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1. INTRODUCTION

Microwave nondestructive evaluation (NDE) is slowly becoming a
widely accepted method of testing the internal integrity of many mate-
rials such as concrete (used in bridges, buildings, dams, tunnels, etc.),
asphalt (used in pavements), composite materials, plastics, epoxy, and
rubber (used in seals). The main competing technologies with mi-
crowave NDE are ultrasound, eddy current, and thermal imaging. Ul-
trasound is currently by far the most popular NDE method, due to
its inherently high resolution, typically on the order of a millimeter.
However, ultrasonic waves have trouble penetrating many materials
such as concrete, composites, plastics, etc., and usually require a con-
tacting transducer and a wave coupling gel. Microwaves, in contrast,
couple very well into these types of materials, and do not require con-
tacting transducers or coupling media. Microwave NDE techniques,
when combined with inverse scattering imaging methods, can poten-
tially generate higher resolution images with deeper penetration than
the thermal and eddy-current imaging techniques.

Microwave NDE measurement systems may use either a broadband
excitation, such as a short-pulse signal, or a narrowband excitation,
such as a continuous wave (CW) signal. Broadband scattering data,
when available, generally contain much more useful information about
an object’s internal structure than CW data. For example, a broad-
band pulse contains range information in the pulse delay, that a single
CW magnitude and phase measurement does not contain. This infor-
mation, when used properly, can be extremely useful for reconstructing
the scattering object from the measurement data.

Two competing methods for generating a broadband pulse are the
time-domain impulse radar, and step-frequency radar (SFR) [1]. The
time-domain impulse radar, as the name implies, transmits a short-
time electromagnetic pulse, which scatters off of an object, and is
received using either a sampling receiver or an extremely fast A/D
converter. In the SFR approach, CW measurements of both magni-
tude and phase are collected at several closely-spaced frequencies over
a broad frequency band of interest. One of the direct advantages of
the SFR approach is that a measurement system may be built around
a microwave vector network analyzer, with relatively few specialized
components.

Other advantages of SFR over impulse radar are the higher signal-
to-noise ratio attainable due to narrowband electronics and the avail-
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ability of extremely stable signal sources, resulting in increased mea-
surement accuracy and stability [1–4]. This allows for the removal
of many sources of systematic (non time-varying) measurement error
including the frequency-dependent magnitude and phase variations of
connectors, transmission lines, directional couplers, amplifiers and an-
tennas. The disadvantage of SFR measurement systems, however, is
that the data collection time is generally increased. For high-resolution
microwave imaging applications, the increased measurement time can
often be justified since there will be additional time required to process
the data.

The use of a calibration procedure allows for the removal of many
sources of pulse distortion in the time-domain data. Standard network
analyzer calibration procedures allow for the removal of distortions due
to various system components such as connectors, transmission lines,
directional couplers and amplifiers. However, an additional calibration
step involving the use of calibration targets allows for the removal of
pulse distortions due to the effective aperture, phase dispersion, and
resonances of the antennas.

Time-domain inverse scattering imaging techniques, [1, 5–10] used
in conjunction with SFR data collection, may be used to generate im-
ages of the electromagnetic parameters such as the permittivity and
conductivity profiles of scattering objects. Both linear diffraction to-
mography (DT) algorithms [11–14] and nonlinear inverse scattering
algorithms may be used to process the scattering data. Diffraction to-
mography takes into account the fact that microwaves, unlike x-rays,
do not travel in straight lines. However DT ignores another wave phe-
nomenon known as multiple scattering [15]. The only general method
to include both the diffracting and multiple scattering effects of the
waves in an image reconstruction is to use an iterative nonlinear in-
verse scattering algorithm [1, 5–10, 16–21]. Another important advan-
tage of nonlinear inverse scattering is that the procedure imposes few
constraints on the sensor configuration. Most DT algorithms place se-
vere constraints on the sensor configuration, such as the requirement
that sensors be separated by a maximum of one half wavelength. Other
algorithms are also limited to monostatic measurement configurations.

The results presented in this paper are processed using the distorted-
Born iterative method (DBIM) [1, 5–10, 16] and the local shape func-
tion (LSF) method [1, 5]. Both the DBIM method and LSF method
are nonlinear iterative time-domain inverse scattering algorithms. The
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DBIM algorithm reconstructs an image of either the permittivity or
conductivity profile of an inhomogeneous scatterer, whereas the LSF
method is used to reconstruct metallic scatterers. We have collected
experimental data using an array of Vivaldi antennas. The Vivaldi
antenna is a flared slotline antenna with a broad bandwidth that op-
erates from 2 to 12 GHz [22, 23]. Reconstructions of various metallic
and dielectric scattering objects including metallic rods, glass rods and
plastic PVC pipes from real measurement data collected in our labo-
ratory are shown.

2. INVERSE SCATTERING ALGORITHMS

2.1 Distorted-Born Iterative Method (DBIM)

Consider the two-dimensional (2-D) scattering problem illustrated
in Figure 1. A line source of current Jz,n(r, t) produces the electric
field Ez,n(r, t) that is scattered by a 2-D cylindrical scatterer. We
shall use the subscript n to parameterize the transmitter number,
because generally in an inverse scattering measurement there will be
multiple transmitter locations. The scatterer is characterized by the
permittivity and conductivity profile ε(r) + δε(r) , σ(r) + δσ(r) and
exists in an inhomogeneous background medium ε(r) , σ(r) . That is,
the scatterer consists of a perturbation δε(r) , δσ(r) in the inhomo-
geneous background. In the formulation that follows, we shall assume
that δε(r) and δσ(r) are nonzero only within the support volume V
of the scatterer. Hence, the permittivity and conductivity everywhere
may be written as ε(r) + δε(r) , σ(r) + δσ(r) . This is known as the
2-D Ez-polarization or transverse-magnetic (TM) scattering problem
in an inhomogeneous background medium.

Since both the line source and scatterer in our model have infinite
extent in the ẑ-direction, and are z-invariant, the electric field will
have only a ẑ-component. The vertical component of electrical field
Ez,n(r, t) produced by the line source Jz,n(r, t) is given as the solution
to the scalar wave equation[
∇2 − µ0ε(r)

∂2

∂t2
− µ0σ(r)

∂

∂t

]
Ez,n(r, t)

= µ0
∂

∂t
Jz,n(r, t) + µ0δε(r)

∂2

∂t2
Ez,n(r, t) + µ0δσ(r)

∂

∂t
Ez,n(r, t) (1)

Under the distorted Born approximation, the solution to the above
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Figure 1. Two-dimensional TM scattering problem where the 2-D
scatterer δε(r), δσ(r) consists of a perturbation of the background
inhomogeneous medium ε(r), σ(r) . The scatterer is excited by the ẑ
directed line source of electric current Jz,n(r, t) .

partial differential equation (PDE) may be written down as

Ez,n(r, t) ≈ E0
z,n(r, t) + δEε

z,n(r, t) + δEσ
z,n(r, t). (2)

In the above,

E0
z,n = −µ

∫ ∞

−∞
dr′

∫ ∞

−∞
dt′g(r, r′)

∂Jz,n(r′, t′)
∂t′

(3)

is the incident field in the presence of the background inhomogeneous
medium ε(r) , σ(r) . The terms δEε

z,n(r, t) and δEσ
z,n(r, t) are the

scattered fields induced by the permittivity perturbation δε(r) and
conductivity perturbation δσ(r) and are given as

δEε
z,n = −µ

∫ ∞

−∞
dr′

∫ ∞

−∞
dt′g(r, r′)δε(r′)

∂2E0
z,n(r′, t′)
∂t′2

(4)

and

δEε
z,n = −µ

∫ ∞

−∞
dr′

∫ ∞

−∞
dt′g(r, r′)δσ(r′)

∂E0
z,n(r′, t′)
∂t′

(5)

The inhomogeneous medium Green’s function g(r, r′, t) satisfies
[
∇2 − µ0ε(r)

∂2

∂t2
− µ0σ(r)

∂

∂t

]
g(r, r′, t) = −δ(r − r′). (6)
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The integral equation given by (2) above is only approximate because
the distorted Born approximation [1, 5–7] has been used in writing
Equations (4) and (5). The approximation amounts to the fact that
the incident field E0

z,n inside integrals in Equations (4) and (5) has
been substituted in place of the total field Ez,n . This approximation
is equivalent to assuming that the scattered fields δEε

z,n and δEσ
z,n

are weak compared to the incident field E0
z,n The distorted Born ap-

proximation also linearizes the integral equation.
The distorted Born approximation is used frequently in diffraction

tomography to perform inverse scattering on objects with weak con-
trast compared to a known background. But instead of applying the
distorted Born approximation only once, this approximation may be
applied repeatedly if the background medium is updated at each step.
When the distorted Born approximation is used in an iterative fash-
ion, the resulting algorithm is known as the distorted Born iterative
method (DBIM). The solution that is obtained from the DBIM solves
the nonlinear inverse problem, and hence, is valid for much larger con-
trasts than if the distorted Born approximation were to be applied only
once.

In the DBIM, εk(r) and σk(r) are the permittivity and conductiv-
ity at the kth iteration. E0

z,n,k is the incident field at the kth itera-
tion in the presence of the background medium εk(r), σk(r) and are
computed numerically using a finite-difference time-domain (FDTD)
forward solver. The object model parameters εk(r), σk(r) may be
updated at each iteration using an optimization scheme such as the
conjugate gradient method.

Equations (4) and (5) above can be thought of as operator forms
of the Fréchet derivatives that map perturbations δεk(r) and δσk(r)
into the field variations δEε

z,n,k(r, t) and δEσ
z,n,k(r, t) . The Fréchet

transposed operators corresponding to these Fréchet derivatives map
the field perturbations δEε

z,n,k(r, t) and δEσ
z,n,k(r, t) back into the

permittivity and conductivity spaces. It can be shown [1, 5–7] that
these Fréchet transposed operators are given as

δεk(r) = µ0

NT∑
n=1

∫ T

0
dt

∂2

∂t2
E0

z,n,k(r
′, T − t) ×

NR∑
m=1

∫ T

0
dt′gk(r′, rm, t − t′)

(7)
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and

δσk(r) = µ0

NT∑
n=1

∫ T

0
dt

∂

∂t
E0

z,n,k(r
′, T − t) ×

NR∑
m=1

∫ T

0
dt′gk(r′, rm, t − t′)

(8)
Both the Fréchet derivative and transposed operators are required in a
conjugate gradient optimization scheme. The Fréchet derivative oper-
ator is used in computing the conjugate gradient step size for update
along a given search direction and may be computed with a single call
to a FDTD forward solver. The Fréchet transposed operator is used
to compute the gradient, and hence, the search direction and may be
computed as a backpropagation followed by a correlation.

2.2 Local Shape Function (LSF) Method

The DBIM algorithm works well for dielectric and conductive media
with contrasts as great as 10:1. But for metallic scatterers, where the
contrast is infinite in theory, the linearizing Born approximations that
are applied at each step of the DBIM algorithm may not be valid.
Recently, we have developed a new inverse scattering method known as
the local-shape-function (LSF) method [1, 5] to invert strong metallic
scatterers. This technique maps a scatterer with infinite conductivity
into a problem with a scatterer described by a binary function which
ranges between 0 and 1. By so doing, the extremely nonlinear problem
of scattering by a metallic scatterer is mapped into another space where
the problem is more linear, but still nonlinear. Eventually, it allows us
to iteratively reconstruct metallic scatterers whereas the application of
BIM or DBIM would converge extremely slowly or not at all.

Although we have developed LSF theory that applies to both CW
and transient excitation, the LSF algorithm is more simply derived in
the frequency domain [19, 20]. First, the scattering region is discretized
by dividing the scattering volume V into N regions occupying vol-
umes Vi, i = 1, . . . , N . Then, a binary shape function γi is assigned
to each volume Vi depending on whether the individual volume con-
tains a metallic scatterer. If S represents the total volume occupied
by metallic scatterers, then we have

γi =
{

1 Vi ∩ S �= 0
0 Vi ∩ S = 0

(9)

as in Figure 2.
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Figure 2. Discretization of scattering object volume O into N sub-
volumes Vi, i = 1, . . . , N . Surface S indicates the metallic scatterer
and the shaded region is where γi = 1 .

We now examine how the local shape function may be implemented
as a volumetric boundary condition in a FDTD forward solver. Using
the FDTD method, a scatterer occupying volume V is discretized into
many subvolumes Vi as in Figure 2. We then assume that the scatterer
has a homogeneous permittivity and conductivity in each subvolume
Vi . Metallic scatterers may be implemented in one of two ways. One
method is to simply assign a large conductivity value to the cells where
γi = 1 . Another way to deal with metallic scatterers is to manually
enforce the boundary condition that Ez,n(ri) = 0 at the locations ri

where γi = 1 . This boundary condition can be thought of as placing
a filamental metallic scatterer at each location Vi where γi = 1 . We
call the above a “volumetric boundary condition” because it is applied
at arbitrary locations where γi = 1 inside the volume V .

Mathematically, the LSF volumetric boundary condition may be
written as

Ez,n(ri, t) = (1 + γiTi(1))E
g
z,n(ri, t) (10)

where Ti(1) is the single-scatterer T-matrix. In the case of filamental
metallic scatterers in a finite difference grid, Ti(1) = −1 . Hence, for
γi = 1 , Equation (10) enforces the boundary condition Ez,n(ri, t) = 0 .
Eg

z,n(ri, t) is the incident field on the scatterer at position ri that
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includes multiple scattering effects from other cells Vj , j �= i . We call
Eg

z,n(ri, t) the “ghost field” because it represents the total field that
would be produced at ri assuming γi = 1 , or that a metallic scatterer
is not present at ri .

Up to this point, we have assumed that γi represents a binary
variable that is either 0 or 1. In a practical iterative optimization
scheme, it is necessary to relax this requirement and instead let γi be
a continuous real variable on the interval [0, 1]. The inverse scattering
algorithm would then produce an image of the variable γi as a function
of 2-D space.

For brevity, we shall not include the details of the T-matrix for-
mulation of the LSF algorithm here, but rather refer the reader to the
literature [1, 5]. The time-domain LSF algorithm may be implemented
in an iterative algorithm with a structure similar to that of the DBIM
algorithm. The major difference between the new LSF algorithm and
the DBIM algorithm is that the Fréchet derivative and Fréchet trans-
posed operators are different.

Using the LSF method the Fréchet derivative operator may be writ-
ten as

δEz,n,k(r, t) =
∫ ∞

−∞
dr′

∫ T

0
dt′h(r, r′, t − t′)δγk(r′) (11)

where h(r, r′, t) is the inhomogeneous medium Green’s function in the
presence of γk(r) . The Fréchet transposed operator may be written
as

δγk(r′) =
NT∑
n=1

∫ T

0
dtEg

z,n(r′, T − t)

×
NR∑

m=1

∫ T

0
dt′h(r′, rm, t − t′)δEz,n,k(rm, T − t′) (12)

In the integral form of the Fréchet derivative and transposed operators
above, we have generalized our definition of the local shape function
γi to be a function of the continuous variable r .

2.3 Measurement Data Processing

Both the DBIM and LSF inverse scattering imaging techniques have
been discussed extensively in the past, and their formulation will not
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be repeated here. However, for the purposes of completeness, we will
give a functional description of the algorithms.

The various steps in the data processing of the measurement data
using both the DBIM and LSF algorithms are summarized in the flow
diagram of Figure 3. The switch on the left indicates that either mea-
sured data or computer generated scattering data (synthetic data) may
be used in the inverse scattering algorithm. The algorithm begins with
specification of the initial parameters, which are set to zero because
we wish to use a minimal amount of a priori information. Using the
current computer model, forward scattering data are generated and
subtracted from the measured data. This difference is then used to
compute a measure of the residual field error. If the difference is be-
low a specified tolerance, the current model parameters are displayed
on a graphics workstation. If the field error is not below a specified
tolerance, the field error is sent to a conjugate gradient optimization
procedure which returns an update to the model parameters. The
process is repeated until a convergent solution is attained.

3. MICROWAVE MEASUREMENT APPARATUS

3.1 Description of the SFR System

A block diagram of basic components of the prototype step-
frequency radar measurement apparatus is shown in Figure 4. The
system consists of a broadband switched antenna array, an HP 8510B
automated network analyzer, microwave switches and controller, and
an optional broadband amplifier. The entire measurement system is
automated and controlled by a computer workstation. Custom soft-
ware was written in the C programming language to control the mea-
surement apparatus via an IEEE-488 (GPIB) interface. The HP 8510B
automated network analyzer serves as both the transmitter and re-
ceiver and allows us to collect both amplitude and phase information
by stepping through various frequencies.

3.2 Broadband Switched Antenna Array

The broadband switched antenna array used to perform the scat-
tering measurements, shown in Figure 5 contains 11 identically fabri-
cated 2–12 GHz tapered slotline, or Vivaldi, antennas arranged in a
linear array, and two DC-18 GHz SP6T microwave switches that are
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Figure 3. Block diagram of processing of measured and computer
simulated scattering data.
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Figure 4. Block diagram of prototype step-frequency radar (SFR)
broadband inverse scattering measurement system.

computer controlled. One switch is connected to 5 array elements
while 6 elements are connected to the other. Hence, the array may
be configured via computer control to operate as either an 11-element
monostatic array or a multi-bistatic array consisting of 30 different
measurements. The switches automatically terminate the antenna el-
ements at 50 Ω when they are switched off, reducing the coupling
among the elements. The antenna elements and microwave switches
are enclosed in a polystyrene housing.

The arrangement of the transmitters and receivers for the new
switched antenna array is shown in Figure 6. The 11 antenna elements
are separated by 8.0 cm , giving a total baseline of 80.0 cm . This base-
line length was chosen with the goal in mind of resolving objects at a
range of R = 40.0 cm . Note in Figure 6 that the antenna elements are
aimed at a fixed range of R = 40.0 cm , rather than straight ahead, in
order to achieve the maximum response from all antenna elements at
that range.
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Figure 5. Photograph of broadband switched antenna array con-
taining 11 identical broadband Vivaldi antennas and two microwave
switches enclosed in a polystyrene housing.

Figure 6. Arrangement of transmitters (T), receivers (R) and object
grid for new switched antenna array.
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3.3 The Vivaldi Antennas

The Vivaldi antenna is based on a non-resonant travelling-wave
structure similar to the horn antenna [24], but is fabricated as a printed
circuit antenna. The wave-guiding structure here is the printed slot-
line. As in a horn antenna, the waveguide is of increasing dimension,
where the increasing dimension is the width of a printed slotline. The
names “flared slot” and “tapered notch” have been used for this type of
antenna. However, the shorter, but less descriptive, name “Vivaldi an-
tenna” was applied by Gibson [22] to the antenna with exponentially
varying separation. The Vivaldi has good potential for applications
that require broadband endfire radiation from elements embedded in
a truncated ground plane.

The simplicity and excellent performance of the Vivaldi antennas
have provoked considerable interest [25]. Though broad bandwidths
for the Vivaldi have been documented, the antenna is capable of a
wider impedance bandwidth than is usually obtained in practice. Usu-
ally, it is the manner of excitation of the Vivaldi slotline that limits
the bandwidth rather than the geometry of the flare. Bandwidths
greater than 10:1 can be obtained by using a coax-to-slotline (C/S)
transition rather than a microstrip-to-slotline used frequently in the
past [23]. The method of excitation used in this work is shown in
Figure 7. The slotline is etched on both sides of a double-clad sub-
strate. Using double-clad, rather than single-clad, board reduces the
characteristic impedance of the slotline for easier matching to a coax-
ial cable input. Two metallic wedges are affixed to each side of the
cladding in such a manner to maintain the width of the slot. The
coaxial cable is introduced near the thick edge of the wedges. The
thick-walled slot in the neighborhood of the coax is designed for 50-
ohm impedance to match that of the coax. The wedge then forms a
tapered transition between the relatively low impedance of the coax
to the higher impedance of the slotline. Beyond the wedge the slotline
is flared exponentially in the manner shown in Figure 7. The result-
ing antenna structure is well matched to 50-ohms from 1 to beyond
18 GHz . Pattern measurements were limited to 2 to 18 GHz because
of range limitations. Well-formed beams were observed over the entire
band for both H-plane and E-plane. Cross polarized fields were 20 dB
below co-polarized for all of the H-plane data and 15 dB or more for
the E-plane data. The measurements confirmed a pattern bandwidth
of at least 9:1.
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Figure 7. Schematic of the Vivaldi antenna. The black area indi-
cates exposed dielectric substrate. The light gray area indicates copper
cladding of the dielectric substrate which occurs on both sides. The
dark gray area is the tapered wedge for matching the 50 ohm coaxial
cable to the high impedance of the slotline. This antenna consists of a
flared slotline.

4. MEASUREMENT CALIBRATION PROCEDURE

For radar imaging applications, distortions of the radar pulse induced
by the presence of scatterers can provide much information about the
unknown scatterers or targets. That is, much more information may
be derived from the shape of the reflected pulse than from the am-
plitude and arrival time of the pulse alone. But this requires a cal-
ibration procedure to remove pulse distortions due to the antennas,
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in addition to those distortions normally associated with the network
analyzer, including connectors, transmission lines, amplifiers and direc-
tional couplers. Fortunately, these distortions may be removed easily
in a step-frequency radar system through the use of calibration targets
and software.

We will assume that a standard network analyzer calibration pro-
cedure is performed so that the analyzer is calibrated to the plane
A − A′ shown in Figure 4. This calibration would remove the effects
of the broadband amplifier, directional couplers, and any transmission
lines and connectors between the network analyzer and plane A−A′ .
Hence, if the terminals A − A′ were to be shorted together, an S21

(transmission) measurement would measure an S21 magnitude of 0 dB
and phase of zero degrees for all frequencies.

Next, a procedure involving the use of a calibration target is used
to remove the distortions due to the antennas. For this antenna cali-
bration procedure, we shall consider everything from the plane A−A′

out to the antennas, including the microwave switches and transmis-
sion lines feeding the antennas, to be part of the antenna assembly.
Pulse distortions induced by the antenna housing and the presence of
the other antenna elements shall also be included in this calibration.

After the standard network analyzer calibration procedure is per-
formed to the plane A−A′ , the SFR measurement model is as shown
in Figure 8(a). A sequence of CW signals in the the bandpass region of
interest, taken to be ωL < ω < ωH , is sent through the transmitting
antenna, propagated to the scatterer, and returned to the receiving
antenna. The measured field is then inverse Fourier transformed to
generate a synthetic scattered field pulse.

To calibrate the antenna array, the scattered field is also computed
using a 2-D finite-difference time-domain (FDTD) forward solver. The
simulated experiment using the FDTD solution may be modeled as
shown in Figure 8(b). The FDTD algorithm models the antennas as
line sources of electric current Jz(rn, t) , where rn, n = 1, 2, . . . , N
denotes the nth source location. The wave propagation process is
simulated using FDTD and the field is sampled at the receiver locations
rm, m = 1, 2, . . . , M .

The purpose of our calibration procedure is to get the measured
scattered field pulse to agree with the FDTD model. Since the FDTD
forward solver is used extensively in our inverse scattering algorithms,
the SFR measurement should agree with the FDTD solution for known
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Figure 8. (a) Step-frequency radar measurement model and (b) FDTD
computer model of scattering experiment.

scatterers. A linear filter H(ω) is derived as

H(ω) =
{

Hc(ω)
Hm(ω) , ωL < ω < ωH

0, elsewise,

where Hc(ω) is the Fourier transform of the computed scattered field
obtained from the FDTD simulation of the calibration target and
Hm(ω) is obtained from the raw SFR measurements from the cali-
bration target. The calibration filter H(ω) is applied to all of the
measured SFR data, when the calibration target is replaced with an
unknown scatterer. The calibration filter essentially deconvolves the
impulse response of the transmitting and receiving antennas, and con-
volves the FDTD source pulse with the measured data.

The FDTD source pulse is designed in the frequency domain using
a Kaiser frequency window and chosen to be relatively constant over
the passband ωL < ω < ωH , but to have a very small amplitude at
the band edges ωL and ωH . This ensures that Hc(ω) and H(ω) will
have very small amplitude at the band edges. There is no problem
then in specifying the filter H(ω) to be zero outside the passband.
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The 2-D FDTD simulation attempts to predict the ideal scattered
field, that is, the scattered field that would be measured with an SFR
system if antenna distortions and other sources of modeling error and
noise were not present. In the process, however, additional sources of
error are introduced. An obvious source of modeling error introduced
is the approximation of the 3-D scattering experiment using a 2-D com-
puter model. Another source of modeling error is the representation of
the antennas as omni-directional. In actuality, the near-field antenna
response varies with both range and angle, in addition to frequency.
Numerical noise is also introduced by the FDTD simulation.

For an object region that is small with respect to the size of the
array and remains at a fixed location with respect to the array, the
two sources of FDTD modeling error discussed above remain relatively
constant over the object grid. The calibration procedure then may be
considered to be valid within a localized region around the center of
the object grid. For object regions that are not small with respect to
the size of the array, a more sophisticated calibration procedure may
be devised using multiple calibration targets.

5. RESULTS

5.1 Calibration Results

The SFR antenna calibration was performed using a metallic cylin-
der of diameter 3.0 cm as a calibration target. To demonstrate the
effectiveness of the calibration procedure, the calibration target was
replaced with an arbitrary target consisting of two metallic cylinders,
each of diameter 4.5 mm , separated by 3.2 cm , and aligned vertically
with respect to the array.

Figure 9 shows the calibrated time-domain scattering data obtained
from the SFR measurements. The scattered field computed using the
2-D FDTD solver is shown in Figure 10. Note that In Figures 9 and
10, only the scattering data for the first transmitter is shown, with the
received signal at each of the six receivers. A comparison of Figures
9 and 10 shows that the calibration does an excellent job of getting
the measured pulse shape to agree with the pulse calculated with the
FDTD algorithm.
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Figure 9. Calibrated time-domain scattering data for two metallic
cylinders aligned vertically, obtained from the SFR measurements.
Cylinders each have diameter of 4.5 mm and are separated by 3.2 cm .
Data is shown for the first transmitter only and all six receivers.

5.2 Metallic Object Reconstructions

The measurement geometry used in the SFR data collection is shown
in Figure 3. The object space consisted of a 35 × 35 subgrid. The
grid space and time step sizes used in the FDTD forward solver were
∆x = 2.5 mm and ∆t = 5.5 ps .

Figures 11 and 12 show the resulting images after the LSF inverse
scattering algorithm was applied to the measured scattering data from
two metallic cylinders. Figure 11 is for the case when the cylinders were
aligned horizontally with respect to the array, and Figure 12 is for the
vertical alignment case. In both cases, the cylinders were separated by
3.2 cm , and the cylinders each had a diameter of 4.5 mm .
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Figure 10. Scattered field computed using finite-difference time-
domain for two metallic cylinders aligned vertically. Cylinders each
have diameter of 4.5 mm and are separated by 3.2 cm .

5.3 Dielectric Object Reconstructions

Metallic objects are more difficult for inverse scattering algorithms
to image than dielectric objects because the inverse scattering problem
is more nonlinear for metallic objects. However, dielectric objects are
more difficult to measure because the scattered field produced by a
dielectric object is much weaker than that of a metallic object. We
present reconstructions of dielectric objects below to demonstrate that
accurate scattering data can be collected from dielectric objects and
that high-quality images may be generated.

Figures 13 and 14 show reconstructions of plastic PVC pipes of
diameters 2.7 cm and 4.8 cm , respectively. Both of these pipes were
located in an air background. The DBIM permittivity optimization
algorithm was used for both cases. For both pipes, high quality images
were produced. The bottoms of the pipes are not reconstructed as well
as the tops because scattering data were collected from the top only.
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Figure 11. Original object and shape function reconstruction of two
metallic cylinders of diameter 4.5 mm aligned horizontally with sepa-
ration 3.2 cm .

Figure 12. Original object and shape function reconstruction of two
metallic cylinders of diameter 4.5 mm aligned vertically with separa-
tion 3.2 cm .

Figure 15 shows a DBIM permittivity reconstruction of an empty glass
graduated cylinder of diameter 5.25 cm located in air.
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Figure 13. Reconstruction of microwave data from a hollow PVC pipe
of diameter 2.7 cm in air.

Figure 14. Reconstruction of microwave data from a hollow PVC pipe
of diameter 4.8 cm in air.

Figure 15. DBIM permittivity reconstruction of an empty glass grad-
uated cylinder of diameter 5.25 cm located in air.
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6. CONCLUSIONS

A prototype step-frequency radar microwave imaging system, complete
with data collection, calibration, and inverse scattering imaging soft-
ware, has been designed and built. This prototype imaging system may
be used for various NDE applications, and is particularly useful for ma-
terials such as concrete, composites, and plastics, that ultrasound has
trouble penetrating. The imaging system may be used, for example, to
find pipes, voids, and other defects in concrete walls, tunnels, dams, as-
phalt pavements, etc. It may also be used to detect delaminations and
water contamination in advanced composite materials that are used,
for example, in ship hulls, masts, and aircrafts.

The SFR imaging system presented here uses multiple antennas in
a bistatic arrangement to collect “multiple views” of the scattering
object without motion of the array. The Vivaldi antennas used in
the array allowed for fairly broadband transduction, with a directional
gain characteristic, in a compact, light-weight package. A microwave
network analyzer serves as the backbone of the data collection system,
requiring very few specialized components other than the antenna as-
sembly and custom data collection software.

A calibration procedure involving the use of a calibration target
was presented to remove pulse distortions due to the antennas as well
as transmission lines, connectors, amplifiers and directional couplers.
It was shown that the calibration procedure does an excellent job of
removing pulse distortions, and allows an accurate prediction of the
scattered field pulse shape from arbitrary targets with a FDTD forward
modeler.

The operating frequency band of 2 GHz to 12 GHz used in our
system was chosen for laboratory measurements of test objects in air,
and shallow penetration NDE applications. For other applications, the
choice of operating frequency would clearly depend on the background
medium, the desired depth of investigation, and the required object
resolution. The antenna size, and hence operating frequency band of
the prototype system presented here could be scaled up or down to
meet a desired application.
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