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A&s frac t—The three-port hyhrid considered in this paper is useful

both as a power divider and power combiner. In the divider application,

power entering the input port is split equally and with zero phase differ-

ence between the output ports. All ports are well matched and the output

ports are highly isolated. The generalized form of the hyhrid circuit is a

T junction followed by a multiplicity of cascaded pairs of TEM line

lengths and interconnecting resistors. Due to symmetry, the resistors are

decoupled from the inpnt port, but they serve an essential fnnction in pro-

viding ontput-port match and isolation. Each pair of lines and its associ-

ated resistor are referred to as a section. The one-section hybrid has been

known and widely used, Its usable bandwidth is J,/j, = 1.44:1 for VSWR

<1.22 and isolation >20 dB. This paper shows that additional sections

can provide a large increase in bandwidth. Some of the examples treated

are as follows: two sections, fJfl = 2, VSWR <1.11, isolation> 27 dB;

four sections, f,/f, = 4, VSWR <1.10, isolation >26 dB; and seven sec-

tions, fq/f, = 10, VSWR <1.21, isolation> 19 dB. Exact design formulas

are given for two-section hybrids, and approximate design formulas for

three or more sections.

I. INTRODUCTION

T

HE THREE-PORT hybrid considered in this paper

is equivalent to a conventional four-port T hybrid

whose series port is terminated internally by a re-

flectionless load. Power entering the shunt port emerges with

equal amplitude and phase at the other two ports. Each of

the three ports has nearly unity VSWR, while isolation of

the output ports is high. In addition to its application as a

power divider, reciprocity allows this type of hybrid junction

to function as a Iossless power combiner of two equal in-

phase signals.

Several papers have been published on three-port hybrids.

The earliest known to this author is by Wilkinson, treating

n output-port (n22) power division. [11With n= 2 his circuit

reduces to that shown in Fig. 1. The theoretical VSWRS

and isolation are plotted in this figure. For bandwidths up to

about 1.4:1 the performance is quite good, but at the edges

of a 2:1 band the isolation is only 14.7 dB and the input-

port VSWR is 1.42. (In all cases of VSWR and isolation

data, the ports not connected are assumed terminated by

2, loads,) Shortly after Wilkinson’s paper appeared, Dent

published the same three-port circuit and included confirm-
ing experimental data, [21

Parad and Moynihan published a more complex version

of Fig. 1, allowing unequal as well as equal power division. [sl
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Fig. 1. Basic three-port hybrid and its VSWR and isolation response.

Their best design example covers a 1.57:1 band with maxi-

mum VSWR equal to 1.20 and minimum isolation about 20

dB. David has shown a modification of Fig. 1 in which

open-circuited coaxial lines are inserted in series with the

output ports. [41 This yields enhanced bandwidth with

VSWRS less than 1.4 and isolation greater than 19 dB in a

2:1 band.

These previously published designs utilize a three-port

circuit of varying complexity plus a resistor. (Wilkinson

generalizes this to an n-way junction with a resistor between

each adjacent pair of output ports.) The broadband three-

port hybrids presented in this paper differ in that they con-

tain a multiplicity of cascaded pairs of line lengths and

interconnecting resistors. Compared to the earlier designs,

an enormous improvement in VSWR and isolation is ob-

tained over a given bandwidth, even when only two pairs

of lines and two resistors are used. As the number of line
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sections and resistors is increased, the bandwidth capability

improves without limit.

IL GENERALIZED CIRCUIT AND ANALYSIS OF PERFORMANCE

Fig. 2(a) shows the general circuit of the class of three-

port hybrids treated in this paper. This is an “N-section”

circuit, containing N pairs of equal-length transmission

lines and N bridging resistors distributed from port 1 to

ports 2 and 3. Fig. 2(b) shows a specialization of this circuit

in which the quantity of resistors is reduced by letting one

or more be zero ohms and one or more be infinite ohms. As

additional generalizations, the multisection technique may

be used to increase the bandwidth of Wilkinson’s n-way

power divider[’1 and also Parad and Moynihan’s unequal

power-split power divider. [3]

The symmetrical power-divider circuit in Fig. 2(a) is most

easily analyzed by the method of even- and odd-mode

excitations of ports 2 and 3 with a 20 load connected to

port 1. This method has been discussed by Reed and

Wheeler[51 for the case of four-port symmetrical structures.

Their results may be applied with only slight adaptation to

the three-port case of Fig. 2(a).

With even-mode excitation, waves of equal amplitude

and zero phase difference are incident on ports 2 and 3. The

voltage difference is then zero between all pairs of cor-

responding junction points along the upper and lower trans-

mission paths in Fig. 2(a), and no power is dissipated in

the resistors. The power output at port 1 is the total power

incident at ports 2 and 3 minus the total reflected power.

Because there is no transverse current flow, the circuit in

Fig. 2(a) can be bisected symmetrically by a longitudinal

nonconducting wall. The resulting circuit is shown in Fig.

3(a). Note that the left-hand load is replaced by 2 ZO as a

result of the bisection.

With odd-mode excitation at ports 2 and 3, waves of equal

amplitude and 180° phase difference travel along the two

transmission paths. The resistors then have substantial volt-

ages impressed across them. Due to symmetry, the mid-

points of the resistors and the junction of the lines at port

1 are at ground potential. Therefore the bisected circuit is

as shown in Fig. 3(b).

Fig. 3(c) and (d) is equivalent to Fig. 3(a) and (b) except

that it has been reversed so that the incident waves arrive

from the left. Because an admittance representation is more

convenient, the following substitutions have been made

YI = 1/21, YZ = l/zz, . . ., YN = l/zN

G1 = l/Rl, Gz = I/R,, . . ., G’N = l/RN

l’, = 1/ZO = 1, G~ = 1/220 = 0.5. (1)

Each Y~ value is assumed unaffected by a change from even
to odd excitation. This requires coupling between adjacent

conductors to be small. If the weak coupling condition is

violated, then Yk (odd)> Y~ (even), resulting in some degra-

dation of performance and greater design difficulty.

Let P. and p“ be the voltage reflection coefficients of the

circuits in Fig. 3(c) and (d). Also, let m, P2, and P3 be the

voltage reflection coefficients at ports 1, 2, and 3 of the

(a)

‘2 --/’qfLyyJ-k--3~
=

(b)

Fig. 2. General circuit of the multiple-section three-port hybrid and
an example of a special case. (a) General circuit. (b) Special case
of R1=RZ= w and RN.I=RN=O.

!-+--4-+4 I--A--+-J
(a)

!--A-=-4A l-4-4-+--
(b)

Yo= 1

“! : ! ----~:—p=””---
‘.JL+LZI LLLA ‘

(c)

4’!2

(d)

Fig. 3. Bisection circuits for even and odd modes. (a) Bisection for
even mode. (b) Bisection for odd mode. (c) Admittance circuit,
even mode. (d) Admittance circuit, odd mode.

complete power divider of Fig. 2(a), and tlz, tls, and 123 be

the voltage transmission coefficients between these ports.

Then adapting Reed and Wheeler’s results to the symmet-

rical three-port case

IPII = [Pel (2)

p2 = p3 = +(P. + P.) (4)

t23 = *(P. — p.). (5)
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Thus the reflection coefficients P. and POof the bisected cir-

cuits in Fig. 3(c) and (d) are sufficient data for the computa-

tion of all reflection and transmission coefficients of the

general three-port symmetrical circuit of Fig. 2(a). 1%1 I
III. SYNTHESISFOR OPTIMUM PERFORMANCE I:e[ 1

The power-divider circuit is composed of a finite number 1%.1
of resistors and equal line lengths. Therefore, the input im-

pedances and various reflection and transmission coefficients o-
1

can be expressed as quotients of polynomials in s of finite
+3 +4

‘+’1 90° 4’*

degree, whereIGl -
s= —jcot~. (6) Fig. 4. General equal-ripple shape of 1pO1 and Ip.I functions,

two-section case.

Synthesis for optimum performance in a given bandwidth is

thus reduced to an algebraic problem involving “positive-
are imaginary, the following relations hold at 43

real” rational input-impedance functions of the complex

variable s. By optimum performance is meant equal-ripple 2Gj(l – 2G1) – YIZ – YI Y# = O (9)

(Chebyshev) behavior of p,, p,, P3,and tl, in a specified band-
(Y, + Y,) (1 – 2G,) – 2G, Y, = O.

width, the number of ripples being the maximum possible
(lo)

for the number of circuit sections N. Equations (l), (6), (9) and (10) yield
The synthesis problem is simplified by seeing that the

even-mode circuit of Fig. 3(c) is a stepped transformer be- 2ZIZ2

tween terminal conductance 1 and 0.5. Thus I pl I = I p,l will
(11)

‘2 = <(z, + 22) (Z2 – z, cd’ 43)

have optimum equal-ripple behavior if the characteristic

admittances Yl, Yz, . . . , Y~ are designed to yield optimum 2R4(ZI + z,)
RI = (12)

stepped-transformer response. Formulas and tables for R2(Z, + Z2) – 2Z, — “

determining Y1 to Y~ are available and need not be repro-

duced here. ITI,[s] With the characteristic admittances deter- A formula relating I& to 01 is obtained from I p,l a TZ(X)

mined, the remainder of the synthesis problem is to compute = 2x2– 1, where x= (90° –4)/(90° –@l). The function Z’2(X)

is the Chebyshev polynomial of second degree. The resultthe conductance Gl, G2, . . ., GN such that p2, p~, and t23 .

are optimum, It is much easier, however, to compute G1 to 1s

GN such that pOis optimized. A number of computed cases

show that when p. and pOare optimum, pz and t23are very @, = 90° – * (90° – f$J

close to optimum.

An almost exact synthesis is quite simple for N= 2, but is

increasingly difficult for N> 3. The N= 2 case is treated in “oo[’-xal ’13)
Section IV. For N> 3 a set of approximate design formulas

has been deduced heuristically and is given in Section V. A formula for & based on x= cos @/cos @l instead of

IV. DESIGN FORMULAS, N= 2
x= (90° —4)/(90° —o]) might be thought more accurate;

however, detailed computation shows (13) to give better

Fig. 4 shows the general shape of I pol vs. @ This function results.

is symmetrical about ~= 90°, and has a ripple maximum The maximum VSWR’S at the three ports and minimum

at 90° and zero points at +3 and +1= 180° —@3.The equal- isolation may be computed from (2), (4) and (5), letting

ripple band edges are @l and &= 180° —+l. The I p. I func- 4= 90°. However, the approximate formulas (22), (23) and

tion is similar in shape to I p. 1, also having one maximum (24) in Section VI offer good accuracy and simplicity.

and two zeros. When N= 2, the input admittance and re- Equations (1 1), (12) and (13) are the design formulas for

flection coefficient in Fig. 3(d) are determined as follows the two-section case. First, 21 and 22 are computed as

by means of elementary transmission-line theory stepped-transformer sections matching the terminating con-

YI + (2G2 + Y2s)s
Y lrl, o = (7)2G1 + ‘1 2GZ + (Y1 + Ya)s

1 – Yl~,~ 2G2(1 – 2G1) – Y12 – YI Y2S2 + [(Y, + Ya) (1 – 2G1) – 2GZ Yl] S
p. = (8)

1 + Yin,o = 2GZ(1 + 2G,) + Y12 + Y1Y2s2 + [(Y1 + Y2)(1 + 2G1) + 2G2Y1] S

where s= —j cot ~. To have pO= O at 43 and 4u, the real and ductances 1 and 0.5 in the desired bandwidth & to & or

imaginary parts of the numerator must each be zero. Since ~1 to~z, [’l’ [s] (see discussion in Sec. II.) Then @ais computed

terms with factors sZ, S4, sS, etc. are real and S1, s3, sS, etc. from (13) for the desired band-edge value @l or frequency
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Fig. 5. Response curves for N= 2, ft/fl = 2 design.

bandwidth ratio~z/~1. Finally(11) and (12) yield RI and R1.l

Note that 21, 22, R* and Rz apply to the normalized case,

2,= 1. In the general case Z,# 1 these values should be

multiplied by ZO.

As a design example let fJfl = 2, corresponding to frac-

tionalbandwidth W= 2(fi#fl– 1)/~~/fl+ 1) = 0.6667. Young’s

transformer tables[gl include the desired 2:1 impedance

transformation (R= 2 in his notation), but his nearest W

values are 0.6 and 0.8, for which 21= 1.21360 and 1.23388,

respectively. Interpolation yields ZI = 1.2197 at W= 0,6667,

Then 22= 2/Zi= 1.6398. Equation (13) gives d,= 68.79°, and

(11) and (12) give R,= 1.9602 and RI=4,8204. The exact

response curves for this case were computed using the

analysis method of Section II. The resulting curves plotted

in Fig. 5 show that in the desired 2:1 band the maximum

VSWR’S at ports 1, 2, and 3 are Sl~= 1.106 and Sz~ = SS~

= 1.021, while minimum isolation between ports 2 and 3 is

27.3 dB. (S1, S,, S, are the VSWR’S at ports 1, 2, 3. The

additional subscript m denotes the maximum VSWR in the

design bandwidth.) The very slight deviations of S,= Ss and

lZS from optimum at the band edges are due to the approxi-

mation in ( 13), and the fact that w and POare optimized rather

than Sz= SS and lZ1. Nevertheless, these deviations are so

small as to be safely ignored. The normalized element values

and the performance limits are tabulated in Table I.

The case N= 2 and f,/fl= 1.5 has also been computed,

and the results are included in Table I. The highest VSWR

is 1.036 and the minimum isolation is 36.6 dB in the 1.5:1

design bandwidth.
A two-section stripline experimental model was con-

structed for the 1 to 2 GHz band. Maximum VSWR was 1.20

1 If the conductor pairs are not sufficiently decoupled, values of Zk
(even) and 2, (odd) will differ significantly. In that case .zb (even) should
conform to the stepped transformer design, and Zk (odd) should be
used in (11) and (12).

3i3

TABLE I

PERFORMANCELIMITS AND NORMALIZED PARAMETERSOF THRE~-PORT
HYBRID DESIGNS

—

2 3 3 4 7
A?fi 125 2.0 2.0 3.0 4.0 10.0

S1 (max) 1.036 1.106 1.029 1.105 1.100 1.206
S2, S3 (max) 1.007 1.021 1.015 1.038 1.039 1.098
I (tin), dB 36.6 27.3 38.7 27.9 26.8 19.4

z, 1.1998 1.2197 1.1124 1.1497 1.1157 1.1274
z, 1.6670 1.6398 1.4142 1.4142 1.2957 1.2051
28 1.7979 1.7396 1.5435 1.3017
Z4 1.7926 1.4142
z, 1.5364
ZS 1.6597
z? 1.7740

5.3163 4.8204 10.0000 8.0000 9.6432 8.8496
1.8643 1.9602 3.7460 4.2292 5.8326 12.3229

1.9048 2.1436 3.4524 8.9246
2.0633 6.3980

4.3516
2.5924
4.9652

and minimum isolation was 22 dB. The deviation of this

measured performance from the theoretical was the result

of discontinuity effects which were not compensated in this

model.

V. ITERATIVE APPROXIMATION, N= 3

As shown in Section III, the characteristic impedances 21,

22, and 23 are determined as those values that produce an

optimum stepped transformation between resistance levels

1 and 2. Because of the complexity of a synthesis approach

for N= 3, the resistances Rl, Rz, and R3 have been deter-

mined by iterative comuptation leading to approximately

optimum performance in the desired bandwidth.

The following facts assist the choice of trial values of

2G1, 2GZ, and 2Gs in Fig. 3(d). First, at center frequency the

optimum I P.I response function for N odd is zero at @= 90°.

Therefore, Yi.,o = 1 when the section lengths are X/4, and

2G1, 2GZ, and 2GS must satisfy

Y?
2G1 + 1.

y22 =
2GZ + —

2Gs

Second, the results for N= 2 suggest that a good trial value

for 2GN is 1.0. Third, the input conductance 2G1 should be

somewhat smaller than in the N= 2 case, since the input

power is absorbed by three conductance rather than two.

A reasonable initial value is two-thirds of the N= 2 value of

2G1, and therefore about 0.26,

The first case treated was f ,/fl = 3. The fractional band-
width is W= 2(3 — 1)/(3+ 1)= 1. Young’s tables181 give

zI= 1.1497, Z,= 1.4142, Zt= 1.7396, and also S.m= 1.11. (~.

is the even-mode VSWR. Subscript m denotes maximum or

ripple-level VSWR in design band.) Equation (14) and the

other two conditions for 2G1, 2G2, and 2Gs were used to

determine an initial set of conductance values. The input
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VSWR, S., of the odd-mode circuit [Fig. 3(d)] was then

calculated at points between @= 45° and 90°, corresponding

to the lower half of the desired 3:1 bandwidth. Because the

response is symmetrical, this also determines the upper half.

The maximum VSWR was S.~ = 1.08. After several judicious

changes, the following set of conductance yielded So~

z 1.064 and almost optimum response shape in the desired

3:1 band: 2G, =0.25, 2G,=0.4729, and 2GS=0.933. The

computed response curves are plotted in Fig. 6. In the 3:1

design band the minimum isolation is 27.9 dB and the

maximum VSWR’S are Slm = 1.105 and S2~= Stfi = 1.038. A

pl, = 0.070 plo = –0.057 T1.

Pge = 0.103 p,. = –0.152 T20

p3. = 0.103 psu = –0.362 T3a

p4. = 0.070 p40 = —1

MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1968

toward the right in Fig. 3(d). The odd-mode input reflec-

tion coefficient may be expressed as the summation of indi-

vidual reflections from the junction discontinuities. Thus

P. = PI. + p20kthi7i24 + p3&%;tz$t2;e-j4~ + . . .

+ PN+l,oh$&_t2$t2; “ “ “ .tN$tNo-e-i2N~

(15)
ka2

The terms with factors PIOto PN+l, o represent first-order re-

flections; that is, wave paths with one direction reversal. The

summation from k= 2 to OJ represents all higher-order re-

flections; that is, wave paths with three, five, seven, etc.,

direction reversals at the various reflection points, The

formula for PM at the junction of Y~_l and Y~, with 2G~ in

shunt, is as follows for a wave incident from the left

Yk-q – yk – 2~~
pko = J k ~ N; pN+I,O = – 1.

Yk-1 + Yk + zGk

(16)

(Note that Yh-l= Yo = 1 at k= 1). The product of the trans-

mission coefficients for right- and left-hand travel past

junction k is

Tbo = tlc~th.– =

——

Equations (15),

( 2 Yk_l

)(

2 Yk

Yk_~ + yk + 2G~ Yh + Y~-l + 2Gh)

h Yk-1 yk
~ k=lto N. (17)

(Yk-1 + Yk + 2GJ2’

(16), and (17) also apply to even-mode ex-

citation, except that Gk= O, GL = 0.5, and PN+l,. = ( YN– 0.5)

/( YN+O.5).

In order to explore this approach, the individual first-order

reflection terms were computed for the designs already ob-

tained; that is, N= 2, f.Jf,= 1.5 and 2, and N= 3, f,/fl= 2

and 3. For example, the case N= 3, fJfl = 3 has significant

quantities as listed below

——

.

.

0.772 Plo = –0.057

0.584 T1P2. = –0.117

0.330 TITgp% = –0.164

!l’1T2T3pd0 = – 0.148.

A second N= 3 case for f2/fl= 2 resulted in 38.7 dB mini-

mum isolation and maximum VSWR’S S1. = 1.029 and

SZ~= St~ = 1.015. The normalized design parameters and

performance limits of the two cases are included in Table 1.

VI. GENERAL DESIGN FORMULAS, N23

Because of the difficulties of exact synthesis for N> 2 and

iterative approximation for N> 3, an approximate approach

applicable to all values of N was investigated. The resulting

design formulas are simple and have proved to yield good

results in several test cases for N= 3, 4, and 7.
The approximate approach is similar to that used in

stepped-transformer analysis. [T] Assume a wave traveling

In the even-mode case, all pk. values are small compared to
unity; therefore, only first-order reflection terms need be

considered. Also, all The values are very near unity and may

be replaced by unity in (15). Thus, the following is suffi-

ciently accurate and in fact is the basis of the usual approxi-

mate method of stepped-transformer design.

P. = PI. + p2ee–i26 + p3ee–f4~ + pbee–@f’. (18)

The set of PhOvalues starts at plo = – ple and progresses

rapidly to p40= – 1. The higher-order reflection terms

bhe–~zk+in (15) are, therefore, too large to be neglected.

The symmetrical set of Ph, factors in ( 18) yields Chebyshev

IP.l response. The corresponding odd-mode set (PI., T,p,.,
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T1TZP30, T1TZT3P10) k numerically unsymmetrical and cannot

yield Chebyshev I p. I response without the aid of the infinite

series of higher-order reflection terms contained in (15). To

include these higher-order reflections in the approximate

analysis would cause enormous complications, and therefore

a modified approach was taken.

Careful study of the N= 3, fJfl= 2 and 3 cases showed

that the following empirical formulas agree well with the

conductance obtained by iterative approximation

G,=l– Y, (19)

Y&~ – Yk
G, =

Y~_lTITz . . . T~_l ‘
k=2to N–1. (20)

After Gl, GZ, . ~ 0, GN_l are computed, GN is determined

such that Yi.,O= 1+0.7 (S., ~O.— 1) at 4=90°. S., g@is the

even-mode stepped-transformer VSWR at @= 90°. With

Chebyshev response, S., ~00equals one for N odd and equals

the ripple value Sm for N even. GN is given explicitly by the

following finite continued fraction

m
T

;

o
c
<
6
C

I

&l
3
Y

I

I
o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0,

Ilk

Fig. 8. Response curves, N= 7, fJf, = 10.

The maximum VSWR’S and minimum isolation are

s2m = S3. = 1 + o.2(s,m – 1) (23)

()2.35
I. = 20 loglo

s em -ldB

(24)

where (22) is exact, and (23) and (24) are approximate.

Equations (19), (20), and (21) yield conductance within 4

percent of those obtained by iterative approximation in the

cases N= 3, f2./fl= 2 and 3. For the cases N= 2, f2/fl==1.5

and 2, disagreement with the exact conductance is larger,

but still does not exceed 14 percent. The nature of (19),

(20), and (21) is such that good results were anticipated for

N higher than 3. Two trial designs have confirmed this.

The first design was N= 4, fz/fl = 4. Available stepped-

transformer tables[sl give the ZI to Z4 values listed in Table

I and also give Sfi= 1.10. Equations (l), (17), (19), (20),

and (21) yield the RI to Rt values listed in Table I. Fig. 7

Y.?/_a
—2GN.2 +

&,goO = 1, N odd

= Sem, N even

[(21)]

Y1’
—9/2. -1-

“LIZ ,

–2G, + 1 + O.T(&,gOO - 1)

z The heuristic reasoning leading to (19), (20), and (21) and sug-
gesting their applicability for N> 3 is rather lengthy and cannot be
supported rigorously. These formulas are justified, however, by the
computed results presented in this paper. The factor 0.7 in (21) was
chosen for best empirical fit.

shows the response curves calculated for this case by the

meteod of Section II. The excellent isolation and VSWR per-

formance supper tthe utility of the approximate design

formula.



116 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, FEBRUARY 1968

The second design was N= 7, fJfl = 10. Stepped-trans-

former formulas17J are used in this case, since tables are not

available for N> 4.3 These formulas yield the Z1 to ZT values

in Table I. Another formula [’1 gives pm= 0.0882 as the re-

flection-coefficient ripple level. The corresponding VSWR is

S’w=(l+p.~)/(1 –pm)= 1.191. Equations(l), (17), (19), (20),

and (21) result in the RI to R7 values in Table I. The com-

puted response curves are plotted in Fig. 8. Over the 10:1

design bandwidth 1~ = 19.6 dB, ~1~= 1.206, and St~ = Ss~

=1. 100. This performance is good but not optimum. In a

9:1 band, L= 22.0 dB, Sl~= 1.197, and S,= SS= 1.100.

Equation (24) yields minimum isolation values within 1.0

dB of the computed isolation curves in all examples for

N= 2, 3, and 4. For N= 7 and fJ’l= 10, (24) is accurate in-

side the band, but at the band edges the computed isolation

curve is lower by 3 dB. Equation (23) for S2~ and fi’s~ is

fairly good near band center but not toward the band edges.

However, in none of the examples do SZ~ and Ss~ exceed

1+0.5(SW– 1). These rather small discrepancies in values

from (23) and (24) are apparently mainly the result of the

nonoptimum design examples rather than failures of the

equations themselves,

VII. CONCLUSIONS

The hybrid power divider’s bandwidth increases with its

number of sections. The upper limit of generally useful band-

width versus the number of sections is about as follows:

2.5:1 for two sections; 4:1 for three sections; 5.5:1 for four

sections; and 10:1 for seven sections

The two-section hybrid power divider has sufficient band-

width for most applications. Its design by means of the

exact formulas in Section IV is straightforward and rapid.

aTables published by Levy[gl extend to N= 21. In his notation
L= 0.512 dB corresponds to the desired 2 to 1 impedance transforma-
tion. The range of Levy’s tables excludes this value of L for N> 5 and
se~> 1.o2. With Se~= 1.02 instead of a generally acceptable 1.1O or
1.20 value, bandwidths are unduly restricted.

The approximate formulas in Section VI have yielded de-

signs with good performance in the cases tested; namely,

N= 3, f2/f, = 2 and 3; N= 4, fJfl= 4; N= 7, f2/fl = 10. Sim-

ilar results for other values of N and~z/fl may be reasonably

expected. However, until additional examples are tested, a

safe practice would be to verify each design by computing

its VSWR and isolation response by the method of Section

II. If these curves deviate excessively from optimum, the

R~ values may then be refined by iterative approximation;

that is, by judiciously altering the Rk values and recomputing

the response curves until the performance is considered

sufficiently near optimum.
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