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1 Introduction
Vesna Crnojević-Bengin

Filters play an irreplaceable role in virtually any type of radio frequency (RF)/micro-
wave system today. With the recent rapid development and widespread use of various
wireless communication systems, ever-more stringent requirements are posed on RF/
microwave filters – smaller size, higher performance, and lower cost are all simultan-
eously required today. Even more recently, multi-band operation is considered neces-
sary to solve the challenges of insufficient capacity of the various wireless systems. To
that end, high-performance and compact microwave filters that operate at two or more
non-harmonically related frequencies are greatly needed, and several different
approaches to their design are being investigated today.

While waveguide architecture has been traditionally used to design filters with high
quality factors and capable of handling high power, their bulky construction proved to
be a limiting factor for applications where miniaturization is a primary concern. To that
end, various planar solutions were developed, based on transmission electron micro-
scopy (TEM) or quasi-TEM transmission lines. Besides compact dimensions, the main
advantages of planar filters are easier integration in the circuit or module environment,
and well-developed and automated manufacture procedures that typically require no
manual tuning.

In this book, we present the most recent results in the development of multi-band
planar filters. We focus on the microstrip architecture, but note that most of the filters
presented here could easily be redesigned in other architectures, such as coplanar
waveguide, or stripline.

This edited book presents the results of the research efforts of four well-established
research groups, all working in the field of multi-band filter design, performed within
the FP7 project MultiWaveS funded by the European Commission under Framework
Programme 7, grant no. PIRSES-GA-2009-247532. The book presents in detail six
competing approaches and concepts which are used to solve a common problem: the
design of compact microstrip multi-band filters with high performance. The approaches
presented range from the conventional one, to the application of advanced multi-layer
fabrication technologies, and to the development and application of several novel
resonator geometries and filter concepts. The book consists of eight chapters, where
each chapter starts with an introduction and ends with conclusions and a list of
references.

Chapter 1, the Introduction, is followed in Chapter 2, by a comprehensive overview
of the existing methods for the design of dual-band and tri-band filters, together with
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representative solutions from the literature for all types of filters. Specifically, Sections
2.1–2.4 provide a detailed discussion of the existing planar solutions, while Section 2.5
addresses other advanced multi-band filters, including tunable, non-planar (3-D), super-
conductive, multi-layer, and other solutions. The existing design methods for multi-
band bandpass filters are divided into four groups, and the most representative from
each group are presented and analyzed. Apart from dual-band and tri-band bandpass
filters, this chapter also presents multi-band bandstop filters proposed in recent years.

Chapter 3 is specifically devoted to the theoretical foundations, where recent devel-
opments in algorithms for the construction of multi-band transfer functions are
described. Two approaches developed by the authors are presented in detail: one an
optimized approach, where poles and zeros of the filter function are systematically
positioned and fine-tuned to achieve equi-ripple passbands and/or stopbands, and the
other a rigorous approach where the reactance function of a passive liquid crystal (LC)-
one-port is used as frequency mapping function. In both cases, the mathematical theory
is discussed, examples are presented, and both techniques have proved to produce
excellent results.

The remaining chapters are devoted to detailed presentation of specific solutions for
the design of multi-band filters developed by the authors.

One of the most widely used approaches in the design of multi-band bandpass filters
is to combine two single-band filters to obtain a dual-band response, and to combine a
single-band and a dual-band filter to obtain a tri-band response. However, although it
allows independent control of the passbands, this approach most often results in filters
with increased size. On the other hand, filter miniaturization can be achieved using
conventional quarter-wavelength resonators instead of their half-wavelength counter-
parts which are two times longer. The size of such single-band filters can further be
reduced by using traditional techniques, such as folding the resonators of which a filter
is composed. This approach has been used in Chapter 4, where dual-band and tri-band
bandpass filters based on quarter-wavelength resonators and developed by the authors
are presented. A detailed description of their design procedures is given and the filters
are compared with other similar solutions. The proposed filters outperform all other
recently published configurations since they exhibit high selectivity and compactness,
excellent transmission and return-loss characteristics, and, at the same time, allow
independent control of all passbands.

A number of multi-band filters have recently been published based on the use of
various innovative geometric designs. Nevertheless, grounded patch resonators or
mushroom structures are also known, and widely exploited in antenna design, but have
not been extensively adopted for multi-band filter applications, despite a number of
advantages over other commonly used planar resonators. Chapter 5 focuses on the
design of compact dual-band filters using the grounded patch resonator (GPR) and its
modifications. Since the square GPR is inherently a non-degenerate dual-mode reson-
ator, it is shown how to independently control the two fundamental modes by changing
the geometrical parameters of the resonator. Introduction of a slot perturbation in the
rectangular GPR gives the perturbed grounded patch resonator (PGPR) and the behavior
of such a structure is analyzed in detail. It is demonstrated that the inter-resonator
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couplings of the PGPR at two centre frequencies can be adjusted separately, which
allows the design of dual-band filters with independent passband centre frequencies and
respective bandwidths. Unlike many other approaches, this method allows passbands to
be spaced further apart than is typically possible with narrow-band coupled-resonator
methods.

Chapter 6 presents novel dual-band filters based on the use of fractal curves – space-
filling curves that, theoretically, allow the design of infinite-length lines on a finite
substrate area. Due to their space-filling ability, fractal curves have great potential for
miniaturization of passive microwave circuits. Special attention has been given to the
Hilbert fractal curve, which is very convenient for application in resonators and filters
due to its configuration. In the first part of the chapter, two dual-band bandpass filters,
based on the Hilbert fractal curve and proposed recently by the authors are shown,
which exhibit small size and good performance in terms of insertion loss and selectivity,
and are comparable to other recently published solutions. In addition, the proposed
filters allow independent control of the passbands and their fabrication is very simple
since the circuits are fully planar and do not require vias or multi-layer structures. In the
second part of the chapter, the Hilbert fractal curve is also used to design a complex
resonator that consists of two dual-mode resonators. The proposed resonator, which
exhibits many degrees of design freedom, has been used to design one tri-band
bandpass filter and one tri-band bandstop filter. Owing to a specific configuration and
various couplings that exist in the structure, the proposed bandpass filter simultaneously
exhibits very good performance and very compact dimensions. In comparison to other
tri-band bandpass configurations, the proposed structure is the most compact one and it
has significantly better selectivity, as well as the possibility to independently control the
passbands. The proposed tri-band bandstop filter is also characterized by good perform-
ance and it represents the first tri-band bandstop filter operating at 2.4, 3.5, and 5.2 GHz.
All filters presented so far have followed one of the typical approaches to the design

of multi-band filters, such as the superposition of single-band filters or the use of
complex multi-mode resonators. Although allowing various degrees of design freedom
in terms of the independent control of passbands, and exhibiting different relative
weaknesses and strengths, all of these approaches have one thing in common: reson-
ators which form filters are regarded as electronic components, and then suitably
coupled to result in a desired filtering response. In Chapter 7, we propose an alternative
view to the design of electrical circuits, multi-band filters in particular, where the
resonator is not considered as a component, but rather as a piece of material tailored
to exhibits specified filtering properties. Namely, we show how artificial electromag-
netic materials, also called metamaterials, can be used to design multi-band filters with
novel properties – small size, low losses, and reduced group delay. To achieve such
behavior, we focus on a specific sub-class of metamaterials, called near-zero (NZ)
metamaterials, which have recently been shown to support propagation of electromag-
netic waves with the zero propagation constant, giving rise to various interesting
phenomena. The chapter focuses on NZ propagation of quasi-TEM modes, needed
for the design of NZ microstrip filters. It examines both the permittivity NZ and
permeability NZ propagation of quasi-TEM waves and demonstrates how they can be
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used to design single-band NZ filters. Finally, this idea is extended to multi-band filters,
and a dual-band microstrip NZ filter is presented and analyzed. Owning to its flat phase
response, such filters are promising candidates for applications where flat group delay is
required.

Chapter 8 presents recent advances in the field of multi-layer microwave filters, as
multi-layer technologies provide three-dimensional flexible designs with the integration
of microwave components, circuits, andsub-systems. They have been recognized as
promising for the integration of multi-standard or multi-band functions in a single
device, with the aim to reduce the complexity and size of the system. In this chapter,
recent results of the authors are presented, including filters realized using low-
temperature co-fired ceramics (LTCC), and liquid crystal polymer (LCP) technologies.
The chapter demonstrates a novel approach to filter design which relies on non-
traditional resonators based on a combination of right-handed and left-handed transmis-
sion line sections and capacitively loaded cavities. In this way, filter characteristics can
be drastically improved and their functionalities enlarged. Among the presented devices
are ultra-wideband (UWB) filters, dual-band filters, and tunable single-band and dual-
band filters. In all cases, the use of multi-layer technology has resulted in miniature
filters, highly demanded today by various wireless applications.

The chapters present a detailed overview of the competing approaches, as well as
providing full insight into the design procedures of some of the best dual-band and tri-
band microstrip filters today. Apart from simulation and measurement results, which are
compared for each presented filter, real-world fabrication-related details are discussed,
such as process and/or material tolerances.

This book, which comprises theoretical foundations, detailed design rules, compari-
sons of measured and simulated results, as well as discussion of the influence of
fabrication tolerances, is aimed at a wide audience, ranging from students to the industry
professionals in the field of microwave engineering.
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2 Design methods of multi-band filters
Nikolina Janković, Vesna Crnojević-Bengin, Petrie Meyer, and Jia-Sheng Hong

2.1 Introduction

Development of a number of wireless communication standards and devices imposed a
requirement for components to simultaneously operate at two or more frequencies that
correspond to the standards such as IEEE 806.16, IEEE 806.11, GSM, CDMA, etc.

Dual-band bandpass components were the first multi-band circuits to answer this
requirement. The first dual-band filter was proposed almost two decades ago [1], and
since then there has been a growing interest in dual-band filters.

In comparison to dual-band filters, design of bandpass configurations with three or
more bands represents a greater challenge when it comes to filter performance and
compactness, because good characteristics have to be achieved in three or more closely
positioned passbands. In addition to possible signal crosstalk in closely positioned
passbands, design of these filters is a demanding task since it requires a steep slope of
transfer function. What is more, almost all bands that are commercially used are closely
positioned – for instance WiFi, WiMAX, and GSM systems that operate at 0.9/1.8 GHz,
2.4/2.45 GHz, 3.5 GHz, and 5.2/5.25 GHz.

A number of multi-band bandpass filters and design methods can be found in the
literature; in this chapter, an overview of those methods will be given and comparisons
made. Although great attention has been paid to multi-band filter development in recent
years, significantly fewer papers have been published on configurations with three or
more bands in comparison to those devoted to dual-band structures.

Broadly speaking, there are four different approaches to the design of multi-band
bandpass filters, each of which can be divided into sub-groups.

The first approach employs classical filter design theory that includes basic concepts
such as filter transfer functions, low-pass prototype filters and elements, and frequency
and element transformations. This theory is a universal technique that can be applied
to any type of filters – waveguide, microstrip, or dielectric. Also, it is an analytical
method and thus a very powerful synthesis technique for single-band filters. Since
the theory has been widely investigated and applied in single-band filter circuits, it
has also been applied in multi-band filter design. In the second section, some classical-
theory-based methods for multi-band filter design will be presented and discussed.
The second design approach is based on introducing transmission zeros in the

responses of a wideband single-band filter and this method will be presented in the
third section.
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The third approach employs multi-mode resonators. Since multi-mode structures
support several resonant modes, they represent good candidates for miniature multi-
band filters. Although the positions of their resonant modes cannot be independently
controlled to the full extent, the third approach allows more design freedom in compari-
son with the previous methods. The fourth section is devoted to multi-band structures
that were realized using multi-mode resonators.

Combining two single-band filters to obtain a dual-band response, and single-band
and dual-band filters to obtain a response with three or more bands represents the fourth
approach to the design of multi-band filters. Since such filters comprise several inde-
pendent structures, this method gives the most freedom in design in terms of the
independent control of passbands. This method will be presented and discussed in the
fifth section.

The four methods include design of planar multi-mode bandpass filters. However,
there have also been proposed multi-band bandpass filters that are realized in a different
manner – using multi-layer architecture or fabrication technologies other than PCB, or
using advanced theoretical concepts such as metamaterials. A brief overview of these
methods will be given in the sixth section.

Unlike multi-band bandpass filters, multi-band bandstop filters have not been widely
explored. Whilst there are four principal and several advanced design methods for
multi-band bandpass filters, multi-band bandstop filters have been designed using only
some of those approaches. It is also noticeable that most multi-band bandstop filters
have been designed to operate at two bands, whilst there have been only a few tri-band
bandstop filters. In the last section of this chapter, an overview of multi-band bandstop
filters will be given.

2.2 Design based on the classical filter design theory

Filter design theory is an analytical method, and has proven to be a universal and very
powerful technique for single-band filter design [2–6]. It has been extensively investi-
gated, and numerous filter transfer functions and topologies have been proposed in the
literature. Generally speaking, this design technique includes three major steps:

� filter order and transfer function determination in accordance with predefined
specifications,

� network and coupling matrix synthesis,
� design and physical realization of filter.

Behavior of every filtering network can be defined using transfer and characteristic
functions which can be defined as

HðsÞ ¼ EðsÞ
PðsÞ , (2.1)

KðsÞ ¼ FðsÞ
PðsÞ , (2.2)
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where s represents complex frequency and F(s), P(s), and E(s) characteristic
polynomials. In low-pass prototypes, F(s) is a polynomial with real coefficients whose
roots are positioned on an imaginary axis. Its roots are the frequencies at which there is
no reflection and they represents reflection zeros. P(s) is an even polynomial with real
coefficients whose roots are the frequencies at which there is no transmission and they
represent transmission zeros, whilst E(s) is Hurwitz polynomial.

The most well-known filter functions are Butterworth, Chebyshev, elliptic, and
Bessel functions.

Coupling matrices are N x N matrices whose elements represent coupling coefficients
between the filter resonators. The main diagonal elements are self-couplings, Mi,i+1

elements are couplings between adjacent resonators, whilst all other elements are cross-
couplings, i.e. couplings between non-adjacent resonators.

The physical layout of the filter is formed in accordance to the coupling matrix.
Namely, the coupling matrix determines the filter order as well as the distance between
the resonators and ultimately the filter configuration.
The wide application of classical filter design theory has been the main motive to

apply it in multi-band filter design.
So far, there have been several design procedures for dual-band and multi-band

filters, each of which is characterized by a different approach to transfer function
synthesis and the coupling matrix. Some of the procedures are fully analytical yet
applicable only to some filter types and topologies, whilst others require demanding
optimization methods but at the same time are more universal in terms of filter topology.
The common characteristic of the most proposed procedures is that the starting point is
the synthesis of a single-band wideband filter. Afterwards, transmission zeros are
introduced in the filter response, and passbands are formed. Thus, the passbands cannot
be independently formed, which is one of the main drawback of this multi-band filter
design approach. In addition, filters designed using this approach have exceedingly
large dimensions.

An overview of design procedures for multi-band filters and analysis of their proper-
ties are given below.

The first dual-band bandpass filter was proposed in [7], and was realized using
classical filter design theory. The proposed procedure allows design of symmetrical
dual-band filters, i.e. filters whose passbands are symmetrically positioned around
frequency and have equal insertion loss, return loss, and bandwidths.

According to dual-band filter specifications related to in-band and out-of-band
characteristics, a low-pass prototype is obtained, Figure 2.1, i.e. the normalized fre-
quencies Ωa and Ωs are determined. These frequencies together with number of poles
and zeros in bandpass and bandstop regions represent the starting point in the formation
of characteristic polynomials P(s), F(s), and E(s). After the characteristic polynomials
are synthesized, a coupling matrix is formed, and geometrical parameters of the final
filter are determined.

Although the final filter in [7] is realized in the waveguide architecture that does not
diminish the applicability of the procedure because the classical theory approach is a
universal technique that can be applied to any filter architecture.
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An advantage of this procedure is the fact that it represents an analytical approach,
i.e. an efficient and precise method, as well as the fact that this procedure gives a unique
coupling matrix solution. However, its main drawback is the fact that it is applicable
only to dual-band filters with symmetrically positioned passbands. In addition, the
procedure cannot be readily applied to all filter topologies.

Based on this procedure, in [8] a fully analytical yet simpler method was presented
that enables the design of dual-band filters with asymmetrically positioned passbands.
However, the two passbands cannot be independently positioned, which is the major
drawback. Also, this method cannot be applied to all filter topologies.

Another procedure for synthesis and design of asymmetrical dual-band bandpass
filters was presented in [9]. The initial transfer function is formed using the transfer
functions of two single-band filters and coupling matrix using optimization procedures.
The first step involves an exact and exhaustive synthesis yielding a list of equivalent
coupling matrices. In a second step, the proposed approach takes advantage of the
multiple solution property by providing some rules for selecting a coupling matrix to be
used as the starting point for an approximate synthesis procedure. The approximate
synthesis then allows some simplifications of the initial coupling topology by cancelling
one or several weak couplings between resonators, which ultimately makes the hard-
ware implementation easier.

Relying on optimization procedures is the major drawback of this procedure, since
the convergence time of such procedures is very sensitive to the initial guess. Also, due
to the applicability of the method on various filter topologies, optimization methods do
not give a unique solution for the coupling matrix.

The three previous procedures can be only used for dual-band filter design, which
limits their applicability. In the following, procedures that can be used in the design of
filters with a theoretically arbitrary number of passbands will be presented.

A procedure for dual-band and tri-band filter design that can be applied to all filter
topologies was presented in [10]. The first step in the procedure is the design of a
wideband response which encompasses all passbands of dual-band or tri-band filters.
The response is realized by the standard Chebyshev function. Afterwards, the number of
transmission zeros is chosen, and they are introduced in the wideband response so as to
obtain a dual-band/tri-band response.

passband passband
1

–1 –Wa –Ws Ws Wa W1

stopband 2

S21

Figure 2.1 Low-pass prototype of the symmetrical dual-band filter.
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In order to form the coupling matrix, the transfer function needs to be synthesized,
which is conventionally achieved using predefined poles and zeros. In this procedure, the
transfer function is formed using a different approach. Namely, the transfer function is
formed using the transfer functions of two or three single-band filters whose passbands
correspond to those of the desired dual-band/tri-band filter. Afterwards, an initial
coupling matrix is formed whose non-zero elements are distributed so that it corresponds
to the final filter topology. However, the matrix needs to be optimized to obtain the final
values that correspond to the filter specifications. The need for optimization, which is
sensitive to the initial guess, is the main disadvantage of this procedure. What is more, the
optimization may not lead to an optimal response in terms of filter zeros and poles.

The method presented in [11] is the first analytical method for synthesis of symmet-
rical and asymmetrical multi-band responses with an arbitrary number of passbands and
stopbands. Also, it allows synthesis of the transfer function that has both real and
imaginary zeros.

According to this method, each passband in the response is defined by two frequen-
cies – ω1 and ω2 for the first passband, ω3 and ω4 for the second passband, etc., whilst
each stopband is defined by one frequency, Figure 2.2.
The transfer function is formed so that it has equal ripple in the passbands, and the

first step in its synthesis is to form the initial characteristic function in accordance to
passband and stopband specifications. In other words, an initial guess is assigned to zero
and pole values in passbands and stopbands.

Figure 2.3 shows an example with two passbands and one stopband, denoted by pi
and zi, respectively. Each zero and each pole are positioned between two transfer
function extrema. For instance, the pole p2 is positioned between α1 and α2. Based on
the initial guess of a pole (zero), it is examined whether two extrema in the vicinity of

Figure 2.2 Normalized prototype of multi-band filter.
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the pole (zero) have equal values – if not, a new initial guess is assumed, otherwise the
next pole (zero) is determined.

Several tens of iterations are needed to arrive at the final transfer function, which
means that this method also requires a certain level of optimization. Yet, the optimiza-
tion procedures are less demanding than those in [9] and [10].
After the transfer function is obtained, the coupling matrix is formed, and subse-

quently the geometrical parameters of the filter are determined.
Using this procedure, fourth-order and eighth-order dual-band filters in cul-de-sac

topology were designed [12]. Their configurations and responses are shown in
Figure 2.4.

The resonators used in the filter configuration were realized using conventional ring-
shaped λ/2 resonators. In both responses, the central frequencies of the passbands are
positioned close to each other, and the stopband region has poor performance which is
due to the fact that the dual-band response is formed by introducing transmission zeros
into the wideband response.

Also, both filters have large overall dimensions, 0.41λg x 0.35λg and 1.18λg x 0.28λg,
where λg represents the guided wavelength at the central frequency of the first passband.
Large overall size is a common property of all filters based on classical filter design
theory. Namely, the resonators usually employed in filter configuration are conventional
λ/2 resonators and the quality factor and mutual coupling factor are readily determined.
In this manner, multiple couplings between resonators are avoided, which is of great
importance since the coupling matrix usually foresees only direct couplings and several
cross-couplings. On the other hand, such resonators occupy a large area, and thus even
low-order filters have large overall size.

In [13], another dual-band filter based on the previous method was proposed, and its
configuration and response is shown in Figure 2.5. In this case, dual-mode resonators

p1 p2 p3 p4 z1 z2 z3 z4
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Figure 2.3 Typical filter function with critical frequencies.
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with perturbation were used in filter configuration. The filter response is characterized
by poor performance in the stopband region between the two passbands, which can be
seen in Figure 2.6. In spite of using dual-mode resonators, which reduces the number of
resonators used in filter configuration, the circuit has large dimensions – 0.44λg x 0.2λg.
The proposed procedure was also used to design bandpass filters with three and four

passbands [14]. The filters are comprised of E-shaped resonators, which represent stub-
loaded resonators. To implement the tri-band filter, a dual-mode dual-band filter was
used to govern the first two passbands, and a single bandpass filter was used to govern
the third passband. In the case of the quad-band filter, two dual-mode dual-band filters

(c)

(a) (b)

Figure 2.4 (a) Configuration of the fourth-order filter proposed in [12]. (b) Configuration of the
eighth-order filter proposed in (c). (c) Filter responses [12].

Figure 2.5 Configuration of the filter proposed in [13].
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were used to obtain the four passbands. The filters are characterized by closely
positioned passbands with relatively good performance in stopband regions. Also, filter
dimensions are very large – 0.31λg x 0.3λg, and 0.62λg x 0.48λg, respectively. The
configuration and response of the proposed tri-band filter are shown in Figure 2.7.
Apart from this method, another analytical method has been proposed in [15]. The

transfer function is generated using corresponding single-band filter functions that are
obtained using classical filter theory. According to the transfer function, scattering
parameters are analytically obtained and afterwards used for coupling matrix synthesis.
This method allows the realization of real and imaginary zeros as well as an arbitrary
number of passbands with arbitrary bandwidths.

The transfer function obtained by this method is a generalized Chebyshev function,
which can be expressed as

CNðωÞ ¼ FNðωÞ
PNðωÞ , (2.3)

where FN(ω) and PN(ω) are characteristic polynomials.
The dual-band filter function with a generalized Chebyshev function can be

expressed using two single-band filter functions whose passbands correspond to the
dual-band filter passbands

CNðωÞ ¼ 1
1

CN1ðωÞ þ
1

CN2ðωÞ
¼ CN1ðωÞCN2ðωÞ

CN1ðωÞ þ CN2ðωÞ

¼ 1
PN1ðωÞ
FN1ðωÞ þ

PN2ðωÞ
FN2ðωÞ

¼ FN1ðωÞFN2ðωÞ
PN1ðωÞFN2ðωÞ þ PN2ðωÞFN1ðωÞ

¼ FNðωÞ
PNðωÞ ,

(2.4)

Figure 2.6 Response of the filter proposed in [13].
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where FN1(ω), PN1(ω), FN2(ω), and PN2(ω) are formed by shifting the frequencies of the
original filter function

FNiðωÞ ¼ F'Niðω� ωsiÞ,
PNiðωÞ ¼ P'Niðω� ωsiÞ,

(2.5)

where i =1 or 2, and ωsi the central frequency of the ith passband.
If the passbands to be realized have different bandwidths, then the polynomials in the

previous expression need to be modified in the following manner

PNiðωÞ ¼
YNPi

j¼1

ðBWiðω� ωsiÞ � pi, jÞ,

FNiðωÞ ¼
YNFi

j¼1

ðBWiðω� ωsiÞ � f i, jÞ,
(2.6)

where pi,j is the jth root of PNi, fi,j the jth root of FNi, and NPi and NFi the number of roots
of PNi and FNi.

In the case of multi-band filter design, the filtering function can be expressed as follows

CNðωÞ ¼ 1
1

CN1ðωÞ þ
1

CN2ðωÞ þ :::þ 1
CNmðωÞ

¼ FN1ðωÞFN2ðωÞ:::FNmðωÞ

Xm

i¼1
PNiðωÞ

Ym
j ¼ 1
j 6¼ i

FNjðωÞ

0
BB@

1
CCA

, (2.7)

(a)

(b)

Figure 2.7 (a) Configuration of the filter proposed in [14]. (b) Filter response.
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where m is the number of the passbands, CNi the filtering functions, PNi the numerator,
and FNi the denominator of CNi. Each passband has its own order and number of
transmission zeros.

Finally, the transfer function is transformed into the bandpass prototype using the
following expression

ωLP ¼ ωC,BP

ωH,BP � ωL,BP

ωBP

ωC,BP
� ωC,BP

ωBP

� �
¼ 1

Δ
ωBP

ωC,BP
� ωC,BP

ωBP

� �
, (2.8)

where ωLP is a low-pass prototype frequency, ωBP a bandpass prototype frequency, and
ωC,BP, ωH,BP, and ωL,BP the central frequency and upper and lower passband limit,
respectively. Δ represents the bandwidth.

After the transfer function is obtained, the coupling matrix is formed and subse-
quently the geometrical parameters of the filter are determined. When the coupling
matrix is formed, the frequencies may be shifted. This requires a certain level of
optimization, which is the main disadvantage of this procedure.

Fourth-order and sixth-order dual-band bandpass filters designed by the proposed
method were presented in [16]. Stub-loaded resonators were used in the filter configur-
ation, as shown in Figure 2.8. Similarly, to the previous cases, the filter response reveals
that the passbands are closely positioned. At the same time, the stopband region has
slightly better performance in comparison to the filter in [12]. The filter dimensions are
large – 0.35λg x 0.25λg in the case of the fourth-order filter and 0.5λg x 0.44λg in the case
of the sixth-order filter.

Finally, two optimization methods for the generation of multi-band responses will be
noted. The method presented in [17] is an efficient optimization method for generating
multi-band characteristics, which guarantees that for given critical specifications in the
passbands and stopbands, both optimal transmission and reflection zeros are computed
which was not the case in [9] and [10]. The computational part consists of a differential
correction-like algorithm proven to be convergent, and which guarantees the optimality
of the response.

A similar optimization method was presented in [18] and represents an efficient
optimization method for generating asymmetric dual- or multi-band characteristics,
which guarantees that certain critical specifications in the passbands and stopbands
are met. It is the exact generalization of the classical Chebyshev procedure used for
single band synthesis, but obtained for the case of a multi-band characteristic. However,
similar to other optimization methods this method also requires large-scale computa-
tional resources.

From the previous analysis of filter design methods, it can be concluded that their
main advantage is their applicability to any type of filter in terms of architecture, as well
as the fact that they provide efficient and relatively simple design since they represent
analytical and semi-analytical methods.

On the other hand, these methods have two significant drawbacks. Firstly, their
passbands cannot be independently formed since they are formed from one wideband
response by introducing transmission zeros or by “mapping” one single-band response
to several bands. Secondly, filters designed using classical filter design theory inevitably
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have large dimensions due to the fact that the resonators usually employed in filter
configuration are conventional λ/2 resonators. In applications where other filter charac-
teristics have priority, this drawback can be neglected, but in the design of filters for
miniature wireless communication devices, this drawback makes the method almost
unusable.

Apart from these disadvantages, it should be noted that the responses of filters
designed by this method exhibit poor performance in stopband regions.

2.3 Design by introducing transmission zeros

Introducing transmission zeros into the transfer function of a single-band filter repre-
sents the simplest method for multi-band filter design. In the previous section, it was

(a)

(c)

(b)

Figure 2.8 (a) Configuration of the fourth-order filter proposed in [16]. (b) Configuration of the
sixth-order filter proposed in [16]. (c) Filter responses.
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shown that multi-band filters designed using classical filter design theory are realized by
introducing transmission zeros into a previously synthesized wideband response. In
other words, it can be said that the previous method and the method presented here share
a common design approach. However, there is a key difference between the two
approaches.

Namely, in the previous method transmission zeros are due to couplings between
non-adjacent resonators. In other words, the structure that forms wide passband also
forms transmission zeros. On the other hand, in the method presented here two separate
structures are used to obtain passband and stopband, i.e. bandpass and bandstop filters
are separately designed. In addition, the approach presented in the previous section is
based on analytical and optimization procedures, whilst the method presented here is
significantly simpler.

Although it is very simple and offers straightforward and efficient realization, this
method has been rarely used for multi-band filter design and only dual-band and tri-
band filters have been realized using this approach. The reason for this lies in the fact
that most aspects do not make this method very favorable in comparison to others.

One of the first proposed dual-band filters is the structure presented in [19]. It consists
of a cascade connection of a bandpass filter and bandstop filter. Both filters are designed
using ideal filter prototypes in the z-domain.

Firstly, the bandpass filter with type II Chebyshev response and central frequency of
3.8 GHz is designed. Afterwards, a bandstop filter with the same central frequency yet
with narrower bandwidth is realized. The fabricated circuit is shown in Figure 2.9 in
which the cascade connection of the two filters can be noted. The bandpass and
bandstop filters are realized using open and short-circuited stubs, respectively. The
filter response reveals that there are two passbands at 2.4 and 5.2 GHz, which are
characterized by good performance, Figure 2.10. However, due to the cascade connec-
tion the final dimensions of the filter are equal to 2.15λg x 0.35λg, which is unacceptably
large for miniature communication devices.

A somewhat different structure was presented in [20]. It represents a combination of
bandpass and bandstop filters that are comprised in one circuit, rather than separately
as in the previous case. Short-circuited λ/4 shunt stubs, which are separated by
transmission line sections λ/4 long, comprise the bandpass filter, Figure 2.11. Introdu-
cing serial LC circuits in between two λ/4 stubs, the bandstop filter with the same
central frequency but with the narrower bandwidth is formed. LC circuits are realized
using stubs and capacitors, and their values are used to control the stopband
bandwidth.

bandpass filter bandstop filter

Figure 2.9 Fabricated circuit of the dual-band filter proposed in [19].
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Although the cascade connection is avoided in this structure, the final circuit has large
overall dimensions due to employment of a serial connection of λ/4 transmission lines.

Similarly to dual-band filters, there have been proposed only a few tri-band filters
based on the method of introducing transmission zeros in a wideband response.
However, tri-band filters require more elements than dual-band filters, which makes
the design slightly more demanding.

The first tri-band filter based on this approach was proposed in [21], and it was
realized using a very simple idea. The proposed structure consists of only bandstop
filters that provide transmission zeros at specified frequencies. The filters are realized by
open shunt stubs whose lengths and impedances are easily calculated once the positions
of the transmission zeros are known.

The configuration and response of the presented filter are shown in Figure 2.12. The
main advantage of the filter lies in its utter simplicity. On the other hand, there are
several significant drawbacks. Namely, the response clearly reveals that the structure
cannot have good characteristics in stopband regions. In addition, in order to avoid a

Ideal |S21| 

Frequency (GHz)

M
ag

n
it

u
d

e 
R

es
p

o
n

se
 (

d
B

)

Ideal |S11| 
Measured |S11| 
Measured |S21| 

1

0

–10

–20

–30

–40

–50

–60

–70

–80
2 3 4 5 6 7

Figure 2.10 Response of the dual-band filter proposed in [19].

Figure 2.11 Schematic of the dual-band filter proposed in [20].
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strong coupling between adjacent filters, they need to be distantly positioned, which
leads to the large overall size of the filter.
Even though this type of filter seemingly allows arbitrary positioning of passbands,

this is not the case. Namely, due to periodicity of the response of open stubs, i.e. due to
periodicity of the transmission zeros in the response, the positions of the passbands
cannot be distant. Another disadvantage is the fact that bandwidths cannot be independ-
ently controlled since one zero is “shared” between two passbands and thus two
bandwidths cannot be simultaneously controlled.

Other filters based on this method, rely on the idea presented in [20]. The idea
employs a wideband filter realized with λ/4 short-circuited stubs and introduction of
transmission zeros using shunt stubs.

In [22], a tri-band filter was realized by introducing two transmission zeros into a
wideband response, Figure 2.13. The transmission zeros are obtained using open shunt
stubs whose resonances correspond to the positions of the transmission zeros, whilst the
wideband response is based on λ/4 stubs. As the response reveals, this filter has poor
performance in stopband regions. What is more, the overall size of the filter is
very large.

(a) (b)

Figure 2.12 (a) Configuration of the filter proposed in [21]. (b) Filter response.

(b)(a)

Figure 2.13 (a) Configuration of the filter proposed in [22]. (b) Filter response.
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A similar configuration was proposed in [23]. In this case, a transmission line λ/4
long is loaded with the shunt open and short-circuited stepped-impedance resonator
(SIR) stubs. This structure provides three passbands, two of which represent higher-
order harmonics, and three transmission zeros, the third being the result of the period-
icity of the second transmission zero.

The first step in the design of the tri-band filter in [24] is the design of a dual-band
response. Afterwards, in one of its passbands a transmission zero is introduced and a tri-
band response is obtained. The dual-band filter is realized using shunt SIR stubs, which
are connected by a common transmission line. The bandstop filter is designed with
shunt stubs that are loaded with capacitors. The fact that the dual-band filter is realized
using SIRs implies that independent control of the passbands is limited. What is more,
independent control is additionally limited by the fact that the third passband is formed
by the introduction of a transmission zero. In addition, the overall dimension of 0.42λg x
0.37λg makes this structure very large.

In addition to being based on the same very simple idea , the filters in [21–24] have in
common that their stopband regions have poor performance and their passbands cannot
be independently controlled.

The previous examples show that the main advantage of this approach lies in its
simplicity. However, since the filters realized using this method, are comprised of
bandstop and bandpass filters they inevitably have large dimensions. In addition,
passbands are formed from one wideband passband, which implies that passband
performance and positions cannot be independently controlled.

In other words, although this method offers straightforward and easy realization, all
other critical aspects, such as independent control of passbands, passband performance,
stopband characteristic, as well as compactness, do not make this approach very
favorable in comparison to others.

2.4 Design by using multi-mode resonators

In the two previous sections, two filter design approaches were presented and they both
have multi-band filters whose passbands cannot be independently controlled and whose
dimensions are very large. In this section, a design method that allows more design
freedom and filter size reduction will be presented. Filters presented in this section are
based on multi-mode resonators.

Multi-mode resonators are the structures that support simultaneous propagation of two or
more resonant modes whose resonant frequencies are not harmonically related. Therefore,
they have been widely used in the design of both single-band and multi-band filters.

In single-band filters, the resonators used are usually dual-mode, which reduces the
number of resonators needed for the realization of the specified filter function. Namely,
each dual-mode resonator in a filter provides two closely positioned modes, i.e.
transmission poles, and in that manner the number of resonators is reduced by half.

As for multi-band filters, multi-mode resonators are used since they can provide
passbands or stopbands at frequencies that are not harmonically related. In other words,
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multi-mode resonators offer more design freedom when it comes to independent control
of passbands. In addition, since multi-mode resonators support several modes, the size
of multi-band filters can be significantly reduced.
Dual-mode resonators have been widely used in dual-band filters. As for tri-band

filters, the most used structures in their design are tri-mode resonators. There have also
been proposed quad-mode resonators that have been used in quad-band filter design.
However, it will be shown that dual-mode resonators can be used in tri-band and quad-
band filter design.

The main types of multi-mode resonators are resonators with perturbation, stepped-
impedance resonators, and stub-loaded resonators. In the following sections, these
resonators will be presented and analyzed, and an overview of multi-band filters based
on them will be given.

2.4.1 Multi-band filters with dual-mode resonators with perturbation

Dual-mode resonators with perturbation are the structures that have two-dimensional
symmetry and they support propagation of two degenerative modes, i.e. two modes that
have the same resonant frequency but orthogonal field distributions. To illustrate this
phenomenon, a microstrip square patch resonator can be analyzed and modeled as a
resonant cavity [25], Figure 2.14(a). The upper side and lower side of the cavity are
modeled as the electrical wall, whilst its lateral sides are modeled as magnetic walls.
The electromagnetic field in the cavity is defined by TMmn0

z modes

Ez ¼
X∞
m¼0

X∞
n¼0

Amn cos
mπ
a

x
� �

cos
nπ
a
y

� �
,
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 !
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∂y

� �
,

Hy ¼ � jωεef f
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 !
∂Ez

∂x

� �
,

k2c ¼
mπ
a

� �2
þ nπ

a

� �2
,

(2.9)

(a) (b)

Figure 2.14 (a) Dual-mode microstrip resonator modeled as a cavity. (b) Equivalent circuit of the
resonator.
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where Amn is the magnitude, ω frequency, a effective width, and εeff permittivity. The
resonant frequency of the cavity can be expressed in the following manner

f mn0 ¼
1

2π
ffiffiffiffiffiffiffiffiffi
μεef f

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mπ
a

� �2
þ nπ

a

� �2r
: (2.10)

It can be seen that there is an infinite number of resonant frequencies with different field
distributions. The modes that have the same resonant frequencies are degenerative
modes and two fundamental modes TM100z and TM010z are a pair of degenerative
modes since

f 100 ¼ f 010 ¼
1

2a
ffiffiffiffiffiffiffiffiffi
μεef f

p : (2.11)

It can be also seen that the two modes are orthogonal to each other. Although the
resonator supports two fundamental modes, in its response only one resonance would be
seen since the degenerative modes have the same resonant frequency. When the two
modes are coupled, the response reveals two resonances since the two modes act as two
coupled resonators. Coupling between the modes is achieved when a perturbation is
introduced in the resonator symmetry.

Microstrip dual-mode resonators do not have to be of a square shape but they have
two-dimensional symmetry. According to its physical configuration, this type of reson-
ator can be divided into two groups – resonators with patch configuration and resonators
with ring configuration, Figure 2.15. In the first case, the perturbations are corner cuts,
whilst in the second case the perturbations have the shape of a patch. The behavior of
the two resonators is the same, with the difference that the mode analysis of patch
resonators is more complex.

Dual-mode resonators with perturbation were first applied in single-band filters. As
was stated previously, a resonator with coupled resonances acts as a structure with two
coupled resonators, i.e. as a filter of the second order. In other words, by mode coupling
a structure with two transmission poles is achieved which provides good performance of
the filter in terms of insertion loss and quality factor. An example of a single-band filter
with a dual-mode resonator with perturbation is presented in [26]. One meander-shaped
ring resonator with perturbation d x d comprises the filter that exhibits a passband with
two transmission poles, which implies dual-mode behavior of the resonator.

Recently, dual-mode resonators have been used in the design of multi-band filters.
Dual-mode behavior of resonators with perturbation can be used in several manners to
obtain dual-band response. The first way is to use two coupled degenerative modes as
sources of two separate passbands. This has been applied only in a few configurations
since the positioning of two degenerativemodes on relatively distant frequencies requires
a very strong coupling between the modes which makes the filter design more complex.

The configuration presented in [27] employs a dual-mode square patch resonator with
a perturbation with the shape of a cross, Figure 2.16(a). By varying different geomet-
rical parameters of the cross slot. the resonant frequency of one mode can be changed
independently of the resonant frequency of the other mode. Also, the configuration of
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the feeding lines allows transmission zeros to occur. Although this filter is a very smart
dual-band solution, which enables independent control of one passband, it is also
characterized by poor selectivity in the second passband as well as by relatively large
overall dimensions, Figure 2.16(b).

(d) (e)

(a) (b) (c)

Figure 2.15 Typical dual-mode resonators with perturbation: (a) Circular patch. (b) Square patch.
(c) Circular ring. (d) Square ring. (e) Meandered ring.

(a) (b)

Figure 2.16 (a) Configuration of the filter proposed in [27]. (b) Filter response.
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A structure similar to the previous one in which the problem of poor selectivity was
solved was proposed in [28]. By embedding a pair of slits in the square patch, the dual-
band response is realized and one transmission zero is introduced. Slits introduced at the
edge of the resonator provide another two transmission zeros, which improve selectivity
of the passbands. However, the problem of large dimensions and independent control of
the second passband remain unsolved.

This design approach was also applied in [29]. The proposed dual-band filters consist
of square-shaped ring resonators with a very large perturbation that has the shape of a
patch. In that way, a very strong coupling between the two modes is achieved and they
are positioned at distant frequencies. The realized dual-band filters are the second-order
filters, and they are characterized by good in-band performance. However, the selectiv-
ity of the passbands is poor.

A disadvantage of these three configurations is the fact that positioning of passbands
is determined by the coupling between the two modes and is thus very limited. Also,
poor selectivity as well as relatively large dimensions that cannot be reduced below
0.25λg x 0.25λg represent further drawbacks.

A second way of applying dual-mode behavior is the realization of two passbands
using higher-order modes. Namely, every resonator exhibits not only a fundamental
resonance but also higher-order modes that occur periodically in the spectrum. Also,
each higher-order mode supports degenerative modes. In case of dual-mode resonators,
a perturbation causes coupling of degenerative modes at fundamental and higher-order
resonances. Although a dual-band response can be achieved using the higher-order
modes of conventional resonators, an advantage of dual-mode resonators lies in the fact
that they enable two transmission poles to occur in each passband, which makes filter
performance significantly better in comparison to conventional resonators.

This idea was employed for the first time in closed ring-shaped resonators [30].
A symmetrical ring resonator without perturbations is excited by asymmetrically pos-
itioned feeding lines, Figure 2.17(a). Two excited ports are placed at 135� separated

(a) (b)

Figure 2.17 (a) Configuration of the filter proposed in [30]. (b) Filter response.
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positions along the ring resonator and coupled with the ring via parallel-coupled lines,
leading to synchronous excitation of two transmission poles in dual passbands. Namely,
apart from introducing a perturbation, another way to excite two degenerative modes is to
asymmetrically position feeding lines [31]. Such feeding lines also enable transmission
zeros, i.e. good selectivity of passbands, Figure 2.17(b). In addition, the resonator is loaded
with short stubs, which to some extent allows control of the position of the passbands.

Very similar dual-band configurations were proposed in [32–34]. In [32], a dual-band
ring-resonator bandpass filter is proposed. Two capacitors are placed at two non-
orthogonally excited positions along a ring resonator in order to excite the two first-
order degenerate modes and create multiple transmission zeros. A set of perturbations is
introduced on the ring to excite the two second-order degenerate modes.

In [33], two coupled-line sections are simply installed on a single ring resonator at the
two ports with 90� separation. By increasing the length of the loaded open-circuited
stub, the two first-order degenerate modes are excited and they make the first passband,
whilst one of the third-order degenerate modes moves downward and forms the second
passband together with a second-order degenerate mode. In addition, three transmission
zeros occur and they provide good selectivity.

The configuration proposed in [34] is a dual-mode dual-band ring resonator bandpass
filter, which is implemented by a cascade of several microwave coupled transmission
line sections that have non-linear phase shift properties in frequency, and are suitable for
the development of dual-band devices. In that manner, the filter occupies less than 30%
of the area of a traditional ring resonator filter.

These structures are characterized by very good passband performance in terms of
insertion loss and selectivity. Nevertheless, their major disadvantage is a very limited
passband control. Although the position of the second passband can be controlled to
some extent by change in some geometrical parameters, the position is predominantly
determined by the frequency of the second harmonic. Also, these filters have relatively
large dimensions.

The idea was also applied in the filters with patch resonators [35–36]. Whilst the
filter in [35] is based on a patch resonator with a cross slot and two different groups of
loaded stubs, the configuration in [36] is comprised of a right-angled triangular patch
resonator with fractal perturbation. In spite of having different configurations from those
in [30–34], these filters also exhibit the same advantages and drawbacks as filters with
ring-shaped resonators.

In [37], different modes of a circular patch resonator were used in a specific way to
obtain a dual-band response. Namely, the resonant frequencies of TM21 and TM01 mode
are positioned close to each other by circular cuts so they form the second passband
with two transmission poles, whilst rectangular cuts are used to couple TM11 mode to
the degenerative mode and in that way the first passband with two transmission poles is
formed, Figure 2.18.

Although very smart, this idea also has drawbacks in terms of the resonator dimen-
sions and passband positioning. Namely, although the resonant frequencies of TM21

and TM01 mode are closely positioned their control is very limited since control of
circular cut dimensions is also limited.
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We can conclude that dual-mode resonators with perturbation enable the design of
dual-band filters with good passband performance. Nevertheless, it was shown that their
main drawbacks are limited passband control and relatively large dimensions, which
although smaller than in the filters designed using classical theory, they cannot be
reduced below 0.25λg x 0.25λg.

As for filters with three or more passbands, dual-mode resonators with perturbation
have been implemented in only a few tri-band configurations. In this section, several
ways to design dual-band filters using dual-mode resonators with perturbation were
described. In the case of tri-band filters, the only way that can be implemented is to form
passbands using the fundamental and higher-order harmonics since such resonators
support only two modes with the same resonant frequency, i.e. it is not possible to
design a tri-mode structure using perturbation.

The structure proposed in [30] was also used to realize a tri-band filter [38]. A very
similar structure was presented in [39]. The proposed filter consists of a ring-shaped
resonator that is excited by asymmetrically positioned feeding lines, Figure 2.19(a).
Three pairs of degenerative modes form three passbands with a small insertion loss and
good selectivity in all passbands, Figure 2.19(b).

However, as in the case of a dual-band filter, the major drawback of the structure is
the fact that the passbands are formed by the harmonics. Although there are mechanisms
for control of the passbands, the passband positions are predominantly determined by
the resonant frequencies of the harmonics. In addition, a common disadvantage of such
filters can be noted in this example – large overall dimensions which are equal to 0.31λg
x 0.31λg.

2.4.2 Multi-band filters with stepped-impedance multi-mode resonators

Dual-mode behavior is the simultaneous propagation of two modes whose resonant
frequencies are not harmonically related. Strictly speaking, dual-mode resonators are

(a) (b)

Figure 2.18 (a) Configuration of the filter proposed in [37]. (b) Filter response.
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only those resonators that support two modes that have the same resonant frequencies
but different field distributions. However, dual-mode behavior can be also achieved in
the structures that do not support degenerative modes. In that case, the two modes do
not stem from coupled degenerative modes but they are formed by the fundamental and
higher-order mode whose resonant frequencies are not harmonically related as in
conventional structures.

In other words, dual-mode behavior occurs in configurations that do not represent
classical dual-mode resonators but they have perturbations that cause a change in the
ratio of resonant frequencies.

An example of such configuration is the stepped-impedance resonator (SIR),
Figure 2.20, which was proposed for the first time in [40]. It can be said that the SIR
originates from the conventional microstrip resonator, in which a stepped-impedance
perturbation is introduced.

Due to its symmetry, SIR can be analyzed using even-/odd-mode analysis. The even
and odd equivalent circuits are shown in Figure 2.21 and the expressions for the even
and odd input impedances are the following

Zine ¼ jZ2
Z2 tan θ1 tan θ2 � Z1

Z1 tan θ2 þ Z2 tan θ1
¼ jZ2

K tan θ1 tan θ2 � 1
tan θ2 þ K tan θ1

,

Zino ¼ jZ2
Z1 tan θ1 þ Z2 tan θ2
Z2 � Z1 tan θ1 tan θ2

¼ jZ2
tan θ1 þ K tan θ2
K � tan θ1 tan θ2

,

(2.12)

where Z1 and Z2 are the characteristic impedances, θ1 and θ2 their electrical lengths, and
K the ratio Z2/Z1.

From the resonant condition 1/Zin = 0, we have that the fundamental resonance occurs
when

K ¼ tan θ1 tan θ2: (2.13)

(a) (b)

Figure 2.19 (a) Configuration of the filter proposed in. [38]. (b) Filter response.
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From the previous expression, we can derive the ratio θT/θ1

tan
θT
2

¼ tan ðθ1 þ θ2Þ ¼ tan θ1 þ tan θ2
1� tan θ1 tan θ2

¼ 1
1� K

K

tan θ1
þ tan θ1

� �
, K 6¼ 1

θT ¼ π, K ¼ 1
:

(2.14)

(a)

(b)

Figure 2.20 Configuration of stepped-impedance resonator.

(a)

(b)

Figure 2.21 Equivalent circuit for: (a) Even mode. (b) Odd mode.
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When K = 1, the structure has a uniform impedance and fundamental resonance occurs
for θT = π, which is in accordance with the conventional λ/2 resonator.
Figure 2.22 shows how θT changes with θ1 for different values of K, and it can be

seen that θT has minimal values for 0<K<1, and maximal values when K >1.
In order to analyze the ratio of fundamental and higher-order modes resonances, we

can analyze the case when θ1 = θ2 = θ. In that case, the expressions (2.12) have a
simpler form

Zine ¼ jZ2
K tan 2θ � 1
tan θð1þ KÞ ,

Zino ¼ jZ2
tan θð1þ KÞ
K � tan 2θ

,

(2.15)

and the resonant conditions are the following

tan 2θ ¼ K, tan θ ! ∞, tan θ ¼ 0 : (2.16)

Using the expression (2.16), the ratios of the resonant frequencies are derived

f 1
f 0

¼ π

2 tan �1
ffiffiffiffi
K

p ,

f 2
f 0

¼ 2
f 1
f 0

� 1,

f 3
f 0

¼ 2
f 1
f 0
,

(2.17)

Figure 2.22 Dependence of θT of θ1 for different values of K.
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where f0 is the resonant frequency of the fundamental mode, and f1, f2, and f3 are the
resonant frequencies of the higher modes. It can be seen that the ratio f1/f0 does not
represent a conventional ratio of the fundamental and the first higher mode, whilst f2 and
f3 are conventional harmonics in comparison to f0 and f1. In other words, the mode at f1
is not conventional harmonic but together with the fundamental mode comprises two
resonant modes. Hence, this SIR structure represents a dual-mode resonator.

Also, it can be seen that f1/f0 = 2 for K = 1, which is expected since SIR is a
conventional λ/2 resonator when K = 1. The resonant frequencies f1 and f0 move away as
K decreases, and approach each other as K increases. However, it should be noted that
only the fundamental mode is influenced by K, whilst the second mode is a function of
θ, which implies that only the fundamental mode can be independently controlled,
whilst control of the second mode inevitably affects the first resonant mode.

By the same token, the tri-mode stepped-impedance resonator can be realized, i.e. a
structure that support three resonant modes. Figure 2.23 shows a stepped-impedance
resonator with three segments with different impedances. As in the previous case, even-/
odd-mode analysis can be applied to analyze the behavior of the structure. The
equivalent circuits are shown in Figure 2.24 and the expressions are given in the
following form

Zine ¼ jZ3
tan 2θðK1 þ K2 þ K1K2Þ � 1

tan θðK1 þ K1K2 þ 1� K2 tan 2θÞ ,

Zino ¼ jZ3
tan θð1þ K2 þ K1K2 � K1 tan 2θÞ
K1K2 � tan 2θðK1 þ K2 þ 1Þ ,

(2.18)

where K1 is the ratio Z3/Z2, K2 the ratio Z2/Z1, Z1, Z2, and Z3 the characteristic
impedances of the segments, and θ their electrical lengths. For the sake of simplicity,
it is considered that θ1 = θ2 = θ3 = θ.

The fundamental and two higher resonances occur when the following conditions are
met

tan 2θ ¼ K1K2

K1 þ K2 þ 1
, tan 2θ ¼ K1 þ K1K2 þ 1

K2
, tan θ ! ∞ : (2.19)

Figure 2.23 Configuration of tri-stage stepped-impedance resonator.
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The ratios of the modes can be expressed in the following manner

f 1
f 0

¼
tan �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1 þ K1K2 þ 1

K2

r

tan �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

K1 þ K2 þ 1

r ,

f 2
f 0

¼ π

2 tan �1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1K2

K1 þ K2 þ 1

r ,

(2.20)

where f0 is the resonant frequency of the fundamental mode, and f1 and f2 the resonant
frequencies of higher modes. Similar to dual-mode SIR, the ratios f1/f0 and f2/f0 do not
represent conventional ratios of the fundamental and higher modes, but two higher
harmonics together with the fundamental one comprise three resonant modes. Hence,
the SIR structure with three segments with different impedances represents a tri-mode
resonator.

It should be noted that only the first two modes can be controlled by K1 and K2, whilst
the third mode is influenced only by θ. Also, the first two modes cannot be independ-
ently controlled since both modes are functions of K1 and K2.

We can conclude that dual-mode and tri-mode SIR structures are good candidates
for multi-band filters since they can provide resonances at non-harmonically related
frequencies. Due to the possibility to control the positions of the fundamental and
higher-order harmonics by a simple mechanism such as stepped impedance, stepped-
impedance resonators have attracted significant attention and there have been a number
of multi-mode filters based on SIRs. It was shown that the resonant modes could not be
independently controlled to the full extent; but in comparison to resonators with
perturbations, this type of resonator offers significantly greater design freedom in terms
of passband control. Also, the behavior of SIR structures makes them good candidates
for miniaturization of filters.

(a)

(b)

Figure 2.24 Equivalent circuit for: (a) Even mode. (b) Odd mode.
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The first dual-band filters based on SIR structures were published in [41–44] and the
considerable potential of SIR for high-performance dual-band filter design was demon-
strated. The filter configuration proposed in [43] is shown in Figure 2.25, together with
the response of the filter. Despite being based on a novel idea, the proposed filters
exhibit drawbacks, such as large dimensions and the fact that all these filters operate at
2.4/5.2 GHz.

Poor selectivity is predominantly caused by the fact that the SIR structure itself
cannot provide transmission zeros, but has to be generated in a different manner. One
way to provide transmission zero is the employment of a greater number of resonators
and specific couplings, which, however, increases overall size.

In the years following, considerable attention was paid to improving the performance
of filters based on SIRs. In [45], a parallel doubly coupled stepped-impedance resonator
structure is proposed to build a 2.4/5.2 GHz dual-band bandpass filter for a WLAN
application, Figure 2.26. The prototype filter is a three-stage design composed of four
SIRs in conjunction with the tapped-line used in the I/O ports to create transmission zeros,
Figure 2.26(b). The proposed filter has the advantage of a much wider fractional
bandwidth in both passbands without sacrificing the passband insertion losses. Although
the problem of selectivity is solved in this configuration, this filter is not a good solution in
terms of circuit size. Filters with similar configurations to this one were presented in
[46–47]. They are also characterized by good selectivity and relatively large overall size.

Another way to achieve good selectivity was proposed in [48–51] in which transmis-
sion zeros are provided by source-load coupling. Namely, when there is a direct

(a)

(b)

Figure 2.25 (a) Configuration of the filter proposed in [43]. (b) Filter response.
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coupling between the feeding lines, an additional signal path is provided. That path
provides a transmission zero at the frequency at which it is out-of-phase with the signal
from the main path. However, the solution with source-load coupling usually leads to
increases in filter dimensions, and thus the possibility of filter miniaturization is limited.

Filters with smaller dimensions and good selectivity can be realized by folding of the
coupled resonators [52–54]. The configuration and response of the filter published in
[52] are shown in Figure 2.27, and a very good dual-band response can be seen. Pseudo-
inter-digital stepped-impedance resonators were used to design the bandpass filter with
dual-band response. By tuning the impedance ratio and physical length of the SIRs, the
filter has good dual-band performance at 2.4/5.2 GHz and high isolation between the
two passbands. Additionally, the overall size of the filter is only 0.21λg x 0.11λg.

The structures in [53] and [54] employ very similar resonators but they have a
different feeding scheme. Nevertheless, they are both characterized by good
performance.

Good characteristics can be also achieved with asymmetrically fed SIR. Namely,
asymmetrical feeding provides two signal paths with different electrical length, which
cancel each other out at some frequencies.

Examples of such filters were presented in [55–57], whilst the filter published in [58]
is one of the best dual-band filters in terms of insertion loss, selectivity, and compact-
ness. Its configuration and response are shown in Figure 2.28. Two coupled lines and
two transmission lines are used for the filter. In such a configuration, a transmission zero
appears in the middle of two equally separated passbands. Moreover, the unequal even-
and odd-mode phase velocities decrease the filter rejection level. However, the

(a)

(b)

Figure 2.26 (a) Configuration of the filter proposed in [45]. (b) Filter response.
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(a)

(b)

Figure 2.27 (a) Configuration of the filter proposed in [52]. (b) Filter response.

(a) (b)

Figure 2.28 (a) Configuration of the filter proposed in [58]. (b) Filter response.
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passbands cannot be independently controlled to the full extent, since the filter is based
on SIRs. What is more, this configuration can be used only if two passbands are closely
positioned.

As for tri-band filters, they are based on tri-mode stepped-impedance resonators,
which were shown to have great potential for application in multi-band filters. Since a
tri-mode stepped-impedance resonator consists of three segments with different imped-
ances, this resonator has more degrees of freedom for the control of its response in
comparison to dual-mode stepped-impedance resonators. Although this fact allows
more flexible filter design, it implies that design of a filter with tri-mode SIRs is more
complex due to the number of parameters that should be taken into consideration. In
addition, the analysis of tri-mode SIRs implies that independent control of the pass-
bands is very limited.

By utilization of tri-mode SIRs, tri-band filters were designed and proposed in
[59–62]. The configurations in [59] and [61] are very similar and they consist of
two folded tri-mode stepped-impedance resonators that are capacitively coupled to
the feeding lines. They show very poor performance in terms of circuit size and
especially in passband selectivity. Namely, good selectivity cannot be achieved since
only edge-coupling between the resonators exists.

A filter with slightly better characteristics was proposed in [63]. The proposed filter
consists of improved quarter-wavelength stepped-impedance resonators that are induct-
ively coupled to the feeding lines. Relatively good characteristics in terms of selectivity
and in-band performance were obtained at the expense of circuit dimensions, which are
exceedingly large in the proposed filter.

However, the tri-band filter presented in [60], whose configuration and response are
shown in Figure 2.29, represents one of the best tri-band solutions in terms of response
characteristics. Similarly to dual-band filters based on SIRs, good selectivity in tri-band
filters with SIRs can be achieved by creating certain couplings in the filter circuit. In this

(a) (b)

Figure 2.29 (a) Configuration of the filter proposed in [60]. (b) Filter response.
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case, there is a coupling between the feeding lines, as well as a strong coupling between
the two stepped-impedance resonators. On the other hand, the filter exhibits certain
disadvantages. Besides the limited possibility for passband control, the large dimen-
sions of 0.34λg x 0.24λg also represent a drawback of this filter.
SIR configuration was also used to achieve quad-band response [64]. An unconven-

tional stepped-impedance resonator that exhibits quad-mode behavior was proposed,
and it was realized by embedding short-circuit stubs into the low-impedance sections of
the conventional two-sided open-circuit stepped-impedance resonator. Using two pro-
posed resonators, a quad-band filter was designed and it exhibits passbands at 1.9, 2.8,
4.3, and 5.2 GHz. Also, it is characterized by good performance, good selectivity, and
compact size. However, independent control of the passbands is limited due to the
configuration of the resonator.

In the previous analysis, a number of multi-band filters based on stepped-impedance
filters have been presented and it can be concluded that SIRs enable design of filters
with good performance and compact size.

Nevertheless, it should be noted that most dual-band filters are aimed to operate at 2.4
and 5.2 GHz or at two closely positioned frequencies. The reason for this lies in the fact
that the change in SIR segment impedance enables either significant approach or
significant separation of the resonances.

In other words, filters based on SIRs are limited predominantly in terms of
positioning of passbands. Also, independent control of passbands is also limited,
which may, however, be improved by the introduction of certain couplings in the
filtering structure.

2.4.3 Multi-band filters with stub-loaded resonators

Apart from the stepped-impedance resonator, another configuration that provides dual-
mode and tri-mode behavior is a stub-loaded resonator (SLR). Such a resonator was
used for the first time in the bandpass filter proposed in [65].

The structure of the simplest SLR is shown in Figure 2.30 and it can be seen that
the resonator consists of a conventional transmission line with uniform impedance,
which is loaded with a stub. Due to its symmetry, the resonator can be analyzed using

Figure 2.30 Stub-loaded resonator.
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even-/odd-mode analysis. The equivalent circuits are shown in Figure 2.31, whilst the
even and odd input impedances are expressed in the following manner

Zine ¼ jZ2
Z2even tan θ1 tan θ2 � Z1

Z1 tan θ2 þ Z2even tan θ1
,

Zino ¼ jZ1 tan θ1:

(2.21)

From the resonant condition for the even mode 1/Zine = 0 the following expression is
derived

Z1 tan θ2 ¼ Z2 tan θ1, (2.22)

whilst the resonant condition for the odd mode 1/Zino = 0 gives

tan θ1 ! ∞: (2.23)

From the expression (2.22), it can be seen that in an extreme case θ2 = 0 (no stub)
the even mode corresponds to the even mode of the conventional λ/2 resonator. Also,
the expressions (2.22) and (2.23) imply that the odd mode is a function of only one
parameter – θ1, whilst the even mode is influenced by the impedances Z1 and Z2 and the
electrical lengths θ1 and θ2. Thus, the position of the even mode can be controlled
independently of the odd mode by a change in the parameters Z1, Z2, and θ2. On the
other hand, the position of the odd mode cannot be changed independently, since both
modes are functions of the parameter θ1. In other words, SLR supports propagation of
two modes, one of which can be independently controlled.

A tri-mode stub-loaded resonator can also be realized. Namely, if a conventional λ/2
resonator is loaded with two stubs of different lengths or by a square ring, a structure
that exhibits three non-harmonically related resonances can be achieved. Also, stubs can
be grounded by a via which represents an additional degree of freedom in filter design.

Although SLRs have different configurations in comparison to SIRs, these two
resonator types have several common properties – resonant frequency control is signifi-
cantly more flexible than in the case of dual-mode resonators with perturbation, but at
the same time control is limited. Also, SLR itself is not a structure that can provide a
transmission zero.

(a) (b)

Figure 2.31 Equivalent circuit for (a) Even mode. (b) Odd mode.
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The first dual-band filter with SLR was proposed in [66]. Two SLRs are coupled
through an electric field and asymmetrically fed to provide transmission zeros, i.e. better
selectivity of the passbands, Figure 2.32(a). In order to reduce the size of the filter, the
resonators are folded to form ring-shaped structures. Thus, the final dimensions of the
filter are 0.28λg x 0.14λg. The response of the filter implies that the filter has good
characteristics in terms of insertion loss and selectivity, Figure 2.32(b).

Similar filters with comparable performance were proposed in [67–70]. They are all
comprised of ring-shaped stub-loaded resonators but employ different schemes to
provide transmission zeros. Whilst the structures in [67] and [68] employ asymmetric
feeding, the filter in [69] uses inductive cross-coupling, and the structure in [70] source-
load coupling.

Somewhat different structures were presented in [71] and [72] in which resonators
have the configuration of a closed ring-resonator loaded with stubs. In [71], the ring
resonator is loaded with two stubs that are used to control the second passband, whilst
the ring resonator in [72] is loaded with four stubs, which enables filter size reduction
and control of the passbands. However, these filters do not exhibit better performance in
comparison to previously stated ones, and they have significantly larger dimensions.
The examples of the filters with SIRs and SLRs showed that an efficient way to

reduce filter dimensions is the folding of resonators. However, in some filters based on
SLRs another way of reducing size was demonstrated – the stubs were grounded by a
via. Namely, it is well known that in the case of λ/2 and λ/4 the ungrounded one with

(a)

(b)

Figure 2.32 (a) Configuration of the filter proposed in [65]. (b) Filter response.
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twice as long dimensions. The price that is paid for this size reduction is a more
complex fabrication that requires the use of vias. By the same token, grounded stubs
in SLRs enable significant size reduction in comparison to SLRs with non-
grounded stubs.

Dual-band filters with SLR structures with grounded stubs were proposed in [73–78].
In [74], a dual-band bandpass filter using both an open-stub loaded resonator and a short
stub-loaded resonator was presented. Apart from size reduction, use of a short stub-
loaded resonator enables a transmission zero. Owing to the filter configuration and
source-load coupling, a dual-band filter is implemented with four transmission zeros
and it exhibits high skirt selectivity.

The configuration presented in [76] consists of two coupled grounded SLRs, and
owing to the source-load coupling this filter is characterized not only by small size,
0.19λg x 0.19λg, but also by very good performance in terms of insertion loss and
passband selectivity, Figure 2.33.
It was stated previously in this section that if a conventional λ/2 resonator is loaded

with two stubs of different lengths or by a square ring, a tri-mode SLR can be formed
and used in tri-band filter design.

Tri-band filters with tri-mode SLRs were proposed in [79–81]. In [79], the proposed
resonator comprises a half-wavelength resonator, a short stub, and an open stub. The tri-
band characteristics are realized by properly controlling the lengths of the half-
wavelength resonator and stubs. A pseudo-inter-digital structure is used to realize the
compact size of the filter operating at 1.57, 2.4, and 3.5 GHz and to provide good
selectivity.

The filter presented in [81] is comprised of two coupled tri-mode SLRs and its
selectivity has been improved owing to the coupling between the feeding lines,
Figure 2.34. This tri-band configuration that operates at 2.4, 3.5, and 5.2 GHz represents
one of the best tri-band filters since it is characterized by low insertion loss, good
selectivity in all passbands, as well as by small dimensions of 0.27λg x 0.19λg.

(a) (b)

Figure 2.33 (a) Configuration of the filter proposed in [75]. (b) Filter response.
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A stub-loaded resonator was also used to design a quad-band filter [82]. The two
fundamental and two higher-order even and odd resonances of a dual-mode SLR were
used to provide four passbands at 1.5, 2.5, 3.5, and 4.5 GHz. The proposed quad-band
filter is characterized by good selectivity and small overall dimensions of 0.3λg x 0.3λg.
Nevertheless, employment of a dual-mode SLR for a quad-mode filter limits control of
the passbands’ positions.

SLR structures enable the design of filters with good performance and small dimen-
sions. Although they have similar behavior as SIRs, filters with SLRs are not as limited
in terms of the independent control of passbands. Namely, in the case of the SIR
structure the position of one resonant mode can be controlled independently of the
other by a change of SIR segment impedance. However, the segment impedance ratio is
limited by fabrication technology, as well as by the fact that extreme values of imped-
ance inevitably lead to high losses.

In the case of SLR, one mode can be controlled independently from the other by a
change in the stub length, which is not limited by fabrication technology or by losses.
However, the dimensions of the filter, which increase with stub length, should be taken
into consideration. On the other hand, this problem can be diminished by variation of
the filter geometry parameters.

A disadvantage of filters based on SLRs is the fact that two passbands stem from the
resonant modes of the same structure, and thus it is not possible to independently
control passband performance to the full extent.

2.4.4 Multi-band filters with stepped-impedance, stub-loaded resonators

Superposition of stepped-impedance and stub-loaded resonators gives a structure that
exhibits multi-mode behavior and which has more parameters that can be used for
control of the resonant modes. Therefore, such a structure can be used for the design of
multi-band filters. Also, design of filters based on this structure offers more degrees of

(a) (b)

Figure 2.34 (a) Configuration of the filter proposed in [80]. (b) Filter response.
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freedom, but, at the same time, more degrees of freedom imply more parameters that
should be taken into consideration, i.e. a more complex design procedure.

Although SI-SLR unites the advantages of SIR and SLR structures, which implies the
possibility of the design of high-performance, compact multi-band filters, configur-
ations with SI-SLR published so far exhibit either poor performance in terms of
insertion loss and selectivity or large circuit size.

The configuration and response of a dual-band filter with an SI-SLR structure are
shown in Figure 2.35 [83]. It is comprised of an S-shaped stepped-impedance resonator
loaded by the two same open stubs that are used to adjust the second passband in a wide
range. Although it is compact, 0.18λg x 0.13λg, this filter exhibits relatively poor
performance in terms of insertion loss and passband selectivity.

Some other dual-band configurations with SI-SLR resonators were proposed in
[84–91]. For instance, the structure presented in [91] consists of a grounded stepped-
impedance resonator that is loaded with folded stubs symmetrically positioned around
the midpoint of the resonator, whilst the structure in [84] is comprised of inductively fed
hairpin stepped-impedance resonators that are loaded with stubs in the midpoint.

However, as was stated previously, none of the proposed configuration simultan-
eously exhibits good performance and compactness.

Similarly, the potential of SI-SLRs has not been fully exploited in tri-band filters. The
proposed tri-band configurations have good performance but none of them simultan-
eously exhibits compactness [92–97].

The configuration and response of the filter proposed in [92] are shown in
Figure 2.36. The proposed filter consists of two asymmetrically fed stepped-
impedance resonators that are loaded with stubs in the midpoint. Even though all
three passbands have good characteristics, the main disadvantage is the large overall
size of the filter.

A similar structure with a different feeding scheme was proposed in [93] and it also
exhibits good in-band and out-of-band performance, but the filter has large overall size.

(a) (b)

Figure 2.35 (a) Configuration of the filter proposed in [81]. (b) Filter response.
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Finally, SI-SLR has also been used in the design of a quad-band filter [98]. Neverthe-
less, the proposed filter based on single a SI-SLR resonator exhibits compact size, but
poor selectivity and in-band performance.

2.5 Design by cascading independent single-band or dual-band filters

Combining two single-band filters to obtain a dual-band response, and a single-band
and a dual-band filter to obtain a response with three or more bands represents the fourth
approach to the design of multi-band filters. Since such filters comprise several inde-
pendent structures, this method gives the most freedom in design in terms of independ-
ent control of passbands.

Although the configuration, which consists of several structures, may imply large
dimensions of filters, some of the most compact multi-band filter circuits with excellent
performance have been designed by this method.

Design of dual-band filters includes separate design of two single-band filters, which
are afterwards put together to form a dual-band filter. Although the two filters are
independent, they influence each other’s performance, and thus the final step in the
design is optimization of the geometrical parameters of both single-band filters so as to
obtain the desired filter response.

Resonators that are used in the design of dual-band filters include conventional λ/2
and λ/4 resonators, as well as more complex structures such as dual-mode resonators
with perturbation, SIR, and SLR structures.

Dual-band filters designed by this approach can be divided into two groups. The first
group comprises the filters in which the resonators of the same type but with different
resonant frequencies are employed. The second group comprises filters that are realized
with the resonators of different type.

(a) (b)

Figure 2.36 (a) Configuration of the filter proposed in [90]. (b) Filter response.
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One of the simplest ways to realize a dual-band filter is to employ a pair of
conventional λ/2 resonators as was done in [99] and [100]. The filter in [99] is
comprised of two pairs of open-loop ring resonators, which are placed between two
microstrip lines, whilst the filter in [100] has a different feeding scheme, one pair of
resonators is inductively fed and the other is capacitively fed. Although the proposed
filters are easy to realize and have good performance, they are not compact since they
employ open-loop λ/2 resonators. Nevertheless, in [101] a compact, high-performance
dual-band filter with coupled folded λ/2 resonators was proposed, Figure 2.37.

Using λ/4 resonators which are more compact but also more demanding in terms of
fabrication, dual-band filters with good performance and significantly reduced size were
designed [102–107].

More demanding filters in terms of design are those that employ dual-mode reson-
ators with different resonant frequencies. In the previous section, it was shown that
dual-band filters can be realized using only one dual-mode resonator. Thus, we can pose
the question, why we need two dual-mode resonators with different resonant frequen-
cies to design a dual-band filter. In that manner, better filter performance is achieved
since there are two transmission poles in each passband. At the same time, the positions
of the passbands can be almost arbitrarily chosen since each resonator forms one
passband.

In [108–111], filters that employ two different dual-mode resonators with perturb-
ation were proposed. For instance, in the structure presented in [110] two microstrip
loop resonators, one within the other, are employed to obtain dual-mode dual-band filter
responses. Each loop resonator uses two loading elements to excite the dual modes.

In all filters, the passbands are formed in such a way that each resonator provides one
passband with two transmission poles. Although such structures provide a very good
performance, they inevitably have large size because they are comprised of two
resonators with relatively large dimensions.

(a) (b)

Figure 2.37 (a) Configuration of the filter proposed in [98]. (b) Filter response.
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The configurations presented in [112–114] are based on SIR and SLR structures. In
these filters, two different resonators have very close yet different resonant frequencies,
so the first mode of the resonators are used to form the first passband, whilst the second
modes are used to form the second passband. In that manner, both passbands have two
transmission poles. Although the proposed filters are based on SIR and SLR structures
that show great potential for miniaturization, the filters have good performance, but they
are not compact.

In [115] and [116], filters are designed in a similar manner to that in [99] with the
difference that asymmetrical SIR resonators are used instead of λ/2 resonators. SIRs
have structure such that their modes are significantly separated and the first mode of one
SIR forms the first passband and the first mode of the other SIR forms the second
passband. In that manner, good filter performance is achieved whilst the circuit size is
somewhat reduced in comparison to those in [99] and [100].

Very compact filters with good performance that employ SI-SLR and SLR resonators
were presented in [117] and [118], respectively. In these cases, the modes of each
resonator are closely positioned so that each resonator forms one passband with two
transmission poles. The configuration and response of the structure presented in [118]
are shown in Figure 2.38. A compact dual-band filter for 2.4/5.2 GHz WLAN applica-
tion with good frequency selectivity and independently controllable bandwidth for each
passband is proposed using an inter-digital capacitor loop stepped-impedance resonator
and a short-circuited stub-loaded resonator.

Despite having excellent performance, both structures are designed to operate at 2.4/
5.2 GHz, which significantly eases the design and reduces circuit size.

As was stated previously, the second group of dual-band filters comprises filters
realized with different types of resonators. Such filters were proposed in [119–124] and
they are characterized by good performance and relatively compact size.

A miniature filter with good characteristics was proposed in [121] and it is based
on grounded and non-grounded stepped-impedance resonators, Figure 2.39.

(a) (b)

Figure 2.38 (a) Configuration of the filter proposed in [115]. (b) Filter response.
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The impedance perturbation in each SIR is very small so the modes are very distant.
Therefore, each SIR provides one passband – a grounded SIR at 2.4 GHz and a non-
grounded one at 5.2 GHz. Similar to the previous example, it should be noted that the
filter operates at 2.4 and 5.2 GHz, which eases the design and significantly reduces the
filter dimensions.

Dual-path dual-band filters as well as embedded configuration can be treated as
specific types of dual-band filters based on the fourth approach.
In the dual-path configuration, the signal branches into two paths which have

different electrical lengths and in that way two passbands are formed at the output.
Also, a transmission zero can occur if the two paths have such characteristics that they
can provide destructive interference at the output. Dual-band filters based on dual-path
configuration were proposed in [125–128]. Even though this method is very simple, it
cannot meet all the requirements of high-performance dual-band filters – compactness,
small insertion loss, and good passband selectivity.

Filters with embedded resonators are structures in which two different resonators
“share” a part of a signal path. Configurations with embedded resonators were proposed
in [129–133], and are characterized by good performance and small dimensions.

The configuration and response of the filter presented in [130] are shown in
Figure 2.40. The proposed filters use embedded spiral resonators. Each resonator
consists of two sets of spiral lines embedded in a microstrip rectangular open-loop
(MROP). The resonator has two functions in the filter – dual-resonance operation
mainly provided by the spiral lines is employed to generate two passbands simultan-
eously, and MROP acting as the dual-feeding structure is introduced to achieve good
input/output (I/O) coupling for both passbands. With a proper tapping scheme, add-
itional transmission zeros are obtained to improve passband selectivity. Excellent
performance as well as very compact dimensions, 0.1λg x 0.1λg, are proof of the great
potential of these structures.

(a) (b)

Figure 2.39 (a) Configuration of the filter proposed in [118]. (b) Filter response.
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A disadvantage of these filters is the fact that the resonators “share” a part of the
signal path, i.e. they are not as independent as the resonators in other filters based on this
approach. Also, one should note that none of the filters is designed to operate at
relatively close frequencies such as 2.4 and 3.5 GHz, but rather at 2.4 and 5.2 GHz,
which eases the design procedure and decreases circuit size.

From the previous analysis, it can be concluded that numerous dual-band filters have
been designed using the fourth approach, i.e. by combining two single-band filters.
Application of different types of resonators as well as the fact that the two single-band
filters are almost independent implies that this approach offers considerable design
freedom. Against expectations, some of the most compact filters that exhibit excellent
performance have been realized using this approach.

As for tri-band filters realized using this method, they are based on combining dual-
band and single-band filters. Since there is a number of design methods for single-band
and dual-band filters, this approach offers greater freedom in filter design.

Tri-band filters realized using this approach were presented in [134–139]. With the
exception of the tri-band filter, which consists of three single-band filters [136], all
configurations are comprised of one single-band and one dual-band filter. The dual-
band filters have been realized using dual-mode SIR and SLR structures, whilst the
single-band filters have been realized using conventional λ/2 and λ/4 resonators. These
tri-band configurations are characterized by good performance and relatively compact
dimensions.

The structure of the filter proposed in [138] is shown in Figure 2.41, together
with the response of the filter. The configuration is comprised of a grounded SLR
and λ/2 resonator and it provides not only three passbands but also good selectivity.
The proposed structure is a very compact tri-band filter that also exhibits very good
characteristics, i.e. low insertion loss and good performance in the stopband
regions.

(a) (b)

Figure 2.40 (a) Configuration of the filter proposed in [127]. (b) Filter response.
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This approach has also been shown to be very applicable for the design of a filter with
more than three passbands. Namely, the majority of quad-band filters introduced so far
have been realized by applying this method [140–149]. Although the realization of four
passbands gives greater design freedom in terms of combining single-band, dual-band,
and even tri-band filters, all proposed quad-band filters except for [140] employ two
dual-band filters.

The filter in [140] employs a stepped-impedance resonator and a conventional half-
wavelength resonator. The first passband is formed only by the fundamental mode and
the half-wavelength resonator, whilst the other three passbands have two transmission
poles, one originating from the SIR, and the other originating from the half-wavelength
resonator. The filter is characterized by good performance, but relatively large
dimensions.

The filters proposed in [141–144] consist of two dual-band filters of the same
type. Whilst the filter in [141] employs two dual-mode ring-shaped resonators each
providing two passbands, the filters in [142–144] relay on dual-band filters based
on stepped-impedance resonators. In [143], the filter consists of two pairs of meandered
stepped-impedance resonators that provide four passbands at 1.5, 2.5, 3.5, and 5.5 GHz
with excellent in-band performance. Owing to the configuration, the filter also exhibits
excellent selectivity and very compact dimensions of only 0.2λg x 0.18λg.

On the other hand, the filters in [145–149] employ dual-band filters with different
types of resonators, most of which are stepped-impedance and stub-loaded resonators,
as well as their variations. The quad-band filter proposed in [149] is based on a
grounded conventional half-wavelength resonator that provides two closely positioned
passbands at 2.75 and 3.3 GHz, and a grounded stepped-impedance resonator that
provides another two passbands at 1.525 and 4.5 GHz. The filter has compact size
and satisfactory out-of-band rejection between each band owing to transmission zeros
introduced by source-load coupling and a specific coupling scheme.

(b)(a)

Figure 2.41 (a) Configuration of the filter proposed in [135]. (b) Filter response.
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Another proof of the applicability of this method is the fact that one of the very few
quint-band filters proposed so far is based on this method [150]. The proposed configur-
ation comprises five tri-mode stub-loaded stepped-impedance resonators each of which
provides a passband with three transmission poles. Also, specific configuration of input
lines and resonators provides a transmission zero at the upper side of each passband.
The filter operates at 0.6, 0.9, 1.2, 1.5, and 1.8 GHz and exhibits good performance and
overall dimensions of 0.52λg x 0.045λg.

2.6 Other advanced solutions of multi-band filters

In the four previous sections, microstrip multi-band filters realized as planar structures
in conventional printed-circuit board technology have been analyzed. From the fabrica-
tion complexity point of view, PCB technology represents the least demanding and the
most cost effective procedure for the realization of filter circuits.

However, there have also been proposed multi-band filters that have been realized in
a different manner – using multi-layer architecture or fabrication technologies other than
PCB or applying advanced theoretical concepts in electromagnetic wave propagation.
In the following, an overview of multi-band filters designed using unconventional
methods will be given.

One of the critical aspects of filter circuit is its size and in the previous sections, some
of the methods for circuit size reduction were discussed. Another method to make a
configuration more compact is to realize it as a multi-layer structure. Multi-layer
structure allows the elements of filter circuit to be stacked vertically in several layers
and in that manner to reduce the overall dimensions.

The simplest multi-layer structures are realized in printed circuit board technology as
defected ground structures (DGS). Apart from transmission lines and resonators that are
realized in a standard conductive layer, there are also structures realized in the
ground layer.

DGS structures can be divided into two groups. The first group comprises DGS
structures in which resonators are realized in both the conductive and ground layer. On
the other hand, the second group includes DGS filters in which resonators have been
realized only in the ground layer.

The first type of filter aims to reduce circuit size as well as to increase the coupling
between the resonators since resonators realized in two layers are coupled over the
whole area and not only through the edges. Dual-band filters with such DGS configur-
ations were proposed in [151–154]. However, none of the structures simultaneously
exhibits good performance and compactness.

Defected ground structures, in which resonators are positioned in the conductive and
ground layer, have also been used for the realization of several tri-band filters [155–157]
and a quad-band filter [158]. The structure proposed in [155] consists of two pairs of
stepped-impedance resonators in the conductive layer and one pair of stepped-
impedance resonators realized in the ground layer. The filter is characterized by good
performance and small overall dimensions of 0.26λg x 0.2λg. The quad-band filter
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employs half-wavelength and SIR resonators to obtain four passbands, and it is charac-
terized by good performance, selectivity, and compact size.

However, the DGS structure is not a guarantee of high-performance, compact filter,
and this is confirmed by the structures proposed in [156] and [157], which do not exhibit
good performance or compactness.

The second type of DGS structures aims to increase the coupling between the feeding
lines themselves, as well as between feeding lines and resonators. In that manner,
insertion losses can be decreased, but also transmission zeros can occur which improves
filter selectivity. This approach has been applied in the filters published in [159–162],
but similar to the structures from the first group, these filters usually do not simultan-
eously exhibit good performance and compactness.

Somewhat more complex structures are those designed in two separate conductive
layers that are both positioned above the ground layer. Such structures employ standard
dielectric layers, and examples of dual-band filters based on this idea were published in
[163] and [164]. In both structures, two dual-mode resonators with perturbation are
realized in separate layers and each resonator provides one passband. Even though these
filters have good responses, they are not characterized by compactness, which is due to
dual-mode resonators with perturbation that have relatively large size.

The same architecture has also been exploited for the design of quad-band [165–166]
and quint-band filters [167]. The quad-band filter proposed in [166] consists of
grounded and non-grounded stepped-impedance resonators and they provide passbands
at 1.5, 2.5, 3.5, and 5.5 GHz. The filter is characterized by excellent in-band perform-
ance and selectivity, as well as by compact dimensions of only 0.14λg x 0.08λg. The
quint-band filter was realized using a very similar configuration and it is also character-
ized by excellent performance and compactness.

The most complex multi-layer filters consist of three or more layers fabricated using
more demanding and expensive technology than PCB. At the same time, such tech-
nologies allow more design freedom. One of the most attractive multi-layer technolo-
gies is low temperature co-fired ceramics (LTCC).

Employing this technology, the most compact dual-band filters with linear dimen-
sions less than 0.08λg have been realized [168–171]. By utilization of LTCC
technology, the tri-band filters presented in [172] and [173] were designed. Similarly
to the dual-band filters realized in LTCC technology, these tri-band filters are the
most compact filters which, at the same time, have good selectivity and low
insertion loss.

Multi-layer structures have great potential for miniaturization, but also a potential for
improvement of certain filter characteristics. Nevertheless, the major drawback of multi-
layer structures in comparison to planar ones is the necessity for more complex PCB
fabrication or expensive technologies such as LTCC.

In the literature, one can find filters that employ conductive materials other than
copper. Superconductors are materials that exhibit zero resistance at temperatures lower
than a certain value. The temperature at which a material abruptly changes its properties
is called the critical temperature. First superconductors were discovered in the year of
1911. However, it was only in the eighties that superconductors with a critical
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temperature higher than 77 K (boiling point of nitrogen) were found. The materials
whose critical temperature is higher than 77 K are called high-temperature
superconductors (HTS) and over recent decades they have found wide application in
microwave devices.

The most often used HTS material in microwave applications is yttrium barium
copper oxide (YBCO) and thallium barium calcium copper oxide (TBCCO). The main
advantage of these materials is the high values of their conductivity, i.e. small conductor
attenuation, which makes superconductors good candidates for applications in which
small losses are of critical importance. However, despite being commercially available
HTS materials are far more expensive than conventional materials. In addition, the
realization of filters with superconductors is more demanding in comparison to conven-
tional fabrication procedures.

Dual-band and tri-band filters with HTS materials were proposed in [174–176] and
[177], respectively, and their responses are characterized by very small insertion losses
in the passbands. Since other characteristics of HTS filters do not depend on HTS
materials, they are not minature whilst their responses are very good.

Another unconventional method for multi-band filter design is based on using
lumped elements. They are used together with transmission lines and other distributed
elements, and their employment aims to obtain resonators with inductances and capaci-
tances that cannot be achieved if only transmission lines are used. They are also used to
improve couplings in a circuit as well as to reduce circuit size. Examples of dual-band
filters with lumped elements were proposed in [178] and [179]. Additionally, a quad-
band filter with lumped elements was presented in [180].
The last group of unconventional filters comprises configurations based on composite

right/left-handed (CRLH) transmission lines, i.e. structures based on metamaterials.
Metamaterials are artificially made materials that exhibit extreme values of effective

permittivity and permeability, which makes them very attractive for application
in miniaturization of microwave circuits. Especially interesting are double-negative
metamaterials that simultaneously exhibit negative permittivity and permeability
over frequency range. Due to antiparallel phase and group velocities, i.e. due to the
“left-handed” system of vectors E, H, and k, double-negative metamaterials are also
called left-handed (LH) metamaterials.

Transmission lines that are based on the LH concept represent LH transmission lines.
A pure LH transmission line does not exist, but only a composite structure – the CRLH
transmission line.

Utilization of CRLH transmission lines enabled the design of dual-band filters that
are very compact in comparison to conventional ones [181–184]. On the other hand,
circuits based on metamaterials are also characterized by higher insertion losses in
passbands, which is the major drawback of these structures.

Tri-band filters based on metamaterials have been proposed in [185] and [186]. Both
configurations are very compact, but the major limitation in the application of these
filters is significant insertion loss in the passbands. Finally, the CRLH concept was also
used in the design of a quad-band filter [187], which does not exhibit large insertion loss
in the passbands.
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2.7 Multi-band bandstop filters

Unlike multi-band bandpass filters, multi-band bandstop filters have not been as widely
explored. Whilst there are four principal and several advanced design methods for
multi-band bandpass filters, multi-band bandstop filters have been designed using only
some of those approaches.

It should be also noted that the majority of multi-band bandstop filters are designed to
operate at two different frequencies, whilst only a few bandstop filters operating at three
or more bands have been proposed so far.

The first multi-band bandstop filter was proposed in [188] in which the authors
presented an analytically designed dual-band bandstop filter in cul-de-sac topology
with directly coupled resonators which make the proposed technique similar to those
used in bandpass filter design.

Generally speaking, the most widely applied approach for the design of dual-band
bandstop filters has been the employment of multi-mode resonators. Dual-band filters
based on stepped-impedance resonators were proposed in [189–192].

The filter presented in [189] consists of three parallel-coupled stepped-impedance
microstrip structures. Two structures comprise stepped-impedance coupled open-end
stubs, whilst the third one represents a single stepped-impedance microstrip line. Three
signal paths and coupling between the structures provide two wide stopbands with good
performance. However, the filter has a large overall size of 0.38λg x 0.32λg.
In [190–191], filters are based on two-section stepped-impedance open stubs. The

structure in [190] consists of a λ/2 microstrip stepped-impedance open-stub unit and two
series segments that are connected to the feeding lines. By proper choice of the electrical
length and impedance of stepped-impedance and serial segments two stopbands are
achieved, and the filter has good performance but relatively large size. On the other
hand, the structure in [191] comprises two open stubs and one serial segment, yet it has
very similar properties to the one presented in [190].

In [192], more design freedom was achieved through the employment of a tri-section
stepped-impedance open stub. A configuration with two open stubs and one serial
segment provided two passbands at 2.4 and 5.2 GHz, and it is characterized by good
performance yet large overall size.

Another type of multi-mode resonator that has been employed in dual-band bandstop
filter design is the stub-loaded resonator [193–195]. The filter in [193] consists of the
main transmission line and three stub-loaded resonators coupled to the main line. In
other words, this is a third-order filter, consisting of three coupled-line sections and two
admittance inverters, which provide two stopbands and have good characteristics in
terms of stopband insertion loss. However, it has very large dimensions.

Similar structures were proposed in [194], one of which comprises a pair of non-
grounded stub-loaded resonators, whilst the other comprises a pair of grounded stub-
loaded resonators. The resonators are coupled to the main transmission line that is
divided into two different paths. Also, they are folded into loops to enhance the loading
effect. Because of the symmetrical feeding scheme, the odd-mode frequencies are
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almost suppressed and the harmonic resonances are utilized as the second stopband.
Besides good return and insertion loss, these filters also exhibit very compact size.

In [195], a dual-band stopband filter that comprises a common microstrip uniform
impedance resonator and two open-circuited stubs was proposed. The open-circuited
stubs are realized as stub-loaded resonators, and in that manner two stopbands with
relatively good performance were provided. Although the stubs were folded in order to
reduce the filter size, its overall dimensions are still large – 0.26λg x 0.18λg.
Beside methods based on multi-mode resonators, the technique based on a combin-

ation of two single-band filters has also been utilized for dual-band bandstop filter
design [196–197]. The dual-band filter presented in [196] consists of two single-band
filters of the fourth order. The single-band filters employ conventional open-loop λ/2
resonators and they are coupled to the main transmission line. Although filters of the
fourth order provide good performance in terms of return and insertion loss, they also
have exceedingly large dimensions, especially because they are realized using λ/2
resonators.

A slightly more compact dual-band filter with good rejection characteristics was
presented in [197]. It is comprised of two microstrip square loop dual-mode resonators
having different sizes that are located at different sides of the folded feeding line.
Therefore, each resonator provides one stopband in the filter response and, at the same
time, the resonators do not influence each other’s performance.
A non-resonating concept for the design of a dual-band bandstop filter was proposed

in [198]. The filter comprises two transmission lines that are connected in parallel and
the input signal is divided into two components. Owing to the phase difference between
the two transmission lines, the signals combine with each other at the output port and
when out-of-phase they provide transmission zeros. Although this idea is very smart
and easily applicable, its main drawbacks are that the range of the two stopband
frequencies is limited as well as the fact that the overall dimensions of the filter are
very large.

As for the advanced theoretical concepts, DGS and metamaterial concepts were used
in [199–201] and [181], respectively, to realize dual-band bandstop responses.

A DGS bandstop filter with all resonators realized in the ground layer was presented
in [199]. The proposed structure comprises two cascaded DGS SIR structures resonat-
ing at different frequencies to obtain stopbands at 2.4 and 6.7 GHz. Both stopbands are
very narrow yet below 25 dB, and the overall size of the circuit is compact.

DGS dual-band structures with resonators realized in both the conductive and ground
layer were proposed in [200–201]. The filter in [200] employs a pair of open-loop λ/2
resonators in the conductive layer and a pair of complementary split ring resonators in
the ground layer. The filter in [201] is comprised of a T-shaped defected microstrip
structure and a U-shaped defected ground structure. Both filters have very compact
dimensions. However, only the latter one simultaneously exhibits good performance in
terms of insertion and return loss.

The metamaterial transmission line concept used to design the dual-band bandpass
response in [181] was also applied to realize the dual-band bandstop response. The
conventional bandpass and bandstop filter were first designed using quarter-wave short-
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circuited and open-circuited stubs, respectively, and then the dual-band filter with
arbitrary dual operating bands was easily implemented by replacing the microstrip lines
with the dual-band CRLH TLs. Due to the non-linear phase response of the CRLH TLs,
the dual-band filters with two arbitrary passbands/stopbands can be easily obtained.
Although very compact, the bandstop filter does not exhibit very good performance.

As for bandstop filters with three or more stopbands, there have only been a few
publications on tri-band [202–204] and quad-band structures [205–206].

The first tri-band filter was the circuit presented in [202]. It consists of a spur line and
a section of quarter-wavelength coupling structure, and it operates at 6.4, 14.5, and 21.5
GHz. The spur line structure behaves as a shunt series open circuited resonator inducing
transmission zeros. However, the filter has large overall dimensions and extremely poor
stopband characteristics.

In [203], a filter designed using inter-digital hairpin resonators with three pairs of
folded fingers was presented. The bands can be independently controlled by modifying
the parameters of each corresponding pair of folded fingers. The filter operates at 6.4,
10.7, and 15 GHz, and although it has relatively compact size performance is very poor.

The tri-band filter in [204] consists of a ladder-shaped defected-microstrip structure,
i.e. a ladder-shaped perturbation made in the main signal line and it operates at 1.55,
4.59, and 7.59 GHz. Although this structure is more compact and has better stopband
characteristics in comparison to the previous tri-band structures, there is still plenty of
room for improvement in the performance of tri-band bandstop filters.

As for quad-band structures, in [205] a multi-band bandstop response was proposed
that was achieved using the analytical approach, i.e. using a transversal coupling
network comprising resonators that have the same or similar resonant frequencies.
A theoretical approach was also used to design a quad-band bandstop filter in a cul-
de-sac configuration in [206]. The proposed procedure comprises evaluation of the
poles and zeros of the filtering function using frequency transformation and afterwards
the generation of a coupling matrix for the filtering function. The procedure is advanta-
geous to some other theoretical approaches in terms of complexity of determination of
the transfer function.

2.8 Conclusion

Design methods for multi-band bandpass filters can be divided into four groups each of
which can be divided into several sub-groups.

The first approach relies on classical filter design theory. Its main advantage is its
applicability to different types of filters as well as the fact that it comprises analytical
and semi-analytical procedures, which provides efficient and relatively simple filter
design.

On the other hand, this method has several significant drawbacks. Passbands cannot
be independently formed and controlled since they are formed from one wideband
response by introducing transmission zeros, or by “mapping” one single-band response
to several bands. Also, due to the employment of simple resonating structures such as
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λ/2 resonators, this approach leads to filter circuits with large dimensions. In addition, it
should be noted that filter responses have poor performance in stopband regions.

The second approach relies on introducing transmission zeros into the transfer
function of a single-band filter and it represents the simplest method for multi-band
filter design. The main advantage of this approach lies in its simplicity. However, all
other aspects do not make this approach very favorable in comparison to others. Since
the filters realized using this method are comprised of bandstop and bandpass filters,
they inevitably have large dimensions. In addition, passbands are formed from one
wideband passband which implies that the performance and positions of passbands
cannot be independently controlled.

The third approach is based on multi-mode resonators, and it offers significantly more
freedom in multi-band bandpass filter design.

Dual-mode resonators with perturbation allow the realization of filters with relatively
good performance of passbands. However, limited control of passbands as well as
relatively large dimensions that cannot be reduced below 0.25λg x 0.25λg represent
their drawbacks.

SIR structures allow the design of filters with good performance and compact
circuits. Nevertheless, due to the behavior of SIRs, filters based on SIRs are limited
in terms of positioning of the passbands.

SLR structures enable the design of filters with good performance and small dimen-
sions. Although they behave similarly to SIRs, filters with SLRs are not as limited in
terms of the independent control of passbands. In the case of SLRs, one mode can be
controlled independently from the other by a change in the stub length which is not
limited by fabrication technology or by losses. A disadvantage of filters based on SLRs
is the fact that two passbands stem from the resonant modes of the same structure, and
thus it is not possible to independently control passband performance to the full extent.

Superposition of stepped-impedance and stub-loaded resonators gives a structure that
exhibits multi-mode behavior and which has more parameters than can be used for
control of the resonant modes. Although SI-SLR unites the advantages of SIR and SLR
structures, which implies the possibility of design of high-performance, compact multi-
band filters, configurations with SI-SLR published so far exhibit either poor perform-
ance in terms of insertion loss and selectivity, or large circuit size.

The fourth approach is based on two single-band filters to obtain dual-band response,
and single-band and dual-band filters to obtain response with three or more bands.
Resonators used in the design of multi-band filters include conventional λ/2 and λ/4
resonators as well as more complex structures such as dual-mode resonators with
perturbation, SIR, and SLR structures. Application of different types of resonators as
well as the fact that the comprising filters are almost independent implies that this
approach offers greater design freedom. Against expectations, some of the most com-
pact multi-band filters that simultaneously exhibit excellent performance have been
realized using this approach.

Apart from bandpass filters based on these four approaches, there have also been
proposed multi-band bandpass filters that have been realized in a different manner –
using multi-layer architecture or fabrication technologies other than PCB, or applying
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advanced theoretical concepts in electromagnetic wave propagation. Although some of
these methods allow design of filters with better characteristics in comparison to the
four conventional methods, their main drawback is a more complex and more expensive
fabrication procedure.

Although multi-band bandstop filters have not attracted as much attention as multi-
band bandpass filters, they have also been explored in recent years. It was shown that
the majority of multi-band bandstop filters were designed to operate at two different
frequencies, whilst only few bandstop filters operating at three or more bands have been
proposed so far.

Also, most dual-band bandstop filters have been designed using multi-mode stepped-
impedance and stub-loaded resonators, whilst several of them have been designed using
the technique based on a combination of two single-band filters and advanced tech-
niques such as DGS and metamaterial concepts.

As for bandstop filters with three or more bands, only a few structures have been
proposed so far and thus there is still a plenty of room for improvement in their
performance.
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3 Techniques for the synthesis
of multi-band transfer functions
Tobias Gerhardus Brand, Riana Helena Geschke, and Petrie Meyer

3.1 Introduction

The previous chapters have given a broad overview of the present state-of-the-art of
multi-band filters. It is clear that no single standard technique exists to design these
filters, and that a number of authors have proposed different approaches to this problem.
To summarize, most of these techniques can be classified as belonging to one of three
main design methodologies, namely the interconnection of single-band filters [1–2], the
usage of multiple resonant resonators [3–7], and the construction and subsequent
synthesis of multi-band approximation functions [8–24]. The interconnection of
single-band filters is by far the simplest option, but invokes large overheads in terms
of space and weight due to the combining and dividing circuitry, and suffers from the
frequency responses of these additional circuits. In contrast, filters using resonators with
multiple resonating frequencies offer a much more compact solution, but are more
difficult to design, and significantly more difficult to implement for practical filters of
high orders. They do offer the advantage that the passbands of the filter can be
positioned at frequencies which are quite apart from each other.

Of the three approaches, construction and synthesis of multi-band transfer functions
offer the most general solutions. In practice, the transfer function itself can often be
bypassed by simply replacing elements in a filter with frequency transformation sub-
circuits [8–12], yet this inherently limits the possible topologies, and the full classical
network synthesis approach remains the most general. Popular techniques to find such
a transfer function include the direct optimization of pole- and zero-positions in the
multi-band frequency domain [13–19], and the mapping of the poles and zeros of a
single-band function onto the multi-band frequency plane using mathematical functions
[20–24].

In 2007, Tamiazzo et al. proposed the use of quadratic polynomials to obtain dual-
band transfer functions, which were then used to synthesize single-structure multi-band
filters [20–21]. Lee and Sarabandi [22, 23] introduced mapping functions for filters with
up to three passbands, but with limited isolation between bands. This is a general issue
with mapping functions, as available functions often do not map the full single-band
stopband to all the stopbands of the multi-band filter. Mohan proposed a method for
N-band filters using successive applications of the classical low-pass to bandpass
transformation [24], followed by the collection of all these poles and zeros into one
function, and subsequent optimization. In a recent article by the authors, a very general
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rigorous technique that requires no optimization was applied to coupled-resonator
filters, [25]. This technique constructs a mapping function from classical reactance
functions and is completely unlimited in the number of bands that can be created. In
addition, the centre frequency and bandwidth of each band can be chosen completely
arbitrarily, and the result is a multi-band filter function of which each band is an exact
bandwidth-scaled and frequency-translated copy of the original low-pass function. The
approach leads to circuit topologies that are very well suited to coupled-resonator
implementations, as each resonator is simply expanded into a separate coupled-
resonator chain.

This chapter gives an overview, supported by examples, of two techniques for
creating multi-band transfer functions: one technique based on optimization of poles
and zeros, and another based on reactance transformations. To put this into perspective,
a brief overview of classical and existing techniques is first given, followed by detailed
expositions.

3.2 Basic transfer function theory

3.2.1 Basic low-pass transfer functions

To set up the theoretical discussion of mapping functions, it is first necessary to briefly
review the basic theory of filter transfer functions, specifically low-pass transfer
functions. Most modern filter realizations are based on the insertion loss method, which
in this chapter forms the underlying basis for all filter realizations. The design of filters
using the insertion loss method includes three stages: approximation, synthesis, and
realization. The approximation stage involves finding a mathematical transfer function
to approximate the ideal filter response. For our purposes, the transfer function is a
rational function in s and is typically a power or voltage ratio.

An ideal filter amplitude-frequency transfer function is constant in the passband, has
infinite selectivity at the passband edges and a linear phase response in the passband.
However, this type of response is not physically realizable. A realistic transfer function
therefore has to approximate the desired response, bearing in mind that the linear phase
and high selectivity are competing goals.

The concept of a filter prototype is often used to simplify the procedure. A prototype
is a filter that exists in a domain normalized with respect to frequency and impedance.
The design specifications are usually mapped from the actual frequency domain to the
prototype frequency domain using an appropriate normalization function. There
are numerous well-known normalization functions available in the literature [26],
e.g. low-pass-to-high-pass transformation, low-pass-to-bandpass transformation, and
low-pass-to-band-stop transformation. Filter designs typically employ up to three fre-
quency domains: a low-pass prototype domain Ωs, sometimes an intermediate prototype
domain Ωm, and the final multi-band frequency domain ω. Frequency transformation is
detailed in Section 3.2.2.
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The transmission zeros or attenuation poles of the prototype are the frequencies
where perfect attenuation occurs, while reflection zeros are frequencies where there is
no reflection from the filter. Transmission zeros are positioned outside the passband
and the reflection zeros inside the passband. The exact positions of the reflection and
transmission zeros depend on the type of filter response, e.g. Chebychev, Butterworth,
Elliptic, Quasi-Elliptic, or Linear Phase.

For filters referred to as “all-pole” filters, all the filter transmission zeros are located at
infinity. This type of response can be accommodated in synthesis by a LC-ladder
network. It is possible to move some of the transmission zeros at infinity to finite
frequencies, referred to as finite (frequency) transmission zeros. Nevertheless, the total
number of transmission zeros always remains the same as the order of the filter.

Approximation is the procedure of finding network functions that approximate the
ideal requirements. Filters are passive and reciprocal two-port circuits, which are
therefore described by three network functions – two driving point functions and one
transfer function. In classical synthesis, it is common practice to define all of the
network functions in terms of the characteristic polynomials, P(s), F(s), and E(s). This
is normally done in the (low-pass) prototype domain, implying normalization. The roots
of F(s) form the reflection zeros of the transfer function and the roots of P(s)
the transmission zeros. Permissible zero locations in the s-plane are detailed in [27].
If P(s) =1 then all of the prototype's transmission zeros are located at infinity.
The network functions and the polynomials all derive their forms from the unitary

properties of the scattering matrix of a lossless passive two-port network [27].
These properties are essentially a restatement of the conservation of the energy
principle. The transmission and reflection coefficients are related to the characteristic
polynomials by

S21ðsÞ ¼ PðsÞ
ϵEðsÞ

S11ðsÞ ¼ FðsÞ
ϵrEðsÞ : (3.1)

The magnitude of the transmission coefficient S21 should approximate unity inside the
passband and zero in the stopband. The roots of S11 are the reflection zeros in the
prototype domain. The roots of S21 are the transmission zeros in the prototype domain.
These are normalized frequencies associated with the points of perfect transmission and
perfect rejection, respectively.

Characteristic polynomials are in turn related to the filtering function. The filtering
function, also known as the filter characteristic function, is defined as

CðΩsÞ ¼ FðΩsÞ
PðΩsÞ : (3.2)

The filtering function defines the shape of a filter response. This is normally a real-
valued function with small values in the passband frequencies and large values outside
the passbands. The poles of C(Ωs) are the filter transmission zeros and the zeros are the
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reflection zeros of the prototype filter. For an all-pole filter, the characteristic function
for a Chebychev response with an equi-ripple response in the passband is

CNðΩsÞ ¼ cosh½Ncosh�1ðΩsÞ�: (3.3)

To represent an equal ripple response in the passband for filters with finite transmission
zeros, a general Chebychev response is described by

CNðΩsÞ ¼ cosh
XN

n¼1

cosh�1ðxnðΩsÞÞ
2
4

3
5, (3.4)

where N is the order of the filter, Ωsn is the transmission zero, either at infinity or finite
frequency, and

xnðΩsÞ ¼ Ωs � 1=Ωsn

1� Ωs

Ωsn

: (3.5)

The approximation procedure typically starts by constructing C(Ωs), after which the
characteristic polynomials F(s) and P(s) are calculated, and from them E(s) [27], using
the Feldtkeller equation

FðsÞFðsÞ�
ϵ2r

þ PðsÞPðsÞ�
ϵ2

¼ EðsÞEðsÞ�: (3.6)

The relationship between the transmission coefficient and the filtering function can be
expressed as

jS21ðΩsÞj2 ¼ 1

1þ ϵ2

ϵ2r

FðΩsÞ
PðΩsÞ

�����
�����
2 : (3.7)

The polynomials F(s) and P(s) are normalized to monic format using the real constants
ϵr and ϵ, respectively. The characteristic polynomials P(s) and F(s) are found from the
filtering function using

s ¼ jΩs: (3.8)

The construction of a filtering function that meets the design requirements in the
prototype domain, is therefore a fundamental part of the filter design process. Once
the characteristic polynomials are known, a circuit can be synthesized from the three
network functions associated with the filter.

In this chapter, the design of a normalized (low-pass) single band filter is the basis of each
of the techniques presented. We focus on coupled-resonator filters and therefore employ the
coupling matrix synthesis methods available in literature [27]. The coupling matrices that
result from these synthesis procedures then describe prototype circuits. In order to obtain a
final design, one must de-normalize the circuit using the initial normalization function. At
this point in the design procedure, the filter is described by an LC network. Apart from
specialized multi-layer techniques, it is not possible to construct the LC networks at
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microwave frequencies directly. The insertion loss method for microwave filters therefore
includes a final stage, referred to as implementation. During this stage, one finds a micro-
wave structure corresponding to the circuit model found during the synthesis procedure.

3.2.2 Transfer function synthesis of multi-band filters through transformation

The classical low-pass-to-bandpass transformation forms the basis for most single-band
bandpass filters. In addition, it is also used extensively in the design of multi-band
filters, where multi-band prototype functions are transformed as a final step of the
synthesis. We therefore start this section with a brief overview of this well-known
transformation, given in (3.9). Note that, for single-band filters, Ω =Ωs, whereas Ω =Ωm

in the case of multi-band filters

Ω ¼ 1
Δ

ω
ω0

� ω0

ω

� �
ω0 ¼ ffiffiffiffiffiffiffiffiffiffiffi

ω2ω1
p

Δ ¼ ω2 � ω1

ω0

: (3.9)

Normally, ω2 and ω1 are the upper and lower passband frequencies of the transformed
filter, but in the case of multi-band filters, ω2 is the highest frequency of the highest
passband and ω1 is the lowest frequency of the lowest passband. The centre frequency is
defined as ω0 and the fractional bandwidth is defined as Δ. This transformation is non-
linear. For single-band filters, this has no impact on the realized bandwidth of a filter
after performing the transformation, as illustrated in Figure 3.1, since, as expected, the
two passband edges simply map to

Ω ¼ �1: (3.10)

However, the effect is of importance when transforming a multi-band prototype filter.
The bandwidth ratios are not preserved after the transformation due to the non-linearity, as
shown in Figure 3.2 for a bandpass filter used as prototype, and transformed using (3.9).
This is especially visible for filters with multiple passbands with larger bandwidths or larger
spacing between passbands, since the degree of non-linearity is a function of fractional
bandwidth. In this case, again the mapping of (3.9) holds for the outer passband edges. The
inner passband limits are influencedby the non-linearmapping. The result is that a prototype
filter that is symmetric in amplitude with respect to Ω= 0 does not map to an amplitude
response with equal bandwidths centered around ω0. The solution is to compensate for this
by using an asymmetric prototype. The implication is a transfer function with complex
coefficients, and asynchronously tuned resonators in the coupled-resonator circuit.

One of the first papers that presented such a transformation [28] used a modified low-
pass transformation, which resulted in the concept of appending resonators to a proto-
type circuit to create more passbands

Ω ¼ b1
ω
ω01

� ω01

ω

� �
� 1

b2
ω
ω02

� ω02

ω

� � : (3.11)
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The variables ω01 and ω02 represent the self-resonant frequencies of the prototype
resonators and the appended resonators, respectively while b1 and b2 are the suscep-
tance slope parameters of each resonator, respectively. This transformation effectively
replaces each single-band resonator in the prototype by a dual-band resonator, which is
a parallel resonator in parallel with a series resonator, or equivalently two parallel
resonators coupled by an inverter.

This specific implementation was for dual-band transformations that created two
passbands separated by finite transmission zeros, all placed at the same frequency.
The appended resonators are referred to as rejection resonators as these create transmis-
sion zeros to split the passbands. Various authors continued with similar transform-
ations and demonstrated multi-band responses with up to three passbands [23, 29, 30].
None of these methods can be extended to more than three passbands.

In a more general paper, García-Lampérez et al. presented frequency transformation
for general multi-band responses realized by appending resonators to a single-band filter
[31]. The technique replaces each resonator with a Foster-type circuit, which effects a
frequency transformation. While not suffering from many of the drawbacks of other
techniques, this approach is still not completely general, and the computation of the
mapping function is not straightforward.

Figure 3.1 Basic low-pass to bandpass transformation for a single-band filter.
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The technique proposed by the authors [25], referred to in the introduction, presents
the next step in the evolution of mapping functions. It is quite general, and in one of its
forms resembles the technique in [31]. A detailed exposition is given in Section 3.3.

3.2.3 Transfer function synthesis of multi-band filters through optimization

It is often the case that the transformation methods presented in the literature do not
provide the exact filter response required. In many cases, bandwidths or reflection loss
levels may need adjustment. These require an optimization step to fine-tune the reflec-
tion and transmission zero positions of the filter. In these cases, the zeros are approxi-
mately placed by the transformation method and are then optimized further to provide
the desired passband widths and equi-ripple responses.

An alternative presented by [14] is to rely completely on optimization to provide a
desired multi-band response, where quad-band filters of up to sixteenth order are
presented based on pure optimization, i.e. both approximation and synthesis steps are
based on optimization. First, in the approximation step, the filter polynomials for multi-
band filters are obtained using an iterative procedure, although of course a frequency
transformation method could also have been used in this step. In synthesis, the coupling
matrix representation for a desired coupling topology, i.e. with entries only in specified
positions, is optimized to match the required transfer function response. The optimiza-
tion cost function is the sum of the squares of the difference in frequency position of
each of the filter reflection and transmission zeros [14].

Figure 3.2 Low-pass to bandpass transformation for a multi-band prototype.
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The benefit of this approach is that convenient coupling topologies in a given
technology may be described by a coupling matrix and its allowed non-zero entries
obtained directly from the approximation function. In this method, the coupling top-
ology selected has to be compatible with the type of response required.

In Section 3.3, this chapter presents an alternative optimization approach for the
design of multi-band filters. The method constructs multi-band filtering functions
directly in the multi-band frequency domain, by random placement of the transmission
zeros in the stopbands and reflection zeros in the passbands. This method avoids using
single-band prototypes, frequency transformations, or an intermediate prototype
domain. The zero positions are then optimized to meet the design specification.

3.3 General synthesis of transfer functions using optimization
of poles and zeros

In this section, an optimization-based method to design multi-band filters, utlizing the
technique by Zhang et al. [32] is presented. The technique finds expressions for multi-
band filtering fuctions using an iterative approximation algorithm, followed by classical
synthesis. The section starts with a qualitative description of the approximation algo-
rithm, followed by a detailed mathematical exposition, and finally a general design
method and design examples to validate the theory.

3.3.1 Qualitative description of approximation algorithm

From the discussion in the previous section, we can conclude that the filtering function
is a rational function in the real frequency variable and therefore completely defined by
its zeros and poles, i.e. the points of perfect transmission and perfect attenuation,
respectively, in a transfer function based on this filtering function. It follows that such
a filtering function can be constructed in full from its poles and zeros. The algorithm
presented here starts by constructing an initial filtering function by arbitrarily placing
poles and zeros in appropriate starting positions on the frequency axis. The chosen set of
poles and zeros are then iteratively improved, in a converging manner, until an optimal
filtering function is found.

Appropriate starting positions for poles and zeros can be identified by noting that
points of perfect transmission (filtering function zeros) are always confined to the
passbands of a filter. Likewise points of zero transmission (filtering function poles)
must be confined to the stopbands of a filter. The number of zeros correspond to the
order of a filter response and therefore also to the order of the filtering function. The
total number of poles is equal to the total number of zeros. Some of the poles can be
located at finite frequencies and the rest at infinity.

Typical responses for the magnitude transfer function and filtering function of a dual-
band filter are shown in Figures 3.3 and 3.4. Figure 3.3 presents a plot of the magnitudes
of the transmission and reflection coefficients of a ninth-order prototype dual-band
filter. The first passband contains four reflection zeros and the second passband five
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reflection zeros. The inner stopband contains four transmission zeros. The remaining
transmission zeros are located at infinity. Figure 3.4 shows the filtering function
associated with the transmission and reflection coefficients plotted in Figure 3.3, where
Ω =Ωm. The filtering function is of ninth order, with the reflection zeros denoted by
p1,. . ., p9 and the transmission zeros by Z1,..., Z4

The filtering function in Figure 3.4 has a constant, not necessarily equal ripple in both
its passbands and inside the inner stopband. Filters that have equi-ripple stopbands and
passbands are very desirable as they have constant minimum return loss levels in their
passbands and constant minimum attenuation levels in their stopbands. Filtering func-
tions with equi-ripple passbands and stopbands represent a class of filters called elliptic
filters. The filter in Figures 3.3 and 3.4 exhibits this property in three of its bands and is
therefore termed quasi-elliptic. The behavior of the outer stopbands of the filter depend
on the number of finite frequency transmission zeros. If the number of finite frequency
transmission zeros is equal to the order of the filter, the outer stopbands will have finite
minimum attenuation levels. If the number of finite frequency transmission zeros is less
than the order of the filter, the outer stopbands will increase monotonically to infinity.

Figure 3.3 Magnitude transfer function response of a dual-band prototype filter. Note that in the
general case, different passband ripple levels can occur.

Figure 3.4 The filtering function C(Ω) for the dual-band filter prototype in Figure 3.3.
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To achieve such a response, it should be clear that the zeros of the filtering function
must be confined to the passbands, the poles of the function must be confined to the
stopbands, and both the poles and zeros must be positioned in such a manner as to force
an equi-ripple condition in each passband and stopband. The bounds of the passbands
and stopbands can easily be obtained by mapping the passband and stopband require-
ments to the prototype domain. Denoting the passband edges α0, α5, and α10, and the
stopband edges β0 and β4, an initial non-optimal filtering function can be constructed by
arbitrarily placing the desired number of poles and zeros in the appropriate bands. Next,
the variation in the respective amplitudes, the passbands, and the stopbands is charac-
terized by the turning points of the functions within the bands, denoted by αn for the
passbands and by βn for the stopbands. These points are referred to as critical points in
the following sections.

The minimum return loss level inside any passband is directly related to the max-
imum ripple value of the filtering function evaluated at the passband edge. If jCN(Ω)j
assumes the same value at the passband edges and at all the turning points inside a
passband, the minimum return loss level in that passband will be constant. Note that the
different passbands in Figure 3.3 have different ripple levels and therefore different
minimum return loss figures. For the inner stopband, which extends from β0 to β4, the
turning points of CN(Ω) inside the stopband are marked as β1,. . ., β3. If jCN(Ω)j assumes
the same value at the edges of a stopband and at all the turning points inside that
stopband, the minimum attenuation level in that stopband will also be constant.

The arbitrary placement of reflection zeros and transmission zeros in the multi-band
prototype domain will not result in a filtering function such as that depicted in
Figure 3.4. A realistic result would be a filtering function where the ripple level is
not constant in any of the passbands or the stopbands, as shown in Figure 3.5 as
“iteration 1.” The figure shows the absolute value of the filtering function for different
iterations of an approximation algorithm, with iteration 1 showing an initial filtering
function that was obtained by arbitrarily placing transmission zeros and reflection zeros
in their appropriate bands. For a band to display an equi-ripple characteristic (referred to
as an equi-ripple state henceforth), it can be shown that all the critical points associated
with that band must be collinear. Thus, the dotted lines in Figure 3.5 must be straight
and parallel to the Ω-axis. An equi-ripple state can therefore be obtained in each
passband by moving all the zeros in that band in such a way that all the critical points
become collinear, with each band being adjusted individually. This is achieved in a
systematic way by choosing pairs of critical points iteratively. It is simple to show that
the function jCN(Ω)j, evaluated at the critical point between the two zeros, becomes
larger if the distance between the two zeros is increased and vice versa. This property
can be exploited to predict how reflection zeros (or transmission zeros) must be adjusted
to obtain equi-ripple bands. Note that the first and last critical points in each band must
remain stationary for the bandwidth to remain constant. Figure 3.5 shows the execution
of the algorithm for the first couple of iterations.

In the approximation algorithm, when two critical points are not collinear, the
transmission zero or reflection zero between them is moved in such a manner as to
force them to become collinear. This process is performed for each pair of critical points
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in each of the bands, with one cycle adjusting all the transmission and reflection zeros
referred to as one approximation iteration. During a single iteration, each zero is
adjusted assuming that it is not influenced by the adjustment of the other zeros, and
that different passbands and stopbands do not influence each other. In reality, these
assumptions are evidently not true, and the algorithm requires multiple iterations to
converge to a valid equi-ripple filtering function. In practice, the algorithm always
converges if one forces it not to adjust zeros to locations outside their associated bands.

3.3.2 Identification of critical points

As shown in the previous section, the critical points associated with a passband/or a
stopband are the edge frequencies of the band and all the turning points located inside
that band. The edge frequencies of a band are usually defined in the actual frequency
domain. These frequencies must be mapped to the prototype domain using an inverse

Figure 3.5 Execution of the approximation algorithm.
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low-pass-to-bandpass transformation. The turning points of a filtering function are the
roots of the gradient of said function. Mathematically, this can be expressed as

dCNðΩÞ
dΩ

¼
dFðΩÞ
dΩ

� �
PðΩÞ � FðΩÞ dPðΩÞ

dΩ

� �
½PðΩÞ�2 ¼ 0

, dFðΩÞ
dΩ

� �
PðΩÞ � FðΩÞ dPðΩÞ

dΩ

� �
¼ 0

: (3.12)

The roots of (3.12) that are located inside the edges of a given band are therefore the
turning points of that specific band. These critical points can be used to derive equations
to adjust the pole and zero positions.

3.3.3 Pole and zero adjustment formulas

At the core of the adjustment algorithm is a procedure to update reflection and
transmission zeros in order to improve the transfer function in a systematic manner.
In this section, CN,k(Ω) refers to the filtering function after the kth zero has been
updated, where N is the number of reflection zeros.

3.3.3.1 Update of reflection zeros
For equi-ripple passbands, the filtering function should evaluate to equal but opposite
signed values at consecutive critical points. Mathematically this can be expressed as

CN, kðαi�1Þ ¼ �CN, kðαiÞ for i 2 ½1,N�: (3.13)

With an initial filtering function CN,0(Ω), the first reflection zero is updated to obtain
CN,1(Ω) as

CN, 1ðΩÞ ¼ Ω� p̂1
Ω� p1

� �
CN, 0ðΩÞ: (3.14)

Here p1 is the initial reflection zero and p̂1 the update. Following this technique for a
single approximation iteration results in the modification of N reflection zeros. Using
the notation above, we can rewrite (3.14) as

αi�1 � p̂i
αi�1 � pi

� �
CN, k�1ðαi�1Þ ¼ � αi � p̂i

αi � pi

� �
CN, k�1ðαiÞ: (3.15)

Solving (3.15) for p̂i results in

p̂i ¼
pi½αi�1CN,k�1ðαi�1Þ þ αiCN,k�1ðαiÞ� � αi�1αi½CN,k�1ðαi�1Þ þ CN,k�1ðαiÞ�

pi½CN, k�1ðαi�1Þ þ CN,k�1ðαiÞ� � ½αiCN, k�1ðαi�1Þ þ αi�1CN, k�1ðαiÞ� :

(3.16)

Equation (3.16) thus calculates the new position of pi so that the adjacent critical points
(αi�1 and αi) become collinear.
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3.3.3.2 Update transmission zeros
A similar approach is followed for the update of transmission zeros. For equi-ripple
stopbands, the filtering function should also evaluate to equal but opposite signed values
at consecutive critical points. Mathematically, this can be expressed as

CN,kð βi�1Þ ¼ �CN,kð βiÞ for i 2 ½1, nf z�: (3.17)

Here nfz is the number of finite frequency transmission zeros. Using an initial filtering
function CN,0(Ω), the first transmission zero is updated to obtain CN,1(Ω) as

CN, 1ðΩÞ ¼ Ω� z1
Ω� ẑ1

� �
CN, 0ðΩÞ: (3.18)

Here z1 is the initial transmission zero and ẑ1 is the update. Following this technique for
a single approximation iteration results in the modification of nfz reflection zeros. Using
the notation above, we can rewrite (3.17) as

βi�1 � zi
βi�1 � ẑi

� �
CN, k�1ðβi�1Þ ¼ � βi � zi

βi � ẑi

� �
CN,k�1ðβiÞ: (3.19)

Solving (3.19) for ẑi results in

ẑi ¼ zi½ βiCN, k�1ð βi�1Þ þ βi�1CN,k�1ð βiÞ� � βi�1βi½CN, k�1ð βi�1Þ þ CN,k�1ðβiÞ�
zi½CN,k�1ð βi�1Þ þ CN, k�1ðΩiÞ� � ½ βi�1CN,k�1ð βi�1Þ þ βiCN,k�1ð βiÞ�

:

(3.20)

Equation (3.20) calculates the new position of zi so that the adjacent critical points
( βi�1 and βi) become collinear.

3.3.3.3 Convergence condition
Using the update algorithms in the previous sections, a systematic improvement of zero
locations can be achieved. To complete the optimization algorithm, only a termination
convergence condition is therefore required.

Suppose Φk is the kth set of reflection and transmission zeros. We can then define an
objective function

UðΦkÞ ¼
XW
w¼1

jCN, kðNþnf zÞðΩwÞ � CN, ðk�1ÞðNþnf zÞðΩwÞj2: (3.21)

where Ω1, Ω2, . . ., ΩW are frequency points spanning the frequency range of interest.
Note that from the previous sections, the filter has N reflection zeros and nfz
finite frequency transmission zeros, and given an initial filtering function of CN,0, the
filtering function after one approximation iteration is CN,Nþnf z . The objective function,
U(Φk), is therefore a scalar function that measures the degree of change in CN from
one approximation iteration to the next. The objective function approximates zero
when the algorithm converges to an optimum solution, i.e. when further updating of
the zeros does not improve filter performance. The goal of the approximation algorithm
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is to reduce U(Φk) to a value below some pre-determined value, or to achieve the
condition in (3.22)

UðΦkÞ � ϵlimit: (3.22)

Here ϵlimit is a small numerical value and is used to define the accuracy of the
approximated response. A typical value for ϵlimit is 10

�3.

3.3.4 General algorithm

To summarize the procedure discussed in Section 3.3.3, a flowchart of the algorithm is
given in Figure 3.6. The technique is as follows:

1. Define the passband and stopband edge frequencies in the multi-band prototype
domain. This is done by mapping the passband and stopband edges from the
actual frequency domain to the multi-band prototype domain using the low-pass-
to-bandpass transformation (3.9).

2. Choose the number of reflection zeros in each passband and transmission zeros in
each stopband. Note that the number of reflection zeros is equal to the order of the
filter, and that the number of transmission zeros must equal the number of
reflection zeros. This number in turn is equal to the minimum number of reactive
elements in the prototype filter.

3. Synthesize an initial filtering function by uniformly distributing the reflection
zeros in the passbands and the transmission zeros in the stopbands.

4. Find all the critical points associated with the different bands, i.e. find the
coordinates indicated with αn and βn in Figure 3.4.

5. Find a new filtering function that is a better approximation of the design specifi-
cations. This is done by finding new positions for the reflection zeros and
transmission zeros of the filter, using (3.16) for reflection zero positions and
(3.20) for the transmission zero positions. The new zeros are used to find a new
filtering function. Note that it is not always necessary to update both the reflection
zeros and the transmission zeros. If equi-ripple stopbands are not required, the
transmission zeros can be predetermined/predecided.

6. Apply the convergence condition of (3.22). If the convergence condition is not
satisfied, the current filtering function is inadequate and a new filtering function
must be synthesized using steps 4, 5, and 6 again. If the convergence condition
is satisfied, we can construct the characteristic polynomials from the filtering
function. A multi-band filter circuit can then be synthesized using classic
theory [27].

3.3.5 Example 1

To illustrate the technique presented in the previous sections, this subsection contains two
examples illustrating the design of multi-band filters using optimization. The first example
is a dual-band stripline filter with the following half-power bandwidth specification:
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� Half-power passband 1: 2.4 GHz to 2.5 GHz.
� Half-power passband 2: 2.688GHz to 2.8 GHz.
� Minimum return loss in first passband: 20dB.
� Order of filter: 8.

Approximation
The approximation algorithm presented in the previous sections defines the passband
edges using equi-ripple frequencies. As there is no simple relationship between the
equi-ripple bandwidth and the half-power bandwidth of a multi-band filter, the approxi-
mation problem must incorporate the equi-ripple passband edge frequencies in the
actual frequency domain as arguments. For this example, the following equi-ripple
bandwidths correspond to the desired half-power bandwidths:

� Pass-band 1: 2408.35 MHz to 2483.5 MHz.
� Pass-band 2: 2705.90 MHz to 2790.35 MHz.

Figure 3.6 Flowchart of the iterative approximation technique.
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These equi-ripple passbands can be mapped to the prototype frequency domain through
the inverse low-pass-to-bandpass transformation, resulting in a dual-band filter proto-
type with the following specifications:

� Pass-band 1: Ω2[–1;–0.5822].
� Pass-band 2: Ω2[0.5822;1].
� Minimum return loss in passband 1: 20 dB.
� Order of dual-band filter: 8.
� All the transmission zeros must be located at infinity.

This prototype specification is symmetric around Ω = 0, which implies that the
characteristic polynomials will all have real coefficients. Choosing four reflection zeros
in each passband, and all transmission zeros at infinity, the iterative approximation
algorithm is used to generate a valid equi-ripple filtering function. This process is
illustrated in Figure 3.7, with the amplitude-frequency response shown on the left and
the filtering function on the right. One iteration constitutes the modification of all of the
reflection zeros. With a convergence limit of ϵlimit ¼ 10�3, the algorithm converges
after 14 iterations. The resulting filtering function is

C8ðΩÞ ¼ Ω8 � 2:6779Ω6 þ 2:58Ω4 � 1:054Ω2 þ 0:1534: (3.23)

With s = jΩ, the roots of (3.23) result in the characteristic polynomials

FðsÞ ¼ s8 þ 2:678s6 þ 2:5802s4 þ 1:0541s2 þ 0:1534
jPðsÞ ¼ j:

(3.24)

Using the conservation of energy principle jS21j2 þ jS11j2 ¼ 1, the normalization factor
ϵ can be found as

ϵ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10RL=10 � 1

p j Pð jΩ
0
cÞ

Fð jΩ0
cÞ j: (3.25)

Figure 3.7 Graphical illustration of the execution of the approximation algorithm for example 1.

82 Synthesis of multi-band transfer functions



Here Ωc is the passband edge frequency. For this example, ϵ= 67.3703. If the order of
the filter is N and the number of finite frequency transmission zeros nfz, ϵr can be found
as [27]

ϵr ¼
1 nf z < N

ϵffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2 � 1

p nf z ¼ N :

(
(3.26)

For this example, ϵr = 1. Finally, E(s) can be found using either the Feldtkeller equation
(3.6) or the alternating pole method [27]

EðsÞ ¼ s8 þ 0:9088s7 þ 3:0909s6 þ 1:9878s5 þ 3:1953s4

þ1:324s3 þ 1:2655s2 þ 0:2582sþ 0:1541
: (3.27)

At this stage, all the dual-band characteristic polynomials are known, and the approxi-
mation problem is solved. The next step in the design procedure is to synthesize a filter
from the characteristic polynomials. For this example, we synthesize a coupling matrix
from the characteristic polynomials and then realize a coupled stripline filter from the
synthesized matrix.

Synthesis
A coupling matrix can be synthesized from the calculated characteristic polynomials
using the methods in [27], giving the N+2 x N+2 matrix as

M ¼

0 0:674 0 0 0 0 0 0 0 0
0:674 0 0:835 0 0 0 0 0 0 0
0 0:835 0 0:367 0 0 0 0 0 0
0 0 0:367 0 0:75 0 0 0 0 0
0 0 0 0:75 0 0:309 0 0 0 0
0 0 0 0 0:309 0 0:75 0 0 0
0 0 0 0 0 0:75 0 0:367 0 0
0 0 0 0 0 0 0:367 0 0:835 0
0 0 0 0 0 0 0 0:385 0 0:674
0 0 0 0 0 0 0 0 0:674 0

2
666666666666664

3
777777777777775

:

(3.28)

From the coupling matrix, we can obtain a lumped element coupled-resonator circuit,
containing lumped element resonators and ideal admittance inverters. This circuit is
shown in Figure 3.8, together with simulated circuit responses. It is clear that the first
half-power passband extends from 2.4 GHz to 2.5 GHz, and the second from 2.688 GHz
to 2.8 GHz. The first ripple passband extends from 2.408 GHz to 2.483 GHz, and the
second from 2.705 GHz to 2.790 GHz. For this example, the circuit is realized using
half-wavelength stepped-impedance resonators [33] to yield the coupled-line stepped-
impedance filter shown in Figure 3.9, using NI AWRMicrowave Office (MWO) models.
Figure 3.10 shows the simulation results for the filter for both the linear MWO analysis,
and a full-wave electromagnetic analysis using Sonnet. From Figure 3.10(a), it is clear
that the initial Sonnet simulation predicts a deviation from the circuit model. Following a
space-mapping electromagnetic optimization of the circuit [34], the final circuit is
obtained. In space-mapping, we optimize a highly accurate but computationally
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expensive model by predicting its response using a fairly accurate but computationally
inexpensive model in an optimization loop. The computationally inexpensive model is
referred to as a surrogate model. The surrogate model for this design consists of
electromagnetic simulations of small separate sections, interconnected in Microwave

Figure 3.8 (a) The lumped element coupled-resonator circuit for example 1. (b)-(d) Simulated
amplitude-frequency responses.

NI AWR MWO

Figure 3.9 NI AWR MWO model of the filter in example 1.
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Office using closed form models, as shown in Figure 3.11. The closed form models can
be tuned to obtain the final dimensions of the physical electromagnetic structure. The
simulation results of the final electromagnetic model are shown in Figure 3.10(b).

The filter was fabricated using a photo-etching procedure on a 1.524 mm Rogers
4003C substrate, using a co-axial to stripline transition optimized in CST Microwave
Studio as shown in Figure 3.12. The ground planes of the substrates were connected to
the metal housing using a conductive adhesive, and the two stripline layers bonded
using the Arlon CuClad 6250 bonding film. The fabricated filter is shown in Figure 3.13.
The measured frequency response, compared to a lossy electromagnetic model in
Sonnet, is shown in Figure 3.14.

Figure 3.10 (a) Initial simulated performance of the filter. (b) Simulated performance after
Space-Mapping optimization.
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3.3.6 Example 2

In this example, we design a cascaded triplet filter in stripline that has the following
half-power bandwidth specification:

� Half-power passband 1: 5.15 GHz to 5.35 GHz.
� Half-power passband 2: 5.75 GHz to 5.95 GHz.

NI AWR MWO

Figure 3.11 A surrogate model for the cross-coupled stepped-impedance resonator.

Figure 3.12 CST analysis of the co-axial to stripline transition.
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� Minimum return loss in first passband: 20dB.
� Order of filter: 4.
� Two finite frequency transmission zeros are located between the passbands for

isolation.

Figure 3.14 Measured and predicted responses of the filter.

Figure 3.13 The filter in example 1.
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Approximation
As in the previous example, the bandwidth specification above is given in terms of half-
power bandwidths. Using the same approach, the following equi-ripple bandwidths are
associated with the desired half-power bandwidths:

� Stop-band 1: 0 GHz to 5.1 GHz.
� Pass-band 1: 5.2559 GHz to 5.3872 GHz.
� Stop-band 2: 5.59 GHz to 5.6748 GHz.
� Pass-band 2: 5.785 GHz to 5.862 GHz.
� Stop-band 3: 6.03 GHz to ∞.

The equi-ripple passband frequencies above can be mapped to the prototype frequency
domain through the inverse low-pass-to-bandpass transformation, resulting in a dual-
band filter prototype with the following specifications:

� Pass-band 1: Ω2[–1;–0.5822].
� Pass-band 2: Ω2[0.7575;1].
� Minimum return loss in passband 1: 20 dB.

The synthesis of the filtering function is illustrated in Figure 3.15, with the frequency
responses in each case shown on the left, and the filtering function on the right. As
before, one iteration constitutes modification of all of the reflection zeros. With the
convergence limit ϵ limit ¼ 10�3, the algorithm converges after seven iterations, yielding
the filtering function

C4ðΩÞ ¼ Ω4 � 0:2122Ω3 � 1:3531Ω2 þ 0:1749Ωþ 0:4195

Ω2 � 0:5477Ωþ 0:0653
: (3.29)

Here the finite frequency transmission zeros have been positioned at Ω = 0.1752 and
Ω = 0.3725. This prototype specification is asymmetric around Ω = 0, therefore the

Figure 3.15 Graphical illustration of the execution of the approximation algorithm for example 2.
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characteristic polynomials will have complex coefficients. As before, the roots of (3.29)
yield the characteristic polynomials

FðsÞ ¼ s4 � 0:2122js3 þ 1:3531s2 � 0:1749jsþ 0:4195
jPðsÞ ¼ js2 þ 0:5477s� 0:0653j

(3.30)

and

ϵ ¼ 1:5615
ϵr ¼ 1

: (3.31)

Finally E(s) is calculated

EðsÞ ¼ s4 þ ð1:0701� 0:2122jÞs3 þ ð1:9257� 0:4080jÞs2
þð0:6604� 0:4899jÞsþ 0:3762� 0:1903j

: (3.32)

At this stage, the dual-band characteristic polynomials are known, and the approxima-
tion problem solved. For this example, we synthesize a coupling matrix from the
characteristic polynomials and then realize a cascaded triplet filter using stepped-
impedance resonators in stripline.

Synthesis
A coupling matrix is synthesized from the calculated characteristic polynomials from
[27], and transformed using the methods presented in [39] to obtain a N+2 x N+2
coupling matrix in the cascaded triplet topology

M ¼

0 0:0923 0:7256 0 0 0
0:0923 �0:0733 0:8017 0 0 0
0:7256 0:8017 �0:031 0:6078 0 0

0 0 0:6708 0:3504 0:6929 �0:7259
0 0 0 0:6929 �0:4584 0:09
0 0 0 �0:7259 0:09 0

2
6666664

3
7777775
: (3.33)

The cascaded triplet topology is obtained by first transforming the initial coupling
matrix into a canonical wheel topology. Next multiple triplets, each associated with
one finite frequency transmission zero, are extracted one at a time from the wheel and
moved to their final positions in the filter [39] to give the lumped element circuit shown
in Figure 3.16. Phase-reversing transformers are included in the model to ensure that the
lumped element resonators have phase shifts corresponding to that of half-wavelength
distributed resonators. Accurate representation of the phase at the start and end of each
resonator is required as the cross-couplings are to be realized using delay lines. A delay
line between the source/load and one of the internal resonators introduces a finite
frequency transmission zero if the phase shift along the two paths differs by 180�. As
before, the method in [33] is used to design the main coupling path using stepped-
impedance resonators, yielding the ideal circuit with its simulated results in Figure 3.16.
Figure 3.17 shows the closed-form Microwave Office model, with simulated results in
Figure 3.18.

89General synthesis of transfer functions



For the realization, the main path is first realized, followed by the systematic
realization of each triplet in turn using delay lines. The lengths of the delay lines, their
characteristic impedances, and the coupling gaps at the internal resonators can all be
used to construct the required triplets. A full-wave electromagnetic analysis using
Sonnet is shown together with the closed-form circuit analysis in Figure 3.18, as well
as the circuit after optimization using space-mapping. The space-mapping surrogate
model is constructed in the same way as for example 1, and shown in Figure 3.19.

The filter was fabricated using a photo-etching procedure on a 1.524 mm Rogers
4003C substrate. The ground planes of the substrates were connected to the metal
housing using a conductive adhesive, and the two stripline layers were bonded using the
Arlon CuClad 6250 bonding film. The fabricated filter is shown in Figure 3.20, with
measured results compared to a lossy electromagnetic simulation in Figure 3.21.

3.4 Synthesis of transfer functions using reactance-based mapping functions

3.4.1 Transfer functions for coupled-resonator filters

In contrast to optimization-based approaches, this section presents a rigorous frequency
mapping approach to derive multi-band transfer functions from low-pass transfer
functions. While in principle quite general, this approach is particularly well suited to

Figure 3.16 (a) Filter circuit for example 2. (b)‒(d) Simulation results.
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coupled-resonator filters; therefore, the discussion will centre around this specific
application.

Transfer functions derived by transformation-based procedures typically start with a
normalized low-pass filtering function which needs to be transformed to a multi-band
function. To construct such a multi-band filtering function, a mathematical relationship
is required between a normalized single-band frequency variable Ωs and a multi-band
frequency variable, ω. By simple substitution, a multi-band filtering function H(ω) can
then be obtained from a single-band filtering function Hs(Ωs) through the mapping
function HðωÞ ¼ Hs

�
ωðΩsÞ

�
.

As discussed in the previous sections, modern multi-band designs often first generate
(typically by optimization) a transfer function that is not symmetrical with respect to
the zero-frequency axis, but which contains the correct number of bands. Such a
function can only be realized by non-physical components. This function is then

NI AWR MWO

Figure 3.17 A closed form MWO model of the cross-coupled stepped-impedance resonator filter.
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transformed through the classical low-pass-to-bandpass transformation to obtain the
final, realizable function. This process is illustrated in Figure 3.22, with Ωm denoting the
intermediate frequency axis, and HmðΩmÞ ¼ Hs

�
ΩmðΩsÞ

�
the intermediate filtering

function.

3.4.2 Low-pass to intermediate multi-band transformation

We can illustrate the required mapping regions graphically, as shown in Figure 3.23,
where allowed regions (where a mapping may exist) and disallowed regions are,
respectively, designated by unshaded and shaded areas. As this step is an intermediate
step, the function can be positioned arbitrarily with respect to the zero-frequency axis, in
this case with all the passbands fitting between ‒1 and +1. The requirements of this
mapping function, with reference to Figure 3.23, are as follows:

Figure 3.18 (a) Initial simulated performance of the filter. (b) Simulated performance after Space-
Mapping optimization.
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NI AWR MWO

Figure 3.19 A surrogate model for the cross-coupled stepped-impedance resonator filter.

Figure 3.20 The filter in example 2.
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� |Ωs|�1 should map to passbands. This section of the mapping function should be
monotonically rising, and preferably linear to prevent severe phase and group
delay distortion in the final function.

� |Ωs|>1 should not map to passbands. This is guaranteed if this section of the
mapping function also rises monotonically.

� |Ωs| = 0 should map to the centre frequency of every band, here denoted by zn.
� |Ωs| =�∞ should preferably map to frequencies between every passband (here

denoted by pn) and to �∞ as such a mapping will ensure a point of infinite
isolation between each adjacent set of passbands for a low-pass function with
attenuation poles at �∞.

A stringent requirement to avoid the shaded regions, while seemingly obvious, does
place quite severe restrictions on possible mapping functions, especially if poles are
required between adjacent passbands. A classical function which does satisfy all these
requirements is a rational function with single poles and zeros interspersed on the Ωs

axis. Such a function is known to rise monotonically, and when plotted on the same axis
system in Figure 3.23, can be seen to yield the required mapping function. From
classical network synthesis [35], it is also well-known that the reactance functions of
passive LC circuits are monotonically increasing rational functions with single poles
and zeros interspersed on the frequency axis, with either poles or zeros at zero and
infinite frequencies. When such a classical reactance function is transformed using a
standard bandpass-to-low-pass transformation, the intermediate filtering function in
Figure 3.22 is found exactly.

In [25], the authors proposed the reactance function of a passive, lossless LC network,
transformed through a bandpass to low-pass transformation, as a mapping function

ΩsðΩmÞ ¼ αNΩN
m þ αN�1ΩN�1

m þ 	 	 	 þ α1Ωm þ α0
βN�1Ω

N�1
m þ 	 	 	 þ β1Ωm þ 1

¼ PðΩmÞ
QðΩmÞ : (3.34)

Figure 3.21 Measured and predicted responses of the cascaded triplet filter.
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The rational function in (3.34) has N zeros z1. . . zN and N poles p1. . . pN�1,�∞
with z1 < p1 < z2 < p2 < . . . < zN�1 < pN�1 < zN . The low-pass filtering function
evaluated at its centre frequency maps to the N zeros of the mapping function in
(3.34), while frequencies at �∞ maps to the poles of the function. As a consequence,
each pi! zi! pi+1 region on the multi-band frequency axis is a bandwidth-scaled
replica of the low-pass filtering function. In addition to satisfying the mapping
requirements, this choice of mapping function has the following important
advantages:

Figure 3.23 Graphical representation of the ideal frequency mapping function. © 2015 Wiley
Periodicals, Inc. Int J RF and Microwave CAE, 2015.

Figure 3.22 Low-pass to multi-band response transformation using an unsymmetrical intermediate
response. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2015.
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� There is no theoretical limit on the number of passbands which can be
obtained.

� Each passband has the exact same reflection and transmission responses as the
original low-pass transfer function in terms of amplitude and phase.

� The centre frequency and bandwidth for each band can be chosen completely
arbitrarily.

� By simply choosing the correct poles and zeros, or equivalently the passband
edges for each band, a valid mapping function can be obtained using a single
matrix equation. No optimization is required.

� Given a low-pass filter function which can be realized with a circuit containing
only positive inductors and capacitors, the application of the mapping func-
tion, followed by a low-pass to bandpass transform, will result in a classical
reactance function transformation, and will therefore guarantee a multi-band
filter function which can also be realized with positive-valued inductors and
capacitors.

� The multi-band circuit can simply be realized by replacing each reactive element
of any low-pass network with a network obtained by synthesizing the mapping
function as a scaled impedance or admittance one-port. The process places no
restrictions on the low-pass function, therefore any low-pass network can
be used.

� No complicated cross-couplings are incurred by the low-pass to multi-band
mapping, as each reactive element is realized in isolation.

� The final multi-band function need never be realized directly, only the low-
pass function and an impedance or admittance in the form of the mapping
function.

The coefficients of the rational function in (3.34) are calculated directly from the multi-
band filter specification. Starting with the band-edge frequencies of the final filter (ωm) a
bandpass-to-low-pass transformation is performed to yield a set of normalized multi-
band frequencies (Ωm), with the low band-edge of the lowest passband at Ωm=�1, the
high band-edge of the highest passband at Ωm=+1 and the remaining band edges at
frequencies between these two edges. This results in a set of normalized multi-band
frequencies Ωm 2 ½�1, a�\ ½b; . . . 1�. The mapping function is now required to map
each of these frequency points to either of the band edges of a normalized low-pass
filtering function with a passband defined by Ωs2[–1;1], leading to a set of 2N coordin-
ate pairs

f Ωmi,Ωsig ¼ fð�1, � 1Þ; ða, 1Þ; ðb, � 1Þ; ðc, 1Þ . . . ð1, 1Þg i 2 ½1, 2N�: (3.35)

By applying (3.34) to each of these pairs, a set of 2N linear equations in the unknown
coefficients are obtained

PðΩmiÞ �ΩsiQðΩmiÞ ¼ 0 ; i 2 ½1, 2N�: (3.36)

This can be expressed in matrix notation as AX-B or in detailed format
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ΩN
m1 ΩN�1

m1

ΩN
m2

..

.
ΩN�1

m2

..

.

	 	 	 Ω1
m1 1 Ωs1ΩN�1

m1 Ωs1ΩN�3
m1 	 	 	 Ωs1Ω

1
m1	 	 	

..

.
Ω1

m2

..

.
1
..
.

Ωs2Ω
N�1
m2

..

.
Ωs2Ω

N�3
m2

..

.
	 	 	
..
.

Ωs2Ω
1
m2

..

.

2
64

3
75

αN
αN�1

..

.

α1
α0

�βN�1
�βN�3

..

.

�β1

2
666666666666664

3
777777777777775

¼
Ωs1

Ωs2

..

.

2
64

3
75: (3.37)

Naturally A 2 R2N 
2N , X 2 R2N 
 1, and B 2 R2N 
 1 with the necessary and sufficient
condition for a solution to the matrix equation that the rank of A and that of the
augmented matrix A|B must be 2N. This condition is always true as both A and A|B
always have 2N linearly independent row vectors. We can confirm this by constructing
the following vector sum

c1A 11:2N þ c2A 21:2N þ . . . c2N A 2N1:2N ¼ 0: (3.38)

Equation (3.38) only holds if Ωmi 6¼ Ωmj for i 6¼ j and c1 ¼ 0, c2 ¼ 0, . . . c2N ¼ 0.
Hence A is always of rank 2N. A similar argument holds for the augmented matrix
A|B. We can therefore conclude that a solution to the coefficients of (3.34) always
exists.

3.4.3 Intermediate to final multi-band transformation

Once a normalized, unsymmetrical multi-band response is obtained, the final frequency
transformation is the standard low-pass to bandpass transformation

Ωm ¼ 1
Δ

ω
ω0

� ω0

ω

� �
: (3.39)

where Δ ¼ ðωNU � ω LÞ=ωo1 and ωo ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωNUω L

p
,1 if we denote the high band-edge of

the highest passband as ωNU and the low band-edge of the lowest passband as ω L.1 Due
to the nature of the mapping function in (3.34), the combination of the two transform-
ations (3.34) and (3.39), when applied to a valid low-pass network function, will again
result in a valid network function showing N bands with identical amplitude and phase
responses, but arbitrary centre frequencies and bandwidths.

3.4.4 Implementation as coupled-resonator structure

Once a transformation function is found, a multi-band coupled-resonator filter structure
can simply be implemented by designing a low-pass coupled-reactance filter using
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standard techniques, followed by a step in which each reactive element is replaced by a
reactive circuit. This is done in a four-step procedure.

Step 1. As a first step, each reactive element in the low-pass filter is replaced with a
circuit, which is the direct network expansion (as admittance or impedance) of the low-
pass to multi-band mapping function. There are numerous classical techniques available
in the literature to synthesize the required transformation sub-circuit from the reactance
(susceptance) function, with two of the simplest forms being the Cauer I & II topologies
[35]. For a network containing frequency independent reactances, the Cauer I expansion
is shown in (3.40), with the circuit form in Figure 3.24

jΩsðΩmÞ ¼ jΩmk1 þ jh1 þ 1

jΩmk2 þ jh2 þ 1
. .
.

: (3.40)

Step 2. The Cauer I expansion in Figure 3.24 is transformed to a coupled-reactance
low-pass structure with equal shunt capacitance or series inductance values coupled by
J or K inverters, respectively. The frequency-independent reactances/susceptances are
also transformed using the same inverter constants.

Step 3. Each frequency dependent element in the resulting coupled-reactance struc-
ture is replaced by the standard resonant circuit obtained from the transform in (3.39).
This results in a classical coupled-resonator structure with the addition of a frequency-
independent reactance or susceptance in each arm. Note that, as all the frequency
dependent elements in a low-pass coupled-reactance circuit are normally chosen to be
equal, all of the expanded networks will be identical.

Step 4. An equivalent resonator is constructed for each arm by the combination of the
resonant circuit obtained by application of (3.39) with the frequency-independent react-
ance in that arm, as shown in Figure 3.25. For the case of a shunt capacitance for instance,
the admittance of a branch in the low-pass coupled-resonator circuit will be given by

Yð jΩmÞ ¼ jΩmC þ jB: (3.41)

Using the transform in (3.39), we obtain the admittance of an arm in the final multi-band
filter as

Y 0ð jωiÞ ¼ j
C

Δ
ωi

ω0
� ω0

ωi

� �
þ jB ¼ jωiC

0 þ 1
jωiL0

(3.42)

Figure 3.24 Cauer I forms of the low-pass to multi-band mapping function. © 2015 Wiley
Periodicals, Inc. Int J RF and Microwave CAE, 2015.
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where C0 and L0 are the element values for the equivalent resonator, andωi the new resonant
frequency. To calculate these values, we note that at resonance the input susceptance of the
resonator should equal zero, thus Y 0ðjωiÞ ¼ 0. The frequency at which this is valid is

ωi ¼ ω0

ΔB
2C

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ΔB
2C

� �2

þ 1

s : (3.43)

The circuit transformations and appropriate expressions describing this approximation
are provided in Figure 3.25. Note that the equivalent resonator has the same susceptance
slope at the new resonant frequency as that of the resonator at ωo in the case where
B = 0, resulting in an equivalence over a fairly wide bandwidth. For typical coupled-
resonator filters with bandwidths below 10% (which in this case should include the
lowest edge of the lowest band and the highest edge of the highest band), the equiva-
lence is sufficiently accurate to cause no deviation from ideal behavior in the final filter.

This procedure results in a coupled-resonator implementation of the complete map-
ping function. It should be clear that, given a coupled-reactance low-pass prototype, the
replacement of each of its elements with a branch described in this section will lead to a
full multi-band coupled-resonator filter structure. We now illustrate the application of
the presented theory using two examples.

3.4.5 Example 1

As a first example, a dual-band filter with 20 dB return loss in each passband is designed
for the set of passbands defined in Table 3.1. Note that the choice of the number of
passbands is not limited in any way by the procedure, and that of the actual frequencies
only by the normal coupled-resonator narrow-band condition.

Figure 3.25 Equivalent Resonators. © 2015 Wiley Periodicals, Inc. Int J RF and Microwave
CAE, 2015.

Table 3.1 Bandwidth specifications for example 1

Band Lower edge Upper edge

1 2.4 GHz 2.5 GHz
2 2.7 GHz 2.8 GHz
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To transform to the intermediate frequency domain, the inverse low-pass-to-bandpass
transformation is applied to each frequency of interest, with

f 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:4
 2:8

p
¼ 2:592 GHz and Δ ¼ 0:1543: (3.44)

The resulting coordinate set fΩmi,Ωs1g that must be interpolated by the mapping
function is listed in Table 3.2.
The matrices required for the calculation of the coefficients of the reactance trans-

formation can be constructed from Table 3.2 as

A ¼
1 �1 1 �1

0:2209 �0:47 1 0:47
0:2785 0:5278 1 0:5278

1 1 1 �1

2
664

3
775, B ¼

�1
þ1
�1
þ1

2
664

3
775 and X ¼

�34:6154
1

17:2692
�17:3462

2
664

3
775 (3.45)

The desired reactance transformation is therefore

ΩsðΩmÞ ¼ �34:6153846Ω2
m þΩm þ 17:2692

�17:3451Ωm þ 1
(3.46)

A plot of the reactance transformation is shown in Figure 3.26. It is clear that the
function performs the mapping as designed.

Table 3.2 Prototype passband edge frequencies

Ωmi Ωsi

–1 –1
–0.47 1
0.527 –1
1 1

Figure 3.26 The reactance transformation function.
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For the low-pass filtering function, a generalized third-order Chebyshev polynomial
is used. Cameron's method [36] is used to find the low-pass filtering function

C3ðΩsÞ ¼ Ω3
s � 0:75Ωs: (3.47)

Here C3 is a third-order Chebyshev filtering function. The characteristic polyno-
mials are now constructed and a ripple factor is calculated to obtain a minimum
passband return loss level of 20 dB [36]. A plot of the low-pass frequency response is
provided in Figure 3.27.

The first step in the synthesis procedure is to determine the low-pass circuit for the
filtering function in (3.4.14). Using the methods by Cameron [36, 37], the coupling
matrix obtained is

M ¼

0 1:08246 0 0 0
1:08246 0 1:0303 0 0

0 1:0303 0 1:0303 0
0 0 1:0303 0 1:08246
0 0 0 1:08246 0

2
66664

3
77775: (3.48)

In order to simplify the synthesis discussion, a set of symbols representing sub-circuits
is shown in Figure 3.28.

The single-band prototype circuit associated with the coupling matrix in (3.48) is
shown in Figure 3.29, with jb = 0 in each case.
The next step is to implement the reactance transformation circuit. Equation (3.46) is

expanded in the form of (3.40) to find the h and k factors. Alternatively, a series of pole
and constant reactance extractions can be performed on (3.46) using classical extraction
techniques [35]. The results are listed in Table 3.3.
The calculated h and k factors now describe circuits of the form depicted in

Figure 3.24. Immittance inverters can be inserted into these circuits to transform them
into the topology illustrated in Figure 3.30(b).

Figure 3.27 The low-pass frequency response.
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The circuit in Figure 3.29 is now transformed into a multi-band prototype by
substituting sections corresponding to Figure 3.30(a) with the sub-circuit in 30(b).
The final circuit follows using the procedure of steps 3 and 4, and is shown in
Figure 3.31. As with all coupled-resonator filters, each resonator can be chosen

Table 3.3 Reactance transformation coefficients

i ki hi

1 1.995565410199558 0.057394014778687
2 1.007803762818456 �0.058099551736764

Figure 3.30 (a) Low-pass element, (b) Multi-band expansion circuit. © 2015 Wiley Periodicals, Inc.
Int J RF and Microwave CAE, 2015.

Figure 3.29 The low-pass prototype circuit.

Figure 3.28 Symbols and their circuit representations. © 2015 Wiley Periodicals, Inc. Int J RF and
Microwave CAE, 2015.
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arbitrarily, as all are coupled by inverters. The couplings of the final circuit in
Figure 3.31 are defined as follows:

Main coupling path : Ji j ¼ ΔMij
ffiffiffiffiffiffiffiffi
bibj

p
k1

i 6¼ j; i, j 2 ½1; 3�

Input : JS1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δb1Gs

k1

r
Ms1

Output : JL4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δb4GL

k1

r
ML4

Branch : Jx ¼ JXΔ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
bxbxþ1

p
x 2 fa, bg

(3.49)

In each case, bi is the susceptance slope of resonator i [38]. GS and GL represent the
source and load conductances, respectively, Δ is the fractional bandwidth of the entire
frequency response, k1 is a scalar defined in (3.40), and Mij is an appropriate matrix
entry from (3.48). The centre frequencies of the different nodes are found using the
frequency invariant susceptances shown in Figure 3.30 and the formulas provided in
Figure 3.25. The circuit simulation is shown in Figure 3.32. Note that the response
meets the design specifications exactly.

Figure 3.31 Dual-band filter circuit.

Figure 3.32 Circuit simulation of the dual-band filter.
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3.4.6 Example 2

A second example is that of a five-band filter with 20 dB return loss in each passband,
designed for the set of passbands defined in Table 3.4.

To transform to the intermediate frequency domain, the inverse low-pass-to-bandpass
transformation is again applied to each frequency of interest, with

f 0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4:1
 5

p
¼ 4:5277 GHz and Δ ¼ 0:198776: (3.50)

The resulting coordinate set fΩmi,Ωs1g that must be interpolated by the mapping
function is listed in Table 3.5.
The desired reactance transformation is therefore

ΩsðΩmÞ ¼ αNΩN
m þ αN�1ΩN�1

m þ 	 	 	 þ α1Ωm þ α0
βN�1Ω

N�1
m þ 	 	 	 þ β1Ωm þ 1

: (3.51)

with the coefficients of the mapping function results in Table 3.6.
A plot of the resulting reactance transformation is shown in Figure 3.33. It is clear

that the function performs the mapping as designed.
For this design example, we shall use the same single-band base filter used in the

previous example. The next step is therefore to implement the reactance transformation
circuit. The coefficients in Table 3.6 are used to find the h and k factors in (3.40). These
are listed in Table 3.7.

Table 3.4 Bandwidth specifications for five-band filter

Band Lower edge Upper edge

1 4.1 GHz 4.2 GHz
2 4.35 GHz 4.5 GHz
3 4.55 GHz 4.6 GHz
4 4.65 GHz 4.7 GHz
5 4.95 GHz 5 GHz

Table 3.5 Prototype passband edge frequencies

Ωmi Ωsi

�1 �1
�0.756613 1
�0.402937 �1
�0.061728 1
0.0494505 �1
0.1594202 1
0.2682198 �1
0.3758865 1
0.8984287 �1
1 1
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Figure 3.33 The reactance transformation function.

Table 3.6 Coefficients of reactance transformation

Coefficient Value

α5 �998.5775311
α4 264.68613428
α3 808.336874
α2 �136.084478
α1 �41.1354804
α0 3.794739672
β4 �451.2586688
β3 194.73996428
β2 218.88253163
β1 �62.343568376
β0 1

Table 3.7 Reactance transformation coefficients

i ki hi

1 2.212871685626753 0.368410471031648
2 1.789050044954395 �0.213396706921520
3 1.266047423094517 �0.065762109265814
4 8.256013882770498 �0.970967729071748
5 7.847132435188047 �1.119934126892491
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The calculated h and k factors now describe circuits of the form depicted in
Figure 3.24. Immittance inverters can be inserted into these circuits to transform them
into the topology illustrated in Figure 3.34.

The circuit in Figure 3.29 is transformed into a multi-band prototype by substituting
sections corresponding to Figure 3.30(a) with the sub-circuit in Figure 3.30(b). The final

Figure 3.34 (a) Low-pass element. (b) Multi-band expansion circuit.

Figure 3.35 Circuit diagram of final five-band filter.

Figure 3.36 Circuit simulation of the 5-band filter.
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circuit follows using the procedure of steps 3 and 4 outlined in the previous sub-section,
and is shown in Figure 3.35. Here all the circuit nodes have been replaced by resonators.
The couplings of the final filter use the same equations as those in Example 1. The
resonant frequencies are also calculated in the same manner. All couplings are calcu-
lated using appropriate susceptance slopes, and the simulated circuit response is shown
in Figure 3.36.

3.5 Conclusions

In this chapter, recent developments in algorithms for the construction of multi-band
transfer functions are described. Two approaches are presented in detail: one an
optimized approach where poles and zeros of the filter function are systematically
positioned and fine-tuned to achieve equi-ripple passbands and/or stopbands, and the
other a rigorous approach proposed by the authors where the reactance function of a
passive LC one-port is used as a frequency mapping function. In both cases, the
mathematical theory is discussed, and examples presented. The optimization approach
is very general with respect to the passband characteristics and allows for a wide range
of asymmetrical passbands of different bandwidths and reflection coefficients, but is
limited to an equi-ripple filtering response. It also suffers from the limitations of
polynomial mapping functions, specifically stopband mapping and, in some cases,
limitations on the level of reflection coefficients. On the other hand, the reactance-
based mapping technique is rigorous, without any optimization, and allows for an
arbitrary number of bands, bandwidths, and centre frequencies, but produces passbands
with exactly the same amplitude and phase responses. Both techniques however have
proved to produce excellent results. The construction of frequency mapping functions
however still remains a challenging field of research, both in terms of optimization and
rigorous mathematical approaches.
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4 Compact microwave multi-band
bandpass filters based on
quarter-wavelength resonators
Nikolina Janković and Vesna Crnojević-Bengin

4.1 Introduction

Design of multi-band filters represents a challenging task for a number of reasons. Not
only is it required to achieve good performance in several passbands in terms of
insertion loss and selectivity, but also multi-band filters are required to be as compact
as possible and to offer the possibility of the independent control of passbands. The two
latter properties represent the greatest challenge since they are in contradiction with the
requirement for good performance. Namely, it is a difficult task to pack in a small area
two or more filter elements that independently provide passbands. At the same time, a
small area means strong coupling between the elements, which ultimately leads to
performance degradation.

A traditional way for miniaturization is based on folding a straight-line resonator in
order to fit it into a smaller area. Advanced approaches include fractal curves employ-
ment as well as multi-layer architecture and these will be discussed in the following
chapters.

In Chapter 2, various design methods of multi-band filters were discussed. It was
shown that compact filters can be realized with conventional λ/4 resonators which are
twice as short as conventional λ/2 resonators. Using traditional techniques of
miniaturization, i.e. folding of a resonator, overall dimensions of a λ/4 resonator can
be additionally reduced.

As for the independent control of passbands, it was shown in Chapter 2 that the only
method that allows complete independent control of passbands is the employment of
two or more single-band filters.

In this chapter, we present dual-band and tri-band filters in which compactness and
independent control of passbands are achieved by using single-band filters based on λ/4
resonators [1–2].

The proposed dual-band filter consists of two single-band filters, each of which
consists of a pair of λ/4 resonators. In that manner, a very compact dual-band filter
with excellent performance and the possibility of independent control of passbands is
realized.

Introducing additional conductive segments into the structure of dual-band filter, a
pair of ring-shaped λ/2 resonators is formed and it provides an additional passband. This
tri-band filter is also characterized by small overall dimensions, as well as by excellent
performance and the possibility of independent control of passbands.
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In the first part of the chapter, the main properties of a quarter-wavelength resonator
will be presented and discussed, and will be compared to those of a half-wavelength
resonator.

In Chapter 2, the method that allows full independent control of passbands was
discussed. In the third section of this chapter, this method will be discussed in more
detail and special attention will be given to the filters based on quarter-wavelength
resonators, their properties, and design procedures.

In the fourth section, the proposed dual-band filter of the second order operating at
2.4 and 3.5 GHz, will be analyzed in detail. In order to demonstrate the applicability of
the structure, a dual-band filter of the fourth order and a dual-band filter operating at 3.5
and 5.2 GHz will be presented. In addition, filter performance will be compared to that
of other published dual-band filters.

The fifth section is devoted to the proposed tri-band filter and analysis of its behavior.
Its performance will be compared to that of other published tri-band filters.

Simulation tools from [3] and [4] have been used for electromagnetic simulations.
Both filters have been fabricated in standard printed circuit board technology. The
fabricated circuits were measured and comparison of the measured and simulation
results will also be presented.

4.2 Quarter-wavelength resonator and its properties

A quarter-wavelength resonator is a structure with one end open and the other short-
circuited, which exhibits the fundamental resonance at a frequency at which its elec-
trical length is equal to π/2. Together with a conventional half-wavelength resonator, it
is the most widely used resonator in filter design. In this section, its main properties will
be presented and discussed, and they will be compared to those of the half-wavelength
resonator.

Analysis of the behavior of a quarter-wavelength resonator can be observed through
the input impedance of a transmission line; namely, the input impedance of a lossless
transmission line loaded with the impedance ZL can be expressed as

Zin ¼ Z0
ZL þ jZ0 tan βl
Z0 þ jZL tan βl

, (4.1)

where Z0 is the characteristic impedance of the transmission line, β is the phase
constant, and l is its physical length [5].

When the transmission line is short-circuited at one end, i.e. when it has the configur-
ation of a quarter-wavelength resonator, the load impedance is equal to zero and thus the
expression (4.1) takes the following form

Zin ¼ jZ0 tan βl: (4.2)

In terms of Z parameters, the resonance condition corresponds to the frequency at which
the imaginary part of the input impedance tends to infinity. In this case, the resonance
condition, i.e. Zin ! ∞, is met when the function tanβl tends to infinity, i.e. when the
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electrical length of the transmission line is equal to π/2 + kπ, where k is an integer
number. It can be seen that fundamental resonance occurs at a frequency at which the
transmission line is λ/4 long. In addition, it should be noted that higher resonances occur
at odd products of the fundamental resonance. However, in the case of half-wavelength
resonators, higher resonances occur at integer products of the fundamental one. This
means that a quarter-wavelength resonator is superior to conventional half-wavelength
resonator in terms of minimizing interferences of higher resonances.

The input impedance of a lossy transmission line loaded with the impedance ZL can
be expressed as

Zin ¼ Z0
ZL þ Z0 tanh γl
Z0 þ ZL tanh γl

, (4.3)

where Z0 is the characteristic impedance of the transmission line, γ is the propagation
constant, and l is its physical length.

In the case of the quarter-wavelength resonator, the load impedance is equal to zero,
and thus the expression (4.3) obtains the following form

Zin ¼ Z0 tanh γl, (4.4)

i.e.

Zin ¼ Z0 tanhðαþ jβÞl, (4.5)

where α is the attenuation constant and β is the phase constant.
The previous expression can be rewritten as

Zin ¼ Z0
1� j tanh αl cot βl
tanhαl� j cot βl

: (4.6)

Let us assume that l = λ/4 at a frequency of ω = ω0 and let ω = ω0 + Δω. Then, it can be
shown that the input impedance takes the following expression

Zin ¼ Z0
1þ j αl πΔω=2ω0

αlþ j πΔω=2ω0
ffi Z0

αlþ j πΔω=2ω0
, (4.7)

since αlπΔω/2ω0 << 1. The previous expression has the same form as the impedance of
parallel RLC circuit

Zin ¼ 1
ð1=RÞ þ 2jΔωC

: (4.8)

In other words, the quarter-wavelength resonator behaves as a parallel resonant circuit
and its elements R and C can be expressed as

R ¼ Z0

αl
, (4.9)

C ¼ π
4ω0 Z0

, (4.10)
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whilst inductance can be found as

L ¼ 1

ω2
0C

: (4.11)

Using the previous expressions, the quality factor of quarter-wavelength resonator can
be also determined

Q ¼ ω0RC ¼ π
4αl

¼ β
2α

, (4.12)

since l = π/2β at the resonant frequency.
In practice, a quarter-wavelength resonator is realized by short-circuiting one end of a

transmission line. In waveguide architecture, this is achieved by “closing” one end of a
waveguide resonator. In the case of a microstrip resonator, a quarter-wavelength
resonator is formed by grounding of its one end by a via. Nevertheless, the via cannot
provide a perfect short circuit since it has a finite inductance. Thus, analysis of the
behavior of the resonator is somewhat different than that of the ideal case.

Namely, the equivalent circuit of a quarter-wavelength resonator with a realistic via is
shown in Figure 4.1 where the via is modeled as a lumped inductance L. The input
impedance of the circuit is expressed as

Zin ¼ Z0
jωLþ jZ0 tan βl
Z0 � ωL tan βl

, (4.13)

Since the resonance occurs when the previous expression tends to infinity, the reson-
ance condition has the following form

Z0 � ωL tan βl ¼ 0, (4.14)

i.e.

tan βl ¼ Z0

ωL
: (4.15)

Since the term on the right side is always positive, it implies that the fundamental
resonance occurs at the frequency at which βl is lower than π/2. However, in the ideal
case, the fundamental resonance occurs at the frequency at which βl is exactly equal to
π/2. It can be concluded that the finite impedance of the via shifts the fundamental
resonance to the lower frequencies. In other words, the quarter-wavelength transmission
line is shorter in a realistic case than that in the ideal one.

From the previous analysis, it can be concluded that quarter-wavelength resonators
have several advantages in comparison to conventional half-wavelength resonators.

Zin LZ0, l/4

Figure 4.1 Configuration of the quarter-wavelength resonator with a realistic via.
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Namely, they occupy an area twice as small as conventional resonators and they have
better potential for minimizing interferences at higher resonances.

In [6], single-band filter designs using half-wavelength and quarter-wavelength
resonators were compared. Namely, quarter-wavelength resonators have an inverting
effect so that they behave like the series resonators at one end, and at their other
ends like the shunt resonators. It can be shown that filters can be formed using
quarter-wavelength resonators if they are coupled alternately by K- and J-inverters.
Therefore, except for the use of two different inverters, the design procedure with
quarter-wavelength resonators is very similar to the design of filters with half-
wavelength ones.

Besides smaller size and a better harmonic response, quarter-wavelength resonators
have the additional advantage in that their reactance or susceptance slope parameters are
half as large as for the corresponding half-wavelength resonators. Because of this, for a
given bandwidth and passband shape the couplings are considerably looser for the
quarter-wavelength than for half-wavelength resonator types of filters. This implies
larger capacitive gaps so that tolerances are less problematic, which leads to signifi-
cantly higher maximum attenuation in the stopband above the passband.

However, quarter-wavelength resonators show some disadvantages in comparison to
conventional resonators. The price that has to be paid is the fact that the fabrication
process of quarter-wavelength resonators is more demanding since it requires fabrica-
tion of a grounding via. Apart from the fact that the resonant frequency is very sensitive
to the via inductance and thus to the fabrication process, there is another important
aspect related to vias. Namely, they act as inductances, and in filters with several
resonators may be mutually coupled and affect each other's resonances, which makes
the fabrication procedure more complex.

Nevertheless, in this chapter and Chapter 6 filters that employ vias will be presented.
The filters have been fabricated in standard printed circuit board technology and it will
be shown that seemingly demanding fabrication of vias does not have to be a challen-
ging task.

4.3 Dual-band and tri-band filters based on quarter-wavelength resonators

In Chapter 2, it was shown that the only method that allows full independent control of
passbands in multi-band filters is the one based on the employment of two or more
single-band filters.

Although configuration that consists of several structures may imply large dimen-
sions of filters, some of the most compact multi-band filter circuits with excellent
performance have been designed using this method.

As was previously stated, the design of multi-band filters includes separate design of
the comprising elements – single-band and dual-band filters which are afterwards put
together to form a multi-band filter. Although the comprising filters are independent,
they influence each other's performance and thus the final step in the design is
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optimization of the geometrical parameters of all filters in order to obtain the desired
filter response.

Resonators that are used in the design of multi-band filters include conventional λ/2
and λ/4 resonators as well as more complex structures, such as dual-mode resonators
with perturbation, SIR, and SLR structures. As for dual-band filters, one type of such
filters are those in which resonators of the same type but with different resonant
frequencies are employed. Dual-band filters with quarter-wavelength resonators were
proposed in [7–11].

The first dual-band filter with quarter-wavelength resonators was proposed in [7]. The
filter consists of two pairs of quarter-wavelength resonators that are capacitively
coupled to the feeding lines. The two pairs provide two passbands at 2.4 and 5.2 GHz.
However, the configuration is characterized by large overall size and extremely poor
selectivity.

A very similar filter with the same configuration of the pairs of the resonators was
proposed in [8]. In this filter, selectivity is significantly improved since source-load
impedance was introduced. Furthermore, a new structure of the coupled-line is intro-
duced to produce five transmission zeros at the adjacent two passbands that operate at
2.4 and 3.5 GHz. Thus, the bandwidths of this filter are controllable and they have good
selectivity.

In [9], several dual-band filters were proposed, and each filter is a composite of two
individual filtering sections which operate at different frequencies and share a common
input and output. The double-diplexing T-junctions are used to feed the filter so that
proper external coupling at each band can be satisfied in a relatively independent
manner. For each of the filtering sections, two identical quarter-wavelength resonant
lines are coupled through two separate paths, and a common magnetic coupled path
which is constructed by one or two short-circuited stubs. Since the filtering sections
share common vias, the proposed filters exhibit compact dimensions. Although each
proposed dual-band filter exhibits several transmission zeros, none of them provides
good selectivity of both passbands.

The dual-band filter proposed in [10] comprises the main open-loop resonators in
which are embedded four quarter-wavelength resonators. Pairs of embedded resonators,
which are designed to operate at different frequencies, generate two passbands at 2.8
and 4.2 GHz without increasing the size of the open-loop structure. The proposed dual-
band filter generates four transmission zeros located between the passbands to exhibit
high skirt selectivity, sharp frequency cut-off, and high isolation. In addition, it has
good in-band characteristics. However, since the proposed filter includes an open-loop
feeding scheme, it also has large overall dimensions.

In [11], a dual-band bandpass filter using a parallel shortened feed scheme was
presented. Two sets of quarter-wavelength resonators operating at 0.85 and 1.45 GHz
are employed to obtain dual-band responses as well as to minimize the overall size.
A special feed scheme is proposed, which consists of two parallel short-ended strip
branches. Each of them acts as a feed line at one passband and a loading element at the
other one. This scheme provides two independent transmission paths. In addition,
source-load coupling is realized to create four transmission zeros near the passbands’
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edges, resulting in high skirt selectivity. Although the filter enables independent control
of the passbands, good in-band and out-of-band properties, it also has large overall
dimensions – 0.1λg x 0.25λg.
The previous analysis shows that although quarter-wavelength resonators offer good

potential to achieve high-performance and compact dual-band filters, none of the
proposed filters shows simultaneously good in-band and out-of-band properties, select-
ivity, and compactness.

As for tri-band filters based on combining dual-band and single-band filters, it was
stated in Chapter 2 that, with the exception of the tri-band filter proposed in [12] that
consists of three single-band filters, all configurations [12–17] are comprised of one
single-band and one dual-band filter. However, only the structures in [15] and [17]
employ a single-band filter based on a quarter-wavelength structure.

The tri-band filter in [15] consists of a pair of stub-loaded resonators inductively
coupled to the feeding lines and of a pair of quarter-wavelength resonators capacitively
coupled to the feeding lines. The stub-loaded resonators generate the first and third
passbands, whilst the quarter-wavelength resonators are used to generate the second
passband. Nevertheless, the filter exhibits large size and poor performance.

As for the filter proposed in [17], it is similar to the previous one with the difference
that it employs a pair of stub-loaded resonators whose stubs are grounded by vias.
Although it has somewhat better characteristics in terms of selectivity and in-band
properties, this filter also has relatively large overall dimensions.

In the following sections, dual-band and tri-band filters will be presented, based on
quarter-wavelength resonators that outperform not only filters based on λ/4 resonators,
but also all other proposed structures.

4.4 Dual-band filter with λ/4 resonators

In this section, a dual-band filter based on λ/4 resonators, operating at 2.4 and 3.5 GHz
will be presented. After detailed analysis of the filter configuration and behavior, the
applicability of the proposed design procedure will be demonstrated in examples of a
fourth-order dual-band filter and dual-band filter operating at 3.5 and 5.2 GHz. In
addition, the proposed filter will be compared to other state-of-the-art dual-band filters.

4.4.1 Configuration and behavior of dual-band filter

The proposed dual-band filter is comprised of two single-band filters which are based on
λ/4 resonators. As was stated in the Section 4.2, a quarter-wavelength resonator
represents microstrip architecture, which is grounded by a via at one end and its name
implies that the fundamental resonance occurs at the frequency at which its electrical
length is equal to 90�. In practice, the via has a finite inductance and the electrical length
deviates from 90� at the resonant frequency and deviation depends on the via imped-
ance. In other words, the finite impedance of the via shifts the fundamental resonance of
the quarter-wavelength resonator to the lower frequencies.
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It was also stressed that higher-order harmonics in the λ/4 structure occur at odd
products of the fundamental resonance. Therefore, not only does the λ/4 resonator have
smaller dimensions, but it also has harmonics that are positioned farther than is the case
in conventional λ/2 resonators.

The configuration of the proposed dual-band filter with the geometrical parameters
indicated is shown in Figure 4.2(a). The parameters denoted by Lk represent the lengths
of the conductive segments, whilst the parameter w is the width of the conductive lines,
d is the via dimension, and g1 and g2 are the widths of the gaps between the quarter-
wavelength resonators.

As was previously stated, the structure consists of two single-band filters, each of
which represents a filter of the second order and comprises a pair of λ/4 resonators.
Their passbands are positioned at two different frequencies – the lower part of the dual-
band filter exhibits a passband at the frequency f1, whilst the upper part exhibits a
passband at the frequency f2, Figure 4.2(b) and 4.2(c).
It can be noted that a quarter-wavelength resonator from the upper filter and a quarter-

wavelength resonator from the lower filter share a common via which reduces the
number of vias and eases the realization of the structure. Also, a structure comprised of
two λ/4 resonators each of a different length can be considered as an asymmetrically
grounded structure and its role will be explained and discussed later in this section.

It should be also noted that the two filters are inductively coupled to the feeding lines
at the point of connection of the upper and lower resonators, which decreases insertion

(b)(a)

(c)

Figure 4.2 (a) Configuration of the proposed dual-band filter. (b) Single-band filter with a passband
at f1. (c) Single-band filter with a passband at f2.

117Dual-band filter with λ/4 resonators



loss in the passbands. Another important aspect of the inductive coupling is the fact that
it improves the quality factors of the passbands and allows their more flexible control. In
addition, such a feeding scheme has a role in the formation of transmission zeros in the
filter response, which will be discussed below.

The operating principle of the two single-band filters is the same. The first filter to be
analyzed is the lower part of the dual-band filter, i.e. the single-band filter with the
central frequency f1. It is comprised of two λ/4 resonators that are capacitively coupled
through the gap g1. The length of the resonators is equal to L11 + LAP1 where LAP1 is the
length of the folded part of the resonator. The geometrical parameters L11 and LAP1 are
chosen in such a manner as to provide resonance at the frequency f1.
In the filter configuration, it can be seen that the resonators are folded, and the main

purpose of the folding is reduction of the area that the resonators occupy. However, the
folding of the resonators has another important role – to provide a transmission zero.

In [18], it was shown that the specific coupling configuration of transmission lines
can provide transmission zeros. Figure 4.3 shows two types of the coupling between
transmission lines – parallel and antiparallel.

In the case of parallel coupling, transmission becomes zero at a frequency where the
electrical length of the coupled line becomes 180�. Therefore, to generate an attenuation
pole at p x f0, where f0 is the central frequency, the electrical length of the coupled line at
the central frequency θp, is chosen as 180�/p. Since the length of a half-wavelength
resonator is 180�, p will exceed 1, which implies that an attenuation pole can only be
obtained in the upper side of passband.

As for antiparallel coupling structure, the open-ends of the parallel lines are pos-
itioned side by side. With this structure, a pole is generated at p x f0 under the conditions
of θap, = 90�/p, where θap is the electrical length of the coupled line at the central
frequency. The attenuation pole can be obtained both in the lower and upper side of the
passband.

In this single-band filter, the segments of the λ/4 resonators with length LAP1 act as
antiparallel structure, thus resulting in a transmission at frequency

f AP1 ¼ f 1
λg

4LAP1
, (4.16)

where λg represents the guided wavelength at the frequency f1. Namely, the ratio of a
quarter wavelength at the frequency f1 and the length LAP1 determines the position of the

(a)

qap

(b)

qp

Figure 4.3 (a) Parallel coupling. (b) Antiparallel coupling.
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transmission zero. The closer the ratio is to 1, the closer the transmission zero is to
the passband.

It should be also noted that due to the resonator configuration, i.e. due to the fact that
LAP1 is shorter than the overall length of the resonator, the transmission zero always
occurs at the higher side of the passband. In addition, the position of the transmission
zero depends on the coupling between the resonators, although it is predominantly
determined by the length of LAP1.

The upper part of the dual-band filter is a single-band filter of the second order with
the central frequency positioned at f2 and it operates by the same principle as the filter
with the central frequency f1. The length of the λ/4 resonators is equal to L21 + LAP2
where LAP2 is the length of the folded part of the resonator. The geometrical parameters
L21 and LAP2 are chosen in a manner to provide the resonance at the frequency f2.

Analogous to the segments LAP1 in the single-band filter operating at f1, the segments
LAP2 long comprise an antiparallel structure that provides a transmission zero at a
frequency that can be expressed in the following manner

f AP2 ¼ f 2
λg

4LAP2
, (4.17)

where λg represents the guided wavelength at the frequency f2. Analogous to the lower
single-band filter, LAP2 is shorter than the overall length of the resonator, and thus the
transmission zero always occurs at higher side of the passband. The closer the ratio λg/
4LAP2 is to 1, the closer the transmission zero is to the passband.
The design procedure of the proposed filter consists of three major steps:

� design of the single-band filter that provides the lower passband,
� design of the single-band filter that provides the upper passband,
� merging of the two filters to form a dual-band filter and fine tuning of the

geometrical parameters to obtain the desired response.

The filter is designed on the substrate Rogers RT/Duroid 5880 whose thickness is equal
to 1.575 mm, dielectric constant εr = 2.2, and loss tangent tanδ = 0.0009.
In the following, the design procedure of a dual-band filter that operates at 2.4 and

3.5 GHz will be presented. In the first step, the single-band filter operating at 2.4 GHz is
designed. The length of the λ/4 resonators at 2.4 GHz on a given substrate has been
calculated using TXLine tool in Microwave Office design software. The initial length of
the resonators is equal to 22.1 mm.

In order to obtain better selectivity of the passband, the transmission zero should be
positioned as close as possible to the passband. This implies that the ratio of (L11+LAP1)
and LAP1 should be approximately equal to 1, i.e. that L11 should be very short. On the
other hand, the transmission zero should not be positioned too close to the passband
since it can degrade the properties of the passband. Therefore, L11 is judiciously chosen
to be approximately as long as one quarter of the λ/4 resonator. In that way, both good
passband characteristics and the sharp roll-off skirt are preserved.

Once the length L11 is determined, the remaining parts of the resonators are folded in
order to reduce the area they occupy, i.e. to miniaturize the final filter. However,
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excessive folding may cause significant mutual inductance between adjacent straight
segments and reduce the overall inductance of the resonator, leading to an increase of
the resonant frequency and ultimately to higher losses. Hence, the miniaturization of the
resonator and reduction of the insertion losses are contradictory goals, and a trade-off is
needed.

By using these directions and by fine tuning of the parameters L12, L16, and g1,
Figure 4.2(a), a single-band filter that exhibits a passband at 2.4 GHz has been realized.
The parameter L16 is used for fine tuning of the position of the passband since it is the
end segment of the resonator. The parameters L12 and g1 are used predominantly to tune
the coupling between the resonators, i.e. to achieve a desired bandwidth and
insertion loss.

The resonators consist of six segments whose geometrical parameters are given in
Table 4.1 in the section Initial structure. Due to the folding of the structure and
disturbance of the electric field in the quarter-wavelength resonator, its overall length
is equal to 26.9 mm, which is somewhat greater than the initially estimated 22.1 mm.

In the second step, the single-band filter operating at 3.5 GHz is designed. Analogous
to the filter operating at 2.4 GHz, the initial length of λ/4 resonators is calculated
in TXLine tool and it is equal to 15.6 mm. In order to provide good passband
characteristics and a sharp roll-off skirt, the parameter L21 should be as long as a quarter
of the resonator. However, its length is also dictated by the parameter L11, i.e. L21
should not be significantly shorter than L11 since that would lead to large g2 and
ultimately to a weak coupling and high insertion loss. Therefore, the length L21 is
somewhat longer than a quarter of the resonator, and the transmission zero is not
positioned as close to the passband as in the lower single-band filter and thus its
selectivity is slightly worse.

Following the same steps as in the previous single-band filter, a filter operating at 3.5
GHz has been realized. The parameters L22, L25, and g2 were used for the fine tuning – L25
to tune the position of the passband, and L22 and g2 to tune the coupling between the
resonators. The final dimensions of the filter are given in Table 4.1 in the section Initial

Table 4.1 Geometrical parameters of the single-band and dual-band structures

Initial structure L11 L12 L13 L14 L15 L16 g1 w
7.4 7.6 6.2 4.5 4.9 1.2 0.6 1

L21 L22 L23 L24 L25 g2 d
7 5.8 4.7 3.8 1.5 0.9 0.4

Final structure L11 L12 L13 L14 L15 L16 g1 w
7.4 6.2 6.2 4.5 4.9 2.6 0.3 1

L21 L22 L23 L24 L25 g2 d
7 5.5 4.7 3.8 1.7 0.9 0.4

Note: All dimensions are given in mm.
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structure. Similar to the first single-band filter, the final length of the resonator is longer
than the initial one, which is due to the folding of the resonator.

Figure 4.4 shows the responses of the single-band filters. Apart from the passbands
that are positioned at predefined frequencies, it can be noted that at the higher part of
each passband a transmission zero occurs, which is due to the antiparallel structures in
the filters. In addition, there is a transmission zero at the lower part of the passbands,
which will be discussed below.

Once the two filters are designed, they are put together to form a dual-band filter. The
response of the initial dual-band filter is also shown in Figure 4.4 and it can be noted
that it deviates from the desired response, especially in terms of the properties of the
second passband. This is due to the fact that the two filters are closely positioned and
share common vias and thus affect each other's properties even though they are separate
structures.

Therefore, a fine tuning of the geometrical parameters is needed in order to obtain a
response that meets the predefined specifications. Table 4.1 shows the geometrical
parameters of the initial and final structures and it can be noted that the parameters
L12, L16, g1, L22, L25, and g2 were finely tuned. Nevertheless, their values have not been
significantly changed. Since six parameters have been changed, the optimization pro-
cess may seem to be demanding. However, we should note that the parameters L12 and
g1 and L22 and g2, and thus their tuning, are interrelated.
The scattering parameters of the final filter are shown in Figure 4.5 and its character-

istics are summarized in Table 4.2. The proposed filter is characterized by a small
insertion loss, 1.1 and 1.6 dB, as well as by excellent selectivity of both passbands
owing to the four transmission zeros. At the same time, its dimensions of 0.13λg x
0.13λg makes it the most compact planar dual-band filter that operates at 2.4 and
3.5 GHz, which will be discussed in more detail in the Section 4.4.4.

In addition, the bandwidths of both passbands are equal to 100 MHz, which is in
accordance with WLAN standards.

Figure 4.4 Responses of the single-band filters and the initial dual-band filter.
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We should also note that besides the two transmission zeros, which are due to the
antiparallel coupling between the resonators, another two transmission zeros occur in
the response of the filter and they are positioned at the lower side of each passband.

The first transmission zero is due to the presence of the vias in the filter structure. As
was stated in the Section 4.2, vias have finite inductance, i.e. they represent inductors
that are mutually coupled due to their proximity in the filter configuration. In that
manner, another signal path is formed, and when it is out-of-phase with the main signal
path, it gives a transmission zero. The position of this transmission zero is predomin-
antly determined by the via inductance, i.e. by its dimension d, as well as by the strength
of the coupling between the vias which depends on the distance between them.

Figure 4.6 shows the responses of dual-band filters that differ in the via dimension d
and it confirms that an increase in the via dimensions, which corresponds to the decrease
in the inductance, leads to a shift of the transmission zero towards higher frequencies.
A change in the via inductance also causes a change in the resonant frequency of the
resonators, which can be compensated through variation of other geometrical
parameters.

The via dimension equal to 400 µm has been chosen since it is a good trade-off
between the complexity of the fabrication procedure and selectivity. Namely, a larger

Figure 4.5 Response of the final dual-band filter.

Table 4.2 Characteristics of the final dual-band filter

f [GHz] IL [dB] RL [dB]
3 dB BW
[MHz]

3 dB
FBW [%]

overall
dimensions
[λgxλg]

first passband 2.4 1.1 15.3 100 4.6
0.13x0.13

second passband 3.5 1.6 15 100 2.85
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via dimension positions the transmission zero closer to the passband. On the other hand,
a larger dimension of a via eases the fabrication procedure, but the via should not have
an exceedingly large dimension so as not to lose its inductive properties.

As for the transmission zero that is positioned at the lower side of the second
passband, it occurs due to the specific configuration of the filter, i.e. due to a specific
position of the feeding lines with respect to the resonators. Since the dual-band filter has
a symmetrical structure, even-/odd-mode analysis can be applied for analysis of the
behavior of the filter.

The even- and odd-mode equivalent circuits are shown in Figure 4.7. For the sake of
a more precise analysis, even and odd impedances Zleven, Zueven, Zlodd, and Zuodd have
been assigned to the coupled segments and they represent the impedances of the
coupled lines in even and odd modes [19].

The total input impedance for the even and odd mode represents a parallel combin-
ation of the input impedances of the lower and upper part of the filter, i.e. a parallel

Figure 4.6 Influence of the via dimension on the filter response.

(a) (b)

Figure 4.7 Equivalent circuit for (a) Even mode. (b) Odd mode.
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combination of the input impedances of the single-band filters. Thus, the even and odd
input impedances can be expressed as

1
Zineven

¼ 1
Zin1even

þ 1
Zin2even

, (4.18)

and

1
Zinodd

¼ 1
Zin1odd

þ 1
Zin2odd

, (4.19)

where Zin1even, Zin2even, Zin1odd, and Zin2odd represent the input impedances of the lower
and upper part of the filter for the even and odd mode. Taking into consideration the
notification in Figure 4.7, the input even and odd impedances of the upper and lower
parts Zin1even, Zin2even, Zin1odd, and Zin2odd can be expressed in the following manner

Zin1even ¼
jZ

ZlevenðZleven tan θleven tan θlower � ZÞ þ Z tan θ11ðZ tan θleven þ Zleven tan θlowerÞ
ZðZ tan θleven þ Zleven tan θlowerÞ � ZlevenðZleven tan θleven tan θlower � ZÞ þ tan θ11

,

(4.20)

Zin1odd¼

jZ
Zlodd

�
Zloddð tanθloddþZω2ClowerÞ tanθlower�Z

�
þZ tanθ11

�
Zð tanθloddþZω2ClowerÞþZlodd tanθlower

�
Z
�
Zð tanθloddþZω2ClowerÞþZlodd tanθlower

�
�Zlodd

�
Zloddð tanθloddþZω2ClowerÞ tanθlower�Z

�
þ tanθ11

,

(4.21)

Zin2even¼
jZ

ZuevenðZueven tanθueven tanθupper�ZÞþZ tanθ21ðZ tanθuevenþZueven tanθupperÞ
ZðZ tanθuevenþZueven tanθupperÞ�ZuevenðZueven tanθueven tanθupper�ZÞþ tanθ21

,

(4.22)

Zin2odd ¼

jZ
Zuodd

�
Zuoddð tanθuoddþZω2CupperÞ tanθupper�Z

�
þZ tanθ21

�
Zð tanθuoddþZω2CupperÞþZuodd tan θupper

�
Z
�
Zð tanθuoddþZω2CupperÞþZuodd tanθupper

�
�Zgodd

�
Zuoddð tanθuoddþZω2CupperÞ tanθupper�Z

�
þ tanθ21

:

(4.23)

Due to the folds of the resonators, there are fringing fields at the corners of the
resonators that influence their resonant frequency. In order to account for this in the
even/odd analysis, fringing capacitances are introduced. For the sake of simplicity,
the fringing capacitances at the corners between the segments are modeled by only two
parameters, Clower and Cupper. Since the symmetry plane in the even mode is a magnetic
wall, there is no fringing capacitances in the even equivalent circuit.

From the mathematical point of view, S21 is equal to zero, i.e. a transmission zero
occurs at a frequency at which the condition Zineven = Zinodd is met. Being positioned at
the lower part of the second passband, it provides excellent selectivity as well as good
performance in the stopband region between the two passbands.

124 Bandpass filters based on quarter-wavelength resonators



Besides compactness and good performance, the advantage of the proposed dual-
band structure is the possibility of independent control of the passbands, which implies
not only control of the positions, but also control of the bandwidths. Varying the
parameters g1, g2, L12, and L22, the couplings between the resonators can be changed
and the bandwidths can be tuned from 90 to 120 MHz, whilst the other filter character-
istics are preserved. The independent varying of the two bandwidths is illustrated in
Figure 4.8.

From the previous analysis, it can be concluded that the proposed structure and
design approach allow greater design freedom as well as the realization of dual-band
filters with excellent performance and small dimensions.

4.4.2 Illustration of the applicability of the proposed design approach

In practice, it is often needed to realize a filter of order higher than two, i.e. to realize
a filter that comprises more than two resonators so as to obtain better passband
performance. In order to demonstrate the applicability of the proposed approach and
its potential for higher-order filter design, a dual-band filter of the fourth order has been
realized.

To realize the fourth-order filter, the procedure presented in [20] is used. It relies on
classical filter design theory, and external quality factors and coupling coefficients need
to be determined. Since the passbands are realized with single-band filters, the external
quality factors and coupling coefficients have been determined for each single-band
filter separately, Table 4.3. Using the calculated values, the geometrical parameters for
each single-band filter have been determined.

Similar to the dual-band filter of the second order, merging of the two single-band
filters does not give a dual-band filter with the desired performance, but a fine tuning of
the geometrical parameters L12, L18, L22, g1, g2, g3, and g4 is needed. In this case, the
tuning is more demanding since there are four resonators in each single-band filter.

(a) (b)

Figure 4.8 Independent control of: (a) First passband. (b) Second passband.
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Figure 4.9 shows the structure and the response of the final dual-band filter of the
fourth order that operates at 2.4 and 3.5 GHz. Table 4.4 and Table 4.5 show the
dimensions of the final filter and its characteristics, respectively.

The two outer resonators are inductively coupled to the feeding lines and their
external quality factor is lower than that of the second-order dual-band filter since the
tapped input lines are narrower. The resonators are capacitively coupled through the
gaps g1, g2, g3, and g4. The upper part of the two inner resonators are folded in a
somewhat different manner than the outer ones in order to obtain the desired coupling
coefficient and good performance in the second passband.

Table 4.3 Quality factor and coupling coefficients for the fourth-order filter

k12 k23 k34 Qe

f1 0.034652 0.021804 0.034652 21.95
f2 0.018017 0.0134 0.018017 46.8

(a)

(b)

Figure 4.9 Dual-band filter of the fourth order: (a) Configuration. (b) Response.
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As for the response of the fourth-order filter, it can be noted that the higher-order filter
also exhibits excellent performance in terms of insertion loss and selectivity. In com-
parison to the second-order filter, its selectivity is better since the transmission zeros are
positioned closer to the passbands.

The excellent in-band and out-of-band characteristics of the fourth-order filter con-
firms the applicability of the proposed approach.

Another way to illustrate the applicability of the proposed approach is to realize a
dual-band filter that operates at the frequencies other than 2.4 and 3.5 GHz. To that end,
a dual-band filter of the second order operating at 3.5 and 5.2 GHz has been designed.

The filter has been designed in the same manner as the filter operating at 2.4 and
3.5 GHz. The first step was to design a single-band filter with the passband at 3.5 GHz
and afterwards a single-band filter operating at 5.2 GHz. After the two filters had
been put together, an additional optimization was done in order to obtain the desired
response. The dimensions and the characteristics of the final filter are shown in Table 4.6
and Table 4.7, respectively, whilst Figure 4.10 shows its structure and response.

The upper part of the filter, which provides the passband at 5.2 GHz, consists of
only three conductive segments since its resonators are significantly shorter than the
resonators in the lower single-band filter, and the parameter L21 needs to be approxi-
mately as long as the parameter L11. Therefore, the parameter L21 is longer than a
quarter of the resonator and the highest transmission zero is positioned far from the
second passband.

Table 4.5 Characteristics of the fourth-order dual-band filter

f [GHz] IL [dB] RL [dB] 3 dB BW [MHz] 3 dB FBW [%]

first passband 2.4 1.75 22 90 3.75
second passband 3.5 3 17 70 2

Table 4.4 Geometrical parameters of the fourth-order dual-band filter

parameter [mm] L11 L12 L13 L14 L15 L16 L17 L18
7.4 6.2 6.2 4.5 4.9 2.6 7 6.5

L19 L110 L111 L21 L22 L23 L24 L25
4.4 3.6 1.7 7 5.5 4.7 3.8 1.7

g1 g2 g3 g4 g5 d w
0.7 0.9 1.2 1.6 1.4 0.4 1

Table 4.6 Geometrical parameters of the dual-band filter operating at 3.5/5.2 GHz

parameter [mm] L11 L12 L13 L14 L15 g1
6.3 4.9 4.8 3.1 1.5 1.5

L21 L22 L23 g2 d w
4.8 4.3 3.6 0.7 0.4 1
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Nevertheless, the filter exhibits a very small insertion loss of both passbands,
excellent selectivity, as well as small dimensions of 0.16λg x 0.15λg, which is another
confirmation of the applicability of the proposed approach to dual-band filter design.

4.4.3 Fabrication and measurement results

The proposed dual-band filter of the second order that operates at 2.4 and 3.5 GHz has
been fabricated using standard printed circuit board technology. The circuit has been
realized on the substrate Rogers RT/Duroid 5880 whose thickness is equal to 1.575 mm,
dielectric constant εr = 2.2, and loss tangent tanδ = 0.0009.

A photograph of the fabricated dual-band filter is shown in Figure 4.11(a), whilst the
simulated and measured results are compared in Figure 4.11(b).

The proposed filter comprises two vias and thus its fabrication might be sensitive to
fabrication discrepancies, which is of great importance since the positions of both
passbands and the lowest transmission zeros depends on the vias and their inductances.
Nevertheless, Figure 4.11(b) shows that there is good agreement between the simulated
and measured response.

(a) (b)

Figure 4.10 Dual-band filter operating at 3.5/5.2 GHz: (a) Configuration. (b) Response.

Table 4.7 Characteristics of the dual-band filter operating at 3.5/5.2 GHz

f
[GHz]

IL
[dB]

RL
[dB]

3 dB BW
[MHz]

3 dB
FBW [%]

overall dimensions
[λgxλg]

first
passband

3.5 1.5 17 160 4.57

0.16x0.15
second
passband

5.2 1.3 17 300 5.77
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Table 4.8 gives a comparison between the characteristics of the simulated and
fabricated circuits and it also confirms good agreement between the simulated and
measured results.

4.4.4 Comparison to other published dual-band filters

The proposed dual-band filter has been designed to operate at 2.4 and 3.5 GHz. As was
discussed in the previous chapter, a very small number of dual-band filters operating at
2.4 and 3.5 GHz have been published so far. Table 4.9 gives a comparison of the
characteristics of the proposed filter and the characteristics of other dual-band filters
operating at the same frequencies. Also, Table 4.9 summarizes the characteristics of
filters that operate at different frequencies yet have good performance and represent the
best published dual-band filters in terms of performance and size. The parameter λg is
the guided wavelength at the central frequency of the first passband.
The proposed filter exhibits a small insertion loss in both passbands, 1.1 and 1.6 dB,

good return loss, excellent selectivity, and very compact dimensions of only 0.13λg x
0.13λg.

In comparison to the filters operating at the same frequencies, the proposed structure
exhibits significantly better properties in terms of in-band and out-of-band

(a) (b)

Figure 4.11 Dual-band filter operating at 2.4/3.5 GHz: (a) Photograph of the fabricated circuit. (b)
Simulated and measured responses.

Table 4.8 Characteristics of the simulated and fabricated dual-band filters

f1/f2 [GHz] IL [dB] RL [dB] 3 dB BW [MHz] 3 dB FBW [%]

simulated circuit 2.4/3.5 1.1/1.6 15.3/15 100/100 4.6/2.85
fabricated circuit 2.41/3.55 1.6/2 10/12 170/120 7.1/3.4
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characteristics and overall dimensions. In addition, the performance of the proposed
configuration is better than that of most other filters operating at different frequencies.
The structures presented in [22] [25], and [27] occupy smaller areas in comparison to
the proposed filter, but it should be noted that they have been designed to operate at 2.4
and 5.2 GHz, which eases the design procedure and reduces the overall dimensions. In
addition, each of the three structures comprises resonators that are mutually coupled and
thus their independent control of the passbands is limited. On the other hand, the
proposed filter is comprised of two separate filters and thus allows independent control
of the passbands.

It can be concluded that the proposed configuration is the most compact planar filter
that operates at 2.4 and 3.5 GHz. Also, it is characterized by small insertion losses and
excellent selectivity, as well as by the possibility of independent control of the
passbands.

4.5 Tri-band filter based on λ/4 resonators

The presented dual-band structure can be used as a basis for the design of a tri-band
filter with excellent performance and independent control of the passbands. In this
section, a tri-band filter based on λ/4 resonators will be presented and analyzed, and its
performance compared to those of other published tri-band filters.

4.5.1 Configuration and analysis of the behavior of tri-band filter

If a pair of conductive segments L16 + L1 7+ L18 long is introduced in the structure of the
proposed dual-band filter, a pair of ring-shaped λ/2 resonators is obtained, Figure 4.12.
In that manner, another single-band filter, i.e. another passband, is formed and the
structure exhibits tri-band behavior.

Table 4.9 Comparison of the characteristics of the proposed filter and other dual-band filters

f1/f2
[GHz] IL [dB] RL [dB]

transmission
zeros

dimensions
[λgxλg]

3 dB
FBW [%]

proposed
filter

2.45/3.5 1/1.6 15.3/15 4 0.13x0.13 4.6/2.8

[21] 1/1.5 1.58/1.54 16/15 3 0.2x0.2 8/5.7
[22] 2.37/5.8 0.55/1.31 25/30 5 0.083x0.15 19/15
[23] 2.4/3.8 1.45/1.46 20/18 3 0.227x0.113 13/8.3
[24] 2.5/3.5 1.8/2.4 20/15 3 0.24x0.33 6.3/4.4
[25] 2.45/5.25 1.1/2.34 17/18 4 0.064x0.235 11/7.2
[26] 2.45/5.7 1/1.2 14/22 3 0.092x0.22 4.5/2.5
[27] 2.4/5.2 1.5/1.4 16/19 5 0.1x0.1 6.7/5.8
[28] 2.35/3.2 1.8/3 25/30 3 0.18x0.19 3.9/2.8
[29] 2.4/3.3 1.2/1.5 20/20 3 0.21x0.18 8.1/4.2
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Design of the tri-band filter is based on the design procedure of a dual-band filter. The
first step is to design a dual-band structure, i.e. the single-band filters that operate at the
frequencies f1 and f2. Afterwards, the third single-band filter operating at the frequency
f3 is designed.

The single-band filter operating at f2 is designed in the manner described in the
previous section. Design of the filter that gives a passband at f1 differs from the
corresponding one in the dual-band filter due to the fact that the resonators are folded
only to some extent to allow space for λ/2 resonators. In order to decrease losses in the
first and third passbands, the filter configuration should be as simple as possible, i.e.
excessive folding of the resonators has to be avoided.

Once the filters operating at f1 and f2 are designed, a new conductive segment L16 +
L17 + L18 long is introduced into the structure so that the dimensions are kept as small as
possible. In that manner, a pair of λ/2 resonators, i.e. a single-band filter is formed. The
filter operates at the frequency f3 that is higher than the frequencies f1 and f2. At the
same time, a strong coupling between the segments L11 and L16 + L17 + L18 needs to be
avoided to decrease the coupling between the filter that provides the passband at the
frequency f1 and the one that provides the passband at the frequency f3.

Following the proposed procedure, a tri-band filter for WLAN frequencies 2.4, 3.5,
and 5.2 GHz has been designed. As was stated previously, after the single-band filters
operating at 2.4 and 3.5 GHz are designed and put together, a fine tuning is needed to
obtain the desired response. In the case of the upper filter, the parameters L22, L25, and
g2 are used for fine tuning, whilst in the case of the lower filter the parameters L12, L15,
and g1 are used.

The length of the segment that is introduced in the structure is determined using
previously determined parameters L12, L13, L14, and L15. Namely, the sum of those
parameters, and L16 + L17 + L18 should correspond to the electrical length of λ/2 at

Figure 4.12 Configuration of the tri-band filter.
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5.2 GHz on the given substrate. Since the position of the third passband is determined by
the segment L16 + L17 + L18 that does not influence the other two passbands, it is clear that
the position of the third passband can be independently controlled.

As in the case of the dual-band filter, after the filters are put together the desired
response is not obtained and thus fine tuning of the geometrical parameters is needed.
The fine tuning has been done using the parameters L17, L18, a, and b. Table 4.10 gives
the geometrical parameters of the final structure.

Figure 4.13 shows the response of the final filter, and Table 4.11 shows its character-
istics. The filter exhibits small insertion loss, excellent return loss, and very compact
dimensions.

Table 4.10 Geometrical parameters of the tri-band filter

parameter
[mm]

L11 L12 L13 L14 L15 L16 L17 L18 g1 w
5.9 10.6 6.1 3.4 2.8 3.8 3.9 1.8 0.5 1

L21 L22 L23 L24 L25 g2 a b t d
7 5.3 4.7 3.6 2.7 0.9 0.9 0.7 1.4 0.4

Table 4.11 Characteristics of the tri-band filter

f
[GHz]

IL
[dB]

RL
[dB]

3 dB BW
[MHz]

3 dB FBW
[%]

overall dimensions
[λgxλg]

first passband 2.4 0.75 31.1 130 5.8

0.17x0.133
second
passband

3.5 1.55 18 90 2.6

third
passband

5.2 1 19.5 220 4

Figure 4.13 Response of the tri-band filter.
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In the configuration of the filter, it can be noted that the parameter t offers an
additional degree of freedom in tri-band filter design. Namely, the ring-shaped reson-
ators may be treated as the structures that are inductively coupled to the feeding lines
through the segment a. The point at which the resonator is coupled to the feeding line
determines the external quality factor, i.e. the strength of the coupling between them.
The more the coupling point is closer to the virtual grounding, the less is the coupling
factor, i.e. the greater the external factor.

By a change of the parameter t, the characteristics of the third passband can be varied
and the performance of the first passband preserved, providing that t does not have a
very large value.

Figure 4.14 shows the responses of the filters that differ in the parameter t. In order to
ensure that all passbands have the same central frequency, the parameter L18 is finely
tuned. It can be noted that a change in t influences the bandwidth of the third passband
and the range of the bandwidths are from 160 to 220 MHz.

As was stated, the proposed filter is characterized by excellent selectivity, which is
due to five transmission zeros. Similarly as in the dual-band filter, the lowest transmis-
sion zero occurs due to the presence of the vias in the configuration, which act as
coupled inductors, whilst the zeros positioned at the upper part of the first and second
passbands are due to antiparallel coupling between the resonators.

As for the zero positioned at the lower part of the second passband and the zero
positioned at the upper part of the third passband, they occur due to the specific position of
the feeding lines in respect to the resonators. Since the filter has a symmetrical structure,
even-/odd-mode analysis can be applied for the analysis of these transmission zeros. The
equivalent even and odd circuits are shown in Figure 4.15. Similar to the dual-band filter,
the total input impedance for the even and odd mode represents a parallel combination of
the input impedances of the lower and upper part of the filter. Thus, the total even and odd
input impedances can be expressed using the expressions (4.18) and (4.19).

The even and odd input impedance for the upper part of the structure can be
expressed using the same expressions as in the case of the dual-band filter, (4.22) and

Figure 4.14 Influence of the parameter t on the filter response.
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(4.23). As for the lower part of the filter, it comprises an additional conductive segment
in comparison to the dual-band filter, and thus the expressions for its even and odd input
impedances are more complex than in the case of the dual-band filter

Zin1even ¼ Z
QevenP
QevenþP þ j tan θ11

Z þ j QevenP
QevenþP tan θ11

, (4.24)

Zin1odd ¼ Z
QoddP
QoddþP þ j tan θ11

Z þ j QoddP
QoddþP tan θ11

, (4.25)

where

P ¼ Z

j tan θ2
,

Qeven ¼ Zleven
Z � Zleven tan θleven tan θlower
jZleven tan θlower þ jZ tan θleven

,

Qodd ¼ Zleven
Z � Zlodd tan θloddð tan θlower þ 2ωZClowerÞ
jZloddð tan θlower þ 2ωZClowerÞ þ jZ tan θlodd

:

(4.26)

At the frequencies at which the condition Zineven = Zinodd is met, S21 is equal to zero,
i.e. transmission zeros occur.

The previous analysis shows that the approach for tri-band filter design also allows
greater design freedom, but also that it results in compact filters with excellent perform-
ance which enable independent control of the passbands.

4.5.2 Fabrication and measurement results

The proposed tri-band filter has been fabricated using a standard printed circuit board.
The circuit has been realized on the substrate Rogers RT/Duroid 5880 whose thickness
is equal to 1.575 mm, dielectric constant εr = 2.2, and loss tangent tanδ = 0.0009.

(a) (b)

Figure 4.15 Equivalent circuit for (a) Even mode. (b) Odd mode.
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A photograph of the fabricated tri-band filter is shown in Figure 4.16(a), whilst the
simulation and measured results are compared in Figure 4.16(b).
Similar to the dual-band filter, the tri-band filter comprises two vias and thus its

fabrication is also sensitive to fabrication discrepancies, which is important since the
positions and properties of the two passbands and the two transmission zeros depend on
the vias and their inductances. However, Figure 4.16(b) shows good agreement between
the simulated and measured results.

Table 4.12 summarizes the characteristics of the simulated and measured results and
it also confirms that there is good agreement between the two results.

4.5.3 Comparison to other published results

The proposed tri-band filter has been designed to operate at 2.4, 3.5, and 5.2 GHz. The
most proposed tri-band filters have been designed to operate at the same frequencies. In
Table 4.13, comparison between the characteristics of the proposed filter and those of
other state-of-the-art tri-band filters is given.

(a) (b)

Figure 4.16 Tri-band filter: (a) Photograph of the fabricated circuit. (b) Simulated and measured
responses.

Table 4.12 Characteristics of the simulated and fabricated tri-band filters

f1/f2/f3 [GHz] IL [dB] RL [dB]
3 dB BW
[MHz]

3 dB
FBW [%]

simulated
circuit

2.4/3.5/5.2 0.75/1.55/1 31.1/18/19.5 130/90/220 5.8/2.6/4

fabricated
circuit

2.42/3.55/5.19 1.7/2.1/1.7 12/10/22 210/150/170 8.75/4.22/3.27
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The proposed filter shows small insertion losses in all three passbands, 0.75, 1.55,
and 1 dB, excellent return loss, 31, 18, and 19 dB, excellent selectivity, and very
compact dimensions of 0.17λg x 0.133λg.
In comparison to other configurations, the proposed filter shows similar characteris-

tics in terms of insertion loss, return loss, and bandwidths. When it comes to the overall
size of the circuit, the proposed filter is also superior to all other published tri-band
filters with the exception of the filter proposed in [34]. However, the selectivity of the
structure in [34] is poor, especially in the third passband.

Taking into consideration the performance of all filters, it can be concluded that the
proposed filter represents the most compact planar tri-band structure, which, at the same
time, is characterized by excellent selectivity and small insertion loss. In addition, the
three passbands can be independently controlled.

In Chapter 6, another tri-band bandpass filter with high-performance, excellent
selectivity, and compact size will be presented. The filter proposed in this chapter
together with the filter to be proposed in Chapter 6 represent the most compact
tri-band structures proposed so far.

4.6 Conclusion

In this chapter, two multi-band bandpass filters have been proposed. The filters are
based on λ/4 resonators, which are twice as short as conventional λ/2 resonators, so they
represent good candidates for the realization of compact filtering circuits. At the same
time, λ/4 resonators have better potential for minimizing interferences at higher
resonances.

The proposed dual-band filter consists of two single-band filters based on λ/4
resonators, which enables independent control of the passbands. It was shown that the
folding of the resonators results in not only size reduction, but also in a transmission
zero that occurs at the upper part of the passband.

The proposed design approach of the dual-band filter consists of a separate design of
single-band filters, and optimization of the geometrical parameters once the dual-band
structure is formed.

Table 4.13 Comparison of the characteristics of the proposed filter and other tri-band filters

f1/f2/f3
[GHz] IL [dB] RL [dB]

transmission
zeros

dimensions
[λgxλg]

3 dB
FBW [%]

proposed
filter

2.4/3.5/5.2 0.75/1.55/1 31.1/18/19.5 5 0.17x0.133 5.8/2.6/4

[30] 1.57/2.4/3.5 0.77/1.51/1.8 20/30/25 6 0.35x0.25 12.5/8/6
[31] 1.57/2.4/3.5 1.6/1.5/2.3 9/18.9/13.5 5 0.38x0.34 5.2/3.8/4.6
[32] 2.4/3.5/5.8 0.9/1.3/1.8 30/15/20 6 0.22x0.35 7.6/5.8/3.71
[33] 2.4/3.5/5.2 1.2/1.1/1.5 16.5/18/14.5 8 0.183x0.264 5/3.7/4.2
[34] 2.4/3.5/5.25 1.9/1.42/1.51 14.3/15/16.8 4 0.11x0.2 6.2/12/11.8
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Using the design procedure, a dual-band filter of the second order that operates at 2.4
and 3.5 GHz has been proposed. Apart from small insertion loss and excellent return
loss, the realized filter is characterized by excellent selectivity which is due to four
transmission zeros. Two zeros occur due to the antiparallel coupling between the
resonators, whilst the other two occur due to the presence of the vias in the structure
and the specific position of the feeding lines in respect to the resonators.

The proposed filter has been fabricated in printed circuit board technology and there
is good agreement between the measured and simulated results. It was shown that in
comparison to other dual-band filters, the proposed dual-band filter is the most compact
planar dual-band filter which operates at 2.4 and 3.5 GHz, and is also characterized by
excellent performance and the possibility of independent control of the passbands.

In order to illustrate the applicability of the proposed approach, a dual-band filter of
the fourth order for 2.4 and 3.5 GHz has been realized, as well as a filter of the second
order that operates at 3.5 and 5.2 GHz. Both filters exhibit very good performance.

By introducing a conductive segment in the structure of the proposed dual-band filter,
a pair of λ/2 resonators is formed and it provides another passband. In that manner, a tri-
band filter is obtained. It was shown how a tri-band filter is designed, and the influence
of the geometrical parameters on the response was discussed.

Applying the proposed approach to a tri-band filter that operates at 2.4, 3.5, and 5.2
GHz has been realized. The filter has been fabricated using standard printed circuit
board technology and the comparison between the simulated and measured results
showed good agreement.

It was concluded that in comparison to other tri-band filters the proposed filter
represents the most compact tri-band filter published so far. At the same time, it is
characterized by excellent performance and the possibility of independent control of the
passbands.
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5 Dual-band filters based on grounded
patch resonators
Vasa Radonić, Riana Helena Geschke, and Vesna Crnojević-Bengin

5.1 Introduction

In Chapter 2, it was shown that a number of multi-band microstrip-based filters have
recently been published based on the use of various innovative geometric designs.
Nevertheless, grounded patch resonators (GPR) or mushroom structures are perva-
sively exploited in antenna design, have not been widely adopted for multi-band filter
applications, despite a number of advantages over other commonly used planar
resonators.

This chapter's main focus is the design of compact dual-band filters using the
grounded patch resonator (GPR). Section 5.2 is devoted to the design of the square
patch resonator, analysis of its topology, and possible modifications. The first modifi-
cation to be analyzed is application of the Hilbert fractal curve for purposes of
miniaturization. Since the square GPR is inherently a non-degenerate dual-mode reson-
ator, this property is also exploited and it will be shown how the two fundamental
modes can be independently controlled by changing the width and length of the
resonator. Introduction of a slot perturbation in the rectangular GPR gives the perturbed
grounded patch resonator (PGPR) and the behavior of such a structure is analyzed in
detail. It is demonstrated that the inter-resonator couplings of the PGPR at two centre
frequencies can be adjusted separately, which allows the design of dual-band filters with
independent passband centre frequencies and respective bandwidths. Unlike many other
realizations and approaches, this method allows passbands to be spaced further apart
than is typically possible with narrow-band coupled-resonator methods.

Section 5.3 addresses filters based on the resonators introduced in Section 5.2. To
highlight the properties of the grounded patch resonator, bandstop filters were first
designed using different geometrical positions of the patch resonators. The grounded
Hilbert patch resonator embedded in the microstrip line is used to design a super-
compact highly selective bandstop filter and compared to other state-of-the-art bandstop
filters available in the literature. Afterwards, single-band bandpass filters based on
GPRs in which only the first resonant mode of the GPR is taken into consideration
are proposed.

Finally, dual-band filters based on the proposed resonators are presented and ana-
lyzed in detail. Unlike other published dual-band filters based on dual-mode resonators
in which the limiting factor is the fact that two centre frequencies cannot be adjusted
separately, in this chapter we describe dual-mode resonators where the two modes are
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decoupled and quite different in resonant frequency. This allows the design of
dual-band filters with wide spacing between passbands and independent passband
characteristics, which will be demonstrated.

5.2 Grounded patch resonator

5.2.1 Resonator design

As was stated previously, the GPR have been popular in the context of antenna design
[1]. In the antenna field, high impedance surfaces were created using grids of grounded
patches. Surprisingly, this structure has not been widely exploited in filter design,
despite a number of advantages over other commonly used planar resonators. The
fabrication of the basic grounded patch is less sensitive to dimension tolerances, in
contrast to many resonators previously reported in the literature. Generally, it does not
require narrow conductive lines or small gaps. It is very compact in size and exhibits
low insertion loss and suppressed spurious response, which makes the GPR suitable for
implementation in the design of compact filters with good performance. The implemen-
tation of different modifications of the grounded patch resonator in the realization of
single-band and dual-band microstrip filters were described in [2–10].
The GPR is a metal square etched on the top side of the dielectric substrate connected

by a metal via to the ground plane on the lower substrate side, Figure 5.1. The resonator
is realized on 1.27 mm thick Taconic CεR-10 substrate with a dielectric constant of εr =
9.8, and dielectric losses equal to 0.0035. The conductor losses are modeled using bulk
conductivity for copper (σ = 5.88�107 S/m). All resonators and filters presented in this
chapter have been designed on this substrate, unless otherwise is specified.

The influence of the various geometrical parameters of the GPR on its performance
can be analyzed in the case where the resonator is excited by the microstrip line, i.e. in
bandstop filter configuration. The typical configuration of narrowband bandstop filters
consists of a transmission line coupled electrically or magnetically to the resonators, and
in the microstrip architecture, three different feeding topologies of the patch resonator
can be used to obtain the stopband characteristic. The patch can be positioned either
next to or under the microstrip line, or the patch can be embedded in the microstrip,

Figure 5.1 Grounded patch resonator, GPR [2].
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Figure 5.2. Since the coupling configuration has a strong influence on the response of
the resonator, we first analyze this phenomenon.

The configuration in which the GPR is positioned next to the microstrip line is shown
in Figure 5.2(a). To enhance the coupling, the distance between the resonator and the
microstrip line, s, is chosen to be the minimum achievable in standard PCB technology,
which is equal to 0.1 mm. In the second case, where the patch is positioned under a
microstrip line, the patch is located halfway between the ground plane and the top layer,
Figure 5.2(b), at a distance equal to h2 = 0.5 mm above the ground plane. In the third
case, a microstrip line encloses a patch, Figure 5.2(c), i.e. the microstrip line is extended
and the patch resonator is implemented inside. The ring width around the patch, w, and
distance between patch and ring, s, are set to 0.1 mm for the same reason as
mentioned above.

In all simulations, via is modeled using a square cross section. In order to increase
the inductance of the resonator, the via has a minimum achievable width, with
dimension d equal to 0.1 mm. The initial length of the side of the square patch was
set to a = 5 mm. The S21 responses for three different excitations of the GPR
illustrated in Figure 5.2 are compared in Figure 5.3. All simulations were performed
using Sonnet Software v13.56 [11].

The patch resonator placed under the microstrip line has the highest resonant
frequency while the resonator positioned next to the microstrip line has the smallest
insertion loss. It can be seen that the patch embedded in the microstrip has the lowest
resonant frequency, the highest insertion losses, and the widest stopband for the same
dimensions of the resonator. Thus, the GPR resonator embedded in the microstrip line is
suitable for the design of bandstop filters with good characteristics.

(a)

(c)

(b)

Figure 5.2 Excitation of the GPR: (a) Patch positioned next to microstrip line [6]. (b) Patch placed
under microstrip line. (c) Patch embedded in microstrip line [6].
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Apart from the coupling configuration, the resonant frequency of the resonator
predominantly depends on the dimensions of the resonator. To investigate the influence
of the patch size on its performance, the outer dimensions of the patch, a, were varied.
Tables 5.1, 5.2, and 5.3 show simulation results for all three structures, presented in

Figure 5.3 Responses of the structures illustrated in Figure 5.2.

Table 5.3 Simulation results for the GPR embedded in the microstrip line

a (mm) 5 3.1 2.5 1.5 0.7
fs1 (GHz) 2.94 4.44 5.3 7.8 13.1
BW (MHz) 183 397 562 1030 1564
FBW (%) 6.22 8.93 10.6 13.2 11.9
S21 (dB) –35.53 –36.12 –37.68 –36.73 –40.48

Table 5.1 Simulation results forthe GPR positioned next to microstrip line

a (mm) 5 3.1 2.5 1.5 0.7
fs1 (GHz) 3.06 4.68 5.58 8.2 13.35
BW (MHz) 40.2 82.5 120.8 263.8 464
FBW (%) 1.3 1.76 2.16 3.21 3.47
S21 (dB) –18.83 –21.94 –24.4 –24.05 –24.85

Table 5.2 Simulation results forthe GPR positioned under microstrip line

a (mm) 5 3.1 2.5 1.5 0.7
fs1 (GHz) 3.12 4.82 5.84 9.23 17.25
BW (MHz) 122.4 264.1 374.9 614.1 1190
FBW (%) 3.92 5.48 6.42 6.65 6.91
S21 (dB) –26.1 –29.73 –30.1 –32.4 –34.96
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Figure 5.2, where fs1 denotes the first resonant frequency, S21 is the insertion loss at fs1,
BW is the 10 dB bandwidth, and FBW denotes the fractional bandwidth.
By decreasing the size of the resonator, the resonant frequency and the bandwidth

increase. As is expected, the patch embedded in the microstrip line has the lowest
resonant frequency and the highest insertion losses. In addition, it exhibits the widest
stopband for all dimensions of the grounded patch due to the stronger coupling between
the microstrip line and the resonator.

The influence of the coupling between the microstrip line and the patch can be
analyzed by changing the distance between them in the case when the patch is
positioned under the microstrip line. Table 5.4 shows simulation results for different
patch heights h2 (distance between patch and ground plane), where fs1 denotes the first
resonant frequency, S21 is the insertion loss at fs1, and BW presents the 10 dB band-
widths. The outer dimension of the patch were kept constant at 5 mm x 5 mm, while the
via dimension was set to d = 0.1 mm. The substrate thickness was constant at 1.27 mm.
Due to the increase in the coupling strength and extension of the via, i.e. increase of

the via inductance, the resonant frequency is decreased, and the bandwidth and insertion
loss increased.

Despite the fact that the patch placed under the microstrip line can provide a lower
resonant frequency and larger bandwidth in regard to the patch embedded in the
microstrip line, one of the main limitations of this geometry is the impossibility to
implement it using the standard PCB technology. Considering that substrates are only
available in standard thicknesses, it is very difficult to control the thicknesses of the
substrates in the multi-layer technologies and to obtain a perfect alignment between
layers without air gaps. This directly influences filter performance.
Another important aspect of the resonator configuration is the position of the via and

its influence was investigated in the case when the patch is positioned next to the
microstrip line. Four different edge via positions were analyzed, Figure 5.4. The
distance between the patch and the microstrip line is again chosen to be the minimal
achievable in standard PCB technology. Simulation results are compared in Table 5.5
and in Figure 5.5, where f denotes resonant frequency, S21 is the insertion loss at f, and
BW is the 10 dB bandwidth. As expected, changes in the positions of the via result in a
significant change of the resonant frequency. For instance, a maximal change in the via
position provides a reduction of more than 12% of the resonant frequency. The lowest
resonant frequency exhibits the structure in which the via is positioned in the upper
position, while the highest relates to the case where the via is placed in the centre

Table 5.4 Simulation results for a GPR placed under microstrip for different
heights h2

h2 (mm) 1.17 1 0.5 0.27 0.1
fs1 (GHz) 1.8 2.38 3.12 3.44 3.76
BW (MHz) 231 136 122.4 67 na
FBW (%) 12.83 5.7 3.92 1.94 na
S21 (dB) –43.91 –35.27 –24 –17.01 –7.02
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position. On the other hand, by moving the via to the side of the patch, more than a 30%
reduction of the bandwidth is observable.

The via diameter is a parameter that could be very difficult to control in a fabrication
process and thus the influence of via diameter is also investigated. Three different
dimensions of the square via were analyzed in the case where the patch is embedded in
the microstrip line: 0.1 mm, 0.3 mm, and 0.5 mm. Simulation results are depicted in
Figure 5.6. In Table 5.6, the simulated resonant frequency of the patch, fr, and
corresponding calculated results for the via inductance, L, are shown. The inductance
of the via is calculated according to standard analytical expressions for via inductance
(5.2). It can be seen that small changes in via dimensions result in relatively high
changes of the inductance, which ultimately cause large changes of the resonant
frequency. For example, variation of the via size from 0.1 mm to 0.3 mm results in a

Table 5.5 Influence of via position on the performance

Via Position Centre Left/Right Down Up

f (GHz) 3.06 2.702 2.717 2.692
f (%) na 11.7 11.21 12
S21 (dB) –18.83 –17.26 –16.43 –17.25
BW (MHz) 40.2 27.6 24.8 27.9
BW (%) na 31.3 38.31 30.6

(a)

(c) (d)

(b)

Figure 5.4 Via position related to microstrip line: (a) Centered. (b) Left. (c) Next to the microstrip
(bottom). (d) As far as possible from the microstrip (top).
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Figure 5.6 Influence of via dimensions on the performance in the case where the GPR is embedded
in microstrip line.

Figure 5.5 Influence of via positions on the response.

Table 5.6 Influence of the via dimensions on the performance

Via dimensions(mm) 0.1 x 0.1 0.3 x 0.3 0.5 x 0.5

L (nH) 0.786 0.533 0.431
L (%) na –32 –45
fr (GHz) 2.94 3.66 4.22
fr (%) na 24 43.5
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change of the via inductance by 32%, resulting in a change in the resonant frequency of
about 24%.

The previously analyzed patch resonator has a conventional square shape. In order to
obtain more design freedom as well as miniaturization, the square patch is replaced by a
Hilbert fractal patch resonator. A novel resonator based on the grounded Hilbert patch
embedded in the microstrip line is proposed in Figure 5.7. Due to their space-filling
property, fractal curves allow the design of electrically long lines on a finite substrate
area, and they have been applied for miniaturization of different passive components
and circuits [12–14].

The proposed resonator consists of a grounded Hilbert patch embedded in the
microstrip line, where s denotes the gap between the microstrip line and the resonator,
a is length of the side of the patch, w is line width of the ring, and d denotes side
dimensions of the square via positioned in the middle of the Hilbert patch. Dimensions
wH and gH denote the line width and the spacing of the Hilbert fractal patch, respect-
ively. Two different configurations of the Hilbert resonator with constant outer dimen-
sions a = 2.9 mm and different line-to-spacing ratio wH/gH were analyzed using Sonnet
software: one in which wH = 0.5 mm and gH = 0.3 mm and other in which wH = 0.3 mm
and gH = 0.7 mm. In order to enhance the coupling between the patch and the micro-
strip, the width of the microstrip line around the patch as well as the spacing between
the ring line and the patch are set to minimal values achievable in standard PCB
technology, i.e. to 0.1 mm. The via is modeled with a square cross section, with
dimensions equal to 0.1 mm by 0.1 mm. Simulated responses of the proposed Hilbert
resonators are shown in Figure 5.8. Additionally, they are compared to those of a
conventional square resonator whose dimensions were set to a = 2.9 mm and d =
0.1 mm.

The Hilbert grounded patch, similar to the GPR, gives a notch response when it is
properly excited by the electromagnetic field of the microstrip line. It can be seen that
the conventional GPR exhibits stronger rejection at resonance, but its resonant fre-
quency is significantly higher than that of the grounded Hilbert patch. The proposed
Hilbert fractal modification results in a reduction of the resonant frequency by about

Figure 5.7 Layout of the Hilbert grounded resonator [7].
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15.2% in comparison with a conventional square patch. Additional miniaturization can
be obtained by reducing the line-to-spacing ratio of the Hilbert fractal curve or increas-
ing the fractal order of the Hilbert curve. According to these results, it is clear that the
grounded Hilbert patch embedded in the microstrip is more suitable for the design of
compact bandstop filters.

The behavior of the square patch resonator is particularly interesting in terms of
application in dual-band filters, i.e. it is interesting to analyze its fundamental and first
higher resonance. To that end, a square patch resonator in passband configuration,
capacitively coupled to the feed lines through the gap g is investigated, Figure 5.9. The
size of the square patch was chosen to be a = b = 6 mm, while the via dimension d is set
to 0.4 mm and the gap is g = 0.1 mm. In the proposed case, the via is placed on the end
side of the patch. The response of the proposed resonator is shown in Figure 5.10. The
resonator exhibits the first resonance at fr = 2.85 GHz, while the second one occurs at

Figure 5.8 Comparison of the simulation results for Hilbert grounded resonators with different
line-to-spacing ratios and the GPR.

Figure 5.9 GPR capacitively coupled to the microstrip feeds [8].
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approximately 2.6fr. The square GPR is inherently a non-degenerate dual-mode reson-
ator whose two resonant frequencies may be independently controlled by varying its
dimensions.

To fully understand its behavior, the resonator has been modeled using an LC
equivalent circuit shown in Figure 5.11, where Lv represents the via inductance, Cp

is the patch capacitance towards the ground, Lp is the series inductance of the
patch, and Cg models the capacitance between the feeds and the resonator. The
values of the patch capacitance toward the ground and via inductance that deter-
mine the first resonance can be obtained using equations (5.1) and (5.2), respect-
ively, derived in [15]

CP ¼ 0:264�10�12 εr þ 1:41ð Þ
In 5:98h

0:8aþ t

� � : (5.1)

Lvia ¼ 2�10�7h In
4h
d

� �
þ 0:5

d

h

� �
� 0:75

� �
: (5.2)

Figure 5.10 The full-wave simulated response of the GPR capacitively coupled to the microstrip
feeds [8].

Figure 5.11 Equivalent circuit of the proposed resonator [8].
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The second resonance is determined by the patch inductance Lp, and the edge capaci-
tance Cg. The patch inductance Lp and the edge capacitance Cg can be calculated using
equation (5.3) and (5.4), derived in [16] and [17], respectively

Lp ¼ 2a�10�7 ln
a

bþ t

� �
þ 1:193þ 0:2235

bþ t

a

� �
0:57� 0:145 ln

b

h

� �
(5.3)

Cg ¼ 500 h�Q1�e�1:86gh 1þ 4:19 1� e�0:785
ffiffi
h
w

p
a
w

� �h i
, (5.4)

where w is the width of the feeding line, t is the thickness of the metallization, b is the
width of the patch (in the case of the GPR b = a), and Q1 can be calculated using

Q1 ¼ 0:04598� 0:03þ w

h

� � 1:23
1þ0:12 a=w�1ð Þ0:9 � 0:272þ 0:07εrð Þ: (5.5)

All variables are in meters. For the square patch realized on a 1.27 mm thick Taconic
CεR-10 substrate, with dimensions of a = 6 mm and a via size of d = 0.4 mm, the
initial calculated values for the circuit model are shown in Table 5.7. The response of
the proposed electrical model had been additionally tuned. The response of the final
electric model and the electromagnetic response obtained using Sonnet software are
compared in Figure 5.12, while the tuned values are presented in Table 5.7. The
response of the model, indicated by a dashed line, exhibits good agreement with the

Figure 5.12 Comparison of the full-wave simulated response of the GPR and the response of the
circuit model [8].

Table 5.7 Parameters of the circuit model

Lv (nH) Lp (nH) Cp (pF) Cg (pF)

Calculated 0.495 0.585 6.479 0.1362
Tuned 0.416 0.59 6.105 0.205
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electromagnetic one. Considering that the proposed formulas are valid for conventional
microstrip line segments, the presence of the via causes small variations between tuned
and calculated values especially in the case of patch edge capacitance and capacitance
toward the ground. The patch capacitance is slightly smaller, by 6%. while the edge
capacitance is 30% larger.

The square patch resonator can be modified to a rectangular patch resonator to allow
for more design freedom and considerable spacing between resonances. The rectangular
grounded patch resonator (RGPR) is presented in Figure 5.13. Similar to its square
counterpart, this resonator supports two non-degenerate resonances. The first resonance
is created by the capacitance to ground and the via inductance, whilst the second
resonance is modeled by the patch edge capacitance and the series inductance. Clearly,
the two resonances are positioned at different frequencies by selecting the appropriate
geometrical parameters, namely a, b, and d in Figure 5.13.
The patch capacitance to ground is determined by the size of the patch, i.e. by the

parameters a and b and the substrate characteristics. These parameters also determine
the patch inductance. The via inductance is related to the via diameter, whilst the edge
capacitance is related to the parameter a. This is illustrated in Figure 5.14, where the
dimensions a and b of the RGPR, capacitively coupled to 50 Ω feed lines, have been
varied. Here, the via diameter d = 0.4 mm was kept constant, and the dimensions of the
patch were varied while maintaining a constant patch area. By doing this, the first
resonance was fixed at 2.4 GHz and the second resonance was shifted by almost 100%.
This demonstrates the first of two criteria for full control of the dual-band magnitude
response, i.e. control over the individual passband positions.

Alternatively, by increasing the ratio between resonances, single bandpass filters with
extended stopband regions can be realized. However, when two RGPRs are used to form a
filter, the inter-resonator coupling at two resonant frequencies cannot be adjusted separ-
ately, and two passbands of the filter cannot be separately optimized, as will be shown in
Section 5.3.3. To change the coupling characteristics, the dual-band resonator shape, or
dimensions, usually need to be changed to obtain the proper couplings at both resonances.
In general, this has also been the case with all other dual-mode resonators presented so far,
and it significantly limits their applicability in the realization of dual-band filters.
In Figure 5.15, the current distributions of the first two modes supported by a RGPR

are shown for the resonator dimensions a = 9.3 mm, b = 5.5 mm, and d = 0.4 mm.

Figure 5.13 Rectangular grounded patch resonator, the RGPR [10].
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These graphical presentations of current magnitude show that the via region of the patch
supports the strongest current at the first resonant frequency. At the second resonance,
the currents are strongest on the two patch edges. This led to the idea to introduce a slot
perturbation at the edge opposite to the via, i.e. to obtain a mechanism to influence only
the second mode. This method is described in detail in the following section.

5.2.2 Perturbed grounded-patch resonator

As was stated in the previous section, introduction of a small perturbation to the edge of
the resonator opposite the via gives a resonator with a mechanism to control only the
second mode. The configuration of such a resonator, a perturbed grounded patch
resonator (PGPR), is shown in Figure 5.16. Parameters sl and sw denote the length

(a) (b)

Figure 5.15 Current distributions of the (a) First. (b) Second resonant mode of the RGPR with
dimensions a = 9.3 mm, b = 5.5 mm, and d = 0.4 mm [10].

Figure 5.14 Influence of RGPR dimensions on its transmission and reflection characteristics [10].
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and the width of the slot, respectively, while t denotes the slot offset with respect to the
symmetry axis of the PGPR (dashed line).

Due to the current distribution, the introduction of the edge slot causes a negligible
shift in the resonant frequencies of the resonator, and these remain positioned at 2.4
GHz and 5.2 GHz, as was the case for the RGPR of the same dimensions. The
explanation for this surprising result is that the slot does not interrupt the flow of
the current for the first mode, while it negligibly interrupts the flow of the current for
the second mode, due to the fact that the slot size is much smaller than the length of the
patch a. This is also evident from Figure 5.17, where the current distributions of two
resonant modes of the PGPR are shown.

Nevertheless, when two or more PGPR resonators are coupled to realize a filter,
edge slot perturbations play a significant role, as will be shown in Section 5.3.3. In
that case, the width, length, and position of the slots can be optimized to provide the
desired coupling coefficient and external quality factor at the second operating fre-
quency, independently from the coupling coefficient at the first operating frequency
leading to a design dual-band filter with independently controlled passband
characteristics.

Figure 5.16 Perturbed grounded patch resonator, PGPR [10].

(a) (b)

Figure 5.17 Current distributions of the (a) first and (b) second resonant mode of PGPR
with dimensions a = 9.3 mm, b = 5.5 mm, d = 0.4 mm, sl = 1.1 mm, sw = 1 mm, and
t = 1.3 mm [10].
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5.3 Application of grounded patch resonators in filter design

In this section, single-band bandstop and bandpass filters as well as dual-band filters
based on the GPR and its modification are proposed. The synthesis procedure based on
coupled-resonator theory is used to design different types of filters based on coupled
GPR resonators.

In Section 5.3.1, a compact bandstop microstrip filter is proposed, based on the GPR
and Hilbert grounded patch embedded in the microstrip line. The superiority of the
proposed filters is confirmed by comparison with state-of-the-art bandstop filters of
similar type in terms of size, performance, and fabrication complexity.

In the following section, the highly selective compact single-band bandpass filter of
third order and the cross-coupled filter based on the GPR are presented. Their design is
based on conventional filter theory, i.e. on the determination of the design curves for
coupling coefficients and the external quality factors of the first resonant mode of the
GPR from the electromagnetic (EM) simulations.

Section 5.3.3 is devoted to dual-mode resonators based on the RGPR and the PGPR.
It presents a detailed filter design including estimation of the coupling coefficients and
quality factors at both resonances for dual-mode resonators based on the RGPR and the
PGPR, modeling, and fabrication of the dual-band filters with straightforward design
and independent passbands characteristics.

5.3.1 Single-band bandstop filters based on grounded-patch resonators

In this section, a novel compact bandstop microstrip filter is proposed, based on the
grounded patch resonator and Hilbert grounded patch embedded in the microstrip line.
The characteristics of the proposed filter are compared with state-of-the-art stopband
filters of similar type in terms of size, performance, and fabrication complexity.

To illustrate the potential of the proposed GPR in an arbitrary filtering characteristic,
bandstop filters of the fourth order were designed with different geometrical arrange-
ments of GPRs. The layouts of the filters with the patch resonators positioned next to
and under the microstrip line, and the layout of the filter with the patch resonators
embedded in a microstrip line are shown in Figure 5.18. The outer dimensions of patch
resonators were set to 5 mm x 5 mm. The distance between patches is 0.3 mm, the
distance between microstrip line and the patch is 0.1 mm, and via dimensions are equal
to 0.1 mm x 0.1 mm. The frequency responses of the structures are shown in
Figure 5.19, while Table 5.8 compares the responses of the proposed filters, where
the fs denotes centre bandstop frequency, BW3dB and BW10dB are 3 dB and 10 dB
bandwidths, respectively, and S21_0 is the insertion loss in the passband. In Table 5.8,
filter dimensions are given in millimeters and guided wavelength λg.

All proposed filters are characterized by very low insertion loss in the passband and
relatively wide bandwidth. In the filter where the patches are positioned next to the
microstrip line, the 3 dB fractional bandwidth is equal to 15.2% centered at 3.1 GHz.
Nevertheless, the insertion loss in the passband is not sufficient and it is equal only to
8 dB. The filter with patches positioned under a microstrip line demonstrates sharper
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transitions for both sides of the stopband with reflection loss of more than 20 dB. The
filter with patch resonators implemented in the microstrip line shows a slightly lower
resonant frequency than the other two filters. It has 32% 10 dB fractional bandwidth
centered at 3 GHz with an insertion loss of more than 30 dB. Stronger coupling between

(a)

(b)

(c)

Figure 5.18 Layout of the proposed bandstop filter of the fourth order with: (a) Patch positioned
under microstrip line. (b) Patch placed next to microstrip line. (c) Patch embedded in microstrip
line [6].

Figure 5.19 Simulation results for bandstop filters illustrated in Figure 5.18.
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patches and the microstrip line in the case of the embedded patch produces deeper
stopbands and causes small ripples just outside the stopband.

In order to compare the characteristics of the proposed filter configurations based on
the GPR, the eighth-order stopband filters are compared with a stopband filter based on
the Split Ring Resonator (SRR), published in [18]. The layouts of the filters are shown
in Figure 5.20. The external dimensions of the patch are optimized to 3.3 mm x 3.3 mm,
in order to obtain the same central frequency as in the case of the filter based on the
SRR. The distance between the patch resonators (in Figure 5.20a) and the distance
between the microstrip line and patch resonators (in Figure 5.20b) are set to 0.1 mm,
while in both cases square vias have dimensions equal to 0.1 mm x 0.1 mm.

The total lengths of the filters based on patch resonators are 28.9 mm, which
correspond to 0.54λg on the given Taconic substrate. In the case of the filter proposed
in [18], a microstrip line is loaded with SRRs on both sides. The dimensions of the

Table 5.8 Comparison of the characteristics of the bandstop filters based on the GPR

Filter Patch under MSL Patch next to MSL Patch implemented in MSL

fs (GHz) 3.1 3.1 3
BW3dB (MHz) 772.7 472 970
FBW3dB (%) 25.75 15.2 32.3
BW10dB (MHz) 644 Na 900
FBW10dB (%) 21.45 Na 30
S21_0 (dB) –22 –8 –32
Dimensions (mm) 21.5 x 5 21.5 x 6.5 21.5 x 5.4
Dimensions (λg) 0.52 x 0.12 0.52 x 0.16 0.52 x 0.13

(a)

(b)

(c)

Figure 5.20 Comparison of the eighth-order filter based on the GPR and filter based on SRR:
(a) Filter with GPR resonator placed next to microstrip line. (b) Filter with patch resonators
implemented in microstrip line. (c) Filter based on SRRs [18].
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SRRs are precisely optimized to achieve a broadband response. The SRR dimensions
vary between 4.1 mm x 2.7 mm for the largest SRR resonator and 3.55 mm x 2.7 mm
for the smallest one, resulting in a total length of the filter of 39.3 mm, which
correspond to 1.6λg. The line width of the SRR, the distance between rings, the distance
between the SRR, and the distance between the rings and microstrip line were set to
0.3 mm. The filter in [18] is realized on a Rogers RO3010 substrate with a thickness of
1.27 mm, a relative permittivity of 10.2, and a loss tangent of 0.0022. Figure 5.21
compares the simulation responses of the proposed filters, while the Table 5.9 summar-
izes the characteristic filter parameters, where fs is the central bandstop frequency,
BW10dB is the 10 dB bandwidth, and s21_0 is the insertion loss in the passband.

It can be noted that the filter with the GPR positioned next to the microstrip line
shows characteristics similar to the filter based on the SRR in terms of bandwidth and
return losses. The filter with patch resonators implemented in the microstrip lines shows
significantly higher suppression in the stopband, more than 60 dB and 17% wider
fractional bandwidth. In comparison to the filter based on the SRR, the filter with the
embedded GPR resonator has a bandwidth extension of more than twice as much higher

Figure 5.21 Comparison of the filters based on the GPR and on SRR illustrated in Figure 5.20.

Table 5.9 Comparison of the characteristics of the eighth-order stopband filters based onthe GPR and filter
based on SRRs

Filters
Microstrip loaded
with GPR

GPR implemented in
Microstrip

Microstrip loaded
with SRR

fs (GHz) 4.55 4.35 4.55
BW10dB (MHz) 820 1410 714
FBW10dB (%) 18 32.4 15.7
S21_0 (dB) –21.8 –60 –18
Dimensions (mm) 28.5 x 4.8 28.9 x 3.7 39.3 x 9.97
Dimensions (λg) 1.02 x 0.17 1.04 x 0.13 1.6 x 0.4
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suppression in the stopband. Another advantage of the filters based on the patch
implemented in the microstrip line is the position of the second harmonic. In the case
of the filter based on the SRRs, the second harmonic occurs at frequency of 2fs, while
for filters based on patch resonators, the second harmonic occurs at approximately 3fs.
In contrast to the filter based on SRRs, for filters based on GPRs there is no need for
further optimization of the size of patches in the filter. Moreover, the total dimensions of
the filters are smaller in the case of the filters based ona GPR.

Based on the proposed grounded patch embedded in the microstrip, a super compact
high selectivity stopband filter of fourth order was designed, fabricated, and measured
[6]. The layout of the filter is shown in Figure 5.22 for the outer dimension of the
patches of 3.3 mm x 3.3 mm. All resonators are identical, and no time-consuming
optimization is needed in the process of filter design. All the spacings between patches
and the microstrip are equal to 0.1 mm, and size of all vias is 0.1 mm. The overall filter
dimensions are only 14.5 mm x 3.7 mm, i.e. approximately 0.52λg x 0.13λg, where λg is
the guided wavelength.

The photograph of the fabricated prototype is shown in the Figure 5.23, while
simulated and measured responses of the filter are compared in Figure 5.24. Good
agreement can be observed. The fabricated filter exhibits a 35% 10 dB fractional
bandwidth centered at 4.36 GHz with rejection of more than 30 dB and a maximum
reflection loss of about 1 dB in the stopband. The fabricated fourth-order filter has an
overall dimension of 0.52λg x 0.13λg. The second stopband appears at approximately
10 GHz.

Figure 5.22 Layout of the fourth-order bandstop filter with the GPR embedded in a microstrip line,
dimensions in mm [6].

Figure 5.23 Photograph of the fabricated fourth-order bandstop filter based on GPRs embedded in a
microstrip line [6].
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Based on the previously proposed Hilbert grounded patch resonator embedded in the
microstrip, another fourth-order super compact highly selective bandstop filter was
designed [7]. The layout of the proposed filter for the outer dimensions of the patches
equal to 2.9 mm x 2.9 mm is shown in Figure 5.25. All resonators are identical, and no
time-consuming optimization is needed in the process of filter design. The spacing
between patches and the microstrip are equal to 0.1 mm and the size of all the vias is
0.1 mm. The overall filter dimensions are 12.9 x 3.3 mm, i.e. approximately 0.47λg x
0.12λg, where λg is the guided wavelength.

Simulated response of the filter is shown in Figure 5.26. The filter is characterized by
a 10 dB fractional bandwidth of 30% at 4.43 GHz, with rejection of more than 30 dB
and the maximal insertion losses around 1 dB in the passbands.

To benchmark the new proposed filter topology based on the Hilbert grounded patch
resonator, a comparison with five other recently published stopband filters is made: one
based on conventional GPRs [6], one based on an L-shaped resonator [16], and another

Figure 5.24 Simulated and measured responses of the fourth-order bandstop filter based on GPRs
embedded in microstrip line [6].

Figure 5.25 Layout of the bandstop filter of the fourth order with Hilbert grounded patch embedded
in microstrip line, all dimensions in mm [7].
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based on different configurations of SRRs [18–20]. The comparison is detailed in
Table 5.10, where fc is the centre frequency, FBW is the 10 dB fractional bandwidth,
and the Rejection is the rejection in the stopband. Table 5.10 also gives the order
of different filters, and their overall dimensions and chip area in terms of guided
wavelengths. In [18–20], the values are obtained from the measured responses pre-
sented in the papers, as exact numbers for the parameters in the table were not presented
in [18–20].

Filter 1 [19] of Table 5.10 consists of a microstrip line coupled to Split Ring
Resonators (SRRs) on each side of the microstrip line. The filter is of the sixth order
and its footprint is seven times that of the Hilbert GPR filter. Furthermore, it exhibits a
narrow stopband of 3.6%.

Filter 2 [18] is similar to Filter 1 but the dimensions are optimized and the SRRs
are non-synchronously tuned to provide a larger stopband, which is 17% in this case.

Figure 5.26 Simulated response of the proposed bandstop filter of the fourth order with the Hilbert
grounded patch embedded in the microstrip line [7].

Table 5.10 Comparison of the characteristics of the filter based on the Hilbert grounded patch embedded in the
microstrip and other bandstop filters [7]

Filters
Hilbert GPR
filter

Filter1
[19]

Filter2
[18]

Filter3
[19]

Filter 4
[20]

Filter 5
[16]

GPR filter
[6]

fc (GHz) 4.43 9.25 4.5 9.25 2.44 3.4 4.36
BW (MHz) 1330 �333 760 3000 60 142 1360
FBW (%) 30 3.6 17 33 2.45 4.2 35
Rejection (dB) 32 35 25 45 20 50 30
Dimensions (mm) 12.9x3.3 19.5x7.75 39.3x9.97 19.5x3 23.7x23.7 44.5x17.4 3.7x14.5
Dimensions (λg) 0.47x0.12 1x0.4 1.6x0.4 1x0.15 0.5x0.5 1.36x0.53 0.52x0.13
Filter size, (100*λg

2) 5.64 40 64 15 25 72 6.76
Filter order 4 6 8 6 4 5 4
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Eight unit cells were required and the footprint is eleven times larger than the Hilbert
GPR filter presented in this chapter.

Filter 3 [19] uses Complementary Split Ring Resonators (CSRRs). These are etched
into the ground plane below a microstrip feed line. The ground plane etching compli-
cated the manufacturing process due to the requirement for very careful alignment of the
etching on two conductive layers. Filter 3 has similar performance to the Hilbert GPR,
although the footprint is three times larger and the filter exhibits increased insertion loss
at frequencies above the stopband.

Filter 4 [20] has the smallest bandwidth and the worst stopband rejection of all the
examples listed in Table 5.10, and furthermore has a large footprint.

Filter 5 [16] is a fifth-order microstrip bandstop filter based on L-shape resonators.
The filter exhibits a narrow stopband equal to 4.2% but with higher suppression in the
stopband. On the other hand, its footprint is almost 13 times larger than the filter based
on the Hilbert resonator.

Instead of using the square GPR, the Hilbert grounded patch is used in [6], where the
length of filter is reduced by 9.6% and its width by 8.3%, without degrading the
performance. The performance of this filter is detailed in the last column of Table 5.10.
The response compares well to the Hilbert GPR filter (first example of Table 5.10),
although its footprint is 16.5% larger. The miniaturization of the Hilbert GPR filter is
enhanced by either changing the order of the Hilbert curve, or more practically, by
changing the line-to-spacing ratio of the fractal.

5.3.2 Single-band bandpass filters based on grounded-patch resonators

In this section, a compact bandpass microstrip filter based on grounded patch resonators is
proposed. Only the first mode of the GPR is taken into account in the design of single-band
filters. The coupling model of the filter is established and the coupling coefficients of the
coupled pair of resonators and the external quality factors of the basic feeding configur-
ations are investigated using full-wave electromagnetic simulations. As an example, a
third-order direct-coupled filter and cross-coupled filter based onthe GPR are designed.

5.3.2.1 Direct coupled filters based on grounded-patch resonators
A square grounded patch is used to design compact filters following classical filter
design theory and the coupling coefficient method [21–22, 16]. As a demonstration, a
third-order Chebyshev bandpass filter for Wireless LAN applications that operates at
2.4 GHz is designed. The proposed configuration of the third-order direct-coupled filter
is shown in Figure 5.27. The filter has been designed to exhibit a Chebyshev response
centered at 2.4 GHz, with a fractional bandwidth equal to FBW = 3.96% and a passband
transmission ripple equal 0.05 dB.

First, the resonator is designed to operate at 2.4 GHz. The dimensions of the square
GPR resonator were found to be 7 mm x 7 mm with the via size equal to 0.4 mm.

The circuit model of the third-order bandpass filter is shown in Figure 5.28. Each
resonator has been modeled by a parallel RLC circuit, where the parallel Rp models the
effect of a finite resonator unloaded Q-factor. The coupling between resonators is
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modeled by frequency independent J-inverters, where the Jij (i,j = 0,1,2,3) in Figure 5.28
represents frequency-independent admittance inverters that can be calculated from the
filter specifications. It should be noted that these models are only accurate in the vicinity
of the resonant frequency. The filter parameter values for the prototype, found in [21],
are: g0 = g4 = 1, g1 = g3 =1.031, g2 = 1.147.

The related coupling coefficients and external quality factors of the direct-coupled
filter can be determined by the following equations [16]

kij ¼ FBWffiffiffiffiffiffiffiffigigj
p

:
(5.6)

Qe1 ¼
g0g1
FBW

: (5.7)

The coefficients kij specify the coupling between adjacent resonators i and j of the filter.
Because of the symmetry of the structure, two coupling coefficients must be equal, k12 =
k23. The external quality factors Qe1 and Qe3 that specify the input and output couplings,
respectively, are also equal. For the defined filter specifications, the following values
have been calculated: k12 = k23 = 0.0363846, Qe1 = Qe3 = 26.046.

The characteristic admittances for the frequency independent inverters are then

J01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FBW �b
Z0g0g1

s
, (5.8)

J30 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FBW �b
Z0g3g4

s
, (5.9)

Jij ¼ FBW �bffiffiffiffiffiffiffiffigigj
p , (5.10)

Figure 5.28 The third-order bandpass filter prototype [9].

Figure 5.27 Configuration of the proposed third-order direct-coupled filter [9].
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where Z0 is the characteristic line impedance of the resonator and b is the susceptance
slope parameter. The resistance Rp can be determined from the unloaded quality factor
of the resonator using equation

Rp ¼ Qu

w0CP
, (5.11)

where Qu is the external quality factor of the resonator given by

Qu ¼
f 0

BW3 dB
: (5.12)

In Eq. (5.12), BW3dB denotes the 3 dB bandwidth of the single grounded patch
resonator. It should be mentioned that the proposed resonator has an unloaded quality
factor equal to Qu =100 at the first resonance.
The coupling coefficient k can be calculated from the two split resonant frequencies f1

and f2, obtained from full-wave EM simulations of two identical synchronously tuned
coupled resonators [16], using

k ¼ f 22 � f 21
f 22 þ f 21

: (5.13)

Due to the specific resonator design, where the via is shifted to one side of the metal
patch, several basic coupling scenarios can be realized for the first resonant mode [8].
They stem from different orientations of otherwise identical grounded patch resonators,
which are separated by spacing s and may be shifted for a lateral offset. The obtained
coupling coefficient as a function of resonator-to-resonator distance s and for the
orientation chosen in the proposed filter is shown as an inset in Figure 5.29. It can be
seen that the coupling coefficient decreases monotonously with distance s.

Figure 5.29 Coupling coefficients versus resonator-to-resonator distance s for orientation as
shown [9].
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In the proposed case, the 50 Ω feeding line is directly tapped to the input/output
resonator and the external quality factor is controlled by the line length, l, as detailed in
Figure 5.30. The external quality factor is extracted from the group delay at resonance
using equation (5.14), reprinted from [16], where w0 denotes resonant frequency and
τs11(w0) presents group delay at w0. The external quality factor was determined as a
function of the feed line length l, for a fixed line width of wf = 0.1 mm, since the narrow
line width results in the smaller external quality factor of the resonator. The external
quality factor in the function of the line length l is plotted in Figure 5.31.

Qe ¼
ω0 τs11 ω0ð Þ

4
: (5.14)

The initial dimensions of the filter, such as resonator-to-resonator spacing and the feed
length, were determined using the obtained design curves calculated for the coupling
coefficient and Q-factor. Spacing between the resonators was set to s12 = s23 = 1.1 mm

Figure 5.30 Tapped line structure for determination of the Q-factor of the GPR [9].

Figure 5.31 External quality factor as a function of the coupling line length l [9].
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and the lengths of the feeds to l = 6.3 mm. This filter was simulated in Sonnet software
and it exhibited larger bandwidth and passband ripple than expected. In order to obtain the
required response, a numerical tuning procedure based on the filter model was performed,
in which the filter and the corresponding model were divided into individual elements
and analyzed separately.

We have concluded that the type of feed used slightly influences the resonances of the
patches. To compensate for the frequency shift effect because of the feeding lines, the
first and the third patch have to be larger, in order to resonate at the same frequency as
the middle one. In addition, the Q-factor has to be higher; therefore, the length of the
feeds has to be slightly longer.

The final dimensions of the filter are as follows: dimensions of the first and third
patch are 7.3 mm x 7 mm, while the middle one is 7 mm x 7 mm; the distances between
patches are s12 = s23 = 1.05 mm and the length of the feeds is l = 6.4 mm. The overall
size of the filter together with feeds is only 0.31λg x 0.64λg, where λg denotes the guided
wavelength at an operating frequency of 2.4 GHz.

In Figure 5.32, a comparison of the electromagnetic and the circuit model response is
shown, where very good agreement with the theoretical model can be observed. The
electromagnetic response of the filter in the wide frequency range is shown in
Figure 5.33. The filter is characterized by small insertion loss in the passband equal
to 1.25 dB, and passband ripple smaller than 0.07 dB. The fractional bandwidth is equal
to 3.91%, which conforms well to the designed specifications. The proposed filter
exhibits a wide stopband region up to second harmonic that exists at 6.25 GHz, with
a more than 60 dB rejection in the stopband.

5.3.2.2 Cross-coupled filter based on grounded-patch resonators
In this section, the design, fabrication, and measurements of a passband cross-coupled
filter of fourth order based on the GPR are presented. The filter has been designed

Figure 5.32 Comparison of electromagnetic response and response of coupling model [9].
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according to the following specifications: central frequency fc = 2.85 GHz and fractional
bandwidth of FBW = 5%, with two transmission zeros positioned at 2.85�0.15 GHz.

In the first step, the dimension of the resonator that operates at 2.85 GHz was found.
The dimensions of the square GPR resonator were found to be 6 mm x 6 mm with a via
size of 0.4 mm.

Typically quasi-elliptic response filters are realized by exploiting coupling between
non-adjacent resonators. Due to the specific resonator design, where the via is shifted to
one side of the metal patch, three basic coupling structures can be realized usingthe
GPR, as is shown in Figure 5.34. They result from different orientations of identical
patch resonators, which are separated by spacing s and may be shifted by an offset d.

The nature and the intensity of the fringing fields in those three geometrical arrange-
ments determine the nature and the strength of the coupling. The maximum magnetic
coupling is obtained when the vias are placed close to each other, Figure 5.34(a), while
the electric coupling exists when “free” sides of the patches are in proximity, i.e. when
the vias are placed on the opposite sides of the patches, Figure 5.34(b). Mixed coupling
refers to the structure proposed in Figure 5.34(c), since both electric and magnetic
coupling occur in that case.

Figure 5.33 Electromagnetic response of the third-order filter based on the GPR over a wide
frequency range [9].

(a) (b) (c)

Figure 5.34 Basic coupling structures of the coupled GPR [8]: (a) Magnetic coupling. (b) Electric
coupling. (c) Mixed coupling.
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Coupling curves of three basic coupling structures encountered in this class of filters
are investigated using full-wave electromagnetic simulations. Figure 5.35 shows trans-
mission characteristics for structures with electric and magnetic coupling, together with
corresponding phase responses. In both cases, the distance s is equal to 1.2 mm. It can
be seen that the magnetic coupling is stronger than the electric one, for the same
distance s. In addition, it can be seen that the phase characteristics are out of phase
confirming that two coupling coefficients will have the opposite signs [16]. To design
cross-coupled filters based on the proposed resonator, the values of the coupling
coefficients are needed for various resonator-to-resonator distances, s. The design
curves for the coupling coefficients and the external quality factor are calculated using
equations (5.13) and (5.14), respectively.

The obtained coupling coefficients as a function of resonator-to-resonator distance s
and offset d are shown in Figure 5.36. Mixed coupling in the function of resonator-to-
resonator distance s and resonator offset d is shown in Figure 5.36(c). As expected, the
mixed coupling results in the smallest values of the coupling coefficient. Also, it can be
noted that in the case of mixed coupling, small variation of offset d has very small
influence on the coupling coefficient.

Similarly, the external quality factor was determined as a function of the coupling
line length l, Figure 5.37. For l<a, the coupling line lies only above the resonator, while
for a<l<2a, it extends to the resonator's side as well, as shown in Figure 5.37(a).
Figure 5.38 shows the external quality factor as a function of the coupling line length l.
Fine-tuning of the external quality factor can be obtained by changing the feed line
position t, Figure 5.37(b). Fine-tuning of the external quality factor by changing the
position of the feed line, t, for a fixed length of the coupling line set at l = 11.2 mm is
shown in Figure 5.39.

Using the designed curve, a bandpass filter of fourth order with the coupling structure
shown in Figure 5.40 has been designed. The generalized equivalent network of the
prototype is shown in Figure 5.41 where J and g denote admittance inverters and

Figure 5.35 Comparison of electric and magnetic coupling responses [8].
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(a)

(c)

(b)

Figure 5.36 Coupling coefficients versus resonator-to-resonator distance s for: (a) Electric coupling.
(b) Magnetic coupling. (c) Mixed coupling (dependence from an offset d is also shown) [8].

(a) (b)

Figure 5.37 Determination of the Q-factor of the proposed resonator [8]: (a) External quality factor
as a function of the coupling line length l. (b) Fine tuning of the external quality factor by
changing the position of the feed line, t, for fixed l = 11.2 mm.
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capacitances, respectively. The values of gi and Ji have been calculated using synthesis
equations defined in [16]. For the fourth-order filter with return loss LR = ‒20 dB and
frequency allocation of the transmission zeros at Ω = 1.82, the calculated values are:
g1 = 0.95914, g2 = 1.4169, J1 = ‒0.20509, and J2 = 1.1105.

Those values can be used to calculate the external quality factor and coupling
coefficients using the following expressions [16]

Qei ¼ Qeo ¼ g1
FBW

, (5.15)

Figure 5.38 External quality factor as a function of the coupling line length l [8].

Figure 5.39 Fine-tuning of the external quality factor by changing the position of the feed line, t,
for fixed length l = 11.2 mm [8].
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M1,2 ¼ M3,4 ¼ FBWffiffiffiffiffiffiffiffiffi
g1g2

p , (5.16)

M2, 3 ¼ FBW �J2
g2

, (5.17)

M1,4 ¼ FBW �J1
g1

: (5.18)

The calculated coupling values are M12 = M34 = 0.0428903, M23 = 0.0391877, and
M14 = ‒0.0106913. To achieve the desired values of M14, M23, and M12, three coupled
pairs with electric, magnetic, and mixed coupling are employed, respectively. Positive
coupling coefficients M12 = M34 and M23 are realized by the mixed and magnetic
coupling, respectively, while the negative coupling coefficient M14 is realized using
electric coupling.

Using the design curves given above, all dimensions of the filter, such as spacings
and feed length and location were determined. The obtained spacings between the
resonators are found to be s14 = 2.51 mm, s23 = 2.27 mm, and s12 = 1.35 mm for
offset d = 0.1 mm. Since the actual line widths and spacing are determined by the
resolution of the PCB technology, after the tuning procedure we set them to s14 = 2.5
mm, s23 = 2.3 mm, s12 = 1.2 mm, and d = 0.1 mm. To compensate for a frequency
shift effect because of the feeding lines, the dimensions of the first and fourth
resonators are set to 6.1 mm x 6.1 mm. The layout of the filter with all the relevant
dimensions is shown in Figure 5.42, while the comparison between circuit model
and electromagnetic simulation of the filter are compared in Figure 5.43. Good
agreement can be observed.

The cross-coupled filter is fabricated using standard PCB technology. The photo-
graph of the fabricated circuit is shown in Figure 5.44. The overall size of the

Figure 5.40 Coupling structure of the cross-coupled filter [8].

Figure 5.41 Generalized equivalent circuit network of the cross-coupled filter [8].
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realized filter is only 0.385λg x 0.34λg, where λg denotes the guided wavelength at
2.85 GHz.

The simulated and measured responses of the filter are compared in Figure 5.45,
where the specified transmission zeros near the edges of the passband can be clearly
identified. Good agreement between the measured and simulated responses can be
observed, except for a shift in frequency approximately equal to 1.4% and higher
insertion losses in the passband. Since manufacturer specifications for substrate material

Figure 5.43 Comparison of electric circuit model and electromagnetic simulation.

Figure 5.42 Layout of the filter with all dimensions in mm [8].
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allow variations in the range �0.5, as well as variations in substrate thickness, this can
be explained by the discrepancy between the actual and simulated values of the
dielectric constant and the substrate thickness.

The measured central frequency is 2.88 GHz and the filter has stopband rejection up
to 8 GHz. For a better comparison of the responses, a normalized frequency axis is used
in Figure 5.45. Furthermore, the filter also shows small radiation loss from the left side
of the passband.

5.3.3 Dual-band filters with independent passbands based on grounded-patch resonators

In this section, three dual-band filters based on the RGPR and the PGPR with independ-
ent control of passbands that operate according to the IEEE 802.11b/g/n standard are

Figure 5.45 Comparison of simulated and measured responses [8].

Figure 5.44 Photograph of the fabricated cross-coupled filter [8].
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proposed. We first propose using a rectangular grounded patch resonator (RGPR)
instead of the square one, as the rectangular patch is inherently a non-degenerate
dual-mode resonator whose two fundamental resonant frequencies may be independ-
ently controlled, as was detailed in Section 5.2.1.

However, when two RGPRs are coupled, the inter-resonator coupling at two resonant
frequencies cannot be adjusted separately. The filters based on the PGPR with an edge
slot perturbation allow separate control of the couplings at both operating frequencies
resulting in independent control of both the position and the filter bandwidths. The
coupling models of the filters are established and the coupling coefficients of the
coupled pairs of resonators and the external quality factors at both operating modes
are derived using full-wave electromagnetic simulations. As an example, two dual-band
filters of second order and one of fourth order have been designed, fabricated, and
measured.

5.3.3.1 Dual-band filter based on the RGPR
To demonstrate the potential of the RGPR for dual-band application, a second-order
dual-band bandpass filter is designed based on a previously presented resonator. The
filter based on the RGPR has been designed according to the following specifications:
central frequency of the first band is fc1 = 2.45 GHz with a 3 dB bandwidth of 160 MHz
and ripple equal to 0.1 dB. The frequency of the second band is set to fc2 = 5.2 GHz.
Unfortunately, the bandwidth and ripple in the second band cannot be specified since
the bandwidths of the two bands are mutually dependent.

A common situation that occurs when dual-band filters are designed is that the inter-
resonator couplings at two resonant frequencies cannot be independently controlled,
since both coupling coefficients are controlled by the same parameter – inter-resonator
spacing. Filters of this type are typically designed using a procedure which requires
multiple tuning of dimensions and finding a set of design curves that meet specifications
which in turn increases the time needed to design a filter.

We first determine the dimensions of the resonator in order to obtain resonating
modes at the 2.45 and 5.2 GHz. For the selected Taconic substrate, the length and width
of the resonator have been found as 5.5 mm and 9.3 mm, respectively, while the via
dimension is set to 0.2 mm.

The coupling coefficients and loaded Q-factors were determined for both bands
together because they are mutually dependent. The couplings between resonators and
Q-factors depend of the orientations of the resonators. Two basic coupling structures
can be realized, as is shown in Figure 5.46 and the coupling coefficient can be
calculated from the EM simulation using equation (5.13) at both resonant modes
separately. Figure 5.47 shows the obtained coupling coefficient for both orientations
as the function of various resonator-to-resonator distances s for the patch dimensions
equal to 5.5 mm x 9.3 mm.

The inter-resonator couplings depend on the orientation of the coupled resonators. It
can be seen that the resonant frequency of the second mode is less dependent on the
distance between resonators. In the case of Orientation A, the first mode has stronger
coupling values for small distances, while for the greater distances the coupling of
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second mode is stronger. In the case of Orientation B, the coupling coefficient at the
second band is always stronger than that of the first one. It should be noted that the
coupling coefficients ki

A and ki
B have the opposite signs, since at f1 the coupling is

predominantly magnetic in Structure A and predominantly electric in Structure B (and
the other way round at f2).

Similarly, the external quality factors can be determined as a function of the coupling
line length l for both modes simultaneously. Figure 5.48 shows the topologies to excite
the input/output dual-band resonator. The dimension of the feed line width is set to w =
1.4 mm, the spacing between the resonator and feed is set to g = 0.1 mm, while the
width of the line is wL = 0.3 mm. Figure 5.49 shows the obtained Q-factor curves for
both orientations as the function of various feed line lengths l. It should be mentioned
that the proposed resonator has a high unloaded quality factor of the second mode equal
to Qu

A = 190. Unfortunately, the unloaded Q factor for the first mode is only Qu
B = 100.

For a longer line, the input/output coupling is stronger, resulting in lower values of
the external quality factor. In the case of both orientations, the first mode has a higher
external Q-factor. It can be noted that there is a point where the two modes have the
same couplings and a point where the values of the Q-factors are equal for both modes.

(a) (b)

Figure 5.46 Basic coupling structures of coupled the RGPR: (a) Orientation A. (b) Orientation B.

Figure 5.47 Coupling coefficients versus resonator-to-resonator distance s for RGPR resonator.
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This suggests that the dual-band filter with identical characteristics in both bands can
easily be designed using the intersection point of the curves for the coupling coefficients
and Q-factors. Unfortunately, it leaves no freedom in the design of filters with arbitrary
characteristics of passbands.

The standard filter theory and procedure described in [16] can be used to design a
dual-band filter. Unfortunately, this procedure requires finding of a set of design curves,
which increases the time needed to design the filter. In the case of the proposed
resonator, shape or layout cannot be easily changed without affects on both resonant
frequencies.

Since the coupling coefficients and loaded Q-factors of the different modes of the
GPR were determined, a simplified coupling model of the second order may be used in
the dual-band filter design. The dual-band filter is modeled as the superposition of two
channels that operate at two different frequencies, Figure 5.50, while each dual-band
resonator of the filter is modeled using two sub-resonators. Channel 1 is formed by two

Figure 5.49 External quality factors as a function of the coupling feed line length l.

(a) (b)

Figure 5.48 Basic feed topologies: (a) Orientation A. (b) Orientation B.
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sub-resonators, denoted 1.1 and 1.2, which operate at first resonance, f1, while channel
2 is formed by another two sub-resonators, 2.1 and 2.2, which operate at the second
resonance f2. The source and load are denoted by S and L, respectively.

The proposed model includes only the main couplings that exist in the filter. Parasitic
couplings, such as the couplings between sub-resonators operating at different frequencies
and the couplings between source/load with non-adjacent resonators are not taken into
account. This does not diminish the validity of themodel as long as the resonant frequencies
of the filter are significantly different, which is the case here. In such a case, parasitic
couplings cannot be reliably extracted from the simulations as they are not defined for
resonators that operate at significantly different frequencies. However, it should be noted
that the model is valid only in the passbands, due to the narrow-band validity of coupled-
resonator models around the central frequencies of the passbands. The proposedmodel can
also be extended for filters of higher orders, as will be shown below.

For the predefined specification, calculated values for the Q-factor and coupling
coefficient in the first band are QA = 24.52 and k12

A = 0.04756, while the values for
the second band obtained using designed curves are QB = 14.6 and k12

B = -0.1006. The
designed parameters can be found using the design curves proposed in Figure 5.47 and
Figure 5.49. Since the standard PCB technology allows a resolution of 0.1 mm, all
dimensions are rounded to the integer product of the minimal resolution. The filter's
layout, with all the relevant determined dimensions satisfying the design specification,
is shown in Figure 5.51.

Figure 5.52 shows a comparison of the electromagnetic response and circuit models
responses ‒ good agreement in both passbands was obtained. The model contains
transmission zeros which existed in the transmission characteristics between the two
passbands. They arise as a result of different signs of the coupling between resonators in
different modes.

The parasitic coupling, such as the coupling between the source/load with the non-
adjacent resonator and the coupling between the non-adjacent resonators at both
resonances, is not taken into account. These values are very small and can slightly
affect the zeros positions.

The proposed filter based on the RGPR is fabricated in standard PCB technology.
A photograph of the fabricated circuit is shown in Figure 5.53, while the simulated and

Figure 5.50 Coupling model for a second-order GPR dual-band filter.
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measured responses of the filter are compared in Figure 5.54. Good agreement between
the measured and simulated responses can be observed, except for a small shift of the
second band and the transmission zero. The passband centre frequencies obtained in the
measurement are 2.406 GHz in the first band and 5.27 GHz in the second one. Measured

Figure 5.52 Comparison of the electromagnetic response and circuit model responses of the RGPR
dual-band filter.

Figure 5.53 Photograph of the fabricated RGPR dual-band filter.

Figure 5.51 Layout of the RGPR dual-band filter with dimensions in millimeters.
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bandwidths are equal to 180 MHz and 840 MHz, while the insertion losses in the
passbands are equal to ‒1.804 dB and ‒1.638 dB, respectively. The filter is very
compact in size, with the overall dimension of only 12.9 mm x 9.3 mm, i.e. 0.268λg x
0.191λg, where λg denotes the guided wavelength at the first resonant frequency.

5.3.2.2 Dual-band filter based on PGRP
The perturbed grounded patch resonator (PGPR) contains a slot perturbation that allows
two fundamental resonant modes of the resonator to be used for dual-band filter design,
with complete control over the passband magnitude response in each passband. The
design procedure is presented in detail in this section.

In the previous section, it was shown that the PGPR allows independent control of the
positions of the two fundamental resonant modes. In addition, the PGPR allows
independent control of passband bandwidths, as will be demonstrated in the following.

Figure 5.55 shows two cases of coupled PGPRs, Structure A and Structure B, with
design parameters s and t , whilst Figure 5.56 shows how the coupling coefficients
change for different values of s and t at two fundamental resonances for both structures.

It can be seen that the parameter t influences the coupling coefficient of structure A at
the first resonance, k1

A, whilst it has no effect on the coupling coefficient at the second
resonance, k2

A. Nevertheless, this is not the case for the structure B, i.e. the parameter t
has no effect on any of the coupling coefficients k1

B and k2
B, Figure 5.56(b). It is

interesting that the coupling coefficients ki
A and ki

B are opposite in sign. At the first
resonance, magnetic coupling dominates in structure A and electric coupling dominates
in structure B. This is reversed at the second resonance.

Figure 5.57 reveals another interesting fact – the slot dimensions sl and sw have a
similar effect on the coupling coefficients of structure A as the parameter t, i.e. slot
dimensions can be also used to control the bandwidths separately.

Figure 5.54 Comparisons of the simulated and the measured responses of the RGPR dual-band
filter.
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(a)

(b)

Figure 5.56 Coupling coefficients for (a) Structure A. (b) Structure B versus inter-resonator spacing
s, for various offsets t. PGPR dimensions are a = 9.3 mm, b = 5.5 mm, d = 0.4 mm, sl = 1 mm and
sw = 1 mm [10].

(a) (b)

Figure 5.55 Basic coupling structures of coupled PGRP [10]: (a) Orientation A. (b) Orientation B.
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The final option to independently control the bandwidths of the two passbands relies
on the fact that the loaded Q-factors at the two fundamental resonances are set inde-
pendently by the slot offset t – Figure 5.58 reveals that for the case where the edge with
the via is closest to the feed line. At the same time, the change of slot dimensions does
not have this effect on the quality factors. The consequence is that the Q-factors can be
differentiated by changing the slot offset, whilst the coupling coefficients can be
independently controlled using the slot dimensions.

(a)

(b)

Figure 5.57 Coupling coefficients for Structure A versus inter-resonator spacing s, for various slot
dimensions: (a) Varied sw, for sl =1 mm. (b) Varied sl for sw = 1 mm. Other PGPR dimensions are
a = 9.3 mm, b = 5.5 mm, d = 0.4 mm, t = 2 mm [10].
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The analysis presented above illustrates that PGPR allows independent control of the
coupling coefficients and Q-factors at two resonant frequencies, thus allowing the
design of dual-band filters with completely independent passband central frequencies
and bandwidths.

(a)

(b)

Figure 5.58 External Q-factors versus feed-line length l, for various slot offset t: (a) Q1. (b) Q2.
The feed structure is shown in the inset and PGPR dimensions are a = 9.3 mm, b = 5.5 mm,
d = 0.4 mm, sl = 1.1 mm, sw = 1 mm and g = 0.1 mm [10].
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To demonstrate the applicability of the proposed structure and mechanisms, two
bandpass filters based on the PGPR have been designed, fabricated, and measured. The
first filter is of second order and the second one is of fourth order. The fourth-order filter
is strong evidence that the resonant modes are indeed independent, as one would not be
able to optimize two passbands with exact specified passband responses if the reson-
ances were not fully independent.

The first example based on the PGPR has required specifications of passbands atWLAN
frequencies 2.45 and 5.1 GHz, with bandwidths of 150 and 590 MHz, respectively. Based
on these requirements the values for the coupling coefficients and loaded Q-factors were
found to be k1

12 = 0.04956, k2
12 = ‒0.08367, Q1 = 25.26, and Q2 = 12.2. Using the design

curves presented in Figures 5.56 to 5.58, the required dimensions are s = 1.1 mm, sw = 1
mm, sl = 1 mm, t = 1.9 mm, and l = 8 mm. The filter layout is shown is Figure 5.59.
The EM simulation and the response of the circuit model are compared in Figure 5.60

and there is good agreement in the passbands. The coupling model is not accurate
between the passbands, but the transmission zeros between passbands arise as a result of
the different signs of the coupling at different resonant modes.

The simulated and measured results are compared in Figure 5.62, whilst a photograph
of the fabricated circuit is shown in Figure 5.61. The filter footprint is 12.8 mm by 9.3
mm, which is 0264λg x 0.191λg, where λg is the guided wavelength on the given
substrate at the first resonant frequency of 2.45 GHz. The agreement between the results
is good: the measured 3dB bandwidths are 193 MHz and 670 MHz, respectively.
Discrepancies are attributed to the via manufacturing tolerances and these mainly
impact the first passband as predicted by the theoretical analysis.

To illustrate the independence of the two patch modes, a fourth-order filter is
designed, i.e. each of the passbands is based on a fourth-order response. This is a good
demonstration that the two passbands are indeed independently designed, as a design
with so many resonators would be extremely complex were the resonances not really
independent. The design specifications were designed according to the IEEE 802.11b/g/
n standard. The filter is designed to operate at 2.45/5.2 GHz, with 3dB bandwidths of
BW1 = 150 MHz and BW2 = 410 MHz, respectively. Figure 5.63 shows the coupling
scheme.

Figure 5.59 Layout of the proposed second-order dual-band bandpass filter based on PGPR,
dimensions in mm [10].
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Figure 5.60 Comparison of the responses of the EM simulations and the circuit model for
dual-band bandpass filter based on PGPR [10].

Figure 5.61 Photograph of the second-order dual-band PGPR filter [10].

Figure 5.62 Comparison of the simulated and measured response of the second-order dual-band
PGPR filter [10].

183Multi-band filters based on grounded patch resonators



This filter was designed to be inside a metal box, to avoid radiation losses from the
resonators and to obtain good selectivity. The design was done by including the box
dimensions in the EM simulations. The model of the filter is shown in Figure 5.63, and
it was used to fine-tune the dimensions of the filter after using the design curves
presented in Figures 5.56 to 5.58. The filter dimensions were found using a standard
numerical tuning method used with coupled-resonator filters. Figure 5.64 gives all the
filter dimensions and Figure 5.65 details the dimensions of the metal box.
The N+2 coupling matrix for each passband are presented independently, since the

passbands were designed entirely independently. The first passband has the centre
frequency of 2.425 GHz and a bandwidth of 6%. The normalized coupling matrix is

m1 ¼

0 0:847 0 0 0 0
0:847 0 0:7353 0 0 0
0 0:7353 0 �0:5945 0 0
0 0 �0:5945 0 0:7353 0
0 0 0 0:7353 0 0:847
0 0 0 0 0:847 0

2
6666664

3
7777775
: (5.19)

The second passband has a centre frequency of 5.22 GHz and a bandwidth of 7.6%. The
normalized matrix is

m2 ¼

0 0:9353 0 0 0 0
0:9353 0 �0:7353 0 0 0

0 �0:7353 0 0:5945 0 0
0 0 �0:5945 0 �0:7353 0
0 0 0 �0:7353 0 0:9353
0 0 0 0 0:9353 0

2
6666664

3
7777775
: (5.20)

Figure 5.63 Coupling model scheme of the proposed fourth-order dual-band PGRP bandpass
filter [10].

Figure 5.64 Layout of the proposed fourth-order dual-band filter based on PGPR (in mm) [10].
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The EM response and the response of the circuit model, Figure 5.66, are in a very good
agreement in the passbands. The differences in the stopbands are due to the fact that the
circuit model representing coupled resonators is not valid in between the two passbands.

The photograph of the fabricated filter is presented Figure 5.67, while the simulated
and measured responses of the filter are compared in Figure 5.68. The size of the filter,

Figure 5.65 Optimized dimensions (in mm) of the metal box with the filter placed inside [10].

Figure 5.66 Comparison of electromagnetic response and circuit model response [10].
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including the metal box, is 41.5 mm x 31.2 mm x 15.3 mm, i.e. 0.86λg x 0.64λg x
0.315λg, where λg is the guided wavelength on the Taconic substrate at the first
operating frequency of 2.45 GHz.

The measured central frequencies of the passbands are equal to 2.49 GHz and 5.38
GHz, while the corresponding insertion losses are ‒3.95 dB and-‒2.68 dB, respectively.
Due to the fabrication tolerances of the via and the metal box, the measured response is
shifted by 2.5% from the simulated result. The return losses are more than 15 dB in both
bands. Also, the rejection in the stopband is somewhat degraded. However, it remains at
more than 28 dB and therefore does not diminish the filter's performance.

As shown in [16], different feed schemes and coupling structures can affect the
appearance of an additional transmission zero. The same effect can be achieved in the
filters based on a grounded patch resonator if the feed scheme and some couplings are
changed.

Figure 5.67 Fabricated fourth-order dual-band bandpass filter fitted in a metal box [10].

Figure 5.68 Comparisons of the simulated and the measured responses fourth-order dual-band
PGPR filter [10].
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Figure 5.69 shows three different modifications of a fourth-order dual-band filter
based on the PGPR. Only coupling between the second and third resonator and feed
orientation have been changed. Marked dimensions were changed with regard to the
filter proposed in Figure 5.64. Comparison of the simulation results are shown in
Figure 5.70. It can be seen that in the case of Filter 3-I the zeros in the transmissions
characteristic are not pronounced, while in case of Filter 3-II five transmission zeros are
clearly visible: two below the first band, one between the two passbands, and two above
the second band. In the Filter 3-III, two zeros are placed at the left side of the first band,
two at the right side of the second one, and three between the two passbands.

It is obvious that the same passband characteristic but with a different number and
position of transmission zeros can be obtain by changing the position of the feeds and
by changing the coupling between non-adjacent resonators.

5.4 Conclusion

In this chapter, the grounded patch resonator (GPR) and its modifications for application
in the design of compact single-band and dual-band filters have been presented.
A number of examples of single-band bandstop and bandpass filters were designed
based on different modifications of the grounded patch resonator using a coupled-
resonator approach.

(a)

(b)

(c)

Figure 5.69 Various modifications of the dual-band filter based on the PGPR: (a) Filter 3-I.
(b) Filter 3-II. (c) Filter 3-III.
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A compact bandstop filter based on the GPR has been realized that exhibits a 35%
10 dB fractional bandwidth centered at 4.36 GHz with a rejection of more than 30 dB
and the maximal reflection coefficient around 1 dB in the stopband. The fabricated
fourth-order filter has an overall dimension of 0.52λg x 0.13λg with the second stopband
at 10 GHz.

Another highly selective bandstop filter of fourth order was designed based on the
Hilbert grounded patch resonator embedded in the microstrip. The overall filter dimen-
sions are 12.9 x 3.3 mm, i.e. approximately 0.47λg x 0.12λg, where λg is the guided
wavelength. The filter exhibits a 10 dB fractional bandwidth of 30% at 4.43GHz, with
rejection of more than 30 dB.

Design curves forthe GPR have been developed and discussed in detail to facilitate
bandpass filter design, and circuit models have been proposed. The highly selective
compact filter of third order with Chebyshev bandpass response and the cross-coupled
filter based on the on GPR have been designed following the coupling coefficient design
theory. The third-order bandpass filter for Wireless LAN applications operates at 2.4
GHz and exhibits a wide stopband region of up to 6.25 GHz, with a more than 60 dB
rejection in the stopband. The fabricated cross-coupled filter with an overall size of
0.385λg x 0.34λg, is designed with a central frequency of 2.85 GHz and stopband
rejection of up to 8 GHz.

Using the proposed PGPR resonator, dual-band bandpass filters with completely
independent passband central frequencies and bandwidths have been designed. Design
curves for the PGPR and a circuit model have been developed and discussed in detail to
facilitate filter design. Finally, two dual-band bandpass filters, one of the second and one
of fourth order, have been designed, fabricated, and measured. The filters operate
according to the IEEE 802.11b/g/n standard, and they exhibit good performance and
small size. The fourth-order dual-band filter operates at 2.49 GHz and 5.38 GHz, and its
size is 0.86λg x 0.64λg x 0.315λg, where λg is the guided wavelength at the first passband.

Figure 5.70 Transmission characteristics of the filters proposed in Figure 5.69.
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6 Fractal-based multi-band
microstrip filters
Nikolina Janković, Kiril Zemlyakov, Riana Helena Geschke, Irina Vendik,
and Vesna Crnojević-Bengin

6.1 Introduction

Fractal curves are space-filling curves that, theoretically, allow the design of infinite-
length lines on a finite substrate area. Due to their space-filling ability, they have great
potential for miniaturization of passive microwave circuits.

This chapter is devoted to fractal curves and their application to filter design. It starts by
presenting the main characteristics of fractal curves which are of importance to filter
design and miniaturization. Special attention will be given to the Hilbert fractal curve,
which is very convenient for application in resonators and filters due to its configuration.

Afterwards, two dual-band bandpass filters, one tri-band bandpass filter, and one tri-
band bandstop filter based on the Hilbert fractal curve will be presented and discussed.

The two dual-band bandpass filters consist of dual-mode resonators based on the
Hilbert fractal curve of second order. The resonator is formed as a serial connection of
two Hilbert fractal curves, and owing to its configuration two resonant modes can be
independently controlled. Two dual-band filters based on the proposed resonator have
been designed, and they are characterized by compact dimensions and good performance.

Tri-band bandpass and bandstop filters are based on the Hilbert-fork resonator, a
multi-mode resonator that consists of two dual-mode resonators and supports four
resonant modes. The first resonator is based on the Hilbert fractal curve of the second
order, whilst the second resonator has the shape of a fork and is positioned to conveni-
ently fill the remaining footprint area of the first resonator. Both resonators are grounded
by vias which enables the dual-mode behavior of the resonators. Also, the presence of
the vias enables size reduction of the structure.

Using two modes of the Hilbert resonator and one of the fork resonator tri-band
bandstop and bandpass filters have been designed which have excellent performance in
all tri-bands, small overall size, as well as the possibility of independent control of the
passbands.

6.2 Fractal curves and their application in filter design

Besides good in-band and out-of-band performance, another important characteristic of
passive circuits is the footprint area they occupy. A conventional approach to miniatur-
ization is based on folding a straight-line resonator in order to fit it in a smaller area.
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Fractal curves offer high potential for miniaturization of passive microwave circuits,
because, theoretically, fractal curves allow the design of infinite-length lines on a finite
substrate area.

The first fractal curve was constructed by Giuseppe Peano in 1890 [1]. Since the
constructed curve was a continuous curve that passes through every point of a given
region, fractal curves were initially called space-filling curves. Afterwards, it was shown
that the dimension of such curves is not an integer number and hence they were named
fractal curves.

6.2.1 Fractal generation

Fractal curves are generated in an iterative manner and there are three types of
iterations – iteration based on generator, iteration based on formula, and the iterated
function system. In the aspect of the application of fractals in microwave circuits, the
most interesting iteration is the one based on the generator.

In that case, a fractal curve is generated by successive substitution of one geometrical
shape with another that is often a collection of scaled copies of the initial shape. In order
to generate an arbitrary fractal, two components are needed – the initiator and the
generator. The initiator is a set of linear segments that comprise a starting shape of a
fractal, whilst the generator is an arranged collection of scaled copies of the initiator.
The fractal curve is generated by applying the following rule: in the first iteration, each
segment of the initiator is replaced by a copy of the generator. The dimensions and
position of the copy of the generator are changed so that its end points coincide with the
end points of the segment which is to be replaced. In the second iteration, the procedure
of copying of the generator is repeated for every segment of the curve obtained after the
first iteration. A similar procedure is repeated in the following iterations.

Generation of a fractal curve is illustrated in the following example. Let the initiator
be a straight line of a finite length which is divided into three segments of equal lengths.
The middle segment is replaced with two equal segments, positioned at angles of 60�

and 120�. In that manner, a sample (generator) that will be repeated is obtained. The
same rule is now applied to each straight segment of the curve – it is divided into three
segments, the middle of which is replaced by two segments. This is how the curve in
Figure 6.1 is obtained. The curve is known as Koch fractal.

If the initial straight segment has unit length, then the length of Koch curve after the
first iteration is 4/3. After the second iteration the length is (4/3)2, after the third (4/3)3,
etc. Since 4/3 > 1, a curve of infinite length is obtained after infinite number of
iterations, Figure 6.2.

If the initiator is chosen to be a triangle instead of a straight line, a fractal curve
known as the Koch snowflake is obtained, Figure 6.3 and 6.4.

Using the iterated function system (IFS), more complex fractals than those previously
presented are generated. The IFS is based on the application of affine transformations of
the initiator in a plane. Affine transformations comprise scaling, reflection, rotation, and
translation. One, or more, of these operations is applied to the initiator, and after an
infinite number of iterations a fractal curve is obtained. It should be noted that the order

192 Fractal-based multi-band microstrip filters



Figure 6.1 First three iterations of Koch fractal.

Figure 6.2 Koch fractal.

Figure 6.3 First three iterations of Koch snowflake.

Figure 6.4 Koch snowflake.

193Fractal curves and their application in filter design



of the operations is very important, i.e. application of operations in different orders
gives different fractal curves.

An example of the generation of the Sierpinski gasket fractal is shown in Figure 6.5.
In the first iteration, an equilateral triangle is replaced with three smaller triangles. In the
next iterations, each triangle is replaced with three smaller triangles, etc. The fractal
obtained after ten iterations is shown in Figure 6.6. Mathematically interpreted, the
Sierpinski fractal curve is generated using the operations of translation and scaling.

Some fractal curves can be generated only if the IFS method is applied. IFS fractals
are most often used in image compression.

Iterations based on formula are the simplest method of fractal generation, yet it
enables generation of the most complex fractals. They are based on replacing of an
initial number with another obtained using a mathematical formula. In this manner,
three types of fractals can be generated – strange attractors, Julia sets, and Mandelbrot
sets.

Fractals generated by iterations based on formula are usually applied in modeling of
chemical reactions and meteorological phenomena.

6.2.2 Properties of fractal curves

In the previous section, it could be seen that, after each iteration, curves converge to a
fractal curve that has many interesting properties. Since fractals are generated by
repeating a scaled, translated, and/or rotated generator, they exhibit self-similar behav-
ior, which means that the object is exactly or approximately similar to a part of itself.
Self-similarity can be noted in Figure 6.7, which shows the Sierpinski gasket fractal
curve and its enlarged part. The whole fractal is comprised of three copies each of which

Figure 6.6 Sierpinski gasket fractal after ten iterations.

Figure 6.5 Generation of Sierpinski gasket fractal.
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is twice as small as the fractal. Also, each copy is comprised of three twice as small
copies, etc.

Another property of fractals can be also noted – the fact that they are scale-invariant,
i.e. a smaller part of a fractal cannot be distinguished from the whole fractal curve.

Apart from self-similarity and scale-invariability, fractals are also characterized by
the property of indifferentiability and by their dimension, which is a non-integer
number. Namely, conventional (non-fractal) continual curves are differentiable. Since
fractal curves consist of an infinite number of infinitely short straight segments, there is
no point at which a tangent curve can be positioned. This implies another property of
fractal curves – although continual curves, they are also indifferentiable.

Themost interesting property of fractal curves is their dimension. In classical geometry,
the topological dimension of a curve is 1, because the position of each point can be defined
using one value, e.g. distance from the end point of the curve. By analogy, classical planes
are two-dimensional because the position of any point can be defined using two values.
Integer values in these examples define a topological or Euclidean dimension.
Since fractal curves have infinite length, it is not possible to define the position of a

point using only one value, because the point is infinitely distant from any point of a
fractal curve. Therefore, the fractal dimension is not equal to 1. On the other hand, the
fractal curve belongs to the plane in which it is generated (and whose dimension is 2). It
is intuitively clear that the topological dimension of the fractal is higher than 1 and
lower than 2, i.e. it is not an integer number.

The dimension of a fractal curve can be understood as a measure of the space-filling
ability of the fractal curve. The dimension D can be determined as a logarithmic ratio
between the number of self-similar segments obtained from one segment after each
iteration k and the number of segments obtained from one segment in each iteration r

D ¼ logk
logr

: (6.1)

From the aspect of miniaturization of circuits, the most important criterion in the
selection of a fractal curve is its dimension. The higher the fractal dimension, the better
the fractal curve fills the given area, therefore achieving higher compactness.

Figure 6.7 Sierpinski gasket fractal curve and its enlarged part.

195Fractal curves and their application in filter design



6.2.3 Application of fractal curves

A great number of fractal curves have been proposed so far and three fractal curves are
known that have fractal dimension equal to 2 (i.e. the maximum value) – Peano, Hilbert,
and square Sierpinski fractals, Figure 6.8. Apart from them, very widely used are the
Minkowski and Koch fractal curves, Figure 6.8 and 6.2.
Fractals find application in various fields, such as fluid dynamics, telecommuni-

cation networks, traffic analysis, image compression, microwave electronics, etc. As
for their application in microwave circuits, the application is somewhat limited by
the fabrication technology. Namely, due to technology limitations, such as minimal
line width and the spacing achievable in the fabrication process, fractal curves are
not physically realizable. Pre-fractals, fractal curves of finite order, which fill the
area only to some extent and whose line segments have finite line width, are used
instead.

Different fractal geometries have been utilized in the design of miniaturized antennas
[2‒7], high impedance surfaces [8–9], left-handed metamaterials [10], RFID tags [11],
and filters [12–16].

As for the application in filter design, fractal curves have been used in various
filtering configurations. Minkowski, Sierpinski, and Koch fractals are closed curves
and as such are primarily used in dual-mode patch resonators. Filters presented in
[17–21] are bandpass structures with patch resonators based on Sierpinski, Koch, and
Minkowski fractals and they are all characterized by smaller dimensions in comparison
to filters based on conventional dual-mode resonators. In addition, in [22] an ultra-
wideband filter was presented in which the defected ground structure is based on the
Koch fractal.

On the other hand, Peano and Hilbert fractals are open curves that have ends at
opposite sides and thus are used in end-coupled resonators. Band-pass and low-pass
filters with Hilbert fractal-shaped resonators were proposed in [23–24] and they proved
the ability of fractals to provide compactness of the planar filtering structures.

Since the filters that will be presented in this chapter are based on the Hilbert fractal
curve, a more detailed explanation on this curve is given below. The first four iterations
of the Hilbert curve and an illustration of their generation is shown in Figure 6.9. In
order to generate the fractal curve of the second order, three copies of the fractal curve
of the first order are made, one of which is rotated 90� clockwise and the other which is
rotated 90� counter clockwise. The four same shapes are then connected to form the
fractal curve of the second order. The curves of the higher order are generated in the

(a) (b) (c) (d)

Figure 6.8 (a) Peano fractal. (b) Hilbert fractal. (c) Square Sierpinski fractal. (d) Minkowski fractal.
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same manner. After an infinite number of iterations, the Hilbert fractal curve completely
fills a square area, which implies that its dimension is equal to two.

An important aspect of the Hilbert fractal is the fact that it is an open curve that has
ends on opposite sides, and thus it is very convenient for application in structures such
as end-coupled microstrip resonators.

In order to demonstrate the advantages of fractals in comparison to conventional
curves, we will compare a resonator based on the Hilbert fractal curve to one based on a
non-fractal curve. It is well-known that beside fractals, there are also non-fractal curves
that posses the space-filling property. A typical example is a meander. In Figure 6.10, a
2-D meander microstrip resonator is shown which has the same length and occupies the
same region as 2-D Hilbert resonator. The lines of the meander and the Hilbert fractal
have the same width and spacing. This means that these configurations have the same
capacitance towards the ground plane, and thus their resonant frequencies would differ
only if their inductances are not equal.

Total inductance per length of the meander, Lˈtot is equal to the sum of inductances
per length of all the straight line segments, Lˈ

Lˈtot ¼ 2nLˈ: (6.2)

where n represents the number of meander turns. Inductance per length of a straight
line segment is equal to its self-inductance plus/minus the mutual inductance between
the segment and the adjacent straight segments, depending on the direction of the
current

Lˈ ¼ Lˈself � 2Lˈ12 þ Lˈ13 � 2Lˈ14 þ . . . : (6.3)

Figure 6.9 First four iteration of Hilbert fractal curve.

Figure 6.10 2-D meander and 2-D Hilbert microstrip resonators with the lines with the same width
and spacing.
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For the sake of simplicity, we assume that the distance between the adjacent line
segments is such that

Lˈ13 << Lˈ12, (6.4)

i.e. that the contribution from all segments except the adjacent ones can be neglected.
Now, the inductance per length of the line segment is

Lˈ ¼ Lˈself � 2Lˈ12: (6.5)

In the case of the meander, inductance per length of each straight line segment, except
for the first and the last one, is equal to the self-inductance per length subtracted by the
double value of the mutual inductances per length. Inductance of the line segment is
obtained as a product of the inductance per length and the length of the segment a,

Lˈ ¼ aLˈself � 2aLˈ12, (6.6)

and the total inductance of the meander is

Lˈ ¼ 2naðLˈself � 2Lˈ12Þ: (6.7)

Since the meander resonator has the same length as the Hilbert resonator, their self-
inductances are equal. However, due to the particular shape of the Hilbert curve, the size
of the individual turns is reduced compared to the meander. Therefore, in the case of the
Hilbert resonator, mutual inductance that is subtracted from self-inductance in (6.5) is
lower than that in the case of the meander. Furthermore, even line segments that have
adjacent segments over minimal distance are not coupled to adjacent lines over their
whole length. It can be concluded that due to its specific shape, the Hilbert resonator
exhibits lower mutual inductances, and thus smaller decrease in total self-inductance.
The Hilbert resonator has greater total inductance than meander and therefore higher
potential for miniaturization than any other non-fractal counterpart.

In the following sections, four multi-band filters with resonators based on the Hilbert
fractal curve of second order will be presented and discussed.

6.3 Dual-band bandpass filters based on dual-mode Hilbert fractal resonator

Fractal curves find their application predominantly in planar filter structures. In [16] and
[25–26], it was shown that filters with resonators based on fractal curves exhibit better
performance in comparison to those with conventional resonators, not only in terms of
dimensions but also in terms of the quality factor and insertion loss.

As was stressed in the previous section, Peano and Hilbert curves have ends at
opposite sides and thus are used in end-coupled resonators. However, the Peano curve
has structures that are more complex, and couplings between adjacent segments are
stronger than in the case of the Hilbert curve. Therefore, resonators based on the Hilbert
curve show better characteristics.
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In this section, a dual-mode resonator based on the Hilbert fractal curve of second
order is presented [27]. The resonator is formed as a serial connection of two Hilbert
fractal curves and owing to its configuration two resonant modes can be independently
controlled. Two second-order dual-band filters based on the proposed resonator have
been designed, one of which contains edge-coupled resonators and the other containing
broadly coupled resonators. They are characterized by compact dimensions and good
performance. In the following, the resonator’s behavior and filter design will be
analyzed and discussed in detail.

6.3.1 Hilbert fractal resonator configuration

The proposed resonator consists of two serially connected Hilbert fractal curves of the
second order and its layout is shown in Figure 6.11. The two curves are connected at
two points – at the point where the fractal curve is folded and at its end point.
The parameter w represents the width of the fractal curve, g the spacing between the
segments, s the distance between the two curves, whilst lupper and llower represents the
length of the lines that connect the two curves at the upper and lower point, respectively.

The resonator and filters that will be presented in the following sections are designed
on the substrate Rogers RT/Duroid 5880 whose thickness is equal to 1.575 mm,
dielectric constant εr = 2.2, and loss tangent tanδ = 0.0009.

It can be seen that there is no main signal path in the resonator, but the signal is rather
divided into two paths. Since the proposed resonator is of a symmetrical structure, the
even-/odd-mode method can be applied to analyze its behavior. Figure 6.12 shows the
even and odd equivalent circuits. In the even circuit, the symmetry plane represents a
magnetic wall, whilst in the odd circuit the symmetry plane is an electric wall.

The parameters θ1, θ2, and θ3 represent electrical lengths of the resonator’s segments,
whilst Zineven and Zinodd are the even and odd input impedances, respectively. Since the
parameters of the Hilbert curve w and g are constant in the whole resonator, all
segments have the same characteristic impedance equal to Z0. For the sake of simplicity,
segment bends are not taken into account in the following analysis.

In the case of the even circuit, Zpareven represents the parallel combination of the
impedances of the two open stubs. The input impedance of an open stub with the

luppper

lS

llower

a
s

a

lL

g
w

Figure 6.11 Configuration of the dual-mode resonator based on Hilbert fractal curve.
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characteristic impedance Z and electrical length θ is equal to jtanθ/Z. Therefore, Zpareven
can be expressed as

1
Zpareven

¼ j tan θ1
Z0

þ j tan θ2
Z0

: (6.8)

The total even input impedance can be expressed as

Zineven ¼ Z0
Zpareven þ jZ0 tan θ3
Z0 þ jZpareven tan θ3

: (6.9)

When the expression (6.8) is inserted into (6.9), we obtain the final expression for
Zineven

Zineven ¼ jZ0
ð tan θ1 þ tan θ2Þ tan θ3 � 1
tan θ1 þ tan θ2 þ tan θ3

: (6.10)

The expression for the odd input impedance can be obtained in a similar manner.
Namely, Zparodd is a parallel combination of the input impedances of two short-
circuited stubs. The input impedance of a short-circuited stub with the characteristic
impedance Z and electrical length θ is equal to 1/Zjtanθ. Therefore, Zparodd can be
expressed as

1
Zparodd

¼ 1
jZ0 tan θ1

þ 1
jZ0 tan θ2

: (6.11)

The total odd input impedance can be expressed as

Zinodd ¼ Z0
Zparodd þ jZ0 tan θ3
Z0 þ jZparodd tan θ3

: (6.12)

When the expression (6.11) is inserted into (6.12), we obtain the final expression for
Zinodd

Zinodd ¼ jZ0
tan θ1 tan θ2 þ tan θ3ð tan θ1 þ tan θ2Þ
tan θ1 þ tan θ2 � tan θ1 tan θ2 tan θ3

: (6.13)

(a)

Zineven

Zpareven

q3

q2

q1

Zinodd

Zpareven

q3

q2

q1

(b)

Figure 6.12 Equivalent circuit for: (a) Even mode. (b) Odd mode.
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From the resonant condition 1/Zin = 0, the even and odd resonant mode equations are
derived

tan θ1 þ tan θ2 þ tan θ3 ¼ 0, (6.14)

tan θ1 þ tan θ2 � tan θ1 tan θ2 tan θ3 ¼ 0: (6.15)

The previous expressions imply that all electrical lengths θ1, θ2, and θ3 affect both
resonances. Also, since the parameter θ3 has the greatest value, we can note that the
resonances are affected predominantly by the segment whose electrical length is θ3. In
other words, the resonances are the most sensitive to the change in the parameter θ3.

However, the parameters θ1 and θ2 also influence the resonances and it will be shown
that due to specific configuration of the resonator these parameters can be used for the
independent control of the resonant frequencies.

Namely, we can note that lupper << llower, i.e. tanθ1 << tanθ2, which means that the
function tanθ1 changes more slowly than the function tanθ2 and thus the even resonance
is more influenced by the latter function. Therefore, the even resonance is predomin-
antly determined by the parameters θ2 and θ3.

In the case of the odd resonance, it is mainly influenced by the third term on the left
side of the expression (6.15), which contains the parameter θ3. Since θ3 has the greatest
value, tanθ3 tends to infinity at a lower frequency in comparison to tanθ1 and tanθ2, and
that frequency is the critical one in meeting the condition (6.15). Namely, the left-hand
side in (6.15) is positive before tanθ3 changes the sign from positive to negative. In the
vicinity of the point where tanθ3 changes the sign, the function tanθ1+tanθ2-
tanθ1tanθ2tanθ3 crosses zero because the third term has a negative value and the tangent
is a monotonically increasing function.

The bandwidth in which the third term tends to infinity is determined by the functions
tanθ1 and tanθ2, but predominantly by tanθ1 because tanθ1 << tanθ2. The wider the
bandwidth is, the lower is the frequency at which the condition is met.

It should be noted that the odd resonance occurs at lower frequencies in comparison
to the even one, which is due to the specific configuration of the resonator. The function
tanθ3 tends to infinity at a lower frequency than the functions tanθ1 and tanθ2, and in the
vicinity of that point the conditions (6.14) and (6.15) are met. Since tanθ3 has positive
sign in the expression (6.14) and negative sign in the expression (6.15) and since the
tangent is a monotonically increasing function, the even resonance always occurs at a
higher frequency in comparison to the point at which tanθ3 tends to infinity, whilst the
odd resonance occurs at a lower frequency.

From the previous analysis, it can be concluded that the two resonances can be
independently controlled – the even resonance by the parameter θ2, and the odd one by
the parameter θ1.

This can also be concluded if the geometrical parameters lL and lS are individually
varied and the responses of the resonators compared. Figure 6.13 shows how the
resonant frequencies of the structure with w = g = 1.3 mm are changed if the parameters
lL and lS are individually varied whilst the other parameter is kept constant. It confirms
that the parameter lL, which corresponds to the electrical length θ2, affects only the
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position of the second resonance. On the other hand, the parameter lS, which corres-
ponds to the electrical length θ1, strongly affects the position of the first resonance,
whilst its influence on the second resonance can be considered as negligible.

Figure 6.14 shows the current distribution at the first and second resonances and
reveals that the first resonance is the fundamental odd-moderesonance, whereas the
second one is the fundamental even resonance. Since the symmetry plane is an electric
wall in the odd circuit, the current is very strong at the midpoints of the resonator. On
the other hand, since the symmetry plane represents a magnetic wall in the even circuit,
there is no current at the midpoints of the resonator. These figures also confirm that the
odd resonance occurs at lower frequencies in comparison to the even one.

(a) (b)

Figure 6.13 Influence of the parameters lL and lS on: (a) First resonance. (b) Second resonance.

(a)

(b)

Figure 6.14 Current distribution at: (a) First resonance. (b) Second resonance.
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Apart from the two resonances, the proposed resonator provides a transmission zero
due to its configuration. Namely, as was stated previously there is no main signal path in
the resonator, but the signal is rather divided into two paths. When the signals from the
two paths are out-of-phase, a destructive interference occurs, i.e. the resonator exhibits a
transmission zero. The transmission zero can also be explained from a mathematical
point of view. Namely, the scattering parameter S21 is equal to zero when the condition
Zineven = Zinodd is met. In the following sections, the transmission zeros will be analyzed
in more detail.

Another degree of freedom in the resonator design represents the possibility to
change the ratio of the parameters of the Hilbert fractal curve w and g, i.e. the possibility
to change the line width while preserving the overall dimensions of the resonator.

Five resonators with overall dimensions equal to 19.5 x 9.1 mm2 that differ in the
ratio w/g have been analyzed. Table 6.1 shows their geometrical parameters as well as
their resonant frequencies and quality factors.

As the line width is decreased, the resonant frequency is shifted towards lower frequen-
cies, i.e. the resonator becomes smaller in terms of guidedwavelength.However, the quality
factor does not monotonically change with the frequency but it reaches its maximum when
w = g = 1.3 mm. Also, it should be noted that in the extreme cases when w = 0.1 mm and
2.2mm, the resonator becomes predominantly inductive and capacitive, respectively. Thus,
its properties, especially the quality factor, are degraded. Since the resonator, whose line
width and spacings are equal, represents the best compromise between performance and
resonator dimensions, the structure withw = g is used for the realization of dual-band filters.
From the previous analysis, it can be concluded that the resonator based on serially

connected Hilbert fractal curves exhibits dual-mod behavior and that its resonances can
be independently controlled by changing certain geometrical parameters. Also, the
resonator provides a transmission zero due to its configuration. Thus, such a resonator
is a good candidate for dual-band filter design and in the following sections two dual-
band filters based on the proposed resonator will be presented and discussed.

6.3.2 Dual-band filter design

Using the proposed resonator two dual-band filters operating at 2.4 and 3.5 GHz that are
characterized by good performance, compact dimensions, and independent control of
the passbands have been designed.

Table 6.1 Characteristics of resonators with the same overall dimensions
and different ratio w/g

w[μm] 100 700 1300 1900 2200
g[μm] 2900 2100 1300 500 100
f1 [GHz] 1.96 2.24 2.53 3.04 3.44
Qu1 52 97.3 145.1 103.6 83.2
f2 [GHz] 2.68 3.08 3.52 4.14 4.56
Qu2 57 101.2 153.4 104 75.6
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There are several steps in the design of the filters. The first step is to determine the
geometrical parameters of the resonator to obtain resonances at the predefined frequen-
cies. Since the first resonance is the odd one, it is predominantly determined by the
parameters θ1 and θ3. Therefore, the parameters w and g are determined so that the
function tanθ3 tends to infinity in the vicinity of the predefined resonant frequency,
and then the resonance is finely tuned by the parameter s which corresponds to the
parameter θ1.
The higher resonance is predominantly determined by the parameters θ2 and θ3. Since

the parameters w and g are determined in the previous step, the higher resonance is
finely tuned by the parameter llower which corresponds to the parameter θ2.

Following these steps, the dimensions of the resonator that is used in filters operating
at 2.4 and 3.5 GHz are determined: w = g = 1.3 mm, s = lupper = 3.2 mm, llower = 23.9
mm, a = 1.6 mm, lL = lS = 0. As was stated previously, the resonator and the filters are
designed on the substrate Rogers RT/Duroid 5880 whose thickness is equal to 1.575
mm, dielectric constant εr = 2.2, and loss tangent tanδ = 0.0009.

Since the filters consist of several resonators which are mutually coupled, once the
filter is designed, fine tuning is needed to position the passbands at the desirable
frequencies and to obtain good performance.

Both proposed filters consist of two resonators, but they differ in the manner the
resonators are coupled. That aspect causes the difference in the filter performance,
especially in selectivity. Namely, certain ways of coupling between resonators may
provide a transmission zero and thus improve selectivity, and this will be discussed in
more detail below.

6.3.2.1 Dual-band filter with edge-coupled resonators
The first proposed filter consists of two resonators that are capacitively coupled through
the gap d. Its configuration and response are shown in Figure 6.15. The response is
characterized by two passbands and poor selectivity, especially in the stopband region
between the two passbands. The transmission zero positioned at the upper side of the
second passband occurs because the condition Zineven = Zinodd is met.
In order to improve the performance of the filter, a transmission zero should be

introduced in between the two passbands, which would improve selectivity and allow
control of the bandwidths. One way to introduce a transmission zero which does not
degrade filter performance and does not excessively increase its dimensions is to extend
the feeding lines; namely, at the frequency at which the electrical length of the extension
of the feeding line is equal to π/2 long, a transmission zero occurs.

The extension of the feeding lines changes the coupling between the resonators and
the feeding lines which influences the resonant frequencies as well as the position of the
transmission zero. Thus, after the configuration of the filter is changed, an additional
fine tuning of the geometrical parameters is needed.

Figure 6.16 shows the configuration and the response of the filter with the extended
feeding lines. The selectivity of the filter is greatly improved due to a newly introduced
transmission zero. It should be noted that there are two transmission zeros between the
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(a)

(b)

Figure 6.15 Dual-band filter with edge-coupled resonators: (a) Configuration. (b) Response.

(a)

(b)

Figure 6.16 Dual-band filter with edge-coupled resonators with extended feeding lines:
(a) Configuration. (b) Response.
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passbands which originate from the same transmission zero which has been split into
two due to strong couplings in the filter configuration.

The current distribution at the frequency of the transmission zero shown in
Figure 6.17 proves that the transmission zero occurs due to the extension of the feeding
lines. Namely, there is no current distribution in the second resonator, which implies
that there is no signal propagation in the structure, i.e. that the structure exhibits a
transmission zero. At the same time, the current distribution is the strongest in the
feeding line extension, which means that the extension causes the transmission zero.

As was stated previously, due to the change in the configuration, a fine tuning of
geometrical parameters is needed. Table 6.2 shows the parameters of the initial config-
uration and those of the final configuration. The distance between the two fractal curves
s has changed the most, but at the same time the overall dimensions of the filter have
decreased. Also, it can be seen that the even five parameters s, llower, lupper, a, and d have
been changed, which may imply that the feeding line extension requires demanding
optimization. However, we should note that the parameters s, llower, lupper, and a, and
thus their tuning, are interrelated.

The characteristics of the final filter are summarized in Table 6.3. The filter exhibits
low insertion losses, good return losses, and good selectivity, as well as compactness.
Another important aspect is the fact that the passbands of the filter can be independently
controlled.

Figure 6.17 Current distribution at the frequency of transmission zero.

Table 6.2 Geometrical parameters of the initial and final filter with edge-coupled resonators

parameter [mm] w g s lupper llower a lL lS d

initial configuration 1.3 1.3 3.2 3.2 23.9 1.6 0 0 1.3
final configuration 1.3 1.3 1.3 1.3 22.9 1.5 0 0 1.5

Table 6.3 Characteristics of the final filter with edge-coupled resonators

f
[GHz]

IL
[dB]

RL
[dB]

3 dB BW
[MHz]

3 dB
FBW [%]

overall
dimesnions [λgx λg]

first passband 2.45 1.19 22 100 4.17
0.44x0.1

second passband 3.5 2.08 25.8 70 2
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6.3.2.2 Dual-band filter with broadside coupled resonators
The main disadvantage of the filter with edge-coupled resonators is poor selectivity of
the first passband. In the following analysis, it will be shown that the selectivity can be
significantly improved if the resonators are coupled at the broadside.

Figures 6.18(a) and 6.18(b) show two configurations with broadside coupled
resonators which differ in the configuration of the feeding lines, whilst their responses
are compared in Figure 6.18(c). The geometrical parameters of the resonators are the
same as in the previously presented filter.

The two filters have very similar responses, with two passbands and a transmission
zero positioned at the upper side of the second passband. The origin of this transmission
zero was discussed in the previous section. Also, both responses are characterized by
another transmission zero which is positioned at the lower side of the first passband in
the first case, and between the two passbands in the second case.

In Chapter 4, it was shown that specific coupling of transmission lines can provide
transmission zeros. In the case of parallel coupling, a transmission zero occurs when the
electrical length of the coupled segments is equal to 180�. On the other hand, antipar-
allel coupling provides a transmission zero at the frequency at which coupled segments
are 90� long.

(a)

(c)

(b)

Figure 6.18 Dual-band filter with broadside coupled resonators: (a) Configuration I. (b)
Configuration II. (c) Responses of the configurations I and II.
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The coupling between the resonators in the two filter configurations can be simplified
and treated as an antiparallel and parallel coupling . Namely, although the longer sides
of the resonators are loaded with the segments llower, their coupling can be seen as an
antiparallel and parallel coupling. Therefore, in the first case, which corresponds to an
antiparallel coupling, the transmission zero occurs at the lower side of the first passband,
whilst in the second case, which corresponds to a parallel coupling, the transmission
zero occurs in between the passbands. The current distribution, Figure 6.19, shows that
at the frequency at which transmission zero occurs only the longer edge of the resonator
is “active” whilst the segment llower is not.

In the previous filtering configuration, it was shown that a transmission zero can
be realized if the feeding lines are extended and that it can be positioned between
the passbands. A dual-band filter with excellent selectivity can be realized if the
configuration with an antiparallel coupling and extended feeding lines is used. The
final configuration and the response of such a structure are shown in Figure 6.20.
In order to improve the coupling between the resonators, non-resonating nodes are
introduced.

(a) (b)

Figure 6.19 Current distribution at the frequency of transmission zero for: (a) Configuration I. (b)
Configuration II.

(a) (b)

Figure 6.20 Final dual-band filter with broadside coupled resonators: (a) Configuration. (b)
Response.
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Since the filter consists of two resonators and due to the fact that the feeding lines
have a complex structure, a fine tuning of the geometrical parameters is needed.
Table 6.4 shows the geometrical parameters of the final filter, whilst Table 6.5 shows
its characteristics.

It can be seen that the geometrical parameters in the two filters differ only in the
parameter d, which in the case of the broadside coupled resonator has been decreased to
0.2 mm.

Similar to the first proposed filter, this filter has good performance in terms of
insertion and return loss. At the same time, its selectivity is improved. Additionally,
the filter is very compact and allows independent control of the passbands.

6.3.2.3 Fabrication and measurement results
The proposed filters have been fabricated using standard printed circuit technology and
they have been realized on the substrate Rogers RT/Duroid 5880 whose thickness is
equal to 1.575 mm, dielectric constant εr = 2.2, and loss tangent tanδ = 0.0009.

A photograph of the fabricated filter with edge-coupled resonators is shown in
Figure 6.21(a), whilst the simulated and measured results are compared in Figure 6.21
(b). It can be seen that the simulated and measured results are in excellent agreement.

Figure 6.22(a) shows a photograph of the filter with broadside coupled resonators and
Figure 6.22(b) the simulated and measured results. Similar to the previous filter, there is
good agreement between the simulated and measured results.

Table 6.6 and Table 6.7 summarize the characteristics of the simulated and fabricated
filters and they confirm the good agreement between them.

6.3.2.4 Comparison to other dual-band filters operating at 2.4 and 3.5 GHz
The proposed filters operate at 2.4 and 3.5 GHz, which represents an advantage in
comparison to other dual-band filters. Namely, most dual-band filters published so far
are designed to operate at 2.4 and 5.2 GHz, which eases the design procedure and at the

Table 6.4 Geometrical parameters of the final filter with broadside coupled resonators

parameter [mm] w g s lupper llower a lL lS d

1.3 1.3 1.3 1.3 22.9 1.5 0 0 0.2

Table 6.5 Characteristics of the final filter with broadside coupled resonators

f
[GHz]

IL
[dB]

RL
[dB]

3 dB BW
[MHz]

3 dB FBW
[%]

overall dimensions
[λg x λg]

first
passband

2.45 0.62 17.58 220 9
0.22x0.21

second
passband

3.5 1.61 14.68 110 3.14
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(a) (b)

Figure 6.21 Dual-band filter with edge-coupled resonators: (a) Photograph of the fabricated circuit.
(b) Simulated and measured responses.

(a) (b)

Figure 6.22 Dual-band filter with broadside-coupled resonators: (a) Photograph of the fabricated
circuit. (b) Simulated and measured responses.

Table 6.7 Characteristics of the simulated and fabricated filter with broadside-coupled resonators

f1/f2 [GHz] IL [dB] RL [dB] 3 dB BW [MHz] 3 dB FBW [%]

simulated circuit 2.45/3.5 0.62/1.61 17.58/14.68 220/110 9/3.14
fabricated circuit 2.43/3.47 0.38/2.53 18.8/10 213/111 8.7/3.18

Table 6.6 Characteristics of the simulated and fabricated filter with edge-coupled resonators

f1/f2 [GHz] IL [dB] RL [dB] 3 dB BW [MHz] 3 dB FBW [%]

simulated circuit 2.45/3.5 1.19/2.08 22/25.8 100/70 4.17/2
fabricated circuit 2.44/3.49 1/1.6 25/21 101/80 4.1/2.3
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same time reduces the overall filter size. In Table 6.8, the characteristics of the proposed
filters are compared to those of other dual-band filters operating at 2.4 and 3.5 GHz.
The proposed filters have good performance in terms of insertion loss and selectivity,

and these characteristics are similar to those of other filters. Also, the dimensions are
comparable to the dimensions of other filtering circuits. However, the proposed filters
allow independent control of the passbands and their fabrication is very simple since the
circuits are fully planar and do not require vias or a multi-layer structure.

Therefore, the proposed filters present good dual-band solutions, which unite good
performance, compactness, independent control of the passbands, and a simple fabrica-
tion process.

6.4 Compact tri-band bandpass and bandstop filters based
on Hilbert-fork resonators

In Chapter 2, it was shown that none of tri-band filters published so far exhibits
simultaneously good in-band and out-of-band performance, good selectivity of all
passbands, and compactness. The structure presented in Chapter 4 has all these proper-
ties and its compactness has been achieved by using folded quarter-wavelength reson-
ators, i.e. by using resonators that employ grounding vias.

In this chapter, fractal curves were presented and their great potential for miniaturiza-
tion of passive microwave circuits discussed. Also, in the previous section it was shown
that compactness can also be achieved if resonators have a Hilbert fractal curve shape.

Combining the idea of using grounding vias and Hilbert fractal-shaped resonators, a
tri-band filter with excellent performance and very small dimensions can be realized. In
this section, tri-band bandpass and bandstop structures based on the Hilbert-fork
resonator [31] will be presented.

The Hilbert-fork resonator represents a novel multi-mode structure that consists of
two dual-mode resonators. The first resonator is based on a two-dimensional Hilbert
fractal curve of the second order, whilst the second resonator has the shape of a fork and
is positioned to conveniently fill the remaining footprint area of the first resonator. Both
resonators are grounded by vias, which enables the dual-mode behaviour of the
resonators, as well as independent control of the resonances. In addition, the presence
of the vias enables size reduction of the structure.

Table 6.8 Comparison of the characteristics of the proposed filters and other dual-band filters

f1/f2 [GHz] IL [dB] RL [dB] dimensions [λgxλg] 3 dB FBW [%] A B

filter I 2.45/3.5 1/1.6 25/21 0.44x0.1 4.1/2.3 da planar
filter II 2.45/3.5 0.38/2.53 18.8/10 0.22x0.21 8.7/3.18 da planar
[28] 2.5/3.5 1.8/2.4 20/15 0.24x0.33 6.3/4.4 ne planar
[29] 2.35/3.2 1.8/3 25/30 0.18x0.19 3.9/2.8 da DGS
[30] 2.4/3.3 1.2/1.5 20/20 0.21x0.18 8.1/4.2 ne DGS+vias

A – possibility of independent control of passbands, B – fabrication technology.
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Using the two modes of the Hilbert resonator and the one of the fork resonator, tri-
band bandstop and bandpass filters have been designed which have excellent perform-
ance in all tri-bands, small overall size, as well as the possibility of independent control
of the passbands.

The first section is devoted to the analysis of the behaviour of the Hilbert-fork
resonator, and it will be shown how its resonant modes are formed and how they can
be independently controlled.

In two following sections, a tri-band bandpass and tri-band bandstop filters based on
the proposed resonator will be presented and their design procedure discussed. Also,
their performance will be compared to those of other published tri-band filters.

Both filters have been fabricated using standard printed circuit board technology and
comparison of simulated and measured results will also be presented and discussed.

6.4.1 Hilbert-fork resonator configuration

The configuration of the proposed filter is shown in Figure 6.23. The resonator consists
of two dual-mode resonators, one of which is based on the Hilbert fractal curve of the
second order, whilst the other has the shape of a fork and conveniently fills the
remaining footprint area of the first resonator. In that manner, a significant size reduc-
tion has been achieved. Both structures are grounded by vias which are positioned as is
shown in the Figure 6.23. As will be shown later, the vias enable dual-mode behaviour,
as well as independent control of the resonances.

The width of the fractal curve is denoted by wH, whilst the spacing between the lines
is denoted by gH. The parameter wF represents the width of the conductive line of the
fork resonator and dF is the distance of the fork via from the central position of the fork
resonator. The dimensions of the Hilbert and fork vias are denoted by lH and lF,
respectively.

The resonator as well as the tri-band filters are designed on the substrate Rogers RT/
Duroid 5880 whose thickness is equal to 1.575 mm, dielectric constant εr = 2.2, and loss
tangent tanδ = 0.0009.

Since the structures of both resonators are symmetrical, their behaviour can be
analysed using even-/odd-mode analysis. Due to the fact that the resonators are pos-
itioned close to each other, they influence the behaviour of each other. For the sake of
simplicity, this effect is not taken into account in the analysis of their behaviour.

gH
wH

wF

lF

lH

dF
vias

g

Figure 6.23 Configuration of Hilbert-fork resonator.
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However, simplification of the analysis will be compensated in the filter design through
optimization of the geometrical parameters.

Figure 6.24 shows the even- and odd-mode equivalent circuits for both resonators. In
the even circuit, the symmetry plane represents a magnetic wall, whilst in the odd circuit
the symmetry plane is an electric wall. In the case of the fork resonator, the parameters
θ1, θ2, and θ3 represent electrical lengths, whilst Y1 and Y2 are admittances of the
corresponding segments. LviaF is the inductance twice as big as the value of the via
inductance, and Yineven and Yinodd are the even and odd input admittances, respectively.
The relations between impedances and admittances are as follows: Y1 = 1/Z1, Y2 = 1/Z2,
Yineven = 1/Zineven, Yinodd = 1/Zinodd.

The odd input admittance is the admittance of a short-circuited stub and thus it can be
expressed as

Yinodd ¼ �jY1 cot θ1: (6.16)

The odd resonances occur when the condition Yinodd = 0 is met, i.e. when the parameter
θ1 = π/2 + kπ, where k is an integer number.

The even-mode equivalent circuit is somewhat more complex than that of the odd-
mode and thus the analysis is more complicated. Namely, the via is not positioned at the
very end of the resonator, and to account for the influence of all segments, as well as of
the via, ABCD parameters are used instead.

Although the segment θ3 is positioned “after” the via and practically does not
influence the resonances, it is included in the calculation so as to obtain a more precise
analysis. The ABCD matrix of the circuit shown in Figure 6.24(a) is expressed in the
following manner

ABCD ¼ cos θ1 jZ1 sin θ1
jY1 sin θ1 cos θ1

� �
� cos θ2 jZ2 sin θ2
jY2 sin θ2 cos θ2

� �

� 1 0
ðjωLviaFÞ�1 1

� �
� cos θ3 jZ3 sin θ3
jY3 sin θ3 cos θ3

� �
,

(6.17)

and the resonance occurs when the condition AD = 1 is met.
In the previous expressions and in Figure 6.24, it can be seen that the odd resonance

is determined only by the electrical length θ1. On the other hand, the even resonance is
determined not only by the electrical length θ1 but also by the electrical length θ2 and

(a)
Yineven

Y1,q1

Y2,q2

Y2,q3

LviaF

Y1,q1

Yinodd

(b)

YH,qH
LviaH

Yineven

(c)

YH,qH

Yinodd

(d)

Figure 6.24 Equivalent circuit for: (a) Even mode for fork resonator. (b) Odd mode for fork
resonator. (c) Even mode for Hilbert resonator. (d) Odd mode for Hilbert resonator.
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the via inductance LviaF. It can be concluded that the even resonance always occurs at
lower frequencies in comparison to the odd resonance. Namely, the electrical length in
the even circuit is always longer than that in the odd circuit since θ1+ θ2 is longer than
θ1. In the case when θ2 = 0, the fork via inductance shifts the even resonance to the
lower frequencies in comparison to the odd mode. More important, the position of
the even resonance can be independently controlled from the odd one by variation of the
parameters dH and LviaF.

The responses of the fork resonators that differ in the parameter dF are shown in
Figure 6.25, whilst the responses of the structures that differ in the via inductance are
shown in Figure 6.26. In all cases, the parameter wF is equal to 1.1 mm, the length of the
first segment 7.7 mm, and the sum of the lengths of the second and the third segment is
equal to 4.6 mm.

The responses confirm that the position of the first resonance can be independently
controlled from the second one. Also, they confirm that decrease of the dF shifts the first

Figure 6.25 Influence of the parameter dF on the fork resonances.

Figure 6.26 Influence of the parameter wF on the fork resonances.
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resonance towards higher frequencies, which implies that the segment θ3 does not affect
the resonator’s response.

The current distributions in the fork resonator at the resonant frequencies are shown
in Figure 6.27, and they also prove that the even resonance occurs at lower frequencies.
Since the symmetry plane is an electric wall in the odd circuit, there is current only in
the segment θ1. On the other hand, since the symmetry plane represents a magnetic wall
in the even circuit, there is current in both segments θ1 and θ2. At the same time, there is
no current in the segment θ3, which confirms that the segment θ3 does not affect the
resonator’s response.

Apart from the resonances, the fork resonator also provides a transmission zero which
occurs at the frequency at which the condition Yineven = Yinodd is met, and this will be
discussed in more detail in the following section.

As for the Hilbert resonator, analysis of its behaviour is somewhat simpler. Although
the Hilbert resonator is folded, for the sake of simplicity the effect of folding will not be
taken into account.

Similar to the odd mode of the fork resonator, the input admittance of the Hilbert
resonator is the input admittance of a short-circuited stub and thus it can be expressed as
follows

Yinodd ¼ �jYH cot θH : (6.18)

The odd resonances occur when the condition Yinodd = 0 is met, i.e. when the parameter
θH = π/2 + kπ, where k is an integer number.
The even-mode resonance condition can be expressed using ABCD parameters of the

circuit shown in Figure 6.24

ABCD ¼ cos θH jZH sin θH
jYH sin θH cos θH

� �
� 1 0
ðjωLviaHÞ�1 1

� �
, (6.19)

and the resonance occurs when the condition AD = 1 is met.

(a) (b)

Figure 6.27 Current distribution in the fork resonator at: (a) First resonance. (b) Second resonance.
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From the previous two expressions and Figure 6.24, it can be concluded that both
resonances are predominantly determined by the electrical length θH, but also that the
even resonance is determined by the via inductance LviaH. Therefore, the even resonance
occurs at lower frequencies than the odd one.

In addition, a change in the via inductance represents a mechanism for independent
control of the first resonance and that is illustrated in the Figure 6.28, which shows the
responses of the Hilbert resonator with different via inductance LviaH, i.e. with the
different via dimension lH. In other words, it can be seen that the change in lH causes a
change only in the first resonance. The parameters wH and gH in the analysed structures
are equal to 1.3 mm.

The current distribution in the Hilbert resonator at the resonances are shown in
Figure 6.29 and they also imply that the even resonance is positioned at lower
frequencies in comparison to the odd one. Since the symmetry plane represents a
magnetic wall, the current distribution is very strong at the midpoint of the resonator,
especially in the via. However, in the odd circuit the symmetry plane is an electric wall
and thus there is no current distribution in the Hilbert via.

Figure 6.28 Influence of the parameter lH on the Hilbert resonances.

(a) (b)

Figure 6.29 Current distribution in the Hilbert resonator at: (a) First resonance. (b) Second
resonance.
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In the previous section, it was discussed that an additional degree of freedom in the
design of resonators based on the Hilbert fractal curve is the ratio of the parameters wH

and gH. Also, it was shown that the resonator whose line widths and spacings are equal
represents the best compromise between resonator performance and overall size, and
thus the Hilbert resonator whose wH = gH will be used in the tri-band filter design.

From the previous analysis, it can be seen that the proposed resonator exhibits multi-
mode behaviour and that its resonances can be independently controlled by a change of
certain geometrical parameters. Hence, this resonator is a good candidate for multi-band
filter design and in the following sections tri-band bandpass and bandstop filters will be
presented and their performance discussed.

6.4.2 Tri-band bandpass filter based on the Hilbert-fork resonator

In this section, a tri-band bandpass filter based on the Hilbert-fork resonator that
operates at 2.4, 3.5, and 5.2 GHz will be presented. The design procedure and its
behaviour will be analysed in detail. Finally, its performance will be compared to the
performance of other published tri-band bandpass filters.

6.4.2.1 Configuration and design of a tri-band bandpass filter
In the previous section, it was shown that the Hilbert-fork resonator exhibits four
resonant modes. Since the Hilbert resonator has larger overall dimensions than the fork
resonator, its modes occur at lower frequencies than those of the fork resonator.
Therefore, two resonant modes of the Hilbert resonator and the lower mode of the fork
resonator will be used for the design of a tri-band filter.

The filter design procedure consists of several steps. The first step is to determine the
geometrical parameters of the resonator which provides resonances at the specified
frequencies. The position of the second resonance is determined only by the length of
the Hilbert resonator and thus its dimensions are chosen so that the electrical length θH
is equal to 90� at the specific frequency. Since the second passband is positioned at 3.5
GHz, values of the parameters wH and gH on the given substrate are chosen to be
1.3 mm.

The position of the first passband is determined by the length of the Hilbert resonator,
as well as by the Hilbert via inductance. Since the parameters wH and gH are determined
in the previous step, the via dimensions are chosen in a manner that provides
the first passband to be positioned at 2.4 GHz. The calculated value of the parameter
lH is 200 µm.
The third passband is provided by the lower resonance of the fork resonator and in

this case there is more design freedom since the higher resonant mode of the fork
resonator is not used. The dimensions of the fork resonator are mainly dictated by the
dimensions of the Hilbert fractal curve because the fork resonator can occupy only the
remaining footprint area of the Hilbert resonator. The coupling between the two
resonators is chosen to be the strongest one in the given fabrication technology, i.e.
the gap g is chosen to be equal to 0.1 mm, which determines the parameter wF to be
equal to 1.1 mm.
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In the following step, the parameters dF and lF are determined to provide the third
passband to be positioned at 5.2 GHz. The fork via dimensions equal to or larger than
400 µm eases the fabrication process and thus lF is chosen to be 400 µm. This choice is
also dictated by the transmission zeros allocation, which will be discussed in more detail
below. Finally, the parameter dF is calculated to be 2.4 mm to obtain the third passband
at 5.2 GHz.

Two Hilbert-fork resonators coupled through the gap s are used to design the tri-
band bandpass filter. As was stated previously, there is a coupling between the
Hilbert and fork resonators which affects the properties of both structures. Also,
the filter consists of two coupled resonators and after the filter is formed, a fine
tuning of certain geometrical parameters is needed to obtain specified filter
characteristics.

Figure 6.30 shows the configuration of the tri-band bandpass filter in which certain
geometrical parameters have been tuned to obtain the prescribed filter response. It can
be seen that the via in the Hilbert resonator is not centrally positioned, but is shifted by
0.7 mm. In this manner, the position of the first passband is tuned. At the same time, this
does not influence the second passband since the shift of 0.7 mm is very small in
comparison to the overall length of the Hilbert resonator, and thus it does not signifi-
cantly degrade the resonator symmetry.

In addition, the fork via has been shifted, i.e. the parameter dF has been increased to
2.6 mm, in order to tune the third passband.

The bandwidth and insertion loss are controlled by the gap s as well as by the external
quality factor which is determined by the configuration of the feeding lines and the
position where the resonators are coupled to them. Also, the feeding lines have a role in
the formation of the transmission zeros.

The response of the proposed tri-band filter is shown in Figure 6.31, whilst its final
dimensions and characteristics are given in Table 6.9 and Table 6.10, respectively. The
proposed filter is characterized by small insertion losses and good return losses. Its
overall size makes it the most compact tri-band bandpass filter proposed so far, which

Figure 6.30 Configuration of the tri-band bandpass filter.
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will be discussed in more detail below. Also, it exhibits excellent selectivity provided
by seven transmission zeros.

Similarly to the structure in the previous section, the presence of the vias in the
structure causes transmission zeros. In this structure, even five transmission zeros are
due to the presence of the vias. As was shown, vias act as mutually coupled inductors
and in that way another signal path is formed which causes a transmission zero to occur
when it is out-of-phase with the main path signal. The position of such transmission
zeros is predominantly determined by the via inductances and coupling strength. The
higher via inductance and strongest coupling between them shifts the transmission zero
to the lower frequencies.

Two lowest transmission zeros occur due to the vias in the Hilbert resonators. The
third transmission zero is due to the presence of the other signal path in the filter.
Namely, due to the folding of the Hilbert resonator, there is a coupling between the

Figure 6.31 Response of the tri-band bandpass filter.

Table 6.9 Geometrical parameters of the tri-band bandpass filter

parameter [mm] wH gH lH lF wF dF g s
1.3 1.3 0.2 0.4 1.1 2.6 0.1 0.8

Table 6.10 Characteristics of the tri-band bandpass filter

f
[GHz]

IL
[dB]

RL
[dB]

3 dB BW
[MHz]

3 dB FBW
[%]

overall dimensions
[λg x λg]

first
passband

2.4 1.5 15 100 4.2

0.21x0.11second
passband

3.5 2.54 13 100 2.9

third
passband

5.2 1.16 20 240 4.5
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resonator’s end segments, which provides another signal path in the filter. When the
signals that propagate through the main and secondary signal paths are out-of-phase, a
transmission zero occurs.

The vias in the fork resonators causes the fourth transmission zero. Since the Hilbert
vias have greater inductance than those of the fork resonators, it is clear why the Hilbert
vias cause transmission zeros at lower frequencies. The via dimensions in the fork
resonator are chosen to be 400 µm which provides a transmission zero between the first
and the second passband and eases the fabrication process.

In addition, a cross-coupling between the Hilbert and fork vias exists and gives the
fifth and sixth transmission zeros. The seventh transmission zero occurs when the
condition Yineven = Yinodd in the fork resonator is met.
From the previous analysis, it can be concluded that the proposed resonator enables

the design of a very compact filter with excellent performance which exhibits excellent
selectivity due to its configuration and various couplings. Also, the proposed filter is
characterized by the fact that its passbands can be independently controlled.

6.4.2.2 Fabrication and measurement results
The proposed filter has been fabricated using standard printed circuit board technology
and it has been realized on the substrate Rogers RT/Duroid 5880 whose thickness is equal
to 1.575 mm, dielectric constant εr = 2.2, and loss tangent tanδ = 0.0009. Figures 6.32(a)
and 6.32(b) show a photograph of the fabricated filter and Figure 6.32(c) shows a
comparison between the responses of the simulated and measured circuit.

The proposed filter comprises four vias and thus its fabrication is relatively
demanding since the positions of two passbands and five transmission zeros depend
on the vias and their inductances. However, Figure 6.32(c) shows that there is good
agreement between measured and simulated results.

A comparison between the characteristics of the simulated and measured circuit given
in Table 6.11 also confirms the good agreement between the simulated and measured
results.

6.4.2.3 Comparison to other tri-band bandpass filters
The proposed tri-band filter has been designed to operate at 2.4, 3.5, and 5.2 GHz. As
was previously stated, most tri-band filters proposed so far have been designed to
operate at the same frequencies. In Table 6.12, the characteristics of the proposed filter
are compared to those of other tri-band filters that represent the best tri-band bandpass
structures published so far.

The proposed tri-band filter exhibits small insertion losses in all three passbands, 1.5,
2.54, and 1.16 dB, good return losses, excellent selectivity owing to seven transmission
zeros and very compact dimensions of 0.22λg x 0.11λg.
In comparison to other configurations, the filter has similar properties in terms of

insertion and return losses. However, the proposed filter has the most compact dimen-
sions of all published tri-band filters, as well as exceedingly good selectivity. What is
more, the proposed filter enables independent control of the passbands.
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To conclude, the structure presented in this section represents the most compact
planar tri-band filter with excellent performance and the possibility of independent
control of the passbands.

6.4.3 Tri-band bandstop filter based on Hilbert-fork resonator

In this section, it will be shown how the proposed resonator can be used in the design of
a tri-band bandstop filter. The proposed bandstop filter has been designed to operate at
2.4, 3.5, and 5.2 GHz, and its behaviour and characteristics will be discussed in
detail below.

(a)

(c)

(b)

Figure 6.32 Tri-band bandpass filter: (a) Photograph of the fabricated circuit. (b) Enlarged detail of
the photograph (a). (c) Simulated and measured responses.

Table 6.11 Characteristics of the simulated and fabricated tri-band bandpass filter

f1/f2/f3 [GHz] IL [dB] RL [dB] 3 dB BW [MHz] 3 dB FBW [%]

simulated circuit 2.4/3.5/5.2 1.5/2.54/1.16 15/13/20 100/100/240 4.2/2.9/4.5
fabricated circuit 2.36/3.51/5.14 2.3/3/1.9 18/13/14 110/120/270 4.6/3.43/5.25
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6.4.3.1 Configuration and design of tri-band bandstop filter
The design of the tri-band bandstop filter is very similar to the design of the bandpass
filter. In the first step, the geometrical parameters of the resonator are determined to
obtain the resonances at the prescribed frequencies. Since the bandstop filter operates at
the same frequencies as the bandpass one, the initial Hilbert-fork resonator is the same
as the one presented in the previous section.

However, the coupling mechanism between the resonators and the conductive line in
the bandstop filter is different from that in the bandpass filter and thus the parameter
optimization result is different. In other words, the optimization procedure in the case of
the bandstop filter has resulted in resonators different from those in the bandpass filter.

Namely, in the case of the bandstop filter the parameter dF is equal to 2.3 mm, which
is a slight discrepancy from the parameter value in the bandpass filter.

The configuration of the final tri-band bandstop filter is shown in Figure 6.33. The
filter consists of two resonators coupled to the microstrip line through a gap of 0.1 mm.
The distance between the resonators is equal to 3.3 mm.

The filter response is shown in Figure 6.34 and its characteristics are given in
Table 6.13. The filter is characterized by return losses of 17.23, 24.6, and 24.48 dB,
and very compact dimensions of 0.22λg x 0.1λg.

So far, there has not been published a tri-band bandstop filter that operates at 2.4, 3.5,
and 5.2 GHz. What is more, there have been published only several tri-band bandstop
filters [41–43]. However, their performance and overall dimensions are far from those
of the proposed bandstop filter.

6.4.3.2 Fabrication and measurement results
Similarly to the bandpass filter, the proposed bandstop filter has been fabricated using
standard printed circuit board technology and has been realized on the substrate Rogers
RT/Duroid 5880 whose thickness is equal to 1.575 mm, dielectric constant εr = 2.2, and
loss tangent tanδ = 0.0009. Figure 6.35(a) shows a photograph of the fabricated filter

Table 6.12 Comparison of the characteristics of the proposed filter and other tri-band bandpass filters

f1/f2/f3 [GHz] IL [dB] RL [dB]
transmission
zeros

dimensions
[λg x λg] 3 dB FBW [%]

proposed filter 2.4/3.5/5.2 1.5/2.54/1.16 15/13/20 7 0.21x0.11 4.2/2.9/4.5
[32] 2.4/4.8/7.2 1.7/0.9/0.7 15/23/18 5 0.37x0.36 5.3/6.3/8.7
[33] 1.5/2.4/3.5 0.77/1.51/1.8 31/29/28 6 0.35x0.25 12.5/8/6
[34] 2.4/3.5/5.25 1.2/1.1/1.5 16.5/18/14.5 6 0.27x0.21 5/3.7/4.2
[35] 2.4/3.5/5.8 0.8/1.6/1.8 18/16/21 6 0.37x0.297 7.59/5.9/3.7
[36] 1.57/2.4/3.5 1.6/1.5/2.3 9/18.9/13.5 5 0.39x0.35 5.2/3.8/4.6
[37] 2.4/3.5/5.25 2/2.4/1.7 18/16/13 5 0.27x0.25 2.5/1.7/5
[38] 1.8/2.5/3 0.9/1.6/0.8 21/16/17 5 0.27x0.22 5.55/4.17/6.67
[39] 2.4/3.5/5.25 1.9/1.42/1.51 14.3/15/16.8 4 0.205x0.117 6.2/12.2/11.8
[40] 2.4/3.5/5.7 1/1.2/1.5 18.5/25/20 5 0.26x0.22 9.2/6.3/4.2
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and Figure 6.35(c) shows a comparison between the responses of the simulated and
measured circuit.

Similar to the bandpass filter, the bandstop filter comprises four vias and thus its
fabrication is demanding since the positions and properties of the two stopbands depend
on the vias and their inductances. However, Figure 6.35(c) shows that there is good
agreement between measured and simulated results except for the very small discrep-
ancy between the positions of the first and third stopbands which is due to the
fabrication tolerance of the vias.

The comparison between the characteristics of the simulated and measured circuits
given in Table 6.14 also confirms the good agreement between the simulated and
measured results.

Figure 6.33 Configuration of the tri-band bandstop filter.

Figure 6.34 Response of the tri-band bandstop filter.

Table 6.13 Characteristics of the tri-band bandstop filter

f
[GHz]

IL
[dB]

RL
[dB]

10 dB BW
[MHz]

10 dB
FBW [%]

overall dimensions
[λg x λg]

first passband 2.4 17.23 0.79 80 3.33
0.22x0.1second passband 3.5 24.6 1.36 85 2.43

third passband 5.2 24.84 1.58 130 2.5
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6.5 Conclusion

In this chapter, the applicability of fractal curves to microwave filters has been presented
and discussed. The main characteristics of fractal curves were analysed and special
attention was given to the Hilbert fractal curve, which is very convenient for application
in resonators and filters due to its configuration.

Several multi-band filters based on the Hilbert fractal curve were presented. Firstly, a
dual-mode resonator based on a two-dimensional Hilbert fractal curve of the second

(a) (b)

(c)

Figure 6.35 Tri-band bandstop filter: (a) Photograph of the fabricated circuit. (b) Enlarged detail of
the photograph (a). (c) Simulated and measured responses.

Table 6.14 Characteristics of the simulated and fabricated tri-band bandstop filter

f1/f2/f3 [GHz] IL [dB] RL [dB]
10 dB BW
[MHz]

10 dB FBW
[%]

simulated circuit 2.4/3.5/5.2 17.23/24.6/24.48 0.79/1.36/1.58 80/85/130 3.33/2.43/2.5
fabricated circuit 2.36/3.48/5.19 14.4/26.3/34.6 2/2.9/3.7 85/85/145 3.6/2.43/2.79
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order was presented. The proposed resonator consists of two serially connected Hilbert
fractal curves and there is no main signal path in the resonator, but the signal is rather
divided into two paths. Using even-/odd-mode analysis, it was shown that the odd
resonance occurs at a lower frequency in comparison to the even resonance and that the
resonator provides a transmission zero.

More important, it was shown that the two resonances can be independently con-
trolled due to the specific configuration of the resonator. This property makes the
resonator a good candidate for dual-band filter design, and thus two dual-band filters
operating at 2.4 and 3.5 GHz were proposed.

The first filter consists of two edge-coupled dual-mode resonators. By extension of
the feeding lines, a transmission zero was introduced which significantly improved
selectivity of the filter. The configuration is characterized by low insertion loss, good
return loss, and compactness.

The second configuration consists of two resonators that are coupled at the broad
side. It was shown that such a configuration acts as an antiparallel structure and
thus provides a transmission zero below the first passband. In that way, a dual-
band filter with excellent selectivity, small dimensions, and good performance was
realized.

The proposed filters were fabricated using standard printed circuit technology, and
there was good agreement between the simulated and measured results.

The filters were compared to other published filters operating at 2.4 and 3.5 GHz.
Insertion loss and overall dimensions are comparable to those of other filters. Neverthe-
less, the proposed filters are characterized by the fact that they allow independent
control of the passbands, as well as by the simple fabrication process that does not
require multi-layer structure or vias.

Afterwards, the Hilbert-fork multi-mode resonator that consists of two dual-mode
resonators was presented. One of the resonators is based on the two-dimensional Hilbert
fractal curve of the second order, whilst the other resonator has the shape of a fork
and is positioned to fill the remaining footprint area of the Hilbert resonator. Both
resonators are grounded by vias, which enables dual-mode behaviour and structure size
reduction.

Using the proposed resonators, tri-band bandpass and bandstop filters operating at
2.4, 3.5, and 5.2 GHz have been realized. Both resonators comprise two Hilbert-fork
resonators. A detailed design procedure of the resonator and filters was given.

Owing to the configuration and various couplings in the structure, the proposed
bandpass filter has very good performance and very compact dimensions. In compari-
son to other tri-band bandpass configurations, the proposed structure is the most
compact one and has significantly better selectivity, as well as the possibility to
independently control the passbands.

The proposed tri-band bandstop filter is also characterized by good performance and
represents the first tri-band bandstop filter operating at 2.4, 3.5, and 5.2 GHz and is one
of the few tri-band bandstop filters proposed so far.
Both filters have been fabricated using standard printed circuit technology and the

comparison between the simulated and measured results show good agreement.
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7 Multi-band microstrip filters based
on near-zero metamaterials
Vesna Crnojević-Bengin, Norbert Cselyuszka, Nikolina Janković,
and Riana Helena Geschke

7.1 Introduction

In Chapter 2, four typical approaches to the design of multi-band filters were identified,
based on (i) classical filter design, (ii) introduction of transmission zeros in the response
of a wideband single-band filter, (iii) use of multi-mode resonators that support
several resonant modes in one structure, and (iv) superposition, where two or
more filters are combined to obtain a multi-band response. Various state-of-the-art
multi-band filters designed using the above approaches have been shown in consecutive
Chapters 3 to 6.

Although allowing various degrees of design freedom in terms of independent control
of passbands, and exhibiting different relative weaknesses and strengths, all of these
approaches have one thing in common: resonators which form filters are regarded as
electronic components, and then suitably coupled to result in a desired filtering
response.

In this chapter, we propose an alternative view to the design of electrical circuits,
multi-band filters in particular, where the resonator is not considered as a component but
rather as a piece of material tailored to exhibit specified filtering properties. Namely, we
show how artificial electromagnetic materials, also called metamaterials, can be used to
design multi-band filters with novel properties – small size, low losses, and reduced
group delay. To achieve such behaviour, we will focus on a specific sub-class of
metamaterials, called near-zero metamaterials, which have recently been shown to
support propagation of electromagnetic waves with the zero propagation constant,
giving rise to various interesting phenomena.

In the first part of this chapter, a short introduction to metamaterials is given,
followed by a more detailed description of the near-zero metamaterials presented so
far in the literature. In the remaining part of this chapter, it is shown how near-zero
propagation can be achieved in quasi-TEM circuits, which is very much needed from
the point of view of design of microstrip circuits. Near-zero propagation in quasi-TEM
circuits is finally used to propose an entirely new class of near-zero bandpass filters,
characterized by significantly reduced variation of group delay in comparison to
conventional solutions. In the last part of this chapter, multi-band microstrip filters
based on near-zero metamaterials are presented, characterized by independent control of
the passbands.
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7.2 A short introduction to metamaterials

Propagation of an electromagnetic wave in a material is characterized by two material
parameters: its dielectric permittivity ε and magnetic permeability µ. Alternatively,
another pair of parameters can be used to describe a material from the electromagnetic
point of view: its refractive index n and characteristic impedance Z. In any case, a
relatively narrow range of values of ε and µ (n and Z) can be found in naturally
occurring materials, thus limiting their practical application. For example, relative
permittivity εr of existing materials varies between 1 and several hundreds, and no
natural material exhibits either extremely low (close to zero) or extremely high permit-
tivity. However, a material with extremely low εr would allow the design of printed
narrow-beam antennas with only one source element, whilst a high-permittivity material
would be desirable as a dielectric substrate for the design of miniature planar passive
devices, since the guided wavelength in such structures would be reduced by a factor
of

ffiffiffiffi
εr

p
.

In recent years, artificial electromagnetic materials, often called metamaterials, have
been proposed as a solution to overcome the problem of the limited characteristics of
natural materials. Metamaterials are artificial structures that are comprised of inclusions
(unit cells) whose individual dimensions are much smaller than the wavelength of the
propagating electromagnetic wave. Since the phase shift across such a sub-wavelength
inclusion is extremely small, the whole structure can be considered homogenous.
Consequently, effective permittivity and permeability of a metamaterial can be deter-
mined, which primarily depend on the shape and mutual geometrical arrangement of the
unit cells. Although metamaterials are made of conventional dielectrics and metals,
owing to their internal structure they can exhibit unusual values of effective permittivity
and permeability, including very high, very low, or even negative values at a certain
frequency range.

Although this might seem counterintuitive on a first glance, we have to remember that
conventional permittivity and permeability in naturally occurring homogenous mater-
ials are also effective parameters, since they are determined for a piece of a material of
certain (relatively large) dimensions and they also depend on the inner structure of a
material. For example, although both are comprised of hydrogen and oxygen molecules,
water and ice exhibit very different permittivity, due to very different inner structures. In
a similar manner, design of metamaterials can be viewed as an attempt to mimic nature
and to tailor the effective parameters of a metamaterial by careful engineering its
internal parts – the unit cells.

Depending on the values of the effective permittivity and permeability, metamaterials
can be divided into several classes: single-negative metamaterials (SNG), where one of
the constitutive parameters is negative and the other is positive; double-negative
metamaterials (DNG), where both constitutive parameters are negative; double-positive
metamaterials (DPS), where conventional naturally occurring materials belong; and
near-zero metamaterials (NZ), where one or both parameters are equal to zero. As the
propagation constant is defined as β ¼ ω

ffiffiffiffiffi
με

p
, we can easily conclude that SNG
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metamaterials will support only evanescent waves, as their propagation constant would
be imaginary. DNG metamaterials were introduced in [1], where Veselago demon-
strated that the propagation constant in such materials would be real but negative, which
is not a characteristic of any material found in nature. The direction of the wave vector
in such materials would be opposite to the conventional case, resulting in phase velocity
antiparallel to the direction of energy propagation, i.e. antiparallel to the group velocity.
DPS materials are of course characterized by a positive and real propagation constant,
while, as we will show later, a propagation constant in NZ metamaterials can be equal to
zero at a non-zero frequency, which again is not a characteristic of any material found in
nature.

Although SNG materials actually exist in nature – noble metals such as silver and
gold exhibit negative permittivity at THz frequencies whilst ferrites exhibit negative
permeability at high frequencies, they are not readily available at arbitrary (lower)
frequencies. Thus, Veselago’s ideas were not exploited before the late nineties.
Following the line of reasoning based on the internal structure of good conductors,

Pendry et al. presented in 1996 an artificial material that exhibits negative effective
permittivity at microwave frequencies [2].

Three years later, Pendry proposed a structure that consists of metallic split-ring
resonators with sub-wavelength dimensions exposed to an axial magnetic field [3]. The
effective permeability of such a structure is resonant, and a narrow frequency band
exists above the resonant frequency in which the effective permeability is negative,
Figure 7.1.

The first experimental demonstration of a DNG metamaterial was presented in [4],
based on the two geometries proposed by Pendry – thin copper wires and square

Figure 7.1 Effective permeability of a SRR positioned next to an electrically short 50-Ω
microstrip line.
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split-ring resonators. It has been shown that negative permittivity and permeability
simultaneously occur at the frequency range 10.2–10.8 GHz and the negative refractive
index was experimentally demonstrated for the first time. It should be noted here that
the passband obtained by simultaneously negative values of effective permittivity and
permeability is a fundamentally new type of a passband, with propagation characteris-
tics (value of the propagation constant, phase velocity, etc.) different to any other
solution achieved by conventional filtering structures.

In the past decade, significant research efforts have been invested in metamaterials
and their application to the realization of devices with small dimensions and/or
improved performance. Today, two main approaches to the design of metamaterials
can be distinguished: the resonant approach which relies on resonant unit cells such as
the split-ring resonator [3, 5], and the transmission-line approach which relies on
composite right‒left handed (CRLH) lines [6, 7]. Metamaterials have been widely
applied in microwave passive circuits, such as antennas [7–11], filters [12–15], and
couplers [16–17]. Not only have metamaterials attracted huge attention from the
scientific community, they have also entered the commercial market as components
of commercial products. One of the first commercial devices to use metamaterial
antennas was Netgear 2008 RangeMax wireless routers. The new Rayspan antenna
allowed the router to reduce radio frequency interference and boost its range. Also, in
2009 LG Electronics launched LG Chocolate BL40 – the first mobile phone to incorpor-
ate metamaterials antenna [18]. As was stated, metamaterials allowed LG to “achieve
the dramatically sleek, slim dimensions of the new LG Chocolate and unsurpassed
radio-frequency capabilities.”

In spite of being very promising for various applications, metamaterials are in
principle characterized by two major disadvantages that limit their use in practical
engineering systems: significant losses and a narrow operating bandwidth [7]. What is
more, the two are not mutually independent. Unlike conventional materials that can be
considered dispersionless in a wide frequency range, metamaterials are characterized by
a strong dispersion of permittivity and/or permeability. For example, the effective
permeability of the split-ring resonator shown in Figure 7.1 follows a typical Lorentz
dispersion model. The mathematical description of the Lorentz model, which is also a
general model of complex permittivity, is given in the following form

ε ¼ ε∞ þ ω2
p

ω2
0 � ω2 þ jΓω

, (7.1)

where ω is the angular frequency, ε∞ is permittivity at the infinite frequency, ωp is the
plasma frequency, ω0 is the resonant frequency, and Γ is the damping factor or collision
frequency.

The effective permeability from Figure 7.1 is obviously a resonant phenomenon, due
to which losses and the operating bandwidth are mutually dependent: the narrower the
bandwidth of the resonance is, the more losses the metamaterial exhibits. Furthermore,
losses are an integral part of such resonant phenomena, i.e. they always occur in the
frequency range at which the metamaterial exhibits its unusual properties. Also shown
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in Figure 7.1 is the imaginary part of the effective permeability: in the frequency range
at which the real part of the permeability is negative, the imaginary part reaches its
maximum value. Therefore, any metamaterial-based device which operates in this
frequency region will inevitably exhibit high losses.

On the other hand, metamaterials based on the transmission-line approach obey a
simplified Lorentz model, the Drude model, in which the resonant frequency ω0 is equal
to zero. The Drude model also represents a model of permittivity of metals and it is
given in the following form

ε ¼ ε∞ � ω2
p

ω2 � jΓω
: (7.2)

It is obvious from (7.2) that at frequencies lower than ωp, effective permittivity will be
negative, but it will not exhibit the resonant nature as was previously the case. A typical
example of Drude-type metamaterials are Pendry’s first negative permittivity artificial
material [2], as well as the composite right‒left handed lines [7]. A typical effective
permittivity of a Drude-type unit cell is shown in Figure 7.2: although it overcomes
the bandwidth-related limitations of the Lorentz-type (resonant) unit cells, large
values of the imaginary part of the effective permittivity in the region where the real
part is negative will still result in inherently large losses of a final metamaterial-based
device.

As a solution to this major drawback, we propose to use metamaterials in a frequency
region in which they do not inherently show high losses. In Figure 7.1, it was observed
that the imaginary part of the effective permeability is significantly small at the
frequency at which the real part of the permeability crosses zero. Metamaterials
that exhibit effective permittivity/permeability equal to or close to zero are called

Figure 7.2 A typical effective permittivity of a Drude-type unit cell.
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Epsilon-Near-Zero (ENZ)/Mu-Near-Zero (MNZ) metamaterials. As will be shown in
the remaining part of this chapter, such near-zero metamaterials do allow propagation of
electromagnetic waves (although with some very peculiar characteristics) and they can
be used to design microwave devices which simultaneously exhibit small size and good
performance.

To summarize, some of the most widely used metamaterial unit cells are listed in
Table 7.1, where their dispersion type is also indicated. We note here that, to obtain a
desired behavior, it is of course possible to combine in a single metamaterial unit cells
that exhibit dispersion of different types.

7.3 Near-zero metamaterials

Due to sub-wavelength dimensions of constitutive unit cells, the use of metamaterials is
obviously a very good approach to the miniaturization of passive microwave devices.
On the other hand, as has been shown in the previous section, relatively high losses are
inherent to DNG metamaterials, which limits their applicability. However, the effective
parameters shown on Figure 7.1 and Figure 7.2 suggest that the losses could be
significantly reduced if metamaterials were used in the frequency region where their
effective parameters (permittivity and/or permeability) are close to zero. In this section,
we analyze in detail such near-zero (NZ) metamaterials.

Furthermore, although NZ metamaterials are very interesting from the aspect of
losses, they exhibit some additional interesting properties. Whilst DNG metamaterials
support propagation with a negative propagation constant and typically exhibit phase
advance, NZ metamaterials make use of the fact that a non-zero frequency exists at
which the propagation constant is equal to zero, thus resulting in propagation with
infinite phase velocity. (Although such phenomenon cannot be strictly considered as
propagation, but rather as tunneling, we will continue to use the term NZ propagation
for the sake of simplicity). Infinite phase velocity results in propagation with the
constant phase, irrelevant of the distance traveled by the electromagnetic wave through
the NZ medium.

Such specific behavior of NZ metamaterials opens up new perspectives for a number
of applications: reflectionless sharp bends and corners in transmission lines, matched
antennas, novel dielectric sensors, but also passive filters with new topologies, compact
dimensions, and high selectivity. In addition, the use of dispersive media and NZ
propagation indicates the possibility of realizing devices with reduced group delay.

Table 7.1 Some of the most widely used metamaterial unit cells

Dispersion type: Lorentz Drude

Negative parameter:

Permittivity CSRR Waveguide section, Shunt inductor

Permeability SRR Series capacitor
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Namely, as the group delay is defined as the derivative of the phase of the transmission
coefficient, τd ¼ � dφ21

dω , in the case of a propagation along the z-axis it is equal to

τd ¼ � d

dω
ð�βzÞ ¼ z

d

dω

�
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðωÞεðωÞ

p �
¼

¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μðωÞεðωÞp þ zω

ffiffiffiffiffiffiffiffiffi
εðωÞp d

dω

� ffiffiffiffiffiffiffiffiffiffi
μðωÞ

p �
þ zω

ffiffiffiffiffiffiffiffiffiffi
μðωÞ

p d

dω

� ffiffiffiffiffiffiffiffiffi
εðωÞ

p �
:

If at a certain frequency both permittivity and permeability are equal to (or close to) zero,
the group delaywould also be equal to (or close to) zero. Alternatively, group delay (and the
variation of the group delay) could be controlled by tailoring the slope of the permittivity/
permeability curves so as to produce the desired values of the respective derivatives.

Similarly to the case of DNG propagation, passbands obtained due to NZ propagation
are fundamentally different than any other type of passbands due to their unique
propagation charac teristics (zero value of the propagation constant, infinite phase
velocity, etc.). From that point of view, NZ propagation presents a very interesting
basis for the design of novel filters.

In principal, the NZ medium can be obtained by either tailoring effective permittivity
or effective permeability to be near zero. First NZ metamaterials that were proposed
were near-zero-refractive-index materials [19]. Afterwards, ENZ and MNZ metamater-
ials were introduced.

In the remaining part of this section, recently published ENZ and MNZ metamaterials
will be analyzed and various applications of this interesting phenomenon will be
discussed.

7.3.1 Permittivity-near-zero case

The first discussion of ENZ metamaterials and their possible application was given in
[20], where it was theoretically shown that the ENZ media can be used to “squeeze and
tunnel” electromagnetic energy through very narrow waveguide channels, and thus to
enhance the efficiency of some waveguide devices and to reduce the reflection coeffi-
cient at waveguide junctions. Engheta et al. solved a general two-dimensional problem
which consists of two parallel-plate metallic waveguides of heights a1 and a2, respect-
ively, connected by a channel filled with an ENZ material with the cross-section area Ap.
For the wave to tunnel through the channel, it was shown that it is necessary that a1� a2
and that k0µr,pAp << 1. There are two possibilities to meet the second condition. The
first one is to make the permeability of the ENZ channel µr,p to be near zero. However, a
more interesting possibility is that the reflection vanishes if the area Ap is electrically
small, or if one of the physical dimensions of the ENZ channel is electrically small. In
other words, as the ENZ channel becomes increasingly narrower, the reflection
decreases even more. At the same time, there is no phase change in the ENZ channel,
i.e. the phase velocity tends to infinity, and the energy practically squeezes through the
channel. This opens up possibilities to realize waveguide bends, which do not exhibit
the typically associated losses and reflections [21], as well as to realize the efficient
transmission of energy through regions with sub-wavelength cross-sections.

235Near-zero metamaterials



The same authors extended their theoretical investigation in [22] and discussed that
the NZ tunneling phenomenon is different from the seemingly similar Fabry‒Perot
resonance. Namely, Fabry‒Perot resonant frequencies are highly dependent on the
length of the channel, and their phase and amplitude distributions strongly vary across
the channel at the tunneling frequency. On the other hand, the energy can tunnel
through the ENZ channel independently of its geometry and length. In other words,
ENZ materials support a zero-order resonance characterized by the absence of phase
change, which implies that the electrical length of the channel is zero irrelevant of its
physical length.

The phenomenon of energy squeezing using ENZ materials at microwave frequencies
was experimentally demonstrated in [23]. Since ENZ materials are not readily available
in the microwave region, the ENZ medium was designed using a section of a
rectangular waveguide. Namely, it is well-known that effective relative permittivity
for the TE10 guided mode in a rectangular waveguide has the following form

εef f
ε0

¼ n2 � c2

4f 2w2
, (7.3)

where w is the waveguide width, n is the relative refractive index of the dielectric filling
the waveguide, c is the speed of light in the vacuum, and f is the operating frequency.
This is indeed the Drude dispersion as given by (7.3) or as shown in Figure 7.2: the
effective permittivity of a rectangular waveguide below the cut-off frequency is nega-
tive, whilst it is positive above the cut-off. Therefore, at the cut-off frequency the
effective epsilon of a waveguide is equal to zero, and such behaviour resembles the
response of a plasmonic material.

Following the line of reasoning presented in [20], the structure consisting of the three
waveguide sections with the same width was proposed to demonstrate ENZ propaga-
tion. To meet the condition of an electrically small cross-section area Ap of the ENZ
channel, the height of the middle section was significantly reduced. At the same time, its
cut-off frequency is increased by proper choice of a filling dielectric. The TE10 mode
that is excited in the outer waveguide cannot propagate through the entire structure as it
is below the cut-off of the middle section. However, the middle section acts as an ENZ
medium at its cut-off frequency, and at that frequency the launched TE10 mode is
tunneled.

Another experimental demonstration of electromagnetic tunneling through an
ENZ metamaterial at microwave frequencies was given in [24]. The proposed
structure consists of two planar waveguides separated by a thin ENZ channel that
is realized as a channel in which complementary split-ring resonators (CSRRs) are
positioned. The three sections support waves that can be considered as transverse
electromagnetic waves. The volume bounded by a CSRR surface behaves identi-
cally to a volume containing a resonantly dispersive dielectric (i.e. the Lorentz
type), and thus this channel acts as an ENZ medium at the frequency slightly above
that at which the CSRR exhibits resonance. Experimental measurement and spatial
map of the electric field distribution confirmed ENZ propagation in the proposed
structure.
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Following the idea presented in [23], a microstrip structure that supports ENZ
propagation was proposed in [25]. The structure comprises of two conventional micro-
strip sections, connected by a microstrip section with significantly reduced substrate
height. In order to provide energy squeezing at ENZ frequency and reflection at other
frequencies, there is a very abrupt discontinuity between the conventional microstrip
sections and the section with the reduced height. Although the dominant mode in a
microstrip structure is the quasi-TEM mode, wave propagating in the tunnel is con-
verted into a TE10 mode, and thus such a structure cannot truly be said to support NZ
propagation of the quasi-TEM mode.

Besides energy tunneling, there are other interesting applications of ENZ materials.
For example, carefully designed ENZ media can be used to manipulate the phase front
of an electromagnetic wave, thus resulting in unusual imaging, lensing, and radiative
effects [26]. On the other hand, since energy tunneling is associated with greater
enhancement in the magnitude of the electric field inside the ENZ channel, such a
high-intensity field ensures high sensitivity to small variations in the material param-
eters, which is exploited for material sensing applications [27–28].

7.3.2 Permeability-near-zero case

Although a dual to the ENZ phenomenon, MNZ propagation has not been as widely
exploited. The main reason for this may be found in the fact that there is no straightfor-
ward MNZ equivalent to the ENZ waveguide, i.e. there is no structure that readily
exhibits MNZ behavior at a certain frequency, such as a waveguide that exhibits ENZ
behavior around its cut-off. Instead, specific unit cells have to be used to provide near-
zero values of the effective permeability at certain frequencies.

Most microwave applications of MNZ metamaterials published so far have been
related to antenna design. In [29], a flexible dual-frequency broadside radiating rect-
angular patch antennas based on complementary planar ENZ or MNZ metamaterials
were proposed, whilst in [30] an MNZ substrate was shown to have high potential for
enhancement of broadside radiation.

As for filtering applications, following the structure proposed in [25], half-mode
filters based on ENZ and MNZ concepts were proposed in [31]. The structure consists
of an ENZ tunnel, loaded with an interdigital capacitor that provides dispersive behavior
of the effective permeability. The structure can be considered a CRLH unit cell that is
intentionally designed as unbalanced and which thus provides two tunneling frequen-
cies (one ENZ and one MNZ). Since such a cell acts as a dual-mode resonator, its
applicability was demonstrated by designing two-pole and four-pole bandpass filters
with good performance. However, the proposed structure again supports NZ propaga-
tion of TE10 mode, not quasi-TEM.
It should be noted that, although both ENZ and MNZ metamaterials support propa-

gation with a zero propagation constant, a specific interest exists for the design of MNZ
media. Namely, since ENZ structures rely on negative permittivity unit cells, their
application in filter design is not straightforward. This is due to the fact that most filters
use some kind of series capacitors to couple the resonators of the filter. This capacitance
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acts as a negative permeability unit cell, and, together with the ENZ unit cell, might
result in a DNG rather than in the NZ propagation mode. However, this is not the case
for MNZ structures which would support a near-zero mode, even when combined with
series capacitors of a filter.

7.4 Near-zero propagation in quasi-TEM circuits

7.4.1 Permittivity-near-zero case

The overview presented in Section 7.3 has illustrated that all ENZ structures published
so far are in fact based on the propagation of the TE10 mode inside a waveguide.
Although the structure presented in [25] is a microstrip structure, which is typically
associated with the quasi-TEM mode, it ultimately relies on near-zero permittivity at the
cut-off frequency of a substrate-integrated waveguide, and therefore does not support
NZ propagation of the quasi-TEM mode. The structure based on complementary split-
ring resonators [24] supports transversal electromagnetic waves, but ultimately it also
relies on an ENZ waveguide. However, NZ propagation of quasi-TEM waves is of great
interest for the design of new types of planar filters.

ENZ propagation in conventional quasi-TEM microstrip circuits has for the first time
been shown in [32], where a structure that does not comprise narrow channels or tunnels
was used, and no conversion of the propagating quasi-TEM to TE10 mode was
performed. As has been shown in Section 7.3.1, the condition of an electrically small
cross-section area of the channel is crucial in TE10 ENZ circuits, since the height of a
conventional waveguide is comparable to the wavelength of the propagating signal. In
the case of conventional microstrip structures, this height corresponds to the thickness
of the dielectric substrate, which is typically significantly smaller than the guided
wavelength. Thus, microstrip structures do not require additional reduction of the
substrate height, since the condition of small cross-section area is always met.

However, whilst transmission lines with a dominant TE10 propagating mode inher-
ently exhibit a high-pass response and near-zero permittivity around the cut-off fre-
quency, quasi-TEM microstrip lines are all-pass structures with constant permittivity.
Therefore, a microstrip line needs to be loaded with unit cells which will provide near-
zero values of effective permittivity at certain frequencies. The most typical metamater-
ial unit cell that can be used for this purpose is the complementary split-ring resonators
(CSRR) etched into the ground plane of a microstrip line [5]. Effective permittivity of a
CSRR positioned under a 50-Ohm microstrip line is shown in Figure 7.3, extracted
using the procedure shown in [33]. Overall dimensions of the CSRR were arbitrarily
chosen to be 4.6 x 4.75 mm, width of the gaps 0.1 mm, and distance between the gaps
0.1 mm. The circuit was designed on the substrate Rogers TMM10 with the thickness of
1.27 mm, dielectric constant εr = 9.2, and loss tangent tanδ = 0.0035. The transmission
coefficient of the CSRR-loaded microstrip is also shown in Figure 7.3 and it reveals that
the structure behaves as a notch resonator at fz = 2.23 GHz, whilst the CSRR exhibits
near-zero permittivity at f0 = 2.49 GHz. In the next section, it will be shown that this
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frequency is not the only one at which NZ propagation can be supported. The reader is
referred to Section 7.4.2 for more details.

The equivalent circuit of the CSRR-loaded microstrip (dashed line) connected to the
feed line (dotted line) is shown in Figure 7.4, where L and C denote inductance and
capacitance of the 50-Ω microstrip, Cc is the capacitance between the microstrip and the
CSRR, and Lr and Cr model the CSRR. When the ring alone is at resonance, i.e. at f 0 ¼
1=2π

ffiffiffiffiffiffiffiffiffiffi
LrCr

p
, it behaves as an open circuit. Effective permittivity of the entire structure is

equal to zero and NZ propagation between the ports is possible. Around f z ¼
1=2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LrðCr þ CcÞ

p
the structure behaves as a single-negative medium and supports

only evanescent waves.
To fully utilize such ENZ behavior, a host medium other than an all-pass 50-Ω

microstrip should be used. Namely, to allow impedance matching at NZ frequency,
the host microstrip circuit needs to be designed to exhibit a stopband in the region where
an ENZ passband is expected to occur. We note here that in the lossless case, ENZ

Figure 7.3 Effective permittivity and the transmission coefficient of a CSRR etched in a ground
plane of an electrically short 50-Ω microstrip line.

Figure 7.4 Equivalent circuit of a short section of a microstrip line loaded with a CSRR.
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metamaterial exhibits infinitely large impedance, since the impedance is inversely
proportional to a square root of effective permittivity, which is equal to zero. However,
in the real case, the value of the impedance is bounded by losses, so ENZ metamaterial
can be matched using practically realizable input microstrip lines.

As a proof-of-concept device, a microstrip ENZ structure shown in Figure 7.5 was
proposed in [32]. As a host medium, it uses a simple third-order low-pass filter with
open stubs, designed following the standard procedure given in [34]. The capacitive
sections of the filter are loaded with one CSRR each, as the axial electric field needed to
excite the CSRRs is the strongest there. The dimensions of CSRRs are equal to those
given above. The overall length of the structure is 34.4 mm, which corresponds to 0.6λg,
where λg is the guided wavelength at 2 GHz.

The simulated electromagnetic response of the proposed ENZ structure is shown in
Figure 7.6 and compared to the response of the same low-pass filter with homogenous
ground (i.e. without CSRRs). It can be seen that, due to inclusion of CSSRs, a new
passband emerges at the frequency equal to f0 = 2.27 GHz, determined by the effective
permittivity of the CSRR. To validate this, extracted effective permittivity of the CSRR
placed at the central position (d = 2.4 mm) under the 9.5 mm wide electrically short
capacitive line is shown in the inset of Figure 7.6. It exhibits zero permittivity at exactly
2.27 GHz.

Also shown in Figure 7.6 is the influence of the lateral position of a CSRR, d, which
can be used to fine-tune the transmission characteristics of the filter. It should be noted
that varying d neither influences the NZ frequency f0 nor the position of the lower
transmission zero fz, as they are determined by the parameters of the CSRR itself.
However, the position of the transmission zero at the upper side of the ENZ passband
and thus its bandwidth are strongly affected by the parameter d. For instance, varying d
from 0.15 to 2.4 mm changes the fractional bandwidth from 6.7% to 9.3%.

The low-pass filter exhibits a spurious resonance at 3.5 GHz which is not strongly
excited in the absence of CSRRs. When CSRRs are introduced into the structure, the
resonance is more pronounced and it affects the selectivity of the ENZ passband at its
upper side. Nevertheless, this spurious resonance can be successfully supressed by a
proper choice of the parameter d, which affects the position of the upper transmission
zero. For instance, for d = 2.4 mm, the transmission zero occurs at the frequency of the
spurious resonance, which is therefore successfully eliminated.

As was stated previously, a unique property of NZ structures is the fact that they
support the propagation of waves with virtually no phase delay, irrelevant of their

Figure 7.5 Microstrip ENZ structure [32].
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length. This is validated for the proposed ENZ structure in Figure 7.7, where the phase
distribution along the ENZ structure is compared to that of a simple 50-Ω microstrip line
of the same physical length. In both cases, the phase has been extracted along a line
halfway between the ground plane and the microstrip layer, from the component of the

Figure 7.6 Simulated electromagnetic response of the proposed ENZ structure compared to the
response of a low-pass filter alone. Extracted effective permittivity is shown in the inset [32].

Figure 7.7 Phase distribution along the ENZ structure compared with a 50-Ω microstrip of the
same overall length at the central frequency of the ENZ passband.
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electrical field normal to the microstrip host and at the ENZ frequency of 2.27 GHz. In
Figure 7.7, a zero value of the variable Position corresponds to the centre of the whole
structure.

Although of the same physical length, the proposed ENZ medium and a 50-Ω
microstrip line exhibit very different phase shifts: the phase shift accumulated along
the microstrip corresponds well to its length and is equal to 293�, while the phase shift
along the ENZ structure equals only 58�, which is consistent with ENZ media.

The proposed ENZ microstrip structure has been fabricated using the conventional
printed circuit board technology. Photographs of the fabricated circuit are shown in
Figure 7.8, while the simulated and measured responses are compared in Figure 7.9
[32]. Good agreement between the measured and simulated responses can be observed,
except for a shift in frequency of approximately 12%. This is explained by the

(a) (b)

Figure 7.8 Photographs of the fabricated ENZ structure: (a) Top conductive layer. (b) Bottom
conductive layer (ground) [32].

Figure 7.9 Comparison of simulated and measured responses [32].
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discrepancy between the actual and simulated values of the dielectric constant and the
thickness of the substrate, as the manufacturer specifications allow permittivity vari-
ations of �0.23, as well as variations of substrate thickness.

Finally, we note here that the ENZ structure presented above can also be viewed as a
single-band bandpass filter, while the original response of the low-pass filter could be
suppressed using some additional circuit elements. Alternatively, a different host
structure could be used, which would not exhibit such a low-pass response. For
example, the conventional half-wavelength resonator can also be used as a host and
loaded with a CSRR [35], provided that the capacitive coupling between the resonator
and the feed lines is carefully designed so that the final circuit supports ENZ and not
DNG propagation.

7.4.2 Permeability-near-zero case

MNZ propagation in quasi-TEM circuits can be obtained in a manner similar to the one
presented above for the ENZ case, with the main difference being the choice of the
metamaterial unit cell. To achieve MNZ propagation, a microstrip host needs to be
loaded with unit cells which will provide near-zero values of effective permeability at
certain frequencies. A widely exploited metamaterial unit cell which provides resonant
behavior of the effective permeability is the split-ring resonator (SRR). In the microstrip
configuration, SRR is typically positioned next to the host microstrip line so it is
properly excited by the axial magnetic field.

Effective permeability and the transmission coefficient of an electrically short section
of a 50-Ω microstrip line loaded with one SRR are shown in Figure 7.10. In this
example, the SRR has been constructed on a 1.27 mm thick Taconic CER-10 substrate
with εr = 9.2 and tanδ = 0.0035, using 0.3 mm lines on 0.25 mm spacing, and with 0.2
mm gaps. When the ring is at resonance, namely at fr ¼ 1=2π

ffiffiffiffiffiffiffiffiffiffi
LrCr

p
, where Lr and Cr

model the SRR, it acts as a short circuit and the whole structure behaves as a notch
resonator. In other words, around fr the effective permeability is negative, the structure
behaves as a single-negative medium and supports evanescent waves only.

Figure 7.3 and Figure 7.10 fundamentally illustrate the same phenomenon ‒ Lorentz
type of dispersion. Apart from the fact that one shows effective permittivity and the
other effective permeability, these two figures differ in another important aspect – the
amount of losses that have been included in the simulations. More losses have been
included in the latter case and one may notice that consequently the extremes of the
effective permeability function are not as pronounced as they were in Figure 7.3, and
there is a finite slope between the maximum and minimum values. Therefore, in this
case two frequencies in the vicinity of fr may be identified at which MNZ propagation
might occur: f01 = 2.39 GHz and f02 = 2.44 GHz.
As was discussed above, the main limitation to the wide use of metamaterials is the

fact that they are inherently losy. To illustrate this, the imaginary part of the effective
permeability is also shown in Figure 7.10. It can be seen that it is very high at fr; if such
a unit cell was used to design a DNG metamaterial, losses would be inherent to the
DNG transmission. Let us now analyse two potential NZ frequencies: the imaginary
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part is also very high at f01 and therefore no propagation occurs at this frequency. At f02,
the imaginary part of effective permittivity is smaller, but still non-zero, and conse-
quently the insertion loss is reduced, although it is still not negligible. Therefore, by
using a simple microstrip line as a host, MNZ propagation cannot be practically
achieved either at f01 or at f02.

Similarly to the ENZ case presented in the previous section, a host structure other
than an all-pass 50-Ω microstrip line needs to be used. For the proof-of-concept device,
let us again use a simple low-pass filter of third order with open stubs (LPF), and load
the central section of the LPF with an SRR, designed so that its resonant frequency falls
within the stopband of LPF [36]. However, it should be emphasized that the following
analysis may be applied to host structures other than LPF.

Let us now analyse two different cases: the first one where LPF consists of two shunt
capacitors and one series inductor (denoted here as CLC-LPF), and the second one
where the LPF is comprised of two series inductors and one shunt capacitor (LCL-LPF).
In both cases, one SRR is placed next to the middle section of the filter, loading the
inductive and capacitive section of the filter, respectively. The equivalent electrical
circuits of such structures are shown in Figure 7.11. To preserve the symmetry of the
circuit, the capacitor of LCL-LPF in Figure 7.11b has been modeled with two capacitors
with a capacitance of C/2 each.

Simulated lossless responses of both SRR-loaded CLC-LPF and LCL-LPF are
compared in Figure 7.12, where also the responses of initial low-pass filters without
the SRRs are shown. It can be seen that the inclusion of an SRR in both cases did not
influence the original low-pass responses, but that a new transmission peak and
transmission zero have occurred in both cases. As expected, the transmission zero

Figure 7.10 Effective permeability and the transmission coefficient of a short section of a 50-Ω
microstrip line loaded with one SRR [36].
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always occurs at the same frequency equal to fr. However, the transmission peak occurs
at a frequency higher than fr for SRR coupled to the inductive section of the host filter,
and at a frequency lower than fr for SRR coupled to the capacitive section of the filter,
which might not seem straightforward.

The complex propagation constant γ = α+ jβ, where α is an attenuation constant and β
a phase constant can be determined from the equivalent circuits of Figure 7.11 using the
ABCD matrix as γl = acos(D). Let us first note that, in order to determine the effective
propagation constants of a circuit, the circuit needs to be considered as homogenous, i.e.
its length needs to be significantly smaller than the guided wavelength. Even though the
proposed structures might seem electrically long since they are comprised of relatively
long low-pass filters, at MNZ frequency they can be regarded as electrically short. This
is due to the fact that at the MNZ frequency phase, velocity is infinite and there is no
phase change over physically long distances. Therefore, the condition for the

(a) (b)

Figure 7.11 The equivalent circuit of the SRR-loaded: (a) CLC-LPF. (b) LCL-LPF [36].

Figure 7.12 Responses of CLC and LCL low-pass filters with and without SRRs coupled to their
middle section [36].
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electrically short circuit holds even in the case of the proposed, seemingly long, SRR-
loaded low-pass filters, and the homogenization process can be applied.

In the case of the SRR-loaded CLC-LPF, D can be obtained from the equivalent
circuit of Figure 7.11(a) as

D ¼ 1� ω2LC

1� ω2LrCr
1þ Lr

L
� ω2LrCr

� �
, (7.4)

whilst for the SRR-loaded LCL-LPF, it is equal to

D ¼ 1þ
ZCZr

2ZC þ Zr
þ jωL

Z2
C

2ZC þ Zr

, (7.5)

where ZC = 2/jωC and Zr = jωLr/(1-ω2LrCr).
The attenuation constant α and phase constant β obtained from the expressions (7.4)

and (7.5) are plotted in Figure 7.13. It can be seen that there are two different
frequencies, f01 and f02, at which the phase constant is equal to zero, and that they are
positioned before and after the stopband, respectively. (The stopband is of course
characterized by the maximal value of the attenuation constant. The phase constant is
not defined in the stopband – in Figure 7.13 this is denoted by the abrupt change of the
phase constant from 0 to π rad or vice versa.) It should also be noted that the zero value
of the phase constant does not necessarily imply MNZ propagation – this phenomenon

Figure 7.13 Attenuation constant α and phase constant β for the SRR-loaded CLC-LPF and
LCL-LPF. The values of circuit elements are chosen as typical for microstrip implementation:
LCLC_LPF = 5 nH, CCLC_LPF = 5 pF, LLCL_LPF = 6 nH, CLCL_LPF = 6 pF, Lr = 2 nH, Cr = 2 pF [36].
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will be supported only at the frequencies where the additional condition D = 1 is
fulfilled, which corresponds to the zero attenuation constant.

By analysing the results presented above, it can be shown that in the case of the SRR-
loaded CLC-LPF, the frequency at which MNZ propagation will be supported is f02,
which can be obtained from (7.4) by equaling D = 1

f 02 ¼
1

2π
ffiffiffiffiffiffiffiffiffiffi
LrCr

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Lr

L

r
: (7.6)

In the case of SRR-loaded LCL-LPF, MNZ propagation will occur at frequency f01,
which can be calculated in a similar manner from (7.5)

f 01 ¼
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LLr
2LþLr

Cr þ C
4

� �q : (7.7)

MNZ frequencies f01 and f02 obtained above correspond in fact to the central frequen-
cies of two transmission peaks in Figure 7.12. Equations (7.8) and (7.7) further reveal
that MNZ frequency depends not only on the parameters of the unit cell, Lr and Cr, but
also on the inductive/capacitive nature of the host, i.e. on L and C.

Moreover, the values of the host inductance and capacitance, L and C, play a very
important role in achieving MNZ propagation. Namely, it can easily be noted that the
equivalent circuits of low-pass filters shown in Figure 7.11 are identical to those of an
electrically short section of an SRR-loaded microstrip line. The only difference is in the
values of the parameters L and C – whilst in the case of a low-pass filter L and C are
several times larger than Lr and Cr; they are of the same order of magnitude in the case
of a 50-Ω microstrip line. Therefore, in order to analyse how the type of host structure
affects MNZ propagation, the influence of the parameters L and C needs to be analysed.
It can be seen from equation (7.6) that for a given SRR, i.e. for fixed parameters Lr and

Cr, the MNZ frequency of the SRR-loaded CLC-LPF depends only on the parameter L.
Furthermore, the MNZ frequency f02 is greater than the resonant frequency of the SRR fr
for all values of the host inductance L. Thus, transmission zero will always occur at the
lower side of theMNZ transmission peak as was the case in Figure 7.12. Furthermore, if L
is increased, f02 shifts toward the resonant frequency fr. On the other hand, if L is
decreased to values characteristic of an ordinary microstrip line, f02 increases quite
rapidly, thus shifting the MNZ frequency out of the range of interest and finally into
the range where the second harmonic of the low-pass filter is positioned. For that reason, a
simple microstrip line cannot be practically used as a host in MNZ structures, since its
inductance L is too low. This is illustrated in Figure 7.14 where the attenuation constant α
and phase constant β are plotted for various values of L, for the case of Lr = 2 nH and Cr =
2 pF. As expected, the resonant frequency fr is not influenced by varying L, whilst f02
increases as L decreases, as denoted by the arrows in Figure 7.14.
A similar analysis can be performed for the case of an SRS-loaded LCL-LPF. As can

be seen from equation (7.7), in this case the MNZ frequency depends both on the host
inductance L and host capacitance C. Unlike in the case of an CLC-LPF structure in
which the transmission zero has always occurred at the lower side of the MNZ
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transmission peak, in the LCL-LPF structure the transmission zero can occur on either
side of the transmission peak. For the values of L that correspond to those of a typical
low-pass filter, e.g. for L = 5nH and C = 5 pF, f01 will be smaller than fr. This
corresponds to a situation in which the MNZ transmission peak occurs below the
transmission zero at fr, as was the case in Figure 7.12. However, if the parameters L
and/or C are decreased, the MNZ frequency f01 increases and it eventually becomes
larger than fr. This is illustrated in Figure 7.15, where arrows denote the shift of f01 with
decreasing L and C. As in the previous case, the SRR has been modeled using Lr = 2 nH
and Cr = 2 pF. For sufficiently small values of L and C, the MNZ frequency f01 behaves
as that of the CLC-LPF structure, i.e. both types of low-pass hosts behave as simple
microstrip lines not suitable to be used as an MNZ host.

To experimentally verify MNZ propagation of quasi-TEM waves, a one-dimensional
MNZ media has been fabricated. It is comprised of a conventional LCL-LPF of third
order and both inductive sections have been loaded with one SRR each. Full-wave
simulations have shown that changing the rings’ position along the inductive sections
has negligible influence on the MNZ passband even if extreme displacements are made.
Therefore, SRRs are arbitrarily placed in the middle of the inductive sections, as shown
in Figure 7.16.

Simulated response of the one-dimensional MNZ media is shown in Figure 7.17 and
compared to the response of the host low-pass filter with no SRRs. It can be seen that
inclusion of SRRs resulted in a new MNZ passband in the stopband of the host low-pass
filter. The MNZ passband is positioned at 2.44 GHz, which corresponds exactly to the
frequency at which effective permeability of the SRRs is equal to zero (denoted by f02 in
Figure 7.10.)

Figure 7.14 Attenuation constant α and phase constant β for various values of the host inductance L
in the case of the SRR-loaded CLC-LPF [36].
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The proposed one-dimensional MNZ media has been fabricated using a conventional
printed circuit board technology. Comparison between the measured and simulated
responses, Figure 7.18, reveals good agreement, except for a shift in the MNZ fre-
quency approximately equal to 5.7%, caused by relatively large variations of the

Figure 7.15 Attenuation constant α and phase constant β for various values of the host inductance L
and capacitance C in the case of the SRR-loaded LCL-LPF [36].

Figure 7.16 One-dimensional MNZ media [36].
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permittivity of the substrate material (�0.5). Due to the quasi-lumped nature of the
low-pass host and its relatively large size, the discrepancy in the permittivity affected
the MNZ frequency far more than it influenced the cutoff frequency of the low-
pass host.

Figure 7.17 Simulated response of one-dimensional MNZ media [36].

Figure 7.18 Comparison of measured (full lines) and simulated (dashed lines) responses of one-
dimensional MNZ media. Photograph of the fabricated structure is shown in the inset [36].
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7.4.3 Design of bandpass filters based on permeability-near-zero propagation

Using the one-dimensional MNZ media presented above, in this section we design a
proof-of-concept bandpass filter that utilizes MNZ propagation of quasi-TEM waves.
We intentionally use the same (electrically long) low-pass filter as a host, to demonstrate
the intriguing aspects of the phase responses of MNZ filters, which are most pro-
nounced with larger structures. However, we note that MNZ filters with a much smaller
footprint might easily be designed, e.g. by replacing the host with some of recently
developed miniature low-pass configurations such as [34]. Additionally, the original
low-pass response of the host structure, which still exists in the final response, could be
suppressed by introducing a stopband at lower frequencies (e.g. by using defect ground
structures or other techniques).

The MNZ bandpass filter presented here is designed by combining the responses of
both MNZ structures shown above. It has been shown in Section 7.4.2 that MNZ
propagation can be supported at two frequencies, f01 and f02, depending on the position
of the SRR relative to the host (SRR next to the capacitive or inductive section of the
host, respectively). By using superposition, i.e. by loading each of the host’s sections
with an appropriate unit cell, propagation at both MNZ frequencies could be simultan-
eously supported and then coupled to form a useful passband.

A synthesis procedure of bandpass filters of this type is as follows:

1. design the host structure;
2. design unit cells that produce MNZ transmission at the first MNZ frequency;
3. design unit cells that produce MNZ transmission at the second MNZ frequency;
4. optimize the coupling between the unit cells and the host, as well as between the

adjacent unit cells.

In the following example, this procedure has been performed using the third-order LCL-
LPF with open stubs as a host. Firstly, two SRRs which load inductive sections of the
host were designed. In this manner, a structure similar to the one shown in Figure 7.16
has been obtained. We note from Figure 7.17 that MNZ resonance in such structures is
relatively weakly excited and that the bandwidth of the obtained passband is small. In
the following step, another SRR is placed next to the capacitive section of the host. Its
dimensions are optimized so that f01 and f02 are sufficiently coupled. At the same time,
this third (middle) SRR couples the resonances of the outer two and significantly
contributes to the level of transmission between the ports and, therefore, to the band-
width of the final filter.

The layout of the optimized filter is shown in Figure 7.19 with all the relevant
dimensions (the dimensions of the two outer SRRs are kept the same as in Figure 7.16).
The measured and simulated responses are compared in Figure 7.20. Apart from a
frequency shift or around 4% due to unequal nominal and actual substrate permittivity,
the responses are in very good agreement. The measured filter exhibits high selectivity,
fractional bandwidth of 6%, and insertion loss of 2.3 dB. Due to a specific design of the
MNZ filter, there is a weakly excited reflection zero outside the passband which is an
artifact of this type of design.
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An interesting characteristic of the proposed MNZ filter is the fact that, unlike in
conventional filters, the spacing between adjacent resonators does not significantly influ-
ence the filter’s bandwidth. For example, as this spacing is varied from 0.3 mm to 0.5 mm,
the fractional bandwidth changes only from 5.33 to 4.9%, while the insertion loss
increases by less than 0.1 dB. This low sensitivity to inter-resonator spacing is a special
characteristic of MNZ filters, which results from the fact that the filter bandwidth is mainly
determined by the slope of the effective permeability function around the zero value.

Figure 7.19 Layout of the proposed MNZ filter [36].

Figure 7.20 Comparison of simulated and measured responses. A photograph of the filter is shown
in the inset [36].
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Low insertion loss of the filter is witness to the fact that NZ metamaterials do not
inherently suffer from high losses as DNG media do. The insertion loss obtained by
the MNZ filter from Figure 7.19 corresponds to that of a classically synthesized
coupled-resonator filter of third order with an unloaded Q of 150, and the same
bandwidth. Therefore, MNZ filters exhibit losses on par with microstrip coupled-
resonator filters.

To validate the fact that the obtained passband is indeed due to MNZ transmis-
sion, we will analyze the phase variation along the structure. To that end, the phase
of the transversal component of the magnetic field along a line halfway between the
ground and the conductive layer has been extracted at the central frequency of the
passband, equal to 2.44 GHz. This has been compared to the phase of a conventional
50-Ω microstrip line of the same length and at the same frequency, Figure 7.21.
A phase of approximately 120� has been accumulated along the microstrip line,
which precisely corresponds to its electrical length. Although having the same
physical length as the microstrip line, the MNZ filter exhibits a total phase shift of
only 4.7� where the maximal phase variation over its entire length is only 26.9�.
Such behavior – a relatively constant phase over long distances – is the main
characteristic of MNZ media.

As the name suggests, NZ propagation occurs not only when the phase constant is
equal to zero, but also when it is sufficiently small, i.e. when it is near to zero. To
estimate the bandwidth of this phenomenon, i.e. the bandwidth over which the phase
remains relatively constant, maximum phase variation accumulated along the MNZ

Figure 7.21 Phase distribution along the MNZ filter compared to that of a conventional 50-Ω
microstrip line of the same length and at the same frequency. Zero value of the variable Position
corresponds to the center of the structure [36].
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filter has been extracted at various frequencies in the vicinity of the MNZ frequency,
Figure 7.22. As expected, at frequencies far from the MNZ frequency, large phase
variations may be observed which correspond to the actual length of the structure.
However, in the vicinity of the MNZ, frequency phase variation is reduced significantly.
The bandwidth over which this occurs is relatively narrow and approximately equal to
5%. However, it should be noted that this bandwidth is not determined by the topology
of the filter but by the metamaterial unit cells used, i.e. by the slope of their effective
permeability function around zero. To influence the bandwidth, some unit cell other
than the SRR should be used.

The MNZ filter can also be analyzed using the classical coupled-resonator theory.
Since there are three resonators in the structure, i.e. three poles in the filter response, a
third-order model is needed. Specifically, a modified transversal model is used,
Figure 7.23, since the resonators are coupled to a host that exhibits a small phase shift
along its length. In this configuration, resonators 1 and 3 are coupled in series and

Figure 7.22 Frequency dependence of the maximum phase variation accumulated along the MNZ
filter [36].

Figure 7.23 Coupling model of the proposed MNZ filter [36].
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placed in parallel with resonator 2 (the middle resonator in Figure 7.19). Smaller
couplings also exist between resonators 1 and 2, and 3 and 2. The normalized N + 2 x
N + 2 coupling matrix for a bandwidth of 5% and a center frequency of 2.44 GHz is

M ¼

0 0:757 �0:151 0 0
0:757 0 �0:042 0:848 0
�0:151 �0:042 �1:863 �0:143 �0:151

0 0:848 �0:143 0 0:757
0 0 �0:151 0:757 0

2
66664

3
77775: (7.11)

The matrix describes self-resonant frequencies of 2.44 GHz for resonators 1 and 3 and
2.34 GHz for resonator 2. It should be noted that the couplings M12 = M23 are relatively
small compared to M13, which is due to the fact that the central resonator is in parallel
with the series combination of resonators 1 and 3. This is a very different scenario
compared to the case of a filter in which the host is removed while the three resonators
remain in place. In that case, the three resonators would clearly have been coupled in
series and M13 would not be significant.
As can be seen from Figure 7.24, the proposed model describes well the couplings

between source, load, and the resonators, as the S parameter and group delay responses
are well matched to those of the full-wave simulations of the lossless MNZ filter around
the passband frequencies. The model also accurately reproduces a weakly excited
reflection zero outside the passband, which is a special artifact of this type of configur-
ation. Therefore, the proposed model can be used to perform straightforward design
of MNZ bandpass filters and to fine tune the filter’s bandwidth in a similar method as
used in [37].

Figure 7.24 Validity of the model from Figure 7.23 is illustrated by good agreement of its response
with those of full-wave simulated lossless MNZ filter [36].
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As has been discussed in Section 7.3, it can be expected that NZ propagation is
characterized by reduced group delay. To confirm this, group delays of the MNZ filter
and of a standard coupled-resonator filter of third order have been compared in
Figure 7.25. The standard filter has been synthetized with an unloaded Q-factor of
150, with the center frequency and bandwidth equal to those of the MNZ filter, as well
as with one finite transmission zero positioned to match exactly that of the MNZ filter. It
can be seen that the group delay of the MNZ filter is significantly reduced compared to
the standard prototype. Furthermore, the variation in group delay over the passband is
reduced from 5.28 ns for the classical filter to only 2.3 ns for the MNZ filter, i.e. by
more than 56%, thus illustrating the unique properties of NZ filters.

7.5 Multi-band filters based on near-zero metamaterials

It has been shown in the previous section how one-dimensional MNZ media can be
used to design single-band bandpass filters with good performance and reduced group
delay. The proposed idea can be extended to the design of multi-band filters using the
superposition principle. Using adequate host structures and adequate unit cells, this
concept can be applied to the design of filters with (theoretically) any number of
independently controlled passbands. In this section, we will present and analyse in
detail a simple dual-band filter realized by superposition of ENZ and MNZ media
shown in the previous sections. We note that since NZ propagation is a relatively
narrowband phenomenon, properly tuned ENZ and MNZ structures can be combined
without altering the operating mode into the unwanted DNG mode.

Figure 7.25 Comparison of simulated responses of the proposed MNZ filter and an equivalent
coupled-resonator filter [36].
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The dual-band filter proposed here is designed to operate at WLAN frequencies of
great practical interest, namely at 2.4 and 3.5 GHz. Its configuration, shown in
Figure 7.26, relies on three major segments: the low-pass filter which serves as a host,
three complementary split-ring resonators (CSRR) which provide the ENZ passband
around 2.4 GHz, and three individually tailored split-ring resonators (SRR) to provide the
MNZ passband around 3.5 GHz. We note that either ENZ or MNZ propagation could
have been used to obtain the first passband since ENZ and MNZ propagation in quasi-
TEM circuits is obtained in a similar manner. As was demonstrated in the previous
section, ENZ and MNZ structures differ in the metamaterial unit cell used and their
coupling to the host structure – ENZ propagation is obtained using CSRR cells, whilst
MNZ propagation is obtained using SRR cells. Furthermore, every unit cell is capable of
supporting NZ propagation at two NZ frequencies, and the choice of the actual operating
frequency (and the consecutive position the transmission zero) depends on the inductive/
capacitive nature of the host’s segment to which the unit cell is coupled.

The first step in the design of the near-zero dual-band filter is the design of the host
structure. The host needs to exhibit a stopband in the entire frequency range of interest,
including both passbands of the final NZ filter. Furthermore, this stopband must not be a
consequence of a SNG medium, as in such a case it would couple either with ENZ or
with MNZ structure and support DNG propagation.

The final circuit has been designed on the Rogers TMM10 substrate with the
thickness equal to 1.27 mm, dielectric constant εr = 9.2, and loss tangent tanδ =
0.0035. The final low-pass host is identical to the one designed in Section 7.4.3, as it
exhibits a stopband from 2 to 4 GHz. Namely, since both passbands have to be
positioned within the host’s stopband region, such a low-pass filter is suitable for the
design of a dual-band bandpass filter operating at 2.4 and 3.5 GHz.

In the following steps, ENZ and MNZ single-band filters are independently designed
around the identical host, using the approach shown in Section 7.4.3. The layout of the
ENZ filter is shown in Figure 7.27. It includes three CSRRs etched in the ground
plane – two coupled to the high-impedance sections of the host, whilst the middle one is
positioned centrally underneath the low-impedance section so it is exposed to the

Figure 7.26 Layout of the proposed dual-band near-zero filter.
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strongest electrical field available. The response of the single-band filter, Figure 7.28,
reveals that such a configuration provides good selectivity, insertion loss of 2.6 dB, and
a fractional bandwidth of 7.25%.

The layout of the MNZ single-band filter is shown in Figure 7.29 and its response in
Figure 7.30. The MNZ single-band filter exhibits good selectivity, insertion loss of 1.96
dB, and fractional bandwidth of 4.8%.

Finally, two single-band filters are combined in one structure. This is straightforward,
since ENZ and MNZ structures deploy unit cells positioned in different conductive
layers. Furthermore, the fact that both filters use the same host structure reduces the
overall size of the dual-band filter. Comparison of the responses of two single-band
filters with the dual-band filter obtained by their simple superposition is shown in

Figure 7.27 Layout of the ENZ single-band bandpass filter. The relevant dimensions are: a1 = 5.8
mm, b1 = 2.35 mm, g1 = g2 = 0.1 mm, w1 = w2 = 0.1 mm, d = d2 = 0.1 mm, Δx1 = 2.3 mm, Δy1 =
1.35 mm, a2 = 4 mm, b2 = 4.25 mm.

Figure 7.28 Simulated response of the ENZ single-band bandpass filter.
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Figure 7.31. Although two single-band filters use the same host, their mutual influence
is relatively low. The largest influence of one structure on the other is due to the fact the
SRRs and CSRRs are positioned above each other.

As the final step of the filter synthesis procedure, the geometrical parameters of the
filter are optimized to meet the specifications. The final dimensions of the dual-band NZ
filter are: a1 = 6.05 mm, b1 = 2.05 mm, g1 = g2 = 0.1 mm, w1 = w2 = 0.1 mm, d1 = d2 =
0.1 mm, Δx1 = 2.2 mm, Δy1 = 1.35 mm, a2 = 4 mm, b2 = 4.25 mm, a3 = 5.6 mm,
b3 = 3.15 mm, g3 = 0.2 mm, d3 = 0.2 mm, w3 = w4 = 0.4 mm, Δx2 = 1.15 mm, Δy2 =
0.1 mm, a4 = 6.15 mm, b4 = 3.2 mm, g4 = 0.15 mm, d4 = 0.15 mm. It can be seen that
only the parameters Δx1, Δx2, and the dimensions of CSRR under the inductive sections
(a1 and b1) have been slightly changed, which implies that the optimization process is
not very demanding and that desired characteristics are readily obtained.

The optimized response of the dual-band NZ filter is shown in Figure 7.32. It exhibits
passbands at 2.4 and 3.5 GHz, both characterized by good selectivity, low insertion

Figure 7.30 Simulated response of the MNZ single-band bandpass filter.

Figure 7.29 Layout of the MNZ single-band bandpass filter. The relevant dimensions are: a3 = 5.6
mm, b3 =3.15 mm, g3 = 0.2 mm, d3 = 0.2 mm, w3 = w4 = 0.4 mm, Δx2 = 1.5 mm, Δy2 = 0.1 mm,
a4 = 6.15 mm, b4 = 3.2 mm, g4 = 0.15 mm, d4 = 0.15 mm.
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losses of 2.6 and 1.8 dB, return losses of 12 and 13 dB, and fractional bandwidths of
7.2% and 5.5%, respectively.

Finally, to verify that indeed NZ propagation occurs in both passbands, phase
distribution along the filter has been extracted at central frequencies of both passbands,
using approaches similar to those described in Sections 7.4.1. and 7.4.3. The extracted
phase is shown in Figure 7.33 and compared to the phase accumulated along a 50-Ω
microstrip line of the same length and at the same frequency. It can be seen that,
although the dual-band NZ filter is long in terms of guided wavelength, it exhibits a
relatively constant phase in both passbands, which is consistent with NZ media. At the
central frequency of the first passband, phase shift of only 7� is accumulated along the
filter, compared to 184� accumulated over the conventional microstrip line. A similar

Figure 7.32 The response of the optimized dual-band near-zero filter.

(a) (b)

Figure 7.31 Comparison of transmission coefficients (a) and reflection coefficients (b) of two
single-band filters with their superposition – the initial dual-band filter.

260 Multi-band microstrip filters based on near-zero metamaterials



situation occurs at the central frequency of the second passband, where the phase shift is
reduced from 203� accumulated along the microstrip to only 8� in the case of the NZ
filter.

7.6 Conclusion

In this chapter, a new approach to the design of multi-band filters has been presented,
which relies on the use of so-called near-zero metamaterials. Due to a unique character-
istic of this sub-class of metamaterials to support propagation with zero propagation
constant at a non-zero frequency, filters with reduced group delay and a reduced
variation of group delay can be designed.

The chapter focuses on NZ propagation of quasi-TEM modes, needed for the design
of NZ microstrip filters. It examines both the permittivity-near-zero and permeability
near-zero propagation of quasi-TEM waves and demonstrates how it can be used to
design single-band NZ filters. Finally, this idea is extended to multi-band filters and a
dual-band microstrip NZ filter is presented and analyzed. Owing to its flat phase
response, such filters are promising candidates for applications where flat group delay
is required.
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8 Miniature microwave filters using
multi-layer technologies
Irina Vendik, Dmitry Kholodnyak, Viacheslav Turgaliev, Alexander Rusakov,
Shilong Qian, Jia Ni, and Jia-Sheng Hong

8.1 Introduction

Design of miniature, low-cost microwave devices with enhanced functionality has
recently been supported by increasing interest in multi-layer structures. Multilayer
technology provides 3D flexible design of microwave components, circuits, and sub-
systems, and it is very promising for the integration of multi-standard functions in a
single device. So far, it has been successfully used for the design of various microwave
devices that are intended for mass production, such as miniature filters.

In this chapter, we present microwave filters realized in multi-layer architecture.
Firstly, in Section 8.2 we present and analyse in detail two widely used multi-layer
technologies – low-temperature co-fired ceramics and technology based on liquid
crystal polymer material.

Section 8.3 is devoted to single-band multi-layer filters designed using different
approaches. Filters based on sections of artificial transmission lines are presented
together with a detailed discussion of the properties of artificial transmission lines.

The same methods are applied for the design of high-performance dual-band filters
which are presented in Section 8.4. The filters are based on two-mode resonators
realized using a combination of artificial transmission line sections and capacitively
loaded cavities. Additionally, a very compact dual-band immittance inverter based on
artificial transmission lines is presented.

Compact microwave filters, based on capacitively loaded cavities exhibiting a high
Q-factor, designed as multi-layer structures are proposed and discussed in Section 8.5.
Their performance is analysed in detail.

Conclusions are given in Section 8.6.

8.2 Multilayer technology as a base for miniature filter design

Multilayer technology applied to microwave devices allows bridging 2D planar struc-
tures to 3D versions of many microwave designs. Using layers with printed components
connected by metallized vias makes it possible to reduce the dimensions of the devices
drastically. Moreover the multi-layer technology supports the manufacture of miniature
lumped components designed as multi-layer structures of capacitive and inductive
elements. This is followed by the practical use of lumped components for the design
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of many passive microwave devices, including filters, forming a new niche for design-
ers involved in the design of low-cost production.

Multilayer technology can be applied to multi-layer filter design in different ways.
Multilayer filters can be composed of coupled-line resonators or circuit elements that
are located at different layers without any ground plane inserted between the adjacent
layers [1‒3]. Also, there are multi-layer filters that utilize aperture coupling realized in
the common ground between adjacent layers, whilst another type of multi-layer filter is
based on patterning ground to form so-called defected ground structures (DGS) [4‒5].
In addition, widely used multi-layer filtering structures employ passive lumped (quasi-
lumped) L-C-R-components located in different layers that are connected by metalized
via holes.

Recent development of multi-layer microwave filters has been predominantly based
on low-temperature co-fired ceramic (LTCC) technology and the technology based on
liquid crystal polymer material (LCP). These technologies enable the design of mono-
lithic, 3D, cost-effective microwave circuits and systems. In the following two sections,
these technologies will be presented in detail.

8.2.1 Multilayer structures using low-temperature co-fired ceramics (LTCC)

Low-temperature co-fired ceramics are the most commonly used ceramic substrate
material for compact RF designs and system-on-package (SoP) structures. In general,
an LTCC-based device can be defined as a multi-layer circuit fabricated by laminating
green dielectric sheets (terms for unfired tapes; Green TapeTM, Dupont) with printed
conductor lines and firing them all together in one step, Figure 8.1 [6‒7].
Compared to high-temperature co-fired ceramics (HTCC) technology, the main advan-

tage of the LTCC system is the possibility to use low resistive conductors such as silver
and gold instead of tungsten and molybdenum, since the firing temperature for LTCC is
around 850�C, i.e. much lower than that of HTCC. Also, unlike thick-film process, where
successive lamination and firing steps cause bowing and line degradation, the single-step
lamination and firing of LTCC produces a circuit pattern with high-quality line definition.
The competitive advantages of LTCC technology are illustrated in Figure 8.2.

The main parameters of ceramic materials used for LTCC implementation are
presented in Table 8.1.

Conductive materials are one of the important constitutive materials of LTCC, and
they have to meet many requirements in order to find application in a wide range of
high-frequency components. The most important requirements for conductive materials
are as follows:

� low sheet resistance,
� compatibility with resistive layers,
� ability to create electrical and mechanical fine binding,
� good adhesion to substrate (proof against peeling strength).

The base materials of widely used conductive pastes are Au-Ag, binder of Au, Ag, Pt,
and Pd. The Au and Ag pastes have the lowest specific resistance, whilst some Pt-Au

266 Miniature microwave filters using multi-layer technologies



pastes have the highest. Since transmission loss has to be reduced in high-speed circuits,
it is necessary to use a conductor with low electrical resistance, and thus Cu, Au, Ag,
and metals alloyed with them are good candidates for application in LTCC.

As for resistive components, they are realized using resistive paste. Nowadays the
most often used resistive paste in LTCC technology is based on RuO2 since the
structure of ruthenium does not change up to the temperature of 1025�C and it is
thermodynamically stable up to 1400�C.

On the other hand, capacitors are usually made up of three layers, i.e. two conductive
layers separated with one dielectric layer. To realize capacitor values in the required
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Figure 8.1 LTCC manufacturing process [6].

Figure 8.2 Advantages of LTCC technology [8].
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range, different dielectric pastes have to be used. Materials of dielectric pastes are
usually BaTiO3, BaTiO3-epoxi, polymer-ceramic, epoxy-glass mixture.
LTCC exhibits a very low electrical loss and thus can be used in multi-layer

laminated modules that have densely integrated passive and active devices. Figure 8.3
presents an example of a compact module, where multiple circuitries are handled in a
single self-contained, hermetic package by virtue of this technology [8].

Also, the multi-layer characteristic of LTCC technology offers significant benefits in
terms of 3D design flexibility and reliability for RF designs. From this aspect, many
miniaturized LTCC filters for various wireless applications, which were considered
impossible to realize with traditional processes, have been proposed [9‒15].

Table 8.1 Most important parameters of LTCC ceramic materials

LTCC supplier Product
Dielectric
constant εr

Q value
(1/tan d)

Thermal Expansion
coefficient, ppm/�C

Thermal
conductivity,
W/m�K

DuPont
www.dupont.
com

951 7.8 300 (3 GHz) 5.8 3.3
943 7.4 500 (40 GHz) 6.0 4.4

Ferro
www.ferro.com

A6-M 5.9 500 (3 GHz) 7 2
A6-S 5.9 500 (3 GHz) 8 2

Heraeus
www.heraeus.de

CT700 7.5 450 (1 MHz) 6.7 4.3
CT2000 9.1 1000 (450 MHz) 5.6 -

Figure 8.3 Complex LTCC circuit structure [8].
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For example, a lumped-element two-pole bandpass filter for Bluetooth application
was presented in [14], where a mutual inductive coupling was achieved by overlapping
the two inductor strips in the z-direction, resulting in finite transmission zeros. In [15],
strong capacitive couplings between the strips positioned at different layers were
achieved using LTCC technology, resulting in a high-performance filter with wide
bandwidth and reduced size of less than λg=12� λg=12� h (λg is the guided wave-
length at the operating frequency and h is the substrate thickness).

LTCC technology is also used for the design of miniature microwave filters based on
quasi-lumped components. An example of the three-pole bandpass LTCC filter with
quasi-lumped elements for Bluetooth and WLAN applications (2400–2500 MHz) is
presented in [16‒17].

LTCC technology offers a set of benefits:

� a more economical manufacturing process compared with the conventional thick-
film technology;

� mass production methods can be readily applied (several processing steps can be
automated);

� fabrication techniques are relatively simple and inexpensive;
� tapes of different compositions can be manufactured with desired layer

properties;
� electronic circuits can be integrated;
� the possibility of cutting the tape/substrate into different shapes;
� the possibility to bury passive components within the substrate, which reduces

the size of circuits (down to about 50% in comparison with the PCB);
� an almost arbitrary number of signal layers;
� the ability to perform at frequencies over 30 GHz;
� high resistance to ambient working temperatures (up to 350�C);
� good thermal conductivity compared to PCB technology;
� compatibility with the equipment of conventional thick-film technology;
� the electrical parameters of conductive materials (gold, silver, etc.) are excellent.

However, LTCC technology has its limits which make it unsuitable for some applica-
tions. Namely, the first firing stage of LTCC occurs at 850�C, which might not be
acceptable for some fully integrated solutions, such as chips containing active devices.
Therefore, they have to be packaged separately, which significantly increases the
fabrication cost. Furthermore, LTCC is still expensive compared to some conventional
technologies. To realize the full advantages of an integrated SoP system, alternative
material technologies need to be explored.

8.2.2 Multilayer liquid crystal polymer (LCP) technology

Liquid crystal polymer (LCP) is a new and promising organic thermoplastic material
with unique structural and physical properties. Figure 8.4 presents a typical multi-layer
LCP structure. The multilayer structure can be implemented by using a combination of
LCP films of different thickness.
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As can be seen, LCP has two different functional films: one is the core film
ULTRALAM 3850 with a melting temperature of 315�C, which is mainly used to
support metal circuits and has several available thicknesses, such as 100, 50, and 25 μm;
the other one is the bonding film ULTRALAM 3908 with a melting temperature of
280�C, which is utilized as a prepreg layer inserted between different core films for
stack and has a typical thickness of 25 or 50 μm. Table 8.2 summarizes the typical
characteristics of commercially available LCP materials [18–19].

Generally, LCP demonstrates simultaneous exceptional performance with respect to
electrical, thermal, mechanical, and chemical properties, thus it is the perfect match for
technically demanding high-frequency, harsh-environment, and direct implantable
applications. Being a polymer, the cost of LCP is comparable to that of conventional
printed circuit board (PCB) material and is cheaper than LTCC. Active and passive
devices can be integrated in compact, vertically integrated RF modules by using
homogeneous multi-layer LCP technology at low temperature (about 290�C), which
would be more challenging for LTCC technology as stated earlier. Additionally, the low
dielectric constant available in LCP can also be used for antenna applications. More-
over, LCP offers a unique combination of properties, such as low cost and excellent
electrical and mechanical characteristics, which make it a viable technology for SoP-
based systems. Overall, LCP has great potential to act both as a substrate and a package.

The numerous benefits of using LCP as an organic platform include [18]:

� excellent electrical properties up to millimeter-wave frequencies (stable εr of 3.16
� 0.05 and a low loss tangent from 0.0028 to 0.0045 for f < 110 GHz);

� low cost;
� quasi-hermetic (water absorption < 0.04%);
� a low xy coefficient of thermal expansion (CTE), which may be engineered to

match metals or semiconductors;
� thermally stable electrical characteristics as compared with many other substrates;
� lamination capabilities to generate homogenous multi-layer RF architectures;
� relatively low temperature processing (~290�C);
� flexibility for conformal and/or flex-circuit applications;

Figure 8.4 Multilayer structure as a combination of LCP films of different thickness.
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� naturally non-flammable;
� recyclable.

In the light of these advantageous characteristics, various miniaturized LCP filters have
been developed for a wide range of applications. Design methodology for multi-layer
coupled line filters can be effectively used [20]. At the same time, a classical approach
to the filter design using lumped components is promising for multi-layer structures. For
example, in [21] a miniature quasi-lumped-element wideband bandpass filter was
presented based on LCP technology (0.5–2 GHz) by cascading low-pass and high-
pass filters, Figure 8.5. The multi-layer structure is shown in Figure 8.6.
UWB filters have also been designed using multi-layer LCP technology [22–24].

With multi-layer capability, not only broadside coupling can easily be implemented for
designing an ultra-wideband bandpass filter, but also more functionality can be inte-
grated in a compact structure. For millimetre-wave applications, the development of

Table 8.2 Typical Characteristics of Liquid Crystal Polymer (LCP) Films [19]

Value

Property
ULTRALAM
3850

ULTRALAM
3908 Unit

Mechanical Properties
Dimensional MD �0.06 < 0.1 %
Stability CMD �0.03 < 0.1
Tensile strength 200 216 MPa
Tensile modules 2255 2450 MPa
Density 1.4 gm/cm3

Thermal Properties
Coefficient of thermal expansion, CTE
CTE X (30ºC to 150ºC) 17 17 ppm/ºC
CTE Y (30ºC to 150ºC) 17 17 ppm/ºC
CTE Z (30ºC to 150ºC) 150 150 ppm/ºC
Melting temperature 315 280 �C
Relative thermal index (RTI)
RTI Mechanical 190 190 �C
RTI Electrical 240 240 �C
Thermal conductivity 0.5 W/m�K
Electrical properties
Dielectric constant (10 GHz, 23ºC) 2.9 2.9
Dissipation factor (10 GHz, 23ºC) 0.0025 0.0025
Surface resistivity 1.0 x 1010 1.0 x 1012 MOhm
Volume resistivity 1.0 x 1012 2.6 x 1014 MOhm cm
Dielectric breakdown strength 1378 118 KV/cm
Environment properties
Chemical resistance 98.7 98.7 %
Water absorption (23ºC, 24-h) 0.04 0.04 %
Coefficient of hygroscopic expansion, CHE (60ºC) 4 4 ppm/%RH
Flammability VTM-0 VTM-0
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integrated passive devices for V-band (50–75 GHz) transceiver applications using LCP
technology was reported [25], where filter, matching networks, duplexers, and antenna
arrays have been designed, implemented, and characterized.

8.3 Design of miniature microwave filters based on RH/LH transmission lines
using multi-layer technology

In this section, we present resonators and filters realized in multi-layer architecture
that have been designed using different methods. We present compact bandpass filters

Figure 8.6 Multilayer structure of the filter in Figure 8.5.

(a) (b)

Figure 8.5 UWB filter implemented in LCP package. a) Equivalent diagram. b) Multilayer LCP
structure.
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designed with quasi-lumped elements embedded in multi-layer packages. We give a
thorough discussion on behavior of artificial transmission lines (TL) exhibiting right-
handed (RH) and left-handed (LH) properties and propose miniature single-band and
dual-band filters based on a combination of such transmission line sections. Among
them the following filters are considered: the bandpass filter based on the signal-
interference concept; ultra-wideband filter based on a section of composite right/left-
handed (CRLH) transmission lines; dual-band filter using dual-mode resonators on RH/
LH TLs; tunable dual-band filters on RH/LH TLs. Since all these filters are designed
using a combination of RH/LH TLs, for a better understanding we give a brief descrip-
tion of the main properties of artificial RH- and LH-transmission lines.

8.3.1 Characteristics of right/left-handed (R/LH) artificial transmission lines

Different approaches are used for a description of the fundamental electromagnetic
properties of metamaterials and the practical realization of these materials as well.
Among them, the transmission line (TL) approach gives an efficient design tool for
microwave applications providing a correct description of the physical properties of
metamaterials [26–29].

A conventional transmission line with the positive phase velocity behaves as a right-
handed transmission line (RH TL). An artificial RH TL can be formed as a ladder
network of capacitors connected in shunt and inductors connected in series. The unit
cell of the RH TL is shown in Figure 8.7(a). The dual transmission line can be designed
as a ladder network of inductors connected in shunt and capacitors connected in series
as in the unit cell shown in Figure 8.7(b). In this TL, the phase velocity is negative and
the line is referred to as the left-handed transmission line (LH TL). A backward wave
propagates along the LH TL, which can be considered as a one-dimensional
metamaterial.

A more general model of an LH TL is the composite right/left handed (CRLH)
structure, which includes RH effects [28]. In practical applications, the influence of RH
effects is negligibly small, and many interesting features can be observed when a
cascaded connection of RH TL and LH TL is used. The most important feature of the
LH and RH TLs is that their dispersion characteristics are described by different
equations. That feature can be used for many beneficial applications.

(a) (b)

Figure 8.7 (a) Unit cell of the RH TL. (b) Unit cell of the LH TL.
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The homogeneous RH TL presented as a cascaded connection of the unit cells is
described by the telegraph equations. The voltage and current waves in the line are
described as follows

V ¼ V0e
iðωt�kzÞ, (8.1)

I ¼ I0e
iðωt�kzÞ, (8.2)

with the wave number k = kR defined as

kR ¼ ω
ffiffiffiffiffiffiffiffiffiffi
L1C1

p
> 0, (8.3)

where L1 and C1 are the inductance and capacitance per unit length correspondingly.
Both phase velocity vph and group velocity vg are positive, therefore the RH TL supports
the propagation of the forward wave. In line with (8.3), describing the dispersion law,
the wave number is proportional to the frequency.

The characteristic impedance is defined as

Z0 ¼ V

I
¼

ffiffiffiffiffiffi
L1
C1

r
: (8.4)

For a homogeneous LH TL formed as a cascaded connection of the unit cells,
Figure 8.7(b), the telegraph equations also can be written using the following para-
meters: the inductance per unit length L-11and capacitance per unit length C-1

1.
The solutions to the wave equations for voltage and current in this case look as (8.1)

and (8.2) with the wave number defined as

kL ¼ � 1
ω
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

� �
1

� 1
C

� �
1

s
< 0: (8.5)

The wave number and the phase velocity are both negative, whereas the group velocity is
positive. Hence, the LH TL supports propagation of the backward wave. In line with (8.5),
the wave number kL (propagation constant) is inversely proportional to the frequency.
The characteristic impedance of the LH TL is defined as

Z0 ¼
ffiffiffiffiffiffiffiffiffi
1
C

� �
1

1
L

� �
1

s
: (8.6)

Equations (8.3)‒(8.6) describe the homogeneous infinitely long TL using the reactive
parameters per unit length. A section of such a line of length l can be described by the
electrical length θ defined as

θR,L ¼ kR,L�l: (8.7)

In accordance with (8.3), the frequency dependence of the electrical length of a section
of the RH TL is

θRðωÞ ¼ θ0R
ω
ω0

, (8.8)
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where θ0R ¼ kRl > 0 is the electrical length at the frequency ω0. In the case of a section
of the LH TL, the frequency dependence of the electrical length is written as

θLðωÞ ¼ θ0L
ω0

ω
: (8.9)

Here θ0L ¼ kLl < 0 is the electrical length at the frequency ω0.
In practice, the artificial RH and LH TLs can be composed as a periodical structure

containing one inductive and one capacitive component in the unit cell of the length l
defined as a real geometric length of the lumped components, Figure 8.8.

Using the translation symmetry for a description of the I-V wave propagating along
the one-dimensional structure [30–31] and solving the telegraph equations for the RH
TL, we obtain after some transformations the following dispersion equation

sin 2 θ
2

� �
¼ 1

4
ω2L0RC0R ¼ ω2

ω2
cR

(8.10)

with the cut-off frequency

ωcR ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0RC0R

p : (8.11)

For ω > ωcR, θ is an imaginary quantity and the wave attenuates: the higher frequency,
the greater the attenuation is. In the low-frequency limit (ω << ωcR)

ω
ωcR

¼ � sin
θ
2

� �
ffi � θ

2
(8.12)

and

kR ¼ 2ω
lωcR

¼ ω
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L1RC1R

p
(8.13)

(a)

(b)

Figure 8.8 (a) Artificial RH TL on lumped elements. (b) Artificial LH TL on lumped elements.
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with L1R ¼ L0R=l and C1R ¼ C0R=l. The artificial lumped element RH TL behaves at
ω << ωc as an infinitely long perfect TL with the linear dispersion law. In a wide
frequency range, the artificial periodic RH TL, Figure 8.8(a) is considered as a low-pass
lumped element TL.

Now we consider the LH TL shown in Figure 8.8(b). It is important to mention that
the real capacitances and inductances in this artificial line are related to the parameters
per unit length in Figure 8.7(b) as C0L ¼ ½C1

�1l	�1 and L0L ¼ ½L1�1l	�1.
The same consideration of the artificial LH TL, Figure 8.8(b), as was used for the RH

TL, Figure 8.7(a), leads to the following dispersion equation

sin 2 θ
2

� �
¼ 1

4
1

ω2L0LC0L
¼ ω2

cL

ω2
(8.14)

with the cut-off frequency

ωcL ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0LC0L

p : (8.15)

For ω < ωcL, θ is imaginary and the wave attenuates: the lower frequency, the more is
the attenuation. In the high-frequency limit (ω >> ωcL)

ωcL

ω
¼ � sin

θ
2

� �
ffi � θ

2
(8.16)

and

kL ¼ 1
ω
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
L

� �
1L

1
C

� �
1L

s
(8.17)

with 1
L

� �
1L ¼ 1

L0L

� �
� 1l and 1

C

� �
1L ¼ 1

C0L

� �
� 1l. The artificial lumped element LH TL,

Figure 8.8(b), behaves as an infinitely long perfect TL with kL inversely proportional
to ω. The artificial periodic LH TL is considered as a high-pass lumped element TL. The
dispersion characteristics of the RH and LH TLs are shown in Figure 8.9. In further
consideration, the frequency range is limited by the inequalities: ω << ωcR for the RH
TL and ω >> ωcL for the LH TL.
Taking into account the symmetry of the section of a homogeneous TL, it is possible

to replace it by the symmetric lumped element T- or Π-circuits [32]. The unit cells

(a) (b)

Figure 8.9 (a) Dispersion characteristic of RH lumped element TL. (b) Dispersion characteristic of
LH lumped element TL.
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presented in Figure 8.10 are used as equivalent circuits of the sections of RH and LH
transmission lines. It is supposed that the geometrical length of the lumped element unit
cell is equal to zero. The L-C components of the equivalent unit cells designed as T- and
Π-circuits can be found by the following equations [32]

LR,T ¼ Z0 tan ðθ0R=2Þ
ω0

, CR,T ¼ sin θ0R
ω0 Z0

, (8.18)

LR,Π ¼ Z0 sin θ0R
ω0

, CR,Π ¼ tan ðθ0R=2Þ
ω0 Z0

(8.19)

for the RH TL and

LL,T ¼ Z0

ω0 sin jθ0Lj , CL,T ¼ 1
ω0 Z0 tan ðjθ0Lj=2Þ , (8.20)

LL,Π ¼ Z0

ω0 tan ðjθ0Lj=2Þ , CL,Π ¼ 1
ω0 Z0 sin jθ0Lj (8.21)

for the LH TL.
At the frequency range close to the chosen frequency ω0, the characteristics of the

T or Π circuits with LC parameters defined by (8.18)–(8.21) are the same as for the
corresponding RH/LH TL sections with known Z0 and θ. This equivalent presentation
of the RH/LH TL sections is used in the design of microwave devices.

A generalized approach to the metamaterial TLs was suggested in [28, 33] introducing
the concept of a composite right/left-handed (CRLH) transmission line. Figure 8.12(a)
shows the equivalent circuit of a unit cell of a transmission line containing series
capacitor CL and the inductance LR. These reactive components form a series resonance
circuit with resonance frequency ωse. The second part of the unit cell is represented
by a parallel circuit with capacitor CR and inductance LL. This circuit has resonance
frequency ωsh. At low frequencies, the properties of the transmission line are deter-
mined primarily by parameters LL and CL, which provide a negative phase velocity of
the wave in the transmission line, that is impart the properties of an LH TL to the line.
At higher frequencies, the properties of the transmission line are governed primarily by
reactive components LR and CR, which provide a positive phase velocity of the wave
in the transmission line, that is impart the properties of a RH TL to the line (subscripts
R and L refer to the RH- and LH TLs, respectively).

(a) (b) (c) (d)

Figure 8.10 Lumped-element equivalent circuits of the RH TL and LH TL sections. (a) T-section of
RH TL. (b) Π-section of RH TL. (c) T-section of LH TL. (d) Π-section of LH TL.
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The dispersion diagram of the unit cell [28] is presented in Figure 8.11(b) by curves
2 and 4. Curves 1 and 3 correspond to ideal RH TL and LH TL. At higher frequencies, the
absolute value of the impedance of CL tends to zero, while that of the impedance of LL
goes to infinity; accordingly, the cell contains only series inductance LR and parallel
capacitance CR. The unit cell acts as a low-pass filter with upper cut-off frequency ωsh.
Accordingly, at low frequencies, the cell has the properties of a high-pass filter with
lower cut-off frequency ωse. In the general case, the frequencies ωsh and ωse are
different and therefore there exists a forbidden gap between the positive and negative
dispersion regions. However, if these frequencies are the same, the gap disappears,
Figure 8.11(c). In this case, the unit cell is said to be “balanced” and the length of a
wave propagating in the transmission line at frequency ω0 tends to infinity.

8.3.2 Design of multi-mode resonators based on a combination of R/LH TL sections

Resonator on a transmission line section has a set of resonant frequencies, which are
defined by the following resonance condition:

θΣ ¼ π � n, (8.22)

where n ¼ 0,� 1,� 2,� 3, :::, θΣ is the total electrical length of the resonator and n is
the resonance number. For the resonator on the natural TL section (RH TL), n is a
positive number. In case of a cascaded connection of RH and LH TL sections,
the spectrum of the resonant frequencies is formed by positive and negative numbers
of responses, including the zero-order resonance [28]. The spectrum of the resonant
frequencies is a set of values defined by the parameters of the RH and LH TL sections.

Let us consider the equivalent diagram of the symmetrical structure of the RH-LH-
RH resonator, Figure 8.12. The resonator is formed by a cascaded connection of the RH
and LH TL sections.

The resonance condition is defined as [34–35]

cos�1 cos 2θR � fþn

f 0

� �
cos 2θL � f 0fþn

� �
þ0:5ðZ�1

RL �ZRLÞsin 2θR � fþn

f 0

� �
sin 2θL � f 0fþn

� �
2θL

	 

¼ nπ,

(8.23)

(a) (b) (c)

Figure 8.11 (a) Equivalent circuit of a section of CRLH TL. (b) Dispersion diagram of the CRLH
TL: unbalanced case. (c) Dispersion diagram of the CRLH TL: balanced case.
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cos�1 cos 2θR � f�n

f 0

� �
cos 2θL � f 0f�n

� �
þ0:5ðZ�1

RL �ZRLÞsin 2θR � f�n

f 0

� �
sin 2θL � f 0f�n

� �
2θL

	 

¼�nπ,

(8.24)

where fn and f-n are the resonant frequencies for n > 0 and n < 0 correspondingly,
θR and θL are the electrical lengths of the TL sections at the chosen frequency f0, and
ZRL = ZR/ZL is the ratio of the characteristic impedances of the RH and LH TL sections.
The resonant frequency spectrum of the resonator is shown in Figure 8.13. The number
of resonances is infinite.

The resonator based on a combination of RH/LH TL sections has a unique resonant
property, referred to as the zero-order resonance when the phase constant of the
dominant mode is zero. The phase and amplitude of standing waves in the resonator
are distributed uniformly over the whole structure at the resonant frequency. Since the
LH TL does not exist in nature, the practical realization is provided by using artificial
TL sections. The resonator is designed as a cascaded connection of T- or Π-lumped
element RH and LH TL unit cells shown in Figure 8.10. The resonant frequency
depends on the configuration and parameters of the unit cells used in the resonator
design.

The zero-order resonator can be designed using the resonance condition defined by
the following system of equations

Figure 8.13 Resonant responses of the RH-LH-RH resonator shown in Figure 8.12 with ZRL = 1.

Figure 8.12 Symmetrical structure of the RH-LH-RH (R-L-R) resonator.
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cos �1½ cos 2θR cos 2θL þ 0:5ðZ�1
RL � ZRLÞ sin 2θR sin 2θL	 ¼ 0, (8.25)

sin �1 2 sin θR cos θL
ðZRL � Z�1

RL Þ þ ðZRL þ Z�1
RL Þ cos θR

	 

� θL ¼ 0: (8.26)

In many practical applications, it is necessary to reject higher harmonics. The
popular way to suppress the higher harmonics is using a stepped-impedance reson-
ator (SIR). In order to obtain more freedom in the design of a resonator with
suppressed harmonic responses, a SIR based on a cascaded connection of the LH
TL and RH TL sections is considered [34–36]. In contrast to the ordinary SIR on
RH transmission line sections, the advanced structure gives a possibility to change
the resonant frequency of higher modes by using different dispersion characteristics
of the RH and LH TLs even in the case of the same characteristic impedance of
the TL sections. Since the LH TL can be realized as the lumped element equivalent
of the LH TL only, such a design makes it possible to decrease the resonator
dimensions drastically, just using the RH TL part of the resonator as a distributed
TL section.

The ratio of the characteristic impedances ZRL ¼ ZR=ZL and the electrical lengths of
the transmission line sections θR and θL are considered as variable parameters of the
SIR. For the two-mode resonator, these parameters can be found from equations written
for two modes with the resonance frequencies ω0 (n = 1) ω1 (n = 2)

tan ðθ0LÞ ¼ �ZRL cot ðθ0RÞ, (8.27)

tan θ0L
ω0

ω1

� �
¼ Z�1

RL tan θ0R
ω1

ω0

� �
: (8.28)

Here θ0R and θ0L are the electrical lengths of RH and LH TL sections at the fundamental
resonant frequency ω0. The similar resonance conditions can be defined for any pair of
adjacent resonant frequencies.

In line with (8.27) and (8.28), the shorter the length of the RH TL section, the higher
is the resonant frequency ω1. At the same time, the higher the ratio ZR/ZL, the higher is
ω1 and the more effective is the suppression of the higher harmonics. This is illustrated
in Figure 8.15 with the results of the simulation of the SIR with different values of the
length of the RH TL section (f0 = 1.75 GHz).
The open-ended lumped element SIR based on a cascaded connection of RH and

LH TL sections is shown in Figure 8.15(a). The resonator has the R-L-R structure with
T-type of the RH TL section and Π-type of the LH TL section. The characteristic
impedance and electrical length of each section is defined by the LC parameters. For
the simulation of scattering parameters, the small coupling capacitances C1 on input and
output of the resonator have been introduced. The transmission characteristic with three
resonance responses for n = -1, n = 0, and n = +1 is presented in Figure 8.15(b). In case of
the SIR designed on lumped elements, the number of resonances is limited and only three
resonances exist for the resonator under consideration. In general, the number of reson-
ances depends on the number of L- and C-components and the method of their
connections.
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The same approach is applicable for a variety of possible combinations of TL
sections in a resonator: (i) only LH TL sections with ZRL ¼ 1 or ZRL 6¼ 1; (ii) only
RH TL sections with ZRL 6¼ 1 (SIR); and (iii) cascaded LH and RH TL sections with
ZRL ¼ 1 or ZRL 6¼ 1.

Figure 8.14 The resonant responses for n = 1 and n = 2 of the dual-mode resonator for different
electrical lengths of RH TL sections and ZR/ZL = 2.5.

(a)

(b)

Figure 8.15 a) Equivalent diagram of the resonator on cascaded connection of the RH/LH TL sections
(R-L-R-structure). b) Resonant responses of the R-L-R-resonator for n = -1, n = 0, and n = +1.
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The most attractive feature of the resonators with a cascaded connection of RH and
LH TL sections using lumped components is their ability to provide any desirable
number of resonant responses with arbitrary chosen frequencies.

8.3.3 Compact bandpass filter based on transversal signal-interference technique using
RH/LH TL sections

Among the various filter topologies and design techniques, the signal-interference
technique is one of the popular solutions for microwave planar filter design, since filtering
functions with sharp skirt selectivity can be attained in simple networks. The usefulness
of signal-interference filters has been proven in the past for moderate-to-broadband
bandpass/bandstop specifications with both single- and multi-band characteristics
[37–40]. However, as the main drawbacks, these filter designs presented excessive circuit
sizes and difficulties in carrying out frequency-asymmetrical filtering actions, as they
exclusively consisted of distributed transmission-line segments whose electrical lengths
were selected as multiples of π/2 (e.g. 3π/2 used in [38]) at a chosen design frequency. In
addition, in order to broaden stopband bandwidths, these filters usually require more than
one transversal filtering section, as well as extra matching lines, leading to increased
circuit size as well. Even so, there are always some signals transmitted near the dc
frequency, which degraded the out-of-band performance to some extent.

To overcome the aforementioned shortcomings, a novel signal-interference filter
using artificial LH and RH TL sections is discussed in this section. As demonstrated
in [26–28] [32], and [41], the LH TL supports backward-wave propagation and exhibits
negative electrical length. Hence, replacing the conventional TL with long electrical
length by a short artificial LH TL in the single-interference filter, the circuit size can be
significantly reduced. Additionally, it is noteworthy that owing to the high-pass nature
of the LH TL, the proposed filter achieves an advanced characteristic of the frequency-
asymmetrical stopband. To further reduce the dimensions of the filter, all the artificial
RH and LH TL sections are implemented in the form of multi-layered structures using
LCP technology.

Figure 8.16 presents a miniature bandpass filter topology having two transmission
zeros placed near both passband edges [42]. As shown, the filter structure is based on
the transversal signal-interference concept, but consists of a LH TL and a RH TL
sections connected in-parallel. The RH and LH TLs have the characteristic impedances
ZR, ZL and the electrical lengths θR, θL, respectively. It is assumed that θR ¼ 90∘ and
θL ¼ �90∘ at the centre frequency f0.

Based on the fundamental theory of the artificial transmission lines, as indicated in
Figure 8.16(b), the RH TL section is implemented as a cascade of two identical
T-networks consisting of the series inductances LR and the shunt capacitance CR. The
LH TL section is realized as one unit-cell of the Π-network with the shunt inductances
LL and the series capacitance CL. The relevant circuit parameters of each unit cell can be
easily derived using (8.18) and (8.21).

It is well known that during the design process of the signal-interference filters, the
electrical lengths and characteristic impedances of the transversal filter lines are the key
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parameters in achieving proper amplitude and phase responses. Specifically, the gener-
ation of perfect-constructive signal interference at the desired centre frequency is the
main condition to be forced. For the structure in Figure 8.16(a), the normalized
admittance matrix at the desired centre frequency f0 can be written as

½Yðf 0Þ	 ¼ ½Yðf 0Þ	R þ ½Yðf 0Þ	L ¼ j
0 �yR þ yL

�yR þ yL 0

	 

, (8.29)

where yR = Z0/ZR and yL = Z0/ZL.
In turn, the power reflection coefficient of the proposed filter at the central frequency

can be readily obtained by the transformation

S11ðf 0Þ ¼
ð1þ Y11Þð1þ Y22Þ þ Y12Y21

ð1þ Y11Þð1þ Y22Þ � Y12Y21
¼ 1� ðyR � yLÞ2

1þ ðyR � yLÞ2
: (8.30)

To this end, if a desired value of the reflection coefficient at the central frequency is
given as S11ðf 0Þ 
 k, the admittances yR and yL of the RH TL and LH TL should satisfy
the following condition:

1� k

1þ k

 ðyR � yLÞ2 


1þ k

1� k
: (8.31)

Note, there are two optional solutions obeying (8.31) when the admittance yR is either
smaller or larger than the admittance yL. For better understanding, let us illustrate this
fact by some typical examples summarized in Table 8.3, where we assume k = 0.316
corresponding to the desired reflection coefficient value S11ðf 0Þ 
 10 dB. For the
given passband specification, once the impedance ZL is determined at the earlier step
of the filter design, then the range of approximate values of the impedance ZR can be
obtained or vice versa. However, it was found that two transmission zeros appear
around the passband allowing to improve the filter selectivity only when ZR > ZL,
Figure 8.17.

In addition, the fractional bandwidth is mainly determined by the impedance ratio ZR/
ZL: the broader bandwidth is obtained as the higher impedance ratio is chosen. For
example, as implied in Figure 8.18, the fractional bandwidth of around 14% is provided

(a) (b)

Figure 8.16 (a) The bandpass filter structure based on signal-interference concept. (b) Equivalent
circuit of the filter.
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Figure 8.18 Transmission coefficient versus frequency for filters with different fractional
bandwidths corresponding to different impedance ratio ZR/ZL.

Figure 8.17 Typical frequency response of the proposed filter when ZR>ZL (solid lines) and ZR<ZL
(dashed lines).

Table 8.3 Typical examples of filter RH TL and LH TL characteristic impedance values

k = 0.316 (S11 <= – 10 dB)

LH TL impedance RH TL impedance

ZR > ZL (yR < yL) ZR < ZL ((yR > yL))

ZL = 50 Ohm (yL = 1) ZR > 178 Ohm 29 Ohm > ZR > 21 Ohm
ZL = 100 Ohm (yL = 0.5) None 40 Ohm > ZR > 26.5 Ohm
ZL = 25 Ohm (yL = 2) 82 Ohm> ZR > 39 Ohm 18 Ohm > ZR >14 Ohm
ZL = 10 Ohm (yL = 5) 14 Ohm > ZR > 11 Ohm 9 Ohm > ZR > 8 Ohm
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for the filter with ZR = 12 Ohm and ZL = 10 Ohm, whereas the use of ZR = 70 Ohm and
ZL = 25 Ohm allows to achieve the fractional bandwidth of 61%. The two filter
examples illustrated in Figure 8.18 have the same impedance ratio (ZR/ZL = 70/25 =
126/45 = 2.8) and are alike in frequency response. However, when increasing the
impedance ratio to achieve a wider passband, the rejection level in the stopband gets
worse accordingly, Figure 8.18. Hence, there is a trade-off between the bandwidth and
stopband performance.

Figure 8.19 demonstrates that the filter response can be adjusted and optimized by
varying the capacitances CL and CR. In Figure 8.19(a), the transmission zero below the
passband is tuned by changing the values of CL. Also the lower cut-off frequency and
the location of the lower pole can be adjusted accordingly, while the upper ones remain
almost unchanged. On the contrary, as shown in Figure 8.19(b), by changing the CR

values, the transmission zero above the passband, as well as the upper cut-off frequency
and the location of the upper pole are adjusted more significantly than the lower ones.
Hence, the locations of two transmission zeros and the bandwidth can be adjusted
independently by modifying the capacitances CL and CR, with the fixed values of LL and
LR that results in an optimized frequency response being obtained.

An experimental sample of the designed filter is fabricated using multi-layer LCP
lamination technology. According to the above-mentioned design guidelines and filter
equivalent circuit, the filter layout shown in Figure 8.20 is implemented as a five-metal-
layer LCP structure using three types of LCP films (100 μm thick LCP core film, as well
as 50 μm and 25 μm thick LCP bonding films). Specifically, the form of the parallel-
plate capacitor is adopted to obtain the LH series capacitance CL, which can be made
extremely small by reducing the gap between the two plates. The LH shunt inductance
LL is generated by the stub lines. The high-impedance line linking two 50 Ohm
termination ports introduces a small RH series inductance LR and the spacing between
the conductive plate and the ground enclosure introduces a RH shunt capacitance CR.
The measured S parameters, the simulated filter performance obtained by Sonnet

software [44], and the theoretical frequency response of the filter equivalent circuit are

(a) (b)

Figure 8.19 Simulated frequency response of the filter shown in Figure 8.16 (b) by adjusting the
capacitances CL(a) and CR (b).
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shown in comparison in Figure 8.21. High performance is achieved for the filter with
two transmission zeros designed for the centre frequency of 2.06 GHz and 3-dB
bandwidth of 24%. The measured insertion loss in the passband is about 1.5 dB, and
the measured transmission zeros are located at 1.69 GHz and 3.26 GHz, respectively.

The photograph of the fabricated filter prototype is shown in the inset to Figure 8.21.
The size of the filter is 5.8 mm � 4.8 mm (0.06 λg � 0.05 λg), excluding the input and
output microstrip lines. Furthermore, a simple performance comparison with other left-
handed bandpass filters in the literature is summarized in Table 8.4 to highlight the
merits of the proposed filter.

8.3.4 Ultra-wide-band filters based on composite R/LH transmission line

Since the authorization by the US Federal Communications Commission (FCC) in
February 2002 for the unlicensed use of ultra-wideband (UWB) from 3.1 to 10.6 GHz

Figure 8.20 The multi-layer LCP implementation of the proposed filter based on the structure
shown in Figure 8.16 (ZL = 10 Ohm ZR = 13 Ohm, LL = 0.7958 nH, CL = 7.9577 pF, LR = 0.4285
nH, CR = 4.3284 pF).

Figure 8.21 Measured S parameters of the filter compared with the results of the EM and circuit
simulations.
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for indoor and handheld systems [45], the design and mass manufacturing of small size,
low cost, and high-performance UWB filters have received a lot of attention. It is
desirable that the UWB filters have as few elements as possible, while still meeting
design specifications, such as the number of poles, selectivity, and stopband attenuation.
This does not only reduce the size and cost of the filter, but also passband insertion loss.
Practical applications require that the designed filter should be easily mass manufac-
tured with high yield. This requires that UWB filters have as simple a structure as
possible to simplify the manufacturing process, reduce the cost, and improve yield.

CRLH TLs may be effectively used for UWB filter design. For this purpose, a
traditional CRLH-TL [28] was suggested to be used. The filter equivalent circuit is
shown in Figure 8.22(a). With this circuit, it can be easily seen, due to the high pass

Table 8.4 Comparison with other reported left-handed bandpass filters

Ref. Fabrication technology f0 (GHz) Size (mm)
Number of
transmission zeros

[42] PCB (εr = 2.2) 4.35 6.07 � 5.14 1
[43] PCB (εr = 10.2) 3.5 4.29 � 5.09 1
This work LCP (εr = 3.0) 2.06 5.80 � 4.80 2

(a) (b)

(c)

Figure 8.22 (a) Equivalent diagram of UWB filter on CRLH TL section. (b) Equivalent diagram of
the filter with additional coupling capacitor C0. (c) Simulated UWB filter performance.
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nature of the LH elements (Cl and Ll) and the low pass nature of the RH elements
(Cr and Lr), that a bandpass response is provided. The filter response can be improved
if an additional transmission zero is produced at the upper stopband. To achieve this,
a coupling capacitor C0 between input and output ports is introduced, Figure 8.22(b)
[21] [46].

The result of the circuit simulation is shown in Figure 8.22(c) (solid lines), in
comparison with the result obtained without the coupling capacitor (dashed lines).
The circuit efficiently produces a UWB response with additional transmission zero in
the upper stopband. Only six quasi-lumped elements and a capacitive coupling are used.
The filter was fabricated using LCP technology [46–47]. The multi-layer structure of the
filter consists of five layers of Rogers ULTRALAM® 3000 series (εr = 3, tanδ =
0.0025). The LCP implementation of the filter is presented in Figure 8.23(a). The filter
area is 13 mm x 10 mm, which corresponds to the linear dimensions of 0.4 λg at the

(a) (b)

(c)

Figure 8.23. (a) LCP implementation of the UWB filter. (b) Photograph of the filter. (c) The filter
performance.
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central frequency f0. The photograph of the filter is shown in Figure 8.23(b) and its
experimental performance is demonstrated in Figure 8.23(c). The measured in-band
insertion loss is less than 0.5 dB and in-band return loss is better than 15 dB.

The performance of the UWB filter can be improved by including resonant compon-
ents between input and output for the realization of additional transmission zeros [47].
Figure 8.24(a) shows the corresponding circuit topology. The idea for this topology
comes from a traditional cross-coupled lumped element bandpass filter, dash-circled in
Figure 8.24(a), where the cross-coupling capacitor C0 and series capacitor C1 are split
into two capacitors with capacitance (2�C0) and (2�C1), respectively, for symmetrical
representation. This produces a transmission zero in the stopband as shown in
Figure 8.24(b), dashed lines.

Additional inductance is added between the two cross-coupling capacitors and
connected to the ground. As can be seen in Figure 8.24(b), compared to the classic
cross-coupled filter, this topology gives not only an extra pole in the passband, but also
provides a second transmission zero in the stopband, which gives high selectivity on the
upper passband edge and a wide stopband with 31dB rejection theoretically.

The circuit topology shown in Figure 8.24(a) can be represented by the circuit model
in Figure 8.25(a), and further the dash-circled T-section in Figure 8.25(a) can be
transformed to the dash-circled Π-section in Figure 8.25(b) by using T- and Π-circuit
equivalence. The obtained circuit can be easily described analytically in order to find S
parameters and define the transmission zero locations.

To produce a UWB bandpass response with a 20 dB return loss (0.04 dB passband
ripple) and 3 dB cut-off at 3.1 GHz and 10.6 GHz, a multi-layer lumped element UWB
filter is designed. This design is implemented in a multi-layer LCP package (Rogers
ULTRALAM® 3000).

The test structure is shown in a photo in Figure 8.26(a). The total thickness of the
design is 0.4 mm and the separation between the first two metal layers is 0.05 mm to
provide a strong coupling between the two layers. The size of the filter excluding the

(b)(a)

Figure 8.24 (a) Equivalent diagram of the UWB filter with resonant circuit between input and
output. (b) Simulated filter performance.
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50 Ohm feed line is 5.6 mm � 5.6 mm � 0.4 mm, which is 0.2 λg � 0.2 λg � 0.014 λg,
where λg is the guided wavelength at the UWB centre frequency of 6.85 GHz.
Compared with the previous miniature LCP UWB filter [46], it occupies 30% less
planar area with similar performance. The test device connected with the Anritsu
3680 Test Fixture was measured on a HP8510 Network Analyzer. The measured result
compared with the simulation is shown in Figure 8.26(b). It has less than 0.37 dB
midband insertion loss, 15 dB return loss, and 21 dB stopband attenuation.

8.4 Dual-band microwave filters based on RH/LH transmission lines using
multi-layer LTCC technology

In advanced multi-band wireless systems, microwave bandpass filters with dual-band
operation are highly demanded for their potential for size and complexity reduction. As
a rule, the multi-mode stub-loaded stepped-impedance resonators are designed to reduce
the number of the assembled resonators and, thus, miniaturize the filter size [48].

(a) (b)

Figure 8.25 (a) Impedance representations of the proposed circuit model in Figure 24(a).
(b) Simplified representations for S parameters calculations.

(a) (b)

Figure 8.26 (a) Photo of the fabricated sample. (b) UWB filter performance.
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In this section, multi-layer filters exhibiting dual-band response are considered.
The filters are based on two-mode resonators designed as a cascaded connection
of the LH TL and RH TL sections. Besides, composite right/left-handed (CRLH)
transmission lines have been used to design dual-band immitance inverters.
Additionally, a tunable counterpart of the dual-mode resonator is presented, which
has been used for the design of a dual-band filter that exhibits a wide tunable
range and high flexibility. All the devices are implemented in the multi-layer
LTCC technology.

Band-pass filters designed based on a combination of artificial RH/LH TL sections
using multi-layer LTCC technology demonstrate the following advantages:
� miniaturization is provided by the 3D design of the resonators and filters using a

large number of ceramic layers (up to 16) of different thicknesses for the
realization of passive components;

� a high degree of integrations is realized; the devices fabricated with LTCC
technology represent a chip element, which can be used for surface mounting
and is compatible with semiconductor monolithic integrated circuits (MIC); such
a ready-made module makes it possible to not only reduce its weight and size, but
also to reduce the cost of production;

� due to using lumped LC components for the design of resonators for sections of
RH and LH TLs, the number of resonances is limited and no spurious passbands
are observed;

� non-equidistant spectrum of the resonances is a key feature of the resonant
structures using a combination of artificial TL sections with positive and negative
dispersion, as well as the possibility to control the position of the resonance
frequencies, which adds flexibility to the resonator (filter) synthesis procedure;

� introduction of additional redundant elements, such as additional transmission
zeros provides increased frequency selectivity;

� with the help of control devices, such as semiconductor varactor diodes or
MEMS devices used as surface mount components, tunable and reconfigurable
frequency selective devices may be easily designed.

8.4.1 Two-mode resonators and dual-band filters based on a combination
of R/LH TL sections

The design of dual-mode resonators, which find application in both single-band and
multi-band filters is a challenging problem in many practical applications [49]–[51].
Using the RH/LH SIR for this purpose is beneficial because of the possibility to design a
resonator with an arbitrary number of resonant responses at arbitrary frequencies,
providing effective suppression of higher harmonics.

Let us consider the main approach to the design of a dual-mode resonator as a
cascaded connection of the LH TL and RH TL sections. The dual-mode resonator can
be designed using three unit cells (R-L-R) as shown in Figure 8.15. Different combin-
ations of the unit cells may be used: L-R-L or R-L-R, T-Π-T or Π-T-Π, etc. The number
of cells N � 2 can also be arbitrarily selected. For the open-ended resonator, the
characteristics of the TL sections can be estimated for any arbitrary pair of resonant

291Dual-band LTCC microwave filters using RH/LH lines



frequencies solving the system of equations (8.25)‒(8.28). The L-C components of the
unit cells are to be found using (8.18)‒(8.21).

Let us consider an example of the dual-mode resonator design. The equivalent
diagram of the R-L-R resonator shown in Figure 8.27 is used as the dual-mode
resonator with suppressed higher spurious responses. The frequencies ω0 and ω1

correspond to the lower and the higher resonant responses of the resonator. To decrease
the resonator dimensions, the RH TL is designed as a cascaded connection of a
Π-section of an RH TL and a distributed TL section with electrical length θR0 and
characteristic impedance ZR. The LH TL section is designed as the T-section.

The structure of the dual-mode resonator designed for the resonant frequencies 2 and
3 GHz is presented in Figure 8.28(a) [52–53].The advanced multi-layer LTCC technol-
ogy was used for resonator fabrication [54–55]. Grounded capacitances CR are realized
as parallel-plate capacitors. Series coupling capacitances CL are produced by overlap-
ping the electrodes of the capacitors placed in different layers. Turned stacked inductors
LR and LL are used. The natural RH TL section is realized as a microstrip TL section
with the corresponding characteristic impedance and electrical length.

Figure 8.27 Equivalent diagram of the dual-mode resonator based on a combination of RH and LH
TL sections.

(a) (b)

Figure 8.28 (a) Two-mode resonator with a highly suppressed spurious response: the multi-layer
structure of the resonator. (b) Scattering parameters versus frequency.

292 Miniature microwave filters using multi-layer technologies



The test structure of the resonator was fabricated using eight layers of the 95 μm thick
LTCC DuPont Green Tape™ 951 (εr = 7.8, tan δ = 0.002 at 2 GHz) [53]. For
conducting layer deposition, the silver ink DP6145 was used. The fired thickness of
the metallization layer is 9–11 μm, while the resistivity is less than 6 mOhm/square. The
paste was printed using 400 mesh metal screens with 15 µm film coating. The size of the
LTCC multi-layer substrate is 22 mm � 20 mm � 0.76 mm, whereas the actual area
occupied by the dual-mode resonator is 10 mm � 8 mm.

The results of electromagnetic simulation of the dual-mode resonator using Sonnet
Software are shown in Figure 8.28(b) in a comparison with the measured data (Hewlett-
Packard 8510C Network Analyzer) for five tested structures. In a wide frequency range,
the spurious response is not observed up to 8 GHz.

A possibility to control arbitrarily the resonant frequencies of the chosen modes of the
SIR designed as cascaded RH and LH TL sections can be successfully used for the
design of miniature dual-band filters. The dual-band filter designed on the R-L-R SIRs
implemented in the LTCC package is shown in Figure 8.29(a). The area occupied by the
filter is 20 mm � 8.5 mm. Photograph of the dual-band filter is given in Figure 8.29(b).

(b)(a)

(c)

Figure 8.29 (a) LTCC implementation of the two-pole filter on the resonators in Figure 8.28(a).
(b) Photo of the filter. (c) Transmission (S21) and reflection (S11) characteristics for five test
samples.
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The performance of the filter is presented in Figure 8.29(c). The filter bandwidth is
150 MHz for the operational frequencies f1 = 2 GHz and f2 = 3 GHz, which are non-
multiple. The simulated and measured return loss is better than 20 dB and 16 dB for the
frequencies f1 and f2 correspondingly. The measured isolation between the operational
passbands is better than 20 dB. The measured insertion loss is not higher than 2.3 dB at
f1 and 3.6 dB at f2. In the wide frequency range shown in Figure 8.29(c), the spurious
response is not observed up to 10 GHz.

8.4.2 Dual-band immittance inverter

Design of dual-band filters requires using dual-mode resonators having resonances at
both the central frequencies of interest and dual-band immittance inverters providing the
transmission coefficient phase of �90� within the both passbands. Conventional
lumped-element immittance inverters [56] can be applied to design of dual-band filters
with two narrow passbands, which are located close to each other. If this is not the case,
dual-band inverters are required.

Different designs of dual-band immittance inverters have been recently reported.
They are mainly based on quarter-wavelength transmission line sections of different
characteristic impedance [57–58]. A significant drawback of these designs is a long
electrical length of the component. Besides, depending on the given central frequencies
separation and the necessary inverter parameter (inversion coefficient), the values of the
characteristic impedance of the transmission line sections can be too high or too low to
be practically realized. Dual-band immittance inverters on artificial transmission lines
are free from these disadvantages.

A composite right/left-handed transmission line (CRLH TL) shown in Figure 8.30(a)
operates as an immittance inverter at two frequencies f1 and f2 which can be chosen
almost arbitrarily. A frequency response of such a dual-band inverter is presented in
Figure 8.30(b). At the frequency f1, the inverter behaves as a LH TL providing the 90�

phase lead. Meanwhile, at the second operating frequency f2, the inverter exhibits the

(a) (b)

Figure 8.30 (a) Dual-band immittance inverter on CRLH TL (equivalent diagram). (b) Frequency
response.
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phase lag of ‒90�corresponding to a quarter-wavelength RH TL section. The CRLH TL
characteristic impedance corresponds to the inverter parameter. The resonant frequency
of the three LC tanks shown in Figure 8.30(a) is f 0 ¼

ffiffiffiffiffiffiffiffiffiffi
f 1�f 2

p
.

A weak point limiting applications of the dual-bandpass filters with the CRLH TL
based inverters is a low rejection level between the passbands. In this regard, dual-band
immittance inverters providing attenuation zeros between the frequencies of operation
seem very promising.

Figure 8.31(a) shows an equivalent diagram of a dual-CRLH TL (D-CRLH TL) [59].
An immittance inverter based on D-CRLH TL has a stopband between its two oper-
ational frequencies as illustrated in Figure 8.31(b). The stopband is formed by three
transmission zeros imposed at f0 by the corresponding LC tanks. In contrast to the
CRLH TL case, a D-CRLH TL based immittance inverter behaves as a RH TL at
the frequency f1 and as a LH TL at f2, Figure 8.31(b). The inverter is advantageous for
the design of dual-bandpass filters with high rejection between the passbands.

8.4.3 Tuneable two-mode resonators and tuneable dual-band filters based on a
combination of RH/LH TL sections

There is an increasing interest in developing electronically tunable or reconfigurable
filters for applications in the multi-band communication systems. In the past few years,
different tuneable bandpass filters have been proposed using various tuning devices,
such as MEMS-devices, ferroelectric varactors, piezoelectric actuators, p-i-n diodes,
and semiconductor varactor diodes. These tuning devices can tune the resonant frequen-
cies of the resonators and the coupling coefficients between resonators, thus providing
high flexibility of bandpass filters. Different types of tunable dual-band and triple-band
planar filters on microstrip resonators have been proposed and realized [61–68].
Tunable dual-band bandpass filters (BPF) with independently tunable passband center
frequencies and bandwidths is considered in [61–62]. The filter comprises two dual-
mode single-band filters using common input/output lines. Each single BPF is realized

(b)(a)

Figure 8.31 (a) Dual-band immittance inverter on D-CRLH TL (equivalent diagram).
(b) Frequency response.

295Dual-band LTCC microwave filters using RH/LH lines



using a varactor-loaded transmission-line dual-mode resonator. The proposed filter also
offers switchable characteristics to select either of the passbands (either the first or the
second passband only). To suppress the harmonics over a broad bandwidth, defected
ground structures are used at input/output feeding lines without degrading the passbands
characteristics. In [67], a series of multi-stub-loaded resonators, including two quad-
mode resonators and one six-mode resonator, are considered for their applications in
multi-band filter design. The first quad-mode resonator is utilized to realize a dual-band
BPF with tunable lower passband and fixed upper passband. Meanwhile, two transmission
zeros are synchronously changed with the tunable band, ensuring high selectivity.
This design resulted in compact size. The second quad-mode resonator is used to realize
a dual-band filter with very high skirt selectivity. The six-mode resonator is suitable to
design a tri-band filter since the six modes can be easily controlled. Using this character-
istic, a tri-band BPF is designed with controllable frequencies and bandwidths. In [68],
a novel dual-mode dual-band microstrip filter has been investigated and designed for
independently tuned dual passbands. The dual-mode resonator loaded with the varactor
diodes is proposed and analyzed to independently determine the odd- and even-mode
resonant frequencies. Based on the presented design equations and procedures, a two-pole
dual-band filter with the tunable first-passband fractional bandwidth and constant second-
passband absolute bandwidth has been designed. The filter topology presented has an
attractive possibility to adjust the tuning range of the two passbands by choosing different
values of the capacitances and varactors diodes. Another control component, namely
MEMS-capacitors, are used to design switchable filters [64–65].

All the filters considered are designed using distributed transmission lines in planar
technology. In this section, we consider tunable filters implemented in a multi-layer
package. The multi-layer technology as applied to the 3D-design of the multi-band
filters based on quasi-lumped LC components opens up a new approach to tunable and
non-tunable filter design exhibiting miniature dimensions and enlarged functionality.

Let us consider a tuneable TL section presented by equivalent RH and LH TL
sections designed as a π-network, Figure 8.32. Variable capacitances are used instead
of fixed ones in the artificial TL sections. The equivalency of the TL parameters is
provided at the frequency f0. Both the TL parameters are changed while tuning
capacitances: electrical length θ and characteristic impedance Z0. Tuneable electrical
length is followed by tuneable resonant frequency of the resonator containing such

(a) (b) (c)

Figure 8.32 (a) Transmission line section. (b) Equivalent representation of the TL section as a
Π-network of RH TL section with variable capacitances. (c) Equivalent representation of the
TL section as a Π-network of LH TL section with a variable capacitance.
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sections. Variation of the characteristic impedance is small enough to be neglected in
the resonator and filter design. As a tuneable TL section, the T circuit can also be used.

To design a filter with a highly flexible frequency response, the possibility to control
the frequency location of the passbands is considered using variable capacitances in the
RH and LH TL sections of the dual-mode SIR, Figure 8.33. The simulation revealed a

(a)

(b) (c)

(d)

Figure 8.33 (a) Equivalent diagram of the tuneable version of the dual-band filter. (b) Layout of
the dual-band filter by employing varactor diodes instead of series capacitances of LH TL and
bias resistors. (c) Photo of the device under test. (d) Experimental performance of the filter
tuned by the series capacitances of the LH TL section.
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distinct difference between controlling the capacitances of the LH and the RH TL sections
[52] [53] [69]. By replacing the series capacitances of the LH TL section by tuneable
components (varactors diodes), the position of the lower passband is tuned, whilst the
position of the higher passband is invariable. Controlling the shunt capacitances of
both RH TL sections results in a shift of both passbands to higher frequencies. However,
the tuning mechanisms influence the widths of the passbands only to a small extent. Using
the RH TL section in the centre of the filter structure makes it possible to change the
influence of tunable capacitances on the passbands. Moreover, using different combin-
ations of Π or T circuits for the LC section realization also gives more possibilities to
tune both passbands. This new approach to the tunable filter design is very flexible.

As an example, the equivalent diagram of the two-pole dual-band tuneable filter is
depicted in Figure 8.33(a). As the voltage-dependent capacitances, the varactor diodes
have been used. The C(V)-values have been taken as specified for Skyworks hyper
abrupt silicon varactors. The multi-layer LTCC structure of the tuneable dual-band filter
with variable capacitors and bias resistors is shown in Figure 8.33(b). The tuneable
dual-band filter was manufactured and experimentally investigated. The SMV1232
varactors and 1 MOhm resistors have been mounted on the top of the multi-layer
substrate, while the other components were embedded in the LTCC multi-layer struc-
ture. The photograph of the prototype is shown in Figure 8.33(c).
The experimental results are shown in Figure 8.33(d). The return loss is better than

16 dB for all values of control voltage. The insertion loss remains below 3.2 dB and 4 dB
at the frequencies f0 and f1, respectively. As expected, the lower passband is tuned while
the upper passband remains fixed. The measured tunability of the lower passband is 28%.

Additional control of the shunt capacitances of both RH TL sections by SMV1231
varactors results in a shift of both passbands to higher frequencies, Figure 8.34(a). The
widths of the passbands were only slightly affected by the tuning mechanism. The
tunability range of the first passband is measured to be 20%, while that of the second
passband is 42%.

The simultaneous tuning of the RH and LH TL sections by varactor diodes opens up
the possibility to tune the both passbands. In this case, either the ratio of the two centre
frequencies or their difference could be kept constant, as illustrated by Figures 8.34(b)
and 8.34(c), correspondingly.

8.5 Miniature single-band and dual-band filters using capacitively
loaded cavities

LTCC technology provides an effective design for very compact microwave devices as
3D highly integrated modules. A number of miniature LTCC filters for L- and S-bands
based on L-C-lumped components have been designed up to date. The main problem of
the designs is a rather high insertion loss due to a rather low Q-factor of quasi-lumped-
element resonators.

At the same time, low-loss LTCC filters based on high-Q cavity resonators were
designed for millimetre-wave applications [70–72]. Furthermore, it is well known that
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by loading a cavity resonator with a capacitive post, we can reduce the resonant
frequency of the cavity exhibiting a relatively high unloaded Q-factor [73]. Various
designs of compact microwave filters based on highly loaded evanescent-mode cav-
ities using different fabrication technologies (LTCC, PCB, silicon micromachining
process), have been recently presented [73–75]. A further miniaturization of capaci-
tively loaded cavity resonators to design small-size and low-loss narrowband LTCC
filters for S-band is discussed. The size of a highly loaded LTCC cavity can be as low
as one-eighth of the guided wavelength (λg/8), while the Q-factor of such a miniatur-
ized resonator still remains much higher as compared to a quasi-lumped-element
LTCC resonator.

Resonators based on capacitively loaded cavities (CLC) can be redesigned to
exhibit dual-mode behavior and employed to design dual-band filters. Here, we
present two different dual-mode CLCs – one with capacitively loaded cavities of
different size nested one into another and another with CLC, in which a comple-
mentary split-ring resonator (CSRR) is formed on the cavity top cover. The proposed
resonators are used for a design of dual-band filters exhibiting small dimensions and
high performance.

(a)

(b) (c)

Figure 8.34 (a) Equivalent diagram of the tuneable dual-band filter. (b) Results of circuit simulation
of the dual-band filter with tuneable both RH and LH TL sections in case of the ratio of the two
centre frequencies is kept constant. (c) Results of circuit simulation of the dual-band filter with
tuneable both RH and LH TL sections in case of the difference between the two centre frequencies
is kept constant.

299Filters based on capacitively loaded cavities



8.5.1 Single- and multi-mode resonators on capacitively loaded cavities

A schematic representation of a cavity, which is filled with LTCC and loaded by a
conductive post with a capacitive plate at one end, is shown in Figure 8.35. The height
of the LTCC cavity resonator cannot be greater than a few millimetres, due to techno-
logical reasons. Such a resonator operates in the TM110 mode [70]. The higher the
capacitive loading, the lower is the resonant frequency of the cavity. On the other hand,
for a given resonant frequency, the dimensions of the cavity decrease while increasing
capacitive loading. Since the post inductance L is rather low, a high capacitive loading
is required for an efficient size reduction. The resonator size is determined by the area of
the capacitive plate, which can be decreased by making the upper LTCC layer as thin as
possible.

A highly loaded cavity can be considered as a quasi-lumped-element resonator
because the electric field is concentrated between the capacitive plate and the top of
the cavity. However, the magnetic field distribution remains nearly unchanged and,
consequently, the power dissipation in the metallic parts does not change significantly.
As a result, the unloaded Q-factor of the resonator does not drop as strongly as the
resonant frequency does [73]. This leaves room to design highly loaded LTCC cavities,
which are comparable in size with quasi-lumped-element LTCC resonators but have a
two to three times higher unloaded Q-factor.

Figure 8.36(a) presents the LTCC capacitively loaded square shaped cavity [76]. In
order to demonstrate the internal structure of the resonator, the middle part of the top
ground plane is not shown in the figure. Sidewalls and the square post are formed by

Figure 8.35 Schematic representation of LTCC capacitively loaded cavity.

(a) (b)

Figure 8.36 (a) Structure of the LTCC capacitively loaded cavity. (b) Characteristics obtained by
electromagnetic simulation (dashed lines) and measured characteristics of four experimental
samples (solid lines).
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rows of stacked via holes. The resonator is connected to external circuits by inductive
coupling elements. Input and output coplanar feed lines are arranged on the top of the
LTCC structure.

The resonator was implemented with six layers of DuPont Green TapeTM 951 LTCC
(εr = 7.8), each of 210 μm thickness after sintering, two layers with the thickness of
42 μm, and one layer with the thickness of 95 μm. The total height of the LTCC
structure is about 1.44 mm. The internal size of the cavity with a resonant frequency of
2.22 GHz was reduced to 6 mm � 6 mm (6 mm corresponds to λg/8). The post is
of 2 mm � 2 mm and is covered with the capacitive plate with an area of 4.4 mm �
4.4 mm. The resonator was manufactured using DuPont 6148 Ag co-fireable conductor
paste and DuPont 6141 AgPd co-fireable via fill paste. The resonator was designed with
the aid of the Ansoft HFSS 3D electromagnetic field solver.

Experimental investigations were carried out using a vector network analyzer and a
probe station with coplanar probes for on-wafer measurements. The TRL calibration
technique was used. Figure 8.36(b) presents the measured characteristics of four
manufactured samples of the resonator. Very good repeatability of the characteristics
is observed. The estimated unloaded Q-factor of the resonator is about 150, which is at
least three times higher than for a LTCC resonator based on quasi-lumped elements.

Capacitively loaded cavities (CLCs) of different size, having different resonant
frequencies can be nested one into another in such a way that the inner cavity serves
as the capacitive load for the outer cavity [76]. In Figure 8.37(a), the structure of such a
dual-mode resonator consisting of two nested CLCs is depicted. An equivalent diagram
of the resonator is shown in Figure 8.37(b).

Advantages of the dual-mode resonator of this kind are as follows: (i) the resonant
frequencies can be chosen in an arbitrary way; (ii) a transmission zero is provided
between the resonant frequencies; (iii) the overall size is small; and (iv) absence of a
spurious response over a wide frequency range. A transmission zero below each
resonant frequency can be easily introduced by surrounding the dual-mode resonator
with an external conducting box as shown in Figure 8.37(c). The corresponding
equivalent diagram is presented in Figure 8.37(d).

The frequency behavior of the resonators of both types was analysed by numerical
simulations and confirmed with an experimental investigation (Figure 8.38). Test
structures of the dual-mode resonators with non-multiple resonant frequencies f01 =
748 MHz and f02 = 1748 MHz were designed and fabricated in the multi-layer LTCC
technology, Figure 8.38(a). The area of the test sample of the dual-mode resonator with
a transmission zero embedded in 16 layers of DuPont Green TapeTM 951 is 7.6 mm �
5.2 mm. The height of the LTCC structure is 2.9 mm. The linear size of the resonator
does not exceed λg/18 at f01 and λg/8 at f02. Simulated and experimentally obtained
characteristics of the dual-mode resonators are compared in Figure 8.38(b) and (c).

8.5.2 Miniature microwave filters using capacitively loaded cavities

Miniature bandpass filters can be designed using capacitively loaded cavities. A two-
pole bandpass filter with Chebyshev response was designed for UMTS/LTE-2100
applications (2110–2170 MHz) on the basis of the resonator shown in Figure 8.36(a)
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[76]. The filter consists of two capacitively loaded cavities coupled to each other by
means of an iris in the mutual sidewall, Figure 8.39(a). Though the reactive nature of the
iris coupling is in general mixed, the main contribution comes from the electric field
(i.e., capacitive coupling). The value of the coupling depends on the size b of the iris,
Figure 8.39(a). The larger the size chosen, the stronger becomes the coupling. Since b<
a, the cavity size a cannot be chosen arbitrary. The entire multi-layer LTCC structure of
the filter designed occupies an area of 13 mm � 7 mm.

The filter characteristics obtained by full-wave simulations and measurements are
displayed in Figure 8.39(b). The experimental investigation of fabricated test sample
revealed 1 dB of insertion loss at the central frequency, and a return loss of about 15 dB.
The measured data confirm the ability to design low-loss and small-size LTCC filters
based on cavity resonators with a high capacitive loading

A four-pole bandpass filter with a cross-coupling was also designed for the same
frequency band [76]. The multi-layer LTCC structure of the filter is shown in
Figure 8.40(a). The filter employs three inductive couplings, which are formed by

(c) (d)

(a) (b)

Figure 8.37 (a) Two nested CLCs: cross-section of the dual-mode resonator. (b) The corresponding
equivalent diagram. (c) The cross-section of the dual-mode resonator with an additional
transmission zero. (d) The corresponding equivalent diagram.
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narrow strip lines connected to the capacitive plates of adjacent cavities. A capacitive
cross-coupling between the outermost resonators is achieved with a rather wide strip
line overlaying the capacitive plate of both resonators. The filter area is 13 mm �
13 mm.

Simulated characteristics of the filter are presented in Figure 8.40(b). The dielectric
loss tangent specified by DuPont (tan δ = 0.002) and a typical value of the conductive
paste surface resistance (Rsur = 5 mOhm/square) was taken into account by the
electromagnetic simulation. The cross-coupled four-pole filter provides drastically
improved selectivity as compared with the previous two-pole filter design. The midband
insertion loss of this filter is 2.5 dB.

Another filter based on cavities was proposed in [77]. The filter presents a three-pole
highly selective LTCC filter realized using three coupled low-profile cavities. Each

(c)

(a) (b)

Figure 8.38 (a) Photograph of the test sample of dual-mode LTCC resonators on nested CLCs. (b)
Measured (solid lines) and simulated (dashed lines) characteristics of the resonator. (с) Measured
(solid lines) and simulated (dashed lines) characteristics of the resonator providing an additional
transmission zero, Figure 8.37(c).
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cavity is loaded by a conductive post with a capacitive plate at one end, Figure 8.41(a).
Sidewalls and the square post are formed by rows of stacked via holes. The filter
resonators are coupled to each other by means of an iris in the mutual sidewall. The
outermost resonators are connected to external circuits by inductive coupling elements.
An equivalent diagram of the filter is shown in Figure 8.41(b). The filter with a
Chebyshev response was embedded in nine layers of DuPont Green TapeTM 951 LTCC
(εr = 7.8, tan δ = 0.002). Six layers are 210 μm thick after sintering, two other layers
have the thickness of 42 μm, and one layer has the thickness of 95 μm. The total height
of the LTCC structure is about 1.44 mm. The filter occupies an area of 19 mm � 7 mm
(0.38 λg � 0.14 λg).

(a) (b)

Figure 8.39 (a) Structure of the two-pole bandpass LTCC filter based on iris-coupled capacitively
loaded cavities. (b) Characteristics obtained by electromagnetic simulation (dashed lines) and
measured characteristics of the experimental sample (solid lines).

(a) (b)

Figure 8.40 (a) Structure of four-pole bandpass LTCC filter with a cross-coupling. (b)
Characteristics obtained by electromagnetic simulations.
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The simulated (Ansoft HFSS 3D electromagnetic solver) and measured filter per-
formance are plotted in Figure 8.41(c). The in-band insertion loss does not exceed
1.2 dB, which corresponds to an average unloaded Q-factor of the resonators equal to
150. Furthermore, the filter exhibits no spurious response over a wide frequency range
(at least up to 10 GHz).

8.5.3 Two-mode resonators and dual-band filters based on capacitively loaded cavities

Due to their behavior, coupled nested CLCs are good candidates for the design of dual-
band filters. The structure of coupled dual-mode resonators based on two nested CLCs
is schematically shown in Figure 8.42(a). The outer cavities are coupled to each other
through an iris in the mutual side wall. Additional irises in the adjacent side walls of the
inner cavities are used to provide a coupling between them.

An equivalent diagram of the coupled resonators is presented in Figure 8.42(b). The
coupling between the tanks with the resonant frequencies f01 and f02 > f01 is represented
by the capacitances Cc1 and Cc2 of the different branches of the circuit. At the frequency
f01, the two coupling capacitances are connected in parallel and the total capacitance

(a)

(c)

(b)

Figure 8.41 (a) Structure of the three-pole Chebyshev bandpass LTCC filter based on iris coupled
resonators. (b) Equivalent diagram. (c) Measured (solid lines) and simulated (dashed lines)
characteristics.
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of the coupling is Cc(f01) = Cc1 + Cc2. Meanwhile, at f02 the coupling capacitance is
Cc(f02) = Cc2.

The following design method is suggested for the filters based on nested CLCs. As
the first step, two single-band filters with the central frequencies f01 and f02 are designed
separately using a conventional synthesis technique. Then the coupling values of the

(a) (b)

(c)

Figure 8.43 (a) Structure of the 3-pole dual-band LTCC filter on nested CLCs. (b) Equivalent
diagram of the filter. (c) Filter characteristics obtained by the full-wave simulation.

(a) (b)

Figure 8.42 (a) Coupled dual-mode resonators based on nested CLCs. (b) Equivalent diagram of
the coupled CLCs.
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filter designed for f01 are corrected as C’c1 = Cc1 – Cc2. After this, the filters are
integrated, as shown in Figure 8.42(b). The method can be also used to design dual-
band filters with additional transmission zeros based on the resonator structure in
Figure 8.37(c).

A design example of the 3-pole dual-band filter based on CLCs for application at
698–798 MHz and 1710–1788 MHz is demonstrated in Figure 8.43. The filter was
implemented in the LTCC technology using the above-mentioned structure of the dual-
mode resonator, Figure 8.37(c). The filter is as small as 12 mm � 7.6 mm, correspond-
ing to the linear dimension λg/12 at the lower frequency. The filter exhibits a low
insertion loss (1.4 dB and 2.1 dB in the lower and higher passbands, respectively) and
high selectivity.

A dual-mode resonator can also be designed as a combination of a CLC and a comple-
mentary split-ring resonator (CSRR) formed on the cavity top cover, Figure 8.44(a) [77].
The cavity operates at the lower resonant frequency, while the upper resonance is

(c)

(a) (b)

Figure 8.44 (a) Dual-mode resonator on a combination of CLC and CSRR. (b) Equivalent diagram.
(c) Measured (solid lines) and simulated (dashed lines) frequency responses.
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provided by the CSRR. An equivalent diagram of the dual-mode resonator is shown in
Figure 8.45(b). The size of such a dual-mode resonator is limited by the dimensions of the
single-mode cavity. Since the CSRR is a planar structure, its integration with the cavity
does not result in an increase in height of the structure as for the dual-mode resonator of
nested CLCs. However, the unloaded Q-factor of the CSRR is lower in comparison with
that of the CLC. Hence, dual-band resonators of this type can be favorably used when the
insertion loss in the upper filter passband is not of a crucial importance, e.g. to design filters
with the upper fractional bandwidth being wider than the lower one.

Characteristics of the dual-mode resonator with the resonant frequencies of 2.4 GHz
and 5.6 GHz are presented in Figure 8.44(c). The resonator implemented on 1.7 mm
thick two layer Rogers RO4003 (εr = 3.55, tan δ = 0.0027) occupies the area of
10 mm � 10 mm corresponding to λg/8 at the lower resonant frequency. The unloaded
Q-factor is 130 at the both resonant frequencies.

A coupling between the dual-mode resonators may be provided in the same way as
for the single-mode cavities. Changing the iris size influences the coupling between the

(a)

(c)

(b)

Figure 8.45 (a) Two-pole dual-band filter based on CLCs with integrated CSRRs. (b) Equivalent
diagram. (c) Measured (solid lines) and simulated (dashed lines) characteristics.
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CLCs, as well as the coupling between the CSSRs. In order to adjust the
coupling between the CSRRs independently, they are connected by a slot line (see
Figure 8.45(a)) providing a tapered coupling whose value depends on the connection
point position. An equivalent diagram is illustrated by Figure 8.45(b).

A two-pole dual-band filter for WLAN application at 2.3–2.4 GHz and 5.1–5.8 GHz
was designed. The filter area is 20 mm � 10 mm. The simulated and measured
performance of the filter is presented in Figure 8.45(c). The measured insertion loss
in the two passbands is 2.5 dB and 1.4 dB, correspondingly.

8.6 Conclusion

In this chapter, the great potential of multi-layer technologies for the design of miniature
high-performance filters has been presented.

Multilayer single-band filters based on different design approaches have been pro-
posed and discussed. Beside filter architecture with quasi-lumped elements, filters based
on a combination of RH and LH TL sections and capacitively loaded cavities have been
analysed and their features presented.

A combination of RH and LH sections has also been used for the design of dual-band
filters, as well as a dual-band immittance inverter. Capacitively loaded cavities have been
redesigned to exhibit dual-mode behavior and as such have been employed for dual-band
filter design. The proposed dual-band filters show compact size and good performance.
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handed (CRLH) transmission lines
asynchronously tuned resonators, 71
attenuation constant, 112, 245
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condition, 79
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magnetic, 166
matrix, 7
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self-, 7
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critical points, 76–7
critical temperature, 48
cut-off frequency, 236, 275

damping factor, 232
defected ground structures, 47, 266
design of metamaterials, 232
destructive interference, 44, 203
dielectric permittivity, 230

dispersion, 232
double-negative metamaterials (DNG), 230
double-positive metamaterials (DPS), 230
Drude model, 233
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trasnmission lines, 295

effective permeability, 230
effective permittivity, 230
electric field, 236–7, 242
electric wall, 199
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epsilon-near-zero propagation, 238–43
even/odd mode analysis, 26
external quality factor, 163
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multi-band bandpass, 6–49
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multi-band design methods, 5–4
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generation, 192–4
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fractal curves, (cont.)
Mandelbrot sets, 194
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fractional bandwidth, 71
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group delay, 235
group velocity, 231, 274
guided wavelength, 10
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high-temperature superconductor, 49
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initial guess, 8
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266–9
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magnetic permeability, 230
magnetic wall, 20, 199
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technology, 265, See also liquid crystal polymer

technology
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orthogonal field distribution, 20
out-of-phase signals, 32
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phase constant, 111, 229
phase velocity, 234, 274
phase-reversing transformers, 89
piezoelectric actuators, 295
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plasma frequency, 232
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printed circuit board technology, 47

reactance function, 94
reactance transform method, 94
refractive index, 230
resonant condition, 26
resonator

appended, 72
broadside coupled, 207
cavity, 20, 298
capacitively loaded, 299
evanescent wave, 299
nested, 301

complementary split-ring, 161, 238
dual-mode Hilbert fractal, 199–203
edge-coupled, 204
embedded, 44
grounded Hilbert patch, 147
grounded patch, 141
half-wavelength, 10, 111
Hilbert-fork, 212–17
inter-digital hairpin, 52
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multi-mode, 19, 290
patch configuration, 21
patch embedded in microstrip line,

144
perturbed grounded patch, 152–3
quarter-wavelength, 111–14
rectangular grounded patch, 151
ring configuration, 21
split-ring, 232
square patch, 20
stepped impedance, 26
dual-mode, 26–9
grounded, 40, 46
non-grounded, 43, 48
RH/LH, 280
stub-loaded, 39
tri-mode, 29–31
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stub-loaded, 35
dual-mode, 35–6
tri-mode, 36

tunable, 296
with perturbation, 20

scale-invariability, 195
self-inductance, 197
self-similarity, 194
semiconductor varactor diodes, 295
signal interference technique, 311
single-negative metamaterials (SNG), 230
synthesis based on reactance mapping functions,

83
synthesis through optimization, 83
synthesis through transformation, 83
space-mapping electromagnetic optimisation,

83
standing waves, 279
stripline, 1
superconductor, 48
surrogate model, 84
susceptance slope parameter, 72, 163
synchronously tuned resonators, 163

transfer functions
Butterworth, 7, 69
Chebyshev, 7, 69
elliptic, 7, 69
linear phase, 7, 69
low-pass, 68
quasi-elliptic, 69

transmission zero, 7
tunneling. See near-zero propagation

unit cell, 230
unloaded quality factor, 163

wave number, 274
wave vector, 231
waveguide

architecture, 7
coplanar, 1
junctions, 235
rectangular, 236
resonator, 113
substrate-integrated, 238

zeroth-order resonance, 236
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