish the equivalence between 
the field distribution in a slot and the current distribution on a strip dipole. This 
permits deduction of the equivalence between the input impedances of a single slot 
and dipole, and the equivalences between (1) self-impedance and mutual impedance 
of strip dipoles in an array, and (2) self-impedance and mutual admittances of slots 
in the complementary array. Thus the utility of all the results on cylindrical dipoles is 
extended still further, beyond monopoles and strip dipoles, to two-wire-fed slots. In 
Chapter 8, a further extension to waveguide-fed slots will be presented. Because of 
these equivalences, the subject of the self-impedance and mutual impedance of 
cylindrical dipoles takes on added importance. 

The chapter concludes with a formulation of an expression for the self-imped- 
ance of a patch antenna (metallic film of rectangular or circular shape bonded to a 
grounded dielectric slab). 

7.2 The Current Distribution on an Antenna: General Formulation 

Consider an electromagnetic system consisting of a transmitter (or receiver), a feeding 
network, and an antenna element (such as a dipole, a slot, or a helix). Some simple 
examples are shown in Figure 7.1. More complicated examples could be created by 
using an ensemble of these elements in arrays. 

In the analysis that follows, the feeding network will be idealized by assuming 
that it can be replaced by a generator contained in a small feeding volume. As an 
illustration, the two-wire-fed dipole of Figure 7.la will be modeled as shown in 
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Coax 

Fig. '7.1 Some Simple Antenna Elements and Their Feeding Structures 

Figure 7.2, with the generator confined to a cylindrical region in the gap between the 
two arms of the dipole. 

If J(5, q,  [ ) r j o r  is the  current density distribution of  the an tenna  plus idealized 
generator, then the fields a t  any point (x, y, z )  are related to  the sources a t  (x, y, z) 
by the differential relations (compare with Chapter 1) 

The elimination of J from (7.2) and (7.3) provides a connection between E and A, 
namely, 
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Dipole 
arm 

Idealized 
generator 

Dipole 
arm 

Fig. 7.2 A Cylindrical Dipole 
Center-Fed by an Idealized Gap 
Generator 

with A given by 

where R = [(x - ()Z -t ( y  - q)2 f (z - [)2]1 is the distance from the source point 
(5, q ,  c) to the field point (x, y, z).  Equation 7 .5  is a restatement of (1.80) with the 
time factor suppressed. 

In the analysis of most electromagnetic problems that involve use of the mag- 
netic vector potential function ( 7 . 9 ,  the collection of points ((, q, [) is defined to be 
all points at which there are sources. The collections of points (x ,  y, z) is usually a 
larger set. It may include points occupied by sources, but often refers principally to 
all other points in space. The analyses to be presented shortly differ in that the 
collection of points ( x ,  y, 2) will be the same set as the collections of points ( r ,  q, c). 
To emphasize the equivalence of these two sets, a field point will still be characterized 
by the triplet ( x ,  y, z) ,  but a source point will hereafter be identified as (x ' ,  y ' ,  z') 
whenever a distinction needs to be made between source points and field points. 

With this explanation as background, Equations 7.4 and 7.5 can be combined 
to give 

in which 
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and VF retains its normal meaning, that is, differentiation with respect to the variables 
x, y, and 2 .  (When needed, V, will imply differentiation with respect to  the variables 
XI, y' ,  and z'). 

Equation 7.6 is a cornerstone for what is to follow. If, for a given antenna, 
E(x, y, z) is known at all points occupied by the antenna, (7.6) is an integral equation 
in the unknown and sought current distribution J(x1, y', z ' ) . ~  Since most antennas 
are composed of' good conductors, it is usually an excellent assumption to take 
E(x, y, z) = 0, except in the region where the antenna is being fed. If a good estima- 
tion of E(x, y, z )  can be made in the feeding region, modern numerical techniques 
applied to (7.6) will yield satisfactory solutions for the current distribution. The 
resulting knowledlge of the value of the current density at the interface between the 
antenna and the idealized generator, together with the specified initial value of the 
terminal voltage across the generator, also permits a calculation of the input imped- 
ance. This will first be demonstrated for cylindrical dipoles. 

7.3 The Cylindrical Dilpole : Arbitrary Cross Section 

A principal application of Equation 7.6 is to the center-fed dipole. As shown in 
Figure 7.3, this is an antenna element consisting of two identical arms, each a cylinder 
of length I - 6, with the two arms axially aligned and separated by a gap of length 

Fig. 7.3 The Center-Fed Cylindrical 
Dipole of Arbitrary Cross Section 

3Alternatively, if J(x', y', z') is known a t  all points occupied by the antenna, (7.6) can be used 
to determine the eleciric field distribution E(x, y, z) throughout the antenna. 
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26. All transverse cross sections of the two cylinders are identical. The cross section 
may have an arbitrary shape, as suggested by Figure 7.4a. A perimeter coordinate s 
can be used to identify points on the contour C via the parametric equations 

Cross section of 
arbitrary shape 

Circular 
cross section 

Rectangular 
cross section 

Fig. 7.4 Cylindrical Dipoles of Various Cross-Sectional Shapes 

When the need exists to distinguish between the points (x, y, z )  and (x', y', z') the 
transverse coordinates of the latter will be identified by 

In practice, the two most commonly encountered cross sections are circular and 
rectangular. For the former, shown in Figure 7.4b, g, = a cos 4 and g, = a sin 4, 
with a the radius. For the latter, shown in Figure 7.4c, x = i t 1 2  and y = &w/2,  
with w the width and t the thickness. 

Loose usage of the word cylindrical, plus historical precedence and the desire 
for word economy, has led to the tradition that the phrase cylindrical dipole refers 
exclusively to the circular cross section of Figure 7.4b. 

The advent of printed circuits has occasioned an increased interest in thin 
dipoles of rectangular cross section which can be laid or printed on grounded dielec- 
tric substrates and fed by stripline. But even prior to this practical application, 
theoretical interest in such dipoles was stimulated by recognition of their comple- 
mentarity to rectangular slots cut in large ground planes. To provide a distinction 
between dipoles of circular and rectangular cross section, since both will be treated 
in subsequent developments, the name strip dipole will always be used to refer to the 
rectangular shape of Figure 7 . 4 ~ .  

The analysis leading to the determination of the current distribution on a dipole 
and its input impedance can be carried a good distance before one is forced to par- 
ticularize the cross section. Therefore, attention will continue to focus for the remain- 
der of this section on the general shape of Figure 7.4a. If 2u is the maximum lineal 
dimension of this arbitrary cross section, it will be assumed in all that follows that 
ku << 1 and u << I. Thus what ensues is a theory of slender dipoles. This is not a 
serious restriction, since most practical applications fit this condition. 

The gap 26 between the two arms of the dipole will be taken to be an infinitesi- 
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maL4 The equivalent idealized generator will be assumed to be confined within the 
cylindrical volume of height 26 and contour C. 

Since almost without exception the practical applications of dipoles involve the 
use of arms made of good conductors, it is customary to assume in the model that the 
arms are perfectly conducting. Consideration should then be given to the question 
whether the arm;$ are tubular or solid. If they are solid, currents will flow on the 
disclike surfaces at z = *6 and z = f 1 and this complicates the analysis. If they are 
hollow tubes (which is often the case in practice), currents will flow primarily on the 
outer surfaces of the arms, but can penetrate up inside the tubes at z = &6, and can 
lapover and down into the tubes at z = il. However, if ku << 1, as is being assumed, 
these currents inside the tubes do not penetrate very far and can usually be ignored. 

The present analysis will be confined to the case in which the dipole arms are 
tubular, with negligibly thin walls, and composed of perfect conductors. For this 
reason, the equivalent idealized generator will be taken to lie in the cylindrical shell 
of contour C and height 26. Because of the slenderness assumption (u << I), the spatial 
disposition of the idealized generator, and the assumption of perfect conductivity, the 
current density is lineal, Z-directed, and flows on a surface S, with S a cylinder of 
contour C extend.ing from z = --I to z = +I.  For this case, Equation 7.6 becomes 

With the dipole cbmposed of perfectly conducting tubes, E,(s, z)  r 0 except 
for -6 < z 6. But the voltage measured at the dipole terminals is given by 

a result that is independent of s. This implies that E, is not a function of s. With 6 an 
infinitesimal, it is appropriate to take E, as a Dirac delta function, that is, 

This is equivalent to saying that positive unit voltage is impressed on the dipole. 

4This is not always an assumption that models physical reality with sufficient accuracy. Con- 
siderable discussion of the "gap problem" can be found in the literature, and the interested reader 
may particularly wish to consult King and Thiele among the references listed at  the end of this 
chapter. The monopole protruding vertically from a large ground plane, as in Figure 7.lb, with the 
monopole an extension of the inner conductor of a coax, is perhaps the easiest real situation to model 
in terms of an equivalent idealized generator. It is also the configuration for which theory and experi- 
ment are most often compared. Thiele argues for the use of a magnetic frill as the equivalent feeding 
source for the dipole. The present treatment, which is introductory, will be confined to use of the 
infinitesimal gap model. 
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With these elaborations, (7.10) becomes 

It is interesting to observe that, although the integrand in (7.14) is a function of s 
(since R is a function of x and y), the integral itself is not a function of s, since E, 
depends only on z. 

Equation 7.14 is a generalized version of an integral equation first applied 
to dipoles by H.C. Po~klington.~ It can be written in the form 

li G(s, z, s', z')K,(sr, zf) ds' dzf = joroE,(z) 

and thus identified as a Fredholm integral equation of the first kind. (Were there an 
additive factor on the right side, consisting of a constant times K,(s, z), it would be 
of the second kind.) The function G is called the kernel and in the present case is 
given by 

The general problem of finding solutions to (7.15) has been widely studied. Several 
techniques useful for the particular kernel indicated by (7.16) will be presented in 
subsequent sections of this chapter. The appropriate solution of (7.14) is quite obvi- 
ously influenced by the shape of the contour C, and attention will first be focused on 
the important and common case when C is circular. 

7.4 The Cylindrical Dipole : Circular Cross Section, 
Hallen's Formulation 

If the contour C is circular, by symmetry the lineal current density distribution K, 
on the dipole is only a function of z, and the integral appearing in (7.14) is also only 
a function of z. Thus for a dipole whose cross section is a circle of radius a, (7.14) 
can be written in the form 

in which 

In (7.18), R = [(x - x')= + (y' - Y ' ) ~  + (Z - z ' )~] ' ,  2 ,  with both points lying in the 

sH. C. Pocklington, "Electrical Oscillations in Wire", Cambridge Phil. Soc. Proc., Vol. 9 
(1897), pp. 324-32. 
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cylindrical surface. The function a(z) is in the form'of a magnetic vector potential 
function (lacking only the factor p i 1 )  and satisfies the inhomogeneous wave equation. 

It is useful to pause at this stage in the analysis and appreciate that if a(z) can 
be found by solving the differential equation in (7.17), the solution can then be used 
as the driving function in (7.18), which is a simpler integral equation to solve for the 
unknown current density distribution K,(zl) than is the earlier Equation 7.14, which 
contains a more complicated kernel. 

Solution of (7.17) is not difficult. Since E, is a Dirac delta function, (7.17) is 
homogeneous except in the neighborhood of z = 0. Thus for z > 0, 

a(z) = A cos kz + B sin kz (7.19) 

whereas for z < 0, 

a(%) = C cos kz + D sin kz 

with A ,  B, C,  and D constants. One can match these solutions across z = 0 by noting 
from (7.17) that, if a(z) is to be finite everywhere, the singularity in Ez at z = 0 must 
be matched by a singularity in d2a/dz2 at z = 0, since it cannot be accommodated 
by k2a(0). Therefore 

Thus there is a jump of -jweo in the first derivative of a(z) as the origin is traversed. 
Differentiation of (7.19) and (7.20), followed by letting z + 0, yields the relation 

By symmetry, K,(zf) is even in z', and a study of Equation 7.18 indicates that 
this forces a(z) to be even also, Thus A = C, B = - D, and 

a(z) = C cos kz - fi sin k / z I 
2k 

(7.23) 

a solution which is valid for all z. 
Insertion of (7.23) in (7.18) gives s:! JOzK e - j k R  

- K,(zl)a d$ dz' = C cos kz - -- 
4n R 

J W e 0  sin k 1 z / 
2k 

Since the assumption has been made that a <( 1, the magnetic vector potential 
function a(z), that is, the left side of (7.24), can be computed on the dipole surface 
S by assuming that the total current is concentrated along the Z-axis (see Appen- 
dix E). For this reason, (7.24) can be replaced by 

I e - j k r  Sl l:zt) dzt = c cos kz - fi sin k I z I 
2k 
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where I ( z f )  = 2na K,(z1) is the total current, and r = [a2 + ( z  - z ' ) ~ ] ' ~ ~  is the dis- 
tance from an equivalent source point (0 ,  0 ,  z') on the Z-axis to a field point ( x ,  y, z )  
which is on the cylindrical surface. Equation 7.25 is Hallin's integral e q ~ a t i o n . ~  The 
constant C in (7.25) can be evaluated by requiring that I ( / )  = 0. 

Ha!len's equation can be solved either for the complete current distribution 
I(zl), or merely for the input current I(O), with the latter equal to the self-admittance, 
since unit voltage is being applied to the cylindrical dipole. A powerful technique for 
solving (7.25) for the complete current distribution is the method of moments, which 
is described in the next section. 

7.5 The Method of Moments 

With the advent of high-speed, large-capacity computers, integral equations such as 
(7.25) can be solved rapidly, inexpensively, and with good accuracy by a variety of 
numerical techniques. The approach to be described here is a special case of the 
method of moments7 and is often called a point-matching technique. 

Consider the general one-dimensional Fredholm integral equat ion of the 
second kind : 

with y = 0 ,  one obtains a Fredholm integral equation of the first kind, of which 
Hallin's equation in (7.25) is an example. 

In (7.26) it is assumed that the kernel G(z,  z') is a known function, that g(z)  is a 
known driving function, that y is a known constant, and that z 6 [a, b]. The problem 
is to determine the unknown function f ( z ) .  

The point-matching technique begins with the assumption that the unknown 
function f ( z )  can be approximated by a linear combination of known functions fn(z), 
called basis functions, as follows. 

In (7.27), the functions f,(z) are linearly independent and the constants c, are unknown 
at this stage of the analysis. 

If (7.27) is substituted in (7.26) one obtains 

in which, because of the ligearity assumption, it has been permissible to interchange 
the order of the summation and the integration. 

6E. Halltn, "Theoretical Investigations into Transmitting and Receiving Qualities of Anten- 
nas," Nova Acta Regiae Soc. Sci. Upsaliensis, (January 1938), 1 4 4 .  

7R. F. Harrington, Field Computation by Moment Methods. (New York: The Macmillan Co., 
1968). 



7.6 Solut ion of Hallen's Integral Equa t~on  Pulse Func t~ons  287 

The true function f ( z )  insures that the two sides of (7.26) are equal for every 
value of z E [a ,  b].  The approximate solution in ('7.27) cannot similarly guarantee 
equality of the two sides of (7.28)  for all z E [a,  b],  which is why the approximately 
equals sign was used. However, one can force the two sides of (7.28) to be equal at 
specified match points zm by appropriate choice of the constants c , . ~  If there are M 
such match points, then 

Since G(z,,,, z'), fn(z'), y ,  and fn(zm) are all known, the quantity within the braces in 
(7.29), which shall be called a,,, can be computed for every value of m and every 
value of n. Similarly, g(zm)  = 6, is known, and thus (7.29) can be represented by 

which is recognizable as a system of M linear equations in the N unknowns c , ,  c,, . . . , 
c,. If M 2 N, matrix inversion will yield values for the coefficients c, which, when 
placed in (7.27) ,  will give an approximation to the function f ( z )  that is sought. 

When one reviews this procedure, it is clear that the calculation of a,, is influ- 
enced by the choice of partial functions f , ( z )  and by the choice of matching points 
z,. Judicious selection of both can reduce the computational difficulties and enhance 
the prospect of getting a good approximation to f ( z ) .  But judicious selection requires 
skill based on experience. A burgeoning body of knowledge is now available con- 
cerning solutions to problems of this type and the interested reader is urged to consult 
the current l i t e r a t~ re .~  The application of this point matching technique to Hallen's 
integral equation will be described in the next two sections. 

7.6 Solution of Hallen's Integral Equation: Pulse Functionsto 

Since, in the center-fed cylindrical dipole problem formulated in Section 7 .4 ,  the 
current distribution I(z)  is even, HallCn's integral equation (7.25) can be rewritten in 
the form 

Sj G ( Z ,  z f , ~ z l )  d z f  = c cor k z  - L sin k z  (7.3 1) 
2rl 

SMore generally, the method of moments involves the selection of a set of known weighting 
functions w,(z); the inner products of these functions with (7.28) are computed. In the point matching 
technique being described here, the w,(z) are Dirac delta functions centered at the points z,. The 
interested reader should consult Reference 7 for the general development. 

S e e ,  for example, Computer Techniques for Electromagnefics, ed. R. Mittra(0xford: Pergamon 
Press Ltd., 1973). 

'OThe procedures outlined in this and the next section follow closely the development pre- 
sented by C. M. Butler in Chapter 2 of Supplementary Notes for a Short Course in the Application of 
Moment Methods to Field Problenls (University of Mississippi, May 1973). 
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with z E [0, I ]  and q = klwc, = Jz = 377 ohms. In (7.31), 

e- jkr  e - j k r '  

G(z, z') = - 4nr + W 
in which 

r = [a" (Z - z ' ) ~ ] ~ , ' ~  

r '  = [a" (z + z ' ) ~ ] ~ ' ~  

An approximation to  I(z), the unknown current distribution in (7.31), can be express- 
ed in the form of (7.27). One selection for the basis functionsf,(z) can be made as 
follows. 

Construct a sequence of equispaced points z, ,  z,, . . . , z,,, in [0, I ]  such that 
z,  = 0 and z,,, = I, thus dividing the interval into N subintervals of equal length. 
The nth point is located by 

and the nth subinterval can be described by the relation 

Az,, = zn+, - z,, (7.36) 

Let the pulse function p,(z) be defined as 

p,(z) = 1 if z E Az,, p ,  = 0 if z $ Az, (7.37) 

If l(z) is represented by 

(which is seen to be in the form of (7.27)), then in the interval Az,, I,,(z) is approximated 
by cn. This situation is suggested by Figure 7.5. 

If the matching points z, are selected to be N in number and to occur at the 
midpoints of the subintervals, that is, if 

then for this case Equation 7.29 gives N simultaneous linear equations, in the form 

9 c,, 1 G(zm, z1)pXz1) dz' = C cos kz, - 
n=  1 

j - sin kz, 
21  

Because of the characteristics of the pulse functions, the matrix element a,, can be 
identified from (7.40) as 
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Fig. 7.5 The Use of Pulse Functions to Approximate the Current Distribution l ( z )  on a 
Center-Fed D i ~ o l e  

In the original formulation of Hallin's integral equation (see Section 7.4), it 
was stated that the constant C was to be determined from the boundary condition 
I ( / )  = 0. In the present formulation, that boundary condition is satisfied if one lets 
c, = 0. Then C must be treated as an unknown in the system of linear equations in 
(7.40), in effect taking the place of c,. The matrix to be solved assumes the form 

with dm - -cos kz, and b, = -(j/2q)sin kz,. 
A computer solution to (7.42) has been obtained for the eight combinations of 

2/11 = 0.25, 0.50, 0.75, 1 .OO and a11 = 0.01, 0.0001. The magnitude of I(z) is plotted 
for these eight cases in Figure 7.6; the phase is plotted in Figure 7.7. These graphs 
permit an assessment of the assumption made in Chapter 2 for the purpose of com- 
puting the dipole radiation pattern, namely, that the current distribution is sinusoidal 
and given by I ( z )  = I ,  sin [ k ( l  - I z I)]. If the dipole is very slender, I I(z,) I is seen to 
fit this assumption quite well. To emphasize this point, the case 2/11 = 0.5 and a11 = 
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Fig. 7.6 The Magnitude of l ( z )  for Center-Fed Cylindrical Dipoles of Various Lengths 
and Diameters; Pulse Function Solution 



Fig. 7.7 The Phase of / ( z )  for Center-Fed Cylindrical Dipoles of Various Lengths and 
Diameters; Pulse Function Solution 
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Fig. 7-8 The Current Distribution on  a Half-Wavelength Long Center-Fed Cylindrical 
Dipole 

0.0001 has been replotted in Figure 7.8 and compared to a fitted sine curve. For the 
fatter dipole (al l  = 0.01), the assumptions made in going from (7.24) to (7.25) are 
less valid (Compare with Appendix E), and some erratic behavior can be observed 
in the plots of Figure 7.6 and 7.7, particularly at the ends of the interval. 

Also, if the dipole is very slender and not too long, the phase plots of Figure 
7.7 indicate that the assumption of constant phase for the current distribution is not 
a bad one. But even for slender dipoles, at the longer lengths this is no longer a valid 
assumption, as can be seen from a study of the case 2/11 = 1.00, and a l l  = 0.0001. 
However, for dipoles of the most commonly used lengths (21112 2 0.5 or less), these 
departures from the assumption made in Chapter 2 do  not influence the element 
pattern significantly. As an example, the field amplitudes for the case 21/l = 0.5 and 
a12 = 0.01 are shown in Table 7.1 for the current distribution found by the pulse 
function method and for the idealized current distribution used in Chapter 2. 

Current distributions computed using pulse functions and the point-matching 
procedure agree quite well with experimental results. An illustration of this is offered 
in Figure 7.9 where the experimental data of T. Moritall for a half-wavelength dipole 

I IT. Morita, "Current Distributions on Transmitting and Receiving Antennas," Proc. IRE, 
38 (1950), 898-904. 



TABLE 7.1 a,(e) versus 8 for idealized current distribution and for 
current distribution found using pulse functions 

ado) 
0 l ( z )  = I ,  sink(1 - z )  I ( z )  Found by Using Pulse Functions 

0 0.000 0.000 11.163' 
6 0.082 

- 
0.081 11.141' 

12 0.165 
- 

0.162 11.098' 
18 0.249 

- 
0.244 1 1.029 

24 0.333 
- 

0.327 10.940' 
30 0.41 8 

- 
0.41 1 10.833 

3 6 0.503 
- 

0.496 10.73 7' 
42 0.587 

- 
0.580 10.596' 

48 0.668 
- 

0.662 10.475" 
54 0.746 

- 
0.740 10.361' 

60 0.816 
- 

0.812 10.258' 
66 0.879 

- 
0.876 10.169' 

72 0.930 
- 

0.928 10.096 
78 0.968 0.967 )0.043 
84 0.992 

- 
0.992 10.01 1' 

90 1.000 1 .OOO 10' - 

Fig. 7.9 Comparison of Theory and Experiment: Current Distribution on a Half-Wave- 
length Center-Fed Cylindrical Dipole (Solid Curve Experimental Results of T. Morita, 
Proc. IRE, vol. 38, pp. 898-904. 0 1950 IEEE. Dots Computer Results Us~ng Pulse 
Functions.) 
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with a l l  = 0.003 is represented by the solid curve. The computer printout is shown 
as a sequence of points. 

Since the applied voltage has been taken as unitary in computing the current 
distributions shown in Figures 7.6 and 7.7, the input current is numerically equal to 
the self-admittance, In the pulse function formulation, the input current is approxi- 
mated by c , ,  and therefore l / c l  is a measure of the self-impedance. The fourth column 
of Table 7.2 lists the values of l / c l  for the eight cases under study. 

TABLE 7.2 Approximations to input impedance for various cylindrical dipoles 
using pulse functions or sinusoidal functions as basis functions 

Normalized 
Length 

2rin 

0.25 
0.25 
0.50 
0.50 
0.75 
0.75 
1.00 
1 .oo 

Normalized 
Radius 

a1 2 

0.01 
0.0001 
0.01 
0.0001 
0.01 
0.0001 
0.01 
0.0001 

Number 
of Pulse 
Functions 

N 

Self-Impedance 
in Ohms (cl)-1 

Pulse Functions 

11.3 - j186 
12.9 - j737 
97.3 + j27.8 
74.0 + j11.3 
534 + j79.9 
424 + j827 
178 - j344 

2724 - j 1067 

Self-Impedance 
in Ohms 

Sinusoidal Basis 
Functions 

10.2 - j185 
12.5 - j739 
90.2 + j22.2 
74.2 + j26.4 
477 + j180 
403 f j882 
40 - j255 

439 - j1445 

7.7 Solution of Hallen's Integral Equation : 
Sinusoidal Basis Functions12 

The observation gleaned in the previous section-that the current distribution on a 
cylindrical dipole is approximately sinusoidal-suggests that a judicious choice for 
the primitive functionsf,(z) might be the spatially harmonic sequence 

fn(z) = sin [$ (1 - 

which permits the current distribution to be approximated by 

with the anticipation that the coefficients c, will be complex. In this case 

12This solution technique was first introduced by H. P. Neff, C. A. Siller, and J .  D. Tillman, 
"Simple Approximation to the Current on the Surface of an Isolated Thin Cylindrical Center-Fed 
Dipole Antenna of Arbitrary Length, IEEE Trans. Antennas Propagat., AP-18 (1970), 399400. 
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am" 77 JO1 G(z,,,, zf) sin [?(I - zf)] dzl (7.45) 

and the integration is seen to extend over the entire interval, in contrast to what was 
found in the case of the pulse function, where (7.41) called for integration only over 
the subinterval Az,. A tradeoff is evident in contrasting the two approaches. Because 
the true current distribution I(z) is quasi-sinusoidal, it should take fewer terms in the 
series of (7.44) to obtain an approximation of a given level of quality than in the 
series (7.38), particularly if the dipole length is close to a multiple of a half-wave- 
length. On the other hand, the computation involved in (7.45) is more extensive than 
in (7.41) and thus the overall computer cost is often comparable in the two approaches. 

Because each of the primitive functions in (7.43) separately satisfies the condi- 
tion that I(1) = 0, once again the constant C in (7.27) needs to be treated as an 
unknown and one must select N + 1 matching points, rather than N. If the matching 
points are equispaced and one of them is placed at z = I, 

The matrix set (7.30) becomes, for this case, 

where once again dm = -cos kz, and b, = -(j/2q)sin kz,. 
As an illustration, (7.47) has been inverted for the eight cases 2/12 = 0.25, 0.50, 

0.75, 1.00 and a/;l = 0.01, 0.0001. The magnitude of the resulting f(z) is plotted in 
Figure 7.10. The results are seen to be very close to those found using pulse functions. 

From (7.44) the input current is 

N N 

I(O) C c, sin (nn/2) - C (- I ) n l c ,  
n l " - 1  

(7.48) 

For the cases shown in Figure 7.10, the summation in (7.48), whose reciprocal is 
also an approximation to the self-impedance, gives the set of values shown in the 
last column of Table 7.2. The agreement with the earlier results found using pulse 
functions is seen to be quite good at the shorter dipole lengths. An improvement on 
both of these computations of self-impedance can be obtained using the methods 
outlined in the next two sections. 



Fig. 7.10 The Magnitude of l ( z )  for Center-Fed Cylindrical Dipoles of Various Lengths 
and Diameters; Solution Using Sinusoidal Basis Functions 



7.8 Self-Impedance of Center-Fed Cylindrical Dipoles 
Induced EMF Method 

The method of moments, as illustrated in the previous two sections, is a useful 
computational technique when applied to the problem of determining the current 
distribution on a cylindrical dipole. This can in principle be done with increased 
accuracy by choosing more basis functions and more matching points, but at greater 
computer cost, with the amount of computer storage available ultimately setting a 
level on the accuracy. A complexity which arises is that, for a given a l l ,  as the interval 
is more finely divided (thus increasing the number of basis functions and matching 
points needed) (7.25) becomes a poorer approximation to (7.24). The ultimate solution 
is to apply the method of moments directly to (7.24). But this is a much costlier 
computer operation. Additionally, the method of moments as applied here delivers 
the entire current distribution. If one is only interested in the input current (to 
obtain the self-impedance), it is advantageous to carry the analysis further before 
embarking on a computational program. For this reason attention will now be 
turned to techniques which focus exclusively on the problem of finding the input 
current. 

The first of these techniques is the so-called induced EMF method, introduced 
by L. Brillouin13 in 1922 and elaborated by A. A. P i s t ~ l k o r s ~ ~  and P. S. Carteris. I t  
involves a self-impedance formula which can be derived with the aid of the reciprocity 
theorem. Consider again the cylindrical dipole of length 21 and radius a, center-fed 
across a gap of infinitesimal height 26 by an idealized generator, as suggested in 
Figure 7.2. Let a surface S be constructed that would just enclose this dipole without 
touching it. Then S consists of a section of a circular cylinder of radius a + E,,  
capped by circular discs at z = & ( I  + E,), with E ,  and e ,  infinitesimals. 

As before, the arms of the dipole will be assumed to consist of perfectly con- 
ducting tubular material of negligible wall thickness. Let K,(z) be the lineal current 
density distribution along the dipole when the generator is adjusted so that one volt 
exists across the gap. (The distribution K,(z) includes the current which flows through 
the generator.) If the perfectly conducting tubes are removed and a source distribution 
C ( z )  = K,(z) is established in free space in the exact location of the previous source 
system, the fields caused by the original system will be duplicated at  every point by 
the new system. 

Next, let Ib(z), with z E [ - I ,  I], be any filamentary current distribution along 
the axis of the cylinder S, also established in free space. Since the two source systems 
K:(z) and Ib(z) are both entirely contained within S, the reciprocity theorem in the 
form of Equation 1.36 applies, and one can write 

13L. Brillouin, "Origin of Radiation Resistance", Radioelecrricite', 3 (1922), 147-52. 

14A. A. Pistolkors, "Radiation Resistance of Beam Antennae", Proc. IRE ,  17 (1929), 562-79. 

l5P. S. Carter, "Circuit Relations in Radiating Systems and Applications to Antenna Prob- 
lems", Proc.  IRE,  20 (June 1932) 1004-41. 
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in which (Ea, Ha) is the electromagnetic field caused by c ( z )  and (Eb, Hb) is the 
electromagnetic field caused by Ib(z). 

Since K,, and EL,, are both Z-directed along the cylindrical portion of S,  if 
one neglects the contributions to (7.49) from the disclike end surfaces (justifiable 
when a << A), the result is that 

Because E;(a, z') is a Dirac delta function (compare with Equations 7.12 and 7.13) and 
because all quantities in (7.50) are $-independent, integration gives 

However, H,"(a, z') = Klf(z1), and 2naK:(zf) = P(zl), with Io(z') the total current 
distribution for the dipole. These substitutions convert (7.51) to 

For the disclike surface of radius a which lies in the XY-plane and is centered at the 
origin, the integral form of the appropriate Maxwell equation gives 

For a << 1 and a << 1, the second term on the right side of (7.53) is negligible compared 
to Ib(0) and one can write 2naH$(a, 0) P(0). When this approximation is placed 
in (7.52), the result is that 

Since Ib(z) is completely arbitrary, one is at liberty to let Ib(z) = Ia(z). When 
this is done, there is no longer any need to retain the superscripts, and (7.54) becomes 

Finally, one can write for the self-impedance 
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since V - l volt. 
Equation 7.56 is a key result of the induced E M F  method for determining the 

self-impedance of a center-fed cylindrical dipole. It is a peculiar result in some respects, 
since it contains 12(0) in the denominator, and one could argue that if I(0) is known 
the problem is solved, since l(0) is numerically equal to the input admittance. How- 
ever, that line of reasoning is based on the logic sequence that one volt is applied 
across the gap and that the problem is to  find the resulting current distribution, or 
a t  least the input current. The reasoning that is used in the induced E M F  method is 
almost the reverse. One assumes a current distribution for the dipole and thus "knows" 
l (0) .  One then computes E,(a, z') in response to this current distribution and uses 
this E,(a, 2' )  in the integrand of (7.56), together with the assumed I(zl) ,  in order to  
compute the self-impedance Z. Quite obviously, the accuracy of the value computed 
for Z depends on the quality of the assumption for l ( z f ) .  

An alternate derivation for the central equation of the induced E M F  method 
is based on power relations. With the aid of Poynting's theorem, one can argue that 

With power flow across the end caps of the dipole ignored, this becomes 

from which the self-impedance is given by 

If a real trial function is chosen for I (z ) ,  Formulas 7.56 and 7.58 give the same result 
for Z. C. T. Tail6 discusses the implications of the differences in these two formulas. 
The developments in this text will be based on (7.56). 

It was shown in Section 7.4 that, for a (( A and a <( I, E,(a, z )  can be deter- 
mined from 

16C. T. Tai, "A Variational Solution to the Problems of Cylindrical Antennas" Technical 
Report No. 12, (Palo Alto, CA: Stanford Research Institute, August, 1950). See also his article "A 
Study of the EMF Method" Jour. App. Phys., 20 (1949), 717-23. 
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in which r = [a2 + ( z  - z ' ) ~ ] ' / ~ .  If one defines a kernel function by 

then (7.59) can be written in the compact form 

When this result is placed in (7.56), one obtains 

which is a formula for the self-impedance of a center-fed dipole that is particularly 
suitable as the input to  a computer program. 

When the induced EMF method was first introduced, it was natural to assume 
that the current distribution was sinusoidal, since techniques did not yet exist for 
determining the distribution more accurately. The results of Section 7.6, 7.7 indicate 
that this is not at all a bad assumption. But early workers also assumed initially that 
the radius a of the dipole had negligible effect on the input impedance and used 
r = lz - 2'1 in (7.60), thus in effect setting a = 0. This proved to be a valid assump- 
tion insofar as computing the real part of Z in the range 0 < 21/A I 0.6, but gave an 
infinite value for the imaginary part of Z except for the particular lengths 21/A = 

(2n + 1)/2, with n an integer. Thus one should avoid this simplification and use 
r = [a2 + ( z  - z ' ) ~ ] ~ / ~  in (7.60). This presents no difficulties for a modern electronic 
computer. 

When it is assumed that 

I ( ( )  = I, sin k(1 - I C l )  
Equation 7.62 becomes 

z=- kl/:l I:, G(C, I ! )  sin IkU- I i I)] sin [ k ( l -  11' 111 d l  d l t  (7.64) 

By performing the differentiation indicated in (7.60) and then putting the expanded 
form for G in (7.64), one is able to  show that17 

j60 Z = -(4 cos2 kl  - S(k1) - cos 2kl S(2kl) - sin 2k1[2C(kl) - C(2kl)]} (7.65) 
s m 2  kl  

in which 

"See, for example, E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating 
Systems, 2nd Ed. (Englewood Cliffs, New Jersey: Prentice-Hall, 1968), pp. 54W7. 



7.8 Self-Impedance of Center-Fed Cyl~ndr~cal D~poles Induced EMF Method 301 

with Si(x) and Cin(x) tabulated functions.'* The function Si(x) is called the sine 
integral, and is defined by 

sin u du si(x) = s.' 
whereas the function Cin(x) is sometimes called the rnodSfied cosit~e integral and is 
given by 

1 - cos u ~ i n ( x )  = [ du (7.69) 

The real and imaginary parts of the self-impedance of a center-fed cylindrical dipole, 
as computed from (7.65), are plotted versus 2/11 in Figure 7.11 for a sequence of a/A 
values. The single resistance plot reflects the fact that the real part of (7.65) is inde- 
pendent of a l l .  (This would not be true if a current distribution more complicated 
than a pure sinusoid were used in (7.62)) The reactance is seen to be sensitive to a/A, 
and one can note that resonance (X = 0) occurs at shorter lengths as a l l  is increased. 
Also, the X-curves are more gently sloped for larger values of a l l .  Fat dipoles are 
less frequency sensitive than skinny dipoles. 

The curves of Figure 7.1 I are in a useful form if one wishes to find, for a given 
011, the length needed to produce a dipole impedance with a specified reactance. In 
Chapter 8, the design of dipole arrays will be seen to involve such deductions. How- 
ever, another useful form in which to present Equation 7.65 graphically results from 
fixing 2/10 and then finding Z(k1). The conventional method for doing this is to define 
a parameter R by the equation 

and then to plot %(kl)  for a fixed R. Figure 7.12 gives a family of curves covering the 
practical range of R values. These curves are useful if one wishes to determine the 
behavior of self-impedance with frequency for a specific dipole (21 and a fixed). 
(Since the real part of Z in (7.65) is independent of a l l ,  R(k1) as it appears in Figure 
7.12 is merely a replotting of part of Figure 7.1 1 to a logarithmic scale. This is done 
for later comaprison with the results of Hallen and King.) 

C. T. Tail9 has shown that the values of Z computed from (7.65) are fitted 
extremely well in  the range 0 5 2/11 5 n/2 by the expression 

' S e e ,  for example, R. W. P. King, The Theory of Linear Antennas, (Cambridge, Massachu- 
setts: Harvard University Press, 1956), pp. 857-64. 

I9C. T. Tai, "Characteristics of Linear Antenna Elements," Antenna En,~ ineer in~  Handbook, 
ed. H. Jasik (New York: McCraw-Hill Book Co., Inc., 1961), Chapter 3. 
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Fig. 7.11 The Resistance and Reactance of a Center-Fed Dipole versus k l  and a l l ;  
Values Computed by the Induced EMF Method Using Equation 7.65 

with R(k1) and X(k1) smooth, simple functions which he tabulates and graphs. If 
one represents Tai's functions R(k1) and X(k1) by second-degree polynomials with 
coefficients chosen to fit data con~puted from (7.65) in the range 1.3 kl 5 1.7 and 
0.001588 5 a l l  50.009525, Equation 7.70 takes on the specific form 

For the specified range of dipole lengths and diameters, the real part of (7.71) does 
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Fig. 7.12 The Resistance and Reactance of a Center-Fed Dipole versus k land  R ;  Values 
Computed by the lnduced EMF Method Using Equation 7.65 

not deviate from the induced EMF impedance expression in (7.65) by more than 
0.42 ohms, with an  rms error of 0.14 ohms. The imaginary part of (7.71) stays within 
2.33 ohms of (7.65), with an rms error of 0.20 ohms. Equation 7.71, which can be 
used with a pocket calculator, is a much simpler formula to use than is (7.65). 

The resonant length I ,  of the center-fed cylindrical dipole can be deduced from 
(7.65) by setting the reactance equal to  zero. When this is done, one finds a relation 
between 21,112 and a l l  which, when plotted, appears as shown in Figure 7.13. 

The resonant resistance of a cylindrical dipole is also of some interest and can 
be found easily by inserting kl ,  in the real part of (7.65). This results in the curve 
shown in Figure 7.14. One can observe that the resonant resistance is in the neighbor- 
hood of 73 ohms for very thin dipoles, but falls off from this value steadily as a112 is 



21,lh 

Fig. 7.13 Resonant Length versus Radius for Center-Fed Cylindrical Dipoles 

Fig. 7.14 Resonant Resistance versus Radius for Center-Fed Cylindrical Dipoles 
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increased. The limiting figure of 73 ohms agrees with the value obtained by power 
pattern integration in Section 2.2. 

7.9 Self-Impedance of Center-Fed Cylindrical Dipoles: 
Storer's Variational Solution 

A refinement of the induced EMF method has been provided by J. E. StorerZ0 and 
rests on the stationary property of Equation 7.62. The reader will recall that this 
equation permits computation of a value for the self-impedance Z of a center-fed 
cylindrical dipole once an assumption has been made about the current distribution 
I([). It is a pleasant fact that Z, as given by (7.62), is stationary with respect to varia- 
tions in I([). This means that if the true current distribution is !([), if the true input 
impedance is 2, and if one uses a trial current distribution I([) = !([) + dl([) in 
(7.62), then one will compute an incorrect impedance Z = 2 + SZ, but that to first 
order 6 Z  = 0. In other words, a certain degree of inaccuracy in "guessing" the 
current distribution will result in a much smaller degree of inaccuracy in the computed 
value of the input impedance. 

This assertion of the stationary nature of (7.62) is of sufficient importance 
to call for a proof. For the trial current distribution I([) and the true current distri- 

0 
bution I([), Equation 7.62 takes the forms 

T h e  difference between these t w o  equations is  

If one returns to Equation 7.61, which applies for any current distribution, including 
the true one, multiplication of both sides by 6I([) d[, followed by integration, gives 

205. E. Storer, "Variational Solution to the Problem of the Symmetrical Cylindrical Antenna," 
Cruft Laboratory Report No. 101 (Harvard University, 1950). 
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Since G(C, C') is symmetrical, it follows that (7.75) is also valid if and C' are inter- 
changed. Substitution of both forms of (7.75) in (7.74) results in 

If all terms in 61 which are second order or smaller are ignored in (7.76), the right 
side reduces to zero, which is to say that 6Z = 0 to first order in variations in the 
current distribution, as has been alleged. For this reason, Formula 7.62 is attractive 
for the purpose of computing input impedance; it is somewhat forgiving of imprecise 
knowledge about the current distribution. Indeed, the stationary property of (7.62) 
serves to  explain why the induced EMF method gives such satisfactory results. 

Storer has elected to attempt to improve on the results of the induced EMF 
method by assuming that the current distribution can be expressed in the form 

where 

The particular selection of fl(C) is justified by the knowledge that, in the limit as 
a11 - 0, the current distribution becomes truly sinusoidal. The form of f2(C) is 
cusplike and permits an even perturbation on fl(C), with either bulging or indenting 
near the middle of the interval [-I, I]. 

C.  T. Tai2' has pointed out that Storer's choice for f2(C) is only useful in the 
range 1 < 1 and proposes instead the function 

which is applicable for all values of 111. The trial current distribution (7.77) could 
also be enlarged to consist of the linear sum of three or more functions. However, 
since Storer's choice of (7.77) through (7.79) is valid in the length interval of principal 
interest and is fully illustrative of the method, what follows will be based on his 
formulation. 

2lC. T. Tai, "A New Interpretation of the Integral Equation Formulation of Cylindrical 
Antennas," IRE Trans. Antennas and Propagat., AP-3, (1955), 125-27. 
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When (7.77) is placed in the impedance expression of (7.62), one finds that 

in which 

Because of the stationary nature of the impedance expression, if B is held fixed and 
A is changed by an amount 6A,  to first order, 6 Z  will be zero. Or, what is the same 
thing, 

If this differentiation is applied to (7.81), the result is that 

Substitution of this result in (7.81) gives 

Storer found that for his choice of trial function, the double integral (7.82) 
could be expressed in terms of sine and cosine integrals. The interested reader is 
referred to the original report. Calculations of Z from (7.85) for the eight cases 
a11 = 0.01, 0.0001 and 2/12 = 0.25, 0.50, 0.75, 1.00 are listed in the fourth column 
of Table 7.3. 

If one chooses the simpler trial function I(<) = A h ( < ) ,  Equation 7.85 gives 

This result is identical with (7.64), as it should be, and the values of Z for the eight 
cases under study, as computed from (7.86), are listed in the third column of Table 
7.3. The values shown in the third and fourth columns are quite close for short 
dipoles, but they begin to deviate from each other as the dipole length is increased. 
In particular, Storer's formula gives a resistive component of Z which is dependent 
on a/& unlike the result obtained using the induced EMF method. Storer's formula 
also gives a finite impedance for 2/11 = 1. 

The reader may wish to compare the entries in Table 7.3 to the earlier results 
arising from use of the method of moments, and listed in Table 7.2. 
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Zeroth and First Order Solutions to  Hall6n's Integral Equation 

The previous two sections have dealt with the computation of the input impedance 
of a cylindrical dipole using a formula derived with the aid of the reciprocity theorem. 
That formula, (7.62), was seen to be stationary with respect to variations in the trial 
function chosen to  represent the current distribution. The induced EMF method 
consisted of using a one-term sinusoidal function in (7.62) to approximate the current 
distribution. Storer's variational method permitted a linear sum of arbitrary known 
functions to be used for the current distribution, with the relative levels of these 
known functions determinable because of the stationary nature of (7.62). 

TABLE 7.3 Approximations to the input impedance of a center-fed 
cylindrical dipole using Storer's variational formulation 

Normalized 
Length 

2/11 

Input 

Normalized Impedance 

Radius Induced EMF 
a/ Method 

0.01 13.44 - j185.75 
0.0001 13.44 - j723.45 
0.01 73.13 + j38.78 
0.0001 73.13 + j42.51 
0.01 371.62 + j502.35 
0.0001 371.62 + j1069.90 
0.01 00 

0.0001 00 

Input 
Impedance 

Two-Term 
Trial Function 

11.63 - j184.86 
12.93 - j722.62 

101.13 + j32.82 
80.15 + j42.61 

565.84 + j3.10 
521.15 + j1019.24 

290.13 - j363.46 
2370.31 - j2128.60 

A fundamentally different approach to this problem has been pioneered by E. 
HalltnZ2 and exploited extensively by R. W. P. King and his co-workers.23 Halltn's 
development, up to the establishment of his basic integral equation (7.25), has already 
been traced in Section 7.4. That equation, which links the unknown current distribu- 
tion on the cylindrical dipole to a Dirac delta function distribution of longitudinal 
electric field along the dipole, was solved earlier in this chapter using the method of 
moments to  determine the current distribution (compare with Sections 7.5 through 
7.7). If one is interested in obtaining the input impedance without finding the entire 
current distribution in the process, Halltn's integral equation (7.25) can be manipu- 
lated to accomplish this. 

The development begins with the addition and subtraction of a supplementary 
integral to (7.25), which will serve to convert it to a Fredholm integral equation of 
the second kind. 

ZZHallkn, "Investigations into Transmitting and Receiving Qualities of Antennas." 
23King, Theory of Linear Antennas, Chapter 2. 
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in which r = [aZ + (z - z ' ) ~ ] ' / ~ .  Integration of the last term in (7.87) gives 

If the factor for which the logarithm is being computed in (7.88) is multiplied by the 
unitary ratio 

some rearrangenent leads to 

in which 

and 

R, which can be called the slenderness index, has already been encountered in Section 
7.8 in connection with the construction of Figure 7.12. It will be seen to be a measure 
of the rate of convergence of the iterative procedure that will be introduced shortly. 

The placement of (7.90) in (7.87) gives 

Since 

is finite, it follows from (7.93) that 

in which r '  = [aZ t ( I  - z ' ) ~ ] ~  2 .  
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An expression for I (z )  which insures a null current at z - I results when (7.95) 
is subtracted from (7.93). One obtains 

in which 

Fo(z)  = cos k z  - cos kl 

G,(z) = sin k 1 z / - sin k l  

A careful study of (7.96) reveals that, except in the neighborhood of z = I, 
ln[l - ( z / / ) ~ ]  and A(,) are both small, while near z = I, their sum is approximately 
In(al1). Since I (z )  itself is small near z = I ,  the second term on the right side of (7.96) 
is dominated by (4n/R)Ho(z) .  So, too, is the difference of the two integrals. Thus an 
initial estimate of the current distribution on the cylindrical dipole, called the zeroth 
order approximation, is 

which, by virtue of (7.97) through (7.99), is seen to be a spatially sinusoidal distribu- 
tion. This is consistent with the findings of Sections 7.6 and 7.7, where it was dis- 
covered (particularly for a l l  small) that moment method solutions were quasi- 
harmonic. 

Successive approximations to (7.96) can be obtained by an iterative procedure. 
Let the first order solution I l ( z )  be generated by a modification of (7.96) with the 
modification consisting of the replacement of I (z )  by Io(z)  in the right side of (7.96). 
That is. let 

If the function H l ( z )  is defined by 
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then the expression for I,(z) can be written in the form 

The current distribution I,(z) is seen to be comprised of Io(z) plus correction terms, 
which rank at a level R-I compared to /,(z). 

Similarly, a second-order approximation I,(z) can be generated by using I,(z) 
for I(z) in the right side of (7.96). This second-order approximation contains addi- 
tional correction terms which rank at a level !2-2 compared to Io(z). 

Proceeding in this manner, one can generate an nth-order approximation to the 
current distribution, I,,(z), which contains correction terms at the levels W1, R-2, . . . , 
R-" relative to Io(z). Since the value of the slenderness index !2 is typically 10 or 
greater, a sequence of approximations obtained in this manner ostensibly should 
converge with reasonable rapidity. 

A procedure by which one can obtain an expression for the input admittance 
of a center-fed cylindrical dipole without the need to find the complete current 
distribution is outlined by the following: (a) Decide on the order of the approximation 
n and then develop the formula for I,,(z). Equations 7.100 and 7.101 are examples of 
this for n = 0 and n = 1. (b) Place this expression for /,,(z) in (7.95) and compute 
the value of the constant C. Note that C will appear repeatedly in the formula for 
In(z), so this computation will become increasingly more complicated for larger n. 
(c) Use the computed value of C in the formula for I,(z) and then solve for the nth- 
order approximation to the input impedance from the relation Z, = I i l (0) .  

As an illustration of this procedure, suppose that a zeroth-order approximation 
to the input impedance is desired. If Io(z), given by (7.100), is placed in (7.99, the 
result is that I:, H , ( ~ ; ? e - j ~ ~ ' ~ ~ ,  c cos k l  i sin k l =  - 

21 
from which 

j sin kl + G,(l)/R c=-  
(21) cos k l  + Fl (1)IR 

where F,(z) and G,(i) are defined by 

H,(z) - CF,(z) - JG,(z)  
21 

so that, from (7.102), 

When the value of C given by (7.105) is inserted in (7.100), one finds that 



Fig. 7.15a HallBn's Curves of Res~stance of a Center-Fed Cylindrical Dipole versus k l  
and R (Reprinted from E. Hallen, Cruft Laboratory Report No. 46, 1946. Courtesy of 
Harvard University.) 

1 2, = - = -j60R . cos k l  + R I F l ( I )  
Io(0) sin k l  + R -  ' [ ( I  - cos k l ) G l ( I )  + sin klFl( I )]  

(7.109) 

Computations from (7.109) for the eight cases of (2l/A, a/A) studied in the previous 
four sections give the zeroth-order values for self-impedance, listed in the third 
column of Table 7.4. These values are at considerable variance with the corresponding 
entries in Tables 7.2 and 7.3, indicating that the zeroth-order approximation is not 
sufficiently accurate. 



Fig. 7.15b Hallen's Curves of Reactance of a Center-Fed Cylindrical Dipole versus kl 
and R (Reprinted from E. Hallen. Cruft Laboratory Report No. 46, 1946, Courtesy of 
Harvard University.) 

If (7.101) is used, together with the appropriate value of C, the first-order 
results shown in the fourth column of Table 7.4 are obtained. These values are in 
better agreement with the corresponding data listed in Tables 7.2 and 7.3, particularly 
a t  the shorter lengths. 

HallCn, working before the advent of electronic computers with a mechanical 
desk calculator, laboriously calculated first-order values for Z = R + j X i n  the range 
O S k l I 7 ,  for RL21n(21/a)=9.57, 10.60, 11.98, 13.37, 16.59, and 21.19. His 
curves are reproduced in Figure 7.15. 
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TABLE 7.4 Approximations to the input impedance of a center-fed 
cylindrical dipole using HallBn's integral equation 

Input Impedance in Ohms 
Normalized Normalized 

Length Radius Zeroth-Order First-Order 
2112, a l l  Approximation Approximation 

7.1 1 Self-Impedance of Center-Fed Cylindrical Dipoles : 
King-Middleton Second-Order Solution 

For the benefit of the reader who has been following the development throughout 
this chapter, it is desirable to stop and make an assessment. HallCn's integral equation 
(7.25), which links the unknown current distribution on a center-fed cylindrical dipole 
to the unit voltage delta generator that excites it, was first solved (in Sections 7.6 
and 7.7) using a method of moments approach. The input current provided a measure 
of the dipole's self-impedance, and representative values were listed in Table 7.2 for 
two different types of basis functions used in the computations. 

A stationary expression for the self-impedance, Equation 7.62, was derived in 
Section 7.8 and used, together with one-and two-term trial functions, to obtain the 
representative values shown in Table 7.3. 

Finally, a return to Hallen's integral equation (7.25) led, in Section 7.10, to the 
development of an nth order approximation to the self-impedance. Table 7.4 dis- 
played representative values for the zeroth- and first-order approximations to Z. 

It is disconcerting to see that the six sets of self-impedance values listed in these 
three tables, though showing general and qualitative agreement, cannot really be said 
to corroborate each other in a quantitative sense. One can excuse the entries in Table 
7.2 on the valid argument that either ( I )  a sufficient number of basis functions had 
not been chosen to provide high accuracy, or (2) improved accuracy would require 
return to the more accurate integral equation of (7.24). (The purpose of that exercise 
was to illustrate use of the method of moments and to show the nature of the entire 
current distribution, but not to determine the input current with precision.) Further, 
one can argue that the two-term Storer solutions listed in the last column of Table 
7.3 should be more accurate than the one-term induced EMF solutions shown in the 
third column of that table. By a similar argument, one can state a preference for the 
first-order solutions over the zeroth-order solutions in Table 7.4. By elimination, 
the comparison is reduced to the two sets of impedance values given in the third 
and fourth columns of Table 7.5. 
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TABLE 7.5 Comparison of the  input impedance of a center-fed cylindrical dipole using 
different computational methods 

Input Impedance in Ohms 

First-Order 
Normalized Normalized Storer's Approximation King-Middleton 

Length Radius Two-Term to Halltn's Second-Order 
2l/A a/ Approximation Equation Approximation 

When one considers the difficulty involved in making these calculations, some 
satisfaction can be taken in the general agreement between the Storer-type values 
and the first order Halltn-type values. But which set is closer to the truth? And how 
far from the truth? 

It  can be argued that if either approach is carried to a more refined level of 
approximation, the accuracy of the calculations should improve. In the case of the 
Storer method, part of the difficulty is in knowing how to compose the functions 
which will serve as three-term, four-term, and n-term trial expressions. The complexity 
of calculation increases drastically as more terms are added to the trial function. The 
situation is less complicated in Halltn-type solutions. N o  choice of trial functions 
needs to be made, and the computational procedure for higher order solutions can 
be organized into a repetitive format. 

King and Middleton have given full development to a second-order approximate 
solution of a version of Halltn's integral equation. Their curves of self impedance 
for a center-fed cylindrical dipole are shown as Figures 30.5a and b in R. W. P. King's 

and can be compared to the values obtained by Hallen (Figure 7.15). One 
finds general qualitative agreement. The tabulated data which accompanies the King- 
Middleton curves can be linearly interpolated to provide impedance values for the 
eight cases under study here. This gives the entries shown in the fifth column of 
Table 7.5. One can observe reasonable agreement between the King-Middleton results 
and the two-term Storer values, particularly at  the longer dipole lengths. This impres- 
sion is reinforced by a study of Figure 7.16, which gives a graphical comparison of 
Storer's results and the King-Middleton calculations for R = 15 and a 2n range in 
k l . I 5  All of this would suggest that higher-order approximations to Hallkn's integral 
equation and higher-order Storer variational solutions might be co~iverging to the 
true values. 

24R. W. P. King, Theory ofLinear Antennas, pp. 158-59. 
ZsStorer, "Symmetrical Cylindrical Antennas," Figure 3 in particular. 



Fig. 7.16 A Comparison of Storer's Variational Solution and King-Middleton Second 
Order Values for the Input Impedance of a Center-Fed Cylindrical Dipole; CI = 2/n(2 / /a )  
= 1 5  (Reprinted from J. E. Storer, Cruft Laboratory Report No. 101, 1950, Courtesy of 
Harvard University.) 
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King and his coworkers have investigated the convergence question by com- 
puting the input admittance Y = G + jB of center-fed cylindrical dipoles for selected 
lengths and diameters out to the 30th iteration.26 They found that, for k, 2 0.02, 
G converged to a stable value at the second (or at most third) order approximation, 
but that B diverged. Since one would expect that the real and imaginary components 
of the admittance should exhibit the same convergence properties, this was a sur- 
prising result. The cause was traced to the assumption of a delta function generator 
feeding two hollow tubes of negligible thickness across an infinitesimal gap, thus 
creating a discontinuity in scalar potential in parallel with a knife-edge capacitance 
at z = 0.27 The nature of the iterative process is to provide an additional contribution 
to B, at each iterative step, proportional to the susceptance of this infinitesimal gap 
knife-edge capacitance. Thus the intrinsic susceptance values, attributable to the 
dipole itself, actually converge, but the overall values of B grow linearly. This growth 
can be represented by (2na)nk, in which K is a proportionality constant, n is the level 
of the iteration, and 2na is the gap circumference. (The gap capacitance is propor- 
tional to 2na). Unfortunately, no theoretical method has been found to determine the 
value of K and thus remove the effect of the gap capacitance. However, the removal 
can be accomplished if one accurate value of B is obtained experimentally for each 
thickness of the antenna at a convenient value of kl (such as the value yielding the 
first antiresonance). 

This has been done using the very precise experimental results of R. B. Mack28 
and an illustration of the correction is shown in Figure 7.17. The uncorrected King- 
Middleton second-order values are indicated by the crosses. With a constant suscep- 
tance of -0.7 millimhos removed, the corrected King-Middleton values are shown 
by the solid lines. Mack's experimental data give the dotted curves. The agreement 
is seen to be quite good. 

R. W. P. King and othersz9, proceeding in this fashion for a sequence of dipole 
radii, have deduced an improved King-Middleton second-order solution and have 
provided a table of impedance values versus kl and a l l .  In the important practical 
range 0.0016 5 aiA r 0.01 and 1.3 5 kl 5 1.7, an empirical double polyfit to their 
data yields the equations 

26For a review of this work see R. W. P. King, "The Linear Antenna-Eighty Years of Pro- 
gress," lEEE Proceedings 55 (1967), pp. 2-16. 

27The divergence in susceptance values disappears if the gap is finite. See G. E. Albert and 
J. L. Synge, "General Problem of Antenna Radiation and Fundamental Integral Equation with 
Application to Antennas of Revolution," Quart. App. Math., 6 (1948), 117-56. 

z8R. B. Mack, "A Study of Circular Arrays," Cruft Laboratory Technical Reports Nos. 381- 
386, (Harvard University, May 1963). 

29R. W. P. King, E. A. Aronson, and C. W. Harrison, Jr., "Determination of the Admittance 
and Effective Length of Cylindrical Antennas," Radio Science, 1 (1966), 835-50. 



Fig. 7.17 A Comparison of the Improved King-Middleton Second-Order Admittance 
and the Measured Admittance of a Center-Fed Cylindrical Dipole (Measurements by 
Mackzs) (0 1967 IEEE. Reprinted from R.  W. P. King, IEEEProceedings, pp. 2-1 6,1967.)  

The coefficients a,, and b,, are listed in Tables 7.6 and 7.7. Plots of R(k1, a l l )  and 
X(k1, a/A) for the five values of a/A tabulated in Reference 21 are shown in Figure 
7.18. For the interested reader, the tabulation of the improved King-Middleton 

TABLE 7.6 a,, coefficients for use in Equation 7.1 10 
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TABLE 7.7 b,, coefficients for use in  Equation 7.1 11 

Fig.7.18a The Resistance of a Center-Fed Cylindrical Dipoleversuskland a l l ;  Improved 
King-Middleton Second-Order Approximation 



Fig. 7.18b The Reactance of a Center-Fed Cylindrical Dipole versus k l  and a l l ;  
Improved King-Middleton Second-Order Approximation 
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second-order approximation to self-impedance appearing in the reference of footnote 
29 covers the range 0 k l I 4 .  (The above formulas have only been fitted in the 
subrange 1.3 ( k1< 1.7.) This data is the most accurate available for the self- 
impedance of an idealized center-fed dipole. The idealization consists of picturing the 
dipole as composed of perfectly conducting thin-walled tubes with an infinitesimal 
feeding gap. The normalized radius a/A is assumed to be small enough that end effects 
at z = & I  can be ignored. When this idealization is inappropriate, one can resort to 
experimentation to determine the input impedance versus parameters of interest (such 
as frequency, length, radius). But the trend in experimental data should always 
conform to theoretical curves such as those shown in Figure 7.18, which are therefore 
useful as a guide even in situations in which they do not strictly apply. Most practical 
applications for which the idealization is valid fall in the range for which Equations 
7.1 10 and 7.11 1 or Figure 7.18 may be used. 

Comparison of Figures 7.11 and 7.18 indicates that the results using the induced 
EMF method are in better and better agreement with King-Middleton as the dipole 
becomes thinner. For a l l  < 0.001, the agreement is sufficient to make the use of 
Tai's simple formula in (7.71) adequate for most purposes. 

7.12 Self-Impedance of Center-Fed Strip Dipoles 

A dipole shape which is finding widespread practical use is one with transverse cross 
section that is a rectangle of width w and thickness t ,  with w )) t .  Strip dipoles, as 
such radiators are called, can be fabricated on dielectric substrates and used in linear 
and planar arrays at microwave frequencies. Knowledge of the impedance properties 
of strip dipoles is needed in the design of the feeding structures for such arrays. 
Additionally, strip dipoles in free space are complementary radiators to slots cut in 
thin ground planes, and Babinet's principle (compare with section 7.16) links the 
electrical characteristics of the two types of radiators. For such applications, a 
determination of the impedance properties of strip dipoles provides knowledge which 
can be transferred simply to the complementary slot problem. For these reasons, it 
is desirable to study the behavior of dipoles with a rectangular cross sectional shape. 

If the strip is slender (kw ((( 1 and w ((( 1) it is possible to find an equivalent 
cylindrical dipole of radius a and the same length 21, which has a current distribution 
and input impedance that are essentially the same as those of the strip dipole. Thus 
all the knowledge developed in the preceding sections about cylindrical dipoles can 
be carried over to apply to slender strip dipoles. But first one must establish a relation 
connecting the radius of the equivalent cylindrical dipole to the dimensions w and t 
of the strip dipole. 

Actually, this equivalence can be established for a dipole of more arbitrary 
transverse cross section than a rectangle.jO The general situation has been depicted 
in Figure 7.2a and the development carried out in Section 7.3 led to the conclusion 

3oThe development in the remainder of this section is patterned after a treatment which can 
be found in King, The Theory of Linear Antennas, pp. 16-20. 
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that, whatever the transverse shape, the integral equation for the current distribution 
on the dipole could be connected to the Z-directed magnetic vector potential Ct(z), 
the latter being given by 

in which K,(sf, z') is the lineal current density on the dipole, and R = [(x - x ' ) ~  + 
(y - Y ' ) ~  + (Z - z ' ) ~ ] ~ / ~ .  Because of the assumption of perfect conductivity, both 
the field point (x, y, z )  and the source point (x', y', z') lie on the surface of the dipole. 

If 2u is the maximum lineal extent of the transverse cross section, it will be 
assumed that ku ((( 1 and that u ((( I.  It can then be argued that the lineal current 
density K,(sf, z') can be represented as the product of two functions: 

K,(s', z') = f(sr)I(z') (7.1 13) 

In (7.1 13), I(zl) is the total current, and thus 

so that f(sl) is the normalized lineal current density. When (7.1 13) is substituted in 
(7.1 12), the result can be expanded into the form 

and, if b z IOU, this can be approximated by 

To obtain (7.116), use has been made of the knowledge that kb << 1 and b2 >> uZ. 
The mean value theorem has been used to place I(z) in front of the last integral, 
which in turn is given by 

wherein [' = z' - z so that R = [(x - x ' ) ~  + (y - Y ' ) ~  + (~ ' )2]1/2.  
Since a(z) is not a function of the transverse coordinates (x, y), nor are the first 

two integrals in (7.116), it follows that neither is the third integral in (7.116). But 
this implies, together with (7.1 17), that 
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Job jC dsl d i 1  = constant 

The c' integration of (7.1 18) gives 

S,"g= in  b -t [b2 + (X - XI)' _t (y -- yt )2~112 
[(x - x1)2 + (y - y')Z]"Z 

which means that, approximately, 

26 ds' -- constant 

Because the constant on the right side of (7.120) is independent of the shape of the 
cross section, its value may be determined by considering the special case of a circular 
cylinder of radius a. 

It has already been noted (see Appendix E) that a(z) can be computed accu- 
rately, under the present assumptions, by taking the source point to be on the Z-axis. 
Thus for the circular cylinder case, [(x - x ' ) ~  + (y - y')2]1r2 can be replaced in 
(7.120) by [x2 + y2]'12 = a. This allows one to  conclude, because of (7.1 14), that the 
constant in (7.120) has the value ln(2bla). As a result, for any shape of the cross 
section, (7.120) reduces to 

in which (x, y) and (x', y') are constrained to lie on the contour of the cross section. 
Equation 7.121 may be used to determine the equivalent radius a of a dipole of 

circular cross section that gives the same a(z), and thus the same input impedance, 
as the dipole of arbitrary cross section, with contour as specified by the parametric 
equations of (7.8). As an illustration, consider a transverse cross section of elliptical 
shape with major and minor diameters 2a, and 2b,, as shown in Figure 7.19. A point 
(x, y) on the contour is given by 

Similarly, x' = a, cos 8' and y'  = be sin 8', and in this instance 

ds' = [dt2 + dq2]'/' = [a: sin2 8' + b: cos2 13']'.'~ do' 

so that (7.12 1) becomes 

Io2' f (8') In [a:(cos 8 - cos 8')' + b:(sin 8 - sin 8')'l 
(7.123) 

sin2 8' + b,2 cos2 8']1!2de' = 2 In u 
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Fig. 7.19 A Dipole wi th Elliptical Transverse Cross Section 

subject to the condition in (7.1 14) which, for the elliptical case, takes the form 

jo2' f (8')[a: sin2 8' + b: cos2 13']~f'dO' = 1 (7.124) 

Equation 7.124 is clearly satisfied by 

If the substitution of (7.125) in (7.123) leads to a result that is independent of 8, then 
(7.125) is the true normalized distribution of the surface current on the elliptic cylinder 
dipole. To  test this, let ) = (8 + 01)/2 and y = (8 - Of)/2, so that 

cos 8 - cos 8' = -2 sin i ( 8  + 8') sin )(8 - 8') = -2 sin ) sin y 

sin 8 - sin 8' = 2 sin i ( 8  - 8') cos +(8 + 8') = 2 sin y cos ) 

As a consequence of this, (7.123) becomes 

J 0 (7.126) 
= -2 in (4 sin2 y)  d y  + 2 1' ln (a: sin2 + b: cos2 ))dm Jon o 

Through the use of standard trigonometric identities, (7.126) can be converted to 

4n ln a = -2 J n  ln (2 - 2 cos 2))d(2)) 
(7.127) 

+ 2 j': ln {$[(I + 5) - (1 - 5) cos zml) d(2)) 
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Both integrals in (7.127) can be evaluated from 

J' ~n (a + b cos x) dx = X in j[a + (a2 + b2)112] 

The first integral has a null value. The second serves to reduce (7.127) to 

as a consequence of which 

Equation 7.129 is a key result. It says that the equivalent circular cylinder has 
a radius a which is the arithmetic mean of the major and minor radii of the elliptical 
cylinder. since a highly eccentric ellipse is a good approximation to a rectangle, if 
one lets 2a, = w and 26, = t ,  then 

with w and 1 the dimensions of the rectangular contour. Equation 7.130 can be used 
to find the equivalent cylindrical dipole for a specified strip dipole, after which 
Equations 7.1 10 and 7.1 1 1  can be used to determine the input impedance of the 
strip dipole. 

7.13 The Derivation of a Formula for the Mutual Impedance 
Between Slender Dipoles 

The previous eleven sections of this chapter have been concerned with the self- 
impedance of isolated dipoles, that is, a single dipole in otherwise empty space. If a 
dipole is to be used in conjunction with a ground plane or in an array of dipoles, it is 
necessary also to be able to determine the mutual impedance between dipoles. This 
section is concerned with formulating an expression from which the mutual impedance 
can be calculated. 

Consider two center-fed dipoles, as shown in Figure 7.20. Without any loss in 
generality, the first dipole can be centered at the origin and placed to coincide with 
the Z-axis. Complete generality in the placement of the second dipole would have its 
center at an arbitrary point (x, y, z)  and would have its orientation arbitrary as well. 
However, for almost all practical applications, the two dipoles will be parallel, and 
that assumption will be made here. It is then sufficient to locate the second dipole in  
the YZ-plane, that is, with its center at the point (0, y, z). 
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Fig. 7.20 Two Parallel Dipoles 

The dipoles will be assumed to have Iengths and radii (ZI,, a,)  and (2/,, a,), 
which are generally not the same. The values a ,  and a, may be the actual radii of 
cylindrical dipoles or the equivalent radii of dipoles of other cross-sectional shapes 
(rectangular in the case of strip dipoles). 

If voltages V, and V, are applied across the central gaps of these two dipoles, 
input currents I, and I, will flow into the dipoles. This is a linear bilateral network, 
so one may write 

If dipole 2 is present but open-circuited, I, = 0 and the first of Equations 7.131 
indicates that, under those conditions, the ratio of V, to I, is Z,,  . In many practical 
applications, this ratio of V, to  I, is negligibly different from what would occur if 
dipole 2 were absent. But in the Iatter case, the ratio of V, to I, is the isolated self- 
impedance of dipole 1, a subject which was extensively investigated in the first half 
of this chapter. We can therefore conclude that when the presence of a second (open- 
circuited) dipole has negligible effect on the input impedance of the driven dipole, 
Z , ,  (and Z,,) can be determined from the curves of Figure 7.18 or Equations 7.110 
through 7.1 1 1. 

The reciprocity theorem can be used to demonstrate that Z , ,  = Z,,  ; this is a 
standard proof in circuit theory that will not be repeated here. But once again, if 
dipole 2 is present but open-circuited, the second of Equations 7.131 indicates that 
Z,, is the ratio of the open-circuit voltage V, to the input current I ,  in the driven 
dipole. The reciprocity theorem in the form (1.135) can be used to develop a formula 
from which Z , ,  can be computed. 
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To see this, consider first the situation in which dipole 1 is present and energized 
but dipole 2 is absent. If perfect conductivity is assumed and end effects as well as 
gap effects are idealized, one can picture a source-and-response arrangement as 
suggested in Figure 7.21. A cylindrical sheath generator occupies the surface r = a, 
and extends from z = -6 to z = $6, with 6 an infinitesimal. Over this sheath, E, 
is uniform, 26Ez(0) is the value of the applied voltage. Because of the assumption of 
perfect conductivity, E, r 0 over the cylindrical surface r = a , ,  which extends from 
z = -1 to z = -6, and also over the cylindrical surface r = a , ,  which extends from 
z = 6 to z = I,. A 2-directed surface current of lineal density K,(z) flows over the 
entire cylindrical surface r = a, from z = -1, to z = + I ,  and produces an electro- 
magnetic field distribution (E, H) throughout space. 

Fig. 7.21 A Cylindrical Sheath 
Generator Energizing a Cylindrical 

z = -1, 
Dipole 

If one removes the perfect conductor of which dipole 1 is assumed to be com- 
posed, but establishes in free space the same lineal current density K,(z) over the 
cylindrical surface r = a , ,  extending from z = -1, to z = +I , ,  then (E, H) will have 
the same distribution throughout space as before, including the values of E,(z) along 
the surface r = a, .  This new situation fits the assumption of sources in otherwise 
free space that was invoked in the derivation of the reciprocity theorem, and will be 
designated as containing the a-source system. 

Next, imagine that both dipoles are present, with dipole 2 energized and dipole 
1 open circuited. Now K,(z) will have a value on the cylindrical surface r = a, over 
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the full length 21, and on the cylindrical surface r = a ,  over the full length 21,, except 
for the central gap of length 26. Also, E, will be identically zero along either cylin- 
drical arm of either dipole, but will have a value in the gap of each dipole. 

Once again, the perfect conductor can be removed. If the source distribution 
K,(z) is re-established in free space on the surfaces r = a ,  and r = a,, the field 
distribution will be replicated. This new situation will be designated as containing 
the b-source system. 

Since no magnetic sources are involved and since all the electric sources flow 
on surfaces, for this application (1.135) becomes 

When the particular information just developed is placed in (7.132), one obtains 

which reduces to 

in which Vf is the open circuit voltage at dipole 1 in the b-situation, I;(O) is the input 
current to dipole 1 in the a-situation, I;((,) is the current distribution on dipole 2 in 
the b-situation, and c((,) is the free-space longitudinal field distribution on the 
surface r = a,, which dipole 2 will occupy in the b-situation but does not occupy in 
the a-situation. It has been assumed in making the reduction from (7.134) that a , / I  
and a , / l  are so small that Ei over r = a ,  is the same as though a ,  = 0 and that 
E; over r = a, is the same as though a, = 0. 

The minus sign in (7.134) requires an explanation. In terms of the notation of 
(7.131), if dipole 2 is energized and a load 2, is placed across the terminals of dipole 
1, the equivalent circuit is as shown in Figure 7.22. Because of the assumed positive 
direction of I , ,  it follows that V ,  = -Z,ZL. This is true even when ZL - - oo and V ,  

Fig. 7.22 The Equivalent Circuit wi th Dipole 2 Transmitting and 
Dipole 1 Receiving 
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is the open circuit voltage. Therefore, if the positive direction of I, is taken as upward 
in Figure 7.22, the positive direction of the open-circuited V, will be downward. 
For this reason, in the evaluation of the left side integral of (7.133), one needs to 
write 

Since Z , ,  is the open circuit voltage at dipole 1 in the b-situation, divided by I,b(O), 
it follows from (7.134) that 

z,, = - 

If one knows the current distribution on a driven dipole and the field it produces, 
(7.135) can be used to determine the mutual impedance. 

7.14 The Exact Field of a Dipole: Sinusoidal Current Distribution 

In most practical applications for which one desires to know the mutual impedance 
between dipoles, they are not sufficiently separated to be in each other's far field. 
Indeed, they may be only a small fraction of a wavelength apart. Therefore E:([,), 
as it appears in the integrand of (7.135), needs to be calculated in the near-field region 
of dipole 1. Fortunately, if one assumes that a sinusoidal current distribution exists 
on a driven dipole, it is possible to get exact expressions for the fields produced that 
are valid in both the near and far fields. 

The assumption of a sinusoidal current distribution has already been seen to be 
justified for an isolated dipole if all. is sufficiently small. In the present application 
the additional assumption must be made (for the b-situation) that the presence of a 
nearby open-circuited dipole does not distort the current distribution of the driven 
dipole. 

With these assumptions one can write 

and (7.135) becomes 

J r 2  Em sin k(lZ - 1 c2 1)  dc2 
= -sin kl, -sin kl, I,,,, 

There remains the problem of finding E;([,) before the integration in (7.138) can be 
performed. 
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In terms of the coordinate system arrangement of Figure 7.23,  the magnetic 
vector potential function due to the current distribution (7.136) on dipole 1 is given by 

I, sin k(l l  - ( cl  I)ej(wr-kR) 
A&, Y ,  z ,  t )  = 4 n p ;  ' R dC 1 

Fig. 7.23 Geometric Notation for Dipole 1 

in which 

R = [xZ + y Z  + ( z  - 6 1 ) z ] 1 : 2  

with ( x ,  y ,  z )  the field point and (0,0, c l )  the source point. If sin k(1, - ( 6 ,  I) is 
replaced by its exponential equivalent and elot is suppressed, (7.140) becomes 

In cylindrical coordinates, the only component of the magnetic field will be 
B,, given by 

B, = (V x A), = -% 
dp 

(7.142) 

with p = [ x Z  + y2]1 '2 .  If the indicated differentiation is performed on the first 
integral of (7.141), the result is that 



7.14 The Exact F~e ld  of a D~po le  S~nuso~dal  Current D ~ s t r ~ b u t ~ o n  

This integrand is a perfect differential, and it is not difficult to show that 

Integration and substitution of the limits gives 

e- j k r  e - j k ( R ~ + I ~ )  
g ,  =, + E L e j k l 1  - 

I 8npi1  [ r ( r  + Z )  R 2 ( R z  + z  + 1 , )  1 

But Ri - ( z  + = r2  - z 2  = p2 and thus one may write 

The other three integrals in (7.141) may be evaluated by the same procedure. 
When the four results are combined, one finds that 

[ e - j k R ~  $ e - j k R ~  - (2 cos k 1 , ) e - j k r ]  

The electric field can be found from Maxwell's curl equation, V x H = j o c o E ,  
which in cylindrical coordinates means that 

- 1 ,  e - j k R ~  + 1 ,  e - ~ k R s  e - j k r  
= j301, - - + - - - 

P Rl 
(2 cos k l , )  -- ) (7.148) 

P R2 P r  
and 

I E,= -- 

e - j k R ~  e - j k R ~  e- j k r  

= -j3OIm (- + - - 2 cos k l ,  -- 
R ,  R 2 r 
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It is this last result, the expression for the vertical component of electric field, which 
is needed in the present analysis. As many others have remarked, it is truly an extra- 
ordinary result. The E, field of the dipole can be viewed as being composed of three 
contributions, each of which is an isotropic spherical wave, one each emanating 
from the middle and two ends of the dipole. The result is critically dependent on the 
assumption of a spatially sinusoidal current distribution on the dipole, but for 
slender dipoles this is not at all a bad assumption. Equation 7.149 will be used in the 
next section to establish an integral formula from which the mutual impedance 
between parallel slender dipoles can be computed. 

7.15 Computation of the Mutual lmpedance 
Between Slender Dipoles 

If one returns to Figure 7.20, it is clear that a point on the axis of dipole 2 has the 
coordinates (0 ,  y, z + i ,)  with the central point of dipole 2 at the arbitrary position 
(0,  y, z) in the YZ-plane. From (7.149), the vertical component of electric field at 
(0,  y, z + i ,)  due to dipole 1 in the a-situation can be written as 

e - i k m  e- j k r  
Ez = -j301,,, (!$? + - - 2 ~ 0 s k 1 ,  -- 

rz r 

with 

When (7.150) is substituted in (7.138) the result is that 

j30 e - j k r ~  e - j k r l  

2 1 2  = sin kl, .sin kl, (7 + - - 
. sin k(12 - / C 2  1) dl2 

r 2  r 

It is customary to normalize (7.154) to the wavelength. When this is done, the real 
and imaginary components are given by 
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30 " * cos k r ,  , cos k r ,  cos k l ,  XI2 = sin k l ,  j-12 A (T - 
- 

(7.156) 
sin k(12 - I c, 1) d ($) 

Figure 7.24 shows plots of R , ,  and X,, when the two dipoles are the same length, 

Fig. 7.24 The Mutual Impedance Between Two Identical Slender Center-Fed Cylindr~cal 
D~poles versus The~r  Separation Along Various Paths; Rectangular Plots 
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for lengths 2/11 = 9, &, and 3 ,  and for three directions of separation: broadside 
( z  = 0, y variable), echelon (z = y, both variable), and end-fire (y = 0, z variable). 
One can observe a cyclical, decaying behavior to both R,, and X I , ,  with the peaks 
and nulls of one essentially coinciding with the nulls and peaks of the other. End-fire 
separation exhibits the most rapid decay, but at close spacings Z, ,  for the end-fire 
arrangement is just as strong as for the broadside arrangement. These observations 
will prove significant when the design of feeding networks for dipole arrays is 
undertaken. 

Because of the cyclical variations of R,, and Z,, with separation distance 
between dipoles, it is illuminating to plot Z , ,  in polar form. This is done in Figure 
7.25 for the same data that was used to construct Figure 7.24. One can see clearly 
that / Z , ,  1 decays most rapidly for the end-fire case, least rapidly for the broadside 
case, and that the phase angle of 1 Z , ,  I retards almost linearly with separation at a 
rate corresponding to the speed of light, this effect being essentially independent of 
the direction of separation. The value of ( Z , ,  ( is clearly influenced by the lengths 
of the dipoles. 

Under the assumptions that the dipoles are slender and not too close to each 
other, the field of one in the vicinity of the other is negligibly different from what 
one would compute by collapsing the current distribution onto the dipole axis. Also, 
the variation of this field over the surface of the other dipole is negligibly different 
from the variation of this field along the axis of the other dipole. For these reasons, 
under the stated assumptions it does not matter what the cross-sectional shapes of 
the dipoles are. Thus the formulas (7.155) and (7.156) can be used to compute Z ,  , 
between strip dipoles as well as between cylindrical dipoles, as long as the slenderness 
criteria are met. 

The case of vertical monopoles fed against a horizontal ground plane corre- 
sponds, via the image principle, to the broadside separation case for dipoles. The 
one difference that affects the computation is that it only takes half the voltage 
between the monopole and ground to establish a given current level that it does 
between the two halves of a dipole. Thus, for monopoles, one needs to take half the 
R ,  , and X , ,  values calculated from (7.155) and (7.156). 

Several of the assumptions that have been made in the development of the past 
three sections can be tested for the special case of two parallel dipoles, each 1212 long, 
separated by a distance b in the broadside position. C. T. Tai3' has investigated this 
case rigorously, using coupled integral equations. By exciting the dipoles equally, 
either in phase or out of phase, he was able to compute both Z , ,  and Z , ,  versus 
separation distance. Tai's results are reproduced in Figure 7.26. One can observe 
that, for a separation of 212 or more, Z ,  , has settled down to the value of the isolated 
self-impedance. It is also clear that Z , ,  is but little affected by the slenderness index 
of the dipoles for R 2 10. 

3 1C. T. Tai, "Coupled Antennas," Proc. I. R.E., 36 (1948), 487-500. See particularly 
Figure 16. 



Fig. 7.25 The Mutual Impedance Between Two Identical Slender Center-Fed Cylindrical 
Dipoles versus Their Separation Along Various Paths; Polar Plots 
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Fig. 7.26 The Self-Impedance and Mutual lmpedance of Two Parallel Center-Fed 
Half-Wavelength Long Cylindrical Dipoles Versus Their Broadside Separation Distance 
(0 1948 IEEE. Reprinted from C.T. Tai, Proc. IRE, vol. 36, pp. 487-500, 1948.) 

7.1 6 The Self-Admittance of Center-Fed Slots 
in a Large Ground Plane: Booker's Relation 

Assume that two thin-walled tubes of perfect magnetic conductor form a dipole and 
are fed by an idealized magnetic generator across a central infinitesimal gap. The 
shape of this antenna has already been pictured in Figure 7.2, except that now what 
is being described is a magnetic dipole, not an electric one. 

How could one determine the current distribution on such an antenna? One 
way to proceed would be to develop an analysis that is the exact dual of what appears 
in Section 7.2. An integral equation like (7.6) would emerge, with the unknown 
magnetic current density contained in the integrand and the axial magnetic field 
playing the role of driving function. For slender cylindrical magnetic dipoles, Hallen's 
integral equation would apply, and one would conclude that, for the same dimensions 
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(21112, a l l ) ,  the magnetic current distribution on the magnetic dipole is the same as 
the electric current distribution on the electric dipole. 

Further, the analysis contained in Section 7.12 could be emulated, thus extend- 
ing the duality to noncircular cross sections. In particular, one can argue that center- 
fed strip dipoles have the same current distribution, whether they be electric or 
magnetic. 

With this duality in mind, consider the antenna shown in Figure 7.27, consisting 
of a rectangular slot of width w and length 21, cut in a large ground plane, and ener- 
gized at its center by a two-wire line. If w/lZ (< I, the electric field in the slot is con- 
strained to be essentially transverse, that is, y-directed, and perforce must vanish at 
the ends of the slot. Since d E y / d x  = 0 in the slot, it follows that B,,,, = 0 in the slot. 

If the two-wire line is modeled by a generator placed in the plane of the slot 
and attached to the feed points, and if the ground plane is modeled by a "zero- 
thickness" perfect conductor of infinite extent, the technique of equivalent sources 
described in Section 3.2 can be used to compute the fields in either half of space. 

plane Ground I 

Fig. 7.27 A Rectangular Slot in a Large, Thin Ground Plane, 
Center-Fed by a Two-Wire Transmission Line 
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For the half-space x > 0, the equivalent sources consist of a lineal magnetic current 
distribution 

occupying the strip region vacated by the slot. Since B,,,, = 0 in the original problem, 
these magnetic sources can be assumed to be flowing on a zero-thickness strip of 
material composed of perfect magnetic conductor. 

The actual antenna can be modeled further by assuming that an infinitesimal 
transverse slit is cut centrally in the magnetic dipole, across which a delta-function 
magnetic generator is placed as the energizing source for the magnetic dipole. If the 
magnetic voltage of this generator is adjusted so that the input magnetic current is 

then the fields everywhere in x > 0 will be essentially the same as for the actual 
antenna. 

One can determine the fields caused by the magnetic strip dipole with the aid 
of the relations developed in Section 7.5. In particular, 

H2 = -joeoF - e,,VQm 

in which 

cis 

Away from the sources, the electric field can be found from 

It is interesting to compare these results with what one would obtain for the 
fields from a center-fed electric dipole of the same dimensions. Suppose that the 
sources on the electric dipole are related to those on the magnetic dipole by 

Equations 7.163 are consistent with the deduction that the current distributions on 
the two dipoles must be the same; the multiplicative constant -~e,(with K = 1 ohm), 
causes the two sides of (7.163) to be dimensionally consistent. The electric field 
caused by the electric dipole is given by 

where, by virtue of (1.43) and (7.163), 
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Thus El = K(jo€,F + c,V@,) which, when compared to (7.159), indicates that 

Also, away from the sources, 

so that 

Equations 7.166 and 7.168, which link the fields (El, H,) of the electric dipole 
to the fields (El, H,) of the magnetic dipole, are a particular illustration of Babinet's 
principle, which is discussed in detail in Appendix F. The essence of Babinet's prin- 
ciple is that, if two complementary screens (the holes of one are the metallic part of 
the other) are excited by conjugate sources, the resulting total fields are related by 

K El t K H ~  = E', H I  - E2 = HI; x > 0 

Equations 7.169 and 7.170 are derived in Appendix F. The sources are assumed to 
be in z < 0 and (E:, Hi) is the incident field on screen 1. The field that would be 
reflected from screen 1 if it contained no holes is (E;, Hi). 

In the present application, the two-wire-fed slot of Figure 7.27 and the center- 
fed electric strip dipole can be viewed as complementary screens. The magnetic 
dipole was used as a surrogate for the slot in the ground plane; its fields are therefore 
( E l ,  H z ) .  Under the assumption of infinitesimal gap generators, (E:, Hi) is negligible 
except at the feed point, and (7.169) is seen to  be consistent with (7.166) and (7.168). 

The reader may wonder about the change in sign evident in (7.170). With 
infinitesimal gap generators, (E;, Hi) is also negligible except at the feed point. Why 
then does (7.170) not agree with (7.166) and (7.168)? The reason for this is that the 
equivalent magnetic current distribution (7.157) was deduced in order to compute 
the fields in x > 0. To determine the fields in x < 0, one would use a current sheet 
given by K,,,,(z) =- 2pi1E,(z). Stated another way, the magnetic dipole causes an 
E-field with flux lines that are circular, while the slot in a ground plane causes an 
E-field with flux lines that are opposing "semicircles" Thus the magnetic dipole 
models the slot's fields on one side of the ground plane, but introduces a phase shift 
of 180" in modeling the slot's fields on the other side of the ground plane. 

Equations 7.166 and 7.168 establish the fact that the two-wire-fed slot in an 
infinite ground plane and the complementary center-fed electric strip dipole have the 
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same radiation pattern (with a 90"-rotation in polarization). But these two equations 
apply in the near-field region as well, and this enables one to deduce a connection 
between the input admittance of the slot and the input impedance of the strip dipole. 

The connection between slot admittance and dipole impedance was discovered 
by H. G. Booker3,, and his analysis is essentially reproduced in what follows. With 
reference to Figure 7.28, imagine two complementary radiators, a center-fed rectan- 
gular slot in a large ground plane and a center-fed strip electric dipole, each of 
dimensions 21 by w. The coordinate axes are placed centrally as shown and two 
small circular contours are constructed, each with its center at the origin, one in the 
XY-plane and the other in the XZ-plane, as suggested in the projections. 

If (V,, I ,)  and (V,, 12) are the applied voltages and input currents to the dipole 
and slot, respectively, then 

H 1 0 d l = 2 4  H I o d l =  I, f E , . d l -  V, 
ABCDA ABC obc 

(7.171) 

$ abcdn H Z 0 d l = 2 $  a bc H , . d l =  -1, 4 ABC E , . d l =  V, 

When the excitation levels are adjusted to conform to (7.163) so that (7.166) and 
(7.168) apply, one finds that 

and thus that V,/I, = (v2/4)(I,/V2), or 

Equation 7.172 is Booker's relation and is often written in the form Z,Z2 = $14, 
which in words says that v/2 = 188.5 ohms is the geometric mean between the input 
impedance of a slender strip dipole and the input impedance of the complementary 
slender slot. However, (7.172) is the preferred form since it can be generalized to the 
case of complementary arrays of slots and dipoles, as shall be seen in the next section 
of this chapter. 

Booker's relation is one of the more useful results in antenna theory. It ex- 
tends the entire body of knowledge that has been gathered on the self-impedance 
of center-fed slender dipoles to apply to a center-fed slender slot in a large ground 
plane. Admittedly, the practical applications for a slot which radiates into both 

32H. G .  Booker, "Slot Aerials and Their Relation to Complementary Wire Aerials (Babinet's 
Principle)", JIEE, 93, pt. lIlA (1946), 62G26. 
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Top  view of slot 
o r  dipole 

Fig. 7.28 Complementary Slot and Strip Dipole Radiators 

half-spaces are few, but Booker's relation provides insight to the design of cavity- 
backed slots, and will be seen to play a significant role in the theory of waveguide-fed 
slot arrays. Both of these topics are treated in Chapter 8. 



7.17 Arrays of Center-Fed Slots in a Large Ground Plane: 
Self-Admittance and Mutual Admittance 

Rectangular arrays of parallel slender slots (usually waveguide-fed) find wide appli- 
cation in radar and communication systems and their proper design requires an 
understanding of mutual coupling. This problem can be introduced by considering a 
set of N arbitrarily placed (but parallel) center-fed slots in a common large ground 
plane, as suggested by Figure 7.29. This array can be viewed as an N-port linear 
bilateral system. If (V;, I;) are the applied voltage and input current at the mth 
slot, then one can write 

N 

If ,  = C v:y;, 
n=  1 

with Y;, the self-admittance of the mth slot and Y;, the mutual admittance between 
the mth and nth slots. 

The complementary array of center-fed strip dipoles is also an N-port linear 
bilateral system. If (Vd,, Id,) are the applied voltage and input current at the rnth 

Fig. 7.29 An Arbitrary Array of 
Parallel Center-Fed Slots in a 
Large, Thin Ground Plane 
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dipole, then 

in which Z:, is the self-impedance of the rnth dipole and Z;, is the mutual impedance 
between the mth and nth dipoles. 

Suppose that all slots but the rnth are short-circuited at their feed points, and 
that all dipoles but the rnth are open-circuited. Equations 7.173 and 7.174 give 

In this condition the two screens are exactly complementary in the Babinet sense 
(including shorting wires across all but the rnth slot and open slits across all but the 
rnth dipole). With the excitation levels adjusted in conformance with (7.163), the 
relations in (7.166) and (7.168) apply. Repetition of the analysis embodied in Equa- 
tions 7.171 leads to  the conclusion that 

Thus Booker's relation applies to the dipole self-impedance/slot self-admittance 
ratio in the generalized case of two or more elements. 

If the input impedance to the rnth dipole with all other dipoles present but 
open-circuited is negligibly different from its input impedance with all other dipoles 
absent, then Z:, can be taken to be the isolated self-impedance of the rnth dipole, 
and all of the results of Sections 7.10 through 7.13 are pertinent. This is a good 
assumption if the interelement spacing is 112 or greater. By the same token, the 
self-admittance of the rnth slot can be approximated by its isolated self-admittance. 

Continuing with the assumption that all slots but the rnth are short-circuited 
and that all dipoles but the mth are open-circuited, one can also see from (7.173) 
and (7.174) that 

with If, the short-circuit current at the nth slot and Vf the open-circuit voltage at 
the nth dipole. 

Let the ABCD contours shown in Figure 7.28 be erected at the rnth slot (and 
rnth dipole), but let the abed contours, also shown in that figure, be erected a t  the 
nth slot (and nth dipole). Then 

$ H , * d l - 2  El dl  = V $  
ABCDA (7.178) 

H 2 * d l = 2 1  obc H , * d l = - I :  I,, E, dl  = V: 
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Use of (7.166) and (7.168), in conjilnction with (7.177), leads to the conclusion that 

Therefore Booker's relation also applies to the ratio of the dipole mutual impedance 
to the slot mutual admittance in the generalized case of two or more elements. 

These results can be summarized by the equation 

in which [ Y s ]  is the admittance matrix of the slot array and [Zd] is the impedance 
matrix of the complementary dipole array. It is important to note that the product 
Z;,Z;, does not equal q2/4. 

The diagonal terms of the [Y" matrix (self-admittance terms) can be computed 
by using Equations 7.1 10 and 7.1 11, modified by the multiplicative factor (4/q2). 
The off-diagonal terms of the [ Y s ]  matrix (mutual admittance terms) can be deter- 
mined through use of Equations 7.155 and 7.156, also modified by the multiplicative 
factor (4/q2). 

7.1 8 The Self-Impedance of a Patch Antenna 

The patch antenna was described in 3.7, with its generic form pictured in Figure 
3.14. Simply stated, it consists of a metallic film bonded to a grounded dielectric 
substrate. The boundary of the film may be any shape, but rectangular and circular 
patches are most common. The maximum dimension of the patch seldom exceeds 
one-half of a free-space wavelength. Feeding is usually by means of a microstrip or 
coaxial line, as suggested by Figures 3.15 and 3.16. 

It was seen in Section 3.7 that when the patch antenna was viewed as a slightly 
leaky cavity, approximate expressions for the field distribution could be readily 
deduced. From this, secondary sources could be calculated for placement along the 
perimeter of the patch-cavity, permitting calculation of the far field pattern. Com- 
parison with experimental patterns was seen to be excellent, as evidenced for rectan- 
gular and circular patches by Figures 3.18 and 3.19. 

The viewing of a patch antenna as a leaky cavity is also fruitful when one 
wishes to develop an expression for its self impedance. W. F. Richards, Y. T. Lo, 
and D. D. Harrison3' have adopted this model and idealized the feed region in order 
to provide a development whose essentials are reproduced in what follows. 

If the feed is coaxial, as in Figure 3.16, it can be represented by a cylindrical 

3 3W. F. Richards, Y. T. Lo, and D. D. Harrison, "Improved Theory for Microstrip Antennas," 
Electronic Letters, 15 (1979), 4 2 4 .  
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band of electric current flowing from the ground plane to the patch, plus an annular 
ring of magnetic current at the coaxial opening in the ground plane. The latter can be 
neglected with little error, and the former can be idealized by assuming that it is equiv- 
alent to a uniform current ribbon of some effective width d, centered on the feed axis 
and oriented (for instance) in the X-direction. The choice of a proper value for d will 
be considered later. 

If a microstrip feed is used, as in Figure 3.15, the idealization consists of 
replacing the microstrip by a uniform current ribbon of some effective width d, 
placed a t  the boundary between patch and microstrip. The value of d may be some- 
what larger than the physical width of the microstrip due to fringing. 

The foregoing idealizations permit both types of feed to be modeled by a 
uniform current ribbon. If the fields in the leaky cavity are assumed to  be insignifi- 
cantly different from the fields that would exist if the patch were surrounded by a 
perfect magnetic wall (compare with Section 3.7), then the electric field beneath the 
patch can be represented in the form of Equation 3.69, with the constant coefficients 
A,, calculable from (3.72). 

Y 

1 Rectangular patch 

Fig. 7.30 A Rectangular Patch Antenna w i t h  a Coaxial Feed 

For the case of the rectangular patch shown in Figure 7.30, with the actual 
coaxial feed centered at  (x,, y , ) ,  the equivalent current ribbon can be assumed to 
stretch from x ,  - d/2 to x, $ d/2 and carry a current of one ampere. For this 
geometry, ry,, is given by (3.64) and the constituent parts of (3.72) are 

rnx  
<YrSY:,) - cos2 2 dx dy = 

b E r E s  

(J;I//:~) =: - 1 cor -- rnx c o s y  dx 
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In (7.181), 6, = 1 if t = 0, and 6 ,  = 2 if t > 0. The substitution 5 = x - x ,  converts 
(7.1 82) to 

r n t  r n x  I s n y ~ ~ d 2 ~ s ~ c o s ~ - s i n - s i n ~ ) d ~  (7.183) (Jzy&) = cos - 
b -d 2 a a a a 

If the second term in the integrand of (7.183) is dropped on the basis of the argument 
that sin(rn(/a) is very small in -(d/2) _( t _( (d/2),34 then 

sin (rnd/2a)  COS rnx, sny , <JlwTs> = COS -- 
(rnd/2a)  a b 

When this information is placed in (3.72) and the resultant used in (3.69), an 
approximate expression for the electric field in the cavity is given by 

in which 

' m n x  nny 
cos b 

and 

sin u 
i o ( u )  = - (7.187) 

The mode wave numbers which appear in (7.185) are defined by Equation 3.65 
and the square of the wave number in the dielectric medium can be expressed as 

with 6, the relative permittivity, with 6 the loss tangent of the dielectric, and with 
k ,  = 2n/10,  where lo is the free-space wavelength. 

Near resonance the factor k,2 - k i n  becomes very small for the dominant mode, 
even with k ,  slightly complex, and the field E, is contributed to principally by the 
dominant mode term. This being the case, with all other modes neglected, E, is given 
by a single term from (7.185). If this simplified field expression is used to deduce the 
equivalent magnetic sources at the periphery of the patch, computations can be made 
of the radiative loss P,,, and of the surface wave loss P,,. Also, within the cavity 
region, the power loss P,,, in the metallic walls can be estimated, as can the power 
loss Pd in the dielectric. If the sum of these four losses is represented by P, the loss 

34This assumption loses its validity for large values of the index r. However, the dominant 
mode in practical applications occurs for r, s small. 
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tangent of an equivalent nonleaky cavity can be determined from 

in which o = 2nv is the resonant radian frequency, We is the stored electric energy 
a t  resonance, and Jeff is the loss tangent of the equivalent dielectric. Under the 
reasonable assumption that 6,,,, while greater than 6, is still quite small compared 
to  unity, We can also be computed easily by using the dominant term of (7.185). 

If next k,,, is defined by 

and used in place of k,2 in (7.185), then an improved calculation of E, is possible. 
Since tE,(x,, y , )  is the voltage a t  the feed, with t the dielectric thickness, and since a 
feeding current of one ampere has been assumed, it follows that the self-impedance 
is given by 

Near resonance this series is contributed to mainly by the dominant mode term. 
Computations using (7.191) can only be carried out after assuming some value 

for the equivalent current ribbon width d. Richards et adjusted the value of d 
so that agreement was obtained a t  one frequency between the theoretical calculation 
of Z from (7.191') and the experimental value of Z. They then proceeded to compare 
theory and experiment for the rectangular patch shown in Figure 7.31a, using three 
different feed points. The results are shown in the Smith chart of Figure 7.31 b. The 
correlation can be seen to be extraordinarily good. They were also pleased to  find 
that the same effective ribbon width d was applicable to all three loci. 

' Feed points 

\4 
r- 

*3- 

Fig. 7.31 The Input Impedance versus Frequency and Coaxial Feed Position for a 
Rectangular Patch Antenna (0 1979 IEE, London. Reprinted from Richards, Lo, and 
Harrison. Electronic Letters, vol. 15. pp. 42-44, 1979.) 
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This same approach was used successfully by Richards et a1.33 for a circular 
patch, as can be seen from a study of Figure 7.32. 

6.70 crn 
5.03 cm 

1.68 cm 
0.84 cm 

Fig. 7.32 The Input Impedanceversus Frequency and Coaxial Feed Position for a Circular 
Patch Antenna (0 1979 IEE, London. Reprinted from Richards, Lo, and Harrison, 
Electronic Letters, vol. 15, pp. 42-44. 1979.) 
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PROBLEMS 

7.1 Repeat the analysis of Section 7.2 through 7.4 for the case of a magnetic dipole of 
arbitrary cross section and show that, under the same assumptions of slenderness, 
Hallen's integral equation (7.25) is obtained for the distribution of magnetic current on 
the dipole, with the roles of E and B interchanged. 

7.2 Retrace the development of Section 7.12 to show that, for slender magnetic dipoles of 
arbitrary cross section, there is an equivalent magnetic dipole of circular cross section 
that has the same total current distribution and the same input impedance. Thus show 
the complementarity of electric and magnetic strip dipoles and establish Booker's 
relation that ~ / 2  is the geometric mean between the input impedance of the two dipoles. 

7.3 Use the method of moments and pulse functions spread over 20 equal intervals to find 
the current distribution on a slender center-fed cylindrical dipole for a/A = 0.01 and 
21/A = 0.45 (.01) 0.55. Tabulate the input impedance versus dipole length and compare 
your results to those found by the induced E M F  method and by the improved King- 
Middleton second-order approximation. 

7.4 Repeat Problem 7.3, but use four sinusoidal basis functions. 

7.5 Use the curves of Figure 7.12 (or the accompanying fitted equations) to  determine 
the impedance bandwidth of a dipole for which Q = 10. Define bandwidth as ( f2 -fi)/fo, 
in which f, is the lowest frequency at  which the dipole is resonant and f2 and f, are the 
upper and lower frequencies straddling f, at which the input VSWR has risen to a value 
of 2: 1 ,  assuming a match at  f,. 

7.6 Storer's two-term trial function for the current distribution on a cyclindrical dipole can 
be expressed in a form that contains only one arbitrary constant by combining (7.77) 
and (7.84). D o  this for his choice of partial functions in (7.78) and (7.79) and then deter- 
mine the current distribution explicitly for a / l  = 0.01 and 2/11 - 0.5. Compare your 
result with the method of moments solutions displayed in Figures 7.6 and 7.10. 

7.7 Develop an expression for the constant C in Hallen's integral equation suitable for the 
first order approximation. Your result should be analogous to (7.105), which was 
obtained for the zeroth-order approximation. Use this value of C in Equation (7.99) 
and find I,(O) for a11 - 0.01 and 2/11 = 0.45 (.01) 0.55. How do the impedance values 

found by this method compare with those found in Problem 7.3? 

7.8 Use Equations 7.110 and 7.111 to find the resonant length of a center-fed cylindrical 
dipole as a function of radius in the interval 0.0016 5 a/A I 0 . 0 1 ,  according to the 
improved King-Middleton second-order approximation. Also find the input resistance 
at resonance as a function of a l l .  Compare these results to those found by the induced 
E M F  method and shown in Figures 7.13 and 7.14. 

7.9 Find the input impedance of a center-fed strip dipole in free space if the operating 
frequency is 300 MHz. The dipole is 1.25 in. wide, negligibly thick, and 17.70 in. long. 
Use the improved King-Middleton second-order approximation to determine your 
answer. 

7.10 Estimate the input impedance of a center-fed rectangular slot in a large ground plane if 
the slot is the complement of the strip dipole described in Problem 7.9, and if the center 
frequency is the same. 
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7.11 Find the mutual impedance between two center-fed dipoles, parallel and in the broad- 
side position, when they are 0.71 apart and of common length 2111 = 0.40 (.01) 0.52. 

7.12 Repeat Problem 7.1 1 if the dipoles are in the echelon position; if they are end-fire. 

7.13 What is the mutual admittance between two rectangular slots, parallel and in the broad- 
side position, if they are in a large thin ground plane and each is 0.011 wide, 0.471 long, 
and they are 0.71 apart? What is their mutual impedance? Their self-impedance? What 
would be the self-impedance of one of the slots if the other were absent? 

7.14 Develop an expression for the input impedance of a circular patch antenna with an 
offset coaxial feed. 
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8.1 Introduction 

The results of the previous chapter, which was concerned with the self-impedances 
and mutual impedances of various antenna elements, will now be utilized in the 
design of transmission line systems (feeding structures) to connect these antennas to 
a transmitter or receiver. In the case of a single radiating element, the most common 
criteria are that it be matched to its feed at some specified frequency, and that the 
input impedance and pattern stay within some prescribed limits over a certain fre- 
quency band. The impedance specification may require that the feed contain some 
frequency compensating features. In the case of an array of radiating elements, the 
feed may be a network of transmission lines, with signal division at each junction 
designed so that the excitation of all elements, in amplitude and phase, is exactly 
what is required to produce the specified pattern in the presence of mutual coupling 
among elements. The feed port connected to the transmitter (receiver) is usually 
required to be matched. 

Individual sections of this chapter will be concerned with the design of a 
coaxially fed monopole above a large ground plane, a single dipole parallel to a large 
ground plane and fed by a balun, a cavity-backed slot, and a coaxially fed helix 
backed by a ground plane. The study of feeding structures for arrays will begin with 
the design of a two-wire harness for an end-fire array of driven dipoles in free space. 
Yagi-Uda and frequency independent arrays will be considered, as well as one-and 
two-dimensional arrays of balun-fed dipoles that are parallel to and in front of a 
large ground plane. For the linear dipole array, an introductory treatment of scanning 
a sum pattern in the presence of mutual coupling will be undertaken. The equivalent 
problem of waveguide-fed slot arrays will then be treated, and the chapter will 
conclude with an analysis of feeding structures for two-dimensional slot arrays 
designed to produce both sum and difference patterns. 



8.2 Design of a Coaxially Fed Monopole with Large Ground Plane 

A relatively simple example of the problem of feed design for an  elementary radiator 
occurs when a vertical monopole is to be fed against a large horizontal ground plane. 
Assume that the feed is a coaxial line with a n  inner conductor that is extended to form 
the monopole, and an  outer conductor that is terminated in the ground plane, as 
shown in Figure 8.1. It is desired to determine ( I )  if it is feasible to select a radius for 
the monopole that will cause it to be matched to  the coaxial line, and (2) how its 
input impedance varies with frequency. 

Fig. 8.1 A Coaxially Fed Monopole Protruding through a Large Ground Plane 

R. W. P. King' has provided data which takes into account the finite dimen- 
sions of the gap for this geometry, and has tabulated the input admittance of the 
monopole as a function of its length and radius and the characteristic impedance of 
the feeding coaxial line. Linear interpolation of his data plus inversion gives the 
resonant resistance values shown in Table 8.1. One can observe that the resonant 
resistance is quite insensitive to monopole radius and to characteristic impedance. 
Clearly, to obtain a match, one should choose as feed a coaxial line with a character- 
istic impedance of about 37 ohms. 

Since King gives admittance data for 2, = 25 ohms and 50 ohms, and since the 
two sets of data are very close, it is convenient to compute the average and invert this 
value, thereby obtaining the input impedance of the monopole versus its length and 
radius for a coaxial feed whose characteristic impedance is 37.5 ohms. The results are 
shown in Table 8.2. Further linear interpolation gives the dependence of resonant 
length and resonant resistance on monopole radius. This data is collected in Table 8.3. 

1R. W .  P. King, Tables of Antenna Characteristics (New York: IFl~Plenum, 1971), pp. 29-32. 



8.2 D e s ~ g n  of a Coax~al ly Fed Monopole  w ~ t h  Large Ground Plane 

TABLE 8.1 Resonant resistance of coaxially-fed thin tubular mon- 
opoles 

Resonant Resistance R, 

bla (2, in  ohms) 

TABLE 8.2 Impedance of thin tubular monopoles in ohrnst 

a l l  =: 0.001 588 a l l  - 0.003 175 a l l  - 0.004763 a l l  - 0.006350 

0.06250 1.49 - j385.35 1.77 -- j297.61 I .26 - j250.62 1.45 - j220.01 

0.09375 3.58 - j267.69 3.10 - j210.26 3.20 - j178.83 3.50 - j158.03 

0.12500 6.23 - j191.37 6.23 - j151.72 6.43 - j129.89 6.51 - j115.04 
0.15625 10.85 - j131.82 10.90 - j104.91 11.05 - j 89.80 11.27 - j 79.47 

0.18750 17.60 - j 79.58 17.95 -- j 62.63 18.26 - j 53.06 18.63 - j 46.52 
0.21875 27.87 - j 29.29 28.75 - j 21.1 1 29.52 - j 16.57 30.20 - j 13.55 

0.25000 43.79 7 j 22.82 45.88 i j 22.47 47.52 $ j21.86 48.87 i j 21.09 
0.28125 69.53 t j 80.10 74.08 I j 70.22 77.42 i j 63.31 79.94 -i j 57.65 

0.31250 113.40 $ j145.58 122.85 i j122.55 129.05 1 j105.92 132.87 - t i  92.20 
0.34375 193.49 i j218.63 210.52i j171.14 218.36t j135.24 220.08+j105.86 
0.37500 347.46 r j278.96 361.31 $ j177.42 351.73 S j105.11 331.48 + j 53.56 

?Monopole is extension o f  inner conductor o f  coaxial line for which bla = 1.868. Characteris- 
tic impedance o f  'TEM mode i n  coaxial line is Zo - 60 In(b/a) - 37.5 ohms. Table entries have 
been calculated by linear interpolation and inversion o f  data found i n  King, Tables of Antenna 
Characteristics, pp. 29-32. 

TABLE 8.3 Resonant length and resonant resistance of coaxially-fed tubular monopoles. 
Zo = 37.5 ohms 

R ,  (ohms) 36.82 37.05 37.28 37.50 

A perusal of Table 8.3 indicates that, for an exact match, one should choose 
a l l  - 0.00635 and 111 - 0.231. However, in order to use the available data maxi- 
mally in terms of finding the frequency response of the impedance of the monopole, 
let the selection a l l ,  - 0.00397, 111, - 0.233, and R, = 37.17 ohms be made, with 
A, the central wavelength. 



The Design of Feeding Structures for Antenna Elements and Arrays 

Next, define four wavelengths by 

The corresponding normalized monopole lengths are 

When these normalized lengths are used in conjunction with the appropriate columns 
of data in Table 8.2, linear interpolation yields the input impedance of the monopole 
at the four wavelengths. These data points, plus the resonant resistance value at A,, 
can be connected by the smooth curves shown in Figure 8.2. 

vlvo 

Relative frequency 

Fig. 8.2 Input Impedance versus Frequency for a Coaxially Fed Monopole 
Protruding through a Large Ground Plane 
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This antenna element is seen to be quite narrow band. One way to characterize 
the bandwidth is to state the extreme values of VSWR which occur in a specified 
frequency range. For this monopole-plus-ground-plane, the VSWR rises from 1.01 
at v, to 2.39 at 0.9v0, and to 1.82 at l.lv,. A 20% bandwidth can thus only be con- 
tained within a 2.4 VSWR circle. 

8.3 Design of a Balun-Fed Dipole Above a Large Ground Plane 

A commonly used antenna element consists of a center-fed dipole parallel to and a 
distance h above a large ground plane, as shown in Figure 8.3a. One could feed the 
dipole with a two-wire line from the upper half of space, but this is awkward and 
seldom acceptable. Usually, it is desirable to have the transmitter (receiver) behind 
the ground plane, in which case it becomes difficult to pass a two-wire line up to the 
dipole. It must go through a hole in the ground plane that is large enough not to 
affect the TEM mode. The presence of the hole is undesirable, and a good mechanical 
connection of dipole, feed, and ground plane is not achieved. 

Another possibility is to have a rigid coaxial line emerge vertically from the 
ground plane, as shown in Figure 8.3b, with its inner and outer conductors connected 
to the two arms of the dipole. This is a better design from a mechanical point of view, 
but is undesirable electrically. The reason for this is that the coax is an unbalanced 
feed for the dipole. In effect, the outer surface of the coax becomes part of one of the 
dipole arms and will be excited, thus contributing to the radiation pattern, introducing 
an unwanted cross-polarized field component. 

This difficulty can be overcome by the design shown in Figure 8 . 3 ~ .  The dipole 
is supported by a pair of metal tubes of length h which are electrically connected to 
the ground plane at one end and to the arms of the dipole at the other. A center 
conductor is brought up inside one of these tubes and looped over to connect electri- 
cally to the junction of the other tube with the other dipole arm. The resulting coax 
is seen to feed two elements in parallel: (a) the dipole, and (b) a two-wire line of 
length h, shorted at its other end by the ground plane. The system is now electrically 
balanced. It is for this reason that feeds of this type are called baluns, the word being 
a contracted form of balanced/unbalanced. 

If h = 114, the input impedance of the two-wire line is very high, and negligible 
current flows on it. For all practical purposes, only the dipole is being fed. And with 
h = 114, another beneficial effect is achieved. Because a large ground plane has been 
assumed, the method of images may be invoked, with the ground plane replaced by 
an image dipole for the purpose of computing the pattern in the upper half of space. 
This image dipole carries a current equal and opposite to the driven dipole (compare 
with Section 2.3). Being 112 away, it reinforces the field of the driven dipole maximally 
in the zenith direction, which is usually desired. 

It will be assumed in what follows that h = 114. Still to be determined are the 
dipole length 2/11 and the transverse dimensions of the coaxial line in order to achieve 
a match at the coax input. These quantities can be deduced by first considering the 
equivalent situation of two dipoles and no ground plane, for which the equations 
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Fig. 8.3 A Center-Fed Dipole Above and Parallel to  a Large Ground Plane; 
Various Feeding Arrangements 

can be written. In this case, in order to represent the image dipole properly, Z , ,  = 

Z,, and V ,  - -V,, as a consequence of which I ,  = -Iz The first of Equations 
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8.2 can be rewritten as 

v l  - z,, z , ,  z : = r ; -  (8.3) 

Z; ,  called the active impedance of t he j r s t  dipole, is its input impedance when the two 
dipoles are contraexcited. It is also approximately the input impedance of the single 
driven dipole above its large ground plane. (The degree of approximation is governed 
by how well the actual ground plane is modeled by an infinite ground plane of perfect 
conductivity.) 

The mutual impedance term Z,, that appears in (8.3) represents the coupling 
between two parallel dipoles of the same length a distance 112 apart. Equations 7.155 
and 7.1 56 can be used to con~pute Z,, versus the common normalized length 2/11, 
The results of such calculations are displayed in Figure 8.4. 

Fig. 8.4 The Mutual Impedance versus Their Common Length for Two Parallel Dipoles 
with a Broadside Separation of a Half-Wavelength 
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Assume that an infinitesimal gap generator is an adequate model for the center- 
feeding of the dipole, and that Z, , i%essentiall;. the same as the isolated self-impedance 
of the dipole. If the formula in (7.71) is used to  compute the self impedance 2, ,, then 
for every a l l ,  a curve of X, ,  versus kl can be constructed. Where it crosses the X,, 
curve of Figure 8.4 defines a resonant length for the dipole of that radius plus ground 
plane, since Z;, as defined by (8.3), will be pure real. This procedure permits the 
determination of a curve of resonant length versus dipole radius, with the result 
shown in Figure 8.5. With this relationship determined, one is able to deduce & = 

R,,  - R,,  versus either resonant length or dipole radius. This result is also shown 
in Figure 8.5. One can observe that both the resonant length and input resistance 

Fig. 8.5 Resonant Length and Input Resistance at Resonance versus Dipole Radius 
for a Dipole Parallel to  and a Quarter-Wavelength in  Front of a Large Ground Plane 

decrease as the dipole is fattened, a characteristic that has already been observed 
for a dipole without a ground plane. 

The feeding coax that comprises one leg of the balun can be used to convert the 
resonant resistance R; to some desired level. For example, if a / l  = 0.005, Figure 8.5 
indicates that R: - 63 ohms. Imagine that it is desired to match this to a 50-ohm 
coax which runs along behind the ground plane. If the balun coax is air-filled, it 
becomes a quarter wave transformer, and should have a characteristic impedance 
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given by Z ,  = [(63)(50)]1/2 = 56 ohms. The inner and outer conductors of the balun 
coax should thus be in a ratio that satisfies the equation Z, = 60 In(b/a). This means 
that b/a = 2.55, which is a reasonable ratio, easy to achieve in a practical design. 

8.4 Two-Wire-Fed Slots: Open and Cavity-Backed 

If a slender rectangular slot is cut in a large ground plane and center-fed by a two-wire 
line, as suggested by Figure 7. Id, a radiator that is essentially the complement of the 
center-fed dipole will result. Booker's extension of Babinet's principle (compare with 
Section 7.16) provides the information that 

in which Y' is the self-admittance of the slot, Zd is the self-impedance of the equivalent 
dipole, and q = 377 ohms is the impedance of free space. If the slot has a length 21 
and a width w << I, and if the ground plane has a negligible thickness, then the equiva- 
lent dipole has a length 21 and a radius a = w/4 (compare with Section 7.12). Equation 
8.4 indicates that the slot admittance is pure real when the impedance of the equiva- 
lent dipole is pure real. It follows that the resonant length of the slot can be deduced 
from Figure 7.18 if a l l  is replaced by w/41. 

If the slot is tuned to resonance, its input conductance can be computed by 
using (8.4) in conjunction with the information contained in Figure 7.18. For example, 
if w/l = 0.0064 then kl,,, = 1.493 and Gs - (2/377)2(70.75) = 1.99 millimhos. 
Since the characteristic impedance of a two-wire line is given by 

a match of this resonant slot with its feed can be achieved by choosing the wire diame- 
ter nand center-to-center spaclng D of the two-wire line so that 2, = R, = 500 ohms. 

The slot in a ground plane, center-fed by a two-wire line, and radiating into 
both halves of space, gives approximately the same pattern as an electric dipole of 
the same length, but with E and H interchanged, that is, with the polarization rotated 
90". The practical applications of such radiators are limited, but a useful antenna 
emerges if the slot is forced to radiate only into a half-space by the introduction of a 
cavity that "boxes in" the slot on one side, as shown in Figure 8.6. The combination 
of slot and rectangular cavity can be fed by a coax, as shown, and if the cavity dimen- 
sions are large enough, the electric field distribution in the slot is approximately the 
same as before introduction of the cavity. 

Assume that this is the case, and that the a-dimension of the cavity is in the 
range to permit propagation only of the TE,, mode. If additionally b w, the field 
distribution in the cavity primarily consists of a standing wave of the TE,, type, with 
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Fig. 8.6 A Cavity-Backed Slot in a Large Ground Plane 

field components given by 

nx . E, = C sin - sin p (d - z )  a 

( I w B / c o ) ~  sin 
cos p (d  - z )  H z = -  - 

nx . C cos - sin B (d  - z )  H z = -  - 
( jw,u,a) a 

The complex power flow into the cavity is then 

V I  = joa job E x H 1 ,  dx dy 

= (&)c' sin pd 0 s  pd 
nx 

Jon lob sin 2 a dx dy 

Since V = E,,b = bC sin pd, the input admittance of the cavity is 
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With the current distribution in the radiating face of the ground plane the same as 
though the cavity were not present, the admittance of the slot is half what it was 
before, or 

The total admittance seen by the coaxial feed is therefore 

If the cavity dimensions and the slot length are properly adjusted, the susceptive part 
of Y" can cancel Y' so that the coax sees a resistive load of amount v2/2Rd. This is a 
high resistance, typically in the range of 1000 ohms. Coaxial feeds with their charac- 
teristic impedances in this range are impractical, and stepdown impedance transfor- 
mations are narrow band. However, a T-bar transition, in which the center conductor 
of the coax terminates in a transverse bar rather than the upper side of the slot, has 
proven very effective in overcoming this impedance level problem. The cavity dimen- 
sions must be adjusted experimentally, but an exact match a t  the design frequency 
can be achieved, with the input VSWR held under 1.5 over a 309: b a n d ~ i d t h . ~  

8.5 Coaxially Fed Helix P l u s  G r o u n d  P l a n e  

A helical antenna with circumference C, that is approximately one free-space wave- 
length will radiate in the axial mode, producing an  end-fire beam that is circularly 
polarized. The helix is usually mounted over a ground plane and excited by a coax, 
as shown in Figure 2.11. The ground plane should be at  least one-half wavelength 
in diameter, but all dimensions of this antenna are surprisingly noncritical, and good 
operation can be obtained over an extremely broad band of frequencies. 

A typical example is provided by J .  D. Kraus3 who describes the performance 
of a six-turn helix with a 14'  pitch angle. The helix diameter was 0.311, a t  the center 
frequency of 400 MHz.  Kraus used tubing of 0.0212, for the helix but comments that 
tubing with diameters ranging from 0.0061, to 0.051, have little effect on the antenna 
characteristics. His measured patterns in the frequency range 300-500 M H z  are 
shown in Figure 8.7. (Outside this range the patterns deteriorated). 

The measured input impedance at  400 M H z  was 130 ohms and this was trans- 
formed to 53 ohms via a quarter-wave section. Kraus measured the input VSWR 
versus frequency referred to a 53-ohm line, and the results are given in Figure 8.8. 
Also shown is the axial ratio ( 1  E,l/I E,I at  end-fire) and the half-power beamwidth 
for the E, and E, pattern components. On all counts, this is seen to be a highly 

2Radio Research Laboratory Staff, Vcjry Hifill Frequency Technirlues, (New York: McGraw- 
H~l l  Book Co., Inc., 1947), Chapter 7. 

35. D. Kraus, A~ztet~nas, (New York: McCraw-Hill Book Co., Inc., 1950), pp. 208-12. 
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Fig. 8.7 Measured E-Field Patterns of a Six-Turn Helix wi th 14" Pitch; Polar Plots; 
Linear Scale (From Antennas by J. D. Kraus. Copyright 1950 McGraw-Hill. Used with 
permission of McGraw-Hil l  Book Company.) 

". 
1 Fig. 8.8 Performance Data for a 

2 I 
' Six-Turn Helix wi th 14" Pitch 

( (From Antennas by J. D. Kraus. 
1 %  Copyright 1950 McGraw-Hill. 

O.' 0.9 I" 
Used wi th ~ermiss ion of McGraw- 

Circumference. C, Hill Book Company.) 
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satisfactory antenna for circularly polarized applications requiring a beam-type 
pattern. 

8.6 The Design of an Endfire Dipole Array 

A linear array of transverse, parallel dipoles, excited to produce an endfire beam, 
finds many applications, both as a transmitting antenna and as a receiving antenna. 
Chapters 4 and 5 dealt with the questions of current distribution, array length, and 
interelement spacing if a linear array is to produce an endfire pattern with a specified 
beamwidth and side lobe level. There remains the problem of determining how to 
deliver the desired currents to the individual radiators. Often this is done by means 
of a properly designed transmission line network. An example of an endfire dipole 
array fed in this manner will be presented in this section. 

The reader will find that the design of endfire dipole arrays is a rich and diverse 
subject. In some designs the dipoles are not equispaced (log-periodic) and in some 
designs they may not all be fed by the transmission line (Yagi-Uda). These approaches 
will be treated in ensuing sections. 

As an example of an equispaced endfire array with all elements directly fed, 
consider the antenna system shown in Figure 8.9. The dipoles are spaced 4 3  on 
centers and series-coupled to a two-wire transmission line which can be assumed 
air-filled. The currents are to be I, = 11 - 120°, I, = 1 .510°, and I, = 11 120°, resulting 
in an array factor with -17 dB side lobes, as shown in?igure 8.10. 

i 
0- 

Dipole 
cross section 

Series-coupled dipole array 
Transmission line 
cross section 

Fig. 8.9 An Endfire Array of Three Dipoles, Series-Fed by a Two-Wire Transmission 
Line 
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Angle from end-fire 

Fig. 8.10 Principal Plane Pattern; End-Fire Array of Three Dipoles, One-Third Wave- 
length on Centers 

If (V,, I,) is the voltage/current pair at the terminals of the mth dipole, then 

and thus the active (or input) impedai~ces at the three terminals are 

For the purpose of making a first calculation of the mutual impedances, assume that 
all three dipoles are 112 long. Equations 7.155 and 7.156 can be used to compute Zi, 
for 112 dipoles spaced 113 on centers. The results are 

When this information is placed in (8.12), one finds that 



8.6 The Des~gn of an Endf~re D~po le  Array 365 

Zf = Z , ,  + 38.76 + j79.98 

Zg - Z,, - 14.28 t j 2 4 . 5 2  

Z; = Z,, - 46.54 - f 19.52 

Consider the feeding problem from the vantage point of port 2, looking along 
the transmission line toward port I. The equivalent circuit of this part of the antenna 
system is suggested by Figure 8.1 1. Since the input and output currents of a section 
of transmission line of length 1 are related by the equation 

cos p l  -+ j- sin p l  " I zo 
with Z ,  the load impedance through which the output current flows, and Z ,  the 
characteristic impedance of the transmission line, it follows that in this case 

or that 

Fig. 8.11 The Equivalent Circuit of the Rearward Part of the Antenna System 

If one makes the tentative assumption that the mutual impedance terms are 
insensitive to small length adjustments, Equations 8.14a and 8.16 taken in concert 
indicate that 21,, the length of dipole 1, should be adjusted so that Z , ,  + 38.76 + 
,j79.98 has a phase angle of 10.9". Assume that Tai's empirical formula (7.71) gives 
an adequate measure of Z ,  ,. If the dipole cross section (see the inset of Figure 8.9) 
is such that w/l - 0.0056 and t / l  = 0.0008, then the equivalent cylindrical dipole 
(see Section 7.12) has the radius a = (nl + t)/4 and thus a l l  = 0.0016. When this 
normalized radius is used in (7.71), it is found that if 21,/12 = 0.439, then Z , ,  = 

50.28 - j62.54 and Z f  = 90.04 + j17.44 = 91.711 10.96". When this information is 
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placed in Equation 8.16, one finds that the stretch of two-wire line connecting dipoles 
1 and 2 should have a characteristic impedance of 60 ohms. With the transverse 
dimensions of the feed line as indicated in the second inset of Figure 8.9, the charac- 
teristic impedance is given by Z ,  = ~(bla) .  For this section of line, (bla) = 601377 - 
0.16, which is quite reasonable. 

This process can be repeated by drawing the equivalent circuit of the antenna 
system from the vantage point of port 3. This is illustrated by Figure 8.12, which 
shows that the load impedance consists of Z," in series with Zy, where Zf is the active 
impedance 2; transformed through an electrical length of 120°, that is, 

Zy' = Z ,  (Z?/Z,)  cos 120" + j sin 120" 
cos 120" + j(Z;/Z,) sin 120" 

Fig. 8.12 The Equivalent Circuit of the Forward Part of the Antenna System 

A second use of (8.15) gives 

in which Z', is the characteristic impedance of the length of two-wire line connecting 
dipoles 2 and 3. 

Solution of (8.18) yields 

From (8.14) and (8.17) it is known that 

Z; + Zf = Z,, + 25.68 + j36.06 

and from (8.19) this should be an impedance with a phase angle of - 16. lo. Another 
use of Tai's formula (7.71) indicates that, if 21,/A = 0.441, then Z,, = 51.08 - 
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j58.32 and Z; f Z f '  = 76.76 - j22.26 = 79.921 - 16.2". A return to  (8.19) reveals 
that Zh = 115 ohms should be the characteristic impedance of this stretch of two- 
wire line. 

The input impedance to the entire antenna system is given by 

[(Z," -+ Zfr)/Z',] cos 120" $ j sin 120" 
z'" = z' ' zL cos 120" + j[(Z; + Zf)/Z',] sin 120' 

= Z,, -1 126.54 - j52.84 (8.20) 

If this total input impedance is to be pure real, then a third use of Tai's formula 
(7.71) indicates that the length of dipole 3 should be 21,/12 = 0.507; then Z , ,  = 

76.58 + j52.82 and 

Z,, - 203 ohms (8.21) 

This input resistance can be matched to the transmitter (receiver) by a quarter-wave 
transformer or a tapered line. 

The design procedure just described was predicated on the assumption that 
Zij is insensitive to  these small dipole length changes. One can check this by repeating 
the process, using the new dipole lengths to compute the mutual impedances. When 
this is done, one finds that 

Z , ,  = Z,, - 15.16 - j26.12 

Z,,  = Z, ,  - -21.50 - j4.66 

Z,, = Z,, = 18.42 - j31.66 

With these values used in the design procedure, it can be determined that 

One can observe that 21,/1 is 2 %  higher, 21,/1 is changed but little, and 21,/1 is 
unchanged. Also, Z,  is 8 %, lower, Z', is 8 ';/, higher, and Z,, has been raised by 10%. 
Another iteration would show almost negligible further change and will not be 
undertaken. 

If the gap problem is such that neither the Tai empirical formula (7.71) nor 
the more accurate King-Middleton equations (7.110) and (7.11 1) give a valid repre- 
sentation of the self-impedance, experimental data can be taken (at a modeled fre- 
quency if that is more convenient) and then formula-fitted. The design procedure is 
unchanged except for the substitution of the fitted formula for (7.71). Mutual imped- 
ance is not so seriously affected by the gap problem and thus (7.155) and (7.156) 
should still be applicable. 
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If the end-fire array described in the previous section (three parallel dipoles in free 
space, all driven) were enlarged to become an array of four or more driven elements, 
an increase in directivity could be achieved. The same design procedure could .be 
used to determine dipole lengths and transmission line characteristics. However, the 
design quickly becomes complicated by the addition of more elements, and the 
complexity of feed construction becomes onerous. A nice way out of this difficulty 
would result if it were to prove possible to eliminate the feed network, to short all 
dipoles save one, and to adjust the lengths and spacings so that the currents induced 
in the shorted dipoles (by the field of the driven dipole) would contribute to the 
creation of an  end-fire pattern. 

This possibility was first investigated by S. Uda4 in the 1920's and reported in 
an English-language journal by his colleague H. Yagi5, as a result of which such 
antennas have come to be known as Yagi-Uda arrays. They have many practical 
applications, including wide use by amateur radio enthusiasts. 

One can gain considerable insight about such arrays by considering first the 
case of two parallel dipoles a distance d apart, one driven and the other parasitic 
(shorted). This situation is suggested by Figure 8.13. The mesh equations for this 

Fig. 8.13 An Array of Two Parallel Dipoles, One Driven, One Parasitic 

4 s .  Uda, "Wireless Beam of Short Electric Waves," J.  IEEE (Japan), (1926), p p .  273-82 and 
(1927), pp. 1209-19. 

5H. Yagi, "Beam Transmission of Ultra Short Waves," IRE Proceedings., 16 (1928), 715-41. 
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array are 

and thus 

Since the array factor is given by 

it is clear that the shape of the pattern is controlled by the spacing dl12 and by 
-z121z22. 

If the lengths of the two dipoles are near first resonance, the phase of the 
mutual impedance as a function of d l l  is quite insensitive to the values of 21,112 and 
21,/12. (Even the magnitude of Z , ,  does not show much sensitivity.) As an illustration 
of this, let 21,/12 = 0.475, and let 212/12 = 0.450, 0.475, and 0.500, successively. If 
Equations 7.155 and 7.156 are used to compute the mutual impedance, one obtains 
the values entered in Table 8.4. 

Because of this insensitivity, the p h a s e  of I,/I, ,  at a given spacing, is governed 
primarily by the phase of Z,,, as can be seen from (8.23). Continuing with the present 
illustration, one can determine an approximation to Z,, by using either Equations 
7.1 10 and 7.11 1 or Figure 7.18. With a , / l  = 0.0032, this gives the values shown in 
Table 8.5. When these values of Z,, are used in conjunction with the entries of 
Table 8.4 and Equation 8.23 ,  the current ratios shown in Table 8.6 are obtained. 

Since the objective is to produce an end-fire pattern with this two-dipole array, 
one can scan the entries of Table 8.5 to see if there is some combination of dl12 and 
212/12 which will enhance end-fire radiation. For the beam to be at 19 = 0°, enhance- 

TABLE 8.4 Mutual impedance versus spacing between two parallel 
dipoles : 2 / , / 1  = 0.475 

Z 1  2 ohms 

212/1 = 0.450 212/1 = 0.475 21211 = 0.500 
- 

53.94 - 11.52' 58.19 13.22" 62.78 14.98" - - 
49.08 1-9.38" 52.73 / -8.45' 56.62 1-7.50" 
44.42 1 2 1 . 9 3 "  47.67 / -21.42" 51.12 1-20.90" 
40.23 1 3 5 . 5 3 "  43.18 1 3 5 . 2 8 "  46.30 1-35.02" 
36.55 / -49.91" 39.26 1-49.82- 42.11 1 4 9 . 7 3 -  
33.35 1-64.87" 35.84 ( -64.89" 38.47 / -64.91" 
30.57 / -80.32" 32.86 1 -80.40" 35.31 1-80.48" 
28.14 1-96.14" 30.28 1 9 6 . 2 6 "  32.56 / -96.38" 
26.04-112.25" 2 9 . 0 2 / 1 1 2 . 4 0 "  30.161-112.56" 
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TABLE 8.5 Self-impedance of a cylindrical dipole 
versus length (King-Middleton corrected 
second-order approximation ; 
( a z / l  = 0.0032) 

21211 Z22 ohms 

TABLE 8.6 Relative current versus spacing for two parallel dipoles, one 
driven, one parasitic: 211/1 = 0.475 

I2111 = -Zlz/Zzz 

ment will occur if I, lags I ,  by kd radians. Clearly, none of the values in Table 8.6 fit 
this condition. However, cancellation in the direction 0 = 180" also corresponds to 
a beam at 0 = 0". Such cancellation results if I, lags I ,  by n - kd  radians. It can be 
observed that if d/lZ = 0.10 and 21,/12 = 0.450, this condition is almost satisfied. 

Similarly, if one wishes to produce an end-fire beam at 0 = 180°, this goal will 
be helped if I, leads I ,  by kd  radians. Inspection of the entries in Table 8.6 indicates 
that this will occur if d/lZ = 0.30 and 21,llZ = 0.500. 

The criterion of attempting to match the phase of I,/I, with either kd or its 
supplement is actually too crude, since a forward optimum and a rearward optimum 
cannot be achieved at the same spacing. A more useful way to go about determining 
the optimum spacing is to compute the directivity corresponding to each entry in 
Table 8.6. When this is done, one finds that for 21,/1 = 0.450, an end-fire beam 
occurs at 0 = 0°, and that the directivity versus spacing is given by the solid curve 
in Figure 8.14. Similarly, for 21,/3, = 0.500, an end-fire beam occurs at 0 = 180°, 
with the directivity versus spacing indicated by the dashed curve in Figure 8.14. 

An important conclusion can be drawn from this exercise. If a shorted dipole 
is spaced an appropriate distance from the driven dipole, an end-fire beam can be 
produced. When the parasitic dipole is shorter than the driven dipole, it is called a 
director, and the end-fire beam is in the direction from the driven element past the 
parasite. When the parasitic dipole is longer than the driven dipole, it is called a 
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Fig. 8.14 Peak Directivity versus Element Spacing for an Array of Two Parallel Dipoles; 
One Element Driven, the Other Parasitic 

rejector,  and the end-fire beam is in the direction from the parasite past the driven 
element. From Figure 8.14, the optimum spacing (in the sense of maximizing direc- 
tivity) is seen to be about 0.121 for the director case and 0.161 for the reflector case. 
Pattern cuts in the XZ-plane are shown in Figure 8.15 for these two optimum designs. 

Under the assumption that Z I 2  is insensitive to small changes in 21,/1. all of 
the foregoing is still valid if 21,112 is no longer exactly 0.475. Adjustment of 21,/12 can 
make the input impedance pure real, which is often desired. From (8.22), 

For the optimum director case, one can deduce from Tables 8.4 and 8.6 that 

Therefore, 21,/1 should have a value such that the reactive component of Z , ,  is 
+ 13.95 ohms. Use of (7.110) and (7.11 1) or Figure 7.19 leads to the conclusion that, 
with a,!1 = 0.0032, 21,/1 should be 0.482, and then Z,, = 75.82 + j13.95 and 
Z,, = 38 ohms. 



(b) 

Fig. 8.15 H-Plane Power Patterns for Two-Element Yagi-Uda Arrays 
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Similarly, for the optimum reflector case, Tables 8.4 and 8.6 yield the infor- 
mation that 

For this situation, 21,/1 should be chosen so that Z ,  , has a reactive component equal 
to -24.03 ohms. One finds that 21,/1 should be 0.454, and this gives Z , ,  = 62.46 - 
,j24.03, so that Z,, = 40 ohms. 

Improved accuracy would result if this design procedure were iterated, but the 
values obtained are indicative of the method, and probably of sufficient accuracy 
for most purposes. 

8.8 Yagi-Uda Type  Dipole Arrays:  Three  o r  M o r e  Elements  

A natural extension of the development in the previous section is the three-element 
dipole array, with one driven element flanked on each side by a director and a reflec- 
tor, as shown in Figure 8.16. The mesh equations for this array are 

with V, = V3 = 0. Simultaneous solution of the first and third equations of (8.28) 
gives 

whereas the second equation of (8.28) gives the input impedance 

Under the assumption that the presence of the director does not materially 
affect the proper length of the reflector and vice versa, one can initiate a computer 
search in the neighborhood of the two separate designs of the previous section to 
find optimum values of 2Ii/1 and d i / l .  When this is done, a fairly broad range of 
dimensions gives good results. Both the reflector and the director can be spaced 0.151 
to 0.201 from the driven element without much effect on the pattern. As an example, 
if 
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Fig. 8.16 A Linear Array of Three Parallel Equispaced Dipoles 

then it is found that 

A small adjustment in the length of the driven element will tune the input impedance 
to resonance. 

An XZ-plane plot of the power pattern for this current distribution is shown in 
Figure 8.17. The directivity of this three-element Yagi-Uda array is 7.5 dB above 
that of a single dipole. 

Experience shows that attempts to  place more reflectors behind the driven 
element are ineffectual because the total field reaching them is small, but a string of 
directors can be placed in front of the driven element, with each additional director 
resulting in an  increase in directivity. For example, with 20 directors, one driven 
element, and one reflector, and with the overall length of the Yagi-Uda array 6.512, 
the directivity over a single half-wave dipole is 19 dB. In such designs, successive 
directors are about 0.5% shorter, and the interelement spacing increases to about 
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Fig. 8.17 H-Plane Power Pattern for a Three-Element Yagi-Uda Array 

0.351 at  the fifth director and then remains constant. The reader interested in prac- 
tical details should consult the Radio Amateur's H a n d b ~ o k . ~  

The multi-element Yagi-Uda array has been analyzed as a slow-wave structure, 
and a summary of this approach, with bibliography, can be found in E. A. W ~ l f f . ~  
It has also been treated by G. A. Thiele,8 using a point-matching technique within 
the framework of the method of moments. His theoretical results for the pattern of 
a 15-element array are in extraordinary agreement with experiment. 

8.9 Frequency-Independent Antennas: Log-Periodic Arrays 

Yagi-Uda dipole arrays, described in the previous two sections, have the advantage 
that there is only one fed element. At a single frequency, with many dipoles in the 
array, it is possible to get a good end-fire pattern and a real input impedance a t  a 
convenient level. However, such arrays are not particularly broadband, either in 
terms of pattern performance or input VSWR. 

6See the Radio Amateur's V H F  Manual, 3rd Edition (Newington, Conn:  ARRL,  Inc., 19721, 
pp. 153-55. 

7E.  A. Wolff, Antenna Analysis (New York: John Wiley and Sons, Inc., 1966), pp. 405-9. 

8G. A. Thiele, "Wire Antennas," Conipufer Techniques fi,r Elecfrun~agtzefics, ed. R.  Mittra 
(Oxford: Pergamon Press, 1973), Chapter 2, pp. 43-48. See particularly Figure 2.21. 
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There exists a type of dipole array, with a simple feeding structure, which will 
produce patterns similar to those of a Yagi-Uda array, but over a remarkably broad 
band of frequencies (6: 1 or more), with the added virtue of a low input VSWR 
throughout the same frequency range. Such arrays are called log-periodic, and a 
satisfactory way to understand their performance is to start with a general analysis 
of frequency independent antennas. 

It was recognized by V. H. Rumseyg that an antenna with shape specified 
entirely in terms of angles will have pattern and impedance characteristics that are 
independent of frequency. His analysis of such antennas is reproducedin what follows, 
except that the treatment of the three dimensional case is simplified.lO,l' 

Consider an antenna, with both terminals indefinitely close to the origin of a 
spherical coordinate system, being symmetrically disposed along the 8 = 0°, 180" 
axis. Assume that the antenna consists of perfect conductors and is surrounded by 
an infinite homogeneous and isotropic medium. Let the surface of this antenna be 
described by 

r = ~ ( e ,  4 )  (8.32) 

Equation 8.32 does not necessarily imply that the material composing the antenna 
is indefinitely thin. There may be several branches to the function F(8 ,4 ) ,  corre- 
sponding to inner and outer surfaces. 

Suppose that one wishes to scale this antenna to a new frequency that is K 
times lower than the original frequency. The antenna must be made K times bigger, 
resulting in a surface 

in which K depends neither on 8 nor on 4 .  
Imagine that when this is done the new surface is found to be identical to the 

old, that is, the surfaces are not only similar, but they can actually be made congrtrent. 
(This implies, of course, that both surfaces are infinite.) A little thought will convince 
the reader that congruence, if it occurs, can only be established through a rotation 
in 4 .  (Translation is barred because both antennas have their terminals at the same 
origin. Rotation in 8 is barred because both pairs of terminals are symmetrically 
disposed along the 8 = O0, 180" axis.) Thus, for congruence, 

9V. H. Rumsey, "Frequency Independent Antennas," IRE National Convention Record, Part I 
(March 1957), 114-18. Also, see Rumsey's textbook of the same title (New York: Academic Press, 
1966). 

loMuch of the material in this section is taken from a tutorial paper written by the author in 
1962. See "A View of Frequency Independent Antennas," Microwave Journal, (1962), pp. 61-68. 
Copyright 1962 Microwave Journal. Reprinted with permission. 

1 ]For a review of the highlights in the development of this subject, see E. C. Jordan, G. A. 
Deschamps, J. D .  Dyson, and P. E. Mayes, "Developments in Broadband Antennas," IEEESpectrum, 
I (1964), 58-71. 
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in which C i s  the angle through which the second antenna must be rotated in order to 
achieve congruence with the first. Here C depends on K, but neither depends on 0  
nor q5. 

Congruence implies that the original antenna would perform exactly the same 
at the two frequencies, except for a rotation C in the azimuthal coordinate of its 
radiation pattern as the frequency is changed from v to v/K.  If it should develop that 
the range of K is unrestricted, that is, if 

then the original antenna must have a pattern shape and impedance that are inde- 
pendent of frequency. (The pattern may rotate in $ with frequency due to  the para- 
meter C, but its shape will be unaltered.) 

If (8.35) holds, the nature of the function F ( 0 , $ )  can be deduced from (8.34). 
Differentiation of both sides with respect to C gives 

whereas differentiation of both sides with respect to $ gives 

Combining these two results, one obtains 

which can be rewritten, with the aid of (8.32), in the form 

Since the left side of (8.39) is independent of 0  and $, it follows that 

is a general solution of (8.39), in which a - (1/K) (dK/dC) is a parameter and f (6) 
is a completely arbitrary function. 

Equation 8.40 was first derived by V. H. RumseyI2 and is the central result of 
the analysis. Any antenna that has surfaces which can be described by functions of 
the form of (8.40) will have pattern and impedance characteristics that are inde- 
pendent of frequency. Several important classes of such antennas can be identified. 

'ZRumsey, "Frequency Independent Antennas." 
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PLANAR SPIRALS If one chooses f (0)  so that 

with A an arbitrary positive constant and 6 the Dirac delta function, then (8.40) 
becomes 

n r = roe"(+-+o) if 0 = - 
2 

(8.42) 

In (8.42), roe-"" is a substitution for A .  The antenna surface is seen to lie in the 
XY-plane and (8.42) can be recognized as the equation of an equiangular spiral. 

Since the parameter A is arbitrary, it follows that in (8.42) r, can be considered 
as fixed, with $, playing the role of a parameter. If $, is given the values 0 and n, the 
antenna of Figure 8.18a results. If $, is allowed to take on the values 0: n/2, n, and 
3 ~ 1 2 ,  four spiral forms occur, as shown in Figure 8.18b, with several symmetrical 
possibilities for connecting the terminals. If $, is allowed to assume all values from 
0 to $,, and all values from n to  n + $,, with $, arbitrary, an antenna of the type 
shown in Figure 8 . 1 8 ~  arises. From these few examples, the variety of possible 
combinations for the planar spiral case is seen to be endless. 

In the ideal theoretical analysis resulting in (8.36), the antenna shapes shown 
in Figure 8.18 are assumed to be infinite. However, investigation of the current 
distribution on such antennas reveals that the principal part of the excitation occurs 
in a resonant region around r = Y2. Thus when the planar spiral antennas of Figure 
8.18 are truncated at some finite size, one can anticipate that the antenna should 
perform satisfactorily down to a frequency at which the wavelength is comparable 
to the antenna size. An upper frequency limit can be expected when the actual antenna 
terminals no longer behave as a pair of points infinitesimally apart at the origin. 
Experiments confirm these frequency limits. 

An interesting feature of the planar spiral antenna is that Babinet's principle 
may be applied to it (see Appendix F). With reference to Figure 8.18c, if 2,  is the 
input impedance of the antenna for a value $, = a and Z ,  is the impedance for a 

Fig. 8.18 Some Simple Shapes for Frequency-Independent Planar Antennas 
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value 4,  = n - a, the two antennas form complementary screens and thus Z,Z ,  = 

q2/4. For the special case that 4,  = 4 2 ,  Z ,  = 2, = 188.5 ohms. This self-comple- 
mentary feature was first pointed out by Mushiake. 

CONICAL SHAPES If one returns to the generic equation of (8.40), it is apparent 
that an equally acceptable choice for f(6) would result from the requirement that 

in which P is any angle in the range 0 I P I n. The previous discussion of planar 
spirals can be repeated, except that now the spirals are wrapped on a conical surface. 

By symmetry, the planar spiral must exhibit the same pattern shape in 0 2 
6 I n/2 as in n/2 I 8 I n, which severely limits its practical applications. But the 
conical spiral does not suffer from this limitation, and appropriate selection of the 
value of /3 can result in an antenna which produces a single end-fire beam that is 
circularly polarized. 

THE LOG-PERIODIC ELEMENT An interesting and ultimately practical approxi- 
mation to a frequency independent antenna has been conceived by R. H. DuHamel 
and D. E. Isbell14 and is illustrated in Figure 8.19. If successive radii are in the 

Fig. 8.19 A Logarithmically Peri- 
odic Planar Antenna 

1 3 J .  D. Dyson, "The Unidirectional Equiangular Spiral Antenna," Trans. IRE, AP-7 (1959), 
329-34. 

'4R. H. DuHamel and D. E. Isbell, "Broadband Logarithmically Periodic Antenna Struc- 
tures," IRE National Convenrion Record (1957), pp. 11 9-28. 
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common ratio 

then if the shape of the original antenna is described by 

a new antenna, scaled to give 

can be made congruent to the original antenna, but only for a restricted discrete set 
of values for K. These K values are given by 

in which m is an integer. Thus, at any two frequencies in the ratio eZnm", the antenna 
of Figure 8.19 should give the same pattern and impedance. For this reason, the 
configuration is called a logarithmically periodic planar antenna. 

If it turns out that the performance does not vary greatly in the frequency range 
v1 < v ( vz, with vz/vl = z = eZna, then the configuration of Figure 8.19 is broad- 
band. DuHamel and his co-workers found experimentally that some choices of the 
parameters a, Q, and 7 for this antenna gave better frequency characteristics than 
others. 

LOG-PERIODIC WIRE ANTENNAS One of the most important practical 
advances in the subject of frequency-independent antennas was made by DuHamel, 
who discovered that the fields fell off very sharply with distance from the conductors 
of antennas of the types shown in Figure 8 . 1 8 ~  and 8.19. This suggested that perhaps 
there was a strong current concentration near the edges of the conductors. If this 
were so, then removal of most of the material of the antenna of Figure 8.19 should 
not seriously affect the pattern and impedance characteristics. When this removal is 
accomplished, the wire antenna of Figure 8.20 results. As anticipated, the perfor- 
mance of this antenna is almost identical to that of its parent. 

DuHamel found further that one need not adhere strictly to the shape of Figure 
8.20. A wire structure of the form shown in Figure 8.21 is equally suitable. The 
criterion that must be observed is that the lengths of the transverse elements and 
their spacings must increase in the same geometric progression. 

The antennas of Figures 8.19 through 8.21 suffer from the same deficiency as 
the planar spiral, in that they create bidirectional patterns, for which the practical 
applications are limited. But just as Dyson was able to overcome this limitation for 
spiral antennas by wrapping the spirals on cones, DuHamel found that it is possible 
to  enhance the applicability of log-periodic antennas by folding the two halves so 
that they lie on the surfaces of a wedge. This is illustrated in Figure 8.22. The result 
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Fig. 8.20 A W ~ r e  Evolvement of the Antenna of Fig. Fig. 8.21 A W ~ r e  Var~ant of the Antenna of Fig 
8.1 9 8 20 

is a vee-type antenna which radiates a unidirectional pattern whose main beam points 
off the tip of the antenna. Pattern and input impedance characteristics are comparable 
to  what Dyson was able to  achieve with conical spirals, the principal difference being 
that linear polarization is obtained with the log-periodic vee whereas circular polar- 
ization occurs with the conical spiral. 
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Fig. 8.22 A Log-Periodic Wire 
Vee Antenna 

An example of the performance of a log-periodic vee-wire antenna of the type 
shown in Figure 8.22 is provided by R. H. DuHamel and F. R. Ore.15 For a wedge 
angle of 45", the E-plane and H-plane beamwidths were each 66", the gain was 9.2 dB, 
and the front-to-back ratio was 12.3 dB. The average input impedance was 110 ohms 
with a VSWR referred to this value which did not exceed 1.45 over a 10:l band. 
Typical patterns for one frequency octave are shown in Figure 8.23. 

Two log-periodic vee-antennas can be placed in space quadrature with a 
common apex, as shown in Figure 8.24. If fed with equal signals that are in time 
quadrature, they combine to give a single circularly polarized beam when one of the 
vees is scaled by a quarter of a period. Such an antenna thus becomes competitive 
with a conical spiral and also offers the possibility of polarization diversity. 

The front-to-back ratio of the end-fire pattern of a log-periodic vee-antenna is 
found to be sensitive to the wedge angle. In the extreme case that the wedge angle 
approaches zero, the pattern disintegrates badly. This is an interesting result, because 
in this extreme case the antenna is still a log-periodic structure, but fed by a two-wire 
line of constant spacing, as suggested by Figure 8.25. The poor performance of this 
antenna can be traced to the method of feeding. If one assumes that the frequency of 
operation is such that the nth transverse element is close to its half-wavelength 
resonance, then the principal excitation of the array involves the (n - I)st, nth, and 
(n + 1)st elements, since the other elements to the right or left of these three are 
increasingly detuned. Therefore an approximate model for the array is the three- 
element structure shown in Figure 8.26a. (The skirt wires have been deleted since 
they contribute little to the performance or to the explanation.) 

A study of Figure 8.26a quickly reveals what is wrong. This three-dipole array 
is similar to a Yagi-Uda array, except that all three elements are driven. But the 
director, that is, the (n - 1)st element, should have a current which lags the current 
in the nth element. And the reflector, that is, the (n $ [)st element, should have a 
current which leads the current in the nth element. With feeding from the left, the 
situation is just the opposite from what it should be. 

1 SR. H. DuHamel and F. R. Ore, "Logarithmically Periodic Antenna Designs," IRE National 
Convention Rerord ( I  958). 1 39-52. 
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Fig. 8.23 Power Patterns for a Log-Periodic Wire Vee Antenna; Wedge Angle 45"; 
Polar Plots, Linear Scale (0 1958 IEEE. After Duttamel and Ore, IRENationalConvention 
Record, 1958.) 



Fig. 8.24 T w o  Logarithmically Periodic Wire Vee Antennas in  
Space Quadrature 

Fig. 8.25 An Improperly Fed Log-Periodic Dipole Array 



8.9 Frequency-Independent Antennas: Log-Periodlc Arrays 

(a) 
(b) 

Fig. 8.26 Alternate Methods for Feeding a Three-Dipole Array 

The remedy is simple. One need only reverse the feeding at successive junctions 
of the dipoles with the transmission line, as suggested by Figure 8.26b. Recognition 
of this fact has led to perhaps the most practical and widely used of all the log- 
periodic arrays, with typical construction indicated by Figure 8.27. Though offering 
less directivity than a Yagi-Uda multi-element array, with properly chosen scaling 
parameters this log-periodic array can be made extremely broadband (multi-octave), 
both in terms of pattern characteristics and input VSWR.16 

Fig. 8.27 A Properly 
Periodic Dipole Array 

Fed Log- 

16D. E. Isbell, "Log Periodic Dipole Arrays," IRE  Trans. Antennas Propagat., AP-8 (1960), 
260-67. 



8.10 Ground Plane Backed Linear Dipole Arrays 

One- and two-dimensional arrays of equispaced dipoles, placed 114 in front of a 
ground plane in order to confine the radiation essentially to a half-space, find wide 
application. In very large arrays, all but the elements near the ends or the periphery 
"see" approximately the same environment, both in physical location of neighboring 
elements and in the local distribution of dipole excitations. Thus most of the dipoles 
in these large arrays have roughly the same active impedance, and it is common 
practice to make this assumption. However, even when the assumption is valid, the 
active impedance is not the same as the self-impedance of an isolated element. Mutual 
coupling to nearest neighbors must be taken into account. For small arrays, the 
"common environment" assumption has to be discarded, and the active impedance 
may vary widely from element to element. Since the "common" active impedance in 
large arrays is affected mostly by nearest neighbors, that is, by a small local array, 
the same technique for determining active impedance in small arrays can be applied 
with equal success to the large array problem. 

Consider first a linear array of similarly oriented dipoles that have a common 
interelement spacing d, with all the dipoles parallel to, and a common distance h 
in front of, a ground plane. It will be assumed that the ground plane is composed of a 
good conductor and extends at least 112 beyond the feed points of the end dipoles. 
For practical values of h-that is, 114 or less-the image principle can be invoked 
to good approximation, even for the end dipoles, and thus this antenna is equivalent 
to a pair of linear arrays a distance 2h apart. 

If there are N dipoles in the array, one can write 

in which r = 1 identifies the row of dipoles and r = 2 identifies the row of images. 
Since I , , ,  = - I , , ,  (the image currents are equal and opposite to the actual dipole 
currents), Equations 8.49 can be rewritten as 

The active (input) impedance of the 9th dipole can be obtained from (8.50) by the 
operation 

Retention of the notation involving double subscripts and double superscripts is no 
longer necessary, and one can write 
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with the single index rn replacing 1 ,  q and the single index n replacing I ,  s. In (8.52) 
Z,, is a replacement for Zf;; - Z::;. In words, Z,, is the mutual impedance between 
the mth dipole and the nth dipole minus the mutual impedance between the mth 
dipole and the image of the nth dipole. Similarly, Z,, is the self-impedance of the 
mth dipole minus the mutual impedance with its image. 

As an illustration of the use of (8.52), consider the problem of the design of the 
five-element linear dipole array shown in Figure 8.28. Assume that it is desired to 
excite this array with the equiphase current distribution 

This will produce a sum pattern with a main beam at  broadside and symmetrical 
side lobes a t  the heights - 14.2 dB and - 14.8 dB. 

Fig. 8.28 A Five-Element Linear Array of Dipoles Backed by a 
Ground Plane 
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Let the interelement spacing d equal 1/2 and the spacing h off the ground plane 
be 114. If the starting lengths of all five dipoles are taken to be 112 for the purpose of 
computing mutual impedance, then use of Equations 7.155 and 7.156 yields the 
information that 

Z l l  = Z Z 2  = Z 3 ,  = ZSe l f  - (-12.53 - j29.93) = Zsel f  + 12.53 $- j39.93 

Z I 2  = Z 2 ,  = Z,, = Z d 5  - (-12.53 - j29.93) - (-24.64 f j0.78) 

= 12.11 - j30.71 

Z , ,  - Z,, - Z,, = (4.01 t j17.74) - (13.28 4- j9.65) = -9.27 t j8.09 

Z , ,  = Z,, = (-1.89 -,j12.30) - (-7.21 - j9.39) = 5.32 -j2.91 

Z l ,  - (1.08 4-j9.36) - (4.38 $- j8.04) = -3.30 + j1.32 

With the desired current distribution, this gives for the active impedances 

Zf = Z," = Z;'If -+ 17.25 + j3.54 

Z ;  - Z," = ZYlf + 32.21 - j25.98 

Z," - Z y f f  f 19.50 - j12.41 

It is efficient to have these active impedances pure real. I f  one assumes that the 
mutual impedance terms will change negligibly as the dipole lengths are adjusted, 
then the new lengths should be such that 

Equation 7.71 can be used to determine I , ,  I , ,  and I,. For 011 = 0.004763, one finds 
that 

211/1 = 2l5/A = 0.466 21,/1 = 21,/1 = 0.489 21,/1 = 0.478 

This process could be iterated, using the new lengths to recalculate the mutual 
impedances, in order to improve on the accuracy. However, one can assume that the 
values just found are accurate enough and proceed. With the mutual impedances 
taken to be unchanged as the lengths are trimmed to these new values, it follows that 

Z f  = Z," = Ry'f + 17.25 = 76.94 

Z," = Z," = Ryf + 32.21 = 100.67 

Z," = R;"f + 19.50 = 83.82 

The relative powers radiated by these dipoles are 
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It can be observed that, even though the taper in the current distribution is slight, the 
effect of mutual coupling causes almost a 2:l distribution in radiated power. 

Imagine that the balun coax characteristic impedances are adjusted so that the 
active resistances &, . . . , R-re transformed to appear as resistances R, ,  . . . , R, 
at the ground plane end of each balun. With R, ,  . . . , R, presented as shunt obstacles 
112 apart along a main line coax which runs behind the ground plane (coaxial T- 
joints are used at each coupling junction), one desires that 

in which G, = IIR, and GfL is the characteristic conductance of the main line. This 
will insure an  input match to the array. But the same voltage magnitude exists across 
each of the G,, and thus VZG, = Pi. Therefore G,/Gj = Pi/Pj. For this example 

5 

as a consequence of which, C Gi = 4.120G3 = GfL, or 
1 =  1 

One needs to select GfL at a practical level such that the branch line (balun) 
characteristic impedances are also at a suitable level. These latter are given by Z;:. = 

(Rf/G,)l/? and thus 

The choice of a 25-ohm characteristic impedance for the main line ( G f L  = 0.04) 

results in 

Z E L  - Z E L  - 
O , I -  0 . 5 -  116 Z B L - - Z B L  ,  - ,,, = 103 Zff ,  = 93 

which are reasonable values in air-filled coax. The ratio of outer to inner radii for the 
conductors of these branch coaxial lines can be determined from the formula Z f L  = 

60 In(b/a). 
One can conclude that, to the extent the dipole lengths have been determined 

correctly and under the assumption that (7.71) and (7.155) - (7.156) adequately 
represent the self-impedances and mutual impedances, this transmission line network 
will provide an input match and insure the desired antenna pattern. In practice, the 
gap problem may be such that (7.71) is not an acceptable representation of the self- 
impedance. In such cases, experimental data can be gathered on Z X 1 f  versus 2111 
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and an empirical curve fitted to this data can be used in place of (7.71), with the 
design procedure otherwise unaltered. 

8.11 Ground Plane Backed Planar Dipole Arrays 

The design of a transmission line harness for a two-dimensional set of dipoles arrayed 
before a ground plane is basically the same as the procedure detailed for linear arrays 
in the previous section. For the mnth dipole in the array, the active impedance is 
given by 

in which ZE is the mutual impedance between the mnth dipole and the pqth dipole 
minus the mutual impedance between the mnth dipole and the image of the pqth 
dipole. The self-impedance of the mnth dipole minus the mutual impedance with its 
own image is Z;:. Equation 8.53 is merely a restatement of (8.52), using double 
subscript notation because of the shift from linear arrays to planar arrays. 

The use of (8.53) in the design of a feeding network will be illustrated for the 
case of the two-by-three array shown in Figure 8.29. It is assumed that all six dipoles 
are fed through baluns of the type shown in Figure 8 . 3 ~ .  The dipoles are 114 in front 
of a large ground plane, are 0.61 on centers in both directions, and are built of tubular 
conductors for which al l  = 0.012. It is desired that the current distribution be 
uniform in amplitude and equiphase, which will cause a broadside-broadside sum 
pattern with a -13.5 dB side lobe level. An input match is desired where the trans- 
mission line harness connects to  the transmitter (receiver). 

By symmetry, all four corner dipoles in the array will be the same as each other, 
and the two middle dipoles will be the same as each other. Thus attention can be 
limited to a determination of Zf, and Z;,. Once again, one can begin by assuming 
all dipoles are 112 long for the purpose of computing mutual impedance and use 
(7.155) and (7.156) to determine that 

With all desired currents equal, it is found that 
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Fig. 8.29 A Two-by-Three Planar 
Array of Dipoles Backed by a 
Ground Plane 

As before, assume that the dipole lengths will be adjusted so that Z:, and Z;, are 
pure real, and that this adjustment primarily affects Z:':' and Zgf .  Thus the dipole 
lengths are sought which cause 

Xse," = 1.33 and X y / f  = 13.31 
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to be satisfied. Use of (7.71) yields the values 

= 0.462 and = 0.475 
3, 

and thus 

R ,  = 57.82 + 22.91 = 80.73 and R", = 622.1 + 43.16 = 105.97 

If one assumes that the three dipoles (1, l), (2, I), and (3, 1) are connected in shunt 
to a main line coax via the balun quarter-wave sections, the transformed resistances 
are R, , , R,, , and R,, , these values being governed by the characteristic impedances 
of the respective branch lines. In this example, the relative radiated powers are 

and these powers are also given by 

PI ,  = VZGll PZ1 = V2GZ1 P31 = V2G31 

in which V is the common voltage magnitude across the three shunt obstacles G, ,  = 

1/R, ,, and so on. Thus 

80.73 G~ I - % = !?u = - = 0.762 -- 
G,, G,, P,, 105.97 

If GfL is the characteristic conductance of the main line feeding the three dipoles, 
then to match that line one requires that 

If, for example, GfL = 0.02(a 50-ohm coaxial line), then 

The needed branch line characteristic impedances are 

[b";;;;]1/2 Z;f1, = Z;f3, = - = 1 16 ohms 

It is a coincidence peculiar to this example that these two values are the same. They 
are at a practical level. If this main line coax and its twin (which feeds the other three 
dipoles) are joined in a T-junction, the combined load is 25 ohms, which can be 
matched to the transmitter (receiver). 
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The accuracy of the foregoing procedure can be improved if all the mutual 
impedances are recalculated using the new set of lengths. As stated before in connec- 
tion with the linear array application, if the gap problem is such that (7.71) does not 
accurately represent Zs1f ,  then experimental data can be gathered and an empirical 
formula fitted to the data and used in place of (7.71). 

8.12 The Design of a Scanning Array 

If a controllable uniform progressive phase can be attached to the current distribution 
of an array which has been designed to produce a sum pattern, the main beam will 
scan. (See Section 4.3.) This scanning feature unfortunately introduces pattern 
distortion and input impedance disturbance, both of which usually become more 
severe as the scan angle is increased. The causes are changes in mutual coupling 
and in the electrical lengths of those segments of the feeding structure which contain 
the phaseshifters. Compensation to prevent this performance deterioration can be 
added to  the feeding structure, but only at the cost of increased complexity. 

As an illustration of the problems that can be encountered. consider again the 
one-by-five dipole array of Figure 8.28. Imagine that there is a requirement to scan 
the sum pattern of this array in the H-plane. One way to accomplish this is to place 
identical variable phase shifters between successive junctions in the main line feed, 
as shown in Figure 8.30a. An alternate possibility is to place variable phase shifters 
in the branch lines, as suggested by Figure 8.30b. (A third method is to cause beam 

(a) Phaseshifters in the main line 

(b) Phaseshifters in the branch lines 

Fig. 8.30 Alternate Feeding Structures for a Scanning Linear Array 
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scanning by varying the frequency, in effect converting the main line to a traveling 
wave feed with electrical length that is strongly frequency-dependent. This possibility 
will be discussed in Chapter 9.) With the phase shifters placed in the branch lines, 
they will not have identical settings for a given beam position; to attempt to achieve 
a uniform progressive phase shift in the dipole currents, one must use phaseshifters 
with settings that are proportional to their positions relative to the array center. This 
imposes a severe requirement on the phaseshifter design. However, these branch 
line phaseshifters need not handle the entire transmitter power, unlike the first 
phaseshifter in the main line placement of Figure 8.30a. Each method of introducing 
phaseshift has its advantages and disadvantages. 

Even if one idealizes the phaseshifters by assuming that they are matched and 
lossless, their function is affected by the presence of mutual coupling, whether they 
are inserted in the main line or the branch lines. To see this, suppose that the array 
shown in Figure 8.28 is to scan $10" about broadside, and that the phaseshifters 
are perfect and placed in the main line. With all dipole lengths and characteristic 
impedances optimized for the beam at broadside, the design results of Section 8.10 
may be utilized. To recapitulate, it will b e  assumed that 

Z,  , = Z,, = (59.69 f j3.54) - (- 12.53 - j29.93) = 72.22 + j26.39 

Z,, = Z,, = (68.46 + j25.98) - (-12.53 - j29.93) = 80.99 T j55.91 

Z,, = (64.32 $112.41) - (- 12.53 - j29.93) = 76.85 + j42.34 

Z , , = Z 2 , = Z 3 , = Z 4 , =  12.11-j30.71 Z , , = Z , , = Z , , = - 9 . 2 7 S j 8 . 0 9  

Z , ,  = Z,, = 5.32 - j2.91 Z , ,  = -3.30 + j1.32 

z f L = 2 5  Z ~ f , = Z ~ , L s = 1 1 6  Z ~ ~ z = Z ~ f 4 = 1 0 3  Z:f3=93 

The voltages and currents at  the dipole terminals are connected by the equations 

The voltages VL and currents I; at the inputs to the balun sections (which are all 114 
long) are related to the dipole voltages and currents byI7 

The equivalent circuit of the main line with its branching junctions is shown in 
Figure 8.31. The electrical length between junctions is 180" + $ and thus 

"Since the main line coupling taps are 1!2 apart, the signals sent up into the branch lines 
alternate in phase, requiring a reversal of terminals at  successive dipoles. This can be represented 
mathematically by the factor (- l ) m  in Equations 8.55. 
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I;' I;' I; C - - - 

Fig. 8.31 Main Line Equivalent Circuit 

V :  = - V ;  cos 4 - j / ; Z y  sin 4 1; = -.jV:GfL sin - 1; cos 4 
V ;  = - V ;  cos -j(I;  + I ; ) Z f L  sin 4 I',' = -,jV:Gr;'L sin 4 - ( I ;  + Iy)cos 4 
V ;  = - V ;  cos - j ( l ;  + 1 ; ' ) Z f L  sin 4 I;.' = - jV 'GML ,, s ~ n  ' $I - (1; + Tl)cos 4 
V ;  = - V ;  cos 4 -j(I;  + I ; ' ) Z f L  sin 4 1'; = - j V ; G f L  sin 4 - ( I ;  + 1';)cos 4 

I I N  = 1; + 1'; (8.56) 

If (8.55) is used to eliminate VA and 1; from (8.56), the 14 equations in (8.54) and 
(8.56) can be used to solve for the remaining 14 unknowns. Since the needed uniform 
progressive phase is a, = kdcos O,, for d = 112 the phaseshift values 4 = 0°, lo", 
20°, and 30" should place the main beam (in the absence of distorting effects) at 9, = 

90°, 86.8", 83.6", and 80.4". When these values of 4 are used in the matrix, the current 
distributions shown in Table 8.7 result. The input impedance, given by 

V' v; ZIN = - = ---- ll(Z:!l>z 
I,, I + 1 V 1 1  - J . I"ZBL I o , ~  

is also tabulated. One can observe, even for this modest amount of scanning, that 
the current distribution quickly departs from what is desired. The input impedance 
also shows considerable variability. 

TABLE 8.7 Dipole currents and input impedance for a scanning five-element 
linear array 

Dipole Dipole Current, Normalized 
Number 

m qi = 0.' qi - 10 '  qi - 20" qi = 30" 

Input 
Impedance, 25 10 - 18.3 1 1 7 . 3  10.9 / 10.7 

-- 
19.8 149.3' - 

Ohms 
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Array patterns can be calculated from these current distributions and are 
shown in Figure 8.32. It can be observed that the pattern progressively deteriorates 
with scan. The height of the main beam is lowered, null-filling occurs, and there is a 
rise in the side lobe level. The position of the main beam does shift as desired, but 
not necessarily the proper amount, and attempts to scan the pattern still further are 
met by unacceptable degradation. Clearly the presence of mutual coupling, plus the 
nonresonant spacing of coupling junctions along the main line when q!~ # 0°, cause 
serious problems in the design of this scanning array. 

Similar problems of pattern degradation and input mismatch occur with scan 
for arrays in which the phaseshifters have been placed in the branch lines.18 For the 
specific example just discussed (the five-dipole array of Figure 8.28), the interested 
reader might wish to assume that perfect phase shifters are disposed as in Figure 
8.30b and calculate the current distribution, pattern, and input impedance as func- 
tions of the uniform progressive phase 4. 

These scanning problems are less serious for larger arrays, for then the mutual 
coupling trends toward a common value for all elements and the coupling to the 
main line per element is lighter, since there are more elements. However, the prob- 
lems cannot be ignored and their extent can be calculated by the method just outlined. 

If one wishes to overcome this degradation of pattern and input impedance 
with scan, it is possible to determine the transfer characteristics that a set of "phase- 
shifterlimpedance transformer" elements would be required to have when placed in 
the main line or the branch lines. This is a straightforward but tedious synthesis 
problem. Physical realizability of such composite elements is a much tougher 
challenge. 

8.13 The Design of Waveguide-Fed Slot Arrays: 
The Concept of Active Slot Admittance (Impedance) 

Waveguide-fed slot arrays differ from two-wire-fed slot arrays in one very important 
respect. In the latter case, the voltage waves on the two-wire lines which feed the 
slots can be used to determine both the active impedance of each slot and the far- 
field pattern of the array. (The active impedances are deduced from the positions and 
relative levels of the maxima and minima of each voltage wave. The pattern is calcu- 
lable if the voltage wave is known in amplitude and phase at each slot terminal, for 
then the electric field distribution in each slot is also known in amplitude and phase.) 

The situation is more complicated with a waveguide-fed slot array. In that 
case, the active admittance of each slot can be defined in terms of the propagating 
waveguide mode incident on the slot, in conjunction with the propagating mode 
back-scattered by the slot. The  positions of the maxima and minima of the sum of 
these two waves, together with the VSWR, can be used to deduce a normalized 
active admittance in the usual way. But the sum of these oppositely traveling modes 

18L. A. Kurtz and R. S. Elliott, "Systematic Errors Caused by the Scanning of Antenna 
Arrays: Phase Shifters in the Branch Lines," I R E  Trans. Antennas Propagat. AP-4 (1956), 619-27. 
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at the waveguide cross section that contains the central point of the slot is not so 
easily linked to the electric field distribution in the slot as in the case of two-wire 
feeding. One must determine this linkage in order to design waveguide-fed arrays, 
and it must be done to include the effects of mutual coupling between slots. The 
analysis in this and succeeding sections will be concerned with this problem for the 
special but practical case in which the slots are fed by waveguides of rectangular 
cross section. 

Section 3.5 dealt with the subject of a rectangular waveguide in which a single 
slot was cut to provide a source of radiation to the outside. Three types of slots were 
illustrated in Figure 3.9, each of which interrupts some of the wall current associated 
with a TE, ,  mode. This current interruption induces an electric field distribution in 
the slot which can be viewed as the source of radiation. For a rectangular waveguide 
with dimensions chosen so that only the TE, ,  mode can propagate, the analysis of 
Section 3.5 provides a connection between the electric field distribution in the slot 
and the modal scattering off the slot when an incident TE, ,  mode is the source of 
excitation. For the longitudinal slot in the broad wall, if a symmetrical standing 
wave E-field distribution is assumed to exist in the slot, the TE,, mode scattering is 
equivalent to the scattering caused by a shunt element in a two-wire transmission 
line. Dual analyses undertaken to solve Problems 3.6 and 3.7 at the end of Chapter 
3 reveal that the centered inclined slot in the broad wall is equivalent to a series 
obstacle and that the inclined slot in the narrow wall is equivalent to a shunt obstacle. 

Linear arrays of any one of these three slot types can be fabricated by milling 
a set of equispaced slots in a common wall of a common rectangular waveguide. The 
lengths and offsets (tilts) of the individual slots must be selected so that the desired 
electric field intensity, in amplitude and phase, is created in each slot. This will insure 
the specified pattern. Additionally, it is usually desired that an input match be achieved 
for the array. How to achieve desired pattern and input impedance is the linear slot 
array design problem, and it must take into account not only the self-admittance 
(impedance) of each slot, but also the mutual admittances (impedances), since the 
slots couple electromagnetically to each other. 

Planar slot arrays can be fabricated by placing linear arrays side by side. The 
design problem is the same in kind, but more complicated because of the two-dimen- 
sional nature of the mutual coupling and the relative feeding of waveguides. 

Whether the design problem concerns a linear slot array or a planar slot array, 
it is convenient to define a module of length d, centered around the slot. An example 
of such a module is shown in Figure 8.33 for the case of a longitudinal slot in the 
broad wall. A tandem arrangement of such modules will create a linear array, and a 
parallel arrangement of trains of such modules will result in a planar array. 

Inclined slots in a narrow wall are attractive for use as linear slot arrays because 
of the ease of machining. However, two-dimensional arrays of such slots are not 
popular. Adjacent waveguides must be spaced so that the wraparound portions of 
the slots are not shorted out, as they would be if neighboring broad walls were butted 
up against each other. Also, such arrays are deep (- 31/4), which is often undesirable. 
Therefore planar arrays are usually constructed using slots in the broad wall. Adja- 
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Fig. 8.33 Waveguide-Fed Slot Module 

cent waveguides can share a common narrow wall, which is a weight saver, and the 
box-beak type of structure has mechanical strength advantages. Longitudinal slots 
have a slight advantage over centered inclined slots in many applications due to the 
absence of a cross polarized component in the slot field distribution. For this reason, 
the analysis which follows will focus on the module shown in Figure 8.33. However, 
the analysis is not limited to arrays of longitudinal broad wall slots; analogous 
treatments using modules of other slot types are availablelg 

If the module length is d = 1,/2, with 1, the guide wavelength for the TE,, 
mode, the slot array is said to be standing-wave fed. This is the case that will be 
considered in what follows. When d f 1,/2, the slot array is said to be traveling-wave 
fed. That case will be treated in Chapter 9. 

It will be assumed that, in the cross-sectional planes z = *1,/4, that is, at the 

I9The analysis presented in this and next three sections is drawn from the article by R. S. Elliott and L. A. 
Kurtz, "The Design of Small Slot Arrays," lEEE Trans. Antennas Propagar., AP-26(1978), 214-19. (8 1978 
IEEE. Reprinted with permission.) Arrays of centered inclined broad wall slots have been analyzed by T .  C. Eakins, 
"Theory o f  Centered Inclined Slot Arrays with Mutual Coupling" (Master's thesis, University of California, Los 
Angeles, 1978), and by M. Orefice and R. S. Elliott, Technical Report No. 79-1, Dept. of Electrical Engineering, 
University of California, Los Angeles. 1979. Also see R. S. Elliott. "An Improved Design Procedure for Small 
Arrays of Shunt Slots," IEEE Trans. Anlennas and Propagation, AP-3 1 (1983). 48-54. Arrays of tilted stripline- 
fed slots have been treated by P. K. Park (Ph.D. dissertation, University of California, Los Angeles, 1979). 
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ends of the module, only the propagating TE,, mode has a significant value. This 
implies that all higher-order mode scattering off the slot has decreased to a negligible 
value when the limits of the module are reached. In this case, the fields at the two 
ends of the module can be expressed simply by equivalent mode voltages and currents 
that represent solely the TE,, mode. 

Let there be N modules in the array, arranged in either a linear or planar lattice. 
Each module can be viewed as a two-port element, as suggested by Figure 8.34a. 
For purposes of subsequent notational convenience, the mode voltage and current 
at one end of the nth module are labeled VL and I;, and at the other end, V&+, and 
I;,,. The array of N modules is a 2N-port system, linear and bilateral, and thus the 
mode voltages and currents can be connected by the equations 

If there are no scattering obstacles along the equivalent two-wire line of Figure 8.34a, 
except possibly in the region - c I z I E ,  with 6 an infinitesimal, then the standard 
transmission line formulas give 

in which Z ,  = l /Go is the characteristic impedance of the equivalent transmission 
line and (V:, I;), (V;+,, I:,,) are defined as shown in Figure 8.34b. In words, Vt 

(a) Two-port representation 
of n"' module 

(b) Equivalent circuit when scattering 
obstacles are confined t o  a narrow 
central region of length 26 

(c) Equivalent circuit when 
obstacle is a shunt element 

Fig. 8.34 Equivalent Circuits for a Slot Module 
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and I:  are the mode voltage and current in the plane z = - 6 ,  whereas V:,, and 
I;,, are the mode voltage and current in the plane z = 6 .  

Insertion of (8.59) in (8.58) gives 

If the electric field distribution in the nth slot is a symmetrical standing wave, regard- 
less of whether that field distribution is caused by internal TE,, modes going in 
either direction past the slot or by external electromagnetic field coupling with other 
slots or both, the analysis of Section 3.5 shows that the scattering is symmetrical, 
and thus is equivalent t o  the scattering off a shunt element in a two-wire line. This 
assumption of a symmetrical standing wave electric field is usually a good one, 
particularly when the slots are standingwave fed and approximately a half-wave- 
length long and will be made in what follows. Therefore the equivalent circuit of the 
nth module will be taken as shown in Figure 8.34c, and the active admittance Y ;  
will be defined as representing the shunt element which gives the same scattering in 
the equivalent circuit as the slot does in the waveguide. 

With Figure 8 . 3 4 ~  applicable, one can see that V i  = V:,, is the mode voltage 
across the shunt element Y;, and that I t  + I;+, is the total current flowing through 
Y:. In recognition of this, (8.60) can be put in the more useful form 

If one makes the substitutions 

then (8.61) becomes 
U 

in which I, is the total mode current flowing in the equivalent active shunt admittance 
Y;, Vm is the mode voltage appearing across Y,", and [Y,,] is the matrix that connects 
the set of mode voltages and the set of mode currents. From (8.62), one can readily 
deduce that 

In (8.63) the prime on the last summation sign serves to  indicate that the term m = n 
is not included. Here, Ymm is generally referred to as the self-admittance of the mth 
slot and Ym, is called the mutual admittance between the mth and nth slots. The active 
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admittance is thus seen to be the self-admittance plus the mode-voltage-weighted 
sum of the mutual admittances. It is sometimes convenient to write (8.63) in the form 

Y,. = Y,, + Y i  

in which 

is called simply the mutual coupling term. 
The reader may be puzzled by the part of this analysis in which the mode 

voltage and current at each end of the module (where clean TE,, modes are assumed 
to exist) were expressed in terms of mode voltages and currents at the center of the 
module (where clearly a single mode picture is not valid). The reason for this is 
mathematical convenience. Each module is a two-port element, but this transforma- 
tion succeeds in treating it as though it can be characterized by the single-mode 
voltage/current pair (V,, I,). This pair should be looked upon as a convenient artifice 
from which one can deduce the TE, ,  mode presence halfway between slots through 
use of Equations (8.59). 

It can be appreciated from the foregoing development that the self-admittance 
Y,,, and the mutual admittances Y,, are independent of the mode voltages and 
currents at both ends of the module. In particular, they are independent of --I;+,/ 
Vk+,, thpt is, of the admittance "seen" looking beyond the module. 

8.14 Arrays of  Longitudinal Shunt Slots in a Broad Wall 
of Rectangular Waveguides: The Basic Design Equations 

In a development that exactly parallels the one found in Section 3.6, and which 
extends from Equations 3.48 through Equation 3.52, one can show that the scattering 
off the shunt element XIGO shown in Figure 8 . 3 4 ~  is symmetrical, and given by 

Equation 8.66 arises because the mode voltage is given by V(z )  = Ae--jPz + BejPZ. 
Since the obstacle XIGO is taken to be at z = 0, it follows that V, = V(0) = A + B. 

It was also shown in Section 3.6 that the complex amplitude of the scattered 
TE, ,  mode is related to  the electric field intensity in a longitudinal shunt slot via 
Equation 3.47. If one takes the origin at the center line of the upper broadwall, as 
shown in Figure 8.33, and simplifies the notation by letting P = Dl,, Equation 3.47 
can be rewritten in the form 

nx - 2V' (COS PI, - cos k~,,) sin 2 
B1 ' = = jco,uo(~/k)ab a 
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in which V ;  = wE,(x,, 0,O) is the peak voltage at the center of the slot, with w the 
slot width and E.,(x,, 0, c,) the electric field distribution in the slot aperture. 

The back scattered waves B , ,  and B in (8.67) and (8.66) can be related by 
requiring that the TE,, wave and its mode voltage equivalent have the same phase 
at any cross section z, and that the back scattered power level be the same in both 
cases. It is a simple matter to show that these conditions will be met if 

y :  - 112 nx V S  (cos -- cos kl.1 sin 2 -2 q - [ J [ ~ w )  a I V" 

Equation 8.68 is the first of two design equations that will be used to determine the 
lengths and offsets of the slots in an array, such that the desired pattern and input 
admittance level are achieved. 

Under the present assumption that the radiating slots in a common waveguide 
are resonantly spaced, that is, 1,/2 apart, it follows that the mode voltage V, has a 
common value (except for an alternation in sign) for all the slots in a common wave- 
guide. If the pattern requirements are such that the slot voltages V ;  are to have the 
same phase for all n, then Equation 8.68 indicates that all the active admittances 
Y;/G, should have the same phase. [The alternation in phase of V,, is compensated 
by an alternation in direction of offset x,, which causes an alternation in the sign of 
sin (nx,/a).] 

In such circumstances, the usual choice is to make Y;/G, pure real for all n. 
But a return to (8.63) reveals that, if Y: is to be pure real, in general Y,,, the self- 
admittance of the nth slot, will not be pure real. In other words, when mutual coupling 
is taken into account in the design of slot arrays, resonant self-conductance data is 
not sufficient to permit a proper design. Indeed, in many practical applications, the 
needed value of Y,,, will be quite far off resonance. This same effect has already been 
noticed in the case of some dipole arrays considered earlier in this chapter. 

To obtain the design equation that will be companion to (8.68), it is useful to 
link the waveguide-fed slot array to an equivalent array of dipoles via Babinet's 
principle. To accomplish this, assume that the waveguide-fed slot array is imbedded 
in an infinite, perfectly conducting ground plane and radiating into a half-space. 
Imagine as an interim step the existence of a dual antenna consisting of an identical 
array of slots, also imbedded in an infinite, perfectly conducting ground plane, and 
also radiating into a half-space, but center-fed by a network of two-wire lines. If the 
same electric field distribution is established in corresponding slots in the two arrays, 
the half-space radiation patterns will be the same. It will be assumed that this is the 
case. However, the admittance characteristics will not be the same. The reason for 
this is that there is higher-order mode scattering off a waveguide-fed slot, which 
contributes primarily to the susceptive component of Y,,, and which depends on the 
slot offset x,. No such effect exists in the two-wire-fed slot, and to model this higher- 
order mode scattering one must place a load admittance Yf; across the terminals of 
the corresponding two-wire-fed slot. When this is done, the circuit equations for the 
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two-wire-fed slot array are 
N 

1; = C V ;  sin kl,, Y k ,  
n =  1 

in which the prime superscripts are used to distinguish this array from the waveguide- 
fed array, for which (8.62) applies. In (8.69), Y;, (with m # n) has its customary 
meaning, being the mutual admittance between slots m and n when they are two- 
wire-fed and radiating only into a half-space. However, 

with YL the conventional self admittance of the nth slot when it is two-wire-fed and 
radiating into a half-space, and with Yf the load admittance representing higher 
order mode scattering. 

Next, consider the complementary array of strip dipoles, center-fed by two-wire 
lines, and radiating into a full space. The circuit equations for this dipole array are 

N 
V: = C J f  sin kl,Z,, (8.71) 

n =  1 

in which the current distribution in the mth dipole has been assumed to be in the 
form It sin k(ln - I[[). The superscript d is used to distinguish the fact that the 
terminal voltage and current (V;, 1; sin kl,) appearing in (8.71) refer to the dipole 
array. 

If the distribution of dipole currents I t  matches the distribution of slot voltages 
V ;  in the two slot arrays, all three will produce the same radiation pattern in a half- 
space, except for an interchange of E and H in the dipole case (See Section 7.16). 
However, for the dipole array to model the admittance characteristics of the two 
slot arrays, it is necessary to place a load impedance Z;  in series at the terminals of 
the nth dipole. When this is done, 

with Z ,  the conventional self-impedance of the nth dipole when it is center-fed and 
radiating into a full space. In (8.71), Z,, (with m # n) is the conventional mutual 
impedance, calculable from Equations 7.155 and 7.156. 

Booker has shown (see Section 7.16) that the admittances of the unloaded 
two-wire-fed slots (radiating into a half-space) are related to the impedances of the 
unloaded complementary strip dipoles (radiating into a full space) by the relations 

If, for the loaded complementary arrays, the dipole current distribution is the same 
as the two-wire-fed slot voltage distribution, then the input admittance to the mth 
slot is given by 
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y o '  - 1; V: sin kl,, 
" - V; sin kl, = + Y: + ,,= C' I v; sin klm YAn 

- I: sin kl,, 2 
(7) z m n  - ($)z- + Y: + ,,sf 1; sin kl, 4 

I: sin kl, 
n=  1 

The active (or input) impedance of the mth dipole can be deduced from (8.71), as 
follows : 

z; = v; 1; sin kl,, 
I; sin kl, = 2. + z: + " =  x' I 1; sin kl, Z," 

If the admittance and impedance characteristics of these two loaded complementary 
arrays are to be similar, comparison of (8.74) and (8.75) leads to  the conclusion that 

In words, the load admittance Y;, placed across the terminals of the mth two-wire- 
fed slot in order to  model higher-order-mode scattering off the corresponding wave- 
guide-fed slot, and the load impedance Z:, placed in series at  the input to  the mth 
dipole in order to model the same effect, are linked to each other by Booker's relation. 

If the two-wire-fed slot array and its complementary dipole array are to model 
the waveguide-fed slot array in admittance characteristics as well as pattern, it is 
necessary that the complex power flows equate at  each element. That is, 

( iV ,V$C)  = (iV," sin kl,I;)* = (+V,dI,d'sin kl,) (8.77) 

But 

N 
(V," sin kl,IL)* = V>in kl, I: = V$in kl, z Vi sin kl, Y:, 

n= 1 

I f  sin kl,, 
= V ;  V",'in2 kl, 

When (8.77) and (8.78) are combined, the result for the nth element can be written 
in the form 

Y,"zV:V;' sin2 kl, (8.79) 

In  (8.79), V,, V;, and Y:: are, respectively, the mode voltage, slot voltage, and active 
admittance of the nth waveguide-fed slot, and Z," is the active impedance of the 
corresponding loaded nth dipole. 
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When (8.68) is multiplied by its complex conjugate, one obtains 

If (8.79) and (8.80) are equated, the result can be arranged to give 

y: - - 1 4(a/b) (cos P1, - cos k1J2 sin2 5 
Go - m [ 0 . 6 1 z ( p / k )  sin kl,, a 

in which the manipulation 0.61qln = 73 ohms has been introduced. 
Equation 8.81 is a key result of the analysis and is the second design equation. 

Together with (8.68), it can be used to determine the lengths and offsets of all longi- 
tudinal shunts slots in the broadwall of a set of rectangular waveguides in order to 
produce a desired pattern and a specified input admittance. This will be demon- 
strated presently. 

The reader familiar with Stevenson's pioneering analysis of the admittance 
(or impedance) properties of a single resonant slot in a thin-walled rectangular 
waveguide will recognize the factor inside the brackets in (8.81) as his expression 
for the normalized conductance of a longitudinal shunt slot that has been tuned to 
resonance.20 Thus the interpretation can be put on (8.81) that the normalized active 
admittance of the nth longitudinal shunt slot in an array is given by Stevenson's 
expression for the resonant normalized conductance, divided by the active impedance 
of the corresponding loaded dipole, normalized to 73 ohms. 

The single slot case is a simple reduction of (8.81). One obtains 

Y - - 4(a/b) (cos p l  - cos kl)' sin2 
Go - &L[0.61n(P/k) sin2 kl a (8.82) 

in which Zd = Rd + j X d  is the self-impedance of the complementary dipole, and 
Z L  = RL + j X L  is the load impedance in series with it, the presence of which models 
the effects of internal higher order mode scattering off the s!ot. 

Equation 8.82 is consistent with several experimental observations. If the 
loaded dipole is shortened below resonance, that is, if Xd + XL < 0, the correspond- 
ing waveguide-fed slot has a positive susceptance. (This behavior is opposite to that 
of a two-wire-fed slot.) At resonance, Xd = - X L ,  and (8.82) becomes 

Gr - -- 4(a/b) (cos pl, 
- cos kl,)' sin2 - 

a 
(8.83) 

sin kl, 

in which G,/Go is the normalized resonant conductance, and 21, is the resonant length. 
As the offset of the slot increases, more higher order mode scattering occurs, XL 
increases, and it takes a larger value of Xd to tune out XL. This requires a longer 

zoA. F. Stevenson, "Theory of Slots in Rectangular Waveguides," J. Appl. Phys., 19 (1948), 
24-38. (Stevenson assumed kl  = ~ 1 2 . )  
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dipole, consistent with the observation that the resonant length of the slot increases 
with offset. 

Equation 8.83 suggests that Stevenson's expression (the factor in brackets) is 
only approximate and is less accurate as the slot width is increased or the slot offset 
is increased. This is because Rd is affected by both the length and width of the strip 
dipole. Only for an infinitesimally wide slot on the centerline (for which RL = 0) 
would one find that Rd + RL = 73 ohms. 

8.15 The Design of Linear Waveguide-Fed Slot Arrays 

The two design equations which were developed in the preceding section can be 
rewritten in the abbreviated forms 

in which, by inspection, 

and 

- - V "  " - ~ , f ,  sin kl, -2 
Go V" 

cos Dl,, - cos kl, nx 
f n  = sin k ~ , ,  

sin -' 
a 

The active admittance of the nth equivalent loaded dipole is given by 

z:: = z,, t z: 
in which 

V; sin k l ,  z." = C' 
, = I  V :  sin kl,, Z n m  

is the mutual coupling, and 

2," = Z" + z,L 

is the loaded self-impedance of the dipole. Before one can make use of the design 
equation of (8.85), it is necessary to determine Z,, as a function of the length and 
offset of the complementary waveguide-fed slot. 

If one assumes that the input admittance to  the nth slot is the same whether 
all other slots are (1) present and short-circuited, or (2) absent, then this is equivalent 
to  saying that the input impedance to  the nth loaded dipole is the same whether all 
other loaded dipoles are (1) present and open-circuited, or (2) absent. Experiments 
show that this is a good assumption. It permits one to  infer from (8.85) that 

K 2 f  fn' Z", = - 
Y"!GO 



The Des~gn of F e e d ~ n g  Structures for Antenna  Elements and Arrays 

in which Y,,/Go (x,, I,) is the isolated self-admittance of the nth slot. Thus if one 
measures Y/Go for an isolated slot as a function of its length and offset, (8.91) can 
be used to deduce the function Z,, (x,, I,,) needed for use in (8.85).21 

R. J. Stegen has found that the admittance data of an isolated slot can be presented 
in a universal form that is extremely useful for computational purposes.22 Using 
standard X-band brass RG52/U waveguide and a frequency of 9.375 GHz, he mea- 
sured YJG, with slot offset and length as parameters and assembled the data in a 
pair of curves, which are reproduced in Figure 8.35. If one lets y = 111, represent 
the abscissa scale, then 

can symbolize the complex sum of these universal curves. With g(x) taken to mean 
the normalized resonant conductance as a function of offset, it follows that 

Ratio of slot length to resonant length 

Fig. 8.35 Normalized Self-Admittance Components for a Longitudinal S h u n t  Slot (After 
Stegenzz) 

ZlRecently it has become feasible, using the method of moments, to make an accurate theo- 
retical determination of Y/Go for a rectangular slot, including the effects of slot width and wall thick- 
ness. See T. V. Khac, "A Study of Some Slot Discontinuities in Rectangular Waveguides," (Ph.D. 
dissertation, Monash University, Australia, Nov. 1974). 

22R. J. Stegen, "Longitudinal Shunt Slot Characteristics," Hughes Technical Memorandum 
No. 261, Hughes Aircraft Co. (California: Culver City, November 1951). Stegen's curves are repro- 
duced as Figures 9.5,9.7,9.9, and 9.10 in Antenna Engineering Handbook, ed. H .  Jasik (New York: 
McGraw-Hill Book Co., Inc., 1961). 
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Stegen's curve of g(x)  for this same family of slots is shown in Figure 8.36. To inter- 
pret the variable y, one also needs to know the relation between resonant length and 
offset. This is characterized by the function 

and for Stegen's measurements is shown in Figure 8.37. It  is important to note that 
all four curves, represented by h , ( y ) ,  h , (y ) ,  g (x) ,  and v ( x )  are simple in form and 
can be easily polyfitted. 

With these identifications, one can return to (8.91) and rewrite it in the form 

0 0.050 0.100 0.150 0.200 0.250 

Slot offset. x inches 

Fig. 8.36 Normalized Resonant Conductance versus Offset for a Longitudinal 
Shunt Slot; See Fig. 8.35 for Legend (After Stegenzz) 
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1.59 

1.58 

1.57 

1.56 

sL 1.55 

by admittance measurements 
1.54 

1.53 

1.52 

1.51 
0 0.050 0.100 0.150 0.200 0.250 

Slot displacement o f f  centerline, x inches 

Fig. 8.37 Resonant Length versus Offset for a Longitudinal Shunt Slot; See Fig. 8.35 
for Legend (After Stegenzz) 

in which 

The design of a linear array can now be undertaken. If there are to be N slots, 
spaced A,/2 apart, and a certain pattern is desired, then the techniques described in 
Chapter 5 can be used to determine the slot voltage distribution V;. Let it be assumed 
that this has been done. Next, make an initial estimate of the lengths and offsets of 
the slots. (This estimate is not critical. One could begin by ignoring mutual coupling, 
choosing each slot to be self-resonant with the proper distribution of conductances 
to insure the proper pattern and input match. Or, more simply, one could guess an 
average slot offset and assign that value and the corresponding resonant length to 
every slot in the array.) Once a selection has been made of the initial values of slot 
lengths and offsets, Equations 7.155 and 7.156 can be used to compute all the mutual 
impedances Z,, between dipoles in the equivalent array. These Z,, values can be 
placed in (8.89), together with the desired array excitation, to permit computation of 
a set of starting values for the mutual coupling terms 2:. 

In most applications, the desired slot voltage distribution will be equiphase 
and (8.84) indicates that in such cases the active admittances will have a common 
phase also. The design procedure is not limited to this situation, but for the purpose 
of illustration, let us assume this to be the case, and specify further that all the active 
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admittances should be pure real. If the Zf: values are not too sensitive to changes in 
slot length and offset (and experience shows that they are not), one can use the 
starting values of Zf: and impose the condition that 

Equation 8.95 can be used as the basis for a search for the lengthloffset combi- 
nation (x,, y,) that will satisfy (8.97). When one conducts this search, the discovery 
is quickly made that there is a continuum of couplets (x,, y,) which satisfy (8.97). 
There is a corresponding continuum of active admittance values Y,"/Go that can be 
calculated from (8.85). 

Let (xi, yi) be one of the couplets that satisfies (8.97), and let Y,"/Go (xi, yb) 
be the corresponding value of active admittance for the nth slot. For any other slot- 
for example, the mth-there is similarly a continuum of acceptable lengthloffset 
combinations and a corresponding continuum of active admittance values. But of 
all of these, there is only one couplet (xk, y i )  that can be paired with (x:, yb) such 
that (8.84) gives the proper slot voltage distribution. What one requires is that 

Y,"lGo(xi, Y:) - f,(x:, Y:) -- sin k l ,  V;TI V, 
y,"/'GO(xL, y i )  - -  frn(x6, YL) sin klrn ViIVrn 

Equation 8.98 serves to identify sets of acceptable lengthloffset combinations such 
that all members of a set (one for each slot) satisfy (8.98) as well as (8.97). 

Of all these sets, the proper one to choose is the one which causes the sum of 
the normalized active admittances to be unity, since this is the condition for an  input 
match. 

I t  is too  costly in computer time, and not even desirable, to identify more than 
one set of acceptable lengthloffset combinations. If the set that has been identified 
gives C Y,"/Go > I ,  in the next iteration one will know that smaller offsets should be 
chosen; if C Y;/G, < 1 ,  larger offsets will be needed. But in any event, the process 
will need to be iterated, because the new lengths and offsets can be used to compute 
an  improved set of Zi values. 

For  large N, this iterative process can be completely computerized, with the 
program commanded to stop when the lengths and offsets determined in one iteration 
differ from those of the previous iteration by amounts less than the machining toler- 
ance that can be specified. The writing of a complete computer program for this 
iterative process requires care and it is helpful to go through a simple case "by hand" 
as a background step. 

One such case which can be instructive involves the design of a four-slot linear 
array with the specifications that the slot voltage distribution be equiphase and in 
the ratio 1 : 2:  2: 1 and that an input match be achieved. Let it be assumed that this 
is to be done for longitudinal shunt slots in standard X-band waveguide, as depicted 
in Figure 8.38, and at  9.375 GHz, so that Stegen's curves can be used. 
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Fig. 8.38 A Four-Element Array of Longitudinal Shunt Slots in the Broad Wall of a 
Rectangular Waveguide 

As a first step, polyfits to the curves shown in Figures 8.35 through 8.37 should 
be obtained. For the present purposes, it is sufficient to use the simple representations 

The second step involves selection of initial lengths and offsets. This will be done by 
ignoring mutual coupling (initially). Then all four slots should be self-resonant such 
that the sum of their normalized conductances is unity and such that the slot voltage 
distribution is 1: 2: 2:  1. Under these initial assumptions, Equation 8.84 becomes 

-- K 1 g(xn) - - q sin ~(x,,) = 
1.177 sin (ax,/a) sin v(x,) 

f n  v n  cos [(Plk)v(x,)l - cos 4 ~ " )  

Because of the desired symmetrical slot voltage distribution, slots 1 and 4 will have 
the same length and opposite offsets, as will slots 2 and 3. The mode voltage V,, will 
have the same magnitude at each slot, but it will alternate in sign. Thus, when (8.103) 
is written successively for the first and second slots and a ratio is taken, one obtains 

sin (nx2)/a) sin v(x2) = - sin (nx, la) sin v(x,) (8.104) 
cos [(P/k)v(xz>l - cos 4x2)  cos [(Plk)v(x I )I - cos v(x I ) 

Equation 8.104 will insure the desired slot voltage distribution. In addition, to get 
an input match, 

For a - 0.900 inches and v = 9.375 GHz, one finds that P/k = 0.714. If one uses 
these values in (8.104) and (8.135), simultaneous solution gives 
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x ,  = -x ,  = 0.082 in. 21,/A = 214/A = 0.487 g(x , )  = g(x,) = 0.093 
(8.106) 

x ,  = -x3 = -0.180 in. 21,/1 = 213/A = 0.502 g(x,) = g(x,) = 0.407 

These are the starting lengths and offsets of the slots in the array. If there were no 
mutual coupling, they would give the desired slot voltage distribution and an input 
match. 

With these assumed lengths and offsets, one is able to compute Zi j  for the 
equivalent dipole array, using Equations 7.155 and 7.156. It is found that the initial 
values of mutual impedance are 

Z , ,  = 0.37 Pj8.39 Z , ,  = 1.49 $- j1.28 

Z , ,  = -0.67 + j0.47 Z,,  = -2.88 - j7.81 

From this, one can compute the following initial values of Z,b: 

Since K ,  = 480 for this waveguide size and frequency, Equation 8.85 becomes 

y :: -- - 
480 f,' 

Go [480f ,'lg(x,)h(y,)l -1- 2:: 

The objective is to select ( x , ,  y , )  and (x,, y,) so that 

under the .pattern restriction that 

and under the input admittance restriction that 

With the aid of Equations 8.99 through 8.102, a trial-and-error solution of (8.109) 
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through (8.112) is found to be 

x,  = 0.086 in. y ,  = 1.0125 21,112 = 0.4933 - Yf = 0.0988 
Go 

(8.1 13) 
x,=-0.176in. y2=1.0099 2I2/L=0.5058 '," = 0.4010 

G, 

These results can be iterated. The lengths and offsets in (8.1 13), when used in 
(7.155) and (7.156), will produce an improved set of Z,,. However, if this is done, 
one finds that the new Z: are 

and these values are so close to the previous set that negligible further change will 
be found if the iteration process is carried further. Thus (8.113) can be accepted as 
the design with external mutual coupling taken into account. 

A comparison of (8.1 13) and (8.106) reveals that there is a 5 % change in the 
offset of slots 1 and 4, a 24 % change in the offset of slots 2 and 3, and a 1 % length- 
ening of slots 2 and 4. These changes may seem small enough that one could argue 
in this application that mutual coupling be neglected. But the effect of these changes 
on aperture distribution and input admittance are significant, as shall be seen in 
Section 8.17. 

The smallness of these changes can be traced to the fact that these slots, being 
in a common waveguide, are almost end-fire to each other, so that mutual coupling 
is lower and.falls off faster than when the slots are broadside. One can anticipate 
a bigger problem with mutual coupling in planar arrays, as will be seen in Section 
8.16. 

As a final comment on the design of linear slot arrays, the modern trend is to 
make the b-dimension of the waveguide smaller to save on weight and depth. How- 
ever, this lengthens the slots and places adjacent ends of successive slots closer 
together, thus increasing the mutual coupling, and making it even more essential 
that its effect be included. 

8.16 The Design of Planar Waveguide-Fed Slot Arrays 

When a family of waveguide-fed linear slot arrays is arranged as shown in Figure 
8.39, a pla.nar array results. This introduces a new variable into the design procedure. 
The individual waveguides containing the radiating slots (hereafter referred to as 
branch line waveguides) may be excited in a variety of ways. Perhaps the most common 
is to run a main line waveguide transversely across the back of the array and use 
coupling slots to energize the branch lines. Another method is to use a corporate 
feed, consisting of a set of T-junctions which serve to split the power in a sequence 
of steps down to the level of the individual branch lines. But whatever method is 
used, the mode voltages in the various branch line waveguides can be adjusted in 
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Fig. 8.39 A Planar Array of Longitudinal Shunt Slots 

relative level by the coupling mechanism. This is an additional parameter that can 
be exploited in the design procedure. 

It is convenient to go to double subscript notation in the design of planar arrays. 
Thus the basic design equations become 

in which K, and K ,  are still given by (8.86) and 

in which 

is the normalized slot length, and (x,,, 21,") are the offset and length of the mth 
slot in the nth branch line waveguide. 

In most respects, the design of a planar slot array proceeds exactly as for a 
linear slot array, which was described and illustrated in the previous section. One 
assumes that every branch line array is resonantly spaced (this restriction will be 
lifted in Chapter 9). This implies that the mode voltages are given by 

V,, = (- I)"'V, (8.1 18) 
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in which V,, is the reference mode voltage in the nth branch line. For this reason 
(8.1 14) can be rewritten in the form 

Y2" 
Go 

- K ,  I f,, I sin v ( x , , ) G  
V" 

since the alternation in direction of offset causes the compensating relation 

When (8.1 15) and (8.1 19) are used to design a planar array, one must assume 
an initial set of slot lengths and offsets in order to compute an initial set of ZA, 
values. But one must also assume an initial branch line mode voltage distribution in 
order to  use (8.1 19). It may be that, as the design proceeds and a series of iterations 
converges on a final set of slot lengths and offsets, one finds that the set of offsets in 
a particular branch line is inconveniently small or large (outside the trustworthy 
range of experimental design data). This can be altered by a change in the V,  distri- 
bution. If one wishes to increase the average offset in a branch line without increasing 
the slot voltage level, this can be accomplished by lowering the coupling to that 
branch line, which serves to lower that particular branch line mode voltage. Con- 
siderable adjusting back and forth is usually needed in the course of the design in 
order to  insure that the final spread of offsets in the branch lines is in an optimum 
range, and that all the coupling coefficients between the main line feeding structure 
and the branch lines are also in an optimum range. As a consequence of this adjust- 
ment, it is most unlikely that the sum of the normalized active admittances in any 
branch line is unity; the branch lines do not have to be matched in order to achieve 
a match in the main line. 

A simple illustration of the design of a planar slot array, one which dramatically 
demonstrates the strong effect of mutual coupling, involves the two-by-four slot 
antenna shown in Figure 8.40. It was desired to excite this array so that all eight slot 

Fig. 8.40 A Two-by-Four Array of Longitudinal Shunt Slots 
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voltages would be equal and in phase. Additionally, in  order to insure that all slot 
offsets would be in the favorable dynamic range, the condition 

was imposed. 
Waveguide dimensions a = 0.924 inch, b = 0.123 inch, and t = 0.025 inch 

were used, together with a slot width of 0.064 inch. Experimental design data in the 
form of curves similar to those found in Figure 8.35 through 8.37 was available at 
v = 8.930 gigahertz and polynomial expressions were fitted to the data, resulting in 
expressions akin to Equations 8.99 through 8.102. Equations 8.1 15 and 8.11 9 were 
then used to determine the proper slot lengths and offsets, with V, = V ,  taken to be 
the mode voltage distribution. The procedure was identical to the one outlined for 
the one-by-four array in Section 8.15, except that a computer program was used 
instead of hand calculations. The results are shown in Table 8.8. 

TABLE 8.8 Lengths and offsets for two-by-four 
slot array 

Slot Number Offset x,, Length 21,. 
mn (Inches) (Inches) 

A study of this table of slot lengths and offsets reveals several interesting and 
surprising things. First, there is a 2: 1 range in slot offsets. (Were one to ignore mutual 
coupling or assume it was the same for each slot, all offsets would be the same.) 
Second, no slot in this array is self-resonant; each slot is detuned appropriately to 
make the individual active admittance resonant. Third, there is a quadrant 1 to 
quadrant I11 and quadrant I1 to quadrant 1V symmetry to the lengths and offsets, 
but no symmetry about the X-axis nor about the Y-axis. This can be traced to non- 
symmetrical effects caused by staggering the offsets and always occurs in array 
designs that yield symmetrical patterns. And fourth, it is clearly evident that the 
presence of broadside neighbors has substantially increased the effect of mutual 
coupling. 

At first it might seem puzzling, for example, that the required offsets of the 
2, 1 slot and the 3, 1 slot are so radically dissimilar when the slot voltages are to be 
the same. However, a return to Figure 8.40 indicates that the environment of the 
2, 1 slot is significantly different from the environment of the 3, 1 slot. 
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An experimental determination of the active input admittance to each branch 
line waveguide yielded the results 

which were 5 % and 3 % from the design values. The experimental H-plane pattern 
at 8.930 GHz, with the array embedded in an 8-inch by 10-inch ground plane, is 
shown as the solid curve in Figure 8.41. The theoretical pattern (dotted curve) is 
also shown for comparison. 

Angle f rom broadside, degrees 

Fig. 8.41 The H-Plane Pattern of the Two-by-Four Slot Array Depicted in  Figure 8.40; 
Comparison of Theory and Experiment 

8.17 Sum and Difference Patterns for Waveguide-Fed Slot Arrays; 
Mutual Coupling Included 

If Y:/Go is eliminated from (8.84) and (8.85), one obtains for a linear slot array 

With the aid of (8.88) and (8.89), this can be rewritten as 

N x V: sin k~,,, z,,, = (2) v,,f, 
r n =  1 (8.1 24) 
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Equations 8.124 can be identified as a set of simultaneous linear equations (with the 
slot voltages as independent variables) that can be put in the matrix form 

in which it has been recognized that V, f, = V 1 f, 1, with V the reference mode voltage 
in the linear array. The common factor (KZ/Kl)V has been suppressed in going from 
(8.124) to (8.125). 

If the length and offset of every slot is specified, all the impedance terms in the 
2-matrix of (8.125) are known, as are all the elements If, ( in the column matrix. An 
inversion of (8.125) will give the slot voltage distribution for this set of lengths and 
offsets. 

As an example of the use of (8.125), consider again the four-element linear slot 
array analyzed in Section 8.15. Because of symmetry considerations, for that case 
(8.125) takes the form 

which reduces to 

For the starting lengths and offsets given in (8.106), the mutual impedances are 
given by (8.107) and 

As a consequence of (8.128), the matrix (8.127) becomes 

r(71.07 + j0.47) (5.16 - j7.11)1 V ;  sin k l , l  0.1184l 
(8.129) 

i(5.16 -j7.1 I) (74.73 - j7.81)1[Y; sin k l , ]  = [0.2564] 
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Inversion gives 

V ;  = 0.001415 111.6" V,S = 0.003293 17.9" - - (8.130) 

so that the slot voltage ratio is 

The reader will recall that the desired ratio is 2.00 10". One can see that, whereas there 
is only a 5 % or less error in the starting lengths and offsets, this results in a 16.5 % 
magnitude error and a 3.7" phase error in the slot voltage distribution. 

For the slot voltages given in (8.130) and the self-impedances and mutual 
impedances listed in (8.128) and (8.107), one can determine that 

Use of (8.85) reveals that 

and thus 

Yr; C - = 0.9604 + j0.1438 = 0.97 18.5" 
i =  I Go - 

The input admittance has a susceptive component which is 15 % of the conductance. 
There is a mismatch of 3 % in magnitude and 8.5" in phase. 

Were one to repeat these calculations for the final offsets and lengths given in 
(8.1 13), it would be discovered that the slot voltage distribution is correct in both 
amplitude and phase. Confirmation of this assertion is left as an exercise. 

For a planar slot array, elimination of Y;,/G0 from (8.1 15) and (8.11 9) gives 

V;. sin kl,, Z:, = (8.134) 

a result which is identical to (8.123) except for the use of double subscript notation 
and the added feature that the mode voltage V,  may differ from branch line to branch 
line. Equation 8.134 can be expanded to give 

with the constant (K,/K,) suppressed. 
If the slot lengths and offsets are known, the impedance matrix appearing in 

(8.135) is known, as are the column matrix elements V, 1 f,, 1. Inversion of (8.135) 
will give the slot voltage distribution. 
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A common use of (8.135) is in application to planar arrays, which are divided 
into four quadrants and fed to produce sum and difference patterns. In such cases 
it is convenient to use the indexing scheme shown in Figure 8.42. Because of the 
quadrant I to quadrant 111 and quadrant I 1  to quadrant IV symmetry in such arrays 
(already noted for the two-by-four array discussed in Section 8.16), it is unnecessary 
to apply (8.135) to the entire array. If there are M-by-N slot modules,23 for the sum 
pattern Vjq = V h +  p , , +  - q  and (8.1 35) becomes 

M / 2  N 

C C V;, sin klpq(Z,P: + Z&+ l - p , N + l - q  
p - 1  q - l  

) = V" l fm. I 
(8.136) 

(Zpattern: IIrngE 2 I < ~ < N )  

Symmetry conditions indicate that, in (8.36), V,, = V N + , _ , .  
If the slots are assumed to be parallel to the X-axis in Figure 8.42, then the 

E-plane and H-plane difference patterns correspond to the quadrants being excited 
as shown in Figure 8.43. For A, (that is, the E-plane difference pattern), V;, = 

Fig. 8.42 Indexing Notation for Slot Arrays Showing Indi- 
vidual Modules; M = 6, N = 4 

23This does not necessarily mean a rectangular array, since some of the modules may be 
"empty," such as when corner slots are eliminated so that the array will fit in a circular boundary. 
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(a) Sum channel ( b )  E- plane (c) H-plane 
difference channel difference channel 

Fig. 8.43 Quadrant Excitations for Sum and Difference Patterns o f  Planar Arrays 

- V&+, -,. For this case (8.135) becomes 

For A, (that is, the H-plane difference pattern), it is also true that V;q = 

- V&+, -,,,+, _,. For this case (8.135) becomes 

M / 2  N 

V;, sin klpq(Z,P: - Z"+ rnn 1 - p , N + ' - 4  
p = 1  q = l  

> = V.lfm,I 
(8.138) 

M (A,  att tern: 1 < m < -  1 5  n <  N) 2 

However, in contrast to  the A, case, in (8.138) the relation V,, = V,+,-, applies. 
As an illustration of the use of these formulas, if the slot lengths and offsets for 

the two-by-four array discussed in Section 8.16 are used to compute the 2:; and Lj 
entries needed in (8.136) through (8.138), inversion gives the slot voltage distributions 
listed in Table 8.9. When these excitations are used to compute the patterns, the 

TABLE 8.9 Slot voltage distributions for two-by-four array 

Slot Voltage V;, 
Slot N o .  

mn C AE 

1 , 1  1.002 + j0.002 0.231 + j0.063 
2 ,1  I .OOO - j0.006 0.968 + j0.203 
3, 1 1.002 - j0.005 0.031 + j0.139 
4,  1 1 .OM - j0.003 0.791 + j0.128 

1 ,2  1.004 - j0.003 -0.791 - j0.128 

2 ,2  1.002 - j0.005 -0.031 - j0.139 

3 ,2  1 .OOO - j0.006 -0.968 - j0.203 

4 ,2  1.002 + j0.002 -0.231 - j0.063 
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result for the sum channel is shown in Figure 8.41. The results for the difference 
channels are shown in Figure 8.44. Element factors have been included in all these 
patterns. 

The difference patterns exhibited in Figure 8.44 clearly illustrate a basic diffi- 
culty in the design of planar arrays for use in sum and difference applications. If the 
slots are excited by a common feeding structure for all three channels, and if one 
designs the feeding structure to  obtain a good sum pattern, one must accept some 
poor difference patterns. I t  is similarly true that, if one were to design the feeding 
structure in order to produce a good A, pattern, for example, then the resulting 2 
and A, patterns are inferior. The only way now known to overcome this deficiency 
is to use separate feeding structures for the three channels, but this is extremely 
complicated and costly. 

Legend: 

Fig. 8.44 AH and A, D~fference Patlerns for the Two-by-Four Slot Array of Fig. 8.40 
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PROBLEMS 

8.1 Repeat the monopole design of  Section 8.2, assuming that the gap problem can be 
ignored, and that the Tai-type impedance expression (7.71) is applicable. 

8.2 What is the impedance bandwidth (1.5 : 1 VSWR criterion) for the monopole designed 
in Problem 8.1 ? 

8.3 Repeat the dipole-over-a-ground-plane design of Section 8.3, using the improved King- 
Middleton approximation for self-impedance. Equations 7.110 and 7.1 11 can be used 
if a computer is available, or data can be read from Figure 7.18. 

8.4 A rectangular slot is cut in a large ground plane of negligible thickness. If the slot is 
1 in. wide and is to  be center-fed by a two-wire line, what should its length be for reso- 
nance at  300 MHz? What is its input resistance at  resonance? 

8.5 If a cavity is used to box in one side of the slot of Problem 8.4 and if the depth of the 
cavity is less than 1,/4, would you expect to have to lengthen or shorten the slot to 
reachieve resonance ? 

8.6 What physical argument would you use to explain the low input VSWR over a wide 
frequency range for a ground-plane-backed helix? 

8.7 Find the optimum spacing of a two-dipole array, with both elements driven, in order 
to achieve an end-fire array pattern with maximum directivity but only one main lobe. 
Assume dipole radii a = 0.00321, and determine the lengths of the two dipoles in order 
to  achieve a match with a two-wire line at  a reasonable impedance level. Assume series 
coupling to the line, as in Figure 8.9. 

8.8 How would the design of the dipole array in Problem 8.7 be altered if only one element 
were driven ? 

8.9 For a three-element Yagi-Uda array, find the optimum lengths of reflector and director 
if the driven element is 0.4751 long, if the interelement spacing is 0.151, and if all three 
dipoles have a radius a = 0.0032A. 

8.10 A refinement of the explanation for the need to reverse the feeding at  successive elements 
in a log periodic array of the type shown in Figure 8.27 results from assuming a "locally 
periodic" behavior along the structure. This permits the identification of transmissive, 
active, and reflective regions (akin to the director-driven element-reflector model 
adopted in Section 8.9). Assume this more extensive model and show that the feeding 
portrayed in Figure 8.26a is incorrect, and that the proper method of feeding is as 
shown in Figure 5.26b. [Compare with P. E. Mayes, G .  A. Deschamps, and W. T. 
Patton, "Backward-wave Radiation from Periodic Structures and Application to the 
Design of Frequency-Independent Antennas," Proc. IRE, 49 (1961), 962.1 

8.11 A linear array of six balun-fed dipoles stands 114 in front of a large ground plane. The 



dipoles are 0.62 on centers and in the end-to-end, or tandem orientztion. If a -20 dB 
SLL Dolph-Chebyshev broadside array pattern is desired, together with an input match 
to 25 ohms, design a coaxial feed for this array. Your design should include a specifica- 
tion of the length of each dipole and the characteristic impedance of each balun sec- 
tion. Assume that all dipoles have a radius a = 0.00322. 

8.12 Repeat Problem 8.1 1 for a six-by-six array. 

8.13 Assume that the master input to the six-by-six array of Problem 8.12 is fitted with a 
perfect magic T. Find the E-plane difference pattern and the corresponding input 
impedance. 

8.14 Repeat Problem 8.13 for the H-plane difference pattern. 

8.15 With the phaseshifters in the branch lines, repeat the analysis of Section 8.12 and show 
the effect of mutual coupling on pattern and input impedance as the main beam is 
scanned 5 10" from broadside. 

8.16 Design a resonantly spaced three-element longitudinal shunt slot array in standard X- 
band guide. The frequency of operation is to be 9.375 GHz and the excitation is to be 
uniform, with an input match. 

8.17 Repeat Problem 8.16 for a three-b;y-three array. 
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9.1 Introduction 

A traveling wave antenna is one in which the radiating aperture and feeding structure 
are intimately contiguous, if not continuously connected. As the name implies, the 
aperture distribution has features similar to those of a traveling wave; the amplitude 
of excitation may be tapered, but the phase progression is uniform, or nearly so. 

Traveling wave antennas may be one- or two-dimensional. Examples of the 
former are long wires and their derivatives (Vees and rhombics), polyrods, and leaky 
waveguides. Examples of the latter include corrugated and dielectric-clad surfaces 
(both planar and curved) and arrays of leaky waveguides. 

This chapter offers an introduction to the analysis and design of some of the 
practical types of traveling wave antennas. It begins with a discussion of the long wire, 
followed by an extension to rhombics and Vees. Structures which will support slow 
waves are then analyzed (notably grounded dielectric slabs and corrugated surfaces) 
and the launching and termination o f  these waves is considered, leading to  a n  inter- 
pretation of the behavior of slow wave antennas. After this, leaky waveguides are 
introduced, with particular attention given to long continuous slots in either the nar- 
row or broad wall of a rectangular waveguide (the latter offset from the center line), 
and to  the quasi-continuous case of many closely spaced, nonresonant transverse 
slots in the broad wall (serrated rectangular waveguide). A design procedure is 
developed that will yield the aperture geometry necessary to achieve a desired pattern 
together with an input match. 

Trough waveguides are considered next and their beam-scanning capabilities 
are explored. The chapter closes with a discussion of arrays of longitudinal shunt 
slots in the broad wall of a rectangular waveguide. The design procedure developed 
in Chapter 8 for resonantly spaced arrays (d = 1,/2) is extended to apply to non- 
resonant spacing, which results in a traveling wave excitation. Mutual coupling is 
generally severe in the traveling wave case and this effect is included in the analysis. 
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Traveling wave antennas typically have good input impedance characteristics 
(the reflected wave is effectively suppressed by some means) and therefore the emphasis 
in this chapter will be on pattern characteristics. 

9.2 The Long Wire Antenna 

One of the simplest of the traveling wave antennas is the long horizontal wire a dis- 
tance h above the earth, fed at one end against ground and perhaps terminated at the 
other end in a matched load, as shown in Figure 9.1. If h is not negligible compared 
to a wavelength, this wire and its image do not behave like a two-wire transmission 
line, but rather comprise an efficient radiating system. The traveling wave of current 
proceeding outward along the wire is attenuated due to the radiation, and thus the 
power absorbed in the matched load may be reduced to an acceptable level by making 
the wire long enough. Indeed, the leakage may be sufficient to obviate the need for a 
terminating load. The net current distribution on the wire is then not a standing wave, 
but is essentially an outward traveling damped wave. 

If the earth is highly conductive, the image current lies a distance h below the 
XY-plane and is also an outward traveling wave, 180" out of phase with the current 
on the wire. The pattern due to wire plus image can be obtained by multiplying the 
element pattern of the wire by the array factor sin(kh cos 8). 

Assume that the current distribution on the wire can be represented adequately 

by 

with y = a + j p  the complex propagation constant. Equations 1.101 and 1.102 can 
be used to determine the element pattern of the wire, and give 

I Earth's surface 
in z = 0 plane 

Fig. 9.1 A Long, Terminated Hori- 
zontal Wire Antenna ; End-Fed 
(Beverage Antenna) 
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in which 

e - L ( y -  jk sin Bcos $) 1 - - - Io  
(y - jk sin 8 cos 4) 

This field is a figure of rotation about the wire and is given either by (9.2) for 4 = 0 
(XZ-plane) or by (9.3) for 8 = n/2 (XY-plane). 

In practical applications (wires composed of good conductors in an air environ- 
ment), p z k; u is due almost entirely to radiation leakage and due hardly at all to 
ohmic losses. Further a <( k (for example, with L = 101 and 10 dB of attenuation 
in the current level along the wire, a is only 1.8 % of k). Thus f (8, 4) is given to good 
approximation by' 

e - j k L ( l  - s in  Bcos $) ] 

f ( 4) = l o  I - sin 8 cos 6) 

and its magnitude can be expressed in the form 

with 

nL X =  - ( I  1 - sin 8cos4)  (9.7) 

The factor (sin X ) / X  can be interpreted as due to a continuous line source 
which is uniformly excited in amplitude, possessing a uniform progressive phase 
which places the main beam at end-fire. This result is modified by the multiplicative 
factors cos 8 cos 4 and -sin 4 in (9.2) and (9.3), as a result of which the actual main 
beam peak lies off end-fire by an amount which depends on the length of the wire. A 
typical element pattern is shown in Figure 9.2a for the case L = 51. All lobes shown 
are conical, since the pattern is a figure of revolution about the wire. 

If the earth is a good conductor and h = 114, the array factor of wire plus 
image is 

a . ( ~ )  - sin (f cos 8) (9.8) 

and is plotted in Figure 9.2b. This pattern is a figure of revolution about the zenith 
axis. The field pattern of wire plus image is the product of the two plots shown in 
Figure 9.2. It is identically zero in the XY-plane and has a shape in the XZ-plane 
somewhat similar to the upper half of Figure 9.2a, except that the side lobes are raised 
relative to the main beam because of the weighting of the array factor. 

If the earth is not a good conductor, but rather is more appropriately repre- 

IE. Hallen, "Properties of Long Antennas," Journ. App. Phys., 19 (1948). 1140-47. 
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Fig. 9.2 The Element Pattern and Array Pattern of a Traveling Wave Wire Antenna; 
L = 51, h = 0.251 

sented as having a complex dielectric constant 6' - j e " ,  the height of the wire can be 
adjusted so that the wave reflected off the earth's surface combines in additive phase 
with the direct wave from the wire in the direction of maximum radiation. 

9.3 Rhombic and Vee Antennas 

A rhombic antenna, as its name implies, is composed of four long, straight wires 
arranged to form a rhombus, as shown in Figure 9.3. It is fed at one corner and 
terminated in a matched load at the opposite corner. Traveling waves of current, 180" 
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out of phase, are launched onto legs I and 2. If one neglects corner effects, these 
traveling waves of current continue outward on legs 3 and 4 and are absorbed in the 
matched load, thus insuring that no traveling waves are set up in the reverse direc- 
tion. When the legs of the rhombus are long enough (512 or more), sufficient radiation 
has occurred before the traveling waves reach the far corner that an acceptably small 
portion of the total supplied power is absorbed in the matched load. 

If s  is a coordinate measured along one of the wires, the traveling wave of cur- 
rent can be expressed in the form I(s) = I,e-y"n which y = a + j/3 is the complex 
propagation constant. In practical applicltions (wires composed of good conductor 
in an air environment), p E k ;  a is due almost entirely to radiation leakage and due 
hardly at all to ohmic losses. As in the case of the Beverage antenna, discussed in the 
previous section, a<< k  and therefore the pattern can be determined to a good approx- 
imation by assuming y = j k .  

The rhombic antenna can be viewed as an array of four long wire antennas and 
the field distribution determined by pattern multiplication. Alternatively, one can 
return to Equations 1.101 and 1.102 and form the basic expressions for a, and a,. 
With the latter course adopted, the position coordinates are given by: 

leg 1 :  t =  s l  cos),, 11 = s l  sin), 

leg 2: t - s ,  cos ),, 11 = - s ,  sin 4, 
leg 3 :  C = (L + s,)  cos ),, 11 = (L - s,) sin 4, 
1% 4: 5 = ( L  + s4) cos ),, 11 = -(L - s,) sin 4, 

The contribution to a, from leg I is 

a ,  ,(8, )) = I' [cos 8 cos ) cos ), I,e-jks' + cos 8 sin ) sin ~ o I o e - i k s ~ ]  

. e lk  sin @Is ,  cos 60 coa $+,, sin ,a sin $1 d .Y I 

1 - e- j k L I I  - s in  B C O S ( ~ - , ~ ) ~  
= I, cos 8 cos (4 - ) ) 

j k [ l  - sin 8 cos(4 - ),)I 

I n  like manner, one finds that 

1 - e- jkL11 -sin Ecos (6+6o)l 
(9.10) 

The sum of these four contributions gives 
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in which 

72 L B = -[I - sin 8 cos (4 + $,)I 1 (9.15) 

Proceeding in a similar fashion, one finds that 

sin A sin B 
(9. 6 )  1 a,(& $) 1 = 4y / sin 4, ( 0 s  $ - sin 8 cos 4,) - A - B 

The pattern of principal interest occurs in the XZ-plane. For a rhornbic a dis- 
tance h above a perfectly conducting ground plane, this pattern is given by2 

4L10 
- sin 0 cos $,)I 

] a,(8, 0") 1 = sin $, sin (kh cos 8) (9.17) 
e(1 - sin 0 cos 4,) I 

As a function of 0, Equation 9.17 is seen to be the product of the three factors 

Sin nY sin K Y sin (kh cos 8) 
nY 

in which Y = (L/2)(1 - sin 8 cos 6,). The first of these factors has already been 
plotted in Figure 3.3a. When it is multiplied by sin n Y, the result can be displayed as 
in Figure 9.4a. For the typical case LII  = 6, h/I  = 1.5, and $, = 20°, the factor 
sin(kh cos 8) appears as Figure 9.4b. Multiplication gives the pattern shown in Figure 
9 . 4 ~ .  This pattern is seen to consist of a main beam tilted 10" above the horizon, plus 
a family of side lobes with an envelope that undulates and decays. The number of side 
lobes depends on L / I  and the side lobe level is customarily no better than - 13 decibels. 

The design of a rhombic antenna can be optimized by manipulation of Equa- 
tion 9.17. First, the height h can be selected by requiring that da,/dh = 0 at O,, with 
8, the desired position of the peak of the main beam. This gives 

cos(kh cos 8,) = o 
kh, cos 8, = m(n/2) m = 1, 3, 5 : .  . . 

2A. A. de Carvalho Fernandes, "On the Design of Some Rhombic Antenna Arrays," IRE 
Trans. Antennas Propagat., AP-7 (1959), 3946 .  See also E. Bruce, A. C. Beck, and L. R. Lowry, 
"Horizontal Rhombic Antennas," Proc. IRE, 23 (1935), 24-46. 



Y = (L/h)( l  - sin 0 cos Go) 
( c )  

Fig. 9.4 Composition of a Rhombic Antenna Pattern 
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as a consequence of which the minimum optimum height of the rhombic over a highly 
conducting earth is 

1 hl - - 
1 - 4 cos 8, 

The position of the peak of the main beam can be found from da,/d8 = 0. 
This gives 

kh sin 8 cos ( k h  cos 8) sin Y + k L  cos 8 cos 4, sin ( k h  cos 8) 
2 Y  

which can be rearranged into the form 

h = cos 4, cot 8 tan ( k h  cos 8) ( 1 L 
k(l - sin 8 cos 6,) - tan [kL /2  (1 - sin 8 cos $,)I 

(9.21) 

If h has been chosen so that (9.19) is satisfied, then tan(kh cos 8,) is infinite, and the 
only way that the right side of (9.21) can be finite is if 

(1 - sin 8, cos 4,) = kL( l  - sin 8, cos 4,) 

Equation 9.22 has the solutions 

L - (1 - sin 8, cos 4,) = 0.371, 1.465, 2.480, . . . 
1 

and thus the minimum optimum length of a rhombic arm can be computed from 

The best choice for corner angle can be determined from 

which leads to the result 

cos 4, = sin 8, 

As an illustration, if the main beam is to be 15" above the horizon, then 8" = 

75" and the corner angle at the feed should be 24, = 30". The optimum leg length is 
5.51 and the proper height above ground is one wavelength. 

The Vee antenna, as one might suspect, is a simplification of the rhombic, with 
legs 3 and 4 removed. If the Vee is parallel to a ground plane, matched loads can be 
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run to ground from the outer ends of legs 1 and 2, but if the leakage is great enough 
this is not necessary, and without a ground plane it is not possible. The fields can be 
deduced from an analysis which parallels what has already been done for the rhombic. 
For example, a,(B, 4) is given by the sum of (9.9) and (9.10). The important pattern 
cut is I a,(B, OO)(; the reader may wish to determine a, as an exercise. 

9.4 Dielectric-Clad Planar Conductors 

A flat metallic conductor, onto which a sheet of homogeneous isotropic dielec- 
tric has been bonded, as shown in Figure 9.5, is capable of supporting a traveling 
wave and can thus serve as a transmission line or an antenna, depending on the 
termination. The electromagnetic behavior of this composite structure can be ex- 
plained by first assuming that it is infinite in extent in both the X- and Z- direction^.^ 

Region 11 (air) 

Ground plane 

Fig. 9.5 A Dielectr ic-Clad Ground Plane 

Let any field component either in region I (the dielectric) or region 11 (air) be expres- 
sible in the form 

f ( y ) e ~ ( ~ ~ - ~ ~ )  (9.26) 

This implies that there is a suitable x-independent source at z = -a which is caus- 
ing a wave to travel across the dielectric-clad surface with a propagation constant P. 
For region I, Maxwell's equations decompose into the following two sets. 

3s. S. Attwood, "Surface Wave Propagation Over a Coated Plane Conductor," Jour. App. 
Phys., 221 (1951), 504-9. 
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Here k 2  = m 2 p O e  and h: = k 2  - p2.  Similarly, in region 11, 

with k i  = m2,uof,  and ht = k i  - j12. 
The longitudinal field components satisfy the wave equation, as a result of 

which 

The appropriate solutions. with no sources at j1 = +m and with no wave motion in 
the +y direction in region 11, are 

f ( ) = A , ~ - ~ ~ I Y  $ Blejhlr 
I L' g l ( y )  = Cle- jh 'y  + Dlejh'y  

(9.30) 
fZ(JJ) = g2(y)  = c ~ e - " ~  

in which 
,- a - jh2 = - k i  (9.31) 

is a pure real number. 
For TE waves, H, =- 0 at JJ = -d, whereas for TM waves, Ez = 0 at J* - -d, 

and thus 

B 1 - - A l e j Z h l d  and D l  = - C,e jZh1" (9.32) 

When this information is used in (9.27) and (9.28), one finds that 

jP  H, = - A sin [ h , ( y  + d)]e""'-8" Hy = - A z e - z - Y  (9 .33) 
h 1 a 

Hz = A cos [h , ( y  + d)] e""'-"" H, = A ~ ~ ~ ( O ~ - ~ ~ Z ) - Q Y  

where the substitution A = 2A,ejhtd has been made. Similarly, 
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jP E, = -- C cos [ / I ,  ( y  -t d)] ej("'-fl2' E, = - ~ ~ ~ j ( w - f l z ) - a ~  
a 

(9.34) 
h I 

E, = C sin [lz , (y  - 1  d)] ej(wr-flz' E, = C2ej(~r-Pz)-a~ 

with C = 2jClejhid. 
The matching of tangential E and H at the air-dielectric interface gives the 

following. 

TE T M  

A 2 A = -  C = -  c2 
cos h l d  sln h ld  

(9.35) 
h tan h , d  - -2 E a t a n h , d =  -- 
a €0 hl 

When the defining relations for a and h l  are placed in (9.35), one obtains 

Equations 9.36 and 9.37 permit calculation of the normalized propagation con- 
stant P/k0 as a function of the relative permittivity of the dielectric layer and its 
thickness for TE and TM waves traveling across the composite surface. A study of 
these equations reveals important characteristics of this type of wave propagation. 
First, in the range 

the right side of each equation is pure real and has a value which lies in the interval 
[-m, 01 for TE waves, and in the interval [0, m] for TM waves. Therefore positive 
real values of d can be found, for each value of P/ko in the range of (9.38), which will 
equate the two sides of either (9.36) or (9.37). For TE waves, the angle for which the 
tangent is being taken must lie in the second, fourth, sixth, . . . quadrant, whereas for 
T M  waves, it must lie in the first, third, fifth, . . . quadrant. 

Second, with the range of Plk, prescribed in (9.38), the phase velocity of these 
waves, which is given by 

is less than the speed of light. For this reason, the dielectric-clad ground plane is often 
referred to as a slow wave strucrure. 
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Third, since a = JP2 - ki, it follows that the larger P/ko is in the range of 
(9.38), the greater is the value of a and the more rapid is the exponential decay of 
these waves in the direction normal to the surface. The electromagnetic energy being 
transported is tightly bound to the surface if P/ko is even modestly greater than unity. 
For this reason, these slow waves are sometimes also called trapped waves. 

The fundamental T M  mode occurs when d has a value such that the angle 

lies in the interval (0, ~ 1 2 ) .  For the fundamental TE mode, this angle must be in the 
interval (7~12, n), which requires a larger value of d for the same P/ko. The additional 
thickness of the dielectric layer lessens the attractiveness of TE slow wave propagation. 

For a relative dielectric constant c/e0 = 2.5, plots of P/ko versus dare shown in 
Figure 9.6 for both the fundamental T M  and TE modes; they illustrate the difference 
in dielectric thickness requirements for the two types of slow waves. 

A discussion of the launching of slow waves on these composite structures, and 
of the potential use of dielectric-clad planar conductors as transmission lines or 
antennas, will be deferred to Section 9.7. 

Fig. 9.6 Propagation Constants of Slow Waves on a Dielectric-Clad Ground Plane as 
Functions of Dielectric Thickness 

9.5 Corrugated Planar Conductors 

Slow waves of the T M  type discussed in the previous section can also be supported by 
corrugated ground planes, with the teeth and gaps that comprise the corrugations 
running transverse to the direction of p r~paga t ion .~  This situation is suggested by 

4C. C. Cutler, "Electromagnetic Waves Guided by Corrugated Conducting Surfaces," Bell 
Telephone Laboratories, Report MM-44-160-218 (October 1944). 
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' t Region I1 (air) 

Region 1 

Fig. 9.7 A Planar Conductor with a Corrugated Surface 

Figure 9.7, where wave motion is assumed in the 2-direction and the corrugations are 
parallel to the X-axis. 

If G )) T and if there are many teeth per wavelength, the existence of TM waves 
in region I1 (the air-filled half-space above the corrugated structure) will excite stand- 
ing TEM waves in the gaps which make up region I. In the nth gap, identified by the 
coordinate z,, these fields are given by 

E, - D, sin k(y + d)ejw' 

H = E' D,, cos k (y + d)ejo' 
" k  

where once again k 2  == u2,u0~. I n  (9.40). 6 is the permittivity of the medium filling the 
gap (usually air). 

The region I1 fields are given by (9.34) and the matching of tangential E and 
H in the plane y = 0 gives 

C e-jPzn 
D =L 

" sln kd 

€ 01 tan kd = -- 
€0 k 

When the defining relations for u and k are used in (9.41) the result is that 

Equation 9.42 is similar in form to (9.37). However, the range of P/k, for a cor- 
rugated ground plane is less restricted than for a dielectric-clad ground plane. One 
can observe from (9.42) that positive real values of d which cause the angle (e/~,)'!'k,d 
to lie in the interval [0, n/2] result in a value of P/k0 in the range 

A plot of Plk, versus corrugation depth d is shown in Figure 9.8 for the case 
6 = 6 , .  The leveling off of P/ko observed in Figure 9.6, due to the finite upper limit 
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Fig. 9.8 Propagation Constant of T M  Waves over a Corrugated 
Surface versus Depth of Corrugations 

in (9.38), is absent from the curve of Figure 9.8. However, the values of P/ko needed 
in practical TM surface wave antennas can be obtained easily either with a grounded 
dielectric slab of reasonable thickness and permittivity or with a corrugated surface 
of reasonable toothlgap dimensions. This will become evident from the development 
found in Section 9.7. 

9.6 Surface Wave Excitation 

For TM slow waves supported by a corrugated ground plane, the analysis of the 
previous section left unanswered the question of how the waves are to be created. If 
the half-plane z = 0, y 2 0 were singled out in Figure 9.7, on which the current sheets 

could be placed, the fields described by Equations 9.34 would be produced in z > 0, 
as can be seen through recourse to Schelkunoff's equivalence principle and Equations 
1.112-1.11 5. The sources in (9.44) are not physically realizable but they can serve as 
a useful guide in gaining an introductory appreciation of several types of surface wave 
launchers. 

To see this, consider a rectangular waveguide whose bottom broad wall is cor- 
rugated. This structure can be analyzed in a manner similar to the procedure followed 
in Section 9.5 for the corrugated slab.5 One finds that the dominant mode is a modified 
TE,, with phase velocity that has been slowed by the presence of the corrugations. If 
the side walls are permitted to recede to infinity, the solution for waves propagating 

5R. S. Ell iott ,  "On the Theory o f  Corrugated Plane Surfaces," IRE Trans. Antennas Propagat., 
AP-2 (1954), 71-81. 
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between parallel plates, with one plate corrugated, is ~ b t a i n e d . ~  For G )) T and 
G << A, the fields in 0 y b, that is, in the region above the corrugations and 
extending to the upper wall (see Figure 9.9), are given by 

EZ == C', sinh [a(b - y)]ej(wl-pz) 

When these fields are matched a t  the boundary y = 0 to those in the gap regions, 
the relation 

6 a tan kd = - - tanh ab  (9.46) 
€0 k 

can be established. 

Fig. 9.9 Parallel Plate Transmission Line; Bottom Wall Corrugated 

If e-"b << 1, then tanh ab  1 and (9.46) reduces to (9.35). This means that a 
given corrugation depth produces the same propagation constant whether the upper 
plate is present or not. Further, it means that the fields in (9.45) are very close to those 
described by (9.34). To see this, let C', sinh ab  = C, so that the levels of the two sets 
of fields are equivalent. Then (9 .45~)  becomes 

E, .= C z  sinh [a@ - , j ( ~ ~ - p * ,  
sinh ab  
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which agrees with (9.34a) for region 11. In like manner, (9.45b) and (9.45~) are approxi- 
mately equal to their counterparts in (9.34), if e-ab << 1 .  

The significance of this result is, for a given corrugation depth d (and thus a 
given P / k ,  and a), if b is made large enough to cause the condition e-ab  << 1, then it 
does not matter whether the top wall is present or not. The trapped waves. which are 
concentrated near the lower (corrugated) wall, would not be seriously affected if the 
upper wall were suddenly to stop, as suggested by Figure 9.10. 

Fig. 9.10 Corrugated Slab Fed by a Corrugated Parallel Plate Transmission Line 

This immediately suggests two potentially satisfactory wave launchers. A line 
source, such as an array of longitudinal shunt slots, could be designed to excite a 
TEM mode in a parallel plate region with the upper wall flared to achieve the proper 
aperture height b. and with the lower wall corrugated with gradually increasing gap 
depth until the ultimate depth is achieved. Alternatively a conventional rectangular 
waveguide could be used to feed a horn with side walls that flare out till they reach 
the desired separation in the x-dimension, with an upper wall that flares to achieve 
the proper aperture height b, and with a lower wall corrugated with gradually in- 
creasing gap depth until the ultimate depth is achieved. Either of these possibilities 
is suggested in cross section by Figure 9.1 1. 

An estimate of the effectiveness of TM surface wave launchers of these two types 
can be made by the following argument. Assume that the gradualness of the deepen- 
ing of the corrugations and the gentleness of the flare of the upper wall (and perhaps 

Fig. 9.11 Flared Feed for a Corrugated Surface 
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the side walls) are sufficient to  provide a good match to the line source or rectangular 
waveguide. Conditions a t  the mouth of the feed can then be idealized by the parallel 
plate picture of Figure 9.10. In that picture, if the proper equivalent sources are placed 
on the half-plane z = 0,  ,y 2 0,  the fields in z 2 0,  y 2 0 will be the same as those 
caused by the actual feed. With e-ub  << 1, the termination of the upper wall sets up a 
negligible reflection, so the fields in the mouth should be given quite accurately by 
(9.45). With bl l  large enough to  cause e-ab <( I ,  the spillover from the feed in z 0, 
1, > b should be small enough to permit the assumption that the fields are negligible 
on z = 0, y > b. If this is so, the equivalent sources that should be placed on the 
half-plane z = 0, y 2 0 are 

K, = fi C', cosh [a(b - j ) ) ]e jw '  
a 

The ideal surface wave described by Equations 9.34 requires the sources in (9.44). 
How close d o  the sources in (9.48) come to  meeting this requirement? An answer can 
be provided to  this question if one compares cosh [a(b - y)]/cosh ab to e-ay in 
0 1 y I b and compares zero to  e-", in b < y < m. 

As an illustration, let c/co = I, Qlk, = 1 .10, and b / l  = I. Then alk,  = 0.458, 
e-Eb - - 0.056, tanh ab = 0.994, and d / l  = 0.068. The conditions assumed in the 

approximations are seen to  be met reasonably well even though P/k is only modestly 
above unity and even though the feed mouth is only one wavelength tall. A comparison 
of the equivalent sources in (9.44) and (9.48) for this case is provided by the entries 
in Table 9.1. One can see good agreement over the bottom half of the mouth but the 
discrepancy grows as y -+ b. However, the field values are diminishing as y --+ b, 
which lessens the seriousness of this deviation. 

The agreement between (9.44) and (9.48) improves as p / k ,  or b / l  increases. The 
development in Section 9.7 will show that the value of'Q/ko needed for optimum pat- 

TABLE 9.1 Equivalent source distributions for TM surface waves 
P/ko = 1 . I  0 b / l  = I 

Sources Sources Sources Sources 
Y I ~  (9.48) (9.44) VIA  (9.48) (9.44) 
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tern performance is dictated by the length of the corrugated surface and is usually 
not much greater than unity. This leaves b / l  as the only control parameter to improve 
the launching efficiency for this type of feed. Practical considerations limit the aper- 
ture height and thus the effectiveness of surface wave excitation. However, experi- 
mental results to be presented in Section 9.7 will indicate that modest values of bll 
are adequate to cause acceptable surface wave generation. 

This entire discussion could be repeated for the launching of either TM or T E  
slow waves on a grounded dielectric slab. The conclusion would once again be 
reached that horn-type feeds can be designed to be satisfactory launchers. As in the 
corrugated case, the wall flare from line source or waveguide to the feed mouth should 
be gradual and the dielectric should extend inside the feed, where its thickness is 
gradually brought to zero to assist in a good match. 

What has been presented here is only a brief introduction to surface wave 
excitation. Other more complex feeding schemes have been devised, and elaborate 
analyses have been developed for the computation of excitation efficiency. The inter- 
ested reader should consult the comprehensive review of this subject by F. J. 
Zucker7 and the discussions by H. M. Barlow a n d  J. B r o ~ n , ~  by R. E. C ~ l l i n ; ~  a n d  by 
C. H. Walter.I0 

9.7 Surface Wave Antennas 

If the feed shown in Figure 9.1 1 is properly designed, a slow wave will be launched, 
traveling over the corrugated surface in the +Z-direction. Were a mirror-image feed 
placed some distance to the right in order to absorb this slow wave, the intervening 
section of corrugated slab could be viewed as a transmission line, albeit an imperfect 
one. There would be losses: ohmic heating of the conductors, radiation from the first 
feed in modes other than the surface wave, spreading of the fields in the X-direction, 
and imperfect reception by the second feed. A serious question could be raised about 
the necessity for a slab which is wide in the X-dimension. Clearly, this structure does 
not serve as a good transmission line," but when properly designed it can become a 
good antenna. 

7F. J. Zucker, "Surface-Wave Antennas," Antenna Theory, Part II, ed. R. E. Collin and 
F. J. Zucker (New York: McGraw-Hill Book Co., Inc., 1969), Chapter 21, pp. 313-20. 

8H. M. Barlow and J. Brown, Radio Surface Waves (Oxford: Clarendon Press, 1962). pp. 
92-136. 

9R. E. Collin, Field Theoryof Guided Waves (New York: McGraw-Hill Book Co., Inc., 19601, 
pp. 485-506. 

1oC. H. Walter, Traveling Wave Antennas (New York: McGraw-Hill Book Co., Inc., 1965), 
pp. 282-31 1 .  

1 'The cylindrical equivalents of the grounded dielectric slab and corrugated planar conductor, 
namely the dielectric-sheathed wire and the corrugated rod, do make good transmission lines when 
fed by properly designed conical horns. The dielectric-coated wire has been intensively investigated 
for such purposes. See G. Goubau, "Surface Waves and Their Application to Transmission Lines," 
J. Appl. Phys. 21 (1950), 1 1  19-28. 
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As an introduction to  the subject of slow wave structures used as antennas, 
assume that the corrugated sulface and feed of Figure 9.1 1 are infinite in the x-dimen- 
sion and that all fields are x-independent. Assume further that the regular pattern of 
corrugations does not persist all the way to z = t o o ,  but rather terminates a distance 
L from the feed mouth in a ground plane which does extend to infinity. This situation 
is suggested in Figure 9.12a. 

Next imagine a closed surface S consisting of the half-plane z = 0, y 2 0, the 
half-plane y = 8, z 2 0, with 8 a positive infinitesimal; the cylindrical section of 
infinite radius which connects these two half-ptanes at infinity and encloses the three 
quadrants in which z or y is negative; and the two end-cap surfaces x = *m. The 

Fig. 9.12 Equ~valent Sources for a Corrugated Surface Antenna w ~ t h  an Infinite Ground 
Plane Extension 
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volume V inside S contains all the sources and Schelkunoff's equivalence principle 
can be invoked. The proper set of secondary sources on S will produce fields in the 
quadrant z 2 0, y 2 0 identical to those caused by the actual sources. 

It will be assumed that the feed is efficient enough that the true fields in the 
quadrant z LO, y 2 0 are negligible. A iiseful by-product of this assumption is that 
a semi-infinite ground plane extending to z = -m can replace the actual external 
feed structure, as pictured in Figure 9.12b. This permits use of the image principle, 
with the currents in the ground plane accounted for by doubling the equivalent 
magnetic sources over the corrugated surface, canceling the equivalent electric sources 
over the corrugated surface and placing images of the aperture sources on the half- 
plane z = 0, y < 0,  as suggested by Figure 9 .12~ .  

The current sheets given by (9.48) will be taken as an adequate approximation 
to the true secondary sources which should be placed on the half-plane z = 0, y 2 0. 
The images of these current sheets need to  be placed on the half-plane z = 0, y 0. 
The magnetic sources which are to  occupy the position vacated by the corrugated 
surface can be deduced from (9.34) and are given by 

The far field can be expressed as the sum of two terms, in the form 

with E; and E l  the contributions from the corrugated surface and feed, respectively, 
and with 8 measured from the Z-axis in the YZ-plane. With the aid of the results of 
Appendix G, one can show that 

1 -,(nL I ) ( ( P  k ) - s i n  8)  sin nL/IZ (PIk - sin '1 E;(@ = 2jkLC2,u; e nL/IZ(P/k - sin 8)  

cos 8 sin (kb cos 8) 
~ ; ( e )  = 2 ~ ; ~ ;  - ( ~ / k ) ~  f cos2 8 a/k 

The part of the field attributable to  the corrugated surface is seen to  be in the 
form sin n Y/n Y,  with Y = (L/A)[(P/k) - sin 81. This general pattern has been plotted 
in Figure 3.3a, and consists of a main beam and a family of side lobes which decay in 
height with distance from the main beam. However, a feature of the present applica- 
tion is that P /k  > 1 ; therefore this pattern does not reach the peak corresponding to  
Y = 0. It is important to be sure that P/k is not so large that all of the main beam of 
(sin n Y)/n Y lies in the invisible range. 

W. W. Hansen and J. R. Woodyard have shown12 that if 

I2W. W. Hansen and J. R. Woodyard, "A New Principle in Directional Antenna Design," 
Proc. IRE, 26 (1938), 333-45. 
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then patterns of the type in (9.51) will have minimum beamwidth. This condition is 
usually adopted in the design of corrugated surface antennas and simplifies (9.51) t o  
the form 

- , sin (nL/l)( j?/k  - sin 9)  Ei(9) = -2kLC2po 
(aL/IZ)(j?/k - sin 9) 

which has a main beam peak a t  end-fire and a family of side lobes, the first of which 
is a t  a height -9.5 decibels relative to the main beam. 

The feed pattern (9.52) is quite broad and exhibits no  nulls in the visible range 
for practical values of /Ilk and bil.  I t  also makes a maximum contribution at  end-fire. 
The ratio E;(n/2)/Ei(n/2) is a measure of the feed suppression and depends on the 
relation between the constants C, and C',, which in turn depends on the aperture 
height b/A. If one connects C,  and C', by equating the power emerging from the feed 
to the power transported by the surface wave, it is a simple matter to compute the 
feed suppression. This has been done1, and the results are plotted in Figure 9.13. It 

Fig. 9.13 Feed Suppression for a Corrugated Surface Antenna 

is evident that, for a given bl l ,  there is more feed suppression if L / l  is greater. But 
it is also evident that, for corrugated surfaces of practical length, the feed suppres- 
sion rapidly reaches the asymptotic value of 6 decibels as b / l  is increased. 

The presence of this asymptote can be understood by returning to (9.52) and 
realizing that, as b / l  increases, sinh ab dominates [cos 9 sin(kb cos B)]/(a/k) and 

I ,Elliott, "Theory of Corrugated Plane Surfaces," p. 76. 
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C: sinh ab - C,. The limiting value of the feed suppression ratio is therefore 

Ei(nI2) - lim - - - 2C,~i 'kLl(n/2)  - -2 (9.55) 
*,'.I-- Ei(nI2) 2C2~0'(Plk + 1)l[(Plk)2 - 11 - 

by virtue of the Hansen-Woodyard relation (9.53). 
That it is desirable to suppress feed radiation is apparent from this limiting 

ratio. If the field attributable to the corrugated surface is only twice the value at end- 
fire of the field due to  the feed and if they are out of phase, then at the peak of the 
first side lobe of E;(0), the two contributions are in phase. With the feed pattern broad, 
this can result in a first side lobe as high as the main beam, an unacceptable situation. 

But to make b/1 small enough to suppress the feed radiation adequately is to 
go against the prescription for efficient launching of the surface wave given in Section 
9.6, namely, to make b / l  large. Clearly, a tradeoff situation exists. That it is possible 
to get effective excitation of the surface wave and still have acceptable feed suppres- 
sion will be demonstrated shortly, when theory and experiment are compared. 

First, it is necessary to  reconsider several of the assumptions made in this 
analysis. The source distribution (9.49) tacitly implies the neglect of any reflected 
surface wave caused at z = L by the juncture of the corrugated surface and the ground 
plane. This can be justified on the basis of the Hansen-Woodyard relation (9.53), 
which can be rewritten as 

from which one can see that, even for corrugated surfaces that are only 51 long, Plk 
should be no greater than 1.1. This in turn implies that the corrugations are shallow 
and that the transition to ground plane is not severe. 

The assumption that the surface is infinite in its x-dimension is a good one if 
the actual surface has a width greater than or equal to 51, for then the finite width 
has negligible effect on the propagation formula in (9.42) and any of its consequences. 
The pattern in the YZ-plane can be computed as though the transverse width were 
infinite. Patterns in planes containing the X-axis will be governed by the x-dependency 
of the aperture distribution. 

Experiments performed by M. J. Ehrlich and L. Newkirk14 provide a test of the 
foregoing analysis. They used a corrugated surface which was 21 wide and 7.331 
long embedded in a ground plane 401 wide and 701 long, with the toothlgap dimen- 
sions adjusted to give Plk, = 1.07, consistent with the Hansen-Woodyard relation. 
Patterns were taken using a receiving horn which was mounted on a rotatable arm 
501 long, thereby simulating the far-field measurements for the case of an infinite 
ground plane. With b/1 = 0.73, the experimental pattern which they obtained at 
9.840 GHz is shown as the solid line in Figure 9.14. The theoretical pattern computed 
from (9.54) is shown dotted for comparison. 

14M. J. Ehrlich and L. Newkirk, "Corrugated Surface Antennas," IRE Convention Record, 
Part 2 (1953), 18-33. 
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Fig. 9.14 Exper~mental and Theoretical E-Plane Patterns for a Corrugated 
Surface Antenna; L = 7.331; Large Ground Plane (0 1953 IEEE. Reprinted 
from M. J. Ehrlich and L. Newkirk. IRE Convention Record, 1953.) 

The agreement between theory and experiment for this case is good enough to 
permit the inference that the dominant contribution to the radiation pattern is coming 
from the corrugated surface and that the feed radiation is adequately suppressed, even 
though b/1 is only 0.73. However, the null positions and side lobe heights d o  not 
quite agree, and the theoretical pattern gives a main beam which is too broad. When 
the feed radiation is included in the theoretical computation, better correlation is 
achieved.I5 The principal remaining defect is the assumption that a pure surface wave 
is traveling across the corrugated surface, and that therefore (9.54) is the proper 
representation of the equivalent sources. F. J. Zucker offers an example of the mea- 
sured field distribution immediately above a 41 surface wave antenna, indicating that 
the amplitude is far from uniform, particularly near the feed end.16 

Despite the approximations, the foregoing analysis provides a satisfactory 
explanation, a t  an introductory level, of the principal characteristics of corrugated 
surface antennas. The same approach can be applied equally well t o  surface wave 
antennas in which the basic trapping structure is a grounded dielectric slab, support- 
ing either a TE or  TM mode. 

Other methods of analysis have been favored by some workers. F. J. ZuckerI7 
has shown a preference for the "discontinuity radiation" point of view, in contrast to 

I sElliott, "Theory of Corrugated Plane Surfaces," Figure 5. 

IsZucker, "Surface-Wave Antennas," Figure 21.5. 

171bid., pp. 302-4 and Problem 21.9. 
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the foregoing (which he calls the Kirchhoff-Huyghens approach), but argues quite 
correctly that the two procedures, given the stated approximations, lead to  identical 
results. 

Finally, it must be mentioned that the analysis so far has assumed a surface 
wave antenna of length L followed by an infinitely long ground plane. If the ground 
plane is finite in length (or nonexistent), the slow wave traversing the antenna will be 
diffracted a t  the terminus, resulting in a pattern in which the peak of the main beam 
is lifted off the surface with some radiation leaking into the lower hemisphere, as 
typified by the experimental pattern shown in Figure 9.15. An estimate can be made 
of the angular position of the peak of the main beam as a function of the lengths of 
the trapping surface and its ground plane.I8 

For some applications of surface wave antennas, it is not desirable to have the 
main beam tilted up above end-fire. In such situations, a desirable feature of trapped 

0 ,  angle f rom end-fire 

Fig. 9.15 Experimental E-Plane Pattern for a Corrugated Surface Antenna; 
L = 7.331, G / T  = 3; Ground Plane Extension of One-Half Wave Length 

IsEll iott ,  "Theory of Corrugated Plane Surfaces," Figures 6 and 7. 
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waves can be exploited. Trapped waves will cling to a curved surface. although some 
leakage occurs (the more so the more radical the curvature). By using a section of a 
corrugated or  dielectric-clad cylinder in lieu of a planar trapping structure, one can 
position the main beam a t  end-fire by proper choice of the length of the arc and the 
radius of curvature. The leakage of trapped wave causes null-filling in the pattern, 
which is desirable in some  application^.'^ The same effect can be achieved with a 
spherical cap that is dielectric-clad or  corrugated. The resulting $-symmetric pattern, 
devoid of deep nulls, is useful in beacon antenna  application^.^^ 

All of the slow wave antennas that were described in this section have the prop- 
erty of a uniform repetitive toothlgap geometry over the entire aperture, a feature 
used to justify the assumption of an aperture distribution derivable for dielectric-clad 
surfaces from (9.33) and (9.34) and for corrugated surfaces from (9.34). The aperture 
distribution can be modified by modulating the trapping structure. A variety of 
methods for doing this have been discovered and C. H. Walter can be consulted for a 
survey and b i b l i ~ g r a p h y . ~ ~  

9.8 Fast Wave Antennas 

A waveguide mode typically propagates at  a phase velocity greater than the speed of 
light. If the waveguiding structure which supports this mode is properly "opened up," 
the energy contained in the mode can be leaked to the exterior region, resulting in 
what is called a leaky wave antenna. In practice, one wishes to govern the rate of 
leakage to  achieve a desired apreture distribution. With the aperture many wave- 
lengths long, the leakage rate is everywhere low and the phase velocity of the leaky 
mode differs but little from the phase velocity of its nonleaky counterpart. As a con- 
sequence, there is a quasi-uniform progressive phase distribution to the aperture dis- 
tribution, corresponding to the passage of a fast wave over the aperture. Thus such 
structures are also called fast wave antmnas. 

Four examples of fast (leaky) wave antennas are shown in Figure 9.16. Thc first 
three give a n  E-field distribution in the slot that is essentially transverse to the 
longitudinal Z-axis, which translates into an E,-polarization in the far field. The last 
example gives a longitudinal E-field in the aperture, thus causing an E,-type far-field 
pattern. The local value of transverse width of the long continuous slot determines 
the local rate of leakage for the first two examples. The local value of offset from the 
center line determines the local leakage rate for the meandering slot, and the local 
value of transverse slot length determines the local rate of leakage for the serrated 
waveguide. The first three examples are clearly continuous slots with respect to the 
longitudinal coordinate, whereas the fourth is only quasi-continuous. However, if the 

lYR. S. Elliott, "Azimuthal Surface Waves on Circular Cylinders," J. Appl. Plry.~., 26 (1955), 
368-76. 

2 0 R .  S. Elliott, "Spherical Surface Wave Antennas," IEEE Trans. ant en nu.^ P r o p u ~ ~ u t . ,  AP--4 
( 1  956), 422-28. 

zlwalter, Trcr~se1in.g Wrrre A~rtennrrs, p p .  373-84. 



(a) TEl l  slotted cylinder 

cc (b) T E l n  narrow-wall slotted 

& "  

rectanglllar waveguide 

(c) TEln  meandering slot in broad wall 
of ;"rectangular waveguide 

(d) TElo  array of closely spaced 
nonresonant slots in broad wall ~ - -  

of rectangular waveguide. 
(serrated waveguide). 

Fig. 9.16 Four Types of Fast (Leaky) Wave Antennas 

metal region between adjacent nonresonant slots is narrow and if there are many 
slots per guide wavelength, this structure may also be treated as though the apcrture 
were continuous. 



9.8 Fast Wave Antennas 455 

To see how a desired aperture distribution can be achieved in principle for 
structures such as these, let some representative field component in the waveguide be 
expressed as a decaying wave, such that the power present at the cross section z is 
given by 

P(z) = B2 exp [ - 2  1: a(c) d l ]  (9.57) 

with B the original field amplitude and a the field attenuation per unit length. Because 
it is assumed that the transverse dimension governing leakage rate is controllable, a 
is a function of longitudinal position c. 

Differentiation of (9.57) gives 

as the point relation connecting a and P .  
If the aperture distribution, collapsed onto theZ-axis, is represented byA(c)e-]PC, 

with A(c) adjusted in level so that 

then the input power P I ,  is given by 

In (9.60), L is the length of the aperture and P,,,, is the power left inside the wave- 
guide a t  the end of the aperture, which travels on to be absorbed by an internal 
matched load which terminates the waveguide. 

If one lets 

PLOAD = f PIN (9.61) 

so that f is the fraction of the input power absorbed in the load, then (9.60) becomes 

and as a result (9.59) is converted to 

Differentiation of (9.63) gives 
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and thus (9.58) becomes 

Equation 9.65 is a useful design result. If the desired pattern is specified, A(z)  
is known and this equation can be used to determine a@), once a value is chosen for 
f. (This will be discussed more fully later.) The task then remains to relate the trans- 
verse dimensions of the aperture to the newly found a(z). 

The connection between the rate of attenuation a and the transverse geometry 
of a particular type of leaky wave antenna can be determined either theoretically or 
experimentally. The theoretical approach can be illustrated for the case of an infinitely 
long slotted circular waveguide for which all cross sections are identical and typified 
by Figure 9.17. General field expressions can be written for the interior and exterior 

Fig. 9.17 Notation for a Slotted 
Cylinder Excited by a TE,  Mode 

regions and matched across the slot boundary. When the internal field is assumed to 
be basically a TE, ,  mode (that is, to converge to the conventional TE, ,  mode for a 
circular waveguide when 4, - O), the complex propagation constant a + j p  can be 
deduced as a function of 4, and the normalized cylinder radius. 

V. H. R ~ m s e y ~ ~  and R. F. HarringtonZ3 have used a variational method to 
obtain a numerical solution for this geometry and their results are shown as the solid 
curves in Figure 9.18. It can be observed that, with all held fixed, a is sensitive to 
+,, but P/k  is not. 

A transverse resonance method has also been employed by Goldstone and 
Oliner to obtain a theoretical solution for the propagation constant of a TE,,  slotted 
cylinderz4 and the results are in substantial agreement with those displayed in Figure 
9.18. The slotted rectangular waveguide shown in Figure 9.16b has been analyzed by 

22V. H. Rumsey, "T~aveling Wave Slot Antennas," J. App. Phys., 24 (1953), 1358-65. 

z3R. F. Harrington, "Propagation Along a Slotted Cylinder," J.  Appl. Phys., 24 (1953), 1366- 
71. See also Walter, Traveling Wave Antennas, pp. 163-72. 

24L. 0. Goldstone and A. A. Oliner, "Leaky Wave Antennas 11: Circular Waveguides," I R E  
Trans. Antennas Propagat., AP-7 (1959), 28690 .  See also Walter, Traveling Wave Antennas, pp. 
172-83. 195. 



Fig. 9.18 Complex Propagation Constant for a TEl  1 Slotted Cylinder 
(0 1953 American Institute of Physics. Reprinted from 13. F. Harrington, 
J. Appl. Phys., 1953.) 
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the same technique, and L. 0. Goldstone and A. A. Oliner present theoretical curves 
for the complex propagation constant versus slot width for standard X-band wave- 

Experimental determination of a + j a  versus transverse geometry can be 
achieved by a variety of methods. Near-field measurements using a small movable 
probe placed in front of the aperture are practical if a is not too small and the aper- 
ture is not too  long. An alternative near-field method with the same restrictions 
employs a scatterer in place of the probe and a precisely constructed magic T.26 

For  a small and the aperture long, a far-field measurement technique can be 
used to  determine the complex propagation constant. T o  see how this is accomplished, 
assume a leaky wave antenna for which the transverse cross section is unchanged 
over the entire aperture length L. With a small, discontinuity effects at  the two ends 
of the aperture can be ignored and with a matched load placed inside the waveguide 
beyond z = L, the collapsed aperture distribution is given by 

with K, a, and constants. The far-field pattern corresponding to  (9.66) can be 
deduced easily from (1.128) through (1.13 1) and, with the element factor suppressed, 
the normalized radiation intensity is 

S(B) = 
sin[(.rrliA)[cos 6 - Pik + (jaik)]] 2 / (iiL/A)[cos 0 - Plk + (jaik)] 1 

With a small, this is a pattern with a main beam pointing at  the angle 

plus a family of side lobes interspersed by fairly deep "nulls." With L large, 8,  can be 
determined quite accurately. One can conclude that if any long fast wave antenna of 
constant cross section and slight leakage is terminated by a matched load, and if the 
angle off endfire a t  which the peak of the main beam occurs is measured, (9.68) can 
be used to  deduce the imaginary component of the propagation constant. 

This experiment can be improved by replacing the matched load by a short 
circuit, for then if the generator is matched the aperture distribution becomes 

The radiation pattern now takes on the appearance suggested by Figure 9.19, with 
a rearward main beam as well as a forward main beam. These two beams are sepa- 

zsL. 0. Goldstone and A. A. Oliner, "Leaky Wave Antennas I :  Rectangular Waveguides," 
IRE Trans. Antennas Propagat., AP-7 (1959), 307-19. See particularly Figure 7. 

26Walter, Traveling Wave Antennas, pp. 158-59. 
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Fig. 9.19 Principal Plane Pattern 
of a Leaky Wave Antenna Termi- 
nated in a Short Circuit, Showing 
Forward and Rearward Main Beams 

rated by an angle 

8' = n - 28, = n - 2 arccos (9.70) 

A measurement of 8' avoids the need to align the leaky wave antenna and permits 
deduction of Q. But additionally, the rearward main beam is N dB below the forward 
main beam, with N given by 

N = I0 log,, e-'"= (9.71) 

and thus a can also be determined from this experiment. 
K. C. Kellyz7 has used this method to determine a and P for a family of 12 ser- 

rated waveguides. He used standard X-band rectangular waveguide (a = 0.900 inch, 
b = 0.400 inch, and t = 0.050 inch) with a series of closely spaced nonresonant slots 
milled into one of the broad walls, as suggested by Figure 9.20. For all members of 
the family, G = 2/32 inch, T = 3/32 inch, and L = 10& inches. For any one member 
of the family, 1 is constant and the members are distinguished by different values of 1 
in the sequence 0.225 inch, 0.250 inch, . . . , 0.500 inch. The values of a and P found 

27K. C. Kelly and R. S. Elliott, "Serrated Waveguide-Part 1 1 :  Experiment," I R E  Trans. 

Antennas Propagat., AP-5 ( 1957), 276-83. 
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Fig. 9.20 Serrated Waveguide Geometry 

by reduction of the pattern data are shown in Figure 9.21, where a varies smoothly 
with I and has a considerable dynamic range, while /3 only changes 10% as I increases 
from zero to 0.500 inch. 

R. F. HynemanZ8 has provided a theoretical analysis of a limiting case of the 
structure shown in Figure 9.20, namely when G/(G + T) = 1 and t - 0.  He assumed 
square-ended slots and also found that P / k  was insensitive to I. His curves for a versus 
l/a and a l l  are shown in Figure 9.22. 

In general, agreement between theory and experiment is excellent for all leaky 
wave antennas for which the dependence of y = a + j/3 on transverse geometry has 
been analyzed. The experimental points indicated in Figure 9.18 for the case of the 
TE,, slotted cylinder, and in Figure 9.22 for the limiting case of a serrated waveguide 
are convincing examples of this. 

With the relation between a and transverse dimensions established, one can 
turn to the design of a leaky wave antenna. As an example, suppose the collapsed 
aperture distribution 

A ( ( )  = [I + sin ($)I e-jfla' 

is selected, with Po the propagation constant when no leakage occurs and L the length 
of the aperture. If (9.72) is used in (9.65), one obtains 

a(z )  = - [ I  t sin (nz/L)12 
[5.546/(1 -f )I -- (4/n)[l  t (3nz14L) - cos ( n z / L )  - 4 dn (2nzlL)I 

] (9.73) 

2sR. F. Hynernan, "Closely Spaced Transverse Slots in Rectangular Waveguide," IRE Trans. 
Antennas Propagat., AP-7 (1959), 3 3 5 4 2 .  
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0.200 0.250 0.300 0.350 0.400 0.450 0.500 

Length of slots, inches 

0.75 

Fig. 9.21 Experimentally Determined Complex Propagation Constant 
of X-Band Serrated Waveguide (0 1957 IEEE. Reprinted from K. C. 
Kelly and R. S. Elliott, IRE AP Transactions, 1957.) 

A study of (9.73) reveals 
ture, but that if L is fixed 
a smaller value off. This 

that a ( i )  is inversely proportional to the length of the aper- 
, a greater dynamic range of a(z)  results from the choice of 
point is illustrated by the curves of Figure 9.23, which are 

plots of (9.73) for f - lo0( and 20:,;. Given the finite range of transverse dimensions 
over which a is a well-behaved function, there is a lower limit on the fraction of the 
input power which must be delivered to the matched load. Ceteris paribus, the greater 
the value of L,  the smaller f need be. 

The proper value off for a given aperture length and a given type of leaky wave- 
guide can be deduced by trial and error. For example, if the aperture distribution of 
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Fig. 9.22 Leakage Rate versus Slot Length for Limiting 
Case of Serrated Waveguide (0 1959  IEEE. Reprinted 
from R. F. Hyneman, IRE A P  Transactions, 1959.) 

(9.72) is to be achieved with a serrated waveguide of length 1, = 10.140 inches for 
which Kelly's data of Figure 9.21 is applicable, choice off = 0.1 results in the design 
curve shown in Figure 9.24. (Data in the range 0.500 1 1  0.535 has been inferred 
by extrapolation, and the conversion I decibel = 8.686 nepers has been used.) 

When a serrated waveguide was machined to conform to the design data con- 
tained in Figure 9.24 and the principal plane pattern was measured at the design fre- 
quency of 9 GHz, the results shown in Figure 9.25 were achieved. Since the theoretical 
side lobe level for the aperture distribution of (9.71) is -17.7 dB, it can be seen that 
the design is quite satisfactory. Some null-filling and irregularity in the heights of 
individual side lobes can be attributed to the fact that /?/I< is not quite a constant over 
the aperture. 

Leakage rate curves of the type shown in Figure 9.23 can be generated with f 
as parameter for any desired aperture distribution. This information can then be 
combined with the knowledge of a versus transverse dimensions for any type of leaky 
waveguide to produce a design curve similar to Figure 9.24. This procedure has been 
used successfully with all four leaky waveguide types shown in Figure 9.16. 
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Fig. 9.23 Leakage Rate as a Function of Position in  the Aperture for Aperture Distribu- 
tion of Equation 9.72. Effect of Power Fraction Dissipated in  the Load 

Fig. 9.24 Design Curve for Serrated Waveguide Antenna wi th Aperture Distribution 
= 1 + sin (nc lL)  (0 1957 IEEE. Reprinted from K. C. Kelly and R. S. Elliott, IRE A P  
Transactions, 1957.) 

Leaky waveguides can be placed side by side to form planar arrays. Proper 
design must account for mutual coupling between waveguides, which is severe for 
the structures shown in Figures 9.16a, b and c and mild for the structure shown in 
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Fig. 9.25 Principal Plane Pattern (Experimental) for a Serrated Waveguide Antenna; 
L = 7.751, v = 9 GHz;  Aperture Distribution = I + sin ( x i / L )  (0 1957 IEEE. 
Reprinted from K. C. Kelly and R. S. Ell~ott, IRE AP Transactions, 1957.) 

Figure 9.16d. C. H. Walterz9 indicates several methods for including the effects of 
mutual coupling and K. C .  Kelly30 reports on the design and performance of ten 
side-by-side serrated waveguides. 

9.9 Trough Waveguide Antennas 

The trough waveguide is a versatile structure that has modified forms capable of 
supporting traveling waves with phase velocities above, at, and below the speed of 
light. In the fast wave case, the leakage is also controllable, making the trough wave- 
guide an attractive candidate for leaky wave antenna applications. 

The symmetrical form of a trough waveguide is shown in Figure 9.26. The 
E-field distribution for the fundamental mode is suggested in the figure. This structure 
can be viewed as half of a strip transmission line operating in its first higher TE mode, 
a mode for which the plane bisecting the stripline is an electric null plane. Because 
of the antisymmetry of the E-lines, the symmetrical trough waveguide cannot 
radiate. However, a variety of modifications to the structure, each of which intro- 
duces an asymmetry, will cause an unbalance in the E-lines and thus can produce 
radiation. 

One of the common modifications for creating an asymmetry is illustrated by 
Figure 9.27, in which the trough depth on one side of the center fin has been reduced 

29Walter, Traveling Wave Antennas, pp. 367-71. 
3oKelly, "Closely Spaced Transverse Slots," p. 282. 
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Fig. 9.26 A Symmetr~cal Trough Fig. 9.27 An Asyrnrnetr~cal Trough Wave- 
Waveguide guide 

by an amount d. W. Rotman and A. A. Oliner3' have investigated this geometry both 
theoretically and experimentally and have found the dependence of P/k and a on 
trough dimensions to  be as shown in Figure 9.28. In this modified form, the trough 
waveguide is a fast wave structure with phase velocity which is relatively independent 
of d / l  but with a leakage rate which covers a useful dynamic range as d / l  is varied. 
Agreement between theory and experiment is seen to be quite satisfactory. These 
curves can be used to design a leaky trough waveguide antenna, employing the 
technique developed in Section 9.8. I t  is interesting to observe that if both d and d,  
are varied, the leakage rate can be controlled in just the right way to achieve a desired 
aperture distribution with P held constant over the aperture. 

If the center fin of the symmetrical trough waveguide is serrated, as shown in 
the insert to Figure 9.29, the phase velocity can be modified. A. A. Oliner and W. 
RotmanI2 have determined the dependence of P/k on  the various dimensions of this 
structure and their curves, which are reproduced in Figure 9.29, show a range that 
embraces both fast and slow waves. Rotman has been led by this discovery to  suggest 
an  arrangement of three serrated center fins, side by side and virtually touching, with 
only the middle fin movable. As this middle fin is translated longitudinally through 
one serration period G + T, the phase velocity can be swept through a sizeable 
dynamic range. With an introduced asymmetry, such as that shown in Figure 9.27, 
leakage can occur and mechanical scanning of the main beam from endfire to broad- 
side is conceptually possible. Alternatively, with a single serrated center fin, fre- 
quency scanning of the main beam is possible, as can be seen from the curves of 
Figure 9.29. 

11 W. Rotman and A. A. Oliner, "Asymmetrical Trough Waveguide Antennas," IRE Trans. 
Antennas Propagar., AP-7 ( 1959), 153-62. 

IzA. A. Oliner and W. Rotrnan, "Periodic Structures in Trough Waveguides," IRE Trans. 
Microwlave Theory Tech., MTT-7 ( 1959), 134-42. 



Fig. 9.28 Complex Propagation Constant for the Asymmetrical Trough Waveguide of 
Figure 9.27. (0 1959 IEEE. Reprinted from W. Rotman and A. A. Oliner, /REAP Transac- 
tions, 1959.) 
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Fig. 9.29 Phase Velocity for a Symmetr~cal Trough Waveguide w ~ t h  a Serrated Center 
Fin (0 1959 IEEE.  Reprinted from A. A. Oliner and W. Rotman, IRE AP Transactions, 
1959.) 

9.10 Traveling Wave Arrays of  Quasi-Resonant Discretely 
Spaced Slots [Ma in  Beam a t  8, = arccos (p/k)] 

The three types of radiating slots that can be cut in the walls of a rectangular wave- 
guide, and which were described in Section 3.5, can be spaced 2,/2 apart and alter- 
nately offset (or tilted). This gives rise to a standing wave array for which a design 
procedure was presented in Section 8.1 5. However, the slots need not be spaced a half 
guide-wavelength apart. If the spacing d f 412,  and a matched termination is placed 
beyond the last slot, a traveling wave array results. The excitation of such arrays quite 
naturally permits a uniform progressive phase in the aperture distribution. This, 
together with a properly controlled amplitude taper, will produce a sum pattern with 
the main beam at some angle other than broadside. There are many practical applica- 
tions in which this is desirable. 

Mutual coupling must be taken into account if precise control of the aperture 
distribution is to be achieved. For the case of longitudinal shunt slots in the broad 
wall, this can be accomplished by an extension of the design procedure developed in 
Section 8.15. It will be recalled that the two basic equations are 

L&fn V;I sin kl ,  
G 0 V" 
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Definitions of the various quantities appearing in (9.74) and (9.75) can be found in 
Section 8.15. 

For a linear array of longitudinal slots in a common waveguide, if d = 12,/2, 
the mode voltage Vn has the same magnitude at  all slots, merely alternating in sign 
as successive slots are reached. But for d # 12,/2, the situation is more complicated. 
The equivalent circuit in this more general case is shown in Figure 9.30, with a 
matched load assumed to exist beyond slot 1 .  

Fig. 9.30 The Equivalent Circuit of a Traveling Wave Array of N Slots 

If Y, is the total admittance seen looking into the nth junction toward the 
matched load, then 

- Y:: (Y,- , /Go) cos pd  + j sin pd Y" - - - 
Go Go cos pd  + j (Yn - ,  /Go) sin pd 

with j? the propagation constant of the TE, ,  mode. The mode voltages at successive 
junctions are related by 

V,  = V,-1 cos pd  + jIn..,Zo sin j?d 

= v.-, [COS pd  + j (k) sin pd] (9.77) 

When the design equation of (9.74) is written separately for th nth and (n - 1)st slots 
and the ratio is taken, one obtains 

Yi- , /G0 - f,-I V i - ,  sin kin-, V,, 
V: sin kl,, Vn - ,  

The ratio V,,/V,-, can be eliminated from (9.78) through use of (9.77). Rearrangement 
gives 

Y,"/Go - -- Y:- ,/Go Vi! V:- , 
fn sin kl, fn- ,  sin kl,-, cospd j (Yn-  , /Go) sin pd 
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Equation 9.79 is a recurrence relation which, in conjunction with (9.79, will permit 
determination of the length and offset of the nth slot, once the length and offset of 
the (n - 1)st slot are known. 

A design procedure can now be formulated. One begins by assuming an initial 
set of lengths and offsets for the slots. This is solely for the purpose of computing 
initial values of the mutual coupling terms Z,b, through use of Equations 8.89, 7.155, 
and 7.156, with the implicit understanding that the desired slot voltage distribution 
V:, has been specified. It  is entirely adequate for this first calculation to take all the 
slots to be on the center line and a half-wavelength long. 

Next, one guesses a value for Y;/G. (How to make a judicious guess will be 
indicated shortly.) Equation 9.75 can then be used, with insertion of the initial values 
of Zt  and Y;/G,, to determine an improved estimate of (x,, 1,). 

If the slot spacing d has been selected (more about this, too, shortly), the right 
side of (9.79) is known for the case n = 2. Simultaneous solution of (9.75) and (9.79) 
will yield an estimate of YgG, and (x,, I,). But then the right side of (9.79) becomes 
known for the case n = 3. The process can be repeated to find an estimate of Y",/G, 
and (x,, I,), and ultimately an estimate of YN/G, and (x,, I,). 

This new set of slot lengths and offsets can be tested for adequacy in several 
ways. First, and most obvious, the maximum and minimum offsets should be in the 
range in which reliance can be placed on the design data. If one or the other of these 
extremes is out of range, the next guess for Y:/G, will have to be adjusted in the proper 
direction. 

Second, the procedure just described requires the calculation of Y,- ,/Go at each 
stage, so the information is available to permit a determination of the normalized input 
admittance to the array. This is obtained simply by using n = N in (9.76). If Y,/G, 
is not close enough to a match, this is probably an indication that the spacing d needs 
to be adjusted. This point will be elaborated later in the discussion. 

Third. a computation can be made of the fraction f of the input power that is 
absorbed in the load. The normalized power radiated by each slot is 

Therefore, since the normalized power into the matched load is +V, VT,  it follows that 

An efficient design requires that f be as small as feasible. A raising of the value of 
Y;/G,, with the concomitant increase in the offset x , ,  will serve to increase all the 
offsets and all the normalized active admittances, and thus x P,, thereby 1owering.j: 
This argument leads to the conclusion that the guess for the value of c / G ,  should be 
adjusted so that the maximum offset x, (usually for the central slot) is at the upper 
end of the reliable data range, for then f will have its minimum feasible value. 
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It is highly unlikely that the initial choices of d and (particularly) of Y';/Go will 
lead to a meeting of the design criteria, but even if one were so fortunate as to obtain 
this outcome, the process should be iterated, because now a more realistic set of slot 
lengths and offsets is known, permitting an improved set of Zf: values to be cal- 
culated. A succession of iterations will normally need to be undertaken, with the 
process terminated when three goals are achieved: (1) the input admittance is accept- 
ably close to a match, (2) the fraction of power dissipated in the matched load has 
been minimized, and (3) the final set of (x,, I,) values is closer to the penultimate set 
than fabrication tolerances. 

Further consideration can now be given to the problem of making an initial 
guess of the value of Y'fIG,. If there are many slots in the array, the power radiated 
by slot 1 will be small compared to the total radiated power (particularly so with a 
tapered aperture distribution). Thus P ,  ((( C P,. This means that it is feasible to have 
P ,  much less than the power dissipated in the load. In quantitative terms, 

This implies that Y;/Go << 1, which is vital, for then the offset of the first slot will be 
at a level suitably low to prevent the slots in the center of the array from being exces- 
sively offset. 

If Y'f/G, << 1,  then 

and a return to Equation 9.77 indicates that V,  V,ejfid. This argument can be 
cascaded, because with N large, YgG, << 1, and so on, so that (approximately) 
V, = V,-,ejBd. In words, for a traveling wave array of many slots, the mode voltages 
essentially have a common magnitude and a uniform progressive phase which cor- 
responds to the passage of a wave along the aperture characterized by the function 
~ X P  - P4l.  

Under these conditions, Equation 9.79 indicates that the same uniform progres- 
sive phase can be obtained for the slot voltage distribution if the active admittances 
are chosen to have approximately the same phase. Thus this type of array is suitable 
for applications in which a sum pattern is desired with the main beam at an angle 8,, 
for this can be achieved by an aperture distribution that gives 

from which it follows that 

= cos 8, 
k (9.85) 
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The pattern requirement that the main beam point at an angle 8,  thus serves to tie 
down the value of /3.33 

With all of the active admittances essentially at  a common phase, and all the 
mode voltages possessing approximately the same amplitude, one can observe that 

But the powers radiated by the individual slots are also roughly proportional to the 
squares of the slot voltages. Thus 

Suppose that one identifies the slot with the largest desired slot voltage (call it the nth 
slot) and ignores mutual coupling for the purpose of making a preliminary calcula- 
tion. If this slot is given the largest offset consistent with being in the acceptable 
dynamic range of offsets, and the corresponding resonant length, then g(x,) is an 
estimation of its normalized admittance. If g(x,) is used for 1 Y;/G, I in (9.87), one can 
compute a starting value for I Yf/Go I. The phase that can be attached to this starting 
admittance is somewhat arbitrary, but probably should not be far from zero degrees. 

An initial selection of the element spacing d also needs to be made. An eco- 
nomical design calls for the minimum number of slots consistent with the beamwidth 
requirement and the desire not to have an additional main beam appearing at reverse 
end-fire. For N large, the constraint in (4.30) can be used to estimate d. For N modest, 
placement of the roots on a Schelkunoff unit circle will permit an estimation of the 
maximum value of d. (See Section 4.4). 

The value of d chosen initially may need to be modified slightly as the iterations 
proceed. The reason for this can be appreciated by considering the factors which 
influence the input admittance. One can recall from Section 8.14 that the back- 
scattered wave from the nth slot, referenced at the center of the nth slot, is given by 

It follows that 

is the wave back-scattered from the nth slot, referenced at the input. One can deduce 
from (9.89) that there will be a match if 

33For a distinctly different solution to this problem, in which O o  f arccos(P/k), see 
Section 9.1 1 .  
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For a given set of active admittance values, there is a unique set of d values that satisfy 
(9.90). If N is large enough (10 slots or more), one of these values of d will be close to 
the original selection of d, so that only a minor adjustment need be made. Indeed, for 
N very large, the left side of (9.90) is small for all values of d in the admissible range. 

The theory just presented has been tested by the design of an array of 21 lon- 
gitudinal shunt slots.34 Standard X-band waveguide was used (a = 0.900 inch, b = 

0.400 inch, t = 0.050 inch) with a central frequency of 9.375 GHz. The slots were 
0.063 inch wide and round-ended, and thus Stegen's design data, embodied in 
Figures 8.35 through 8.37, was applicable. Since Plk = 0.714 for these dimensions 
and frequency, it was decided to design for a sum pattern with the main beam at 
0, = arccos 0.714 = 44.5". A Dolph-Chebyshev distribution was specified that 
would give a -30 dB side lobe level. The interelement spacing was chosen to be 
d = 0.5451, which is comfortably below the constraint (4.30), and thus the uniform 
progressive phase in the aperture distribution was pd = 140". The relative slot voltage 
magnitudes were taken from the tables of L. B. Brown and G. A. S ~ h a r p ~ ~  and are 
listed in Table 9.2. The theoretical array pattern corresponding to this distribution is 
shown d o t t e d  in  F igure  9.31. 

TABLE 9.2 Desired slot voltage distribution main beam at 45"; 
30-dB Dolph-Chebyshev pattern 

An original guess of 0.085 was made for the value of YYIG,, and the design 
procedure was initiated. Three iterations brought the slot offsets to stability within 
0.001 inch; the resulting values for lengths and offsets are shown in Table 9.3. The 
normalized theoretical input admittance was 0.955 + j0.009, and 12.3 ?g of the power 
was predicted to be absorbed in the dummy load. These figures could have been 
improved by adjusting F I G ,  to a higher value and by changing d slightly, but since 
the sole purpose of the design was to validate the theory, it was decided to avoid fur- 
ther computer costs and accept this as an adequate test. 

A longitudinal shunt slot array was constructed using the lengths and offsets 

34R. S. Elliott, "On the Design of Traveling-Wave-Fed Longitudinal Shunt Slot Arrays," 
IEEE Trans. Antennas Propagat., AP-27 (1979), 717-20. 

35L. B. Brown and G .  A. Scharp, "Chebyshev Antenna Distribution, Beamwidth, and Gain 
Tables," Nav. Ord. Report 4629, (California: Corona, 1958). 
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Fig. 9.31 Theoretical and Experimental Patterns for a 21 -Element Traveling Wave 
Array of Longitudinal Shunt Slots; v = 9.375 GHz (0 1979 IEEE. Reprinted from IEEE 
AP Transactions, 1979.) 

listed in Table 9.3. The experimental pattern at 9.375 GHz is shown as the solid curve 
in Figure 9.31 and the input VSWR versus frequency is displayed in Figure 9.32. 

The experimental performance can be summarized by noting that the pattern 
has a well-defined main beam in the proper position and with the proper beamwidth; 
the side lobe level is poorer than theoretical-the innermost sidelobe on one side is 
at -22 dB, the three innermost side lobes lie between -22 and -24 dB, and the 
remainder are all a t  least 25 dB down from the main beam; however, the outer side- 
lobes do  not fall off as they should considering the element pattern behavior in the 

TABLE 9.3 Slot lengths and offsets 

n Xn 21,' n X,  21"' n x" 21'.3 n 

1 0.078 in. 0.605 in. 8 0.081 in. 0.612 in. 15 0.055 in. 0.613 in. 
2 0.028 in. 0.604 in. 9 0.081 in. 0.613 in. 16 0.030in. 0.617 in. 
3 0.061 in. 0.603 in. 10 0.079 in. 0.613 in. 17 0.027 in. 0.619 in. 
4 0.071 in. 0.607 in. 11 0.075 in. 0.612 in. 18 0.026 in. 0.620in. 
5 0.078 in. 0.609 in. 12 0.070in. 0.612 in. 19 0.024 in. 0.619in. 
6 0.081 in. 0.610 in. 13 0.066 in. 0.613 in. 20 0.022 in. 0.616 in. 
7 0.081 in. 0.610 in. 14 0.062 in. 0.613 in. 21 0.025 in. 0.621 in. 
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Fig. 9.32 Input VSWR versus Frequency for a 21-Element Traveling Wave Array of 
Longitudinal Shunt Slots (0 1979 IEEE. Reprinted from IEEEAP Transactions, 1979.) 

H-plane; the input VSWR is very good over a five percent frequency band, being 1.05 
at  the design frequency and hitting a low of 1 .O1 at 9.675 GHz; though not shown, the 
pattern held up well in this frequency band. 

The inability to  achieve a -30 dB side lobe level is laid to the presence of 
internal mutual coupling, a factor which was not accounted for in the design. L. A. 
Kurtz has shown36 experimentally that the TE,, mode scattered off a slot may be 
strong enough to affect materially the slot voltages of its two adjacent neighbors. In 
the present design, where the slots are all on the same side of the center line, and 
where the tip-to-tip spacing is only about one-sixteenth of an inch, it is estimated 
that this internal TE,, mode effect is strong enough to cause as much as a 5 % error 
in some of the slot voltages, an effect which can easily account for the loss of about 
5 dB in the side lobe level. The TE,, mode problem can also explain why the power 
into the load was higher than the predicted 12.3 percent. It measured 22.9 percent 
a t  9.375 GHz and hit a low of 17.8 % at 9.475 GHz. 

9.11 Traveling Wave Arrays of  Quasi-Resonant Discretely 
Spaced Slots (Main Beam Near Broadside) 

In the design procedure described in Section 9.10, the argument was made that, for 
long arrays with small individual slot admittances, a natural phase progression ejPd 

occurs in the ratio of mode voltages at successive slots. As a consequence, if the active 

3 6Private communication. 
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admittances are made cophasal, the slot voltages also progress as ejjd and this aper- 
ture distribution produces a pattern whose main beam points at the angle 8, = 

arccos(P/k). The slot offsets in such an array are all on the same side of the center line. 
There is no fundamental reason why the design procedure should be limited 

to placing the main beam at 8, = arccos(P/k). However, if it is desired for such arrays 
to place the main beam at an angle 8, f 8,, one finds that, as 8, departs from 8,, 
the required active admittances are no longer cophasal. Here, 8, need not be far 
removed from 8, before the required phases of the active admittances force the needed 
self-admittances into the range of unreliable design data. It is therefore more staisfac- 
tory to adjust the value of /3 by changing the a dimension of the waveguide in order 
to accommodate the requirement of 8 , .  

An exception occurs if one is willing to consider the situation in which successive 
slots are displaced in alternate directions from the center line of the broad wall of the 
waveguide. For example, in the illustration of the traveling wave array of 21 slots 
presented in Section 9.10, had the offsets listed in Table 9.3 been alternating in sign 
and had this not affected the mutual coupling, the uniform progression phase in the 
aperture distribution would have been p d  - n instead of /Id. This would have resulted 
in a main beam pointing somewhere between broadside and reverse end-fire, since in 
that application p d  = 140'. (Specifically, the main beam would have pointed 12" off 
broadside.) Of course, the mutual coupling would have changed, but this argument 
suggests an alternate design procedure which has practical applications. 

With alternating offsets, the main beam will point naturally at an angle 8, given 

by 

eo - arccos = arccos - - - 
kd ( f  

One can see from (9.91) that, if p d  = n, the main beam is at broadside and the case 
of a resonantly spaced array has been recaptured. If /?d < n, the main beam points 
somewhere between broadside and reverse end-fire. If pd  > n, the main beam points 
at an angle which lies between broadside and forward end-fire. 

There are practical limitations on the choice of 8, and thus of the slot spacing d. 
If 8, is not chosen to be at least one beamwidth removed from broadside, the back- 
scattered waves given in (9.89) will not sum to a negligible value and an input match 
will not be achieved. If d is decreased from the value needed to place the main beam 
off broadside one beamwidth toward reverse end-fire, it will not take much decrease 
before the slots overlap, with concomitant serious difficulties in mutuai coupling. 
If d is increased from the value needed to place the main beam off broadside one 
beamwidth toward forward end-fire, it will not take much increase before the slots 
are sufficiently separated (d = 1) to introduce unwanted extra main beams. Thus the 
design of traveling wave arrays for which the placement of the main beam is given 
by (9.91) is restricted to a practical range near broadside, but excluding one beam- 
width either way from broadside. 

This restriction does not eliminate traveling wave arrays of this type from con- 
sideration for practical applications. Such arrays are more broadband in input impe- 
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dance and pattern performance than their resonantly spaced counterparts and the 
low squint angle means high aperture efficiency. The determination of slot lengths and 
offsets proceeds exactly as outlined in Section 9.10, the only difference being that the 
aperture distribution is specified to have a uniform phase progression pd - n rather 
than pd. This will automatically insure that the offsets alternate in sign. The interested 
reader might wish to repeat the design of a traveling wave array of 21 slots, described 
in Section 9.10, with the one change that the main beam is to point one beamwidth 
off broadside. 

Traveling wave arrays of the type that satisfy the beam placement formula 
(9.91) can also be designed on an incremental conductance basis3" but the procedure 
described in Section 9.10, which takes external mutual coupling into account on a 
discrete basis, will result in a more satisfactory design. 

9.1 2 Frequency Scanned Arrays 

Traveling wave arrays of quasi-resonant discretely spaced slots can be constructed in 
rectangular waveguide using a n y  one  of  the  three types of  radiating slots pictured i n  

Figure 3.9. If excitation of the slots is by means of a TE,, mode and if the aperture 
distribution is designed to give a sum pattern, then if the direction of offset (tilt) is 
not alternated, the pointing position of the main beam is given by Equation 9.85, 
that is, 

0, = arccos - ( I )  
On the other hand, if the direction of offset (tilt) is alternated, the pointing position 
of the main beam is given by Equation 9.91 that is, 

0, = arccos - - - ( I  Ltd) 

with d the slot-to-slot spacing in the longitudinal direction. 
Since for the TE,, mode P/k = [l  - (r2/2a)2]'/2, if the frequency is varied, the 

main beam position of either type of array will change. Thus frequency can be used 
as a variable to cause beam scanning. 

To gain a feeling for the sensitivity of beam position to changes in frequency, 
consider again the array of 21 longitudinal shunt slots described in Section 9.10. 
Standard X-band waveguide was used with a = 0.900 inch and a central frequency 
v, = 9.375 GHz. Equation 9.92 predicted a main beam position of 44.5", and this 
was confirmed by experiment. It is a simple matter to determine 0,(v) for this array 
from (9.92). The results for a 10% bandwidth are depicted by the lower dotted curve 
in Figure 9.33. A 5 5 %  variation in frequency has caused a +6.5;/, swing in beam 
position. 

37V. T. Norwood, "Note on a Method for Calculating Coupling Coefficients of Elements in 
Antenna Arrays," IRE Trans. Antennas Propagat., AP-3 (1955), 213-14. 
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Fig. 9.33 Beam Position versus Frequency for Various Types of Rectangular 
Waveguide-Fed Slot Arrays 

A companion example can be presented for a traveling wave array when the 
direction of slot offsets (tilts) alternates. Imagine at the central frequency v, = 

9.375 GHz, it is desired to place the main beam at 8, = 85" (that is, 5" off broadside). 
Equation 9.93 then yields the information that the interelement spacing should be 
d = 1.003 inch. If for this array the frequency is varied, further use of (9.93) produces 
the upper dotted curve in Figure 9.33. A f 5 % variation in frequency has resulted in 
a 1 4 . 5  % movement in beam position. 

Clearly, for both array types the amount of beam scanning that has been 
achieved is modest. In some applications, where the requirement is to maintain beam 
position constant over a sizeable frequency band, even this small beam swing can be 
nettling. However, this effect can be augmented and turned to advantage when the 
need is to scan the main beam over a considerable angular range. The augmentation 
occurs when the electrical length inside the waveguide from slot to slot is increased by 
snaking the feed, as shown for an edge slot array in Figure 9.34. 
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When this serpentine effect is introduced, the array factor becomes 

for an array with slots that do not alternate in direction of offset (tilt). Therefore the 
pointing direction of the main beam is given by 

0, = arccos pd'  - 2nrn 
kd (9.95) 

with rn an integer. The term 2nm has been subtracted from /3d' to reveal the proper 
uniform progressive phase in the aperture distribution. If the serpentine section is 
longer, m will be a larger integer. With no snaking of the feed, m = 0 and d' = d, 
and Equation 9.95 reduces to (9.92). 

Fig. 9.34 A Serpentine Feed for an Edge Slot Array 

As an illustration of the use of (9.93, suppose an edge slot array is to be cut in a 
snaked X-band waveguide, as shown in Figure 9.34. The transverse dimensions are 
standard and the main beam is once again to point at 44.5' at the central frequency 
v, = 9.375 GHz. With d/A0 chosen to have a value of 0.545, as in the array discussed 
in Section 9.10, the interelement spacing is d = 0.685 inch. Then for rn = 2, Equation 
9.95 yields the information that d' = 4.207 inch. Further use of (9.95) provides 8,(v), 
which is plotted as the lower solid curve in Figure 9.34. Now a distinctly larger varia- 
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tion of beam position with frequency can be noted. Indeed, the beam is scanned all 
the way to end-fire with only a 4 %  increase in frequency. 

If the slots do alternate in direction of offset (tilt), the only modification that 
needs to be made in the foregoing argument is to subtract an additional IZ radians 
from Bd'.  The formula for main beam position becomes 

0, = arccos pd' - 2n(m + 3) 
k d  

which is seen to reduce to (9.93) if m = 0 and d' = d. 
For an edge slot array with the tilt angles alternating in direction, an interele- 

ment spacing of dl1  - 0.797 will place the main beam at 85' at v, = 9.375 GHz. 
With m = 2, d' == 4.073d = 4.086 inches. With this knowledge, O,(v) can be cal- 
culated from (9.96). The results are shown as the upper solid curve in Figure 9.34. A 
$5  % frequency variation results in a beam swing from 69" to 102". Of course, one 
would not want to  scan the beam through broadside because of the input VSWR 
difficulties, but for an array long enough to give a 1 "  beamwidth, a 6 %  frequency 
band will scan the beam from 69" to 89". 

These beam swings can be magnified still further by choosing larger values of nz 
(that is, making the serpentine length greater). Obviously, there are penalties associated 
with doing this. The mechanical complexity increases, as do the bulk, the weight, and 
the cost of construction. The waveguide losses also increase. One must balance the 
difficulties of building a source with a greater frequency band of operation to get a 
wider beam scan with a given serpentine feed, against the difficulties of increasing the 
serpentine length to get a wider beam scan with a given frequency band of operation 
of the source. 

Frequency scanned arrays have found favor in a variety of practical applica- 
tions. One use is suggested by Figure 9.35, which shows a serpentined rectangular 

Edge slots 

Horn 
plate plate 

Serpentine 
feed 

Fig. 9.35 A Frequency Scanned Array Used as the Feed for a Parabolic 
Cvlinder Reflector 
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waveguide with edge slots cut in both narrow walls. Horn-type plates are placed over 
both arrays so  that the beam of each is directed a t  a parabolic cylinder reflector. The 
two array patterns combine to illuminate the reflector so  that its pattern is a pencil 
beam which scans in a plane perpendicular to  the paper as the frequency is varied. 
Two-dimensional slot arrays have also been constructed, with frequency scanning in 
one dimension resulting from use of serpentine feeds. 
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PROBLEMS 

Verify the results contained in Equations 9.10 through 9.12. 

Derive the field expressions for a rhombic antenna using pattern multiplication, with 
the element patterns those of a single long wire. 

Provide the optimum design for a rhombic antenna which is to be parallel to and a dis- 
tance h above a conducting earth, if the main beam of the pattern is to point 10" above 
the horizon. 

Determine a,(8, 4) for a V-antenna and then plot I a,(B, Oo)l  for ~ / 1  - 5, h/A = 1.5, 
and 4o = 20". 

For a parallel plate transmission line, with the bottom wall corrugated, establish from 
first principles that the fields in the region above the corrugations are given by (9.46) 
when G >> T and G (< 1. 
Assume that the feed pattern for the corrugated surface antenna of Figure 9.12a is 
given by Equation 9.52. Show that the ratio of feed radiation at 0 = 90' (end-fire) to 
feed radiation at 8 = 0" is 20 log,,[(P/k)/(P/k - I)]. With the Hansen-Woodyard rela- 
tion of (9.53) invoked and (9.54) accepted as valid, show that the end-fire radiation 
attributable to the corrugated surface is 6 dB above that due to the feed. 

Establish the equations from which the complex propagation constant can be deduced 
for TE azimuthal waves on dielectric-clad circular cylinders. 

Repeat Problem 9.7 for TM azimuthal waves. Indicate the change in your analysis if 
the cylinder is corrugated instead of being dielectric-clad. 
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9.9 Establish the equation from which the complex propagation constant can be deter- 
mined for TM latitudinal waves on a corrugated sphere. 

9.10 A continuous line source with a uniform progressive phase and a saw-tooth amplitude 
distribution of the form A(C) = 1 - (ClL) will produce a pattern which is approxi- 
mately csc2 9 in form. Show this, and then use Equations 9.58 and 9.64 to find U ( z )  if 
f = 10%. Then use Kelly's experimental data, contained in Figure 9.21, to  design a n  
X-band serrated waveguide antenna 7.51 long for this application. (Compare with 
Kellyz6 for an experimental validation.) 

9.11 A collapsed continuous line-source distribution is desired in the form A(C) = [2 + 
sin(nC/L)]e-jpc. Use the theoretical curves of Rotman and Oliner, contained in Figure 
9.28, to design a n  asymmetrical trough waveguide antenna 101 long to produce this 
aperture distribution. At first, keep d l  constant at 0.3421 and find d(z ) .  Then modify 
your design by also varying d l  to keep /3 constant. 

9.12 Design a five-element longitudinal shunt slot array in standard X-band waveguide 
with v = 9.375 G H z  in order to have a constant amplitude aperture distribution and a 
pattern with the main beam at 9, = 45". There should be an input match to the array. 

9.13 Repeat Problem 9.12 with the main beam one beamwidth off broadside. 



10 reflectors and lenses 

10.1 Introduction 

A reflector or a lens that is large in wavelengths and fed by a small horn or other 
elementary source is a relatively simple, inexpensive antenna capable of producing a 
high-gain pattern with a reasonable side lobe level. Pattern integrity and input imped- 
ance can be maintained at  a good level over a significant frequency band. Lenses are 
typically heavier than reflectors, but have inherently less severe aperture blockage 
problems due to feed placement. Both antenna types are natural candidates for many 
ground-based, airborne, and ship-based applications, and unfurlable reflectors have 
become attractive for satellite use. Beam scanning by mechanical rotation of the 
lens or reflector is common when inertial effects do not prevent practical achievement 
of the desired rate of scan. In some applications, the inertial effects are eliminated 
(or alleviated) by keeping the lens or reflector stationary but using multiple feeds 
(or movable feeds) to produce beam scanning. The result is that both antenna types, 
and particularly reflectors, are attractive for use in a diverse catalog of situations 
requiring apertures whose dimensions are large in terms of wavelengths. 

The large size of these antennas in terms of wavelengths permits effective use 
of the -principles of optics in their design. Thus this chapter begins with a discussion 
of the simplifications of solutions to Maxwell's equations that occur when the wave- 
length becomes small. The geometrical optics field, as the limiting solution is called, 
has many useful properties which are demonstrated and then employed to deduce 
several simple reflector shapes that will collimate the rays of the field. These include 
the parabolic cylinder and the paraboloid. The compound feed that bears Cassegrain's 
name, consisting of a point source and a hyperboloid, is also analyzed. 

Aperture blockage of a reflector is then discussed in general terms, with trade- 
offs indicated between feed size and reflector depth and between feed offset and 
reflector depth. This is followed by the development of a technique for shaping a 
cylindrical reflector in order to provide an arbitrary secondary pattern, rather than 
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one arising from collimation of all secondary rays. The same procedure is also 
demonstrated for a doubly curved reflector which is often, in essence, a perturbation 
of the basic paraboloid, just as the shaped cylindrical reflector is often a perturbation 
of the basic parabolic cylinder. 

Several methods for computing the far field of reflector antennas are introduced. 
In one approach, the geometric optics field is used to determine the values of equiva- 
lent sources in a secondary aperture with and without an allowance for aperture 
blockage. In another, the geometric optics field is used to deduce an approximation 
to the current distribution on the reflector surface. Edge effect limitations of both 
these methods are noted. The treatment of reflector antennas closes with a discussion 
of Cassegrain-type dual reflector systems that have been modified to improve the 
aperture efficiency. 

The treatment of reflector antennas in this chapter is introductory in nature. 
The interested reader can gain an overview of the historical development of this 
antenna type by reading the prefatory article by A. W. Love' in a collection of 
significant papers that he has assembled on the subject. The remainder of the collec- 
tion and the exhaustive bibliography give a clear indication of the problem areas 
and advances that have been made in the design of reflector antennas. 

The attention given to lens antennas in this chapter is more brief. First to be 
considered are lenses composed of homogeneous, isotropic dielectric materials. 
Several conventional shapes (for example, elliptical, hyperbolic) which can transform 
the diverging rays of a primary source to a collimated secondary field are analyzed. 
The technique of stepping to save weight is described. Artificial dielectrics are 
introduced and various design approaches for metal plate lenses are indicated. The 
chapter concludes with a discussion of the Luneburg lens and its applications. 

10.2 Geometrical Optics: The Eikonal Equation2 

The reflector and lens antennas to be discussed in this chapter, because they are 
t aken  t o  b e  very large compared  t o  the  free-space wavelength A,, can  b e  designed 

with considerable success by invoking the assumptions of geometrical optics. Basi- 
cally, this involves neglect of the wavelength since, if 1, - 0, solutions to Maxwell's 
equations can be formulated in geometrical terms. One finds that the energy being 
transported by the electromagnetic field can then be viewed as traveling along a 
family of rays. These rays can be traced through dielectric media or while undergoing 
reflection at  metallic boundaries. In this manner, the conversion from the feed 
radiation impinging on a reflector or lens to the radiated field emerging from the 
antenna can be understood and controlled. 

'A. W. Love, ed., Reflector Antennas (New York: IEEE Press, 1978), pp. 2-15. 

T h e  development in this section follows an excellent exposition by M. Born and E. Wolf, 
Princigles of'Optics (New York: Pergamon Press, 1959), pp. 109-32. Another useful source has been 
W. V. T. Rusch and P. D. Potter, Analysis of Reflector Antennas (New York: Academic Press, 1970), 
Chapter 2. 
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The geometrical optics field is a solution to Maxwell's equations for which 
each field component has the same family of equiphase surfaces. This implies that, 
in a nonconducting isotropic medium that is not necessarily homogeneous, E and H 
can be expressed in the common form 

where k = o J G  = 2n / l ,  is the free-space wave number. The pure real function 
y(x, y, z), when set equal to a constant, defines an equiphase surface. The vector 
functions (E,, H,) are generally complex. 

In a source-free region, the above fields satisfy Maxwell's equations in the form 

where the time factor ejor has been suppressed. Rearrangement gives 

The interest here is in solutions to (10.4) for k = 27412, very large. If the spatial 
derivatives multiplying I/jk on the right sides of these equations are not great, the 
terms on the right can be neglected, permitting the reduction 

Because the last two of Equations (10.5) can be obtained merely by dotting Vy 
into the first two, the essence of this result is equations (10.5a,b). If (10.5a) is solved 
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for H, and the result placed in (10.5b), one obtains 

V y  X (Vy X E,) + n2E,  - 0 
in which 

is the local value of the refractive index. Equation 10.6 can be expanded to the form 

The first term in (10.8) is zero by virtue of (10.5~). Since E, is not identically zero in 
any nontrivial solution, it follows that 

This result (which could have been obtained equally well by eliminating E, from 
10.5a,b) is basic to geometrical optics and (10.9) is known as the eikorral equation; 
y itself is often referred to as the eikonalfitnction. The equiphase surfaces or wave- 
fronts with y a constant must everywhere adopt a shape that satisfies the point 
relation in (10.9). 

Many other properties of a geometric field may be deduced from (10.5). I'rin- 
cipal among these are the following. 

1 .  It is apparent from (10.5a,b) that E,  and H, are perpendicular to each other 
and to Vy. Thus they both lie in the equiphase surface with ly a constant and the 
geometrical optics field is everywhere TEM. 

2. The time-average electric and magnetic energy densities are given by 

Therefore We - W, and each is equal to half of the total time-average stored energy 
density W,,,,,. 

3. The time-average power flow density is 

If a unit vector 1, in the direction of Vy is defined by 
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this last result can be put in the form 

in which v = c/n is the local propagation velocity of the wave and W,,,,, = 2 We = 

2W, can be found from either (10.10) or (10.1 1). In words, Equation 10.13 says that 
(a) the time-average Poynting vector is locally directed parallel to the normal to the 
wavefront and (b) its magnitude is equal to the product of the time-average energy 
density and the local propagation velocity of the wave. 

4. The geometrical rays may be defined as a family of curves which are every- 
where normal to the geometrical wavefronts y = constant. If r(s) is the position 
vector of a point on a ray, treated as a function of the distance s along the ray, then 
drlds = 1, and the equation of a ray can be written as 

where use has been made of (10.12). Differentiation of (10.14) with respect to s and 
some manipulation gives 

as a consequence of which 

Equation 10.15 is a particularly useful form in which to cast the differential equation 
of a ray since it involves only the refractive index. 

Some of the characteristics of rays can be revealed by a general consideration 
of (10.15). Expansion gives 

The vector 

in (10.16) has a physical interpretation which can be understood with reference to  
Figure 10.la. A curved ray OPQR (which does not necessarily lie in a plane) is shown, 
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Fig. 10.1 The Geometry of a Curved Ray 

with unit tangent vectors indicated at points P and Q. Imagine that planes perpen- 
dicular to I ,  and 1 ,  are erected at P and Q, respectively. These planes intersect in 
a line LL' (not shown). The intersection of that line with the plane containing 1, and 
Q defines the point L. The distance p = LP is called the principal radius of curvature 
of the curve OPQR at the point P. 

From Figure 10.1 b it can be seen that 

d l ,  = 1,. - 1, = 1 ,  df$ 

in which df$ is the angle subtended at L by the curve segment ds = P$ and 1, is a 
unit vector in the direction from P to L. It follows that 

From (I 0.16) and (lO.l8), 

If the scalar product is formed of (10.19) and I,, the result is that 

This equation provides much useful information about the nature of rays. First, in a 
region in which n is a constant, V(ln n) EZ 0 and p - m. Hence in a homogeneous 
medium, all rays are straight lines. 
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Second, if n # constant, V(ln n)  f 0 ,  and p is finite, that is, the rays are curved. 
Further, since p is positive real, the rays always bend toward the region of higher 
refractive index. 

5 .  If a sheath of rays is used as the boundary of a "tube," as shown in Figure 
10.2, the result (10.13) can be used to argue that the time-average power flow must be 
longitudinally through the tube (no power crosses the tube walls), and thus that 
6 , d S ,  = 6,dS2,  with 6 ,  the entry power density and 6, the exit power density, and 
with d S ,  and dS2 the transverse cross-sectional areas at the two ends of the tube. 
More generally, 6 d S  is seen to remain constant along any tube of rays. This is known 
as the intensity law of geometrical optics. 

When the medium is homogeneous, so that the rays are straight lines, the 
intensity law can be expressed in a different form. With reference to Figure 10.3, 
consider a tube of rays with transverse cross sections that are rectangular. Projections 

Fig. 10.2 A Tube of Geometrical Rays 

Fig. 10.3 The Intensity Variation of Rectilinear Rays 
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back toward the source will locate apparent ray centers P and P' for pairs of sides 
of the tube. I t  is evident that 

d S ,  = RR' d0 d$ and d S ,  -- ( R  4- l)(R' S- I )  dB d$ 

and hence 

6 ,  ds, RR' 
dS ,  ( R  i I)(Rf i 1 )  

If 1 )) R, R', the inverse square law results: 

6. The phase delay along a ray from a point P ,  t o  a point P, is given by the 
integral 

and for this reason the integral n ds is often referred to as the optical length of the 
ray. I t  follows from (10.12) that 

as a consequence of which (10.23) becomes 

This is a n  extremely useful result. It states that the phase delay for a geometrical 
optics field along all rays connecting any two equiphase surfaces is the same. 

7. If a uniform plane wave of any given polarization is incident a t  arbitrary 
angle i on an  infinite perfectly conducting plane reflector, a straightforward applica- 
tion of Maxwell's equations leads to the conclusion that the angle of reflection r 
equals the angle of i n ~ i d e n c e . ~  This result is often called Snell's law of reflection. If 
the reflector is curved, but its radii of curvature are very large compared to the 
wavelength, it is still an  excellent approximation to assume i = r .  Indeed, if the radii 
of curvature are locally finite a t  all points on a reflector, the statement that i -- r 
when 1, - 0 is precisely correct at  all points on the reflector except along the boun- 
dary. A differential application of Maxwell's equations, in a development that is 
completely analogous to what is done for the case of a uniform plane wave incident 
on an  infinite plane reflector, serves to establish this. It is as though locally the curved 
reflector behaves like an  infinite plane reflector. 

3See, for example, S. Rarno, J. R. Whinnery, and T. Van Duzer, Field and Wuves in Cotn- 
t?lunication Electronics (New York:  John Wiley and Sons, Inc., 1965), pp. 352-55. 
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Similarly, if a uniform plane wave of arbitrary polarization is incident at 
arbitrary angle i on an infinite plane interface between two homogeneous, isotropic, 
lossless dielectric media, the matching of solutions of Maxwell's equations at the 
boundary leads to Snell's law of re f ra~ t ion ,~  that is, n, sin i = n, sin r. In this relation, 
n, and n, are the indices of refraction of the medium containing the incident ray and 
the refracted ray, respectively. If the interface is curved but its radii of curvature are 
very large compared to a wavelength, it is still an excellent approximation to assume 
that locally n, sin i = n, sin r. These conclusions are also quite valid for low-loss 
dielectrics. 

10.3 Simple Reflectors 

Several of the properties of a geometrical optics field, developed in the preceding 
section, can be used to determine the shapes of some simple but practical and widely 
used reflector antennas. 

I .  PARABOLIC CYLINDER Imagine that an equiphase long line source is placed 
parallel to the Z-axis, as shown in Figure 10.4, and used to illuminate a cylindrical 

Fig. 10.4 A Parabolic Cylinder Reflector with a Line-Source 
Feed 

4Ibid., pp, 358-61. 
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reflector. With an air medium assumed, the rays from the line source are rectilinear, 
and one of these rays can be designated as leaving the line source at an angle 4. If 
this and all other rays are to be reflected so that they are collimated into a horizontal 
bundle, the phase fronts normal to these secondary rays are planes perpendicular to 
the X-axis, such as the plane x = a. Equivalent Huyghens sources, placed in the 
plane x = a, could be used to determine the far field. To the extent that the assump- 
tions of'geometrical optics are valid, these Huyghens sources are equiphase; their 
amplitude distribution depends on the primary radiation pattern of the line source 
and the effects of reflection. A typical secondary source distribution in the plane 
x = a can result in a pencil beam pattern with low side lobes. 

For a long line source and reflector, the field behavior in a plane parallel to 
z = 0 and not too near either end of the antenna can be deduced by assuming that 
the structure is infinitely long in the Z-direction. Applying (10.25), one can argue 
that the phase delay from F to A  to B must be the same as the phase delay from F 
to A ,  to B,. Since the surrounding medium (air) is homogeneous, this means that 
the total lengths of the two rays should be equal, that is, 

If the coordinates of point A  are (x, y ,  0) and those of point Fa re  (f, 0, 0), Equation 
10.26 translates into 

which simplifies to 

y" 4fx 

Hence the shape that the reflector should have to collimate the rays is that of a 
parabolic cylinder, with the line source placed at the focus. 

The foregoing derivation in effect assumes that locally the law of reflection is 
operative and will alter all ray directions as desired. It is a simple matter to check if 
this is so. Differentiation of (10.27) yields 2y dy = 4f dx and hence a unit tangent 
vector to the parabola is given by 

This vector is shown in Figure 10.5 together with the unit normal vector, obtained 
by the operation 

The cosine of the angle of incidence is given by 

cos i = 1, lR  = 1, l.(f - x> - 1 , ~  
J ( f  - x ) ~  + y 2  
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and the cosine of the angle of reflection by 

cosr = 1, 1 - 2 f I ~  
' -- 4 ' 1  + ( 2 f l ~ ) ~  

Expansion of (10.30) and use of (10.27) quickly reveals that 
law of reflection is satisfied by the solution y2  = 4fx. 

Y 

t 

- f 

(f> 0) 

COS COS r and that the 

Fig. 10.5 RayISurface Relations for a Para- 
bolic Cylinder Reflector 

2. PARABOLOID If a point source is used to illuminate a reflector, and the 
requirement is once again to collimate the secondary rays, the analysis is similar to 
that given above. with reference to Figure 10.6, let the point A have coordinates 
(x, y, z )  and the point F have coordinates (f, 0,O). Then the requirement that + - - 
AB = FA, + A,B,  becomes 

4 ' ( x - f ) V t 2  t z 2  + ( a - x ) =  f + a  

This reduces to 

y 2  + z2 = 4fx (10.32) 

which is the equation of a paraboloid. The point source is at the focus. 
As with the case of the parabolic cylinder, it is possible to show that primary 

and secondary rays make equal angles with the normal at any nonedge point on the 
paraboloid. The proof of this assertion is left as an exercise. 

3. HYPERBOLOZDAL REFLECTOR A useful compound feed, first introduced 
by Cassegrain as part of an optical telescope, is pictured in Figure 10.7. It consists 
of a point source at G which is assumed to cause a primary geometrical optics field 
with spherical wave fronts and an associated system of rays which are radial about 
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Fig. 10.6 A Paraboloidal Reflector with a Point-Source Feed 

Secondary ray B 

Point 
source Bo 

G. These rays are intercepted by the reflector and converted to a system of secondary 
rays that appear to be emanating from the point F. Thus the secondary wavefronts 
are also spherical. The question to be answered is: What shape must the reflector 
have to bring this about? 

Equating ray lengths, one obtains 

* 

+ X 

With the origin taken midway between G and F, = And because the reflected 
waves are to be spherical, 

AB=FB-m=FB,-FA, 

x = a  

When these substitutions are made in (10.33), rearrangement gives 

This is the equation of a hyperboloid with foci at G and F and eccentricity e = -- 
OF/OA,. This can perhaps be appreciated more readily if the end points of the line 
segments appearing in (10.34) are assigned the coordinates 
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Fig. 10.7 A Cassegrain Feed 

which permits (10.34) to be cast in the equivalent form 

Manipulation gives 

which is a canonical expression for the equation of a hyperboloid. 
A Cassegrain feed can be used as shown in Figure 10.8. It has the advantage of 

permitting the "point source" to be located immediately behind a small opening in 
the large paraboloidal reflector. This is important in applications that require use of 
a low-noise transmitterlreceiver. A Cassegrain feed also has the advantage of per- 
mitting a short focal length paraboloidal reflector to replace one of the same aperture 
size but much longer focal length, as can be seen from Figure 10.8. The longer focal 
length equivalent paraboloid shown in Figure 10.8 is much flatter than the actual 
paraboloid to the left. Since flatter paraboloids have much better defocusing properties 
(less pattern degradation when a feed is placed away from the focus to produce an 
extra or scanned beam), by inference a Cassegrain dual reflector system has this 
desirable feature also. 
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Paraboloidal reflector 

Fig. 10.8 A Cassegrain-Fed Paraboloid and Its Long Focal Length Equivalent 

The price paid for these advantages is that the aperture blockage (see Section 
10.4) of the hyperboloid reflector is patently greater than that of the primary-focus 
point source it replaces. For this reason, Cassegrain feeds are usually limited to 
applications in which the span of the paraboloidal reflector is very large (for instance, 
greater than 401). 

10.4 Aperture Blockage 

The "line" source of Figure 10.4 and the "point" source of Figure 10.6 in reality 
have a transverse extent and thus intercept some of the secondary rays, as suggested 
by Figure 10.9. This causes a perturbation in the secondary aperture distribution 
(for example in the plane x = (1) with the consequence that the secondary radiation 
pattern is affected. An estimate of this effect will be made in Section 10.7. However, 
there are certain general relations involved in aperture blockage which can be intro- 
duced now and which reveal tradeoffs that are available in reflector design. 

Consider the parabolic cylinder reflector and line source feed shown in Figure 
10.10a. The horn plates must be dimensioned so that the primary aperture height b 
results in a primary radiation pattern which properly illuminates the reflector. If b 
is too large, the main lobe of the horn pattern is too narrow and only the central 
portion of the reflector is excited effectively at a cost in directivity (aperture efficiency). 
If b is too small, the main lobe of the horn pattern is too broad and some of the 
primary radiation pattern "spills" past the edges of the reflector, causing unwanted 
radiation in the back region at a cost in side lobe level and efficiency. Thus for a 
given focal length f and reflector span D (which combine to determine the subtended 
angle 24,) .  there is an optimum horn height 6 .  The specification of this optimum is 
somewhat arbitrary, but a good compromise occurs if the primary radiation at 
4 = '4, is about lOdB below the value at 4 = 0". Such specification will permit 
calculation of the proper value for b. 



Fig. 10.9 Aperture Blockage Caused by the 
Finite Extent of the Horn Feed 

(a) f / D  = 0.50 

(b)  f / D  = 0.75 

Fig. 10.10 The Effect on Reflector 
Depth and Feed Size of the f lD 
Ratio 
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The subtended angle 24, can be deduced by noting that 

Imagine for the sake of illustration that f/D = 0.5 in the reflectorlhorn assembly 
shown in Figure 10.9a. Then 4,  = 53". Suppose next that a shallower reflector is 
preferred. This can be accomplished by increasing theflD ratio. As an illustration, 
ifflD = 0.75, the reflector assumes the flatter shape shown in Figure 10.9b. But now, 
if the horn feed is to be placed at the focus, half the subtended angle is 4,  = 37" and 
the dimension b must be approxinately enlarged by the factor 53'137" = 1.4 in order 
to maintain the same pattern of illumination incident on the reflector. It follows that, 
for the same secondary aperture height D, the flattening of the reflector has been 
achieved at the expense of a 40 % increase in aperture blockage. 

One can go the other way and accept a deeper reflector and the concomitant 
increases in material and construction cost in order to decrease the aperture blockage. 
For example, if f lD = 0.33, then the reflector takes on the appearance shown in 
Figure 10.10c, and 4,  = 74". Now the b-dimension can be approximately reduced by 
the factor 53'174" = 0.7 and there is a decrease of 38 :(, in the aperture blockage. It 
can be seen from this simple argument that a tradeoff possibility exists between the 
amount of interference with the secondary rays caused by feed interception and the 
depth of the reflector, for a given aperture size D. 

These same arguments can be repeated for a paraboloid fed by a pyramidal 
horn of dimensions a by b. One can conclude that a deeper paraboloid of given span 
D requires a smaller horn than a shallower paraboloid of the same span D, and thus 
has less aperture blockage, but at the expense of more weight, more inertia, and 
poorer defocussing properties. However, it should be noted that aperture blockage 
is less severe in paraboloidal reflector antennas than it is in parabolic cylinder reflector 
antennas. The shadowed region, expressed as a fraction of the aperture, is b/D for 
the parabolic cylinder and 4ab/nD2 for the paraboloid. For patterns of the same 
directivity, and thus for apertures of comparable area, the aperture blockage of the 
paraboloid is less, approximately by the multiplicative factor a/D. 

In Cassegrain dual reflector systems, blocking by the subreflector is severe 
unless D/A is very large. For this reason, Cassegrains are not often used when Dlil < 
40. 

Aperture blockage can be reduced by using an offset feed instead of going to a 
smaller f lD  ratio. This is illustrated in Figure 10.1 1 and is based on the argument 
that, as long as the feed is at the focus, there is no fundamental reason why symmet- 
rical portions of the parabola (or paraboloid) need by used. However, the price paid 
for removing the feed from the path of the secondary rays is once again increased 
depth of the reflector. This can be seen by comparing Figure 10.1 1 to Figure 10.10a, 
which are drawn to the same scale. The two parabolas have the same focal length, 
but to achieve the same secondary aperture height D, the second reflector is con- 
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Fig. 10.11 Use of an Offset Feed 
to Diminish Aperture Blockage 

siderably deeper. Here again there is the opportunity to find a suitable compromise 
between competing desirable design characteristics. 

10.5 The Design of a Shaped Cylindrical Reflector 

It  was shown in Section 10.3 that the diverging primary rays of a long line source, 
placed at the focus of a parabolic cylinder reflector, were converted to a family of 
collimated secondary rays. This meant that the equivalent Huyghens sources placed 
in the secondary aperture x = a were equiphase. If the line source were to radiate a 
pattern with a single main lobe which centrally illuminated the reflector, the reflector/ 
line-source assembly would produce a sum pattern with a side lobe structure governed 
by the amplitude taper in the secondary aperture. 

Practical applications arise in which it is desirable not to collimate the secondary 
rays, for without collimation a wider variety of secondary patterns is possible. Imagine 
the situation suggested by Figure 10.12 where it is seen that a primary ray tracing a 
path at an angle $ with respect to the horizontal strikes the cylindrical reflector at a 
point P(x, y )  and, upon reflection, becomes the secondary ray making an angle 8 
with respect to the horizontal. If 8($) can be specified, the shape of the reflector can 
be deduced. 

The relation between 8 and $ depends on knowledge of the feed pattern and 
the desired secondary pattern. Let it be assumed that the line source and reflector 
are long enough in the Z-direction that, for the purpose of working with patterns in 
the central XY-plane, they can be taken as infinitely long. Then I($) in watts per 
radian-meter can symbolize the primary radiation intensity and P(8) in watts per 
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Fig. 10.12 Differential Geometry for a Shaped Cylindrical Reflector 

radian-meter can similarly represent the secondary radiation intensity. If use is made 
of the result obtained in Section 10.2, that radiant energy travels in tubes bounded 
by sheaths of rays, then it can be concluded that 

I ($)  d$ = P(0) do 

Integration gives 

valid over the interval $, I 4 I $,, 0, I 0 I 02. If 0 ,  2 0 and if $, > 0, the feed 
is sufficiently offset to be out of the way of any of the desired secondary rays. If not, 
there will be aperture blockage. (See Section 10.4 for a discussion of the pros and 
cons of these alternate feed placements.) 
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Equation 10.39 can be put in the more useful form 

It is clear from (10.40) that if I($') were replaced by K,I($'), and/or if P(0') were 
replaced by K,P(O1), with K, and K, constants, such insertions would have no effect 
on the computation of 0($). This implies that if (10.40) is used instead of (10.39), 
care need not be taken to normalize the two patterns to a common level. 

With I($) and P(0) known, Equation 10.40 serves as the vehicle whereby 0($) 
can be deduced. Imagine that this has been done. The next task is to  find the function 
p($) which defines the shape of the reflector. With reference once again to Figure 
10.12, it is clear that 

- - 
P Q = p d 4  R Q = d p  

and hence 

dp tan a = - 
P d$ 

It is also evident from a study of this figure that 

from which a = i = (8 + 4)/2 and thus (10.41) becomes 

0 + $  dp tan - = - 
2 pd$ 

Integration gives 

Since 0($) has already been determined from (10.40), the integrand of (10.43) is 
known; integration will give the reflector curve p($). 

As an illustration of the use of this design technique, assume that it is desired 
to  produce a secondary pattern P(0) with these features: (a) there is to be a main 
beam with its peak at 0 = 3", a half-power point at 0 = lo ,  and a null at 0 = 0"; 
and (b) the other half-power point, which would normally be at 8 = 5", is shifted 
out to 8 = 6.5" to connect smoothly with a csc28 curve which extends to 8 = 20°, 
with the pattern dropping to a null at 8 = 21". 

A tabulation of the levels of radiation intensity in this secondary pattern is 
given in Table 10.1 and a plot of the desired pattern is shown in Figure 10.13. Patterns 



10.5 The Design of a Shaped Cylindrical Reflector 

TABLE 10.1 Desired secondary pattern 

Degrees Meter Degrees Meter 

of this type are useful in radar systems doing target acquisition or ground-mapping 
and in airport beacon systems, because the received signal is range-independent 
(see Appendix H). 

Imagine that this pattern is to be produced by a cylindrical reflector whose 

0 degrees 

Fig. 10.13 A Desired Secondary Pattern Showing Main Beam and Csc20 Roll-Off 
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extent is such that $, = 0" and $, = 60". The primary pattern has been measured 
and is given to good approximation by I($) = cos[3($ - 30°)]. Use of (10.40) gives 

Jo: do1 
sin [3($ - 30°)] = 2 - 1 (10.44) 

Numerical integration of the area under Figure 10.13 permits evaluation of the right 
side of (10.39) as a function of 8 ;  the results are shown in the second column of 
Table 10.2. The corresponding values of $ can then be deduced using (10.44) and 
these are entered as the third column of Table 10.2. The computation of (8 + $)I2 
and its tangent follow readily and these values are listed in the fourth and fifth 
columns of Table 10.2. A graph of tan[(8 + $)I21 versus $ is shown in Figure 10.14. 

Numerical integration of the area under this graph, with use of the proper 
conversion factor to change degree increments to radian increments gives the data 
listed in the second column of Table 10.3. The corresponding values of p/po  are 
given in the third column and the reflector curve is plotted in Figure 10.15. A parabola 
with the same focal length is shown dotted for comparison. It can be seen that the 
shaped reflector has less curvature in order to direct the rays at angles 8 > 0". 

The reader will observe that the shape of the reflector has been determined, 

TABLE 10.2 Data for shaped reflector design 

8" sin 3(4 - 30") 4 O  (e + 4112 tan [!e -t 4)121 

0 - 1 .ooo 0 0 0 
1 -0.930 7.19 4.09 0.072 
2 -0.734 14.26 8.13 0.143 
3 -0.463 20.81 11.90 0.211 
4 -0.187 26.40 15.20 0.272 
5 0.062 31.18 18.09 0.327 
6 0.260 35.03 20.51 0.374 
7 0.409 38.04 22.52 0.41 5 
8 0.521 40.46 24.23 0.450 
9 0.607 42.47 25.73 0.482 

10 0.676 44.19 27.09 0.512 
11 0.732 45.70 28.35 0.540 
12 0.779 47.06 29.53 0.566 
13 0.819 48.33 30.67 0.593 
14 0.854 49.54 3 1.77 0.619 
15 0.884 50.69 32.84 0.646 
16 0.910 51.82 33.91 0.672 
17 0.933 52.97 34.98 0.700 
18 0.954 54.21 36.11 0.729 
19 0.974 55.64 37.32 0.762 
20 0.991 57.41 38.71 0.801 
21 1 .OOO 60.00 40.50 0.854 
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Fig. 10.14 Plot of lntegrand for Equation 10.38 

TABLE 10.3 Data resulting from integration of 

Figure 10.1 3 

but not its size, since p(O0) has not been specified. A rough estimate of the proper 
scale factor can be determined by the following argument: Absent the csc2B pattern 
shaping, one would be attempting to  produce a pattern with a 4" half-power beam- 
width. Figure 5.3 indicates that this would require an  aperture with a projected 
length transverse to  the 0 = 3" direction of 12.72 if the amplitude distribution were 
uniform, perhaps 100//, more than this with the taper one would expect from this 
primary feed; this would give 141. If Figure 10.14 is scaled t o  be consistent with 
this number, one finds that p(Oo) 11.31. This estimate is low, since the upper part 
of the shaped reflector is primarily serving the purpose of pattern-filling in the csc2B 
part of the pattern. A value 30% higher than this might not be unreasonable. In 



Fig. 10.15 A Cylindrical Reflector Shaped to Produce a CSCZ 0 Pattern 

Section 10.7 a procedure will be presented which permits a much more accurate 
estimate to be made of p(OO), and where it will be found that p(OO) should equal 1512 
if the desired beamwidth is to be achieved. 

10.6 The Design of a Doubly Curved Reflector 

It was shown in Section 10.3 that the diverging primary rays of a point source, 
placed at the focus of a paraboloidal reflector, were converted to a family of colli- 
mated secondary rays. It is possible to modify the basic paraboloidal shape so that 
all the rays are no longer collimated, thus enlarging the class of secondary patterns 
that can be achieved with a point source and r e f l e c t ~ r . ~ * ~  The procedure has many 

5s. Silver, "Double Curvature Surfaces for Beam Shaping with Point Source Feeds," MIT 
Radiation Laboratory Report 691 (June 15, 1945). 

6A. S. Dunbar, "Calculations of Doubly Curved Reflectors for Shaped Beams," Proc. IRE, 
36 (1948), 1289-96. 



Fig. 10.16 The Geometry for a Doubly Curved Reflector 

similarities to what was done in the analogous problem of shaping a cylindrical 
reflector (see Section 10.5). 

The design of doubly curved reflectors, as these modified paraboloids are 
called, can best be understood when the antenna is receiving. With reference to 
Figure 10.16, imagine that a sheet of parallel rays, of which TP and SR are two 
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members, is incident on the reflector as shown. These rays all lie in a plane which is 
perpendicular to the XY-plane and which makes an angle 8 with the XZ-plane. The 
reflector and the sheet of rays intersect in a curve RPQ, with P the point which lies 
in the XY-plane. The reflector surface is to be designed so that all these rays are 
brought to a focus at the common point F, which lies on the X-axis. 

Imagine further that another sheet of parallel rays is incident on the reflector 
at an angle O', their intersection being the curve R'P'Q' (not shown), and that all 
these rays are also to  be brought to a focus at F. By extension, if sheets of incoming 
rays at all angles 8 are considered, each having a curve of intersection with the 
reflector with all rays of all sheets brought to a common focus at F, then the collec- 
tion of these curves of intersection defines the reflector. 

Each curve of intersection has a central point that lies in the X Y-plane. The 
collection of these central points (P, P', . . .) is called the backbone czrrve of the reflec- 
tor. By anatomical extension, the individual curves of intersection are sometimes 
referred to as ribs. 

The equation of a rib can be deduced without difficulty. Let an auxiliary coor- 
dinate system X' Y'Z be set up with P as origin and the X'-axis coincident with PT. 
The line ST, which is part of a wavefront, is characterized by the equation x' = a'. 
Since the phase delay along all ray paths from the wavefront ST to the focal point 
F is the same, it follows that 

If (x', 0, z) is the coordinate triplet of the point R in the auxiliary coordinate system 
X'Y'Z, Equation 10.45 becomes 

so that 

in which PT= p(4) is the distance from the focus F to the point P on the backbone 
curve. 

Let the projection of the point R in the XY-plane be designated by R*. The 
point R* will lie on the line m, as shown in Figure 10.17, and it follows that 

in which it has been recognized that LFPR* = 8 + 4 and the law of cosines has 
been utilized. 

If (10.47) and the square of (10.46) are combined, the result is that 

zZ = 2px1[l + cos (8 + $)I 
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Fig. 10.17 Ancillary Construction 
for the Design of a Doubly Curved 
Reflector F 

Therefore the curve of intersection (rib) is a parabola lying in the X'Zplane and 
with focal length 

f = ~ ( 4 )  cos2 8(4) + 4 
2 ( 10.49) 

Hence if the backbone curve can be found, all the ribs (and thus the reflector surface) 
can be determined from (10.48). 

The shape of the backbone curve is governed by the primary and secondary 
patterns. To see this, let I($, y )  be the radiation intensity of the primary pattern in 
watts per steradian. With the reflectorlfeed assembly now assumed to be transmitting, 
I($, 0") d$ d y  is the power incident on a central element of the reflector. This power 
is converted to flow outward in a wedge pdy  wide and with a wedge angle dB. If P(8) 
is the secondary radiation intensity in watts per radian-meter, then 

Integration and normalization gives 

With I($) known and P(8) specified, Equation 10.51 could be used to determine 8($) 
if the backbone curve p($) were known. But p($) is not only not known, it is the 
goal of the design. Therefore one must proceed iteratively. Usually the desired 
secondary pattern is a modification of a simple sum pattern, perhaps with csc2 8 
filling on one side of the main beam. It is then possible to begin by assuming that 
p($) is a parabola with the proper focal length to give the basic unmodified sum 
pattern. Then (10.51) can be used to get a first approximation to 8($). This approxi- 
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mation is used in (10.43) to obtain a refined estimation of p($), the backbone curve.' 
This new value of pi$) can be used in (10.51) to determine a refined estimate of O($), 
with the process repeated until an additional iteration causes a negligible change in 
pi$). With the backbone curve finalized, the design is complete except for the detailed 
work of using (10.48) to generate the reflector surface. 

The procedure that has just been described is approximate in the sense that. 
although the family of ribs forms a continuous surface, the slope is not proper at all 
points. If one attempts to repeat, for the doubly curved reflector, the check under- 
taken for the parabolic cylinder antenna (see Equations 10.29 through 10.31), it is 
found that Snell's law of reflection predicts somewhat different paths for the secon- 
dary rays than those assumed in deducing the reflector shape. However, if the desired 
secondary pattern does not differ markedly from a pencil beam, so that the doubly 
curved reflector is not too different from a paraboloid, this error is not serious. 

The reader may have observed that the shaping has only been to decollimate 
in one dimension. All the rays in a single sheer (at angle 6 to the XZ-plane) are parallel. 
The sheets of rays are no longer parallel, which differs from the case of a para- 
boloidal  reflector. Conceptual ly ,  o n e  cou ld  envis ion a reflector surface  which would 

decollimate the rays two-dimensionally, but such designs have limited applicability 
and the procedure would be quite complicated. 

10.7 Radiation Patterns of Reflector Antennas: 
The Aperture Field Method 

The methods for directing secondary rays which have been discussed in previous 
sections (collimation with a parabolic cylinder or paraboloid Section 10.3; shaped 
cylindrical reflector, Section 10.5; doubly curved reflector, Section 10.6) can indicate, 
to the extent that geometrical optics approximations are valid, the launching distri- 
bution of the secondary field. However, with a finite aperture it is physically impos- 
sible to maintain these ray directions throughout all space. Thus another means 
must be found to calculate the far field. 

Conceptually, if the reflector antenna is enclosed in a surface S, and if E and 
H are found everywhere on S, the far field can be computed through use of Equations 
1.128 through 1.131. If the antenna radiates primarily in the forward half of space, 
a convenient selection for the surface S is an infinite plane in front of the reflectors 
closed by an infinite hemisphere, as suggested by Figure 10.18. A geometrical optics 
approximation to the fields on S consists of assuming that wherever a secondary ray 
crosses S the field has a value: elsewhere on S it does not. Thus only that part of the 
infinite plane immediately in front of the reflector is germane; the approximation is 
obviously better if the infinite plane is as close as possible to the reflector surface. 

7The reader will appreciate readily that the differential geometry of Figure 10.12 applies 
equally well to the situation in the XY-plane for the reflectorlpoint-source assembly of Figure 10.15 
and thus the backbone curve is also given by (10.43). 

8An infinite plane is only one of several obvious choices that could be made. Another is to 
select that part of S which lies in front of the reflector to coincide with a wavefront. 
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,- Infinite 
- / 1 plane 

Fig. 10.18 A Reflector Antenna 
Enclosed by a Secondary Aperture 
Surface S; Primary Rays and Feed 
Nor Shown 

The analyses of Section 10.5 through 10.6 have revealed that, with the primary 
pattern known and the desired secondary pattern specified, the reflector shape can 
be determined by geometrical optics means, and thus that the distribution of tubes 
of radiant energy in the secondary field is calculable in nearby space. Specifically, 
the energy density distribution crossing the planar surface S can be deduced. This 
gives the amplitude of the E and H fields on S. Their polarization is known if the 
polarization of the feed is specified. Their phase can be determined by calculating 
the  phase delay along each ray from a nearby wavefront to the surface S. With this, 
one possesses all the knowledge needed to determine the Huyghens sources on S 
and then to compute an approximation to the far field. 

As an example of the use of this method, consider again the parabolic cylinder 
reflector with a central line source at  its focus, as depicted in Figure 10.4. Assume 
that the reflector e x t e ~ d s  vertically t o y  - rt 012 and thus that the secondary aperture 
field in the plane x = a will also have a value in the range - 012 5 y <_ 012. It is 
desired to find P(y )  in watts per square meter in this range, with P(y )  the power 
density in the secondary field at  ,Y =- n under geometrical optics assumptions. 

It is helpful as a first step to obtain the equation of the parabolic cylinder in 
polar coordinates. TO d o  this, one can return to Equation 10.43 and set O(4) = 0, 
then recognize that p(OC) -f, and obtain 
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from which 

Next, from Figure 10.19, it is evident that, in the geometrical optics approxi- 
mation, primary and secondary power flows equate such that 

where I($) is the primary pattern in watts per radian-meter. The directed displace- 
ment from Q to Q' is given by 

Cf, 0,O) X 

Fig. 10.19 Ray Geometry for a Parabolic Cylinder Reflector 

The unit tangent vector 1, has already been obtained as Equation 10.28. The height 
of the secondary tube is therefore 

When (10.53) and (10.55) are combined and use is made of the factg that 

'The first of these relations is a reduction from (10.42), when 8(4) = 0. 
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the connection between primary and secondary power distributions is found to be 
given by the simple expression 

In most practical applications, I(4) is a tapered distribution. Equation 10.56 indicates 
that P(y) is more tapered, due to the factor cosz $12. This factor is sometimes called 
the space loss. 

As a specific illustration of the use of this result, assume that 

sinZ [(nb/12) sin $1 
I(') = [(nb/l) sin $1' 

which is the E-plane pattern of a simple, vertically polarized horn of height b (com- 
pare with Equation (3.13). If the extent of the reflector is such that -60" 2 $ 60" 
and if the illumination at the extremities of the reflector is to be 10 decibels below 
what it is at the center, then a simple calculation reveals that bl12 = 0.85. If the 
reflector is to have a projected height 013, = 10, then 

so that p(6OC) = 5.77412. Use of (10.52) reveals that the needed focal length is f = 

4.33012. 
With the dimensions of the reflector and feed horn known, and with I($) given 

by (10.57), the effective aperture distribution can be found from (10.56). A plot of 
f(y) = [P(y)]'lZ is shown in Figure 10.20. Thefield distribution is f(y); it possesses a 
smooth taper to an edge value which is 27.5 "/,- 11.2 dB) of the central peak value. 
An initial specification was that the primary pattern be down 10 dB at $ = 160" ;  
the additional 1.2 dB in the taper of the secondary distribution is due to the presence 
of the factor cosZ $12 in Equation 10.56. 

The far-field pattern due to  this aperture distribution can be found by deter- 
mining the Huyghens sources from (1.1 12) through (1. 115) and then using Equations 
G.  19 of Appendix G. In this problem the sources are equiphase and, with the element 
pattern suppressed, the far-field pattern in the XY-plane is given by 

where p = yl12. For the aperture distribution of Figure 10.20, Equation 10.58 yields 
the pattern shown in Figure 10.21. Predictably, there is a central main beam with a 
symmetric side lobe structure that has an envelope which decays with 14 1. The side 
lobe level is -28 dB, consistent with this amount of aperture taper, and the half- 
power beamwidth is 6.4". With reference to Figure 5.3, a uniform effective aperture 
distribution would produce a 5. l o  main beam with Dl12 = 10, so the beam broadening 
factor in this case is 1.26, which is also the loss factor in directivity. For this reason, 
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Fig. 10.20 Relative Aperture Distribution for a Parabolic Cylinder Reflector; D = 10%. 
f = 4.33%; Primary Pattern Given by Equation 10.57 

Fig. 10.21 Principal Plane Pattern of a Parabolic Cylinder Reflector Antenna; Aperture 
Blockage Neglected; D = 101, f /D  = 0.433, 10 dB Spillover 
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one can say that the aperture efficiency is (1 .26) '  - 0.79, or 79;;. Figure 5.4 indi- 
cates that a Dolph-Chebyshev pattern with a 28 dB side lobe level only occasions a 
beam broadening factor of 1.13. This illustrates one of the limitations of parabolic 
cylinder (and paraboloidal) reflectors. Unless one is willing to shape the reflector or 
use a nonconventional feed, there is an inherent loss in efficiency due to lack of 
control over the amount and shape of the taper in the secondary aperture distribution. 
A method which has been devised to overcome this shortcoming, using a modified 
Cassegrain feed, will be described in Section 10.9. 

T o  this point in the analysis, no attempt has been made to calculate the far 
field behind the reflector, nor to take into account the presence of the feed. The 
latter effect (aperture blockage) has been discussed in general terms in Section 10.4. 
An approximate quantitative estimate of this effect can be obtained by making an  
assumption that can be understood by returning to Figure 10.9. If when radiating, 
the primary horn is reasonably well matched to free space, then when receiving, it 
should also be reasonably well matched. This suggests that the portion of the secon- 
dary near field that impinges on the mouth of the horn should be absorbed effectively 
by the horn, with little further scattering. If this assumption is made, the far-field 
pattern for the illustrative example under discussion is approximately given by (10.58) 
minus the function 

since the feed height is 0.851. 
The subtractive pattern of (10.59) is very broad, because b / l  is so small. It is 

given to good approximation by taking f ( p )  out from under the integral sign and 
replacing it by f(0). This produces the result shown in Figure 10.22 which is (as one 
would expect) a replication of the primary feed pattern. 

The functions Fo($) and F,($)  both have their peak values at  $ = n/2. There- 
fore the levels of these two patterns are in the same proportion as the areas under 
the curve of Figure 10.20 in the ranges 0 p 5 and 0 < p 0.425. Numerical 
integration gives FO(Os) = 3.31 and F,(Oo) = 0.42. This means that, with aperture 

19" 1 

Fig. 10.22 Subtractive Pattern Due to  Feed Blockage 
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blockage included, 

Fo(OG) - F,(OO) = 3.31 - 0.42 = 2.89 = height of main beam 

Study of Figures 10.21 and 10.22 indicates that F,(7") F,(7") and thus one would 
expect a null in the combined pattern at 7". The first side lobe of Figure 10.21 occurs 
at 10" and at a height of -48 dB. Thus the first side lobe in the combined pattern 
should also occur at lo0, with its peak value given by 

From this calculation, one can infer that the height of the first side lobe with aperture 
blockage included is - 17 dB. 

There are no more nulls in the combined pattern because F0($) is never again 
large enough to cancel F,($). A dip occurs at 14' because the second side lobe of 
Figure 10.21 is opposed to the effect of F,(14"). A similar calculation indicates that 
this dip achieves a level of -21 dB. The next peak in the combined pattern occurs 
at the position of the third side lobe peak in Figure 10.21, and is at the level - 16 dB. 
Proceeding in this way, one can sketch in the entire pattern by modifying Figure 
10.21 to include the effect of aperture blockage. The total result is shown in Figure 
10.23. 

It can be seen from this simple exercise that the presence of the feed can have 
a substantial influence on the secondary pattern. In this case, the main beam has 
been narrowed somewhat, but the side lobe level has been raised from -28 dB to 
-16 dB. 

The procedure which has just been followed to calculate the far-field pattern 
of a parabolic cylinder reflector antenna can also be applied to the case of a para- 
boloidal reflector with a "point" source at its focus. If the closed surface S of Figure 
10.18 includes the infinite plane x = a immediately in front of the paraboloid and if 
spherical coordinates ( p ,  4, y) are erected with the focus as origin, it is a simple 
matter to show that the power distribution P(r, y) in the aperture x = a is given by 

In (10.60), I($,  y)  is the primary radiation intensity and (r, y )  are polar coordinates 
constructed in the plane x = a. This result is seen to be similar to (10.56), obtained 
earlier for a parabolic cylinder reflector, except that (cos2 4/2)/f has been replaced 
by (cos4 $/2)/f 2 .  Space loss is thus more pronounced for a paraboloidal reflector. 

As a specific illustration of the use of Equation 10.60, suppose that a horn that 
produces a $-symmetric pattern is used to illuminate a paraboloidal reflector of span 
101. If the horn pattern is given to sufficient accuracy by Equation 10.57, and if the 
horn size is adjusted so that the edge spillover is - 10 dB, the square root of (10.60) 
gives the equiphase aperture distribution. With linear polarization assumed, the 
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Fig. 10.23 Principal Plane Pattern of a Parabolic Cylinder Reflector Antenna; Aperture 
Blockage Included; D = 101, f lD  = 0.433, 1 0  dB Spillover 

equivalent Huyghens sources follow readily and the far-field pattern can be computed 
with the aid of Equation 6.49. The results are shown in Figures 10.24 and 10.25. 

The side lobe level with aperture blockage ignored is seen to be -23 dB. Inclu- 
sion of aperture blockage, using the assumption of perfect shadowing, causes the 
side lobe level to rise, but only to - 19 dB. This supports the argument made in 
Section 10.4 that aperture blockage is less severe with a paraboloid than with a para- 
bolic cylinder. Null filling is also less pronounced, as can be seen by contrasting 
Figures 10.23 and 10.25. 

Of course, in the real-life situation, feed scattering is considerably more com- 
plicated than in the idealized examples just given. In the first place, the feed does not 
simply absorb the blocked rays and leave a well-defined void in the secondary aperture 
distribution. in the second place, the feed is nowhere near so simple a structure as 
pictured in Figure 10.9. It has mechanical supports which hold it in place and which 
also scatter, with the aggregate effect quite complicated. The interested reader is 
referred to the advanced literature for a deeper treatment of this problem.1° 

loFor a tutorial introduction to the complexities, see J. Ruze, "Feed Support Blockage Loss 
in Parabolic Antennas," Microwave Journal, I 1 (1968), 76-80. 



@ 
Fig. 10.24 Principal Plane Pattern of a Paraboloidal Reflector Antenna; Aperture 
Blockage Neglected; D = 101, f /D  = 0.433, 10 dB Spillover 

Fig. 10.25 Principal Plane Pattern of a Paraboloidal Reflector Antenna; Aperture 
Blockage Included; D = 101, f / D  = 0.433, 10 dB Spillover 
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A third illustration of the use of the aperture field method concerns the shaped 
cylindrical reflector discussed in Section 10.5. Here again, the aperture could be 
chosen to be the plane x - a, immediately in front of the reflector. However, since 
the secondary rays are purposely not collimated, this implies that the aperture field 
in x = a is not equiphase, meaning that it is necessary to find the total path length 
from the line source to any specified point in x = a. It is easier in this case to choose 
the surface S depicted in Figure 10.18 to include, as its front portion, a phase front 
in the geometrical optics secondary field, immediately adjacent to the reflector. 

With reference once again to  Figure 10.12, consider the primary ray that 
leaves the line source at  angle $, striking the reflector at  P(x, y, 0), becoming upon 
reflection the secondary ray which makes an angle 8 with respect to the horizontal. 
Designate ((, q, 0), as P' the point in the phase front S pierced by this secondary ray. 
Then if p '  = PP', S is characterized by 

with K a constant. If K = 2p0, with p,  the distance from the origin to the line source, 
the equiphase surface S (possibly extended) will go through the position of the line 
source. This is usually adequate to insure that S is adjacent to the reflector but 
everywhere in front of it. Then (10.61) becomes 

It is evident from Figure 10.12 that 

and these coordinates of a point on S can be normalized to give, with the aid of 
(1 0.62), 

i : l 1 cos q , (2 - ;) cos 8 
P 0 P 0 

Since p($)/po and 8($) have been found in the course of the design of the shaped 
reflector (see Section 10.5), it follows that Equations 10.63 and 10.64 can be used to 
find (/po and q/po as functions of 8. But the desired secondary power distribution 
P(8) is known, and thus the equiphase field distribution on S can be determined. 
Deduction of the equivalent Huyghens sources and calculation of the far-field pattern 
then follows rapidly. 

For the illustrative problem of Section 10.5, this process results in the far-field 
pattern shown in Figure 10.26, if p(0') is taken to be 151. The desired pattern P(8) 
is shown for comparison by the dashed line. One can observe agreement between 
the desired and achieved patterns within 1 1  dB out to 17", beyond which the un- 
realistic precipitous drop in the desired pattern at 21" causes the two patterns to  
diverge. 



Reflectors and Lenses 

Fig. 10.26 Achieved and Desired Theoretical Far Field Patternsforthe Shaped Cylindrical 
Reflector Antenna of Section 10.5; Aperture Blockage Neglected 

The achieved pattern is dependent on the choice of a value for p(OO), and it 
took experimentation to  find that 1% gave the proper 3 dB beamwidth of 5.5". 
However, in the desired pattern the 3 dB points occur at l o  and 6.5", with the peak 
at 3". In the achieved pattern the 3 dB points occur at 1.5" and 7", with the peak 
halfway between, at 4.25". This serves to reveal another unrealistic feature of the 
desired pattern, namely, the placement of the beam peak at  a position quite far from 
midway between the half power points. 

Despite these shortcomings (more due to  what was desired than to what was 
achieved) it is clear from Figure 10.26 that the principal goal of shaping the reflector 
has been achieved. There is a main beam with the proper beamwidth, and null-filling 
has been accomplished on one side at & 1 dB of the desired level for a considerable 
portion of the specified angular range. 

10.8 Radiation Patterns of Reflector Antennas: 
The Current Distribution Method 

An alternate method for computing the far-field pattern of a reflector antenna, 
which in concept is also rigorously correct, involves determination of the current 
distribution on all parts of the antenna. Were the current distribution known with 
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complete accuracy, Equations 1.101 and 1.102 could be used to obtain a precise 
expression for the far field. The difficulty in this approach is finding the true current 
distribution. A useful approximation rests on the assumption that the geometrical 
optics field representation is valid in the neighborhood of the reflector. That this 
allows estimation of the reflector currents can be seen from the following. 

Let P(x ,  y, z )  be a point on the reflector that is illuminated by the primary 
radiation, and let 1, be the normal to the reflector surface at P. With a perfect con- 
ductor assumed, the boundary conditions at P are 

in which (El, HI) is the primary field and (El, Hz) is the secondary field. It was 
demonstrated in Section 10.2 that for any geometrical optics field E and H are 
othogonal to each other and that both are transverse to the direction of propagation. 
In free space, with q = 377 ohms, 

The difference in signs in (10.66) is due to the reversal of direction of propagation 
upon reflection. When (10.65) and (10.66) are combined, one obtains 

in words, the normal components of the incident magnetic fikld are equal and 
opposite, whereas the tangential components are equal and codirected. 

From (1.112), the lineal current density at P is given by 

If the primary geometrical optics field is known, Equation 10.68 can be used to 
obtain an approximation to the current distribution on the reflector. 

As an illustration of the use of this method, consider again the parabolic 
cylinder reflector for which a far field was sought in Section 10.7. With the primary 
power pattern given by (10.57) and vertical polarization assumed, it is clear that 

HI = 1, sin [(nbll) sin $1 e-~"(*' 
(nbli) sin $ 

in which a multiplicative constant has been suppressed. For a parabolic cylinder, 
1, is given by (10.29) and thus 

where = p sin 4. With the aid of (10.52), this result can be restated in the more 
useful form 

K = sin [(nbll) sin $1 sin 6 1 , ~  cos - 
(nb/l)  sin 4 _ x cos ($/2) $1 2 
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To obtain the far-field pattern produced by this current distribution, the cylindrical 
coordinates equivalent of Equations 1.101 and 1.102 can be used (see Appendix G).  
In the principal XY-plane, there is only an a, component and therefore only an 
E,-component of the electric field, which is consistent with the assumption of a 
vertically polarized feed. 

For b/A = 0.85, D/A = 10, and flA = 4.33, which were the dimensions used 
previously, a plot of 20 log,, I a, 1 is shown in Figure 10.27. Agreement with Figure 
10.21, which was obtained by the aperture field method, is seen to be quite good, 
particularly in the region of the main beam and the innermost side lobes. It can be 
argued that, of the two methods (both of which rely on geometrical optics approxi- 
mations), the current distribution approach should be more precise, since it only 
relies on the accuracy of the ray assumption for the fields right at the reflector. The 
aperture field method requires the further assumption that the geometrical optics 
secondary field is a good approximation to the true field in extension from the 
reflector out to the surface chosen as the secondary aperture. 

However, both methods suffer from the breakdown of geometrical optics at 
the edges of the reflector. This point has already been noted in Section 10.7 with 
respect to the aperture field approach. It is even more physically apparent in the 

Fig. 10.27 Principal Plane Pattern of a Parabolic Cylinder Reflector Antenna, Obtained 
by Current Distribution Method. Aperture Blockage Neglected. D = 101. f / D  = 0.433. 
10 d B  Spillover 
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current distribution method as applied to the illustrative example of the parabolic 
cylinder. A - 10 dB spillover at the reflector edges was assumed, indicating that K, 
as computed from (10.71), would not be zero at $ = 60, that is, at the reflector 
edges. Realistically, one could expect that the current might not quite go to zero at 
the edge, perhaps wrapping around to the back side before it decayed to a negligible 
value. However, it certainly should be smaller than the value at the edge given by 
(10.71). Thus these edge difraction efects, as they are called-which are not taken 
into account in either of the methods that have been presented-can be expected to 
have an effect on the far-field secondary pattern. 

That the significance of these diffraction effects is greatest when one is com- 
puting the field in the region of the outer side lobes can be appreciated by the follow- 
ing argument. For a cylindrical reflector, with the secondary aperture chosen to be 
in the plane x = a, the far field can be expressed as a generalization of (10.58), that is, 

with p = y / l  and u - 272 sin $. If this expression is integrated by parts repetitively, 
one obtains 

Ceteris paribus, this series converges more rapidly when u is greater, that is, as $I -+ 

n/2. Therefore, the zeroth-order term in (10.73), which involves f(p) at the end points, 
is least important near $ = 0" and most important near $ = 90". Said another way, 
errors in f (p) at the edges of the aperture distribution cause the greatest effect in the 
region of the outer side lobes. 

One of the most successful ways found to account for the edge effects involves 
application of the geometrical theory of diffraction (GTD). The edge is modeled b y  

a semi-infinite ground plane on which a plane wave is incident at a specified angle 
and off which scattering can be computed exactly. This approach is beyond the 
scope of the present introductory treatment and the interested reader is referred to 
the advanced literature. 

10.9 Dual Shaped Reflector Systems 

The development in Section 10.7 reveals that a parabolic cylinder reflector (or a 
paraboloidal reflector), illuminated by a feed placed at the focus, has a secondary 
aperture distribution that is more tapered than the primary radiation. This is evident 
from Equations 10.56 and 10.60. If one were interested in low side lobes and uncon- 

I1A good start on the significant published work can be made by consulting Part I 1 1  and the 
related bibliography in Love, Reflector Antennas. 
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cerned about aperture efficiency and if aperture blockage were not a problem, these 
tapered distributions would be quite acceptable and would result in impressive 
patterns such as the one shown in Figure 10.21. However, unless an offset feed is 
used, aperture blockage is a problem, as can be seen from Figure 10.23, and low 
side lobes are difficult to achieve. Faced with this reality, and desiring higher aperture 
efficiency, designers of reflector antennas might choose in some applications to 
de-emphasize low side lobes as a desirable pattern criterion and search for means 
to control or eliminate the taper. 

It was pointed out in Section 6.14 that the maximum directivity that can be 
achieved from an equiphase planar distribution occurs when the amplitude distri- 
bution is uniform. For a paraboloidal reflector fed by a small source at its focus, 
Equation 10.60 indicates that to achieve this performance, one would need a feed 
with radiation pattern I($, y) proportional to sec4 $12. This is a physical impracti- 
cability with a feed that is typically small in wavelengths. 

A different approach to this problem, and one which has proved successful, 
was first suggested by B. Ye Kinberlz and then developed by K.  A. Green13 and 
V. Ga l indo14 .  It involves  u s e  o f  a Cassegra in- type  f eed  (see Sec t ion  10.3) w i t h  t h e  
shapes of both the hyperboloid and paraboloid modified in order to control the 
secondary aperture distribution. To understand the approach, refer to Figure 10.28 
and assume that a point source is placed at (f, 0,O) with its radiation intensity I($) 
rotationally symmetric about the X-axis. The reflectors R,  and R, are also rotationally 
symmetric. If R, is a paraboloid and R, is a properly placed hyperboloid with the 
proper eccentricity, it was shown in Section 10.3 that the rays leaving R, and traveling 
to R,  all appear to be coming from a virtual phase center (the focus of the paraboloid) 
and thus that the rays leaving R, are collimated. However, these conventional reflec- 
tor shapes do not result in maximum aperture efficiency. What is needed is to lift the 
restrictions on reflector shapes so that an arbitrary primary pattern I($)  can be 
transformed to a specified secondary aperture distribution P(y).  

To see how this is accomplished, assume that the desired secondary distribution 
in the plane x = a is to be equiphase. Then 

From Figure 10.28 it is apparent that 

, y - r s i n $  ,.,,- r = - a - x  
sin /l 

1 zB. Ye Kinber, "On Two-Reflector Antennas," Radio Eng. Electron Phys., 7 (1962), 914-21. 

13K. A. Green, "Modified Cassegrain Antenna for Arbitrary Aperture Illumination," lEEE 
Trans. Antennas Propagat., AP-I 1 (1963), 589-90. 

14V. Galindo, "Design of Dual Reflector Antennas with Arbitrary Phase and Amplitude 
Distributions," I E E E  Trans. Antennas Propagat., AP-12 (1964), 403-8. 
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Fig. 10.28 Geometry for a Modified Cassegrain Feed and Reflector 

and thus (10.74) becomes 

Since the primary pattern and reflectors are rotationally symmetric, the secondary 
aperture distribution will also have rotational symmetry. As a consequence, the 
primary power 1(4)272 sin 4 d$ reappears as the secondary power P(y)2ny dy. When 
these powers are equated and integrated, normalization gives 

J' 1(4') sin 4, Y '  joy p(yl)yl  d y r  
- - 
J t " ' "  ~ 4 ' )  sin 41 d+' Joy""' ~ ( y ~ ) ~ l ~  dy f  
0 

Maximum directivity (and aperture efficiency) will occur if P(y) is a constant. In 
that case, (10.76) becomes 
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jO4 ~ ( 6 ~ )  sin 
Y = y k a x  j:'" Z($O sin of  d+( 

It was shown in Section 10.5 that the slope of a reflector is measured by the 
tangent of the angle of incidence of a ray. (See Equation 10.42 as an example of 
this.) For the reflectors R, and R,, this connection takes the forms 

P 2 = cot 

as can be seen from a study of Figure 10.28. 
Equations 10.75 and 10.77 through 10.79 comprise a set of four relations from 

which the dependent variables r, x, y, and P can be determined as functions of @. 
The function r($) defines the shape of the subreflector R, and the parametric set 
~($1, y($) serves to specify the shape of R, .  A computer program of moderate 
complexity can be written to effect a solution. 

The analysis assumes a rotationally symmetric source, which might at first 
seem to be an invalidating idealization. However, P. D. Potterls has described the 
design of a conical feed horn which satisfies this criterion. W. F. Wi l l i am~ '~  reports 
the results of an experiment in which such a horn was used to feed a conventional 
Cassegrain system and a modified Cassegrain of the same size. There was a measured 
increase in directivity of 1 dB and a change in side lobe level from -23 dB to - 17 dB, 
both figures consistent with the achievement of a secondary aperture distribution 
uniform in amplitude and phase. 

An additional advantage of modified Cassegrain antenna systems is that the 
spillover at the subreflector can be drastically reduced without penalty to the overall 
aperture efficiency. 

Computer solutions for a modified Cassegrain reveal that R ,  is slightly altered 
from a paraboloidal shape (see Figure 5 of Williams' paper as an example). However, 
the change in the shape of the subreflector is more pronounced. A typical result is 
reported by A. C. Ludwig17 and is shown in Figure 10.29. It can be observed 
that the inner region of the modified subreflector is more curved to redirect some 
of the higher intensity central rays toward the outer region of the high gain 
reflector R , .  

I sP. D. Potter, "A New Horn Antenna with Suppressed Sidelobes and Equal Beamwidths," 
Microwave Journal, (1963), pp. 71-8. 

16W. F. Williams, "High Efficiency Antenna Reflector," Microwave Journal (1965), pp. 79-82. 
17A. C. Ludwig, "Shaped Reflector Cassegrainian Antennas." SPS No. 37-35, Vol. 1V (Pasa- 

dena. California: Jet Propulsion Laboratories, 1965), 266-8. 
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Fig. 10.29 Comparison of Shaped 
Subreflector and Hyperboloid (After 

m 

Ludwig") Paraboloid focus 

10.10 Single Surface Dielectric Lenses 

Attention will now be turned to lens antennas, which share many characteristics 
with the reflector antennas that have been under discussion in the first part of this 
chapter. Both antenna types use a low-gain feed (such as a horn) to illuminate a 
large, high-gain structure (reflector or lens), the latter serving the purpose of redirect- 
ing the diverging primary rays so that they become a set of secondary rays that will 
produce a desirable secondary pattern. The reflector does this by back-scattering 
the primary rays, the basic process being one of reflection. The lens accomplishes 
the same result by forward-scattering the primary rays, the basic process being one 
of diffraction. For this reason, lens antennas have one inherent advantage over 
reflector antennas-the feed is not in the path of the secondary rays. An offset to 
this advantage lies in the fact that lens antennas are typically thicker, heavier, and 
more difficult to construct than reflectors. Despite this, there are applications in 
which a lens antenna is clearly the superior choice. 

A simple introduction to the subject of lens antenna design can be obtained 
by posing the situation suggested by Figure 10.30. An equiphase line source is placed 
along the Z-axis and emits a family of diverging rays which, if the line source is long 
enough, can all be assumed to be parallel to the XY-plane. One of these rays is 
indicated by the line segment m, emerging from the line source at  an angle 4 with 
respect to the X-axis. 

All of space will be assumed to consist of two homogenous, isotropic, lossless 
media, divided by the single cylindrical interface that intersects the XY-plane in the 
curve A A , A f .  To the left of this interface, the constitutive parameters are p ,  and 6 ,  

and to the right of the interface they are p ,  and c,. The relative refractive index n 
will be defined by 
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Fig. 10.30 Geometry for a Dielectric Lens 

The design problem is to select the shape of the curve A A , A r  so that all the secondary 
rays are collimated, with the plane x = d representing a secondary wave front. 

Equation 10.25 can be applied to  this situation, with the argument made that 
the phase delay along the path O A B  should be the same as along the path O A o B o .  
If = p and OA, = a, then 

k l p  + k,(d - p cos 4) = k l a  t k,(d - a)  (10.81) 

in which k ,  = w J p , ~ ,  and k ,  = o J z  are the wave numbers in the two media. 
Equation 10.8 1 simplifies to 

which is the equation of a conic section of ellipticity n with a focus at the origin.I8 
This can be appreciated more fully when (10.82) is reexpressed in cartesian coordi- 
nates. If the point A  is identified by the triplet (x, y, 0), transformation of (10.82) 
gives 

Issee, for example, C. E. Love, Analytic Geotnetry, 3rd ed.  (New York:  Macmillan Co. ,  
1938), pp. 75-99. 
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Two classes of solutions are represented by (10.83). 
CASE I .  n < I In this case, (10.83) can be written in the form 

which is the equation of an elliptic cylinder. In (10.84), 

with e the ellipticity. Elimination of a' from the above expressions gives e - n, as 
asserted earlier. The foci are at x'  = +c' ,  with c' given by 

Since x' = x - (nln + ])a, it follows that, in the original coordinate system, the 
foci are at the positions 

This means that the line source should be placed at the far focus of the elliptic cylinder 
if the requirement is to collimate the secondary rays. 

CASE 2 .  n > I In this case, (10.83) can be written in the form 

which is the equation of a hyperbolic cylinder. In (10.88) 

from which, once again, e - n. The foci are at the positions .u' = =c' ,  with c' given by 

n 
c' = (a')' 1 (hi)'  = (1 0.90) 

which is the same result as in the elliptical case. Hence, the foci are at positions 
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calculable from (10.87), and the line source should once again be placed at the left 
focus if the secondary rays are to be collimated. 

If the line source is replaced by a point source at the origin, a simple repetition 
of the foregoing development leads to the conclusion that, for collimation, the 
interface should be described by 

Hence, for n < 1 the interface is an ellipsoid; for n > 1, it is a hyperboloid. In both 
cases, the point source is at the left focus. 

Practical lens antennas can be conceived based on this information. Figure 
10.31a shows a dielectric lens cross section in which the inner contour is a circle and 
the outer contour is an ellipse, with the exterior region free space. The center of the 
circle and the left focus of the ellipse are coincident at the source point (line) of the 
primary rays. These rays pass undiffracted through the inner surface, but are dif- 
fracted by the outer surface and emerge collimated. A translation parallel to the 
Z-axis of the contour shown in Figure 10.31a creates an elliptic cylinder lens (n < I), 
while a rotation of the contour about the X-axis produces an ellipsoidal lens (n < 1). 

Similarly, Figure 10.31b shows a dielectric lens cross section in which the inner 
contour is a hyperbola and the outer contour is a straight line. The primary rays are 
diffracted at the inner surface and are collimated in the lens. They suffer no further 

Focus Focus 

(a) Elliptical lens (b) Hyperbolic lens 

Fig. 10.31 Cross Sections of Dielectric Lenses that Can Collimate Secondary Rays 
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diffraction upon emergence from the surface, so they remain collimated. A translation 
of the contour shown in Figure 10.31 b results in a hyperbolic cylinder lens (n > I ) ,  
while a rotation of the contour generates a hyperboloidal lens (n > I). 

There has been an implied assumption in this development that the boundary 
conditions on the electromagnetic waves at the interface will cause the secondary 
rays to be horizontal, that is, that the ray trace OAB in Figure 10.30 will satisfy 
Snell's law of refraction. It is a simple matter to show that, if the equation describing 
the interface is given either by (10.83) or (10.91), this condition is satisfied. The 
proof, which is left as an exercise, is similar to what was done in Section 10.3, where 
it was demonstrated that Snell's law of reflection is obeyed by a parabolic cylinder 
antenna with a line source placed at its focus. 

Lenses of the types shown in Figure 10.31 are called single-surface lenses 
because all of the diffraction occurs at one interface. Two surface lenses can also be 
devised, but their analysis is somewhat more involved and will not be undertaken 
here. ' 

10.1 1 Stepped Lenses 

If the angle subtended by the feed from the extremities of the lens is large, as it invari- 
ably is in practice, the thickness of the lens (in the x-dimension) varies markedly 
from center to extremity, as can be seen for the elliptic and hyperbolic lenses shown 
in Figure 10.31. This causes the lens to be bulky and heavy, a disadvantage which 
can be overcome by stepping. The basic idea is suggested in Figure 10.32. Zones 
have been created in either the inner or outer lens surface by stepping the thickness. 
This must be done so that the rays which pass through different zones are still colli- 
mated and in phase in the secondary aperture x = d. 

If the zones are labeled 0, 1,2, 3 , .  . . , counting from the edge of the lens in 
toward the center, stepping of the different contour segments of the lenses displayed 
in Figure 10.27 can be accomplished as follows: 

(a )  ELLIPTICAL LENS-CIRCULAR SEGMENT (FIGURE 10 .32~)  Let r ,  and 

r ,  be the radii of the zeroth and mth zones. An equiphase secondary aperture distri- 
bution will be achieved if 

with k o  and k the wave numbers in free space and in the dielectric. This relation 
simplifies to 

in which n is the refractive index of the dielectric and 1, is the free-space wavelength. 

I9For an introduction to the subject, see E. A. Wolff, Antenna Analysis (New York: John 
Wiley and Sons, Inc.. 1966), pp. 468-71. 
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Fig. 10.32 Cross Sections of Stepped Dielectric Lens 
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Hence the radii steps are equal. The extent ofeach zone is determined by the minimum 
and maximum thicknesses required for structural strength. 

(6) HYPERBOLIC LENS-STRAIGHT LINE SEGMENT (FIGURE 10.326) Let 
x, and x, be the longitudinal dimensions of the zeroth and mth zones. The necessary 
condition is that 

k(.u, - x,) - k,(.u, - x,) 2 2nm 

from which 

Once again the steps are equal and the extents of the different zones are governed by 
specification of the minimum and maximum thicknesses of the dielectric material. 

(c) ELLIPTICAL LENS-ELLIPTICAL SEGMENT (FIGURE 10.32~) For this 
case, the condition (10.81) needs to be replaced by 

k p, k,(d - p, cos $) - k , a  . k,(d - a )  - 2nm 

which reduces to 

n cos 4) - 
with 1, the wavelength in medium I .  

Equation 10.94 is in exactly the same form as (10.81), with the intersection of 
the ellipse and the X-axis occurring at  a - m l , / ( l  - n) rather than at  a. Hence 
(10.94) represents a family of confocal ellipses, all with their far foci at  the origin 
and with equal increments in their stepped x-intercepts. The extent of each zone is 
dictated by the spread of thicknesses specified for the dielectric lens. 

(d)  HYPERBOLIC LENS-HYPERBOLIC SEGMENT (FIGURE I0.32d) For 
this case, (10.81) is once again replaced by (10.94). Simplification gives 

p,(n cos $ - I )  - 
Comparison with (10.81) reveals that (10.95) is a family of confocal hyperbolas, all 
with their far foci at the origin, and with equal increments in their x-intercepts. As 
in the other cases, zonal extents are governed by thickness specifications. 

The success of this stepping technique depends on the insignificance of scattering 
at zone boundaries. Obviously, the greater the extent of each zone in wavelengths, 
the less serious will be this scattering effect. 

The four stepped contours shown in Figure 10.32 can be used to generate cylin- 
drical lenses, for use with line sources, by translation parallel to the Z-axis. Alter- 
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natively, they can be used to generate rotationally symmetric lenses, for use with 
point sources, by rotation about the X-axis. 

10.1 2 Surface Mismatch, Frequency Sensitivity, 
and Dielectric Loss for Lens Antennas 

The analysis of single surface lenses in Section 10.10 dealt with the primary and 
secondary rays that progress in a forward direction toward the secondary aperture 
at x = d. However, at any interface between dielectric media with different constitu- 
tive parameters, reflection can also occur. For the elliptical lens shown in Figure 
10.31a, the primary rays are normally incident at the inner lens surface, which is 
either a portion of a circular cylinder or sphere. Locally, the reflection which occurs 
is the same as though the interface were planar (geometrical optics approximation). 
It is shown in many standard textsz0 that the reflection coefficient of a plane wave 
normally incident on an infinite dielectriclair interface is independent of polarization 
and given by 

All of the reflected rays from this cylindrical (spherical) lens surface come to a focus 
at the feed. If the feed is well matched to free space when the lens is absent, the reflec- 
tion coefficient measured in the feed when the lens is present, due to this one source 
of reflection, is given by (10.96). For example, if a polystyrene lens for which E / E ,  = 

2.56 is used then n = 1.16 and = 0.23. The input VSWR at the feed terminals 
would be 1.6, and 5 %  of the primary power would be returned to the feed under 
these conditions. 

The situation is more complicated than just described because there is also 
reflection off the elliptical cylinder (ellipsoid) that comprises the second surface of 
the lens depicted in Figure 10.31a. Because the direction of the normal to this surface 
varies from point to point on the surface, the aggregate back scattering effect is 
nonfocused. Reflection from this second surface primarily appears as a contribution 
to the total field in the half-space behind the feed. Higher-order reflections within 
the lens can usually be ignored. As in the analogous problem of reflection from a 
paraboloid, there is some depolarization caused by back-scattering off an ellipsoidal 
lens surface. This effect is essentially not present in the case of the long line source 
and elliptical cylinder lens. 

An analysis of the surface mismatch for a hyperbolic lens is similar but slightly 
more complicated. With reference to Figure 10.31 b, back-scattering off the hyperbolic 
cylinder (hyperboloid) is nonfocused and contributes to the total field behind the 
feed, with some depolarization in the case of the hyperboloid. Reflection off the 
planar surface is collimated and, if n is not too different from unity, most of it is 

ZQSee, for example, E. C. Jordan and K. G. Balmain, Electromagnetic Waves and Radiating 
Systems, 2nd ed. (Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1968), pp. 14344. 
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transmitted through the hyperbolic surface and focused at the feed. In such cases 
the reflection coefficient given by (10.96) is applicable as an approximation in the 
case of the hyperbolic lens. 

When the focused back-scattering caused by dielectriclair mismatch at one of 
the lens surfaces causes an unacceptably high input VSWR at the feed port, a remedy 
is to use a matching section in the lens. This consists of a quarter-wavelength thick 
layer of dielectric with refractive index n' = n'12, bonded to the lens surface which 
is causing the focused reflected rays. Such mismatch correction is obviously fre- 
quency-sensitive. 

All of the foregoing remarks are unaltered if surface mismatch is considered 
for the stepped lenses shown in Figure 10.32. However, stepping introduces another 
effect which is not present in the basic, unstepped, uncorrected lenses of Figure 
10.31. Those prototype lenses are frequency-independent, to the extent that geomet- 
rical optics approximations are valid. This is not the case when stepping is introduced. 
The point is readily appreciated upon return to Equations 10.92 through 10.95, each 
of which shows that the step increments are A/(1 - n), with A the wavelength in one 
or the other of the two media. If the steps are properly dimensioned at the design 
wavelength Ad, they will not be correct for a slightly different wavelength A ,  = Ad + 
AA. 

When there are M zones in the stepped lens surface, the path length difference 
for rays that go through the innermost and outermost zones is 

at the two wavelengths. The change in path length difference due to a change in 
frequency is 

8 = AL, - ALd = ( M  - ])(A, - Ad) = (M - 1)AA 

and thus a measure of the bandwidth is 

A frequently used criterion for pattern degradation due to phase errors across the 
aperture is that the wavefront should not have a curvature of more than one-eighth 
wavelength from center to edge (6 - l j 8 ) .  In this case, 

It is clear from this relation that the larger the lens aperture, and thus the more 
zones needed if stepping is employed, the more narrow band the lens becomes. 

Another effect that can be estimated in judging the performance of a dielectric 
lens is the attenuation in the dielectric. The complex permittivity can be expressed as 



534 Reflectors and Lenses 

The ratio e"/el, which is small for a good dielectric, is often given in the form 

-- - tan 6 (10.100) 

with tan 6 called the loss tangent of the dielectric. Values of e' and tan 6 can be easily 
obtained by measurement and are usually provided by the manufacturer over the 
frequency band of interest. 

The complex propagation constant is given by 

y = a + jp = [jw,u,(jof0ff)(l - j tan 6)]1/2 = jnk(1 - j tan (10.101) 

with k = 2n/rZo the free-space wave number and n = (e')'I2 the refractive index. If 
the loss tangent is small, the attenuation factor a is given to good approximation by 

nk n tan 6 nepers per wavelength (1 0.102) 

For a zoned lens, the average thickness t is given roughly by 

and hence the attenuation in the dielectric can be estimated by the formula 

t = 27.3- tan 6 dB 
n - I  

(10.104) 

As an example, for a stepped polystyrene lens used at X-band (10 GHz), e' = 2.54 
and tan 6 = 4.3 . and the loss estimate is 0.02 dB. 

10.13 The Far Field of a Dielectric Lens Antenna 

The same technique that was used in Section 10.7 to find the far field of a reflector 
antenna can be employed to determine the far field of a dielectric lens antenna. With 
reference once again to Figure 10.30, assume a line source and hence a lens boundary 
formed by translating the curve AA,A1 parallel to the Z-axis. If I($) watts per radian- 
meter is the primary pattern and P(y) watts per square meter is the secondary power 
distribution in the aperture plane x = d, then I($) d$ = P(y)  dy. But y = p sin $ 
and hence 

dy = p cos $ d$ + sin $ dp = 

From (10.82), 

dp  an(n - 1) sin 6 
@ - (ncos6 - 
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and thus 

a ( n  1) 
I(') = n cos Q - I 

(EM$ + )P(,) 
n cos Q - I 

from which 

(n cos Q - 
( )  a n  - I )(n - o r  Q) ICQ> 

Equation 10.105 applies whether n < 1 (elliptic cylinder lens) or n > 1 (hyperbolic 
cylinder lens). The field amplitude of the equiphase distribution in the plane x = d 
is given by P1lZ(y). With the polarization specified, the equivalent Huyghens sources 
can be determined and the far field computed. 

If a point source is used, so that the lens boundary is generated by rotating the 
curve A A , A 1  of Figure 10.30 about the X-axis, a similar analysis can be used to  
obtain the secondary aperture distribution. With spherical coordinates (p,  $, y )  
erected at the focus, and I($, y/) the radiation pattern of the feed, a power balance 
gives 

I($, W) sin $ d$ dyl = P(y, Y)Y dy dW (10.106) 

where (y, y) are polar coordinates in the plane x = d and P(y, yl) is measured in 
watts per radian-meter. Since y = p sin 4,  Equation 10.106 reduces to 

As before, dy can be related to dQ, the result being that 

(n cosQ - 1)' 
P(" ') = a2(n - il2(n - cos Q) I($> yl) 

Equation 10.107 applies whether n < I (ellipsoidal lens) or n > I (hyperboloidal 
lens). As before, P1lZ(y, y) gives the field amplitude of the equiphase distribution in 
the plane x = d, so all the information needed to calculate the far-field pattern is 
embodied in (10.107). 

Plots of Equations 10.105 and 10.107, under the assumption of an isotropic 
primary source, are shown in Figure 10.33 for n = 0.5 (elliptical lens) and n = 2 
(hyperbolic lens). It can be observed that the action of a hyperbolic lens is to impose 
more taper on the primary distribution, whereas an elliptic lens lessens the taper. 
Because of the resulting penalty in aperture efficiency, hyperbolic lenses are not 
attractive for applications in which the lens would subtend an angle at the feed much 
greater than 2Q,,, = 60". On the other hand, if an elliptic lens has a subtended angle 
2Q,,, such that cos Q,,, < n, the pole in (10.105) and (10.107) can cause design 
tolerance difficulties unless the taper in the primary distribution dominates this effect. 

A specific example of the use of these results is posed in Problems 10.21 and 
10.22 at the end of this chapter. 
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6 degrees 

Fig. 10.33 Normalized Secondary Aperture E-Field Distributions for Cylindrical 
and Rotational Dielectric Lenses; Isotropic Primary Radiation Assumed 

10.14 The Design of a Shaped Cylindrical Lens 

As in the case of reflector antennas, it is possible to alter the shape of a lens so that 
the secondary rays are not collimated, but instead have an angular distribution 
corresponding to a more general secondary pattern. The technique will be illustrated 
for the hyperbolic cylinder lens of Figure 10.31b, with the planar exit surface modi- 
fied to decollimate the secondary rays in some desired manner. 

The situation is suggested by Figure 10.34. A family of horizontal rays travels 
through the lens and the one shown impinges on the exit surface at the point (x, y), 
making an angle i with the normal t o  the surface at that point. The refracted ray 
departs a t  an angle r = i + t9 to the normal, with t9 the angle this ray makes with 
the horizontal. 
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Fig. 10.34 A Hyperbol~c Cylinder Lens Modifled to 
Give a Shaped Secondary Pattern 

A unit normal vector at (x, y )  is given by 

w~ th  ds a d~splacement along the exlt contour to the ne~ghbor~ng polnt (x T rix, 
J, 1 dy). It follows that 

1, sin i =:- I n  X 1, - 
d . ~  

lz cis (10.109) 

Similarly, if a unit vector 1, parallel to the exiting ray is defined by 

1, = 1, cos 8 i- I ,  sin 8 

then 

1, sin r dv  sin e z  cos 8- 
ds 
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With the exit region free space, Snell's law of refraction gives 

sin r - - - n =  sin 0 dy + cos 0 dx 
sin i dx  

which can be recast in the form 

dx = sin 0 
n  - cos 0 dy 

If the connection between 0 and y is known, this result can be integrated to give 

sin 0(y1) 
n  - cos O(yl) dy ' 

thus establishing the shape of the exit contour as the function x(y). 
As before, the function 0(y) can be deduced from 

with P(y)  the power distribution in the lens, related to the feed pattern by Equation 
10.105; the function W(0) watts per radian-meter is the desired far-field secondary 
pattern. 

A design problem illustrating the use of this technique is posed in Problem 
10.25 at  the end of this chapter. 

10.1 5 Artificial Dielectrics: Discs and Strips 

A major practical disadvantage of lens antennas composed of homogeneous, iso- 
tropic dielectrics (such as polystyrene) is their weight. Even with stepping, such 
antennas are so heavy that their use is precluded in all but some ground-based 
applications. For this reason considerable interest has been shown in the development 
of inhomogeneous materials with low density and high effective permittivity. Several 
artificial dielectrics (as such materials are called) have been devised with properties 
that make them well suited for use in lens antennas. 

An early candidate was a composite consisting of a lightweight, low permit- 
tivity host material (such as polyfoam) in which was imbedded a regular three- 
dimensional array of conducting spherical particles. This is a medium which can be 
analyzed with little difficultyz1 and one finds that the equivalent permittivity exceeds 
6 ,  for practical sphere sizes and spacings. However, the equivalent permeability is 
less than p, and this offset results in a refractive index that rises only to a maximum 

zlSee, for example, J. Brown, "Lens Antennas," Antenna Theory, Part 11, ed. R. E. Collin and 
F. J. Zucker (New York:  McGraw-Hill Book Co. ,  Inc., 1969). Chapter 18, pp. 105-8. 
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value of 1.27 when the spheres are touching. This value of n is too low for most lens 
antenna applications. However, the analysis of an array of conducting spheres reveals 
an important fact. Were the spheres to become spheroids, flattened in the direction 
of propagation of an electromagnetic wave passing through the medium, the perme- 
ability reduction would be lessened. With total flattening, so that the metallic spheres 
are replaced by metallic discs lying in equispaced planes perpendicular to the direction 
of propagation, the permeability effect vanishes. Not so the favorable permittivity 
effect. The increase in permittivity caused by the presence of the metallic discs can be 
substantial, and refractive indices as high as two or three can be achieved with practical 
disc sizes and spacings. 

The disc dielectric is shown in Figure 10.35a. By symmetry, its refractive index 
is independent of the polarization of a normally incident electromagnetic plane wave. 
Because of this it can be used as a lens in conjunction with feeds that are linearly 
polarized (either horizontally or vertically), circularly polarized, or elliptically 
polarized. 

Metal strips lying in planes 
perpendicular t o  direction of  
propagation 

/ 
Propagation 

Metal disks lying in planes 
perpendicular t o  direction of  
propagation 

Fig. 10.35 Disc and Strip Dielectric Media (From Antenna Theory, Part 11, Chapter 18 
by J. Brown. Copyright 1969, McGraw-Hill. Used with permission of McGraw-Hill 
Book Company.) 

An artificial dielectric that behaves similarly to the disc array is the strip dielec- 
tric, shown in Figure 10.35b. It can be designed to have an effective permittivity in 
the useful range by proper choice of the dimensions a, 6, and b'. However polarization 
is restricted to the case that E is perpendicular to the strip axis. 

An analysis of the behavior of a strip dielectric medium relies on several tech- 
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niques that have been used in earlier chapters. First, if a uniform plane wave is 
normally incident on the strips, as suggested in Figure 10.35b, the same electric 
field will be induced in every gap in a common transverse plane. The forward and 
backward E-field scattering from this plane will be symmetrical (See Appendix F ) .  
This is equivalent to a shunt obstacle in a transmission line (compare with Equation 
3.52). The problem is similar to scattering from a capacitive iris in a rectangular wave- 
guide and can be analyzed by a quasi-static method if b/A< 1. With Iosses ignored, 
the normalized equivalent shunt admittance is found to be purely susceptive and 
given by22 

It follows that the strip dielectric medium of Figure 10.35b is equivalent to a period- 
ically loaded transmission line, with shunt capacitive elements placed a  units apart, 
as shown in Figure 10.36a. That the elements should be capacitive is due to the size 
restriction on b/2,  which causes the local E-field to store energy electrostatically. 

Fig. 10.36 A Periodically Loaded Transmission Line Equivalent to  a Strip Dielectric 

Because of the lossless periodic loading of the transmission line, the mode 
voltages at corresponding points in successive sections differ only by a phase constant 
4. The same is true for the mode currents. Hence, with reference to Figure 10.36b, 
one can write 

V ,  - V ,  cos ka - j l , Z ,  sin ka = V ,  =: V,e-j" 
(10.1 16) 

I, =- - j  V , G ,  sin ka -t I ,  cos ka - I, -+ JB V ,  - 1,e-j+ + jBV,e'i" 

in which ( V , ,  I , )  are the mode voltage and current at cross section 1, and so on. The 
cross sections are chosen so that the first is infinitestimally to the right of a shunt 
element; the second and third straddle the next shunt element, infinitesimally to 

ZzSee, for example, N. Marcuvitz, Waveguide Handbook, Vol. 10 of MIT Rad. Lab. Series 
(New York: McGraw-Hill Book Co., Inc., 1951), pp. 138-67. 
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each side of it. Equations 10.116 combine the relations between input and output 
voltages on an obstacle-free stretch of transmission line and the continuity conditions 
at a shunt element. 

If (10.1 16a) is solved for I, and the result placed in (10.1 16b), a simple manipu- 
lation gives 

B cos q!I = cos ka - - sin ka 
2'3, 

(10.1 17) 

With the dimensions a, b, and b' specified, Equation 10.115 can be used to compute 
BIG, and then Equation 10.1 17 will yield the value for q!I, the phase delay per section. 
The equivalent index of refraction can be defined by forming the ratio of this phase 
delay to the phase delay that would occur in the absence of the strips, namely ka. 
Hence, 

It is useful to consider the form taken by (10.1 17) when k is small (long wave- 
length). Then 

cos q!I = cos nka z I - J ( n k ~ ) ~  

cos ka 1 - & ( k ~ ) ~  sin ka ka 

and substitution in (lo. 117) gives 

If BIG, is replaced in (10.1 19) by the right side of (10.1 15) and k, - 0, the relation 
becomes exact and one obtains 

with no the "static" (zero frequency) value of the refractive index. It can be observed 
that no is calculable from (10.120) once the dimensions of the strip dielectric are 
specified. 

Equations 10.1 15, 10.1 18, and 10.120 can be combined and substituted in 
(lo. 1 17) to give the result 

cos nku =- cos ka - J(ni - I)ka sin ka (10.121) 

which is a particularly useful equation from which to deduce the index of refraction n. 
Plots of n versus a/A for several values of no are displayed in Figure 10.37. 

Cutoff occurs when cos nka reaches - 1 ,  but it can be seen that values of n signifi- 
cantly greater than unity are achievable with practical strip dimensions. 
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Fig. 10.37 The Refractive Index of Strip Dielectrics 

The curves of Figure 10.37 are also applicable to the disc dielectric if the proper 
value of no is used. The computation of BIG, for an array of discs is not simple but 
static measurements on a sample of the medium, placed in an electrolytic tank, can 
provide an experimental value.23 

Since disc and strip dielectric media require normal passage of the electro- 
magnetic wave, and since they present a refractive index greater than unity, they are 
suitable for use as a lens antenna of the type shown in Figure 10.31b. The strip 
dielectric is appropriate for the hyperbolic cylinder/line-source case, whereas the 
disc dielectric can be used either as a hyperbolic cylinder lens or a hyperboloid lens. 
Stepping is feasible. Both of these artificial dielectrics exhibit loss tangents which are 
significantly greater than that of a typical homogeneous isotropic dielectric, princi- 
pally because of the finite conductivity of the obstacles, edge effects if the obstacles 
are not carefully made, and adhesive losses. However, with controlled construction, 
the losses are quite acceptable in lens applications and the great savings in weight 
is a considerable advantage. 

10.1 6 Artificial Dielectrics: Metal  Plate (Constrained) Lenses 

Another type of artificial dielectric which has been widely used in lens antenna 
applications is shown in Figure 10.38. It consists of an array of equispaced thin metal 
plates, each lying in a plane which contains E and the direction of propagation. A 
host material is not needed to hold the plates in place, since they can be connected 
together by transverse metal rods normal to E. Thus a rigid construction is easily 
obtained, and some of the loss components present in disc and strip dielectrics are 
eliminated. 

23s. B. Cohn, "Artificial Dielectrics for Microwaves," Proc. Symposium on Modern Advances 
in Microwave Techniques (Polytechnic Institute of Brooklyn, 1955). 
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Fig. 10.38 A Meta l  Plate Artif icial Dielectric 

Since E = 0 on the walls of the metal plates, for I12 < a < I ,  the electromag- 
netic waves which pass between the plates must be in the form of the dominant mode 
with phase constant j? given by the relation 

As a consequence, the index of refraction is 

It can be observed from (10.123) that the refractive index of a metal plate dielectric 
is less than unity, rising from a value of zero when a = 212 to a value of 0.886 when 
a = I .  This wide latitude in the choice of a value for n is tempered by the fact that, 
as n departs further from unity, the surface mismatch between a metal plate dielectric 
and the adjacent air medium is aggravated. Stated differently, the arriving electro- 
magnetic wave has a locally uniform electric field which must be transformed to a 
field that is locally a sequence of half-sinusoids. The more of these half-sinusoids 
there are per unit length in the H direction, the greater the mismatch. 

Because n i: 1, the basic lens type to which the metal plate dielectric is easily 
adapted is the elliptical shape, shown in contour in Figure 10.39. Translation gives 
an elliptic cylinder lens, suitable for use with a line source; rotation gives an ellip- 
soidal lens, suitable for use with a point source. Parallel, equispaced slices through 
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Focus 

Fig. 10.39 Central Cross Section of 
a Metal Plate Lens 

the solid figures caused by translation or rotation give the templates for the individual 
metal plates which will comprise the lens. 

A second set of metal plates can be added to the structure of Figure 10.39, 
arranged so that they are perpendicular to the first set. This is suggested in Figure 
10.40. Since the second set of plates is transverse to E, their presence does not affect 
the refractive index for vertical polarization. But the second set can be designed to 

H 

Fig. 10.40 An Eggcrate Artificial Dielectric 
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achieve the same result with a horizontally polarized wave. The resulting structure 
is called an eggcrate dielectric. With the same plate spacing in both dimensions, 
collimation of circularly polarized primary radiation, as well as polarization diversity, 
can be achieved. 

Stepping of these metal plate lenses can be accomplished in the manner described 
in Section 10.1 1 for homogeneous, isotropic dielectrics. Because the waves are con- 
strained to travel between parallel plates, these structures are often called constrained 
lenses. With an elliptic cylinder or ellipsoidal lens boundary, wave diffraction natu- 
rally aids this constraint, but the constraint is present regardless of the shape of the 
boundary, and other boundary shapes are sometimes employed. 

Some depolarization occurs with an ellipsoidal metal plate lens. This effect is 
absent in the elliptic cylinder case. 

10.17 The  Luneburg Lens 

A class of lens that has proven extremely useful in antenna applications (and also in 
scattering work) is characterized by a refractive index which is variable, but spher- 
ically symmetric. By this one means that if the origin of coordinates is chosen at the 
center of the lens, then n = n(r). The nature of rays in such a medium can be deduced 
with the aid of Figure 10.41a. A ray MPQ is shown, and r is the directed distance 
from the origin O to P; 1, is a unit tangent vector at P. 

Fig. 10.41 The Differential Geometry of a Ray 

Consider the rate of change of the vector r x [I,n(r)] along the ray. One can 
write 

with s a measure of distance on the ray. Because drlds = I,, the first term on the right 
in (10.124) vanishes. Also, by virtue of (10.15) the second term becomes r x Vn. 
Since n(r) is a spherically symmetric function, 
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as a consequence of which the second term on the right side of (10.124) also vanishes. 
Hence 

r X [l,n(r)] = constant (10.126) 

The implication of this result is that each ray is a plane curve which lies in a plane 
containing the origin. Along a ray, 

m(r) I sin q5 1 = K ,  (10.127) 

with the angle 4 defined as in Figure 10.41a and K ,  a constant. Equation 10.127 is 
often called Bouquer's formula. 

The angle q5 can be connected to the differential geometry of a ray with the 
help of Figure 10.41b. The right triangle LNP is such that 

L N  sin = - = 
r dB - 4 0 )  (10.128) 

The combination of (10.127) and (10.128) gives 

Integration yields 

which is the equation of a ray in a medium with .a spherically symmetric refractive 
index. 

With this as background, consider the situation suggested by Figure 10.42. A 
lens of radius a is shown for which n(r) is a monotonically decreasing function of r, 
with n(a) = 1. A ray P ,  Q ,  Q,P2 is indicated. It leaves from P I  at an angle a with 
respect to the X-axis and travels the straight line path P, Q, in the homogeneous air 
medium. However, the path Q ,  Q ,  is curved because the lens is inhomogeneous. It 
was demonstrated in Section 10.2, as an interpretation of Equation 10.20, that rays 
always bend toward the region of higher refractive index. Thus with n(r) increasing 
toward the lens center, Q ,  Q,  bends as shown. The ray then travels a straight-line 
path Q,P, in air, intersecting the X-axis at the point P,. By virtue of (10.126), this 
ray is a plane curve. 

Imagine the surface generated by rotating P ,  Q ,  Q,P, about the X-axis. The 
intersection of this surface with any plane containing the X-axis is also a ray because 
of the spherical symmetry of the lens. A sheath of rays can thus be envisioned, all of 
which leave P ,  at the conical angle a and all of which come to a focus at P,. 

Next, imagine another sheath of rays that leave P, at a drfSerent conical angle 
a'. Will these rays also come to a focus at P,, or at some other point? Investigation 
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Fig. 10.42 The Cross Section of a Spherically Symmetric Lens 

of this question by R. R. LuneburgZ4 disclosed that, if n(r) is properly chosen, all 
rays that leave P I  and enter the lens can be brought to focus at the common point 
P,. This class of lenses appropriately bears his name. In its most common form, the 
Luneburg lens is designed so that the focal point P I  is on the surface of the lens and 
the focal point P, is at infinity. This provides the practical advantage that radiation 
from a point source can be converted to a plane wave emerging from the lens in a 
direction diametrically opposite to that of the feed. 

The form which the refractive index function n(r) must take in order to satisfy 
the Luneburg condition, namely that all rays which leave P ,  and enter the lens come 
to a common focus at P,, can be deduced with the aid of Equations 10.127, 10.129, 
and 10.130. First, since the point P I  is outside the lens and thus' in a region where 
n = 1,  t h e  c o n s t a n t  K ,  is  given s imply  b y  

K ,  = r ,  sina (10.131) 

It follows that K ,  has a positive value for all rays that enter the lens, but a value 
which is dependent on the angle at which the ray departs from P I .  The range of K, 
is over the interval [0, a]. 

Second, a study of Figure 10.42 reveals that there is a point that has coordinates 
which can be designated by (r,, 0,) where the ray comes closest to the origin, and 
that this point is inside the lens. For 0 < Om, drld0 < 0, and for 0 > Om, drld8 > 0. 
Hence in Equations 10.129 and 10.130, the minus sign should be used in the range 
0 I 8 I 0, and the plus sign should be used in the range 0, I 0 I n. Two special 

24R. K. Luneburg, The Mathematical Theory of Optics (Berkeley: University of California 
Press, 1964), pp. 164-88. This is a reproduction of Dr. Luneburg's lecture notes at Brown University. 
The original issue of these notes had mis-spelled his name as Luneberg. 
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applications of (10.130) then give 

The refractive index function n(r) must be chosen so that these two equations hold 
for all values of the constant K, in [0, a]. Their difference yields 

Since 

it follows that iff (K,) is defined by 

then (10.1 34) can be rewritten in the form 

K K f (K,) = -& [n + arcsin 2 + arcsin 2 - 2 arcsin 2 
"1 r2 

] (10.136) 
a 

The defining relation in (10.135) can be transformed into an integral equation 
of a known type by the following m a n i p ~ l a t i o n ~ ~ :  Let 

As a result, (10.135) and (10.136) become 

K dr' 

and 

K K f ( K )  = +b + arcsin + arcsin - 2 arcsin K 
r 1 r2 

] (10.138) 

2sThe development from this point follows closely the original presentation by Luneburg, 
Theory of Oprics, pp. 184-87. 



10.1 7 The Luneburg Lens 

Next, introduce the variable z by the definition 

which converts (I 0.137) to the form 

O Kdz 
f = J p ( )  - K' 

The exact relationship between p and z depends on n(r), but since n(r) is a monotonic 
function, so too is p(z). The ranges are 0 < p 1 and -CC < z < 0. The form of 
p(z) is therefore as suggested in Figure 10.43. If the function T(p) is defined by 

Figure 10.43 The Function p ( r )  

then T(p) is the magnitude of the abscissa 0- in Figure 10.43. This introduction 
causes the transformation from (10.139) to 

The lower limit on the integral in (10.141) can be explained by returning to (10.127) 
and noting that 

since $, = n/2. 
The integral in (10.141) can be inverted by the following stratagem: Let g(K) 

be defined by 
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in the interval 0 < K  5 I .  Multiply (10.143) by 2(K" p2)-1/2 and integrate with 
respect to K from p to I. This gives 

With the order of integration interchanged, (10.144) becomes 

Let the integration variable z be defined by 

K Z  = (s2 - p2)z + p2  

so that 

2K dK = (s2 - p2) dz 

This converts (10.145) to 

so that 

The result (10.146) can be applied to the function 

n $ ( k )  = - - arcsin K 2 

which can be recognized as part of (10.138). Thus $(K) can be written in the integral 
form 

' Kdp Kd(ln p) 
m(K) = SK p J ~ 2  - P2 = SK JK2 - p2  

This equation is of the type of (10.143) with T(p) = -In p. Thus from (10.146), 

Next, consider the entire function f(K) given alternatively by (10.138) and 
(10.141). Use of (10.146) yields 
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K ? dK 
T(p) - T(I) = -In p + -+ arcsin - - (10.150) r i  JK2 -- p2 

where this time T(p) = -.s(p) = -In r'. Since T(1) = 0, if the symbolism 

is adopted, (10.1 50) becomes 

In ( r  =II I  [(:)I= n -  w p -  (?'d?I + ~ o p , ~  ( L ?  
This equation, together with the defining relation p = nr' determines the required 
refractive index function n(r') in parametric form. 

For the special important case that r ,  = a and r2  = oo, o(p,  m) = 0 and 

l 1  arcsin v ( p , ) -  -dv 1 J v 2  - p2  

When this result is combined with (10.1521, one finds that 

This requirement could be satisfied by a medium with permeability everywhere 
equaling that of free space but with dielectric constant that decreases parabolically 
from a value of 2 a t  r = 0 to unity at r = a. In practice this is achieved by using a 
family of concentric shells, each with a constant refractive index to approximate 
(10.154) in steps. At least ten steps need to be used to obtain good performance. 

It is difficult to design a useful feed which has a phase center that can be placed 
directly on the surface of the Luneburg lens. If the first focal point is at r ,  > a but 
the second focal point is still at r2  - oo, Equation 10.152 gives 

arcsin (Klr;) dK In [n(rl)] - w(p, r') = - 

I rit arcsin (Klr;) dK 
= 1" [I + j1 (P/~:)'] - JK2 - p2  

Numerical solution of (10.155) will yield ~ ( r ' ) .  E. A .  WolffZ6 has provided results of 
such calculations in the form of a set of curves that are reproduced in Figure 10.44. 

26WoIff, Antenna Analysis, p. 496. 



Reflectors and Lenses 

Normalized radius r' = rla 

Fig. 10.44 The Required Radial Variation of Dielectric Constant in  a 
Luneburg Lens (From Antenna Analysis, by E .  A. Wolff. Copyright 1966, 
John Wiley and Sons, Inc. Used wi th permission.) 

The secondary aperture distribution of a Luneburg lens antenna can be deduced 
with recourse to Figure 10.45. The ray which leaves the point source at P ,  and enters 
the lens at Q ,  emerges from the lens at Q,,  parallel to the X-axis. The coordinates of 
Q ,  are (a, 0). From (10.127) and Figure 10.45, 

r ,  sin a = a sin $ = a sin 8 (1 0.156) 

Let I(a, p) be the radiation intensity of the point source placed at P, .  Then 
I(a, p) sin a da d p  is the tubular power flow toward the lens. If (p, P) are polar 
coordinates in the secondary aperture plane .r = constant and P(y, P) is the power 
density in that plane, then 

I(a, /I) sin a da d p  = P(y ,  p)p dy d p  (10.157) 

But y = a sin 8, and use of (10.156) gives 

y = r ,  sin a dy = r ,  cos u da (10.158) 

Substitution in (10.157) produces the relation 
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Fig. 10 .45  A Luneburg Lens Focused at Infinity 

The square root of (10.159) gives the amplitude of the equiphase secondary aperture 
distribution. From this the equivalent Huyghens sources and the secondary pattern 
can be deduced. 

A Luneburg lens can also be used as an efficient back-scatterer by covering as 
much as half of its outer surface with a reflector, as suggested by Figure 10.46. This 
will cause an incoming wave, incident from any direction in a half-space, to be 

Fig. 10.46 A Luneburg Lens 
Reflector 
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reradiated with a secondary pattern with a main beam pointing in the incident direc- 
tion. Maximum efficiency occurs if the direction of arrival of the incident rays causes 
them to  be brought to  a focus a t  the central point of the reflecting surface. 
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PROBLEMS 

10.1 Show that in a homogeneous medium the polarization of the geometric optics field 
remains constant along a ray. 

10.2 Use the results of Section 10.2 to demonstrate Fermat's principle: The ray from a 
point P I  to a point P2 is the curve along which the phase delay is a minimum with 
respect to infinitesimal variations in path. 

10.3 Show that the law of reflection is satisfied for the paraboloidal reflector defined by 
Equation 10.32 when primary rays emerge from its focal point and all secondary rays 
are assumed to be collimated parallel to the X-axis. 

10.4 Design a shaped cylindrical reflector to produce the secondary pattern shown in Figure 
10.13. Let $, = 20" and $2 = 80" and use the primary pattern I($) = cos[3($?1 - 50°)]. 

10.5 Design a shaped cylindrical reflector to produce the secondary pattern shown in Figure 
10.13. Let = 0" and $2 = 60" and use the primary pattern I ($ )  = cos[3($ - 30°)]. 
Use a crisscross relationship between primary and secondary rays, that is, $ = 0" 
corresponds to 6 = 21°, . . . , $ = 60" corresponds to 6 = 0". Do you see an advan- 
tage to such a design? 
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10.6 If 6($) is a constant so that all secondary rays are collimated, show that Equation 
10.43 gives the equation of a parabolic cylinder. 

10.7 Design a doubly curved reflector to produce the secondary pattern shown in Figure 
10.13. Let 4, = 0" and (b2 = 60" and assume I($) = cos[3($ - 30°)]. Use an itera- 
tive procedure to determine the backbone curve, and terminate when the last itera- 
tion gives a p($) which differs from the penultimate p($) by less than 0.1 %everywhere. 

10.8 Assume that the feed for the reflector designed in Problem 10.7 is vertically polarized. 
If the reflector is to be constructed of parallel vertical metallic plates 114 on centers, 
118 thick, and 112 deep, find the shape of each plate. Assume that the H-plane pattern 
is to have a central main beam with a 5' half-power beamwidth and symmetric side 
lobes. 

10.9 Repeat the calculations for the illustrative example of Section 10.7 with the primary 
radiation down 5, 15, and 20 dB at the reflector edges. Determine thereby the secon- 
dary aperture efficiency and aperture blockage as functions of spillover. 

10.10 Determine the secondary aperture distribution for the shaped cylindrical reflector of 
Figure 10.15. Try a sequence of values for p(OO) until the half-power beamwidth on 
the ground side agrees with specification. 

10.11 Find the equation of a paraboloid in spherical coordinates centered at the focus. 

10.12 Show that, for a paraboloidal reflector, the relation between primary feed pattern 
I($, y )  and secondary aperture distribution P(r, y )  is given by 

The geometry of Figure 10.6 applies: $ is the angle a primary ray makes with the 
negative X-axis and (r, y )  are polar coordinates in the plane x = a. 

10.13 Assume a paraboloidal reflector with anf/D ratio of 0.5 and with D = 101 is fed by 
a vertically polarized horn that has a radiation pattern given by Equations 3.8 and 3.9. 
Find the proper values of a11 and b/A to cause a - 10 dB spillover at the reflector edge 
in each principal plane. Then use the result of Problem 10.12 to determine the second- 
ary aperture distribution. From this, find the equivalent Huyghens sources and then 
compute the far-field pattern in the two principal planes. 

10.14 Add in the effect of aperture blockage to the results of Problem 10.13, assuming a 
perfect void in the secondary aperture distribution due to total absorption by the 
horn of the secondary field incident on the horn mouth. 

10.15 Repeat Problem 10.13 using the reflector current distribution calculated under geo- 
metrical optics assumptions. 

10.16 For an unmodified Cassegrain antenna system, find the relation between an axially 
symmetric feed pattern and the secondary aperture distribution. 

10.17 Show that Snell's law of refraction is satisfied at the elliptic cylinder surface shown in 
cross section in Figure 10.31a, with the equation of that surface given by (10.83). 

10.18 Show that Snell's law of refraction is satisfied at the hyperbolic cylinder surface shown 
in cross section in Figure 10.31b, with the equation of that surface given by (10.58). 

10.19 Make an accurate scale drawing of the surfaces of an ellipsoidal lens for which f/f, = 
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2.56 if a l l  = 5 and y,,,/A = 5. Show two alternate weight-saving designs in which 
you have stepped one or the other of the lens surfaces. 

10.20 Repeat Problem 10.19 for a hyperboloidal lens. 

10.21 Consider an elliptic cylinder lens antenna for which n = 0.5, with ym,,/l = 5 and 
dm,, = 45". If the primary radiation intensity is given by 

sin2 (T sin 4 )  
44) = ( y  sin 4 )  

and if b / l  is chosen to have a - 10 dB spillover, find the secondary aperture distribu- 
tion. From this, determine the equivalent Huyghens sources and the secondary pattern. 

10.22 Repeat Problem 10.21 for a hyperbolic cylinder lens antenna with n = 2.0. 

10.23 An ellipsoidal lens antenna for which n = 0.5 has a span of 101 and $,,, = 28". If 
the primary radiation intensity is rotationally symmetric and given by I (6 )  = cos 34 
watts per steradian, find the secondary aperture distribution. Then deduce the equiva- 
lent Huyghens sources and the secondary pattern. 

10.24 Repeat Problem 10.23 for a hyperboloidal lens antenna with n = 2.0. 

10.25 Design a shaped cylindrical constrained (metal plate) lens to produce the csc2 0 secon- 
dary pattern shown in Figure 10.13. Use n = 0.5. 

10.26 Design a metallic strip artificial dielectric with practical dimensions at S band (3 GHz) 
to give an equivalent relative permittivity of 4.0. 

10.27 Find an expression for the refractive index function of a Luneburg lens when the foci 
P, and P2 are symmetrically disposed with respect to the lens center. What specific 
form does this expression take if the foci are on the lens surface? 
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rednetion of the vector 
green's fornula for E 

In Chapter 1 the vector Green's theorem is used to establish the relation (1.50), 
namely, 

= -Is ,... ,,., (ya x V, x E - E x Vs x ya) I, dS 

This equation can be transformed in the following manner: Using the ninth vector 
identity listed on the inside of the back cover, one may write 

Vs x Vs x ya  = V,(Vs ya) - V5ya ('4.1) 

However, 

Vs va  = yVs . a + a Vsy = a V,v (A.2) 

since a is a constant vector. Also 

because y satisfies the scalar wave equation Viy + k2y  = 0. Thus 

Employing both (A.4) and (1.46), one obtains 



A Reductron of the Vector Green's Formula for E 

Use of the third vector identity (inside of back cover) gives 

so that the left side of (1.50) becomes 

in which the divergence theorem has been employed. 
The constant vector a may also be taken out in front of the integral sign on the 

right side of (1.50). Since, with the aid of the fifth vector identity (inside of back cover) 
and the triple scalar product, one can write 

[E x (V, x ya)] 1, = [E X (V,y x a)] 1, =[(I, x E) x V,y] a 

[ya x V, X E l -  1, = -joy(a X B ) *  I , =  j o y a *  (1, x B) 

it follows that 

But (A.5) and (A.6) are modified forms of the left and right sides of (1.50), so they 
are equal to each other. And since this is true for any arbitrary constant vector a, 
it follows that the integrals themselves must be equal. Thus 

- jS [(I. E)Vsy + (1. X E) X VSV - j o y ( l n  X B)1 dS 
I.. . SN 

= jX [(I. E)Vsy + (1. X E) x V S ~  - jwy(1. X Bll dS (A.7) 

where, for convenience, the surface integral over the sphere I: has been split off. 
Consider this integral. On the surface of the sphere C one has 
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If dS1 is the element of solid angle subtended at P by a surface element dS  on C, 
then the right side of (A.7) can be written 

Since both integrals in (A.9) are well behaved at P, it follows that 

4n 

lim 1 = -1irn e - j k 6  IO4'E dS1 = -E(P) d R  = -4lrE(P) (A. 10) 
6-0 6-0 

Next consider the limit, as 8 -- 0, of the left side of (A.7). Obviously the surface 
integrals are well behaved because P is restricted to be a point within V and thus is 
not on any of the bounding surfaces S,. As V' -+ V, the volume integral is also well 
behaved. To see this, spherical coordinates may be introduced centered at P. Then 
dV = RZ sin 0 dR dB d$. Since y /  and Vsy/ contain terms involving R-' and R-2 only, 
the contribution of the volume element at R = 0 to the volume integral in (A.7) is 
finite. Therefore the limiting value of (A.7) is 

' I -  
(A. 11) 

in which (x, y,  z) are the coordinates of the point P, and it is to be remembered that 
a time factor e j w r  has been suppressed. 



be wave eqnnathns for A and 0 

In Chapter 1 the potential functions A and 4 were introduced by the defining relations 
(1.80) and (1.81): 

Upon taking the divergence of (B.l) one obtains 

since J is not a function of (x, y, z). But 

in which use has been made of the third vector identity listed on the inside of the 
back cover. If Vs J is replaced by - jop in accordance with (1.45), (B.3) may be 
written 

after the divergence theorem has been employed. Since S may be made large enough to 
encompass all the sources without containing any of them in its surface, the second 
integral in (B.4) vanishes and one is left with the conclusion that 
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Through application of the Fourier integral, if J and p are general functions of 
time, one sees that 

these integrals being natural extensions of (B. 1) and (B.2). Because linear superposi- 
tion has been employed, it follows that A  and cf, as given by (B.6) and (B.7) also 
satisfy (B.5). Further, the fields E and B  arising from the sources J ( t ,  7, C, t) and 

tl, C, t) satisfy 

E = - V @ - A  (B.8) 

B - V X A  (B.9) 

These equations are restatements of (1.82) and (1.83) but for the more general poten- 
tial functions (B.6) and (B.7). 

If one takes the divergence of (B.8) and the curl of (B.9), the result is 

which, with the aid of (B.5) and (B.8) become 

(B. 10) 

(B. 11) 

Thus both A and cf, satisfy the same type of differential equation, the solutions being 
given formally by (8.6) and (B.7). 



p derivation of the 
& Chebyshev poly nowials 

Chebyshev's differential equation is 

To find a solution, assume Tm(u) can be expressed as a power series, namely, 

and then 

Tk(u) = 2 nanun- and T;(u) = C n(n - l ) a , ~ " - ~  
n= l 

n = 2  

Substitution in ( C . l )  gives 

When the coefficients of u raised to  the various powers are separately equated to 
zero, one obtains 

2az + m2uo = O n = O (C.4) 

6a,  + (m2 - l )a ,  = 0 n = 1 ( c . 5 )  

(n + 2)(n + l )a,+,  + (rnz - n2)an = 0 n 2 2 ( c . 6 )  

From (C.6),  the recursion relation 

arises, and is seen to truncate for n = m if m is a positive integer. 
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For m an even integer, (C.4) and (C.7) in conjunction indicate that all the even 
coefficients can be expressed in terms of a,, with the highest nonzero coefficient being 
a,. If in such circumstances a,  is arbitrarily set equal to zero all the odd coefficients 
are zero by virtue of (C.7). The result is a solution to (C . l )  that is a polynomial of 
degree m containing one arbitrary constant a, and only even powers of u. 

Similarly, if m is an odd integer, (C.5) and (C.7) taken together reveal that all 
the odd coefficients can be expressed in terms of a,,  with the highest nonzero coeffi- 
cient being a,. If in such circumstances a, is arbitrarily set equal to zero all the even 
coefficients are zero by virtue of (C.7). The result is a solution to (C.  1) that is a poly- 
nomial of degree m containing one arbitrary constant a,  and only odd powers of u. 

For m an even positive integer, (C.4) and (C.7) give 

Manipulation of (C.8) yields 

~ ( m ) ( :  , I ) .  . . + n - - . .(?- E + 
a, = (- I)-" ' a ,  

2 2 2 2 2 2 2 
n !  

If m = 2N and n - 2n'. then 

22"' 
a',,, = (- I)-"'a9 - ( N  + n' - I)! N !  

( 2 n )  N - I ) !  ( N  - n ' ) !  

From (C.2), 

N 

- - , 4 n' - 
"'-0 (2n') ! ( N  - n' )  ! 
Y N - a, c (-I)-"' - . ( N  t n ' ) !  (2u)2.T 

a - 0  N -? n' ( 2 n f ) ! ( N  - n' ) !  

( C .  10) 



C Derivation of the Chebyshev Polynomials 

If one chooses a, so that TzN(0) = (- then from (C. 10) 

When this value of a, is inserted in (C.10), the result is 

(C. 1 1) 

Equation C. l l  is the general expression for an even-degree Chebyshev polynomial. 
Similarly, if m is an odd positive integer, 

an = (-l)-(n-l)/za 1 (rn+n-2)~~~(m+3)(m+l)(m-l)(m-3)~~~(m-[n--~]) 
n! 

(C.  12) 

If the substitutions m = 2N - 1 and n = 2n' - 1 are made, manipulation of (C. 12) 
gives 

(C. 13) 

From (C.2), 
N 2211-2 

T,,-,(u) = o l C  (-1)-("-l) + - ( N ;  l; I) uzn-I (C. 14) 
n =  1 

It is customary to choose a ,  so that the slope of TZN-,(u) is (2N - l)(-l)N-l at the 
origin. When this done, 

N 

TzN- 1 ( ~ )  = C (- (C. 1 5) 
n =  1 

Equation C.15 is the general expression for an odd-degree Chebyshev polynomial. 



D a general expansion of cosm v 

The development will be restricted to the case in which m is an integer. Since 

The binomial expansion gives 

If m is odd, there is an even number of terms in this sum, occurring in pairs, such that 

With the substitution m = 2n' - 1, (D.3) becomes 

1 n'-1 

~ o s ~ ~ , - l  v = 5, 2 (2n'' l) cos (2n1 - 2n - i )v 

Finally, with the additional substitution I = n' - n, one obtains 

Equation D.5 is the general expansion of cosm v for m an odd positive integer. 
If one returns to (D.2) and asserts that m = 2n' is an even integer, then 



D A General Expansion of cosm v 

Now there is an odd number of terms in the sum, composed of pairs plus a single 
term, such that 

1 2n' 1 n'- 1 

c0szn, v = p ( ) + " = o  c (2:') cos 2(nr - n)v 

If the substitution I = n' - n  is once again used, then 

1 "' 2n' cos2", w = - F ,  ( ) COS 21v 
2 2 " ~ = ~  n ' - I  

in which 6 ,  = 1, 6,  = 2 for 12 1. Equation D.8 is the general expansion of cosm v 
for m an even positive integer. 



approximdion to the magnetic E vector potential f i n d o n  
for slender dipoles1 

In Chapter 7, the potential function 

is encountered in Equation 7.18. Here K,(z1) is the lineal current density flowing on 
the outer cylindrical surface of the dipole (which is assumed to be composed of a 
perfect conductor and to have a length 21). Because of the circular cross section and 
the $-symmetric method of feeding the dipole, K, is not a function of I$. The quantity 
R that occurs in (E.l) is the distance between the source point (x', y', z') and the 
field point (x, y, z), both of which lie on the outer cylindrical surface of the dipole. 
If the source point and field point are expressed in cylindrical coordinates by (a, $, z') 
and (a, p, z), respectively, with a the dipole radius, then 

R = [2a2 - 2a2 cos (4 - p) + ( Z  - z ' ) ~ ] ~ ' ~  (E.2) 

By symmetry, a(z) is independent of P,  so no loss in generality accrues from setting 
8 = 0 in (E.2). 

It is desired to determine how closely (E. I) is approximated by 

in which I(zf) = 2na K,(zf) is the total axial current and 

'The proof presented here is patterned after one which can be found in J. Galejs, Antennas in 
Inhomogeneous Media (Oxford: Pergamon Press, 1969), $2.5. 



E Approximation to the Magnetic Vector Potential Function for Slender Dipoles 

Equation E.3 represents the magnetic vector potential function evaluated at the field 
point (a, 0 ,  z )  when the current is concentrated on the Z-axis. 

With ka (( 1 and a << I, Functions E.l and E.3 are approximated very well by 

4nIZ - z'I 
KZ(z1)a d$ dz' 

2n e- lk l z - z ' l  

+ L'+, 1 4x12 - z ' I  
KZ(zt)a d$ dz' 

and 

a , ( z )  = 4 n l z  - z'I I(z') dz' 

Z(zl) dz' 

I e- jk lz -z ' l  

Z(zl) dz' 
.+b ' 7 ~  I - Z' I +S 

in which b )> a (for example, b = 10a). 
The first and third integrals respectively of these two expansions are equal 

and thus the two potential functions differ primarily because of the second integrals, 
that is, 

a ( z )  - a , ( z )  r 1" Kz(z')a d$ dz /  

(E.7) 
I(zt)  dz' 

In the range z - b I z' 5 z + b, k R  and kr are small and e-jkR and e-jkr can be 
replaced by 1 - j kR  and 1 - jkr. The integrals associated with the factors -jkR 
and -jkr in (E.7) cancel, leaving 

It  is reasonable to assume that KZ(zt)  is slowly varying in the interval 2b and thus 
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Execution of the z'-integrations gives 

When the $ integration is performed on the term y = 0 in the first part of (E.10), one 
finds that the result exactly cancels they = 0 term in the second part of (E.lO). Thus 

a , ( z )  = -- - In (b + Jb2 + 2a2(1 - cos 4)  d$ - - !2{21nlK 
(E. l l )  

Equation E. I I can be put in the more compact form 
2" b + Jb2 + 2a2(1 - cos4) 

b + JP-T-2 d$ (E. 12) 

from which it can be recognized that the integrand consists of the logarithm of a 
number that is never far from unity. Indeed, a power series expansion gives 

b  + J b 2  + 2a2(1 - cos $) 
In- a 2  -2cos$ )+  . . -  

b + J m  I 
2 cos $) (E. 1 3) 

When (E.13) is used in (E.12), the integration is simple and gives 

(E. 14) 

If one returns to (E.6), it is evident that U,(z) receives its principal contribution from 
the second integral and that 

A good measure of the adequacy of the approximation is the ratio 

z )  - 1 )  (albI2 
a,  (z) - 4 1n (2b/a) 

(E. 15) 

(E. 16) 

If b  = 10a, this ratio has the value 0.0008. Even for b = 4a it is only 0.0075, less than 
a 1 "/, error. Thus it is acceptable to use (7.25) as an approximation for (7.24) if the 



E Approximation to the Magnetic Vector Potential Function for Slender Dipoles 

computations include an integration that extends over a length of the dipole of at 
least plus and minus several wire diameters. This is possible for all values of z except 
those close to z = 51, but in those small regions Z(z) is negligible and the value of 
a(z) is small, so the error is not serious. 



dihetiorm by phne cormdncting F sueens: Babhel's principle 

Wire grids or arrays of slots in a ground plane excited by primary radiators such as 
horns, or even by plane waves caused by remote sources, can be designed to have 
useful antenna characteristics. A powerful integral equation technique which permits 
deduction of the scattering off such planar obstacles when excited by very general 
primary sources has been formulated by E. T. Copson.' An important result arising 
from Copson's formulation is a rigorous statement of Babinet's principle for comple- 
mentary conducting screens. 

Consider an infinite, perfectly conducting ground plane of negligible thickness 
in which an arbitrary collection of arbitrarily shaped holes has been cut, as suggested 
by the first screen in Figure F.1. The holes have surface areas S , ,  S,, . . . , S,, to 
which reference will be made by the abbreviation Z,. The metallic portion of the 
screen will be designated by 2,. Imagine that sources in z < 0 cause an electromag- 
netic field distribution throughout space (in the absence of the screen) designated by 
(Ei, Hi). The sources induced in the screen cause a scattered field (E", H" and the 
total field at any point in space is given by 

The total field in z > 0 (see Section 1.12) can be determined from the equivalent 
sources 

with (t, q, 0+) any point in a plane in z > 0, parallel to and infinitesimally close to 
the screen. The potential functions for these equivalent sources are (see Section 1.12) 

IE. T. Copson, "An Integral Equation Method for Solving Plane Diffraction Problems," 
Proc. Roy. Soc. London, 186A (1946), lO(r18. 



F Diffract~on by Plane Conduct~ng Screens. Bab~net's Principle 
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Fig. F.1 Complementary Thin Conducting Screens 

in which y = e- jkR/R with R = [(x - 5)2 + ( y  - 1)' + z2]',". 
Equations 1.106 and 1.107 can be used to establish that, for any point ( x ,  y ,  z )  in 

z > o ,  

-do, 
Ex = dF, - j o A x  - - H ,  = -p-l  d A Y  - j o r o F ,  - d@m 

dz  dx  O dt e0 dx  

do, dFy , dF, E =- - - -  d@m 1 ~ A Y  - Po-  I aa, Hz = -6,  --- + - 
dz dx  , dy dz  d x  d~ 
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Since all of the potential functions are even in z, their first derivatives with 
respect to z must be odd in z. When the field components in (F.4) are evaluated at 
(x, y, -z), the result must be zero, because these equivalent sources were chosen so 
as to give null fields in z < 0. But this means that, for any point (x, y, z) in z > 0, 
the first term on the right side of any equation in (F.4) is equal to the sum of the 
following two terms. For this reason (F.4) can be rewritten in either of two distinct 
forms. 

do do, do, E = - 2 j o A  - 2 -  E = - 2 j w A , - 2 -  E , = - -  
.z dx d~ d z 

It can be observed that (F.5) gives the field components entirely in terms of the 
equivalent magnetic sources, whereas (F.6) involves only the electric sources. 

FORMULATION FOR &/I;, SMALL If the collection of holes C, is a small 
fraction of the entire screen, it is clear from a study of (F.3) that it is advantageous 
to select the set in (F.5) because then the pertinent potential functions require only 
integration over C,. It will be assumed in what follows that screen 1 fits this descrip- 
tion and that (F.5) will be used to represent the fields in z > 0. 

With the primary sources in z < 0, the determination of the total fields in z < 0 
cannot be achieved quite so directly. However, one can observe that 

The scattered field components that occur in (F.7) are even in z, that is, 

as a consequence of which the total field components appearing in (F.7) are also even 
in z. Therefore the scattered fields anywhere in z < 0 can be deduced through use of 
the equivalent magnetic sources 
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which give rise to the potential functions 

(F .  10) 

= - a m ( &  )', Z )  - @L(x, Y ,  Z )  (F .  1 1) 

The potential functions F:, F;, and Wm in (F.9)  through ( F . l l )  are those that 
would apply for the back-scattered fields in z < 0  if the screen contained no holes, 
for then 

E:(C, tf, 0 )  = - E X  q,O),  E;(C, q ,  0 )  = q ,  O), 

HXC, 4 , 0 )  = - H : ( t ,  q ,  0 )  

The total field in z < 0  can be found by operating on the potential functions F:, Fi ,  
and Qk as prescribed by Equations F.5 in order to get the scattered fields and then 
adding the components of the incident field. This gives 

Hx = HI: + 2joeoF,  + 26 d@m Hy = H: + 2 joroFy  + 26,- (F. 12) 
d y  

In (F.12), EO = Ei + Er, H0 = Hi + IT is the total field in z < 0  for the case 
X I  = 0 .  
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To summarize the results to this point, one can say that the total field in z > 0 
can be obtained in terms of the potential functions Fx, Fy, and @, via (F.5), and that 
the total field in z < 0 can be obtained in terms of the potential functions Fx, Fy, and 
@, via (F.12) if one adds the total field that would exist in z < 0 if the screen were 
closed. There still remains the task of finding the aperture distribution Ex(t ,  q,  O f ) ,  
E,(cf, q, 0+), and H,(t, q, 0+) so that the potential functions are known. 

Since E,, Hx,  and Hy must be continuous across the holes C,, it follows from 
(F.5) and ( F .  12) that if ( x ,  y,  z)  is a point in the screen occupied by a hole, then 

( F .  13) 

Because 

E:(x, Y ,  0 )  = Y ,  01, H:(x, y, 0 )  = HXx,  y, O ) ,  H;(x, y, 0 )  = H:(x, y, 0 )  

Equations F. 13 reduce to 

( F .  14) 

and thus the integral equations linking the unknown aperture field to the incident 
field are 

(F.  15) 

in which 
e-  j k r  

Yo = -- r 
r = [(x  - O2 + (Y  - q)'] ( F .  16) 

with both the source point ( t ,  q, 0 )  and the field point ( x ,  y, z )  lying in 1, 
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FORMULATION FOR Z,/Z, LARGE If the collection of holes X I  is a large 
fraction of the entire screen, Equations F.15 are difficult and costly to solve for the 
aperture distribution. It then proves useful to return to the alternate expressions for 
the fields, embodied in (F.6), and proceed as follows. 

Let the sources of the incident field be in z < 0. The total field in z > 0 is 
(Ei + Em, Hi + H'), and the scattered field in z > 0 can be found from (F.6) if 

(F. 17) 

It is important to note that the integration in (F.17) extends only over X,, that is, 
the material portion of the screen. This is a consequence of the fact that, because the 
screen has negligible thickness, H:, H;, and E: are identically zero in XI. 

The total fields in z > 0 are therefore given by 

(F. 18) 

Upon reflection, one can conclude that (F.18) also applies in z < 0. The reason for 
this can be seen by examining one of the potential functions. The scattered field in 
z < 0 can be found in terms of the equivalent sources 

which gives rise to potential functions such as 

(F. 19) 

But H;(t, q, 0-) = -H;(<, 7, Of) anywhere on Z,, and therefore A: = A,. Simi- 
larly, A: = A, and @' = @, and thus (F.18) is valid everywhere, both in z > 0 and 
z < 0. 

The problem still remains that the aperture distribution of the scattered field is 
unknown. But Ex,  E,, and Hz must vanish everywhere on C,, and thus (F.18) yields 
the integral equations 
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Just as (F.15) is the preferred form to  use when finding the aperture distribution if 
C,/C, is small, Equations F.20 are preferable when C,/C, is small. 

BABINET'S PRINCIPLE An interesting coupling of (F.15) and (F.20) can be 
made when two screens are complementary. This situation is suggested by Figure 
F. 1, which shows a second screen with holes and material that are an exact interchange 
of what one finds for the first screen. Thus C ,  for the first screen is matched by C, for 
the second screen. In such cases, if (F.  15) is used for screen 1 and (F.20) for screen 2,  
the integrations are over exactly the same regions. Suppose further that, throughout 
all space, 

in which ( E : ,  H : )  is the primary field which excites screen 1,  (E',, H i )  is the primary 
field which excites screen 2, and K = 1 ohm; 4 = I/= is the impedance of free 
space. 

When (F.21) is used in (F.  15) and the result is compared to (F.20), orle finds that 

which m e a n s  

Fx(x,  J,, 2 )  = ~ p ; ' A , ( x ,  Y ,  z )  Fy(x, y ,  z )  = ~ p ; ' A , ( x ,  y ,  z )  
(F.23) 

Qrn(x, 1', Z )  = Kp;'@(x,  Y ,  Z )  

If  the relations given in (F.23) are used in (F.5) and the results are compared to ( F .  18), 
it is discovered that 

K E , T ~ H 2 = E i  and H , - 7 E , = H i  z > O  (F.24) 
4 

zConceptually, the relationship between the two primary fields given by (F.21) can be achieved 
as follows: Let (Ji ,  p i )  be the sources for (E:, Hi).  Replace these sources by a fictitious set (J,, p,) 
which give the same field (Ei, Hi) everywhere. Finally, replace the magnetic sources by electric sources 
(J;, p i )  such that J: - - m O J m  and pi == - -~ f ,p , .  The sources (J:, p i )  will cause a field (El,  HI) 
which satisfies (F.21). 
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Similarly, when (F.23) is substituted in (F. 12), comparison with (F. 18) establishes that 

K E I - K H , = E ;  and H , + - E , = H ;  z < O  
1 (F.25) 

Equations F.24 and F.25 are a rigorous statement of Babinet's principle for thin, 
perfectly conducting plane complementary screens. The scattered fields are comple- 
mentary in the sense that if the incident fields on the two screens are related by (F.21), 
then the total fields on the two sides of the screens are connected in the manner given 
by (F.24) and (F.25). This result is particularly useful when an incident plane wave is 
assumed, for then (F.21) indicates that a rotation of 90" in the polarization is all that 
is needed to obtain the incident field for the second screen. The complementary fields 
are then such that their vector sum is a uniform plane wave; the (8, $)-dependencies 
of the total fields are compensatory. 



the far=field ina qlinadrical 6 mori~iniates 

The situation occasionally arises in antenna analysis when it is convenient to assume 
that an aperture is infinitely long in one dimension and that the sources and fields are 
independent of that coordinate. This reduces the analysis to a two-dimensional 
problem, and as a result cylindrical coordinates become the natural choice as frame- 
work for the mathematical development. I t  is therefore desirable to establish expres- 
sions for the far field in cylindrical coordinates due to aperture distributions of this 
type. 

One can begin with the general forms of (1.1 10) for the retarded vector potential 
functions. With the aperture assumed to be a cylindrical surface S, infinitely long in the 
2-direction (see Figure G. l), and with the aperture distribution z-independent, these 
expressions become 

with (x, y, z) the field point and (r, q, c) the source point. Because all the sources are 
z-independent, no loss in generality results from taking the field point to be in the 
XY-plane, and this has been done in (G.1). Thus 

The two integrals in (G. 1) are mathematically similar and the remainder of the 
treatment applies equally well to either. Proceeding with A, one can write 

with dl an increment in length along the transverse contour C. 
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Fig. G.l  An Infinitely Long Cylindrical Aperture 

The integral 

with R given by (G.2), can be evaluated in the following manner. 
Hankel functions of the first and second kind can be defined in terms of contour 

integrals in the complex plane which take a variety of forms. Of pertinence to the 
present development is the relation1 

. ,.m 

in which Hb2)(u) is the Hankel function of zero order and the second kind. In (G .9 ,  
integration is along the axis of reals. 

ISee, for example, G. N .  Watson, A Treatise on the Theory of Bessel Functions, 2nd Ed. 
(London : Cambridge University Press, 1952), p. 180. 
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If the substitutions 

p '  = [(x - O2 + (y  - q)2]1,'2 u = kp' R = p f  cosh v (G.6) 

are introduced, (G.5) becomes 

Comparison with (G.4) reveals that 

Since the interest here is in the far field, kp' )))) 1 and the asymptotic form can be 
used for the Hankel f ~ n c t i o n , ~  that is, 

H?(kp1) 4 JL e - j ( k ~ ' - n  4 )  
nkp'  

Further, from (G.6), 

p' = [x2 + y Z  - 2 x l  - 2yq + e2 + v2]l 

(G. 10) 

where polar coordinates have been introduced via the transformation 

x = p c o s $  y = p s i n $  (G. 11) 

Thus 

ffb2)(kp') dx e - ~ ( k ~ - z  4 ) e i k ( t c o s  + + q s i n  $1 (G. 12) 
n k p  

When this far-field approximation is placed in (G.3), one obtains 

A(p, $ 9  t )  = K(5, tt)ejk(C cos @ + q  sin 6) dl (G. 13) 

Therefore A can be viewed as the product of the outgoing cylindrical wavefactor 

and the weighting function 

(G. 14) 

(G. 15) 

zlbid., pp. 196-98. 
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Similarly, F in the far field is the product of the cylindrical wavefactor (G. 14) 
and the weighting function 

~ ( 4 )  = f K.(c, t t )e j*(<~~s  4+7 si*) dl (G. 16) 
C 

If the operations indicated by (1.1 19) are performed and only terms in p - ' I 2  are 
retained, one finds that 

E = -  j o A ~  + jk(l, x FT) (G. 17) 

which is the same result as (1.123), obtained earlier for the spherical wave case. With 
suppression of the cylindrical wavefactor, 

(G. 18) 

wherein 

a,($) = fC [-sin 4Kx(C, 11) + cos WAC, tl)lejk" dl 

(G. 19) 

with 6: = 5 cos 6 + q sin 6. Equations G.18 and G.19 can be used to determine the 
far field for cylindrical apertures that are infinite in extent in the Z-direction and 
contain sources that are z-independent. 



the utility of a csc2 8 pattern 

Consider an antenna A whose radiated pattern is @(e,$I) watts per steradian. Let this 
pattern be illuminating a target whose transverse radar cross section is a. If the target 
is flying at a constant height h, as shown in Figure H. 1, when the range is r the eleva- 
tion angle 0 is given by 

r csc e = - 
h (H.1) 

Assume that the target is flying in a straight line path in the half-plane $I = 0". Then 
the intercepted power at range r is 

@(O, 0") a watts 
r (H.2) 

It will be assumed that this power is reradiated isotropically. 
If the target is at a different range r', corresponding to a different elevation 

angle 8', and if the radar cross section a is unchanged, the incident power is 

@(B1, 0") -E watts 
(r1I2 

(H.3) 

It will be assumed that this power is also reradiated isotropically. It is equivalent to 
an isotropic source at (r, O', 0") which radiates 

a r2 @(8', 0") - - watts 
(r (r (H.4) 

The signals detected by antenna A when in its receive mode are in the power 
ratio 
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Antenna 

Fig. H. l  Radar Acquisition of a Target with a Horizontal Flight Path 

If it is desired to have P(0')  = P(0), then 

constant 

When (H. 1) and (H.7) are combined, the result is that 

Thus if the principal plane pattern is designed to be proportional to the square of the 
cosecant of the elevation angle, the received signal from a target flying at constant 
height has a strength independent of range. Such patterns have obvious application 
in target-seeking radar systems. For the same basic reason they are also useful in 
ground-mapping radars and airport beacons. One should note that this result depends 
on the premise that a is range-independent. Modifications of the csc2 8 formula are 
obtained when other assumptions arc made about the radar cross section. 



index 

AUTHOR INDEX 

Aharoni, J., 348 , 
Albert, G.E., 317 
Amitay, N., 139, 272 
Aronson, E.A., 317 
Attwood, S.S., 437 

Bach. H., 139 
Balmain, K.G., 78,139,193,277,300,348,423,532 
Barlow, H.M., 446, 480 
Bayliss, E.T., 183, 252 
Beck, A.C., 434 
Blass, J., 71 
Booker, H.G., 88, 272, 340-44 
Born, M., 483, 554 
Brown, J., 446, 480, 538 
Brown, L.B., 209, 248, 472 
Bruce, E., 434 
Butler, C.M., 387, 348 

Cheng, D.K., 197,238 
Chu, L.J., 18 
Clemmow, P.C., 272 
Cohn, S.B., 542 
Collin, R.E., 56, 139, 268, 272, 424, 446, 480, 538, 

554 
Copson, E.T., 573 
Cutler. C.C.. 440 

de Carvalho Fernandes, A.A., 434 
Deschamps, G.A., 377, 424 
DeSize, L.K., 554 
Dolph, C.L., 143, 196 
DuHamel, R.H., 379-84 
Dunbar, AS. ,  504 
Dyson, J.D., 376, 379 

Eaton. J.E.. 91-97 
Ehrlich, M.J., 450 
Eyges, L.J., 91-97 

Friis, H.T., 109 

Galejs, J.. 348, 569 
Galindo-lsrael, V., 139, 272, 522 
Goldstone, L.O., 456, 458 
Goodman, J.R., 272 
Goubau, G. ,  446 
Graham, O., 218-20 
Green, K.A., 522 

Hallen, E., 59, 286. 308-14, 431 
Hansen, J.E., 139 
Hansen, R.C., 217, 223 
Hansen, W.W., 448 
Harper. A.E.,  480 
Harrington, R.F., 286, 348, 456-57 
Harrison, C. W., 3 17 
Horton, C.W., 85-86 
Huyghens. C.. 31 
Hyneman, R.F., 192,460-62 

Ishell, D.E., 379, 385 

Jakes. W.C., 85 
Jasik, H., 78, 109, 193, 480, 554 
Johnson, Ralph M., 218-20 
Johnson, Ray M., 192 
Jordan, E.c.; 78, 139, 193,277, 300, 348, 376,423, 

532 

Kelly. K.C.. 459-64 
Khac, T.V., 408 
King, R.W.P., 283, 301, 308, 314-25, 348, 352,423 



Kraus, J.D., 73, 78, 207, 361-63, 424, 480 
Kurtz, L.A., 397, 399-421, 474 

LaPort. E.A.. 480 
LO, Y.T., 101-8, 344-48 
Love, A.W., 483, 521, 554 
Love, C.E., 526 
Lowry, L.R., 434 
Ludwig. A.C., 524 
Luneburg, R.K., 547-51, 554 

Ma, M.T., 272 
MacFarlane, G.G., 91-97 
Mack, R.B., 317-18 
Marcuvitz, N., 540 
Mayes, P.E., 376, 424 
Middleton, D., 314-21 
Mittra, R., 287, 424 
Morita, T., 292-93 

Neff, H.P., 294 
Newkirk, L., 450 
Norwood, V.T., 476 

Oliner, A.A., 456,458,464-67 
Ore, F.R., 382-83 

Patton. W.T.. 424 
Pocklington, H.C., 284 
Potter, P.D., 483, 524, 554 

Ramo. S.. 489 
Ramsay, J.F., 554 
Rhodes, D.R., 272 
Richards, W.F., 101-8, 344-48 
Rotman, W., 464-67 
Rumsey, V.H., 376-77, 456. 
Rusch, W.V.T., 483, 554 
Ruze, J., 515 

Scharp, G.A., 209,248,472 
Schelkunoff, S.A., 31, 59, 109, 128, 277 
Siller, C.A., 294 
Silver, S., 18, 43, 52, 56, 91, 109, 261, 504, ! 
Solomon, D., 101-8, 344, 48 
Stegen, R.J., 98-99, 408-10 
Stevenson, A.F., 91, 97, 110, 406 
Storer, J.E., 305-7, 315 
Stratton, J.A., 18 
Synge, J.L., 317 

Tai. C.T.. 299,301,306,334-36 
Taylor, T.T., 157, 216, 348 
Thiele, G.A., 283, 348, 375 
Tillman, J.D., 294 
Tseng, F.I., 197, 238 

LJda, S., 368 

Van Duzer. T., 489 

Walter, C.H., 446,453,456,458,464,480 
Watson, G.N., 582 
Whinnery, J.R., 489 
Williams, W.F., 524 
Wolf, E., 483, 554 
Wolff, E.A., 78, 139, 375, 424, 480, 529, 551, 554 
Woodward, P.M., 190 
Woodyard, J.R., 448 
Wu. C.P., 139, 272 

Yagi. H., 368 
Ye Kinber. B.. 552 

Zucker, F.J., 56, 139, 268, 272,424, 446. 451, 538, 
554 

SUBJECT INDEX 

Active slot admittance (impedance), 397-402 
Antenna: 

current distribution (general), 278-81 
defined, 3 
far-field, (general), 27-38 
input impedance, admittance (general), 386,401 

Aperture blockage, 495-98, 513-16 
Aperture distributions: 

for arbitrary side lobe topography, 165-89 
Bayliss, 181-85, 250-55 
discretized: 

conventional sampling, 225-33 
improved, linear arrays, 172-80 
improved, planar arrays, 233-37, 243-49 

Dolph-Chebyshev, 143-47 
modified Taylor, 165-72, 218-25 
Taylor circular, 213-18 
Taylor linear, 157-62 
Woodward, 190-93 

i54 
Aperture field method: 

aperture blockage, 513-16 
pattern calculations: 

parabolic cylinder reflectors, 509-13 
paraboloidal reflectors, 514-15 
shaped cylindrical reflectors, 517-18 

Arbitrary side lobe topography: 
linear array: 

difference patterns, 187-89 
planar sources, 2 18-49 
sum patterns, 172-80 

line source: 
difference patterns, 185-87 
sum patterns, 165-72 
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Array factor. 116-17 
Arrays of dipoles: 

linear, broadside, with ground plane, 386-90 
linear, endfire, two-wire fed, 363-67 
log-periodic, 379-85 
planar, broadside, with ground plane, 390-93 
scanning, 393. 97 
Yagi-Uda. 368-75 

Arrays of slots: 
linear, waveguide-fed: 

non-resonantly spaced. 467-76 
resonantly spaced, 397-414, 418-20 

planar, waveguide-fed, 414-1 8, 421-23 
Artificial dielectrics: 

discs and strips, 538-42 
metal plates, 542-45 

Bahinet's principle. 336-39. 573-80 
Balun feeds, 355-59 
Bayliss aperture distributions: 

line sources, 181-85 
planar sources. circular boundary. 255 

Bayliss synthesis of difference patterns: 
line sources: 

conventional, 18 1-85 
modified, 185-87 

planar sources, circular boundary: 
conventional, 250-55 
modified, 256 

Beamwidth of sum patterns: 
linear arrays, 118-25, 14853 

relation to directivity, 157 
planar arrays, 200-205 

relations to directivity, 206 
planar Taylor sources, 262-65 

Booker's relation, 339-44 
Broadside dipole arrays: 

linear, with ground plane, 386-90 
planar, with ground plane, 390-93 

Broadside slot arrays: 
linear, waveguide-fed, 397-414, 418-20 
planar, waveguide-fed, 414-18, 421-23 

Cavity-hacked slots, 359-63 
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Center-fed slots, theory, 86-88 
Chebyshev: 

differential equation, 143 
polynomials, 144-45, 564-66 

Circular grid planar arrays (see Planar arrays, 
circular grid) 

Circular polarization (see Polarization) 
Coaxial feeds: 
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for monopoles, 352-55 

Comparative performance of planar aperture 
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beamwidth, 262-63 
directivity, 261-62 

Conditions at infinity, 21-24 
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Constrained (metal plate) lens antennas, 542-45 
Corrugated ground planes, 440-42 
Corrugated surface antennas, 446-53 
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purpose, 585-86 
use, 500-504 

Current distribution method for reflector pattern 
calculation, 51 8-21 

Current distribution on an antenna: 
cylindrical dipole: 

formulation, 281-86 
Hallen's integral equation, 285 
solution, method of moments, 287-96 
theory and experiment compared, 293 

strip dipole, 321-25 
Current loops: 

small, 69-71 
traveling wave, 71-73 

Cylindrical dipole: 
cross section defined, 281-82 
current distributions: 

formulation, 278-86 
solution, method of moments, 287-96 

exact field, 329-32 
methods of feeding, 355-59 
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computation, 332-36 
formulation, 325-29 

pattern: 
formulation, 58-61 
with ground plane, 68-69 
half-wavelength dipole, 61-63 
short dipole, 64 

self-impedance: 
Hallen's first order solution, 310-14 
induced EMF method, 297-305 
King-Middleton second order solution, 314-16 
King-Middleton solution (improved). 3 17-19 
Storer's solution, 305-7 
Tai's formula, 301-3 
zeroth order solution, 308-10 

Design : 
of cavity-backed slot antennas, 359-63 
of dipole arrays, 363-97 
of dipole plus balun, 355-59 
of doubly curved reflector antennas, 504-508 
of dual shaped reflector systems, 521-25 
of fast wave antennas, 455-64 
of frequency-independent antennas, 375-85 
of helix plus ground plane, 361-63 
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of monopole plus ground plane, 352-55 
of patch antennas, 99-108, 344-48 
of rhombic antennas, 432-36 
of shaped cylindrical lens antennas, 536-38 
of shaped cylindrical reflector antennas, 521-25 
of slow wave antennas, 446-53 
of waveguide-fed slot arrays: 

linear, standing-wave-fed, 407-14 
linear, traveling-wave-fed, 467-76 
planar, standing-wave-fed, 414-18 

of Yagi-Uda dipole arrays, 368-75 
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field solutions, 437-40 
methods of excitation, 442-46 
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Dielectric lens antennas: 
calculation: 

far-field, 534-36 
frequency sensitivity, 533 
loss in dielectric, 534 
surface mismatch, 532 

shaped cylindrical, 536-38 
single surface types, 525-29 

ellipsoidal, 528 
elliptical, 527 
hyperbolic, 527 
hyperboloidal, 528 

spherical (Luneburg), 545-54 
stepped, 529-32 
use of artificial dielectrics, 538-45 

Dielectric loss (lens antennas), 533-34 
Dielectrics, artificial, 538-45 
Difference patterns: 

linear arrays, 125-28, 142 
line sources: 

Bayliss synthesis, 181-85 
discretization, 187-89 
side lobe structure arbitrary, 185-87 

planar apertures: 
continuous, circular boundary, Bayliss, 250-55 
continuous, circular boundary, modified 

Bayliss, 256 
rectangular grid, 207 

Diffraction by plane screens, 573-80 
Dipole (see Cylindrical dipole; Strip dipole) 
Dipole arrays: 

broadside: 
linear, with ground plane, 386-90 
planar, with ground plane, 390-93 

endfire: 
linear, two-wire fed, 363-67 
logperiodic, 379-85 
Yagi-Uda, 368-75 

scanning, linear, with ground plane, 393-97 
Directivity: 

of continuous planar aperture, 261-62 
defined, 46 
differentiated from gain, 47 
of linear array, 153-57 

Directivity (conr.) 
partial, 48 
peak, 47 
of planar array, 205-6 
relation to beamwidth, 157, 206 

Discretization: 
of continuous planar distributions: 

circular grid, 230-37 
rectangular grid, difference patterns, 256-61 
rectangular grid, sum patterns, 243-49 

of a line source, 172-80 
Dolph-Chebyshev synthesis, 143-47 
Doubly curved reflector antennas, 504-8 

Eggcrate lens antennas, 544 
Eikonal equation, 485 
Electromagnetic theory, review, 4- 16 
Element factor, 116-17 
Ellipsoidal lens antennas, 528, 535 
Elliptical lens antennas, 527-35 
Elliptical polarization (see Polarization) 
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Equivalence theorems: 
Schelkunoffs. 31-36 
Transmit and receive patterns, 41-46 

Equivalent sources: 
defined, 34-35 
Type 11 antennas, 36-38 

Exact field of a dipole, 329-32 
Excluded regions (see Stratton-Chu solutions to 

Maxwell's equations) 

Farfield: 
of arrays, 1 14-17 
of continuous distributions, 157-60, 213-16 
in cylindrical coordinates, 581-84 
Fourier integral representation, 265-71 
in spherical coordinates, 27-29 
Type I antennas, 27-31 
Type I1 antennas, 36-38 

Fast wave antennas, 453-64 
experiment, 460-64 
leakage rates, 456-60 
pattern synthesis, 455-56 
types, 453-55 

Feeding structures: 
balun, for dipole, 355-59 
coaxial: 

for cavity-backed slots, 361 
for helices, 361-63 
for monopoles, 352-55 

coaxial harness with baluns for ground-plane- 
backed dipole arrays, 386-93 

coaxial harness with baluns and phaseshifters for 
ground-plane-backed dipole arrays 
393-97 

for frequency-scanned arrays, 476-80 
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Feeding structures (con?.) 
for surface wave antennas, 442-46 
two-wire for endfire dipole array, 363-67 
waveguide, for slots: 

standing-wave, 397-423 
traveling-wave, 467-76 

Fictitious magnetic sources: 
defined, 32 
Type I1 antennas, 36-38 

Fourier integral representation of farfield, 265-71 
Frequency-independent antennas, 375-85 
Frequency scanned arrays, 476-80 

Gain of an antenna: 
defined, 47 
differentiated from directivity, 47 

Geometrical optics, 483-90 
eikonal equation, 485 
properties of geometric fields, 485-90 
ray characteristics, 486-89 
ray concept, 486 

Green's theorem: 
basic vector form, 19 
free-space reduction, 559-61 

Half-wavelength dipole: 
pattern, 62 
peak directivity, 63 
radiation resistance, 63 
self-impedance, 297-3 19 

Hallen's integral equation for dipole current 
distribution: 

formulation, 278-86 
Hallen's first order solution, 310-14 
King-Middleton second order solution: 

improved version. 3 17- 19 
original version, 314-16 

method of moments solution: 
pulse functions, 287-94 
sinusoidal basis functions, 234-96 

zeroth order solution. 308-310 
Helical antennas: 

practice, 361-63 
theory. 73-78 

Horn antennas: 
experimental patterns, 86 
theory, 83-85 

Huyghens' principle, 31-36 
Hyperbolic lens antennas, 527-35 
Hyperboloidal lens antennas, 528, 535 
Hyperboloidal reflectors: 

basic Cassegrain, 492-95 
dual shaped, 521-25 

Image sources. 65-66 
Induced EMF method, 297-305 
Integral solutions to Maxwell's equations, 16-26 

King-Middleton solution for dipole impedance: 
second-order, improved version, 317-19 

King-Middleton solution (con!.) 
second-order, original version, 3 14- 16 

Lens antennas (see Dielectric lens antennas): 
Linear arrays: 

analysis of difference patterns, 125-28 
analysis of sum patterns, 117-25 

scanning, 123-25 
tapered excitation, 122-23 
uniform excitation, 118-22 

null-free patterns, 190-93 
pattern formulas, 114-17 
Schelkunoff 's unit circle representation, 128-37 
sum pattern measures: 

beamwidth, 148-53 
beamwidth-directivity relation, 157 
peak directivity, 153-57 

sum pattern synthesis: 
Dolph-Chebyshev, 143-47 
line source discretized, 172-80, 187-89 

supergain, 137-39 
Linear polarization (see Polarization) 
Line sources: 

difference pattern synthesis: 
arbitrary side lobe topography, 185-87 
Bayliss, 181-85 

discretization: 
of difference patterns, 187-89 
of sum patterns, 172-80 

sum pattern synthesis: 
arbitrary side lobe topography, 165-72 
modified Taylor, 162-65 
Taylor, 157-62 

Log-periodic antennas, 379-85 
Long wire antennas, 430-32 
Luneburg lens, 545-54 

'Magnetic sources, fictitious, 32 
Maxwell's equations: 

introduced, 10 
solutions (integral), 16-26 

Metal plate (constrained) lens antennas, 542-45 
Method of moments: 

formulation, 286-87 
pulse functions, 287-94 
sinusoidal basis functions, 294-96 

Modified Bayliss patterns: 
line source, 185-89 
planar aperture, 256 

Modified Taylor patterns: 
line source, 165-72 
planar aperture: 

0 -dependent, 21 8-20 
6 -dependent, 221-25 

Monopole with ground plane: 
coaxial feed for, 352-55 
pattern, 67 
radiation resistance, 68 
self-impedance, 297-3 19 



Mutual impedance (admittance): 
between center-fed cylindrical dipoles: 

computation, 332-36 
formulation, 325-29 
Tai's results, 336 

between center-fed slots: 
Booker's relations, 343-44 
definition, 342 

between center-fed strip dipoles, 334 
between monopoles, 334 

Nature of side lobe region: 
non-separable distributions, 210-1 1 
separable distributions, 212 

Non-resonantly-spaced slot arrays, 467-76 
Null-free patterns, 190-93 

Open-ended waveguide radiators, 79-83 

Parabolic cylinder reflector antennas: 
aperture blockage, 495-97 
basics, 490-92 
modified, 498-504 
pattern calculation: 

aperture field method, 509-13 
current distribution method, 518-21 

Parabolidal reflector antennas: 
aperture blockage, 497-98 
basics, 492 
modified, 504-8 
pattern calculation, 514-15 

Partial directivity, 48 
Patch antennas: 

pattern: 
experiment, 106-8 
theory, 99-105 

self-impedance, 244-48 
Pattern analysis: 

continuous line sources, 157-60, 181-82 
continuous planar sources, 213-15 
linear arrays, 114-38 
planar arrays, 196-21 3 

Pattern synthesis: 
continuous line sources: 

Bayliss, 181-85 
modified Bayliss, 185-89 
modified Taylor, 165-72 
Taylor, 157-62 
Woodward, 190-93 

continuous planar sources: 
Bayliss, 250-55 
modified Bayliss, 256 
modified Taylor, 218-25 
Taylor, 213-18 

linear arrays: 
discretized line sources, 172-80, 187-89 
Dolph-Chebyshev, 143-47 
Schelkunoff, 133-34 

Pattern synthesis (cont.) 
planar arrays: 

discretized planar sources, 230-37, 243-49, 
256-61 

Tseng-Cheng, 237-43 
Peak directivity: 

defined, 47 
of half-wavelength dipole, 63 
relation to beamwidth: 

linear arrays, 157 
planar arrays, 206 

separable versus non-separable distributions, 
26 1-62 

of a short dipole, 64 
of a sum pattern: 

linear arrays, 153-57 
planar arrays, 205-6 

Planar arrays, circular grid: 
improved discretizing technique, 233-37 
sampling of continuous distributions, 230-33 

Planar arrays, rectangular grid: 
circular boundary, non-separable distribution: 

difference pattern, 256-61 
sum pattern, 225-27, 243-49 

elliptical boundary, 228 
rectangular boundary, non-separable 

distribution: 
modified Tseng-Cheng, 241-43 
Tseng-Cheng, 237-41 

rectangular boundary, separable distribution: 
difference pattern, 207 
nature of side lobe region, 210-13 
sum pattern array factor, 197-99 
sum pattern beam position, 199-200 
sum pattern beamwidth, 200-205 
sum pattern beamwidth-directivity relation, 

206 
sum pattern illustrative design, 208-10 
sum pattern peak directivity, 205-6 

Planar spiral antennas, 378 
Plane screen diffraction, 573-80 
Polarization: 

circular, 54 
of the electric field, 53 
elliptical, 54-56 
linear, 54 

Potential functions (see Retarded potential 
functions) 

Poynting's theorem, 13-16 
Pulse functions (see Method of moments) 

Radiation intensity defined, 47 
Radiation pattern (see Farfield) 
Radiation resistance: 

dipole in an array, 388-89 
half-wavelength dipole, 63 
helix, 362 
monopole, 68 
patch antenna, 347-48 



Subject Index 

Radiation resistance (con?.) 
short dipole, 64 
small loop, 70 
waveguide-fed slot: 

in an array, 407 
isolated, 406 

Rays, geometric, 486-89 
Receiving cross section of an antenna: 

defined, 48-49 
relation to directivity, 52 

Reciprocity theorem, 39-41 
Rectangular grid planar arrays (see Planar arrays, 

rectangular grid) 
Reflector antennas: 

aperture blockage, 495-98, 513-16 
basic types defined, 490-95 
doubly curved, 504-8 
dual shaped, 521-25 
hyperboloidal (Cassegrain), 492-95 
parabolic cylinder, 490-92 
paraboloidal, 492 
pattern calculations, 508-21 
shaped cylinder, 498-504, 517-18 

Resonantly-spaced slot arrays, 397-423 
Retarded potential functions: 

approximation for thin dipoles, slots, 569-72 
introduced, 11-13 
with magnetic sources included, 33 
reprise, 26-27 
wave equations for, 27, 562-63 

Review of electromagnetic theory, 4-16 
Rhombic antennas, 432-36 

Sampling of continuous aperture distributions: 
linear, 172-80, 187-89 
planar: 

circular grid, 230-33 
elliptical boundary, 228 
rectangular grid, 225-30 

Scanning arrays: 
dipoles with ground plane, 393-97 
frequency-scanned, 476-80 

Schelkunoff 's equivalence principle, 31-36 
Schelkunoff 's unit circle: 

linear array representation, 128-30 
root placement: 

difference patterns, 136-37 
graphical pattern synthesis, 133-34 
sum patterns, 130-36 

Self-admittance of center-fed slots: 
Babinet's principle, 336-39 
Booker's relation, 339-44 

Self-impedance: 
of center-fed cylindrical dipoles: 

Hallen's first order solution, 310-14 
induced E M F  method, 297-305 
King-Middleton second order solution, 314-19 
Storer's variational solution, 305-7 
Tai's formula, 301-303 

Self-impedance (conl.) 
zeroth order solution, 308-10 

of center-fed slots, 340 
of center-fed strip dipoles, 321-25 
of patch antennas, 344-48 
of waveguide-fed series slots, 109 

Separable distributions: 
planar arrays, 197-213 
versus non-separable distributions: 

comparison of beamwidth, 262-63 
comparison of directivity, 261-62 
comparison of side lobe structure, 210-12 

Shaped cylindrical lens antennas, 536-38 
Shaped cylindrical reflector antennas, 498-504, 

517-18 
Short dipole: 

pattern, 64 
peak directivity, 64 
radiation resistance, 64 

Sinusoidal basis functions (see Method of moments) 
Slot arrays, waveguide-fed: 

frequency-scanned, 476-80 
standing-wave, 397-423 
traveling-wave, 467-76 

Slot module, equivalent circuit, 399-402 
Slots: 

cavity-backed, 359-63 
center-fed: 

Babirret's principle, 336-39, 573-80 
Booker's relation, 339-44 
electric field distribution, 336-38 
equivalent magnetic dipole, 338 
mutual admittance, 342-44 
self-admittance, 342-44 

waveguide-fed: 
theory, 91-99 
types, 88-90 

Slow wave antennas (see Surface wave antennas) 
Small current loop: 

pattern, 69 
radiation resistance, 70 

Sommerfeld's conditions at infinity, 21-24 
Source/field relations: 

general, 20 
Type I antennas, 30 
Type I1 antennas, 37 

Spiral antennas: 
conical, 379 
planar, 378 

Standing-wave-fed slot arrays, 397-423 
Stepped lens antennas: 

basic design, 529-32 
frequency sensitivity, 533 

store& vaiiational solution, dipole impedance, 
305-7 

Stratton-Chu solutions to Maxwell's equations, 
16-26 

conditions at infinity, 21-24 
excluded regions, 25-26 



Stratton-Chu solutions (cont.) 
formulation, 16-21 

Strip dipole, center-fed: 
current distribution, 321-25 
self-impedance, 321-25 

Sum patterns: 
linear arrays: 

beamwidth, 148-53 
beamwidth-directivity relation, 157 
discretized line sources, 172-80 
Dolph-Chebyshev synthesis, 143-47 
peak directivity, 153-57 
preliminaries, 117-25 
Schelkunotl's unit circle, 128-36 

line sources: 
arbitrary side lobe topography, 165-72 
formulation, 157-60 
modified Taylor patterns, 162-65 
Taylor synthesis, 160-62 

planar apertures, continuous distributions: 
modified Taylor patterns, 218-25 
Taylor synthesis, 213-18 

planar arrays: 
discretized planar sources, 230-37, 243-49 
separable distributions, 197-206 
Tseng-Cheng, 237-43 

Supergain arrays, 137-39 
Surface mismatch, lens antennas, 532-33 
Surface wave antennas, 437-53 

excitation, 442-46 
modal analysis, 437-42 
patterns, 446-53 

Taylor aperture distributions: 
line sources: 

conventional. 161 
modified, 165 

planar sources, circular boundary: 
conventional, 217 
modified, e -dependent. 217 
modified, Q -dependent, 223 

Taylor synthesis of sum patterns: 
line sources: 

conventional, 157-62 
modified, 162-72 

Taylor synthesis of sum patterns (conr.) 
planar apertures, continuous, circular boundary: 

conventional, 213-18 
modified, e dependent, 218-20 
modified, Q -dependent, 221-25 

T E  modes: 
on dielectric-clad ground planes, 437-40 
in rectangular waveguide, 91 

T M  modes: 
on corrugated ground planes, 440-42 
on dielectric-clad ground planes, 437-40 
in rectangular waveguide, 91 

Trapped wave antennas (see Surface wave antennas) 
Traveling wave antennas: 

defined, 429 
fast wave, 453-64 
frequency-scanned, 476-80 
long wire, 430-32 
non-resonantly-spaced slots, 467-76 
rhom bic, 432-36 
surface wave, 446-53 
trough waveguide, 464-67 
Vee, 436-37 

Trough waveguide antennas, 464-67 
Tseng-Cheng distributions: 

conventional, 237-41 
modified, 24 1-43 

Type I antennas: 
defined, 2d 
the farfield, 27-31 

Type 11 antennas: 
defined, 24 
the farfield. 36-38 

Vee antennas. 436-37 

Waveguide-fed slot arrays (see Slot arrays, 
waveguide-fed) 

Waveguide fed slots: 
theory, 91-99 
types, 88-90 

Woodward synthesis, 190-93 

Yagi-lJda arrays, 368-75 
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