L Summary—The theory of the design of optimal cascaded trans-
mer arrangements can be extended to the design of continuous
| fnsmission-line tapers. Convenient relationships have been ob-
| tined from which the characteristic impedance contour for an opti-
 mal transmission-line taper can be found.

| The performance of the Dolph-Tchebycheff transmission-line
per treated here is optimum in the sense that it has minimum
refiection coefficient magnitude in the pass band for a specified length
of taper, and, likewise, for a specified maximum magnitude reflection
wefficient in the pass band, the Dolph-Tchebycheff taper has mini-
mum length,

. Asample design has been carried out for the purposes of illustra-
on, and its performance has been compared with that of other
tapers. In addition, a table of values of a transcendental function
Lused in the design of these tapers is given.

INTRODUCTION

JHE ANALYSIS of nonuniform transmission lines
has been a subject of interest for a considerable
.~ period of time. One of the uses for such nonuni-
form lines is in the matching of unequal resistances
ver a broadband of Erequenues It has recunly been

per length the input reflection coefficient has mini-
mum magnitude throughout the pass band, and for a
ecified tolerance of the reflection coefficient magni-
de the taper has minimum length.

For any transmission line system the applicable equa-
5 are

dv

— = —=ZI

dx

ar v "
dx '

Ji=the voltage across the transmission line,

1 illustrates the configuration to which the above
ions are to be applied.
nonuniform lines, Lhe qudntities Z and Y are

e properties of the system are determined through
lution of (1) along with the pertinent boundary
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conditions. Through use of the waveguide formalism?®
(1) is applicable to uniconductor waveguide as well as
to transmission line. Strictly speaking, of course, (1)
is not precisely applicable to any system since it ac-
counts for the propagation of a single mode only. It
furnishes an excellent description, however, as long as
all modes but dominant mode are well below cutoff.
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Fig. 1—Tapered transmission-line matching section.

Eq. (1) can be recast in a more directly useful form
through the introduction of the quantities

4 = +/ZY¥ = the propagation constant of the line,
Zy = +/Z/¥ = the characteristic impedance of the line,
and
) - V/I—Z, _ the reflection coeficient at any @
V/I+Z, peint along the line.

These lead to first order nonlinear differential equation®

dp 1 Cd(InZy)
— = 2yp+ — ( — )=
dx dx

(3)
This equation has the advantage thatitisin terms of the
quantity of direct interest in impedance matching prob-
lems. Likewise, a very natural approximation for im-
pedance matching purposes can be made directly in this
equation. If it is assumed that p?<1, (3) becomes

dp
— — 2vp + F(x) =
dx

t N. Marcuvitz, "\Vdvegulde Handhook" McGraw-Hill Book
Co., Inc.,, New York,N Y., ch 1 p. T
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where
d(In Zy)

dx @

PG =
)

which is a first-order linear differential equation in p.

SOLUTION OF THE DIFFERENTIAL EQUATION

A solution of the differential equation (4) is sought
which satisfies the boundary condition p=0 at x=1/2.
An integrating factor for this equation is

G(x) = exp [— 2 [ :'YdE:I, ®)

where the lower limit of the integral is arbitrary. Ap-
plying this to (4) it is found that the solution satisfying
the boundary condition is given by*

p(x) = f;mb(z) exp I:f 2 f: T(E)dE:I dz, (6)

and, hence, the input reflection coefficient is
12 M
o= [ e[ -2 [ da]a @

—lj2 =12
The solution given above is subject only to the re-
striction that the reflection coefficient is relatively small.
It is equally applicable to lossless transmission line,
lossy transmission line, and waveguide tapers. The
physical interpretation of the solution as given is evi-
dent. The incremental reflection at each cross section
is given by F(z), and the exponential term expresses
the total delay and attenuation of this reflected com-
ponent at the input of the tapered section relative to

incident input wave.

OprTIMAL DESIGN OF TRANSMISSION-LINE TAPERS

An important special case of the general situation
considered above is the lossless transmission-line taper
as illustrated in Fig. 1. In this case, the characteristic
impedance is a real number and is independent of fre-
quency. The wave propagated in the line is essentially
TEM in character, and the propagation constant is
purely imaginary and proportional to the frequency.

Under these conditions the interior integration of (7)
can be carried out, and the input reflection coefficient
becomes

pexp (o) = [

-2

12

F(z) exp (—3j2Bz)dz. (8)

This relationship can be inverted through the theory
of Fourier transforms to obtain

1 ]
o) = — [ bewGmlen G2 ©

The analogy between the present problem and the syn-
thesis of radiation patterns from line sources is evident.

¢ L. R. Ford, “Differential Equations,” McGraw-Hill Book Co.,
Inc., New York, N. Y., ch. 2, pp. 36-39; 1933.
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In each case, the quantities of interest are related
through the Fourier transform.

In the use of (9) the reflection coefficient is specified
so that its value at negative frequencies is equal to the
complex conjugate of its value at the corresponding
positive frequencies. This is necessary in order that the
specified reflection coefficient shall correspond to a
physically realizable structure.® This requirement then
insures that the transform will be completelv real as it
must be in order that F(x) have significance in terms of
a transmission-line taper.

Collin has recently shown that optimum performance
is obtained from a cascaded transformer structure
when the power loss ratio is expressed in terms ol the
Tchebycheff polynomial of degree equal to the number
of sections.® This is equivalent to having the input re-
flection coefficient proportional to the Tchebycheff
polynomial of the same degree, when its square is small
relative to one [an assumption already made in the deri-
vation of transform pair (8) and (9)].

By allowing the number of sections to increase in-
definitely for a fixed over-all length, the results of Collin
can be extended to the case of a continuous transmission-
line taper. In the case of a cascaded transformer ar-
rangement, a secondary maximum in the rellection co-
efficient magnitude occurs at the first and at all succeed-
ing frequencies where the individual section lengths be-
come equal to a multiple of a hall-wavelength. As the
number of sections is allowed to increase without limit
for a fixed over-all length, the [requency at which this
first secondary maximum occurs also increases without
limit so that the pass band consists of all [requencies
beyvond that for which the reflection coeflficient first
comes within the specified tolerance.

For maximum bandwidth with a fixed maximum
magnitude of reflection coefficient then, input reflection
coefficient for a continuous taper takes form

) cos [v/(B)? — 4°1
pexp (G = po _[COSW’

(10)
which is the limiting form of the Tchebycheff polynomial
as its degree increases without limit,” The specification
of the parameter 4 determines the maximum magnitude
of reflection coefficient in the pass band which consists
of all frequencies such that §l=A. The reflection co-
efficient magnitude takes on its maximum value |pq
at zero frequency, and it oscillates in the pass band
with constant amplitude equal to pe/cosh (4). A plot
of the function given by (10) is shown in Fig. 2 for a
number of different values of 4.

The inversion of the above specified reflection co-
efficient through (9) yields”

5 H. W. Bode, “Network Analysis and Feedback Amplifier De-
sign,” D. Van Nostrand Co., Inc., New York, N. Y., ch. 7, p. 106;
1943,

8 R. E. Collin, “Theory and design of wide-band multisection
quarter-wave transformers,” Proc. IRE, vol. 43, pp. 179-185; Febru-
ary, 1955, ]

7T, T. Taylor, “Dolph arrays of many elements,” Tech. Memo,
No. 320, Hughes Aircralt Co., Culver City, Calif.; August 18, 1953,
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o {zﬂ LlAT = (2a/1)%)
~cosh () 1o VT = (/02

A e
|| =72,

=0, w] > 2, (1)

where I, is the first kind of modified Bessel function of
the first order, and & is the unit impulse function.

The variation of characteristic impedance along the
taper can be found by direct integration of F(x), and
it is given by

WZ) = —In(zize) + P {A%(Z:x‘/i, A)
2 cosh (A)
e
2 it 2
la] =12,
= In (Z3), x> 1/2,
= (Z), «< -1 (12)
Uis the unit step function defined by,
U(z) =0, z <0,
U@) =1, s5=0, (13)
and ¢ is dehned by
s LAV — )
$lz, 4) = — ¢(—z, ) = fu DN
lz] =1 (14)

L o
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Fig. 2—Response of Dolph-Techebychell transmission-line tapers.
Eq. (12) furnishes the information required for the

design of a Dolph-Tchebychef tapered transition. The
quantity po is determined by the two impedances Z;

cand Zy which are to be matched, and 4 is selected on
 the basis of the allowed maximum reflection coefficient
- magnitude in the pass band. One of the interesting as-
~ pects of this design is that the taper has a discontinuous

change of characteristic impedance at each end as well
as a continuous change along the length of the taper.
Itisinteresting to note that when the tolerated reflection

Klopfenstein: Transmission Line Taper
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coelficient approaches the initial reflection coefficient
po, the parameter 4 approaches zero, and the band-
width comprises all frequencies from zero to infinity.
In this case, the Dolph-Tchebycheff taper design degen-
erates into the usual quarter-wavelength transformer
design with a discontinuous change of characteristic
impedance at each end and a constant characteristic
impedance at intermediate points.
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Fig, 3—Plot of the function ¢(z,4).

The function ¢(z, 4) is not expressible in closed form
except for special values of the parameters. Therefore,
this function has been computed through standard inte-
gration formulas on an IBM CPC digital computer for
a suitable range of values of the parameters. Tabulated
values of ¢(z, A) are given to six decimal places in
Table I, p. 34, and the function is shown in Fig. 3,

The special closed-form relationships
#(0, 4) =0,
o(z, 0) = /2,
and
cosh (4) — 1
(1, 4) = ! (15)

arc obtained [or the end points of the parameter ranges.

One more comment should be made in regard to the
application of the preceding design procedure. If one
uses the natural value

g (16)
po = ——
4 Zy+ 2,

in entering the equation (12), it will be found that the
designed taper does not quite fit the final impedances
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TABLE 1
VALUES OF TiE FUNCTION ¢(z, A) FOR z=0{0.05)1.00 axp 20 login (cosh A)=0(5)40
iz, A)
20 logio (cosh A)

s 0 s 10 15 20 25 30 35 w
o0 | 0.000000 | 0.000000 | 0000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 10 000000 | 0000000
005 | 0025000 | ©0.020503 | 0.056818 | 0.048140 | 0.065590 | 0.092539 | 0.131313 | 0.199160 0301772

010 0050000 | 0059161 | 0.073620 | 0.096137 | 0.130902 | 0.184564 | 0267698 | © 397268 | 0.600615
015 | 0075000 | 0.088681 | 0.110276 | 0.143818 | 0.105661 | 0.275567 | 0.399242 0.501802 | 0.893707
020 | 0100000 | 0118128 | 0 146721 | 0.191132 | 0.259597 | 0.365035 | 0.528062 | 0.781511 1178306
075 5125000 | o.1a7470 | 0182899 | 0237850 | 0.322438 | 0.452552 | 0.053321 0001936 | 1.451913

o | Toase00 | o.7s70s | 0.2187i6 | 0.283860 | 0.383962 | 0.537610 | 0Tzt | 1ouoras | i
035 | 0175000 | 0.205794 | 0254197 | 0.329059 | 0.443899 | 0.619809 | 0.890101 | 1 S0T7E | 1.95743T
020 | 0200000 | 0234711 | 0289191 | 0373296 | 0.502035 | 0.698767 000282 | 1464942 | 2.185803

Toas | 0223000 | 0263438 | 0323667 | 0.416160 | 0.558163 | 0.774142 | 1.104238 G487 | 2.396134
o0 0250000 | 0291950 | 0357368 | 0.458441 | 0.612004 | 0845635 | 1.201523 | 1716753 | 2.587382
055 | ozm5000 | 0320226 | 0.300837 | 0.499134 | 0.663658 | 0.912004° | 1.291792 1870306 | 2.759681
050 0300000 | 0.3as2a1 | 0425420 | 05344 | 0.712709 | 0.976010 | 1374800 108018 | 2.91235
065 o000 | o 3s9sz | 0.4ssas | o0.570281 | 0759120 | 1.034555 | 1450109 | 2 081555 | 3.013886
070 | 0350000 | 0.a03118 | 0.486328 | 0.612574 | 0.802790 | 1.088504 | 1.518582 | 2.169376 | 3.160875
075 | 0375000 | 0.430533 | 0.516559 | 0.647218 | 0.843641 | 1.137814 | 1.579377 Taa5710 | 3258228
T30 000000 | 0457305 | 0.sisots | 0.08025 | 0.881619 | 1.182484 | 1.632947 | 2311049 | 3.330008
085 | 0425000 | 0.483716 | 0.574365 | 0.711518 | 0.916692 | 1.222564 | 1 670531 | 2.366010 | 3101835

090 | 0.430000 | 0.500746 | 0.601865 | 0.741027 | 0.948855 | 1.258145 | 1.719443 | 2.41 61 | 3456938
0.95 | 0.475000 | 0.535377 | 0.628386 | 0 768745 | 0.978123 | 1.289363 733065 | 2.147905 | 3.497000

T o0 | 0.300000 | 0.560591 | 0.653899 | 0.794653 | 1.004533 | 1.316391 | 1.780835 | 2 476547 | 3.526658

Z» and Z; at the end points. This fact is an evidence of
the approximation p?<<1 which was made at the outset
in differential equation (4). Discrepancy becomes larger
as value of magnitude of p, increases. This design in-
convenience can be eliminated, however, by taking

po = 3} In (Z,/Z)), (17)

as the initial value of the reflection coefficient instead of
the true value of (16). The two expressions are identical
to a second order of approximation for small differences
between Zg and Zy, and the use of the second expression
will yield a taper design which exactly fits its end-point
impedances for all values of Z» and Z,. The effect of the
approximation p?<&1 will then be evidenced by a slight
deviation from the performance given by (10) in the
low-frequency range outside the pass band.

CoaxiAL TRANSMISSION-LINE TAPER FROM
50 to 75 OnmMs

As an application of the preceding results, the de-
sign of an optimal 50-75 ohm coaxial transmission line
taper will be indicated in detail. The taper is to be de-
signed so that the input reflection coefficient magnitude
does not exceed about one per cent in the pass band.

The initial value of the reflection coefficient in this
cage is equal to 0.2. The value of po for use in the design
of the taper is found from (17) to be

po = LIn(1.5) = 0.20274. (18)

As observed previously, this value does not differ
markedly from the zero frequency reflection coefficient.

It will be required that the maximum reflection co-
officient magnitude in the pass band shall not exceed |
one-twentieth of po. Thus, from (10)

cosh (A) = 20,

so that

A = 3.6887. (19)

The characteristic impedance contour can now be ob- |
tained directly from (12). The resulting Z, curve is
illustrated in TFig. 4, and the corresponding coaxial
line-conductor contour is shown in Fig. 5.
Characteristic impedance has a discontinuous jump
from 50 to 50.52 ohms at left-hand end and a corre-_
sponding jump from 74.24 to 75 ohmsat right-hand end.
Characteristic impedance at center of taper is equal to
61.24 ohms. geomerric mean betwesn 30 and 73 ohms,
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The performance of this taper is plotted in Fig. 6.
I The pass band consists of all [requencies greater than
-~ that for which 1 =0.587. IF'or comparison, the perform-
| ance of an exponential taper® and a hyperbolic taper®
' has been indicated on the same curve.

; 8 C. R. Burrows, “The exponential transmission line,” Bell Sys.
. 'Tech. Jour., vol. 17, pp. 355-573; October, 1938,

- YH. ], Scotr, “The hyperbolic transmission line as a matching
o section,” Proc. TRE, volo 41, pp. 1654-1657; November, 1953,

A Precision Resonance

Summary—A precision resonance method for measuring the di-
electric properties of low loss solid materials has been developed in
. our laboratory. The dielectric sample to be measured is shaped into
* a cylindrical disk and inserted into a cylindrical cavity resonator
¢ oscillating in the T, mode. ¢ can be measured from the difference

* Original manuzcript received by the IRE, April 2, 1955; revised
© manuscript received, July 0, 19535, .
© f Institute of Industrial Science, Univ. of Tokyo, Tokyo, Japan.

Fig. 6—DPerformance of 50-75 ohm Dolph-Tchebycheft
tapered transition.

CONCLUSION

The theory of the design of optimal cascaded trans-
former arrangements can be extended to the design, of
continuous transmission-line tapers. Convenient rela-
tionships have been obtained from which the char-
acteristic impedance contour for an optimal transmis-
sion-line taper can be found. Alternatively, this imped-
ance contour can be thought of as the envelope of the
pointwise specified characteristic impedance of a dis-
crete cascaded transformer arrangement.

The performance of the Dolph-Tchebycheff transmis-
sion-line taper treated here is optimum in the sense that
it has minimum reflection coefficient magnitude in the
pass band for a specified length of taper, and, likewise,
for specified maximum magnitude reflection coefficient
in the pass band the Dolph-Tchebycheff taper has
minimum length.

A sample design has been carried out for the pur-
poses of illustration, and its performance has been com-
pared with that of other tapers. In addition, a table of
values of a transcendental function used in the design
of these tapers is given in Table I.

Method for Measuring

Dielectric Properties of Low-Loss Solid
Materials in the Microwave Region*
S. SATTOT AanDp K, KUROKAWAT

between the axial lengths of the cavity tuned to the same frequency
with and without the sample, and tan 4§ can be found from the differ-
ence between the Q's of the cavity with and without the sample. By
making use of a special marker of a resonance point on an oscillo-
scope, the measurements accuracy can be improved to yield only
1 per cent error in ¢ and 3 per cent error in tan § for various low-loss
samples. Such materials as polystyrol, polyethylene, teflon, and
glass for high-frequency use were tested at 4,000 me, 9,000 mc
and 24,000 mc.






