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100:1 Bandwidth Balun Transformer®

J. W. DUNCANT, SENIOR MEMBER, IRE, AND V. P. MINERVAY}, MEMBER, IRE

Summary—The theory and design of a Tchebycheff tapered
balun transformer which will function over frequency bandwidths as
great as 100:1 is presented. The balun is an impedance matching
transition from coaxial line to a balanced, two-conductor line. The
transition is accomplished by cutting open the outer wall of the coax
so that a cross-sectional view shows a sector of the outer conductor
removed. As one progresses along the balun from the coaxial end,
the open sector varies from zero to almost 2w, yielding the transition
to a two-conductor line.

The balun impedance is tapered so that the input reflection co-
efficient follows a Tchebycheff response in the pass band. To syn-
thesize the impedance taper, the impedance of a slotted coaxial line
was obtained by means of a variational solution which yielded upper
and lower bounds to the exact impedance. Slotted line impedance
was determined experimentally by painting the line cross section on
resistance card using silver paint and measuring the dc resistance of
the section.

The measured VSWR of a test balun did not exceed 1.25:1 over
a 50:1 bandwidth. Dissipative loss was less than 0.1 db over most of
the range. Measurements show that the unbalanced current at the
output terminals is negligible.

INTRODUCTION

N utilizing some of the recently developed broad-
J:[ band antennas such as the logarithmically periodic
antenna, it is sometimes advantageous to excite
the antenna from balanced, two-conductor terminals.?
In order to match the balanced antenna impedance to
the unbalanced impedance of a coaxial line, a balun
transformer is required. Moreover, the balun trans-
former must be capable of operating over a very large
frequency range if it is to be compatible with the an-
tenna performance. This paper presents the theory and
design of a Tchebycheff tapered balun transformer
which will function over bandwidths as great as 100:1.
The balun transformer is illustrated in Fig. 1. The
balun is an impedance matching transition from coaxial
line to a balanced two-conductor open line. The transi-
tion is accomplished by cutting open the outer wall of
the coax so that a cross-section view shows a sector of
the outer conductor removed. The angle subtended by
the open sector is denoted by 2a. As one progresses
along the balun from the coaxial end, the angle 2«
varies from zero to almost 2w, yielding the transition
from coax to an open two-conductor line. The cross
section of the conductors is then varied as required. One
is not limited to conductors having a circular cross sec-
tion; a transition from coaxial cable to a balanced strip
line is one of the possible configurations.
The broad-band impedance matching properties of

* Original manuscript received by the IRE, April 30, 1959; re-
vised manuscript received, October 5, 1959.

t Collins Radio Co., Cedar Rapids, Iowa.

1 R. H. DuHamel and F. R. Ore, “Log periodic feeds for lens and
reflectors,” 1959 IRE NatronaL CoONVENTION RECORD, pt. 1, pp.
128-137.
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Fig. 1—Tapered balun transformer.

the balun are obtained by utilizing a continuous trans-
mission line taper described by Klopfenstein.? The char-
acteristic impedance of the balun transformer is tapered
along its length so that the input reflection coefhicient
follows a Tchebycheff response in the pass band. The
length of the balun is determined by the lowest operat-
ing frequency and the maximum reflection coefficient
which is to occur in the pass band. The balun has no
upper {requency limit other than the Irequency where
higher order coaxial modes are supported or where radi-
ation from the open wire line becomes appreciable.
Before discussing the “balun” property of the de-
vice, a brief review of balance conditions on an open
transmission line is in order. A balanced two-conductor
transmission line has equal currents of opposite phase
in the line conductors at any cross section. System un-
balance is evidenced by the addition of codirectional
currents of arbitrary phase to the balanced transmis-
sion line currents. The order of unbalance is measured
by the ratio of the codirectional current to the balanced
current. Now in a coaxial line, the total current on the
inside surface of the outer conductor is equal and oppo-
site to the total current on the center conductor. The
ideal balun functions by isolating the outside surface
of the coax from the transmission line junction so that
all of the current on the inside surface of the coax outer
conductor is delivered in the proper phase to one of the
two balanced conductors. Unbalance of the transmis-
sion line currents results if current returns to the gen-
erator on the outside surface of the coaxial line.
Consider the Tchebycheff tapered balun transformer
which is formed by increasing the slot aperture in the
outer wall of the coax until an open two-conductor line
is obtained. Over the length of the transition the elec-
tromagnetic field changes from a totally confined field
in the coax to the “open” field of a two-wire transmis-
sion line. It is evident that the total current on the out-

2 R. W. Klopfenstein, “A transmission line taper of improved
design,” Proc. IRE, vol. 44, pp. 31-35; January, 1956.
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side surface of the coax at the balun input must result
from the summation of wave reflections which originate
over the entire length of the open transition. But the
slot transition is purposely tapered so that the net re-
flection at the balun input is arbitrarily small. Conse-
quently, negligible current appears on the outside of the
coaxial line at the balun input and electrical balance at
the output terminals is very good. In other words, the
physical geometry of the transition which produces
negligible wave reflections and leads to a broad-band
impedance transformer also results in the operation of
the device as a balun.

Assuming that the characteristic impedance of the
balun at any cross section is equal to the characteristic
impedance of a uniform, slotted coaxial line of that
particular cross section, it is possible to synthesize the
required impedance taper by providing the appropriate
cross section at each position along the balun trans-
former. In order to carry out this procedure, one must
know the characteristic impedance of a uniform, slotted
coaxial line as the angle 2a varies from zero to 27. This
information was obtained by theoretical analysis and
verified experimentally. The characteristic impedance
of the slotted line was determined from a variational
solution of the two-dimensional boundary value prob-
lem. The variational expressions yield upper and lower
bounds to the exact characteristic impedance. The
upper bound is obtained from a variational expression
involving the charge distribution on the outer con-
ductor of the slotted coaxial line, while the lower bound

is obtained from a variational expression involving the

potential distribution in the slot aperture. Character-
istic impedance was determined experimentally by
painting the slotted line cross section on resistance card,
using silver paint and measuring the dc resistance of the
cross section. These data are presented as curves which
show characteristic impedance of the slotted coaxial
line as a function of the angular opening. The curves al-
low one to design a balun for matching a large range of
impedances with an arbitrarily small standing wave
ratio. We proceed to derive variational expressions for
the characteristic impedance of the slotted line. The
method of analysis is similar to that used by Collin to
solve the problem of a symmetrically slotted coaxial
line.?

UprPER BoUND To THE CHARACTERISTIC IMPEDANCE

Consider the cross-sectional view of the uniform,
slotted coaxial line shown in Fig. 2. We choose the
cylindrical coordinate system 7, 8, 2, where 7, 6 are in the
transverse plane and z is the direction of wave propaga-
tion along the line. The radius of the inner conductor is
r =a, while the outer conductor occurs at r=>5. The slot
opening in the outer conductor is defined by the angle

3 R. E. Collin, “The characteristic impedance of a slotted coaxial
line,” IRE TraNs. oN MicrowAVE THEORY AND TECHNIQUES, vol.
MTT-4, pp. 4-8; January, 1956.
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Fig. 2—Cross section of uniform slotted coaxial line.

2a. We assume that there is a homogeneous, isotropic
medium about the conductors with permeability u and
permittivity e.

It may be verified that the solution of Maxwell’s
equations for the TEM mode of propagation on the line
reduces to solving Laplace’s equation for the static po-
tential distribution ¢(7, ) in the transverse plane. The
electric field E(r, 8) is defined by the relation

—E—(r; 0) = - grad ¢(f, 0) (1)

It follows from Maxwell’s equations that the transverse
field components are given by

d 1
Er= ——¢=_H6
ar €
and
1 99 1
Ey=—— —=——H, (2)
r a0 €V

where v=1/+/ue is the velocity of light in the sur-
rounding medium. Thus, all field components may be
derived from the scalar potential function ¢(r, ) which
is the solution of Laplace’s equation

1 9 i) 1 92
L _<, ﬁ) LA
y Or ar

oo ®
subject to the boundary conditions of the problem.

We define the potential on the inner conductor =g
as ¢ =0, while the outer conductor r=0, <0< 2r—a
is maintained at the constant potential ¢. The poten-
tial ¢(7, 0) at any point in the plane may be expressed
in terms of the Green's function G(r, 0|r', 0") for the
problem. The Green’s function is the solution of the
inhomogeneous equation

i o(r — r)8(6 — 0"

4

V2G(r, 0] r, ) = —

(4

where the polar coordinate form of the delta function
3(r —7)8(6 — 6)

¥
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represents a unit line source at » =#', §=60". The Green's
function satisfies Laplace’s equation throughout the r, 8
plane except at the source point #’, 8" where G(z, 0’ r', 8"
and all its derivatives are singular. Denoting R as the
scalar separation between observation point 7, § and
source point #’, §’, the singularity of G is such that

1
G(r,ﬂlr’,@')-—»——]nR as R— 0.4

27e

The Green’s function is subject to the boundary condi-
tion G =0 on the inner cylinder r=a. G(r, 0] r', 8') may
be viewed as the potential at the point 7, § because of
a unit line charge located at #', 6’.

Because of the symmetry of the problem, it is conven-
ient to write the Green’s function in the form which de-
rives from unit line sources located as shown in Fig. 3.
The positive unit charges are located at r=b5, 0= +0'.
The images of these line charges in the grounded cyl-
inder »=¢ occur at r=a?/b, 0= +6’. The harmonic ex-
pansion of the potential caused by this system of sources
with the condition that G=0 at r=a, yields the ap-
propriate Green'’s function which is
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Fig. 3—Unit line charges and images.

(7) by o(f) and integrate with respect to 8 over o <0 <m;
thus

b f f G(b,8| b,0)5(0)a(0')dbds

n=1

1
G(r,0]b,0) = —

€T

2

= n i:sinh <n

It now follows that the potential ¢(r, 6) caused by an
arbitrary (but necessarily symmetrical) charge distribu-
tion ¢(0’) at =0 is given by

b
In (_> +
a

é(r, 6) = f G(r,0]b,0)s(8")bde’. (6)
The charge distribution ¢(8’) is still unknown, however,
imposing the boundary condition that ¢(r, 8) =¢, when
r=0, a<0<7 leads to the following integral equation
for ¢(8'):

o= b f "G(b, 8|6, 8)s(0")d0'. (7

To obtain a variational expression for Z,, we multiply

4 P. M. Morse and H. Feshbach, “Methods of Theoretical Phys-
ics,” MgGraw-Hill Book Co., Inc., New York, N. Y., pt. 1, pp. 808
810; 1953. ’

b0 = - (8)
f a(0)de
r
2 sinh (n In ——) cos (n6) cos (n8")
a
) ; where a <r <%
”n [sinh (n In ~-> -+ cosh (m In -):'
a a
b (5)
2 sinh (n In —«-) e~ 18 cos (nf) cos (nd)
hid a
where » = b.

b
) -+ cosh <

In
a

)

The total charge Q on the outer conductor resulting
from the charge distribution ¢(8’) is given by

0= f 2”_00(0')1;(;’0' — 2b f @)t (9)

The characteristic impedance of a uniform, lossless
transmission line is given by 1/9C, where C is the
capacitance of the line per unit length and v is the wave
velocity. It is sufficient, therefore, to determine C in
order to evaluate Z,. Since C is equal to the ratio of
charge on the outer conductor to the potential difference
¢, between the conductors, we obtain

1
— ¢
v

Q

Zo

(10)
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Substituting (8) and (9) into (10) yields fhe variational
form '

1 T T
o f f G(b,0]b,0)s(0)a(8")dodes’
UV o @

[ "q(mo]?

It may be shown that Z, as given by (11) is stationary
with respect to arbitrary first order variations in the
form of ¢() about the correct distribution. (See the Ap-
pendix.) The stationary value is an absolute minimum
for the “best” approximation to the actual distribution
so that (11) yields an upper bound to Z,. We approxi-
mate the true charge distribution by an N term func-
tion containing NNV arbitrary parameters ¢y, ¢, * -+, Cn.
This function is substituted into (11) for ¢(f) and the
expression for Z, is minimized with respect to the
parameter constants ¢,. To do this, Z, is differentiated
with respect to the V parameters and the results equated
to zero which leads to N homogeneous linear equations
in the N unknowns ¢,. Solving for the ¢, and substitut-
ing back into (11) yields the stationary value of Z,.

A suitable expansion for ¢(f) is the cosine series

(11)

0 =

N v
a(0) = X ¢, cos —— (0 — a).
y=0 4

As one uses a larger number of terms to represent (),
the variational solution converges to the exact value of
Zy; however, the labor of computations increases enor-
mously with N. It will be seen that sufficiently accurate
results are obtained by using the simple two term series

o(0) = ¢o + ¢1 cos k(0 - a), (12)

where

™

B =—

Without loss of generality we may define ¢o=1. Pro-
ceeding as outlined above, one obtains

e y/En ()
Vi

—_— 2
mr = o) nd |:1 + coth (n In —b—):l

a

can 2

sin? (na) l:l +

nd — 2

ohms, (13)

where
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d sin? (na)

n(n? — k?) I:l -+ coth <n In —b—>:|
a

% sin? (na)

2 ;
(n? — k)2 l:l -+ coth (n In ——>]
a

Selecting v/u/€, (b/a), and a, one may compute ¢; and
evaluate (13) which is an upper bound to the exact char-
acteristic impedance. Before presenting the numerical
results obtained with (13) we shall derive a lower bound
to Zo.

—_ 0 =

LowER BoOUND TO THE CHARACTERISTIC IMPEDANCE

The fundamental principle that a system in equilib-
rium is characterized by a minimum of potential energy
consistent with the constraints imposed on the system
applies to an electrostatic field.> A lower bound to the
characteristic impedance may be derived from the inte-
gral which yields the total potential energy W of the
electrostatic field. For the two dimensional problem
under consideration, the total field energy per unit
length is given by ‘

1 2T o0 a¢ 2 1 (9(]5 2
W = ——ef f ,: —) + — ——> ]rdrdO (149)
2 0 a ar 72 06
which may be recognized as the Dirichlet integral in
polar coordinates.
- By definition, W=(1/2)C¢,?, where C is the capaci-
tance per unit length. Recalling the relation between

characteristic impedance and C, we may express 1/Z,
in terms of the integral for the total field energy.

(15)

It follows from (15) that if W is minimized with respect
to the constants of a parameter-laden function, we ob-
tain a lower bound to Z,. The function used to minimize
W is an N term approximation to the potential distribu-
tion ¢(b, 0) in the slot aperture.

We pause to discuss briefly the variational expression
1/Zo. A mecessary condition for the integral (14) to be
stationary is that its first variation vanish. This condi-
tion implies that ¢ (7, ) must satisfy Laplace’s equation.8
In other words, if a function ¢(r, ) exists which mini-
mizes (14), it must necessarily satisfy V% =0 and the
boundary conditions of the problem. The reader is re-
ferred to Kellogg” for proofs that unique solutions of

8 J. A. Stratton, “Electromagnetic Theory,” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 114-116; 1941.

¢ F. B. Hildebrand, “Methods of Applied Mathematics,” Prentice-
Hall, Inc., Englewood Cliffs, N. J., pp. 138-139; 1952,

7 0. D. Kellogg, “Foundations of Potential Theory,” Dover Publi-
cations, Inc., New York, N. Y., pp. 311-315; 1953.
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the Dirichlet problem exist under proper conditions on
the region, boundary values, and the functions ¢ eligi-
ble for the minimization of the integral.

Based on the Green's function analysis we write the
following expansion for the potential function ¢(r, 8)
which satisfies the boundary conditions ¢ =0 at r=a
and ¢ continuous at 7 =5.

a¢ln <—r~) + > g, sinh (n In L) cos (nf)
a

a n=1
where a < r < b

b @ b
aoIn (—) + Y a.sinh (n In _~)
a n=1 a

cemnIn(r/®) cog (nﬁ)

16
o(r, ) = 1o

where v > b

It follows that the potential at =5 is given by

b
#(5,0) = agln (—)
a@

0 . b

+ Y a,sinh (n In —> cos (nf). (17)
n=1 a

Multiplying (17) by cos (mf)d§ and integrating with

respect to § over —m <0 <7 yields

1 T
Qo = —”—_’f d’(bv 0)d?,
0

b
win{—
a

. b

7 sinh { » In —

a

since ¢(b, 0) is an even function of #. If the true potential
distribution over the slot aperture were known, the con-
stants @, @, would be determined uniquely by (18), and
(16) would yield the exact solution ¢(r, §). Instead, we
approximate ¢(b, 6) over the slot by using an appropri-
ate function and then minimize the integral for W with
respect to the arbitrary constants.

Substituting the series (16) into (14) and then per-
forming the integration leads to

1 d02 b
— = 27rev — In (—)
Zo bo® a

7 &2 b
-+ Zr€—2 Z na,? sinh <n In —)

¢'0 n=1 a

b b
. l:cosh <n In ——) -+ sinh (n In -—)] .
a a

Substituting (18) into (19), we obtain the variational
expression

ap =

fﬂqs(b, ) cos (n8)dd, (18)

(19)
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T 2ev [f"' (b 0)030]2
Zy L, P
who’ In (

a

dev 2 AN
+ < >n [1 -+ coth <n In ——~)J
7r¢02 n=1 a

.[f”qb(b, 6) cos (nG)dé?]2

which is stationary with respect to arbitrary first-order
variations in the form of ¢(b, ) over the slot aperture.
A suitable representation for the potential ¢(b, 6) is

(20)

(1 where a < 0 < 27 — «

&(b,0) = ¢ J v (

’ 01+ Z c,cos —@ where —a << a
y==1,3,5, ... 2a

Proceeding as outlined for the upper bound, one may
substitute this series into (20) and minimize the ex-
pression with respect to the ¢,. However, a prohibitive
number of terms is needed to describe properly ¢(b, 6)
over the slot for a approaching =. We know that for large
o, the potential over the slot remains very small until one
approaches the outer conductor at § = +a; consequently
one would expect an even-powered polynomial in (6/a)
to provide a good approximation to the true distribu-
tion. Excellent results were obtained by using the f{ol-
lowing simple function containing the single arbitrary
constant ¢y.

1 wherea <0< 27 — «

o(b,0) = ¢o (21)

[/} 4

11—+ cl<—> where —a < 6 < a.
o

Note that when §=0, ¢(b, §) =¢o(1 —¢;). Substituting

(21) into (20) and minimizing (20) with respect to ¢,

yields

where

1 4 40 b\ &
CRIOE
€ S\m w a/ pe
’ b
|:1 -+ coth (n In __>]
a

(na)
An = (na)?® — 6(na),
B, = 3(na)? — 6.

[An cos (na) — B, sin (na) ‘Iz

(na)*

Eq. (22) provides a lower bound to the exact character-
istic impedance of the slotted line. The numerator of
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(22) may be recognized as the characteristic impedance
of a closed coaxial cable with conductor radii & and a.
The denominator of (22) is always less than unity for
non-zero «. Since (22) is a lower bound to the exact im-
pedance, we see that the slotted coax impedance is al-
ways greater than the impedance of closed coaxial line.

Selecting free space values for u and e so that
Vo /eo=120mr, (13) and (22) were evaluated for
log. (b/a) =0.833, 1.00, and 1.25 which corresponds to
closed coaxial lines of 50-, 60-, and 75-ohm impedance,
respectively. Numerical computations were carried out
on an IBM 650 computer. These data are presented in
the dashed curves of Figs. 4-6 which show the upper
and lower bound to Z, as a function of the angle 2«
for a particular log, (b/a). It is evident that the func-
tional approximations to ¢(6) and ¢(b, 0) were suffi-
ciently accurate since the difference between the bounds
is very small over most of the range 2a. The greatest
difference occurs as a approaches . Since the exact
characteristic impedance of the slotted line must lie
between the upper and lower bounds, the curves allow
one to determine quite accurately the angle 2a required
to give a certain impedance Z.

The impedance of the slotted line was also determined
by using the well-known method where the line cross
section is painted on a two dimensional resistive surface
and the dc resistance of the cross section is measured.®
Measurements were performed for log, (b/a)=0.833,
1.00, and 1.25. These experimental data appear as the

plotted points in Figs. 4-6. The solid curve is the arith-

metic mean of the upper and lower bound to Z, for each
log, (b/a). The experimental data agree quite closely
with theory except for the log. (b/a) =1 data which
diverge slightly for large a. Apparently the cross sec-
tion was not drawn with sufficient accuracy in this
case.

BALUN DESIGN AND PERFORMANCE

Having established the characteristic impedance of
the uniform, slotted coaxial line, a specific balun design
was undertaken. A transition from 50-ohm coaxial line
to 150-ohm two-conductor line was selected for the
balun. As mentioned previously, the characteristic im-
pedance of the balun transformer is tapered along its
length so that the input reflection coefficient follows a
Tchebycheff response in the pass band. The maximum
allowable reflection coefficient in the pass band was
chosen as 0.055. This corresponds to a maximum stand-
ing wave ratio of 1.11 to 1. It follows that the length of
the balun is /=0.478 \, where \ is the largest operating
wavelength.? The lowest frequency was selected as 50
mc which fixed the length / as approximately 2.86
meters.

8 J. D. Kraus, “Electromagnetics,” McGraw-Hill Book Co., Inc.,
New York, N. Y., pp. 426-427; 1953.
9 Klopfenstein, op. cit., p. 32.
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Let the total length / of the balun be defined from
z=—1/2 to z=1/2. Fig. 7 shows the impedance contour
required for Tchebycheff response under the prescribed
design criteria. The angle 2a which yields the proper
impedance at each position along the balun may be ex-
tracted from Fig. 4. The outer conductor of the coaxial
line had an inside diameter of 1.527 inches. The balun
was fabricated by milling through the coax outer con-
ductor to the depth which yielded the angle 2a. The
milling cut was performed in discrete 6-inch increments
along the balun until the outer conductor was reduced to
a thin concave strip having a width equal to the center
conductor diameter. This occurred at the position
2/[=0.373 where 2a=312° and Z;=131 ohms. The
strip outer conductor was transformed to a circular
cylinder identical to the center conductor over a 6-inch
length from 2//=0.373 to 2/[=0.426. The spacing be-
tween cylindrical conductors at 2//=0.426 was such
that the impedance was the required 136 ohms as shown
in Fig. 7. From 2/[=0.426 to 2/[=0.5 the spacing of the
cylindrical conductors was gradually increased so that
the impedance followed the contour of Fig. 7.

Since the balun may be viewed as a two-port wave-
guide junction, it was convenient to measure its per-
formance by means of Deschamps’ method.!’ The two-
conductor output of the balun was terminated in a
large, reflecting metal sheet mounted perpendicular to
the line. The dissipative loss and scattering matrix co-
efficients of the balun are readily obtained by locating
the reflecting sheet at four equally spaced positions and
measuring the corresponding reflection coefficient at
the coaxial input.' Since the scattering coefficient Sy
corresponds to the input reflection coefficient for a re-
flectionless termination of the output line, one thereby
obtains the input VSWR for a matched termination of
the two-conductor line. This procedure also avoids the
considerable difficulties encountered in providing a
matched termination for an open wire line. Over the
40- to 500-mc frequency range, measurements were per-
formed by using a General Radio admittance bridge.

The voltage standing wave ratio as a function of fre-
quency is presented in Fig. 8. It may be seen that the
VSWR never exceeded 1.25:1 over the 43- to 2200-mc
spectrum which represents a 50:1 bandwidth. The rapid
increase in VSWR below the 50-mc cutoff frequency is
quite apparent. The balun dissipative loss was not
measurable below 500 mc. At 1000 mc, the loss was ap-
proximately 0.1 db and increased to 0.3 db at 2000 mc.
The spacing between cylindrical conductors at 2000 mc
was 0.21 A\, It is evident that the tapered balun can be de-
signed to operate over frequency bandwidths as large
as 100:1.

It should be noted that the characteristic impedance

10 G. A. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction,” J. Appl. Phys., vol. 24, pp.
1046-1050; August, 1953.

@ F. L. Wentworth and D. R. Barthel, “A simplified calibration
of two-port transmission line devices,” IRE TRANS. oN MICROWAVE
TrEORY AND TECHNIQUES, vol. MTT-4, pp. 173-175; July, 1956.
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Fig. 8—Experimental performance of tapered balun transformer.

at any cross section of the balun is slightly different
than the Z, assumed from theory since the slotted line
analysis applied to a coax with infinitely thin outer con-
ductor. The effect of finite wall thickness on impedance
is greatest for large apertures 2a. Consequently, the
synthesis of the required Tchebycheff impedance con-
tour was not accomplished precisely. It appears that the
measured VSWR exceeded the design maximum of 1.11
because of reflections from teflon spacers which were
used for mechanical support of the line and because the
synthesis of the impedance contour was not exact.
Concerning the electrical balance of the balun, it
would be fine to prescribe the exact complex ratio of
unbalanced to balanced current which results at the
two-conductor output of the balun, but, unfortunately,
serious questions arise as to the validity or meaning of
such a measurement on the open, two-conductor system.
We know that the TEM field of the coaxial line is
gradually transformed to the TEM field of an open, two-
wire transmission line as one traverses the length of the
tapered balun transformer. Obviously, not all of the in-
cident power is converted to the transmission line mode.
A fraction of the incident power is lost as stray radiation
from the slot aperture which forms the tapered transi-
tion. That is, the efficiency of excitation of the trans-
mission line mode is necessarily less than 100 per cent.



1960

In addition to the usual TEM transmission line mode,
the so-called parallel wave or mode will also be ex-
cited.!? The parallel wave is a transverse magnetic sur-
face wave akin to Sommerfeld’s single-wire wave. The
parallel wave is evidenced by the superposition of an
unbalanced current component (parallel excitation or
codirectional currents) with the push-pull currents of
the TEM mode. In fact, the common engineering de-
scription of this wave phenomenon is to note that the
transmission line currents are not balanced, which im-
plies the existence of the parallel wave component of
current. The amplitude of the parallel wave field de-
creases much more slowly with radial distance than does
the TEM mode. Because of this fact, the surface wave
is quite sensitive to its surroundings and we say that
the wave is very loosely bound to the transmission line.
At any bends, changes in line cross section, or discon-
tinuities such as line spacers, a significant portion of the
mode power will be converted to a radiation field. This
is a well-known property of surface wave fields; in fact,
some types of surface wave antennas specifically depend
upon radiation from obstacles as the mechanism for
operation. Wherever radiation occurs, the magnitude of
the parallel wave (unbalanced) current will be attenu-
ated. Obviously, then, the measured unbalance on the
open two-conductor line will depend upon the line posi-
tion where the measurement is performed. One ques-
tions, therefore, the utility or meaning of an “exact”
balance measurement on such an open system.

In order to excite any surface wave mode efficiently,
the launching source must produce a field which is quite
similar to the mode distribution. If the physical parame-
ters of the problem are such that the surface wave field
is of large transversal extent, then the launching source
must necessarily have a large physical aperture. It so
happens that the parallel wave does have a very large
transverse distribution so that the tapered balun trans-
former, which accomplishes a very gradual transition
between two TEM field distributions, is a very poor
source of the parallel wave mode. Thus, the initial mag-
nitude of the unbalanced current is quite small com-
pared to the balanced current. Furthermore, it is
possible to attenuate the unbalanced current in a short
distance from the balun terminals by placing several
radiating discontinuities such as spacers on the line.
Since only the TEM mode exists at a sufficient distance
from the balun output, a reflecting plate may be placed
there and a network measurement of dissipative at-
tenuation (Deschamps’ method) is valid. In view of the
foregoing circumstances it would seem more realistic to
evaluate electrical balance by the measurement of balun
radiation loss since the “net” result of the unbalanced
current is, precisely, radiation which may be included
in the total dissipative attenuation of the balun. If the
total balun attenuation is small, we can be sure that the

12 A, Sommerfeld, “Electrodynamics,” Academic Press, Inc., New
York, N. Y., pp. 198-211; 1952.
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unbalanced current is insignificant compared to the
balanced current. As a result of the extremely low dis-
sipative attenuation which was measured with the test
balun, we conclude that the magnitude of the unbal-
anced current is negligible and that the tapered balun
transformer is inherently a balanced device.

As a final demonstration of the electrical balance re-
sulting from the tapered balun, a scaled model of the
previous design was constructed for operation in the
kilomegacycle frequency region. The balun was fabri-
cated from }-inch-diameter brass tubing and the total
length was approximately 12 inches to permit operation
down to 500 mc. The impedance taper of the microwave
model was identical to the taper of the low-frequency
balun. The balun was used to excite dipole radiators at
various frequencies from 500 to 5000 mc. No asymmetry
caused by unbalanced excitation currents was evident in
the dipole radiation patterns.

CONCLUSION

The performance of the Tchebycheff tapered balun
transformer is unique; it provides near perfect imped-
ance matching over frequency bandwidths as great as
100: 1. The balun geometry is not limited to a transition
from coax to two-wire transmission line; other output
configurations such as a balanced strip line are possible.
The basic design allows one to match a large range of
impedances with an arbitrarily small standing wave
ratio. The balun length is determined by the lowest fre- -
quency of operation and the maximum reflection co-
efficient which is to occur in the pass band. It is evident
from the very small dissipative attenuation that negligi-
ble radiation results from the balun and that the balun
is inherently balanced. From the satisfactory perform-
ance of the test model baluns, we know that, by simple
scaling according to wavelength and with careful regard
to construction, tapered baluns may be operated in the
kilomegacycle frequency region. It should also be noted
that the balun is well suited to high power applications.

APPENDIX

The formation of a variational principle for the eigen-
value equation

L) = M) (23)

is discussed by Feshbach and Morse.!? Here £ and 91
are differential or integral operators, ¢ is the function
upon which £ and 9 operate, and \ is the quantity
(eigenvalue) whose value is desired. Morse and Fesh-
bach show that if £ and 9 are self-adjoint operators,
a variational principle for N is the form

[vews
] =8 ———|=0,
fnlem(xb)dv

(24)

13 Morse and Feshbach, op. cit., pt. 2, pp. 1108-1109.
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which means that the eigenvalue N\ is stationary with
respect to arbitrary first order variations in the func-
tional form of .

Let the integral operators £ and 9, and the function
¥ be defined as follows:

£

If

b g
— f G(b,6|b,0)a9,
U oJ g

sm=2bf dh

Then

b 4 1
L) = — f G(b, 015, 0)0(0')d8" = — o,
?Ja B

M) = be a(6))de = (Q, (25)
and (23) takes the form
1
— ¢o = N(; (26)
b
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i.e., the eigenvalue M is the characteristic impedance Z,.

Substituting (25) and ¢ into (24), we obtain the varia-
tional principle

1 ar "
2f f G(b, 0] b, 0)a(6)(8")dodo’
v a [ 4

([ o)

8[Z0]

= 0, (27)

which shows that Z, as given by (11) is stationary with
respect to arbitrary first order variations in the func-
tional form of ¢(f).
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CORRECTIONS

W. K. Weihe, author of “Classification and Analysis
of Image-Forming Systems,” which appeared on pages
1593-1604 of the September, 1959, issue of PROCEEDINGS
has requested that the following corrections be made to
his paper.

In the second paragraph of Section I, on page 1593,
the description following the colon on the third line is
incomplete. It should read: “ . . . the radiation which is
being emitted by each individual element and the radia-
tion which is being reflected by the same element and
which has its origin inside or outside the scene.”

On page 1599, second column, the dimensions in the
fourth line after (7) should read cm™! deg™.

On page 1602, 4Ty in (23) should be replaced by
/4L,

In the equation in the middle of the first column on
page 1603, 72 should be replaced by I'.

R. Parthasarathy, R. P. Basler, and R. N. DeWitt,
authors of the correspondence entitled “A New Method
for Studying the Auroral Ionosphere Using Earth
Satellites,” which appeared on page 1660 of the Septem-
ber, 1959, issue of PROCEEDINGS, have requested that the
following corrections be made to their letter.

In the first paragraph of the second column, the time
difference mentioned on the tenth line should be 33 +1
seconds and the corresponding height given in the next
sentence should be 104 km + 3 km.




