

Web, Graphics, and Perl/
Tk: Best of the Perl

Journal
Edited by

Jon Orwant

Editor

Linda Mui

Copyright © 2010

Portions of this book originally appeared in The Perl Journal,
currently published by CMP, Inc.

O’Reilly & Associates books may be purchased for
educational, business, or sales promotional use. Online
editions are also available for most titles (safari.oreilly.com).
For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the
O’Reilly logo are registered trademarks of O’Reilly &
Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in
this book, and O’Reilly & Associates, Inc. was aware of a
trademark claim, the designations have been printed in caps
or initial caps. The association between the image of an emu

2

and the topic of Perl/Tk is a trademark of O’Reilly &
Associates, Inc.

While every precaution has been taken in the preparation of
this book, the publisher and the authors assume no
responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

O'Reilly Media

3

Preface

Jon Orwant
This is the second of three “Best of the Perl Journal” O’Reilly
books, containing the crème de la crème of the 247 articles
published during the Perl Journal’s 5-year existence as a
standalone magazine. This particular book contains 39 articles
covering the web, graphics, and Perl/Tk.

This book is divided into three sections:

Part I

This section contains 22 articles on how Perl can make the
web do your bidding: CGI scripting, Apache/mod_perl
programming, content management, the LWP library,
securing and bulletproofing your web server, automating
deductions about web page content, and even transmitting
web pages wirelessly.

Part II

The nine articles in this section cover graphics, from the
simple (generating charts and logos) to the advanced
(OpenGL programming, ray tracing, evolving images,
digitizing video) to the practical (generating images with
the Gimp, and creating graphical applications with Glade
and Gnome on Linux).

4

Part III

Perl/Tk is Perl’s most popular GUI toolkit, letting you
create Perl-controlled graphical applications in minutes.
This final section contains eight articles, six written by
Perl/Tk guru Steve Lidie. Steve is also a co-author of
Mastering Perl/Tk (O’Reilly); if the material here whets
your appetite, look there for the full meal.

Be aware that this book has 23 different authors. Each
section, and the articles within them, are loosely ordered from
general to specific, and also from easiest to hardest where
possible. (It wasn’t always possible.) The book may be read
straight through, or sampled at random. (In deference to the
Perl motto, There’s More Than One Way To Read It.)

Normally, O’Reilly likes their books to be written by one
author, or just a few. Books that are collections of many
independently-written chapters may get to press more
quickly, but discordant tones, styles, and levels of exposition
are jarring to the reader; worse, authors writing in parallel and
under deadline rarely know what other contributors have
covered, and therefore can’t provide the appropriate context
to the reader.

That would indeed be a problem for this book had it been
written in two months by 23 authors writing simultaneously.
But in a sense, this book was written very carefully and
methodically over six years.

Here’s why. As editor of The Perl Journal, I had a difficult
decision to make with every issue. TPJ was a grassroots
publication with no professional publishing experience behind
it; I couldn’t afford to take out full color ads or launch huge
direct-mail campaigns. So word of the magazine spread

5

slowly, and instead of a steady circulation, it started tiny (400
subscribers for issue #1) and grew by several hundred each
issue until EarthWeb began producing the magazine with
issue #13.

Every issue, there were a lot of new subscribers, many of
whom were new to Perl. Common sense dictated that I should
include beginner articles in every issue. But I didn’t like
where that line of reasoning led. If I catered to the novices in
every issue, far too many articles would be about beginner
topics, crowding out the advanced material. And I’d have to
find a way to cover the important material over and over,
imparting a fresh spin every time. Steve Lidie’s Perl/Tk
column was a good example: it started with the basics and
delved deeper with every article. Readers new to Perl/Tk who
began with TPJ #15 didn’t need to know about the intricacies
of Perl/Tk menus covered in that issue; they wanted to know
how to create a basic Perl/Tk application—covered way back
in TPJ #1. But if I periodically “reset” topics and ran material
already covered in past issues, I might alienate long-time
subscribers.

So I did something very unusual for a magazine: I made it
easy (and cheap) for subscribers to get every single back issue
when they subscribed, so they’d always have the introductory
material. As a result, I had to keep reprinting back issues as I
ran out. This is what business calls a Supply Chain
Management problem. The solution: my basement.

A side-effect of this approach was that the articles hold well
together: they tell a consistent “story” in a steady progression
from TPJ #1 through TPJ #20, with little redundancy between
them. TPJ was always a book—it just happened to be
published in 20 quarterly installments.

6

There is another advantage to having a book with programs
by 23 Perl experts: collectively, they constitute a good
sampling of Perl “in the wild.” Every author has his own
preferences—whether it’s use of the English pragma,
prototyping subroutines, embracing or eschewing
object-oriented programming, or any of the other myriad
ways in which Perl’s expressivity is enjoyed. When you read
a book by one author, you experience a single coherent (and
hopefully good) style; when you read a book by dozens of
experienced authors, you benefit from the diversity. It’s an
Olympic-size meme pool.

Naturally, there’s some TPJ material that doesn’t hold up well
over age: modules become obsolete, features change, and
news becomes history. Those articles didn’t make the cut; the
rest are in this book and its two companions, Computer
Science & Perl Programming: Best of the Perl Journal and
Games, Diversions, and Perl Culture: Best of the Perl
Journal.

Enjoy!

Finding Perl Resources

Beginning with TPJ #10, I placed boxes at the top of most
articles telling readers where they could find resources
mentioned in the article. Often, it ended up looking like this,
because nearly everything in Perl is available on CPAN:

Perl 5.004 or later..................CPAN
Class::ISA...........................CPAN
Memoize..............................CPAN
Class::Multimethods..................CPAN

7

The CPAN (Comprehensive Perl Archive Network) is a
worldwide distributed repository of Perl modules, scripts,
documentation, and Perl itself. You can find the CPAN site
nearest you at http://cpan.org, and you can search CPAN at
http://search.cpan.org. To find, say, the Class::Multimethods
module, you could either search for “Multimethods” at
http://search.cpan.org, or visit http://cpan.org and click on
“Modules” and then “All Modules”. Either way, you’ll find a
link for a Class-Multimethods.tar.gz file (which will include a
version number in the filename). Download, unpack, build,
and install the module as I describe in http://cpan.org/
modules/INSTALL.html.

For information and code that isn’t available on CPAN, there
are Reference sections at the ends of articles.

8

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for filenames, directory names, URLs, emphasis,
and for the first use of a technical term.

Constant width

Used for code, command output, program names, and
email addresses.

Constant width bold

Used for user input and code emphasis.

Constant width italic

Used for code placeholders, e.g., open(ARGUMENTS).

9

Comments and Questions

Please address comments and questions concerning this book
to the publisher:

O’Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata,
examples, or any additional information. You can access this
page at:

http://www.oreilly.com/catalog/tpj2

To comment or ask technical questions about this book, send
email to:

bookquestions@oreilly.com

For information about books, conferences, Resource Centers,
and the O’Reilly Network, see the O’Reilly web site at:

http://www.oreilly.com

10

11

Acknowledgments

First, an obvious thanks to the 120 contributors, and a special
shout-out to the most prolific: Lincoln D. Stein, Mark-Jason
Dominus, Felix Gallo, Steve Lidie, Chris Nandor, Nathan
Torkington, Sean M. Burke, and Jeffrey Friedl.

Next up are the people who helped with particular aspects of
TPJ production. TPJ was mostly a one-man show, but I
couldn’t have done it without the help of Nathan Torkington,
Alan Blount, David Blank-Edelman, Lisa Traffie, Ellen
Klempner-Beguin, Mike Stok, Sara Ontiveros, and Eri Izawa.

Sitting in the third row are people whose actions at particular
junctures in TPJ’s existence helped increase the quality of the
magazine and further its reach: Tim O’Reilly, Linda Walsh,
Mark Brokering, Tom Christiansen, Jeff Dearth, the staff of
Quantum Books in Cambridge, Lisa Sloan, Neil Bauman,
Monica Lee, Cammie Hufnagel, and Sandy Aronson. Best
wishes to the folks at CMP: Amber Ankerholz, Edwin
Rothrock, Jon Erickson, and Peter Westerman.

Next, the folks at O’Reilly who helped this book happen:
Claire Cloutier, Tom Dinse, Hanna Dyer, Paula Ferguson,
Colleen Gorman, Sarmonica Jones, Linda Mui, Erik Ray,
Betsy Waliszewski, Ellie Volckhausen, Neil Walls, Sue
Willing, Joe Wizda, and the late great Frank Willison.

People who helped out in small but crucial ways: David H.
Adler, Tim Allwine, Elaine Ashton, Sheryl Avruch, Walter
Bender, Pascal Chesnais, Damian Conway, Eamon Daly, Liza
Daly, Chris DiBona, Diego Garcia, Carolyn Grantham,
Jarkko Hietaniemi, Doug Koen, Uri Guttman, Dick Hardt,

12

Phil Hughes, Mark Jacobsen, Lorrie LeJeune, Kevin Lenzo,
LUCA, Tuomas J. Lukka, Paul Lussier, John Macdonald,
Kate McDonnell, Chris Metcalfe, Andy Oram, Curtis Pew,
Madeline Schnapp, Alex Shah, Adam Turoff, Sunil Vemuri,
and Larry Wall.

Finally, a very special thanks to my wife, Robin, and my
parents, Jack and Carol.

13

Chapter 1. Introduction

Jon Orwant
This book is a collection of 39 articles about Perl programs
that create things to look at: web pages, Perl/Tk applications,
and for lack of a better word, pictures. Much of Perl’s success
is due to its capabilities for developing web sites; the Web
section covers popular topics such as CGI programs,
mod_perl, spidering, HTML parsing, security, and content
management. The Graphics section is a grab bag of
techniques, ranging from simple graph generation to ray
tracing and real time video digitizing. The final third of the
book shows you how to use the popular Perl/Tk toolkit for
developing graphical applications. Perl/Tk programming is
different from conventional Perl programming, and learning it
takes a little effort, but it pays off: once you’ve got the basics
down, you can create standalone graphical applications in
minutes—and they’ll work on both Unix/Linux and Windows
without a single change.

There are still some people who think of Perl as a language
tailored for text processing or system administration, simply
because it’s so good at those duties. But Perl has emerged as a
compelling choice for visual tasks as well—not because of
any intrinsic support for graphics, but because it allows you to
program quickly regardless of the problem domain.

Never underestimate the utility of rapid prototyping. Many
programmers enjoy programming because, when you get right
down to it, they’re impatient. We hate the delayed

14

gratification inherent in other endeavors. A biological
experiment might take months before revealing success or
failure; a mistake in March might not be discernible until
July. If you write an article or a book, it’ll be months before
you can see it in print. Programming, in contrast, is kinder.
You can run a program and know immediately whether it
works. Programmers receive little bits of gratification all
along the way, especially if the programs are built in parts and
snapped together (as all serious programs should be).

That goes double for Perl; its expressivity, speed, and
interpreted nature give its users near-instant gratification. Perl
programmers spend less time waiting.

It goes triple for visual problem domains. Pictures are the
most effective way we know to convey large amounts of
information. You can tell at a glance whether your web page
or data visualization worked, far faster than linearly scanning
a ranked list or otherwise examining textual data. The best
way to interpret complex phenomena is by exploiting the
inherent parallelism of the human visual system, whether the
domain is protein folding, financial planning, or (more
generally) finding patterns in data with many dimensions. In
fact, one of the quickest ways to find patterns in data with
more than three dimensions is to map each dimension onto a
feature of a human face—noses, eyes, and so forth—and then
view all the faces at once. These are called Chernoff faces
after their inventor, the statistician Herman Chernoff.

First up: the Web articles, introduced by one of the seminal
figures in web development: Lincoln Stein, the inventor of the
Perl CGI module.

15

16

17

18

19

Part I. Web

In this part:

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

20

Chapter 19

Chapter 20

Chapter 21

Chapter 22

Chapter 23

Much of Perl’s fame is due to the Web. The CGI module,
mod_perl, and easy HTML manipulation make Perl the
language of choice for many web developers, and the 22
articles in this section provide a tour of the myriad ways in
which Perl can be applied to the web.

We start off with three articles from Lincoln Stein, the TPJ
web columnist. He begins with CGI Programming, an article
from the premier issue that introduced his most famous
contribution to Perl: the CGI module. He follows up with
Saving CGI State and Cookies, which show you how user
information can be maintained across all the pages in your
site, either indefinitely or just for the duration of a browsing
session.

Lincoln’s first three articles rely on the CGI module, which
allows your web server to serve web pages made from the
HTML your Perl programs print. This requires the web server
to launch Perl every time someone visits your web page. An
obvious shortcut is to keep the Perl interpreter around in
memory, and that’s exactly what the Apache web server can
do by using mod_perl, introduced by Lincoln and mod_perl
creator Doug MacEachern in mod_perl. mod_perl also gives
Perl sweeping access to many of the tasks that web servers
can perform, such as proxying, authentication, and

21

authorization; these are discussed in Lincoln and Doug’s
article, and elaborated upon in Mike Fletcher’s Creating
mod_perl Applications, Lincoln’s Proxying with mod_perl,
and Michael Parker’s Authentication with mod_perl. Lincoln
concludes the section by showing how to use mod_perl to add
navigation bars to each page on a web site.

We then turn from web servers to web clients, with seven
articles about downloading and manipulating web pages. This
is nearly always done using the modules supplied in Gisle
Aas’s LWP bundle (also known as libwww-perl) available on
CPAN. Lincoln introduces LWP in Scripting the Web with
LWP, and Dan Gruhl and myself continue with Five Quick
Hacks: Downloading Web Pages, demonstrating how LWP
can turn web pages (for news, weather, U.S. street addresses,
stock quotes, and currency exchange rates) into makeshift
web services. Rob Svirskas follows up with an article
showing how those programs can be made to work through
proxy servers in Downloading Web Pages Through a Proxy
Server, and then Ken MacFarlane and Sean M. Burke show
how to parse the resulting HTML in HTML::Parser and
Scanning HTML. Finally, the mysterious Tkil shows how to
write a web spider in one line of Perl (A Web Spider in One
Line), and Ed Hill describes using LWP to create a
personalized newspaper in webpluck.

Returning to web servers, two articles by Lincoln show how
to ensure that your server is up to the demands of the always
populous and occasionally malicious public in
Torture-Testing Web Servers and CGI Scripts and Securing
Your CGI Scripts. Joe Johnston then demonstrates Perl’s most
popular content management system in Building Web Sites
with Mason.

22

Lincoln follows with two articles on the lighthearted side, but
with nonetheless valuable techniques: Surreal HTML turns
web page content into a parody of itself (demonstrating
HTML filters along the way), and Web Page Tastefulness
rates the tastefulness of web pages, which can be used to rank
web pages by how vacuous they seem. If a web page turns out
to have real content, your Perl program can create an
automatic summary using the system described by computer
scientists Ave Wrigley and Tony Rose in Summarizing Web
Pages with HTML::Summary. Finally, Dan Brian describes
how to make your web site’s content available to mobile
phones in Wireless Surfing with WAP and WML.

23

Chapter 2. CGI Programming

Lincoln D. Stein
In this first article, I introduce you to the elements of
CGI
scripting using the
basic
CGI module, CGI.pm. In subsequent articles, I cover the
more advanced CGI::* library, a collection of modules
providing an object-oriented class hierarchy which gives you
more control over the behavior of CGI scripts.

CGI stands for Common Gateway Interface; it’s the standard
way to attach a piece of software to a World Wide Web URL.
The majority of URLs refer to static files. When a remote user
requests the file’s URL, the web server translates the request
into a physical file path and returns it. However, URLs can
also refer to executable files known as CGI scripts. When the
server accesses this type of URL, it executes the script,
sending the script’s output to the browser. This mechanism
lets you create dynamic pages, questionnaires, database query
screens, order forms, and other interactive documents. It’s not
limited to text: CGI scripts can generate on-the-fly pictures,
sounds, animations, applets, or anything else.

CGI Programming Without CGI.pm

Basic CGI scripts are very simple:

24

#!/usr/bin/perl

print "Content-type: text/html\015\012";
print "\015\012";

chomp($time = `date`);

print <<EOF;
<HTML><HEAD>
<TITLE>Virtual Clock</TITLE>
</HEAD>
<BODY>
<H1>Virtual Clock</H1>
At the tone, the time will be
$time.
</BODY></HTML>
EOF

This script begins by printing out an HTTP header, which
consists of a series of email style header fields separated by
carriage-return/newline pairs. In Perl, this is normally
represented as \r\n, but the actual ASCII values of those
characters can vary from platform to platform. The HTTP
standard requires the specific octal values 15 and 12, so we
send those instead of \r\n.

After the last field, the header is terminated by a blank
line—another \015\012 sequence. Although HTTP
recognizes many different field names, the only one you
usually need is Content-type, which tells the browser
the document’s MIME (Multipurpose Internet Mail
Extension)
type, determining how it will be displayed. You’ll usually
want to specify text/html for the value of this field, but
any
MIME type, including graphics and audio, is acceptable.

25

Next, the script uses the Unix date command to place the
current time in the Perl variable $time. It then proceeds to
print a short HTML document, incorporating the timestamp
directly into the text. The output will look like .

Figure 2-1. The web page displayed by a simple CGI script

Each time you reload this script you’ll see a different time
and date.

Things get trickier when you need to process information
passed to your script from the remote user. If you’ve spent
any time on the Web, URLs
invoking
CGI scripts will look familiar. CGI scripts can be invoked
without any parameters:

http://some.site/cgi-bin/hello_world.pl

To send parameters to a script, add a question mark to the
script name, followed by whatever parameters you want to
send. Here, we send the two keywords CGI and perl to the
index_search.pl program:

26

http://some.site/cgi-bin/
index_search.pl?CGI+perl

This illustrates the keyword list style, in which the parameters
are a series of keywords separated by + signs. This style is
traditionally used for various types of index searches.

In the following URL, the cat_no parameter is set to 3921
and the quantity parameter is set to 2:

http://some.site/cgi-bin/
order.pl?cat_no=3921&quantity=2

This shows a named parameter list: a series of
“parameter=value” pairs with & characters in between. This
style is used internally by browsers to transmit the contents of
a fill-out form.

Both the
script’s URL and its parameters are subject to URL escaping
rules. Whitespace, control characters, and most punctuation
characters are replaced by a percent sign and the hexadecimal
code for the character. For example, the space between the
words “John Doe” is passed to a
CGI script like this, since spaces are 32 in ASCII, and 32 in
hexadecimal is 20:

http://some.site/cgi-bin/
find_address.pl?name=John%20Doe

27

Figure 2-1

28

29

The CGI.pm Module

The problem with processing script parameters is that, for
various historical reasons, the rules for fetching and
translating the parameters are annoyingly complex.
Sometimes the script parameters are found in an environment
variable. But they can also be accessed via the command-line
(@ARGV) array. Or, they can be passed via standard input.
Usually you’ll have to recognize the URL escape sequences
and translate them, but in some circumstances the server will
do that for you. Which rules apply depend on whether your
script was generated by a GET or POST request (the former is
usually generated when a user selects a hypertext link; the
latter when a browser submits the contents of a fill-out form),
whether the parameters are formatted using the keyword list
or named parameter styles, and whether the browser takes
advantage of the Netscape 2.0 file upload feature.

Fortunately, the CGI.pm module (and the CGI::* modules
discussed in subsequent articles) knows the rules. It takes care
of the details so that you can concentrate on your application.
CGI.pm is distributed with Perl and is also available on
CPAN.

CGI.pm includes several functions:

▪ It parses and decodes CGI parameter lists.

▪ It provides access to HTTP header information provided
by the browser and server.

▪ It provides an easy way of generating HTTP header
responses.

30

▪ It acts as a shortcut HTML generator for creating fill-out
forms, and produces HTML that helps maintain the state
of a form from page to page.

Using CGI.pm, we can enhance the simple virtual clock script
to allow the remote user some control over the time format.
This script allows the user to control whether the time, day,
month, and year are displayed, and toggle between displaying
the time in 12-hour or 24-hour format.

#!/usr/bin/perl

use

CGI;

$q = new

CGI;
if ($q->param) {

if ($q->param('time')) {
$format = ($q->param('type') eq

'12-hour') ? '%r ' : '%T ';
}
$format .= '%A ' if $q->param('day');
$format .= '%B ' if $q->param('month');

$format .= '%d ' if
$q->param('day-of-month');

$format .= '%Y ' if $q->param('year');
} else { $format = '%r %A %B %d %Y' }

chomp($time = `date '+$format'`);

print the HTTP header and the HTML
document
print $q->header;
print $q->start_html('Virtual Clock');

31

print "<H1>Virtual Clock</H1>At the tone,
the time will be $time.";

print "<HR><H2>Set Clock Format</H2>";

create the clock settings form
print $q->start_form, "Show: ";
print $q->checkbox(-name=>'time',
-checked=>1),

$q->checkbox(-name=>'day',
-checked=>1);

print $q->checkbox(-name=>'month',
-checked=>1),

$q->checkbox(-name=>'day-of-month',
-checked=>1);

print $q->checkbox(-name=>'year',
-checked=>1), "<P>";
print "Time style: ",

$q->radio_group(-name=>'type',
-values=>['12-hour','24-hour']), "<P>";

print $q->reset(-name => 'Reset'),
$q->submit(-name => 'Set');
print $q->end_form;
print $q->end_html;

Before I explain how this program works, you can see the
web page it generates in Figure 2-2.

Let’s walk through this
script step by step:

1. We load the CGI module and invoke the new method of
the CGI class. This creates a new CGI object, which we
store in the Perl variable $q. Parameter parsing takes

32

place during the new call, so you don’t have do it
explicitly.

2. Next, using specifications determined by the script
parameters, we create a format string to pass to the Unix
date command. The key to accessing script parameters
is the CGI param call, which is designed for the named
parameter list style of script argument. (Another method
call, keywords, is used to access keyword lists.)
Called without arguments, param returns an array of all
the named parameters. Called with the name of a
parameter, param returns its value, or an array of
values if the parameter appears more than once in the
script parameter list. In this case, we look for parameters
named time, day, month, day-of-month,
year, and style. Using their values, we build up a
time format specifier to pass to the date command (see
its manual page for details). If no parameters are
present—for instance, if the script is being called for the
very first time—we create a default format specifier.
Then we call the date command and save its value in
$time as before.

33

Figure 2-2. The web page generated by the CGI.pm
script

3. We create the HTTP header using the
CGI header method. This method returns a string
containing a fully-formed HTTP header, which the
program immediately prints out. Called without any
parameters, header returns a string declaring that the
document is of the content type text/html. To create
documents of other MIME types, you can call header
with the MIME type of your choice. For example:

print $q->header('image/gif');

You can also use the named-parameter style of calling to
produce headers containing any of the fields defined in
the HTTP protocol:

34

print $q->header(-Status =>
200,

-Type =>
'image/gif',

-Pragma =>
'no cache',

'-Content-length' =>
8457);

You don’t have to remember to write that blank line after
the HTTP header; header does it for you.

4. We start the HTML document by printing out the string
returned by start_html. Called with just one
argument, this method returns an HTML <HEAD>
section and the opening tag for the HTML <BODY>.
The argument becomes the title of the document. As
with header, you can call start_html with named
parameters to specify such things as the author’s email
address, or the background color:

print $q->start_html(-Title =>
'Virtual Document',

-Author =>
'andy@putamen.com',

-BGCOLOR =>
'#00A0A0');

5. The program then spits out a few lines of HTML,
including the formatted time string.

6. This is followed by a horizontal line and a fill-out form
that allows the user to adjust the format of the displayed
time. CGI.pm has a whole series of HTML shortcuts for
generating fill-out form elements. We start the form by
printing out the <FORM> string returned by the
start_form method, and then create a series of

35

checkboxes (using the checkbox method), a pair of
radio buttons (using the radio_group method), and
the standard Reset and Submit buttons (using the
reset and submit methods). There are similar
methods for creating text input fields, popup menus,
scrolling lists, and clickable image maps.

One of the features of these methods is that if a named
parameter is defined from an earlier invocation of the
script, its value is “sticky”: a checkbox that was
previously turned on will remain on. This feature makes
it possible to keep track of a series of user interactions in
order to create multipart questionnaires, shopping-cart
scripts, and progressively more complex database
queries. Each of these methods accepts optional
arguments that adjust the appearance and behavior; for
example, you can adjust the height of a scrolling list with
the -size parameter. After we finish the form, we
close it with a call to end_form.

7. We end the virtual document by printing the string
returned by end_html, which returns the </BODY>
and </HTML> tags.

In addition to its basic parameter-parsing, HTTP
header-creating, and HTML shortcut-generating abilities,
CGI.pm contains functions for saving and restoring the
script’s state to files and pipes, generating browser redirection
instructions, and accessing useful information about the
transaction, such as the type of browser, the machine it’s
running on, and the list of MIME types it can accept.

36

The next article will discuss how to handle errors generated
by CGI scripts, and additional techniques for maintaining
state in CGI transactions.

37

Chapter 3. Saving CGI State

Lincoln D. Stein
We live in a stateful world. Just to be certain, I collected a
few examples this morning:

1. Today I’m in a certain frantic
state of mind because this article is due. I’ll be this way
for at least the rest of the afternoon, or until the article is
done, whichever comes first. This is an example of a
short-term state.

2. The federal budget is in a dreadful state of affairs that
won’t clear up until the last state has voted in the general
election. This is an example of a long-term state.

3. The weather is truly lovely today with balmy spring
weather and bright sunshine. Because this New England,
however, it’ll stay nice only until sometime tonight,
when the weather report predicts a snowstorm followed
by an iron frost. This is typical of an unstable state.

If the world has state, why doesn’t the Web? It would seem
reasonable for the Web to have some memory. After all,
people do tend to hang around a site for a while, exploring
here and there. It would seem only polite for a web site to
remember the user who’s been rattling around inside it for the
past hour. But the
HTTP protocol is stateless. Each request for a document is a
new transaction; after the document is delivered, the web
server wipes its hands of the whole affair and starts fresh.

38

The HTTP protocol was designed that way because a stateless
model is appropriate for the bulk of a web server’s job: to
listen for requests for HTML documents and deliver them
without fuss, frills, or idle chitchat. That the implementors of
the protocol saw fit to build this stateless protocol on top of
the connection-oriented TCP network communications
protocol, ensuring the Web is hobbled by the performance
limitations of TCP without reaping any of its benefits, is a
small irony we won’t discuss further.

State in CGI Scripts

CGI scripts in particular fit the stateless model poorly. Many
CGI scripts are search engines of some sort. People pose a
question, the CGI script does a search, and returns an answer.
The user looks at the results, refines or modifies his question,
and asks again. Unfortunately, by the time the user has
refined his query and wants to build on previous results, the
original CGI script has terminated, and the search has to start
all over again. Or consider
CGI shopping carts. A user browses around an online catalog
for a while, and whenever something takes his fancy, he
presses a button that adds it to his shopping cart. When he’s
ready, he reviews the contents of the cart and (the vendor
hopes) presses a button that performs an online order.

In the absence of any stateful behavior in HTTP itself, CGI
script writers have to keep track of
state themselves. There are several techniques for doing this:
most of them rely on tricking or cajoling the browser into
keeping track of the state for you.

39

▪ Maintain state variables in the CGI parameters. The
simplest trick is to store all the data you want to keep
track of in the query string passed from the browser to
the CGI script. You can store the data directly in the
URL used in a GET request, or as settings in a fill-out
form. As the previous column showed, this is relatively
easy to do with CGI.pm, because it was designed to
create “sticky”
state-maintaining forms. This paradigm breaks down,
however, when there’s a lot of data to keep track of or
when it’s important to maintain a chronologically
accurate record of the user’s actions even when the user
hits the Back and Forward buttons.

▪ Maintain the state on the server side with a
specially-spawned HTTP server. You can defeat the
limitation on HTTP by creating a state-aware web
server. When a remote user starts a session, you spawn a
new HTTP server dedicated to
maintaining the state of that session, and you redirect the
user to the new server’s URL. This is how the
state-maintaining MiniSvr module works, available on
CPAN.

▪ Save the session’s state to a disk file and use a session
key to keep track of the files. This technique works even
when there’s large amounts of state data, and requires
minimal data to be stored on the browser side of the
connection. This is the technique that I’ll focus on in this
article.

40

A Sample State-Maintaining CGI
Script

Example 3-1 shows a state-maintaining CGI script called
remember.cgi. When invoked, it displays a form
containing a single text input field and two buttons labeled
ADD and CLEAR (see Figure 3-1). The user may type a short
phrase into the text field and press ADD. This adds the phrase
to the bottom of a growing list of phrases displayed at the
bottom of the page. When the user presses CLEAR, the list is
emptied.

Example 3-1. A state-maintaining CGI script
01 #!/usr/bin/perl
02 # Collect the user's responses in a
file and echo them back when requested.
03
04 $STATE_DIR = "./STATES"; # must be
writable by 'nobody'
05
06 use CGI;
07
08 $q = new CGI;
09 $session_key = $q->path_info();
10 $session_key =~ s|^/||; # get rid of
the initial slash
11

If no valid session key was provided,
we generate one, and append it

to the URL as additional path
information, and redirect the user to

this new location.

41

12 unless (&valid($session_key)) {
13 $session_key =
&generate_session_key($q);
14 print $q->redirect($q->url() .
"/$session_key");
15 exit 0;
16 }
17
18 $old_

state = &fetch_old_state($session_key);
19
20 if ($q->param('action') eq 'ADD') { #
Add any new items to the old list
21 @new_items = $q->param('item');
22 @old_items =
$old_state->param('item');
23 $old_state->param('item',
@old_items, @new_items);
24 } elsif ($q->param('action') eq
'CLEAR') {
25 $old_state->delete('item');
26 }
27
28 &save_state($old_state, $session_key);
Save the new list to disk
29
30 print $q->header; # At last,
generate something for the user to see.
31 print $q->start_html("The growing
list");
32 print <<END;
33 <h1>The Growing List</h1>
34 Type a short phrase into the text field
below. When you press <I>AD</I>, it
35 will be added to a history of the
phrases that you've typed. The list is

42

36 maintained on disk at the server end,
so it won't get out of order if you
37 press the "back" button. Press
<I>CLEAR</I> to clear the list and start
fresh.
38 END
39 print $q->start_form;
40 print
$q->textfield(-name=>'item',-default=>'',-size=>50,-override=>1),"<p>";
41 print $q->submit(-name=>'action',
-value=>'CLEAR');
42 print $q->submit(-name=>'action',
-value=>'ADD');
43 print $q->end_form;
44 print "<hr><h2>Current list</h2>";
45
46 if ($old_state->param('item')) {
47 print "";
48 foreach $item
($old_state->param('item')) {
49 print
"",$q->escapeHTML($item);
50 }
51 print "";
52 } else { print "<i>Empty</i>" }
53
54 print <<END;
55 <hr><address>Lincoln D. Stein,
lstein\@genome.wi.mit.edu

56 Whitehead Institute/MIT
Center for Genome Research</address>
57 END
58 print $q->end_html;
59

Silly technique: we generate a
session key from the remote IP address

plus our PID. More sophisticated
scripts should use a better technique.

43

60 sub generate_session_key {
61 my $q = shift;
62 my ($remote) = $q->remote_addr;
63 return "$remote.$$";
64 }
65
66 sub valid { # Make sure the
session ID passed to us is valid
67 my $key = shift; # by looking for
pattern ##.##.##.##.##
68 return $key =~
/^\d+\.\d+\.\d+\.\d+.\d+$/;
69 }
70

Open the existing file, if any, and
read the current

state.
We use the

CGI object here, because it's
straightforward to do.

We don't check for success of the
open(), because if there is

no file yet, the new CGI(FILEHANDLE)
call will return an empty

parameter list, which is exactly what
we want.

71 sub fetch_old_state {
72 my $session_key = shift;
73 open(SAVEDSTATE, "$STATE_DIR/
$session_key");
74 my $state = new CGI(SAVEDSTATE);
75 close SAVEDSTATE;
76 return $state;
77 }

44

78
79 sub save_state {
80 my($state,$session_key) = @_;
81 open(SAVEDSTATE, ">$STATE_DIR/
$session_key") ||
82 die "Failed opening session state
file: $!";
83 $state->save(SAVEDSTATE);
84 close SAVEDSTATE;
85 }

Figure 3-1. A state-maintaining form

The script works by maintaining each
session’s
state in a separate file. The files are kept in a subdirectory that
is readable and writable by the web server daemon. We keep
track of the correspondence between files and browser
sessions by generating a unique
session key when the remote user first accesses the script.
After the session key is generated, we arrange for the browser
to pass the key back to us on each subsequent access to the
script.

45

The technique this script uses to maintain the session key is to
store it in the “additional path information” part of the URL.
This is the part of the URL between the name of the script
and the beginning of the query string. For example, in the
URL:

http://toto.com/cgi-bin/remember.

cgi/202.2.13.1.117?item=hi%20there

the text /202.2.13.1.117 is the additional path
information. Although the additional path information syntax
was designed for passing file information to CGI scripts,
there’s no reason it can’t be used for other purposes, and it’s
often easier to keep the session key here than mixing it up
with the other script parameters.

Lines 8 to 16 are responsible for generating a unique session
key. After creating a new CGI object, the script fetches the
additional path information and strips off the initial slash
(lines 9–10). The session key is next passed to the subroutine
valid (lines 66–69). This subroutine performs a pattern
match on the session key to ensure that it is a key generated
by our program rather than something that the user happened
to type in. Importantly, the valid subroutine also returns
false if the session key is an empty string, which happens the
first time our script is called.

If the session key is blank or invalid we generate a new key
(lines 12–16) using the subroutine
generate_session_key. This subroutine, located at
lines 60–64, is responsible for generating something that
won’t conflict with other concurrent sessions. In this example
we use the simple but imperfect expedient of concatenating

46

the remote machine’s IP address with the CGI script’s process
ID.

After creating a new session key we generate a redirect
directive to the browser, incorporating the session key into the
new URL. If our script’s URL is http://toto.com/cgi-bin/
remember.cgi and the newly-generated session key is
202.2.13.1.117, we redirect the browser to
http://toto.com/cgi-bin/remember.cgi/202.2.13.1.117.

The scripts exists after printing the redirect. It will be
reinvoked almost immediately by the browser when it
retrieves the new URL/session key combination.

The remainder of the script, from line 18 onward, contains the
code that is invoked when the browser provides a valid
session key. Line 18 calls fetch_old_state to retrieve
the current list of text lines. This subroutine, defined in lines
71–77, opens up a file that contains the saved state by using
the session key directly as the name of the file. More
sophisticated scripts will want to use the session key in more
clever ways, such as the key to a record in a DBM file or a
handle into a relational database session.

fetch_old_state opens the file indicated by the session
key, ignoring any “file not found” errors, and passes the
filehandle to the
CGI new method. This creates a new CGI object with
parameters initialized from data stored in the file. We create a
new CGI object here solely because its param method offers
a convenient way to store multiple named parameters and
because of its ability to save and restore these named
parameters to a file. We don’t check first whether the file
exists. If the file doesn’t exist already, the CGI new method

47

returns an empty parameter list, which is exactly what we
want. We close the file and return the new CGI object.

We now have two CGI objects. The first object, stored in the
variable $q, was initialized from the current query and
contains the contents of the text field and information about
which button the user pressed when he submitted the fill-out
form. The second object, stored in the variable
$old_state, is the CGI object initialized from the saved
file, and contains cumulative information about the user’s
previous actions.

Lines 20 to 26 manipulate the saved state depending on the
user’s request. We find out which button the user pressed by
examining the CGI query’s action parameter (line 20). If
equal to ADD, we recover the contents of the text field from
the query parameter item and add it to the cumulative list
(line 23). If the action parameter is CLEAR, then we clear
the list completely (line 25). Otherwise, no button was
pressed and we continue onward.

Next, we save the updated list back to disk with
save_state, which reverses the process by opening up
the file indicated by the session key and using the CGI save
method to dump out the contents of $old_state.

So far no text at all has been transmitted to the browser. It’s a
good idea to do all the back end work first, because network
delays can make your CGI script hang during output. If the
user presses the “stop” button during this period your CGI
script will be terminated, potentially leaving things in an
inconsistent state.

48

Lines 30 through 58 generate the HTML document. The
script generates the HTTP header followed by the HTML
preliminaries and some explanatory text (lines 30–38). Next it
creates the fill-out form, using the start_form,
end_form, and form element generating subroutines
discussed in the previous column. The only trick in this
section is the use of the -override parameter in the call to
textfield. We want the contents of this field to be blank
each time the page is displayed. For this purpose we set the
contents to an empty string and use -override to have
CGI.pm suppress the usual sticky behavior of fields.

After closing the form, we print out the current list of phrases
in lines 44–52. Because there’s no control over what the user
types into the text field, it’s important to escape any special
HTML characters (such as angle brackets and ampersands)
before incorporating it into our own document. Otherwise the
script might create a page that doesn’t display properly. The
escapeHTML method accomplishes this.

Last, we end the page with end_html and exit.

This script doesn’t save a vast amount of state information:
only one parameter, and a short one at that. However, the
same techniques can be used to store and manipulate the
contents of hundreds of parameters. In order to turn this from
an example into a real world script, you’ll need to make a few
refinements.

You might want to change the way session keys are chosen.
Although this script chooses its keys in a way that minimizes
the chances of conflict between two sessions, it isn’t suitable
for security-sensitive applications. Such scripts should make
sure that the remote user is entitled to use the provided

49

session key in order to prevent one user from “stealing”
another user’s state. Checking the IP address for consistency
is a one way to do this; password-protecting the script and
incorporating the encrypted password into the session key
would be an even better technique.

In order to make this script useful in the real world you’ll also
need to remove state files when they’ve gone out of date.
Otherwise the scripts’ PIDs will eventually roll over and start
using ancient state files that are no longer valid. (There’s also
the risk of proliferating state files filling up your disk!) The
easiest way to handle this on a Unix system is with a
cron job that runs at regular intervals looking for old state
files and deleting them.

Another thing you might want to change is the way the
session key is maintained. Most browsers support a “magic
cookie”
field that is guaranteed to be maintained for the entire length
of a browser/server session. You can set the browser’s magic
cookie when the script first accesses the script, using
CGI.pm’s set_cookie method, and retrieve it on
subsequent invocations of the script using get_cookie.

In the next article I discuss cookies, a flexible and powerful
way for a server to store state information inside a user’s
browser.

50

Chapter 4. Cookies

Lincoln D. Stein
A cookie is just a name=value pair, much like the named
parameters used in the CGI query string and discussed in CGI
Programming. When a web server or CGI script wants to
save some state information, it creates a cookie or two and
sends them to the browser inside the HTTP header. The
browser keeps track of all the
cookies sent to it by a particular server, and stores them in an
on-disk database so that the cookies persist even when the
browser is closed and reopened later. The next time the
browser connects to a web site, it searches its database for all
cookies that belong to that server and transmits them back to
the server inside the HTTP header.

Cookies can be permanent or set to expire after a number of
hours or days. They can be made site-wide, so that the cookie
is available to every URL on your site, or restricted to a
partial URL path. You can also set a flag in the cookie so that
it’s only transmitted when the browser and server are
communicating via a secure protocol such as SSL. You can
even create promiscuous cookies that are sent to every server
in a particular Internet domain.

The idea is simple but powerful. If a CGI script needs to save
a small amount of state information, such as the user’s
preferred background color, it can be stored directly in a
cookie. If lots of information needs to be stored, you can keep
the information in a database on the server’s side and use the

51

cookie to record a session key or user ID. Cookies now have
their own standard (RFC 2109) and are accepted by all major
browsers.

Creating Cookies

So how do you create a cookie? If you use the CGI.pm
library, it’s a piece of cake:

0 #!/usr/bin/perl
1
2 use CGI qw(:standard);
3
4 $cookie1 = cookie(-name => 'regular',
5 -value => 'chocolate
chip');
6 $cookie2 = cookie(-name => 'high fiber',
7 -value => 'oatmeal
raisin');
8 print header(-cookie => [$cookie1,
$cookie2]);

Line 2 loads the
CGI library and imports the :standard set of function
calls. This allows you to call all of the CGI object’s
methods without explicitly creating a CGI instance—a default
CGI object is created for you behind the scenes. Lines 4
through 7 create two new
cookies using the CGI cookie method. The last step is to
incorporate the cookies into the document’s HTTP header.
We do this in line 8 by printing out the results of the
header method, passing it the -cookie parameter along
with an array reference containing the two cookies.

When we run this script from the command line, the result is:

52

Set-cookie: regular=chocolate%20chip
Set-cookie: high%20fiber=oatmeal%20raisin
Content-type: text/html

As you can see, CGI.pm translates each space into %20, as
the HTTP cookie specification prohibits whitespace and
certain other characters such as the semicolon. (It also places
an upper limit of a few kilobytes on the size of a cookie, so
don’t try to store the text of Hamlet in one.) When the
browser sees these two cookies it squirrels them away and
returns them to your script the next time it needs a document
from your server.

53

Retrieving Cookies

To retrieve the value of a cookie sent to you by the browser,
use cookie without a -value parameter:

0 #!/usr/bin/perl
1
2 use CGI qw(:standard);
3
4 $regular = cookie('regular');
5 $high_fiber = cookie('high fiber');
6
7 print header(-type => 'text/plain'),
8 "The regular cookie is $regular.\n",
9 "The high fiber cookie is $high_fiber.";

In this example, lines 4 and 5 retrieve the two cookies by
name. Lines 7 through 9 print out an HTTP header
(containing no cookie this time), and two lines of text. The
output of this script, when viewed in a browser, would be:

The regular cookie is chocolate chip.
The high fiber cookie is oatmeal raisin.

The cookie method is fairly flexible. You can save entire
arrays as cookies by giving the -value parameter an array
reference:

$c = cookie(-name => 'specials',
-value => ['oatmeal',

'chocolate chip','alfalfa']);

Or you can save and restore entire hashes:
$c = cookie(-name => 'prices', -value =>
{ 'oatmeal' => '$0.50',

54

'chocolate_chip' => '$1.25',

'alfalfa' => 'free' });

Later you can recover the two
cookies this way:

@specials = cookie('specials');
%prices = cookie('prices');

By default, browsers will remember cookies only until they
exit, and will only send the cookie out to scripts with a URL
path that’s similar to the script that generated it. If you want
them to remember the cookie for a longer period of time, you
can pass an -expires parameter containing the cookie’s
shelf life to the cookie function. To change the URL path
over which the cookie is valid, pass its value in -path:

$c = cookie(-name => 'regular',
-value => 'oatmeal raisin',

-path => '/cgi-bin/bakery',
-expires => '+3d');

This cookie will expire in three days’ time (+3d). Other
cookie parameters allow you to adjust the domain names
and URL paths that trigger the browser to send a cookie, and
to turn on cookie secure mode. The -path parameter shown
here tells the browser to send the cookie to every program in
/cgi-bin/bakery.

55

56

A Sample Cookie Program

Example 4-1 is a CGI script called configure.cgi that
generates pages such as Figure 4-1. When you call this
script’s URL, you are presented with the fill-out form shown
above. You can change the page’s background color, the text
size and color, and even customize it with your name. The
next time you visit this page (even if you’ve closed the
browser and come back to the page weeks later), it
remembers all of these values and builds a page based on
them.

Example 4-1. The configure.cgi script
00 #!/usr/bin/perl
01
02 use CGI qw(:standard :html3);
03
04 # Some constants to use in our form.
05 @colors = qw/aqua black blue fuchsia
gray green lime maroon navy olive

purple red silver teal
white yellow/;
06 @sizes = ("<default>", 1..7);
07
08 # Recover the "preferences" cookie.
09 %preferences = cookie('preferences');
10
11 # If the user wants to change the name
or background color, they can
12 foreach ('text', 'background', 'name',
'size') {
13 $preferences{$_} = param($_) ||
$preferences{$_};
14 }

57

15
16 # Set some defaults
17 $preferences{background} =
$preferences{background} || 'silver';
18 $preferences{text} =
$preferences{text} || 'black';
19
20 # Refresh the cookie so that it doesn't
expire.
21 $the_cookie = cookie(-name =>
'preferences',
22 -value =>
\%preferences,
23 -path => '/',
24 -expires => '+30d');
25 print header(-cookie => $the_cookie);
26
27 # Adjust the title to incorporate the
user's name, if provided.
28 $title = $preferences{name} ? "Welcome
back, $preferences{name}!"

:
"Customizable Page";
29
30 # Create the HTML page, controlling the
background color and font size.
31 #
32 print start_html(-title => $title,
33 -bgcolor =>
$preferences{background},
34 -text =>
$preferences{text});
35
36 print
basefont({SIZE=>$preferences{size}}) if
$preferences{size} > 0;
37
38 print h1($title),<<END;

58

39 You can change the appearance of this
page by submitting
40 the fill-out form below. If you return
to this page any time
41 within 30 days, your preferences will
be restored.
42 END
43 ;
44 # Create the form.
45 print hr,
46 start_form,
47
48 "Your first name: ",
49 textfield(-name => 'name',
50 -default =>
$preferences{name},
51 -size => 30), br,
52 table(
53 TR(
54 td("Preferred"),
55 td("Page color:"),
56 td(popup_menu(-name
=> 'background',
57 -values
=> \@colors,
58 -default
=> $preferences{background})
59)
60),
61 TR(
62 td(''),
63 td("Text color:"),
64 td(popup_menu(-name
=> 'text',
65 -values
=> \@colors,
66 -default
=> $preferences{text})

59

67)
68),
69 TR(
70 td(''),
71 td("Font size:"),
72 td(popup_menu(-name
=> 'size',
73 -values
=> \@sizes,
74 -default
=> $preferences{size})
75)
76)
77),
78 submit(-label => 'Set
preferences'),
79 end_form,
80 hr;
81
82 print a({HREF => "/"}, 'Go to the home
page');

60

Figure 4-1. A cookie-aware web page

This script recognizes four CGI parameters used to change
the configuration:

background

Set the background color.

text

Set the text color.

61

size

Set the size to the indicated value (1–7).

name

Set the username.

Usually these parameters are sent to the script via the fill out
form that it generates, but you could set them from within a
URL this way:

/cgi-bin/
configure.pl?background=silver&text=blue&name=Stein

Let’s walk through the code. Line 2 imports the CGI library,
bringing in both the standard method calls and a number of
methods that generate HTML3-specific tags. Next we define
a set of background colors and sizes. The choice of colors
may seem capricious, but it’s not: These are the background
colors defined by the HTML 3.2 standard, and they’re based
on the original colors used by the IBM VGA graphics display.

Line 9 is where we recover the user’s previous preferences, if
any. We use the cookie method to fetch a cookie named
“preferences”, and store its value in a like-named hash.

In lines 12 through 14, we fetch the CGI parameters named
text, background, name, and size. If any of them
are set, it indicates that the user wants to change the
corresponding value saved in the browser’s cookie. We store
changed parameters in the %preferences hash, replacing
the original values.

62

Line 17 and 18 set the text and background colors to
reasonable defaults if they can’t be found in either the cookie
or the CGI script parameters.

Lines 21 through 25 generate the page’s HTTP header. First,
we use the cookie method to create the cookie containing
the user’s preferences. We set the expiration date for the
cookie for 30 days in the future so that the cookie will be
removed from the browser’s database if the user doesn’t
return to this page within that time. We also set the optional
-path parameter to /. This makes the cookie valid over our
entire site so that it’s available to every URL the browser
fetches. Although we don’t take advantage of this yet, it’s
useful if we later decide that these preferences should have a
site-wide effect. Lastly, we emit the HTTP header with the
-cookie parameter set.

In lines 30 to 36 we begin the HTML page. To make it
personalizable, we base the page title on the user’s name. If
it’s set, the title and level 1 header both become “Welcome
back <name>!” Otherwise, the title becomes an impersonal
“Customizable page.” Line 32 calls the start_html
method to create the top part of the HTML page. It sets the
title, the background color and the text color based on the
values in the %preferences array. Line 36 sets the text
size by calling the basefont method. This simply
generates a <BASEFONT>
HTML tag with an appropriate SIZE attribute.

Lines 38 and up generate the content of the page. There’s a
brief introduction to the page, followed by the fill-out form
used to change the settings. All the HTML is generated using
CGI.pm “shortcuts,” in which tags are generated by

63

like-named method calls. For example, the hr method
generates the HTML tag <HR>. As shown in the first column
in this series, we start the fill-out form with a call to
start_form, create the various form elements with calls
to textfield, popup_menu, and submit, and close
the form with end_form.

When I first wrote this script, the popup menus and popup
menus in the form didn’t line up well. Because all the
elements were slightly different widths, everything was
crooked. To fix this problem, I used the common trick of
placing the form elements inside an invisible HTML3 table.
Assigning each element to its own cell forces the fields to line
up. You can see how I did this in lines 52 through 77, where I
define a table using a set of CGI.pm shortcuts. An outer call
to table generates the surrounding <TABLE> and
</TABLE> tags. Within this are a series of TR methods,
each of which generates a <TR> tag. (In order to avoid
conflict with Perl’s built-in tr/// operator, this is one
instance where CGI.pm uses uppercase rather than lowercase
shortcut names.) Within each TR call, in turn, there are
several td calls that generate the <TD> (table data) cells of
the HTML table.

Fortunately, my text editor auto-indents nicely, making it easy
to see the HTML structure.

On a real site, of course, you’d want the user’s preferences to
affect all pages, not just one. This isn’t a major undertaking;
many modern web servers now allow you to designate a script
that preprocesses all files of a certain type. You can create a
variation on the script shown here that takes an HTML
document and inserts the appropriate <BASEFONT> and

64

<BODY> tags based on the cookie preferences. Now, just
configure the server to pass all HTML documents through
this script, and you’re set.

In the next article, Doug MacEachern and I introduce
mod_perl, a Perl interpreter embedded inside the Apache web
server.

65

Chapter 5. mod_perl

Lincoln D. Stein

Doug MacEachern
One of the minor miracles of the World Wide Web is that it
makes client/server network programming easy. With the
Common Gateway Interface (CGI), anyone can create
dynamic web pages, frontends for databases, and even
complex intranet applications with ease. If you’re like many
web programmers, you started out writing CGI scripts in Perl.
With its powerful text-processing facilities, forgiving syntax,
and tool-oriented design, Perl lends itself to the small
programs for which CGI was designed.

Unfortunately, the love affair between Perl and CGI doesn’t
last forever. As your scripts get larger and your server more
heavily loaded, you inevitably run into a performance barrier.
A thousand-line Perl CGI script that runs fine on a lightly
loaded web site becomes unacceptably slow when it increases
to 10,000 lines and the hit rate triples. You might even have
tried switching to a different programming language—and
been disappointed. Because CGI relaunches the script every
time it’s requested, even compiled C won’t give you the
performance boost you expect.

If your applications go beyond simple dynamic pages, you
might have run into the

66

limitations of the CGI protocol itself. Many interesting things
happen deep inside web servers, such as the smart remapping
of URLs, access control and authentication, and the
assignment of MIME types to documents. The CGI protocol
doesn’t give you access to these internals. You can neither
find out what’s going on nor intervene in any meaningful
way.

To go beyond simple CGI scripting, you must use some
protocol that doesn’t rely on launching and relaunching an
external program each time a script runs. Alternatives include
NSAPI on Netscape servers, ISAPI on Windows servers, Java
servlets, server-side includes, Active Server Pages (ASP),
FastCGI, Dynamic HTML, ActiveX, JavaScript, and Java
applets.

Sadly, choosing among these technologies is a no-win
situation. Some choices lock you into a server platform for
life. Others limit the browsers you can support. Many offer
proprietary solutions that aren’t available in other vendors’
products. Nearly all of them require you to throw out your
existing investment in Perl CGI scripts and reimplement
everything from scratch.

The
Apache server offers you a way out. Apache is a freely
distributed, full-featured web server that runs on Unix and
Windows NT systems. Derived from the popular NCSA httpd
server, Apache dominates the Web; over half of the servers
reachable from the Internet are Apache. Like its commercial
cousins from Microsoft and Netscape, Apache has a
programmer’s API, allowing you to extend the server with
modules of your own design. Apache modules can behave
like CGI scripts, creating interactive pages on the fly. Or, they

67

can make fundamental changes in the operation of the server,
such as logging web accesses to a relational database or
replacing standard HTTP authentication with a system
integrated with Kerberos, DCE, or one-time passwords.
Regardless of whether they’re simple or complex, Apache
modules perform much better than even the fastest
conventional CGI scripts.

The best thing about Apache modules, however, is
mod_perl.
mod_perl is a fully-functional Perl interpreter embedded
inside Apache. With mod_perl, you simply take your existing
scripts and plug them in to the server, usually without any
source code changes whatsoever. Your scripts run exactly as
before, but many times faster-—nearly as fast as fetching
static HTML pages in many cases. Better yet, mod_perl offers
a Perl interface to the Apache API, allowing complete access
to Apache internals. Instead of writing Perl scripts, you can
write Perl modules that control every aspect of the Apache
server’s operations. Move your existing Perl scripts over to
mod_perl to get an immediate and dramatic performance
boost. As you need to, you can add new features to your
scripts that take advantage of the Apache API.

This article introduces mod_perl and shows how its unique
features speed up web sites. Instructions for
installing mod_perl are in the following sidebar, Installing
mod_perl.

Installing mod_perl

The mod_perl distribution is available from a CPAN site
near you. Look in modules/by-module/Apache/ or visit the

68

mod_perl home page at http://perl.apache.org/ and
http://apache.perl.org/. In addition to mod_perl, you’ll
need Perl 5.004 or higher, and Apache 1.2.0 or higher. Just
like any other Perl module, you can build mod_perl and
Apache from source code with these three commands:

perl Makefile.PL
make test
make install

To run mod_perl on the Windows version of Apache,
you’ll need Apache 1.3b3 or higher. A binary release of
mod_perl for Windows is available.

mod_perl has been running strong on a great many Unix
systems serving busy web sites, including the Denver
Broncos site. (We can only speculate whether mod_perl
contributed to their 1998 Superbowl win.)

Like most Perl utilities, mod_perl is free. It is distributed
under the same terms as the Apache server license.

Transaction Handlers

mod_perl code is organized quite differently than
conventional CGI scripts. Instead of writing standalone
scripts, you create handlers, snippets of code that handle one
or more of the phases of the Apache server’s operation. The
Phases of mod_perl shows the phases in chronological order.

To install handlers for any of these phases, you create a .pm
file and add the appropriate mod_perl directive (shown in
parentheses) to the server’s httpd.conf or .htaccess file. You

69

use a different directive for each phase. For example, you
install a log phase handler with the directive
PerlLogHandler, and a
content phase handler with the directive PerlHandler
(since the content handler is the one installed most frequently,
it has the most generic name). So to install
logging and URI translation handlers for all URIs below the
virtual directory /magic, you could enter something like
this in access.conf:

<Location /magic>
PerlTransHandler Apache::Magic
PerlLogHandler Apache::MyLog

</Location>

By convention, mod_perl modules are members of the
Apache:: namespace. They don’t inherit from Apache.pm;
don’t follow the convention if you don’t care to.

Because Apache often associates
content handlers with real files on the basis of their MIME
types, you need a slightly different incantation when
installing a content handler:

<Location /virtual>
SetHandler perl-script
PerlHandler Apache::Virtual

</Location>

All URIs that begin with /virtual will be passed through
the module Apache::Virtual, regardless of whether they
correspond to physical files on the server. The module will be
passed the remainder of the URI to do with as it pleases. You
can turn the remaining components of the URI path into a
database query, treat them as verbs in a command language,
or just plain ignore them.

70

71

A Typical Content Handler

Content handlers are straightforward. A minimal handler
looks like this:

package Apache::Simple;
use Apache::Constants qw(OK DECLINED);

sub handler {
my $r = shift;
my $host = $r->get_remote_host;
$r->content_type('text/plain');
$r->send_http_header;
$r->print("Good morning, $host!");
return OK;

}

1;

The Phases of mod_perl

1. Module initialization (PerlModule,
PerlRequire). Called once in the parent server,
during startup and restarts. This is where the
interpreter object is constructed.

2. Reading the configuration file (<Perl> …
</Perl>). Called by the parent server during
startup and restarts to read the server configuration
files. Also called when .htaccess files are found at
request time.

72

3. Child initialization (PerlChildInitHandler).
Called when a new Apache process has been
launched.

4. Post read request
(PerlPostReadRequestHandler). Called
after the client request has been read, but before any
other processing has been performed. Here’s where
you can examine HTTP headers and change them
before Apache gets a crack at them.

5. URI translation (PerlTransHandler). Called to
perform the translation between the virtual URI and
the physical filename. For example, you can use this
to override the way that Apache translates URIs into
paths in the document root, or to perform fancy string
mappings.

6. Header parsing
(PerlHeaderParserHandler). Now that the
URI has been mapped to a resource, the module is
given another chance to look at the request. Here it
can decide if the request structure needs to be
modified in some way or terminated altogether before
the server performs resource-intensive tasks.

7. Access control (PerlAccessHandler). When a
URL is under access control (access restriction that
doesn’t require user authentication such as a
password), PerlAccessHandler is called. This
lets you specify your own restrictions for a directory,
such as restricting access based on the day of the
week or phase of the moon.

73

8. Authentication (PerlAuthenHandler). When
invoked, this phase determines whether the user is
who he says he is (by username and password).

9. Authorization (PerlAuthzHandler). This phase
decides whether the user is permitted access to this
particular URI.

10. MIME type mapping (PerlTypeHandler). This
phase maps URIs to MIME types. You can use this to
override Apache’s default file extension to MIME
type mappings. For example, you could look the
MIME type up in a database, or infer it from the file’s
“magic number.”

11. Miscellaneous fixups (PerlFixupHandler).
This phase is invoked just before
content generation so that modules can “fixup” the
request now that it knows exactly who will handle the
response. For example, this is where Apache’s
mod_env environment-handling module processes the
SetEnv and PassEnv directives before passing
the environment to CGI scripts.

12. Content generation (PerlHandler). This is where
you create HTML pages, redirections, or any other
type of HTTP response. This is the most frequently
handled phase of the transaction.

13. Logging (PerlLogHandler). Called after all the
other phases to log the results. You can use this to
customize Apache’s log format, or to change logging

74

completely. For example, you can compute summary
statistics and store them in a relational database.

14. Registered cleanups (PerlCleanupHandler).
Modules may register functions to be called after the
client connection has been closed and just before the
various request resources are cleaned up.

15. Child exit (PerlChildExitHandler). Called
just before an Apache process terminates.

We first declare a unique package name: Apache::Simple.
This step is very important. Because all mod_perl modules
live in the same Perl process, namespace conflicts became a
very real possibility. Next, we import two constants, OK and
DECLINED, from the Apache::Constants module, bundled
with the mod_perl distribution. Last, we declare a subroutine
named handler. By default, mod_perl looks for a
subroutine by this name when processing a handler directive.

When handler is called, it is passed an Apache request
object as its single argument. This object contains information
about the current request, and serves as an interface to the
Apache server. You can use it to modify the request, to send
information to the browser, and to request services from
Apache such as filename translation. In this script, we first
have the request object retrieve the name of the remote host.
Then we create the response, first setting the HTTP header to
MIME type text/plain with a call to content_type,
and then sending the HTTP header with
send_http_header. Next, we create the content with a
call to the print method and send a friendly message to the
browser. Finally, we return a result code of OK, telling

75

Apache that we successfully handled the request. We could
also have returned DECLINED, signalling Apache to try a
different handler.

Here’s how a content handler can redirect the browser to a
different URI using an HTTP REDIRECT instruction:

package Apache::Redirect;

use Apache::Constants qw(OK DECLINED
REDIRECT);

sub handler {
my $r = shift;

my $remote_url =
'http://www.somewhere.else/go/away.html';

$r->header_out(Location=>$remote_url);
return REDIRECT;

}

1;

In this case, we call the header_out method to set the
outgoing HTTP Location header for the redirection. There’s
no need to invoke send_http_header or send a
document body. Apache takes care of this for us when the
return code is anything other than DECLINED or OK. In this
case, returning REDIRECT makes Apache generate a 302
Moved Temporarily status code and send the HTTP
headers. Normally, there’s no need to send a document body
because most clients will follow the Location header.
However, to be HTTP-compliant, Apache generates a tiny
document with a link to the new Location. If you’re using
a decent browser, you’ll never know.

76

Apache::Registry

Although you can do everything you want with the
content handlers just described, there are some drawbacks.
First, during the development and debugging phase, Perl
modules are not automatically recompiled when you change
the source code—unless you configure the Apache::StatINC
module. Second, as you can see, these handlers look nothing
like CGI scripts. CGI scripts read from STDIN and write to
STDOUT, and obtain configuration information from
environment variables. Code written for CGI won’t run as a
content handler without radical alterations.

Enter
Apache::Registry. Apache::Registry is a content handler that
wraps around other Perl scripts. It emulates the CGI
environment using a variety of tricks (such as tied
filehandles). Most CGI scripts written as standalone
applications will run unmodified under Apache::Registry,
while those that know about mod_perl can take advantage of
its special features. The best aspect of Apache::Registry is
that it caches the compiled script inside a subroutine and
executes it when a request comes in. Code is recompiled
automatically when the source file is updated on disk. The
handler acts as a registry for subroutines, hence its name.

77

78

A Typical Non-Content Handler

To demonstrate a handler that doesn’t create content, consider
the log handler. It gets called relatively late in the
process—stage 13—after the response has been generated.
We can create a LogMail handler to place watchpoints on
particular files and directories. Whenever someone accesses a
watchpointed directory, the server sends mail to some
designated address. Here’s an entry in access.conf that places
a watchpoint on all the files in Lincoln’s public directory:

<Location /~lstein>
PerlLogHandler Apache::LogMail
PerlSetVar mailto lstein@w3.org

</Location>

Note the PerlSetVar directive, which allows us to send
configuration information to the handler. It expects two
arguments: a key name and a value. In this case, the key name
is mailto and the value is lstein@w3.org. Here’s
what LogMail.pm looks like:

package Apache::LogMail;
use Apache::Constants ':common';

sub handler {
my $r = shift;
my $mailto = $r->dir_config('mailto');
my $request = $r->the_request;
my $uri = $r->uri;

my $agent =
$r->header_in("User-agent");

my $bytes = $r->bytes_sent;
my $remote = $r->get_remote_host;
my $status = $r->status_line;

79

my $date = localtime;

unless (open (MAIL, "|/usr/lib/
sendmail -oi -t")) {

$r->log_error("Couldn't open mail:
$!");

return DECLINED;
}

print MAIL <<END;
To: $mailto
From: Mod Perl <webmaster>
Subject: Somebody looked at $uri

At $date, a user at $remote looked at $uri
using the $agent
browser. The request was $request, which
resulted returned a code of
$status.

$bytes bytes were transferred.
END

close MAIL;

return OK;
}

1;

This script calls a bunch of Apache request methods to fetch
the URI of the request, the remote host, the user agent
(browser vendor information), the number of bytes
transmitted, and the status of the response. It bundles
everything up into a mail message that it sends with the trusty
sendmail program. Note how we retrieve the value of the

80

“mailto” configuration variable with a call to dir_config.
The resulting mail looks something like this:

From: Mod Perl <webmaster@w3.org>
To: lstein@w3.org
Subject: Somebody looked at /~lstein/
innocent.html
Date: Fri, 20 Feb 1998 21:42:04 -0500

At Fri Jan 20 21:42:02 1998, a user at
www.readable.com
looked at /~lstein/innocent.html using the
Mozilla/3.01Gold
(X11; I; Linux 2.0.30 i586) browser.

The request was GET /~lstein/innocent.html
HTTP/1.0, which resulted
returned a code of 200 OK.

635 bytes were transferred.

In addition to sending out the message, Apache creates its
usual log entry.

81

82

Getting Fancy: A Stately Script

In Saving CGI State, Lincoln bemoaned the difficulties in
maintaining
state across CGI scripting sessions. Because each CGI
process exits after processing its request, you must resort to
awkward workarounds in order to maintain the page’s state.
For example, you can hide state information in hidden fields
of fill-out forms, or stash the data in HTTP cookies (Cookies).

Another difference between mod_perl and conventional CGI
scripting is that mod_perl scripts are persistent. After initial
compilation, they remain in memory and are executed by the
server each time they’re needed. This means that scripts can
stash state information in their own global variables, to be
accessed later.

To see how useful this can be, we’ll consider a longer
example, stately.cgi, shown later in Example 5-2. This
script implements file paging: when the user first accesses the
script’s URI, it displays a screen like the one shown in
Figure 5-1. A textfield prompts the user to type his name, and
a popup menu allows him to select from a fixed menu of
interesting articles. When he presses the Select Article button,
a screen like the one in Figure 5-2 appears. The top of the
page displays the user’s name and the selected article.
Beneath it is a shaded block of text containing one page of the
article (in this case, a page is defined as a fixed number of
lines). Above and below the text are a row of buttons for
navigating through the article. You can page backward and
forward, or jump directly to an arbitrary page.

83

Figure 5-1. A stately document browser

If this script reminds you of paging through a search engine’s
results, it ought to. The only difference is that search engines
sometimes use small inline images rather than standard
HTML buttons. This script could be modified easily to use
graphical buttons—just replace the appropriate calls to
submit with calls to image_button. You’ll have to
provide your own artwork, of course.

84

Figure 5-2. Using state to page through a document

This script has to store a lot of
state between accesses. The user’s name, the article being
read, and the page being displayed all need to be remembered
between accesses. While this could be achieved by cleverly
using hidden fields, stately.cgi uses the simpler
method of storing all the
state information in memory. This has the important
advantage of long-term persistence. If the user bookmarks the
page and returns later, the page will be displayed exactly as
he left it, even if he shut down and restarted his browser in the

85

interim! Furthermore, the server can be shut down as well;
you can kill the web server, have some pasta and a glass of
wine, and when you restart the server all the session
information will be magically restored.

Before we examine stately.cgi, have a look at
Example 5-1, which implements the primary state-saving
features. This defines a small utility package called
PageSession that holds all the state information of a particular
session. Each session has a unique ID, and fields for the user
name, the article, and the current page. The new method (line
10) creates a new PageSession object with empty fields, the
fetch method (line 22) fetches an existing PageSession
given its ID, and a save method (line 28) saves the modified
PageSession object to a memory structure for future accesses.
Methods named id, name, article, and page allow
you to get and set the object’s fields.

Example 5-1. State-saving features
0 package PageSession;
1
2 use vars qw($NEXTID $MAX_SESSIONS
%SESSIONS);
3 $MAX_SESSIONS = 100;
4
5 $NEXTID = 0 if $NEXTID eq '';
6
7 # Find a new ID to use by cycling
through a numeric list. In a real
8 # application, the ID should be unique,
and maintained in a
9 # most-frequently-used cache.
10 sub new {
11 my ($package) = @_;
12 $NEXTID = 0 if $NEXTID >

86

$MAX_SESSIONS;
13 my $self = bless {
14 name => '',
15 article => '',
16 page => 0,
17 id =>
$NEXTID++
18 }, $package;
19 return $self;
20 }
21
22 sub fetch {
23 my ($package, $id) = @_;
24 return undef if $id eq '';
25 return $SESSIONS{$id};
26 }
27
28 sub save {
29 my $self = shift;
30 $SESSIONS{$self->{id}} = $self;
31 }
32
33 sub id { $_[0]->{id} }
34 sub name { $_[0]->{name} = $_[1] if
defined($_[1]); $_[0]->{name}; }
35 sub article { $_[0]->{article} = $_[1]
if defined($_[1]); $_[0]->{article}; }
36 sub page {
37 $_[0]->{page} = $_[1] if
defined($_[1]);
38 $_[0]->{page} = 0 if $_[0]->{page}
< 0;
39 $_[0]->{page};
40 }
41
42 1;

87

Internally, PageSession objects are stored in %SESSIONS, a
package-wide global hash indexed by the PageSession ID.
The IDs are simple integers maintained in a global named
$NEXTID, which is incremented whenever a new
PageSession is requested. In order to keep the demands on
memory reasonable, the number of stored PageSessions is
restricted. After the maximum number is reached, $NEXTID
is reset to zero and old session IDs are reused, deleting the
older sessions to make way for newer ones. This isn’t the
most sophisticated way of
maintaining session IDs; a more sophisticated scheme would
prioritize sessions on the basis of how recently they were last
used, rather than how recently they were created. Also, a real
application would choose IDs that are a little harder to predict
than small numbers, perhaps by hashing the ID with the
user’s IP address. This scheme makes it easy for one user to
peek at another’s session just by guessing a valid session ID.

Now let’s look at the primary focus of this article,
stately.cgi, shown in Example 5-2. It represents an
interesting hybrid of straight
mod_perl scripting and CGI scripting. Because it is run under
Apache::Registry, it can take advantage of routines that
depend on the CGI environment, such as CGI.pm’s parameter
parsing routines.

Example 5-2. stately.cgi
0 #!/usr/bin/perl
1 # File: stately.cgi
2
3 use strict vars;
4 use CGI qw(:html2 :html3 start_form
end_form
5 center textfield submit

88

param popup_menu);
6 use Apache::Constants
qw(:response_codes :common);
7 use PageSession;
8
9 my %ARTICLES = (
10 'emr.txt' => 'The
Electronic Medical Record',
11 'microbot.txt' =>
'Beware the Microbots',
12 'sbox.txt' => 'Box
and Wrapped',
13 'servlets.txt' =>
'Back to the Future'
14);
15 my $ARTICLE_ROOT = "/articles";
16 my $LINES_PER_PAGE = 20;
17 my $MAX_BUTTONS = 10; # How many
page buttons
18
19 my $r = Apache->request;
20 my $id = get_session_id($r);
21 my $session = PageSession->fetch($id);
22
23 unless ($session) {
24 $session = PageSession->new();
25 # Remove any path info already
there
26 my $uri = $r->path_info ?
27 substr($r->uri, 0,
-length($r->path_info)) : $r->uri;
28 my $new_uri = "$uri/" .
$session->id;
29 $r->header_out(Location =>
$new_uri);
30 $r->send_http_header;
31 $session->save;
32 return REDIRECT;

89

33 }
34
35 # If we get here, we have a session
object in hand and
36 # can proceed.
37 $r->content_type('text/html');
38 $r->send_http_header;
39 $r->print(start_html(-bgcolor =>
'white',
40 -Title =>
'Document Browser'),
41 h1('Document Browser'),
42 start_form()
43);
44
45 # Set the user's name to whatever is
specified in the
46 # CGI parameter.
47 $session->name(param('name'));
48
49 # If there's no name in the session,
then prompt the
50 # user to enter it.
51 unless ($session->name) {
52 $r->print("Your name [optional]: ",
53 textfield(-name =>
'name', -size => 40), br);
54 } else {
55 $r->print(h2("User:
",$session->name));
56 }
57
58 # Here's where we do something based
on the action
59 my $action = param('action');
60 CASE: {
61 $session->page($session->page+1),last
CASE if $action eq 'Next Page >>';

90

62 $session->page($session->page-1),last
CASE
63
if $action eq '<< Previous Page';
64 $session->page($action-1),last CASE
if $action =~ /^\d+$/;
65 do_select($session,param('article'))
66 if $action eq
'Select Article' || param('name');
67 }
68 # Popup menu to select article to view
69 $r->print('Select an article to
browse: ',
70 popup_menu(-name =>
'article', -values => \%ARTICLES,
71 -default =>
$session->article),
72 submit(-name => 'action',
73 -value => 'Select
Article'), p(),
74);
75
76 # Fetch the article and divide it into
pages
77 my @pages = fetch_article($r,$session);
78 if (@pages) {
79
80 # truncate page counter if it's
off.
81 $session->page($#pages) if
$session->page > $#pages;
82
83 # List of page buttons. (Note the
one-based indexing.)
84 my @buttons = map { $_ ==
$session->page+1 ?
85
strong($_) :

91

86
submit(-name=>'action',-value=>"$_") }
(1..@pages);
87 # Trim the buttons to the left and
right of the page.
88 # Want <= MAX_BUTTONS shown at any
time.
89 splice(@buttons, 0, $session->page
- $MAX_BUTTONS/2, strong('...'))
90 if @buttons > $MAX_BUTTONS &&
$session->page > $MAX_BUTTONS/2;
91 splice(@buttons, $MAX_BUTTONS+1,
@buttons-6, strong('...'))
92 if @buttons > $MAX_BUTTONS;
93
unshift(@buttons,submit(-name=>'action',-value=>'<<
Previous Page'))
94 if $session->page > 0;
95 push(@buttons,
submit(-name=>'action', -value=>'Next Page
>>'))
96 if $session->page < $#pages;
97
98 $r->print(hr,
99 table({-width=>'100%'},
TR(td(\@buttons))),
100 table({-width=>'100%'},
101 TR(
102
td({-bgcolor=>'yellow'},
103 $session->page =s=
0 ? center(strong("-start-")) : '',
104
pre($pages[$session->page]),
105 $session->page ==
$#pages ? center(strong("-end-")) : ''
106))
107),

92

108 table({-width=>'100%'},
TR(td(\@buttons)))
109);
110 } # end if (@pages)
111
112 $r->print(
113 end_form(),
114 hr(),end_html());
115 $session->save;
116
117 sub get_session_id {
118 my $r = shift;
119 my ($session) = $r->path_info()
=~ m!^/(\d+)!;
120 return $session;
121 }
122
123 sub do_select {
124 my ($session, $article) = @_;
125 $session->page(0);
126 $session->article($article);
127 }
128
129 sub fetch_article {
130 my ($r, $session) = @_;
131 return () unless
$ARTICLES{$session->article};
132 my $path =
$r->lookup_uri("$ARTICLE_ROOT/" .
133
$session->article)->filename();
134 return () unless $path;
135
136 my (@lines, @pages);
137 open (FILE,$path) || return ();
138 @lines = <FILE>; # Slurp in
all the lines
139 close FILE;

93

140 push(@pages,
141
join('',splice(@lines,0,$LINES_PER_PAGE)))
142 while @lines;
143 return @pages;
144 }

The script starts out by bringing in the modules that it needs.
It imports some functions from CGI.pm, Apache::Constants,
and the PageSession package. Because all modules are
compiled into one Perl interpreter object, chances are that
these modules are already compiled and ready to be launched,
so the use statements will execute quickly. (You can even
have
mod_perl compile modules at startup time if you wish.)

Next, we define some packagewide global variables,
including the names of the articles, their location, and the
page length (lines 9–17).

The fun part begins in lines 19–21. The goal here is to deduce
whether the request is coming from a new user or an old one.
If the user is new, we need to generate a unique session ID
and trick his browser into passing it back to us on subsequent
requests. If it’s an old user, we need to recover his session
object. We accomplish this task with one of the older tricks of
the web trade: storing the session ID in the script’s URI. URIs
used to access this script should look something like this:

http://your.site/perl/stately.cgi/42

The script’s URI is followed by additional path information
containing the session ID, in this case 42. If a user tries to
access the script without a session ID, the script assumes that
it is a new session, generates a new empty session object for
the user, and redirects the browser to the URI with the session

94

ID tacked onto the end. Otherwise it recovers the session ID
from the additional path information and recovers the
corresponding PageSession object from memory.

First, we fetch the current request object (line 19). Unlike the
standard handlers shown before, Apache::Registry scripts
don’t define a handler subroutine. Instead, they ask the
Apache package for their request object. After recovering this
object, we use it to recover the session ID by calling the
subroutine defined in lines 117–121: get_session_id.
We now call the PageSession::fetch subroutine to
recover the corresponding PageSession (which might be
undefined).

If no PageSession object is found, then the script’s URI either
provided no session number at all, or provided an unused one.
In this case, we generate a new session object and redirect the
user’s browser to our URI with the ID of the new object
tacked onto the end. This happens in lines 23 through 33,
where we call PageSession::new to make a new object,
synthesize a new URI from the base URI concatenated with
the session ID, and generate a redirect directive as shown
earlier. The mess beginning on line 26 handles users who
access the script with a URI already containing additional
path information. This strips the URI down to its base before
appending the session ID.

When the user’s browser sees the redirect, it immediately
bounces back to our script with a valid session ID. We can
then generate an HTML document. Lines 37 through 43
create the HTTP header and the constant section at the top of
the document. To emphasize that this is
mod_perl rather than CGI, we use Apache’s
content_type, send_http_header, and print

95

methods; but since we’re running under Apache::Registry, we
could just as easily have called Perl’s regular print
function and used CGI::header.

The next step is to update the
session object to reflect commands issued by the user. This
script recognizes six different parameters, each of which
affects the
state of the page. They are shown in Table 5-1.

Table 5-1. stately.cgi parameters

Parameter Value Comment

name (textfield contents) The user name

article (popup menu contents) The article name

action Select Article Start reading a new article

action << Previous Page Decrement page number

action Next Page>> Increment page number

action numeric value Go to the indicated page

Notice that the action parameter is used for four different
commands. That’s okay, because only one command can be
issued at a time. We use the CGI.pm param subroutine to
recover the CGI parameters, something possible only with
Apache::Registry. First, if a parameter named name is

96

present, we update the session object to contain it (line 47). If
the parameter is missing and the session object doesn’t
already contain the user’s name, we generate a textfield to
request it from the user.

Next, we process the action parameter (lines 60–67).
action can be generated by any of the page navigation
buttons, or by the “Select Article” button. This code detects
which button was pressed and takes the appropriate action,
either by changing the value of the session’s page field or by
changing the contents of the article field.

We now begin to lay out the rest of the page. In lines 68–73
we create a popup menu to display the list of articles. This
example uses a deliberately small list; a real application might
generate the list from directory contents, a database, or a
keyword search.

Line 77 calls the fetch_article routine, which fetches
the article given by the session and divides it into pages. The
pages are stored in the @pages array.

The complicated code in lines 78 through 110 displays the
navigation bar and the current page from the selected article.
To generate the navigation bar, we first create a list of HTML
pushbuttons in @buttons. We then trim the list so they’ll
all be visible simultaneously. After centering the list so that
the entry for the current page is always displayed, we replace
the part of the list that’s too far to the left or the right with
“…”. After trimming, we add the Previous and Next buttons.

In lines 98 through 110, we print out this list of buttons with
the current page of text. To make everything line up nicely,
both the list of buttons and the text itself are placed in HTML
3.2 tables. By embedding the article in a table cell, we gain

97

the benefit of being able to change its background color.
Another way to accomplish the same effect would be to use a
cascading style sheet—but that’s a subject for another article!

Although it isn’t visible in the screenshot, the script actually
prints the navigation bar twice: once at the top of the article,
and once at the bottom. Most users hate to scroll.

The last bit of work is to print out the end of the HTML page
and save the session (lines 112–115).

Let’s look at the subroutines now. get_session_id
(lines 117–121) is responsible for retrieving the session ID
from the browser’s request. It extracts the additional URI path
information from the Apache request object, and looks for a
numeral, returning the match, if any. do_select sets the
session article field and zeroes out the page number. This
displays the new article starting with the first page.

More interesting is the fetch_article subroutine
spanning lines 129 through 144. It turns an article name into a
physical file path. First, it checks whether the indicated article
is listed in %ARTICLES. If so, it calls the Apache request
object’s lookup_uri function to turn the article path
(expressed as a virtual URI) into a physical path.
lookup_uri is actually a callback into the current Apache
URI translation handler, and illustrates how smoothly
mod_perl integrates into Apache. If this step is successful, we
open the file, read it into an array, and divide it into bite-size
pieces of $LINES_PER_PAGE size.

To run this script, you need to make it executable and place it
in an appropriate directory, such as a /perl subdirectory

98

below the server root. You’ll also need to include a section
like this in your access.conf file:

<Location /perl>
SetHandler Perl-script
PerlHandler Apache::Registry
Options +ExecCGI

</Location>

The SetHandler and PerlHandler directives, as
we’ve seen before, tell Apache to use Apache::Registry as its
content handler for all files inside /perl. The ExecCGI
option is turned on in order to satisfy one of
Apache::Registry’s safety checks. It requires that ExecCGI be
enabled for any directory under its purview, and that all
programs in those directories be executable, just like
mod_cgi. Although the scripts are never run as standalone
applications, this constraint prevents you from introducing
security holes from files inadvertently left in the directory,
such as from a text editor’s autosaves.

You can now test the script with a mod_perl-enabled Apache
launched in
single-process mode. Here’s how you do that:

httpd -X -d /home/www

99

Impaled by the Fork

What is
single-process mode? Normally, Apache preforks itself
several times, so that there are a half-dozen or so processes
hanging around to handle incoming requests. This tactic
distributes the load on the web server and makes the response
time of heavily-loaded sites noticeably better. The -X
command-line switch suppresses this behavior, forcing
Apache to run as a single process. The reason we use
single-process mode is because the script as written will not
work correctly in prefork mode. The reason becomes clear on
reflection. After forking, each Apache process has its own
independent copy of %SESSION and $NEXTID. When one
server process assigns a new user an ID and PageSession
object, there’s no guarantee that the user will connect to the
same process the next time he fetches the page. The user
might well contact a new process, starting things over from
scratch.

This is unacceptable—it precludes the benefits of persistent
storage. Fortunately, there’s a simple, almost-transparent
solution. Benjamin Sugars’ IPC::Shareable module allows
several processes to share Perl variables using System V
shared memory. You simply tie the variables you wish to
share, specifying a unique four-letter identifier for each
variable. After this, each process can share data simply by
reading and storing to the tied variable.

shows the PageSession module modified to use
IPC::Shareable. The main addition is on lines 6 and 7, where
we tie and . The other changes are strategically-placed calls to

100

IPC::Shareable’s and methods. To avoid the risk of two
processes trying to update the same variable simultaneously,
we lock the variable before writing to it, and unlock it when
we’re through. Now the session objects are shared across all
Apache processes and we can safely run the server in normal
mode. An added benefit is that the persistent information
remains in shared memory space even after the Apache
process terminates. The result: we can stop the server, restart
it, and all previous user sessions will still be available!

Example 5-3. The PageSession module
0 package PageSession;
1
2 use IPC::Shareable;
3 use vars qw($NEXTID $MAX_SESSIONS
%SESSIONS);
4 $MAX_SESSIONS = 100;
5
6 tie $NEXTID, IPC::Shareable, 'S000',
{ create => 1, mode => 0600};
7 tie %SESSIONS, IPC::Shareable, 'S001',
{ create => 1, mode => 0600};
8
9 $NEXTID = 0 if $NEXTID eq '';
10
11 # Find a new ID to use by cycling
through a
12 # a list. In a real application, the ID
should
13 # be unique and kept in a
most-frequently-used cache.
14 sub new {
15 my ($package) = @_;
16 tied($NEXTID)->shlock;
17 $NEXTID = 0 if $NEXTID >
$MAX_SESSIONS;

101

18 my $self = bless {
19 name => '',
20 article => '',
21 page => 0,
22 id =>
$NEXTID++
23 }, $package;
24 tied($NEXTID)->shunlock;
25 return $self;
26 }
27
28 sub fetch {
29 my ($package, $id) = @_;
30 return undef if $id eq '';
31 # Storeable makes this a
PageSession object
32 return $SESSIONS{$id};
33 }
34
35 sub save {
36 my $self = shift;
37 # Store the object
38 tied(%SESSIONS)->shlock;
39 $SESSIONS{$self->{id}} = $self;
40 tied(%SESSIONS)->shunlock;
41 }
42
43 sub id { $_[0]->{id}; }
44 sub name { $_[0]->{name} = $_[1] if
defined($_[1]); $_[0]->{name}; }
45 sub article {
46 $_[0]->{article} = $_[1] if
defined($_[1]);
47 $_[0]->{article};
48 }
49 sub page {
50 $_[0]->{page} = $_[1] if
defined($_[1]);

102

51 $_[0]->{page} = 0 if $_[0]->{page}
< 0;
52 $_[0]->{page};
53 }
54
55 1;

103

Example 5-3
$NEXTID%SESSIONSshlockshunlock

104

Other mod_perl Features

To wrap up, we’ll discuss a few of the other reasons to use
mod_perl.

Startup scripts

You can designate a script to run when the Apache server
first starts up. It might adjust the library search path, set
global variables, or compile commonly-used modules,
avoiding the overhead when individual handlers are first
called.

Server-side includes

The standard Apache mod_include module has been
integrated with mod_perl, so you can embed snippets of
Perl code in your HTML pages like this:

Perl is

<!--#perl sub="sub {for (0..10) {print
"very "}}"-->

fun to use!

Two sophisticated server-side packages, Apache::Embperl
and Apache::ePerl, are built on top of mod_perl.

Perl-based server configuration

With mod_perl you can dynamically configure Apache
with <Perl> sections inside its configuration files.
These sections can contain Perl code to inspect and
change Apache’s configuration in every way conceivable.

105

You can write a configuration file that senses its
environment and autoconfigures itself!

Stacked handlers

One Perl handler can chain to another, allowing you, for
instance, to build up a chain of filters that progressively
modify an HTML document.

Persistent database connections

mod_perl persistence allows you to open a single database
handle when a child server starts and use it for all
subsequent requests. This avoids the overhead of
constantly opening and closing connections that CGI
scripts suffer. The Perl DBI and Apache::DBI modules
have been integrated to make persistent connections
transparent; just add this to your server configuration file:

PerlModule Apache::DBI

On top of these features, dozens of mod_perl fans have
contributed a growing list of useful modules, including a
traffic analyzer, a module that blocks unwanted robots, a
module that chooses from multiple documents based on the
user’s language preference, a module to compress response
data on the fly, and a slew of user authentication packages.
See http://perl.apache.org for a full list of available modules.

106

Chapter 6. Creating mod_perl
Applications

Mike Fletcher

Because mod_perl is, frankly, scarier than a typical
Apache module.

—Jon Udell Byte, March 1998

While it may be scarier than most Apache modules, mod_perl
(http://perl.apache.org) is also one of the most powerful
additions available. In mod_perl, Doug MacEachern (author
of mod_perl) and Lincoln Stein (of CGI.pm fame) presented
an introduction to mod_perl. This article builds on their
foundation and demonstrates a full-fledged mod_perl
application that lets users provide feedback on web
documentation. I’ll also describe some of the performance
concerns and how your Apache configuration should be
modified to make the most of mod_perl.

So, What Is This mod_perl Thing,
Anyhow?

Most people are familiar with CGI scripts written in Perl that
add dynamic content generation to a web server. In addition
to CGI, most web servers provide some sort of interface that
allows code to be run inside the server, such as Microsoft’s
ISAPI.

107

Apache lets you create a chunk of code, called a handler, that
is invoked when the server fulfills a browser’s request. That
might happen when a URL is translated into a local
pathname, or when a child process terminates. mod_perl
embeds a Perl interpreter within each Apache httpd process,
giving you the ability to write handlers in Perl instead of C.

Aside from exposing the Apache module API, mod_perl also
provides other benefits, such as running existing CGI scripts
inside the persistent interpreter, and letting you configure
Apache with Perl code enclosed in <Perl>…</Perl> tags
and placed in your server configuration files. You can do
anything—from setting the port Apache listens on for
requests, to configuring virtual hosts based on the contents of
a database. For more information on <Perl> configuration,
see the mod_perl.pod document bundled with the mod_perl
distribution.

108

Developing with mod_perl

There are several ways to use mod_perl to speed up web
applications, including:

▪ Using
Apache::Registry to run existing CGI scripts

▪ Using Embperl to embed code in HTML pages

▪ Using Apache.pm directly

Each has its own particular strengths and weaknesses.

109

Apache::Registry

If you already have existing CGI scripts written in Perl, the
Apache::Registry module lets you run them with little (if any)
changes—but much more quickly because the Perl interpreter
is already resident in memory. The first time a URI is
requested, Apache::Registry compiles the CGI script and
stores a reference to the compiled code. Forever after, the
program is run within the child httpd process, rather than
launching a new Perl process each time.

In essence, Apache::Registry wraps up your entire existing
script as a subroutine named handler inside a package
named after the script’s name. It then calls this precompiled
handler whenever the corresponding URL is accessed. If the
file containing the script changes on disk, Apache::Registry
notices and recompiles the code.

This example, modeled after a slide from Doug’s O’Reilly
Perl Conference presentation, shows the code that
Apache::Registry wraps around a CGI script. The contents of
the script are read into a string. Everything up until the
local $^W = 1; is prepended by Apache::Registry, and
it appends the last }. The entire string is then passed to Perl’s
eval function and compiled.

package Apache::Root::mp::example_2epl;

use Apache qw(exit);

sub handler {
#line 1 /usr/local/apache/mp/example.pl
local $^W = 1; #!/usr/bin/perl

110

use CGI;

my $q = CGI->new;
my $them = $q->remote_host;

print $q->header('text/html'),
$q->start_html(-title

=> 'My Apache::Registry Example');
print <<EOT;

<h1>My Apache::Registry Example</h1>
<p>Hello browser at $them.</p>
EOT

print $q->end_html;
}

There’s a caveat: not all CGI scripts run without
modifications (for example, those with __DATA__ or
__END__ tokens won’t run at all). Also, by the time
Apache::Registry kicks in, several stages of the request (such
as user authentication and authorization) have already
finished. So just as with regular CGI scripts, you don’t have
any way to authenticate or authorize users.

On the positive side, most web servers have some sort of
capability to run CGI scripts, making it easy to port to and
from non-Apache web servers. And since CGI is widespread,
programmers can easily leverage their existing web scripting
knowledge while enjoying the reduced overhead. For more
information on Apache::Registry, see the file
cgi_to_mod_perl.pod which comes with mod_perl, or read it
on the web at http://perl.apache.org/dist/
cgi_to_mod_perl.html. In this book, see the article mod_perl.

111

Embperl

In addition to faster CGI service, another popular reason to
use mod_perl is for fast
Embperl processing. This module allows Perl code to be
embedded within HTML documents, just like the standard
Apache SSI (Server Side Include) module mod_include. The
Perl code should appear between one of four delimiters; the
delimiter you use determines what Embperl does with your
code:

[+ PERL_CODE +]

Replaces the code with what it evaluates to.

[- PERL_CODE -]

Executes the Perl code invisibly.

[! PERL_CODE !]

Same as [- PERL_CODE -], but the code is only
executed the first time it’s encountered. This is used to
define subroutines and perform one-time initialization.

[$ COMMAND_ARG $]

Executes an Embperl metacommand. The commands
(e.g., if and while) are listed in the Embperl
documentation.

Embperl also understands HTML and is capable of
dynamically generating tables, lists, and form selection

112

buttons. Here’s an example taken from the Embperl manual
page that prints the contents of the environment:

[- @k = keys %ENV -]
<TABLE>

<TR>
<TD>[+ $i=$row +]</TD>
<TD>[+ $k[$row] +]</TD>
<TD>[+ $ENV{$k[$i]} +]</TD>

</TR>
</TABLE>

The first line sets @k to the names of the environment
variables and produces no output; that’s why the minus signs
are used as delimiters. Embperl then parses the table and
looks for use of any of three special variables: $row,
$col, or $cnt. If none are found in the table it is passed
through with no modification. If they are used, Embperl
repeats the text between <tr> and </tr> as many times as
there are elements in @k.

As with Apache::Registry, Embperl processes pages only
after many other stages of the request have finished. Code is
compiled once and cached, giving much better performance
over other similar embedded constructs such as mod_include.

113

Writing Your Own Handler

The last alternative is writing your own request handler
directly, using Apache.pm to access the Apache API. Under
the hood, this is exactly what Apache::Registry and Embperl
do. You can create
handlers for each step that Apache takes to respond to a
request. Handlers can be used to provide access control, to
rewrite incoming URLs, or to implement custom logging,
such as logging to a database system instead of a log file.
Apache.pm lets you do everything in Perl that you can do in
C.

package MyHandler;

use Apache::Constants qw(:common);

sub handler {
$r contains Apache request object
my $r = shift;
$them is the client's hostname or IP

address
my $them = $r->get_remote_host;

$r->content_type("text/html");
$r->send_http_header;
print qq{

<html>
<head>

<title>My First
Handler</title>

</head>
<body bgcolor="#ffffff">

<h1>My First Apache
Handler</h1>

114

<p>Hello to the browser at
$them.</p>

<p>Here are the headers your
browser sent me:</p>

<pre>
};

my %headers = $r->headers_in;
foreach (sort keys %headers) {

$r->print("$_: $headers{$_}\n");
}

print qq{
</pre>
</body>
</html>

};
return OK;

}

1;

You have direct access to the entire Apache API. In contrast,
CGI and HTML::Embperl pages are limited to executing
during the content generation phase, while handler routines
can run at any of the 14 different stages. However, if you
aren’t familiar with the Apache API, you might find writing
your own handlers a bit daunting since it requires detailed
knowledge of how Apache handles requests. For generating
simple dynamic pages, Apache::Registry/CGI and Embperl
perform admirably.

115

Performance

While
mod_perl is a great improvement over vanilla CGI, you
should be aware of some of the issues involved in squeezing
the most efficiency from it. If you’re just running a small web
application on its own dedicated machine, used inside your
company by 20 people, you might not be that concerned. But
if your site is intended for a large audience, you need to be
aware of these issues.

Preload Your Modules

One of the biggest items to be aware of is the fact that each
Apache process with mod_perl requires more memory than
one without mod_perl. This can cause performance to suffer
if your system runs out of physical memory and needs to
swap out to disk. This PerlModule configuration directive
can help; it causes mod_perl to load the named module (or
modules) at server startup:

PerlModule CGI Apache::Registry
MyFavoriteModule

Preloading modules that will be used by your scripts
improves the performance of requests and reduces the amount
of memory needed, since the memory can be shared between
all the processes. (Whether this actually buys you anything
depends on how your operating system handles shared
memory between spawned processes.) While modifying Perl
modules used by your application, you might want to set
PerlFreshRestart On in one of your server

116

configuration files (e.g., httpd.conf). Otherwise, Apache
won’t know to reload your Perl modules when it next restarts,
and you won’t see any changes you have made.

Use Multiple Servers

Another performance enhancement is to run multiple servers.
You can run servers on different ports on the same machine,
or on different machines entirely. One server can have
mod_perl installed for the content requiring it, and another
server will be without mod_perl, for static content such as
images. With the Apache mod_proxy module or Squid (an
HTTP cache/proxy program) you can make the multiple
servers appear as one.

For a more thorough discussion of tweaking mod_perl to get
the most performance from it, see the mod_perl_tuning.pod
document bundled with the mod_perl distribution.
Information on configuration directives such as
PerlModule can be found in the mod_perl.pod
documentation.

117

Our Sample Application

To demonstrate how to use mod_perl to create applications,
we’ll develop a site that provides documentation (such as
FAQs, tech notes, and white papers) to customers, and accept
feedback on which documents are the most helpful and most
used. The idea comes from a paper presented at last year’s
O’Reilly Perl Conference by Dav Amann of Netscape on the
customer support site they developed using Perl. The site
(http://help.netscape.com/) allows customers quick access to
the most frequently requested tech notes, and allows
customers to give feedback on the documents to Netscape
(both a simple yes-or-no “This document answered my
question” as well as a more detailed questionnaire). A sample
is shown in Figure 6-1.

Figure 6-1. A footer added to every document by
Apache::Sandwich

Our sample application will manage a document tree, provide
a count of the number of hits for each document within the
tree, and allow readers to rate each document from 1 to 5. Our
application will use a little bit of all three approaches: CGI
scripts, Embperl pages, and Apache handlers.

118

A handler routine will be used during the PerlTransHandler
stage so that we can map URIs to filenames based on a
database. This translation handler will also arrange for
another handler to be called during the log phase to update the
hit counts in the database for each file. An Embperl document
will be used to dynamically generate an index of the most
frequently accessed documents, based on the contents of the
database shown in Figure 6-2. Finally, two CGI scripts will be
used to record user feedback and manage adding and
removing files. In addition to the modules we develop, we’ll
use several existing Perl modules to handle access control and
adding footers to pages.

Figure 6-2. An Embperl-generated table

119

Components

There are many Perl
modules available for use with mod_perl and Apache; a
complete list of Apache-specific modules is at
http://perl.apache.org/src/apache-modlist.html. All modules
should also be available from your favorite CPAN mirror. A
quick introduction to the modules used in the
sample application follows. Here, we use four modules:
DBI, Apache::DBI, Apache::AuthDBI, and
Apache::Sandwich.

120

DBI and Apache::DBI

DBI is a Perl
module that provides a consistent method of accessing almost
any relational database system from Perl. You use the same
Perl methods regardless of which database you’re using.
Different database driver modules (DBDs) handle the
database specifics so you don’t have to.

Apache::DBI improves the performance of DBI by caching
database connections. Opening a connection to a database
often takes a lot of time, so Apache::DBI maintains a cache of
open database handles. As long as Apache::DBI is loaded
before the
DBI module, all connect requests will be handled by
Apache::DBI. One limitation of the cache: you cannot create
database connections in the parent Apache process and have
them shared by child processes.

For developing the sample application, I used the freely
available PostgreSQL (http://www.postgresql.org/) and its
driver, DBD::Pg. However, any database for which you have
the proper DBD:: module installed should work.

121

Apache::AuthDBI

This module provides two handlers,
Apache::AuthDBI::authen and Apache::AuthDBI::authz,
which allow you to store authentication (i.e., usernames and
passwords) and authorization information (e.g., group
membership) in a database accessed via DBI. To use these
modules, you must have enabled the appropriate Perl handlers
when you built mod_perl. See the Apache::AuthDBI
documentation for the required handlers, and the INSTALL
file in the mod_perl distribution to learn how to enable
handlers at build time.

122

Apache::Sandwich

This module allows you to “sandwich” a page’s contents
between a header and footer without modifying the page’s
source. Apache sends the headers, then the contents of the
requested URI, and finally the footers. We’ll use this module
to append an HTML form that lets users provide feedback on
the usefulness of the documents. Thanks to
Apache::Sandwich, we won’t have to modify any of our
documents to add these footers.

123

124

Writing the Application Code

In this section, we’ll step through the tasks involved in
creating our application—setting up the database and creating
three programs: index.epl, rateit, and ttadmin.

Database Setup

The first task is to create the tables in our database. The
documents table keeps track of the title and number of hits
for each file being tracked. The rating and raters fields
are used to calculate the average rating given to the document
by readers. Several indices are created to maintain unique
entries and to speed up queries. The other table, users,
maintains username and password information for
Apache::AuthDBI. In this case, Apache::AuthDBI is probably
overkill for the minuscule number of users we’ll be concerned
with, but we’ll stick with it for instructional purposes.

In addition to creating the tables, you’ll probably want to
create a user account for use by Apache; we’ll use ap_auth
in the examples that follow. The SQL code to create the tables
can be found on the web page for this book.

TopTenTrans.pm

Our application uses a PerlTransHandler to customize the
mapping of URIs to filenames. A
translation handler can change the default mapping of URIs to
filenames. Similar to Apache’s Alias configuration

125

directive, the TopTenTrans::handler subroutine modifies the
filename to which URIs with a specified prefix resolve.

The
translation handler also allows us to map URIs based on the
database contents. For example, the fifth most useful
document is accessible as http://server/topten/5. The handler
connects to the database, retrieves the corresponding record,
and sets the filename accordingly. Later stages use this
information to return the contents of the request.

The
translation handler requests that Apache let mod_perl handle
the content generation phase of the request, and that mod_perl
should use Apache::Sandwich as the PerlHandler to generate
the content. This is the runtime equivalent of placing these
lines in access.conf:

SetHandler perl-script
PerlHandler Apache::Sandwich

Lastly, the handler arranges for a subroutine to be called
during the logging phase of the request (after the page has
been sent) using Apache::push_handlers, which
allows a Perl handler to specify which handlers should be
called during later phases. The
TopTenTrans::log_hit subroutine increments the
hits field in the database record for the corresponding file.

This facility is useful if you have a long-running task but
don’t want to delay sending a response back to the client until
it is complete. On a busy site, the overhead of updating the hit
count for each file immediately might be too much of a load;
one possible solution is to keep the statistics in memory using
the IPC::Shareable module and then periodically send the

126

statistics to the database using a log handler subroutine. The
TopTenTrans module can be found on the web page for this
book at http://www.oreilly.com/catalog/tpj2.

index.epl

The next component is the document index, which can list all
tracked documents or just the top ten. This is implemented
using Embperl to generate the listing on the fly. Why use
Embperl? Because the index page is just a table, which is a
snap to create with Embperl’s dynamic table generation
facilities. The Embperl code is in index.epl, shown in
Example 6-1.

Example 6-1. index.epl
<html> <head> <title>Top Ten
Documents</title> </head>
<body bgcolor="#ffffff">
<h1>
[$ if $ENV{QUERY_STRING} eq 'all' $]
All
[$ else $]
Top Ten
[$ endif $]
Tracked Documents
</h1>

[!
sub colorsub { return shift() % 2 ?

'#ffffff' : '#cccccc'; }
!]

[-
Connect to database
use DBI;

127

my $dbh = DBI->connect(
"dbi:Pg:dbname=tpj", "ap_auth")

or die "Can't connect:
$DBI::errstr\n";

my $sth = $dbh->prepare(qq{
select

title, path, hits, rating from documents
order by

rating desc, hits desc;
});

$sth->execute or die "Can't execute:
$DBI::errstr";

Slurp first 10 results (or all
results if

$ENV{QUERY_STRING} is 'all') into
arrayref and

store that into $indexdata
$indexdata = $ENV{QUERY_STRING} eq 'all'

?
$sth->fetchall_arrayref :

[@{$sth->fetchall_arrayref}[0..9]];
$sth->finish;
$dbh->disconnect;

-]

<table border="0" width="75%">

<tr><th>#</th><th>Title</th><th>Hits</th><th>Rating</th></tr>
<tr bgcolor="[+ colorsub($row) +]">

<td>
[+ $row + 1

+]
</td>
<td width="50%">

[- $escmode = 0; -]
<a href="[+

128

"$indexdata->[$row]->[1]" +]">
[- $escmode = 1; -]
[+ $indexdata->[$row]->[0] +]

</td>
<td>[+ $indexdata->[$row]->[2] +]</td>

<td>[+ sprintf "%-0.2f",
$indexdata->[$row]->[3] +]</td>

</tr>
</table>

[$ if $ENV{QUERY_STRING} eq 'all' $]
dir_config(
'TopTenPrefix')||'topten' +]/">
Top Ten Documents
[$ else $]
dir_config(
'TopTenPrefix')||'topten') . '/?all' +]">
All Tracked Documents
[$ endif $]
</body>
</html>

Depending on whether it is called with a query string of
all(that is, http://server/topten?all versus http://server/
topten), the embedded code pulls the appropriate information
from the database and stores it in an array reference.
Embperl’s dynamic table generation creates an HTML table
listing the rank, title, hits, and rating for each
document.

rateit

The Apache::Sandwich routine appends a file, rate.html, to
each document that contains a form users can use to rate how
useful they found the document. The results will be processed
by a CGI script called rateit that computes the new rating.

129

There isn’t anything mod_perl specific about rateit, so we
won’t go into much detail about it. If the user didn’t select a
rating, the script asks them to use the back button and select
one. If they did check one of the boxes, the script retrieves the
current rating and the number of people who have submitted
ratings from the database, uses these values to calculate the
new rating, and updates the database with the new
information. The script then prints a message with the user’s
choice, the new rating, and links back to the document and
Top Ten index.

ttadmin

The last component we need is some method of administering
documents. The ttadmin script provides a means of adding
new files to the repository, zeroing the hit count for a file, and
deleting a file from the repository. When called with no
parameters, it returns a page (Figure 6-3) with three forms on
it: one to let the user specify a file to upload; another form get
a page from which to choose a file to zero the hit counter for;
and one to retrieve a listing so that the files can be deleted
from the repository.

130

Figure 6-3. The web page generated by ttadmin

Like rateit, ttadmin is pretty much a vanilla CGI
script. The section that adds a file simply copies the uploaded
file into the Top Ten root directory and adds the appropriate
information to the database. The counter zeroing and deletion
routines use the list_all_files subroutine to generate
a table listing all of the entries from the database if called
without the victimfile query parameter being set. If the
parameter is set, the appropriate changes are made to the
database.

Keep in mind that in order to add files to the repository, the
repository directory needs to be writeable by the user ID the
apache processes are running as (usually the nobody account;
look for a User directive in your httpd.conf file if you’re not
sure). index.epl, rate.html, rateit, and

131

ttadmin can all be found at http://www.oreilly.com/
catalog/tpj2.

132

Putting It All Together

Now that the code has been written, you’ll need to place all of
the components in the correct locations and let Apache and
mod_perl know where to find them. In Example 6-1, I have
Apache installed in /usr/local/apache and the Top Ten root
directory is located in /home/fletch/topten. The Top Ten
repository appears under the URI http://servername/topten/.
Your copy of mod_perl should have been compiled with at
least PERL_TRANS, PERL_AUTHEN,
PERL_CLEANUP, PERL_STACKED_HANDLERS,
PERL_SECTIONS, and PERL_SSI enabled. See the
mod_perl INSTALL file for more information.

httpd.conf

The following directives should go in your server
configuration (httpd.conf) file. The first line tells
mod_perl to force a reload of modules when Apache is
restarted. The <Perl>…</Perl> section is Perl code to be
executed by Apache at server startup. In this case, all it does
is add the directory containing the handler modules to Perl’s
library search path. The TopTenTrans.pm file should be
located in this directory. The last line instructs mod_perl that
the three modules listed should be loaded by the server at
startup time. (A complete httpd.conf file is available on the
web page for this book.)

PerlFreshRestart on

<Perl>

133

use lib qw(/usr/local/apache/lib);
</Perl>

PerlModule Apache::DBI Apache::AuthDBI
HTML::Embperl

The next set of directives tells Apache how we want our
directories to appear in the server’s URL namespace. The first
two lines below create aliases in the server’s document tree to
the directories where our Apache::Registry CGI scripts reside
(one which will not be password protected, the other which
is). The third line tells the server that the output generated by
Embperl files should be given a MIME content type of
text/html.

The next group of lines (in between the <Files> directives)
tells Apache to allow mod_perl to handle any files which end
in .epl. The actual Perl handler which will be called is the
HTML::Embperl::handler subroutine, defined by
Embperl.

Alias /perl/ /usr/local/apache/perl/
Alias /protected/ /usr/local/apache/
protected/
AddType text/html .epl

<Files *.epl>
SetHandler perl-script
PerlHandler HTML::Embperl

</Files>

Next comes the configuration of the two locations that were
aliased above. The <Location /perl> section arranges
for scripts in /usr/local/apache/perl to be run under
Apache::Registry. It also specifies several environment
variables that should be set in %ENV for the scripts.

134

The next set of directives sets up the authentication for any
URLs, beginning with /protected. The first lines in this
section make Apache call Apache::Registry to handle
requests. The various PerlSetVar commands set
configuration data for the AuthDBI handler, such as the DBI
data source and table containing user/password information,
and what field names to use from that table.

The last variable controls whether AuthDBI uses the crypt
routine to encrypt the password before comparing it against
the value from the database. For development, it is easier to
leave this turned off to facilitate adding users by hand, but in
most cases you should never store the plaintext of passwords.
It’s just asking for trouble.

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry

Options ExecCGI

PerlSetEnv TopTenDB tpj
PerlSetEnv TopTenPrefix topten
PerlSetEnv TopTenRoot /home/fletch/

topten
</Location>

<Location /protected>
SetHandler perl-script
PerlHandler Apache::Registry
PerlAuthenHandler Apache::AuthDBI::authen

Options ExecCGI

AuthName "My Protected Area"
AuthType Basic

135

PerlSetVar Auth_DBI_data_source
dbi:Pg:dbname=tpj

PerlSetVar Auth_DBI_username ap_auth

##
SELECT pwd_field FROM pwd_table WHERE

uid_field=$user
##
PerlSetVar Auth_DBI_pwd_table users
PerlSetVar Auth_DBI_uid_field username
PerlSetVar Auth_DBI_pwd_field password

PerlSetVar Auth_DBI_encrypted off

PerlSetEnv TopTenDB tpj
PerlSetEnv TopTenPrefix topten
PerlSetEnv TopTenRoot /home/fletch/

topten
<Limit GET>

require valid-user
</Limit>

</Location>

The final set of directives set up the TopTenTrans and
Apache::Sandwich modules. The PerlSetVar lines specify the
location of our feedback footer, what database to connect to,
where the tracked documents reside in the filesystem, and
what document to use for the index page.

PerlTransHandler TopTenTrans
<Location /topten>

PerlSetVar FOOTER /topten/rate.html

PerlSetVar TopTenDB tpj
PerlSetVar TopTenPrefix topten
PerlSetVar TopTenRoot /home/fletch/

topten
PerlSetVar TopTenIndex /home/fletch/

136

topten/index.epl
</Location>

137

Chapter 7. Proxying with mod_perl

Lincoln D. Stein
One of the darker secrets of the web protocols is how
proxy servers work. In this article we plunge into the depths
and show you how to write a proxy module for the Apache
web server. This module will handle the proxy’s basic job of
fetching web documents on your behalf and forwarding them
to you, but with a twist: it acts as an advertisement filtering
service.

An ordinary web server returns local documents in response
to incoming requests. In contrast, a proxying server has
elements of both server and client. Instead of sending the
proxy server a request for a local document, the client
requests the URL of a document located somewhere else on
the
Internet. The proxy then acts as a client itself by fetching the
document and forwarding it to the waiting client.

Why Proxy?

What’s the purpose of this? Proxy servers have several uses.
Historically the most important use for proxies was to allow
web requests to cross
firewalls. Many firewall systems are configured to prohibit
port 80 traffic. In order to circumvent this restriction,
administrators installed web server proxies on the firewall
system. Users then configured their browsers to connect to the

138

firewall machine for web access, and the proxy did the rest.
Nowadays all commercial firewall systems come with built-in
web proxies and it is no longer necessary to run a general
purpose web server on the firewall (which was never much of
a good idea for security reasons).

A second reason to proxy is that some proxying servers,
Apache included, can cache the contents of the remote
documents by saving them to disk files. If they later receive a
request for a previously-cached document, they return the
cached document instead of fetching it remotely. This cuts
down on network bandwidth and improves performance,
particularly if the server is connected to the Internet by a slow
connection. America Online uses
caching proxies to improve response time for its large and
content-hungry membership. Unfortunately, caching
introduces a lot of complexity. When is a cached document
no longer fresh, requiring another fetch again from its source?
Given the web’s eclectic mixture of static pages, CGI scripts,
dynamic HTML, and server-side includes, not even the best
caching proxies answer this question correctly 100% of the
time.

A third use for proxy servers is to filter the request. A proxy
server can change the outgoing request or modify the
document on its way back to the user. This allows for many
useful applications. One popular use of this technique is to
create an
anonymizing proxy. Such a proxy sits on the Internet
somewhere and is used by people who want to protect their
identities. As the anonymizer receives incoming requests, it
strips out all potentially identifying information from the
outgoing request, including the User-Agent field, which

139

identifies the browser make and model, HTTP cookies, and
the Referer field, which contains the URL of the last
document the user viewed.

Like an anonymizer, the example proxy in this article
filters the data that passes through it. However, instead of
modifying the outgoing request, it modifies the document that
is returned to the user. Each proxied document is examined to
see whether it might be an advertising banner image. If so, the
proxy replaces the banner with a transparent GIF generated
on the fly, preserving the size and shape of the original image.
The result is shown in (before) and (after).

Figure 7-1. An AltaVista page with ads

140

Figure 7-2. An AltaVista page viewed through
Apache::AdBlocker

You might use this
proxy if you are offended by the web’s crass commercialism,
or just easily distracted by the blinking, brightly colored ads
on your favorite search page.

The proxy is written as an add-in module for the Apache
server running mod_perl, the embedded Perl interpreter
that Doug MacEachern and I wrote about in mod_perl. The
code itself was written by Doug MacEachern, and is used
with his permission.

141

Figure 7-1

142

Figure 7-2

143

How the Proxy Protocol Works

Despite its aura of the arcane, the basic proxy protocol is
ridiculously simple. A normal web request begins with the
browser sending a server a line of ASCII text, like this:

GET /path/to/document HTTP/1.0

The server responds by returning the document located at the
indicated path.

In contrast, to make a proxy request, the browser modifies the
first line of the request to look like this:

GET http://some.site/path/to/document HTTP/
1.0

If the server is proxy-capable, it sees that the requested URL
contains the protocol and hostname, and forwards the request
to the indicated remote host. Some proxies can only handle
requests for HTTP URLs, while others can also handle FTP,
Gopher, and (occasionally) WAIS.

As you may recall from the mod_perl article, Apache divides
each browser transaction into ten different phases responsible
for handling everything from translating a URI into a physical
pathname, to generating the page content, to writing
information about the completed transaction into a log file. To
extend the server’s abilities, you write “handlers”
to intercept one or more of the phases, supplementing
Apache’s built-in handlers or replacing them entirely.

The easiest way to intercept and handle
proxy requests is to write two different handlers. The first
handler operates during the URI translation phase and is

144

responsible for distinguishing a proxy request from an
ordinary one. When the URI translation handler detects a
proxy request, it installs the second handler, whose job is to
service the content-generation phase of the transaction. It is
the content handler that does the actual proxy request and
returns the (possibly modified) document.

Example 7-1 gives the complete code for a module called
Apache::AdBlocker. To use this module, you’ll need the
LWP bundle and the Image::Size and GD modules. LWP is
needed to fetch the remote page, Image::Size is used to
determine the size of retrieved GIF and JPEG advertisements,
and GD is used to generate a transparent GIF of the same size
and shape as the blocked ad. You’ll also need Apache 1.3.0 or
higher, and a recent version of mod_perl.

Example 7-1. Apache::AdBlocker
0 package Apache::AdBlocker;
1
2 use strict;
3 use vars qw(@ISA $VERSION);
4 use Apache::Constants qw(:common);
5 use GD ();
6 use Image::Size qw(imgsize);
7 use LWP::UserAgent ();
8
9 @ISA = qw(LWP::UserAgent);
10 $VERSION = '1.00';
11
12 my $UA = __PACKAGE__->new;
13 $UA->agent(join "/", __PACKAGE__,
$VERSION);
14 my $Ad = join "|", qw{ads?
advertisements? banners? adv promotions?};
15
16 sub handler {

145

17 my($r) = @_;
18 return DECLINED unless $r->proxyreq;
19
$r->handler("perl-script"); #
Okay, let's do it
20 $r->push_handlers(PerlHandler =>
\&proxy_handler);
21 return OK;
22 }
23
24 sub proxy_handler {
25 my ($r) = @_;
26
27 my $request =
HTTP::Request->new($r->method => $r->uri);
28 my %headers_in = $r->headers_in;
29
30 while (my($key, $val) = each
%headers_in) {
31 $request->header($key,$val);
32 }
33
34 if ($r->method eq 'POST') {
35 my $len =
$r->header_in('Content-length');
36 my $buf;
37 $r->read($buf, $len);
38 $request->content($buf);
39 }
40
41 my $response =
$UA->request($request);
42
$r->content_type($response->header('Content-type'));
43
44 # Feed response back into our
request
45 $r->status($response->code);

146

46 $r->status_line(join " ",
$response->code, $response->message);
47 $response->scan(sub {
48 $r->header_out(@_);
49 });
50
51 $r->send_http_header();
52 my $content = \$response->content;
53
54 if ($r->content_type =~ /^image/ &&
$r->uri =~ /\b($Ad)\b/i) {
55 $r->content_type("image/gif");
56 block_ad($content);
57 }
58
59 $r->print($$content);
60
61 return OK;
62 }
63
64 sub block_ad {
65 my $data = shift;
66 my ($x, $y) = imgsize($data);
67
68 my $im = GD::Image->new($x,$y);
69
70 my $white = $im->colorAllocate(255,
255, 255);
71 my $black = $im->colorAllocate(0,
0, 0);
72 my $red = $im->colorAllocate(255,
0, 0);
73
74 $im->transparent($white);
75 $im->string(GD::gdLargeFont(), 5,
5, "Blocked Ad", $red);
76 $im->rectangle(0, 0, $x-1, $y-1,
$black);

147

77
78 $$data = $im->gif;
79 }
80
81 1;
82
83 __END__

The module starts by declaring its package name. By
convention, Apache modules are placed in the Apache::
namespace. We then turn on strict syntax checking, and bring
in code from GD, Image::Size, and LWP::UserAgent. We
also bring in commonly used constants from the
Apache::Constants package.

Lines 9 and 10 inherit from the LWP::UserAgent class.
LWP::UserAgent is used by the LWP library for all objects
that are capable of making web client requests, such as robots
and browsers. Although we don’t actually override any of
LWP::UserAgent’s methods, declaring the module as a
subclass of LWP::UserAgent allows us to cleanly customize
these methods at a later date should we need to. We then
define a version number, as every module intended for
reusability should.

In lines 11 to 14, we create two package globals. $UA is the
LWP::UserAgent that we use for our proxy requests. It’s
created using the special token __PACKAGE__, which
evaluates at runtime to the name of the current package. Here,
__PACKAGE__->new is equivalent to
Apache::AdBlocker->new (or new
Apache::AdBlocker if you prefer Perl’s indirect object
style of method call). Immediately afterward we call the
object’s agent method with a string composed of the
package name and version number. This is the calling card

148

LWP sends to the remote hosts’ web servers as the HTTP
User-Agent field. Provided that the remote server records
this information, the string that will show up in the access log
will be Apache::AdBlocker/1.00.

Line 14 defines a regular expression that detects many (but
not all) banner ads. It’s a simple expression that matches the
words “ads,” “banners,” “promotion,” and so on. If you use
this service regularly, you’ll probably want to broaden this
expression to catch more ads.

Lines 16 through 22 define the translation handler, a
subroutine which, by convention, is named handler . This
subroutine is simple enough. It begins by copying the Apache
request object from the argument stack to a lexical variable,
$r. The request object is the interface between user-written
modules and Apache, and can be used both to learn about the
current transaction and to send commands back to the server.

In this case, we call the request object’s proxyreq method
to learn whether the current request is an ordinary one for a
local document, or a proxy request for a URL on another
system. If this is just an ordinary request, we decline to
handle it, returning the DECLINED status code. This tells
Apache to handle the translation phase using its default
mechanism. Otherwise, we set the stage for a custom
content-phase handler.

There are now two things that need to be done. First, we need
to tell Apache that the Perl interpreter will be handling the
content phase. We do this with a call to the request object’s
handler method, giving it an argument of
perl-script, which is the internal name that mod_perl
uses for the Perl interpreter. Next, we need to tell Perl what

149

user-written subroutine to call when the time comes. We do
this with a call to push_handlers. This routine takes two
arguments: the name of the phase to handle, and a reference
to the subroutine to call. PerlHandler is the name used
for the content phase (the others are more descriptive, such as
PerlTransHandler or PerlLogHandler), and
proxy_handler is the subroutine that we want to run. As
its name implies, you can call push_handlers multiple
times in order to set up a chain of handlers that will be called
in order. (We don’t take advantage of this facility in this
example.) The last thing we do is to return an OK status code,
telling Apache that we handled the request ourselves and no
more needs to be done.

Apache now takes over very briefly until it reaches the
content-handling phase of the transaction, at which point we
find ourselves inside the proxy_handler routine (lines
24 through 62). As a content handler, this subroutine is
responsible for producing the document that is eventually
transmitted back to the browser. When a proxied document is
requested, this routine will be called once for the main
document, and once for each image, sound, or other inline
content.

As before, the routine starts by copying the request object into
lexical variable $r. It now uses the LWP library to construct
an HTTP::Request, an object that contains the various and
sundry headers in an HTTP request. We need all the header
fields that were passed to Apache to be passed through to the
LWP library. This is so that cookies, authorization
information, and the list of acceptable MIME types continue
to work as expected. First, we create a generic
HTTP::Request object by calling its new method with the

150

request method and the request URI (derived from the request
object’s method and uri methods respectively). Next, we
copy all the incoming header fields to the new
HTTP::Request object. The Apache request object’s
headers_in method returns a hash of field name-value
pairs. We iterate over this hash, inserting each header into the
HTTP::Request object.

If the current request uses the POST method, there’s also
content data to copy over—typically the contents of fill-out
forms. In lines 34 through 39 we retrieve the request’s content
length by calling the request object’s header_in method
with an argument of Content-length. This call is
similar to headers_in, but returns the value of a single
field, rather than a hash containing them all.

We actually send out the request in line 41. We pass the fully
prepared HTTP::Request object to the user agent object’s
request method. After a brief delay for the network fetch,
the call returns an HTTP::Response object, which we copy
into the lexical variable $response.

And now the process of copying the headers is reversed.
Every header in the LWP HTTP::Response object must be
copied to the Apache request object. First, we handle a few
special cases. The Apache API has a call named
content_type to get and set the document’s MIME type.
In line 42, we call the HTTP::Response object’s header
method to fetch the content type, and immediately pass the
result to the Apache request object’s content_type
method. Next, we set the numeric HTTP status code and the
human-readable HTTP status line (this is the text like 200
OK or 404 Not Found that begins each response from a

151

web server). We call the HTTP::Response object’s code and
message methods to return the numeric code and human
readable messages respectively, and copy them to the Apache
request object, using the status and status_line
methods to set the values.

When the special case headers are done, we copy all the other
header fields, using the HTTP::Response object’s scan
method to rapidly loop through each of the header
name-value pairs (lines 47 through 49). For each header field,
scan invokes an anonymous callback routine that sets the
appropriate field in the Apache request object with the
header_out method. header_out works just like
header_in, but accepts the name-value pair of a outgoing
header field to set.

At this point, the outgoing header is ready to be sent to the
waiting browser. We call the request object’s
send_http_header method (line 51) to have Apache
send a correctly-formatted HTTP header.

152

Identifying Ads

The time has now come to deal with potential banner ads. To
identify something as an ad, we require that the document be
an image and that its URI satisfy a regular expression match
that detects words like “advertisement” and “promotion.” On
line 52, we invoke the HTTP::Response object’s content
method to return the data contained within the response, and
store a reference to it in the lexical variable $content.
Next, in lines 54–57, we use the information stored in the
Apache request object to check whether the MIME type
corresponds to an image, and if so, whether the URL matches
the ad scanner pattern. If both these conditions are true, we
set the content type to image/gif and call an internal
subroutine named block_ad to replace the original image
with a custom GIF. On line 59, we send the possibly modified
content on to the browser by passing it to the Apache request
object’s print method. Lastly, we return a status code of
OK to inform Apache that we handled the transaction
successfully.

The block_ad subroutine, beginning on line 64, is short
and sweet. Its job is to take an image in any of several
possible formats and replace it with a custom GIF of exactly
the same dimensions. The GIF will be transparent, allowing
the page background color to show through, and will have the
words “Blocked Ad” printed in large friendly letters in the
upper left-hand corner.

To get the width and height of the image we call imgsize,
a function imported from the Image::Size

153

module. imgsize recognizes most web image formats,
including GIF, JPEG, XBM, and PNG. Using these values,
we create a new blank GD::Image object and store it in a
variable named $im. We call the image object’s
colorAllocate method three times to allocate color
table entries for white, black, and red, and declare that the
white color is transparent, using the transparent
method. The routine calls the string method to draw the
message starting at coordinates (5,5), and finally frames the
whole image with a black rectangle. The custom image is
now converted into GIF format with the gif method, and
copied into $$data, overwriting whatever was there before.

This ends the module. The only remaining step is to tell
Apache about it. You do this by placing the following
directive in one of Apache’s configuration files:

PerlTransHandler Apache::AdBlocker

Apache::AdBlocker’s handler subroutine will now be
invoked to inspect all incoming requests.

154

Chapter 8. Authentication with
mod_perl

Michael Parker
Soon after I learned about mod_perl, I wanted to know how I
could use it to secure my web site. Apache has a number of
phases it progresses through as it serves web pages. Three of
those phases are access control, authentication, and
authorization. In this article, I’ll discuss each phase and
demonstrate five examples of what they can do.

Access Control

The access control phase is the first of the three
authentication phases available in Apache. This phase allows
you to restrict access to specific URLs based on criteria other
than who the visitor is. This has traditionally been used to
allow or deny access for certain hosts. However, with
mod_perl you can restrict access to specific directories for
any reason you like: time of day or week, phase of the moon,
user agent, the referring page, and just about anything else
you can envision.

The
Apache::HostLimit module (Example 8-1) is a simple access
control handler you can use to exclude particular hosts. For a
more detailed explanation of handlers, read the mod_perl
article in this book, or get Lincoln Stein and Doug

155

MacEachern’s book Writing Apache Modules in Perl and C
(O’Reilly).

To activate the access control handler, you need the following
in your configuration file:

PerlAccessHandler

Apache::HostLimit

This tells Apache to invoke the Apache::HostLimit module
during access control.

Example 8-1. Excluding particular hosts with
Apache::HostLimit

1 package Apache::HostLimit;
2
3 use strict;
4 use Apache::Constants ':common';
5
6 sub handler {
7 my $r = shift;
8
9 my $host = $r->get_remote_host;
10
11 if ($host eq "somebadhost.com") {
12 $r->log_error("Apache::HostLimit
- Denied access for $host");
13 return FORBIDDEN;
14 }
15 elsif ($host eq "127.0.0.1") {
16 $r->log_error("Apache::HostLimit
- Denied access for $host");
17 return FORBIDDEN;
18 }
19 else {
20 return DECLINED;

156

21 }
22 }
23
24 1;

The module is simple. It determines what computer the visitor
is coming from, and then it either returns FORBIDDEN,
indicating that the user is not to be granted access, or
DECLINED, indicating that the module has no opinion one
way or the other. Line 1 contains the package declaration
common to all Perl modules. Line 3 contains the use
strict pragma. All mod_perl modules should employ the
strict pragma to help overcome some of the traps
associated with mod_perl (see mod_perl_traps.pod, bundled
with the mod_perl distribution). Line 4 pulls in the common
Apache return codes for use later. Line 6 begins handler,
the standard handler routine. Whenever mod_perl executes a
handler, it looks for a subroutine by that name. All mod_perl
handlers are called with one argument, the request object.
(The one exception is when the handler has a $$ prototype.
Then it’s treated as an object-oriented method call.)

Line 9 makes use of the request object, $r, to obtain the
name of the browser’s computer. Lines 11 to 21 determine the
request’s fate. If the host variable matches, the module notes
this in the error log, (line 12 and 16) and returns
FORBIDDEN. If the host does not match, the request falls
through, returning DECLINED to indicate that all is well and
the request can move on to the next handler.

This example is very simple, but it shows how much can be
accomplished in this phase. For instance, you might have
handler read the information from a file so that it could be
updated without restarting the server. (If you want to stop an

157

annoying person or robot from accessing your website, you
would be better off using the URI translation handler. The
translation handler is the first phase after the request has been
read; by denying access there, you avoid the extra processing
for a request that is destined to fail anyway.)

158

Authentication

In the second access-checking phase, authentication, the
server uses a technique like username/password verification
to determine if the visitor is welcome. You can invoke a
variety of resources at this point, including:

▪ Authentication from more then one htpasswd file

▪ The Unix password database

▪ Oracle grant tables

▪ Authentication on a
Windows domain server

Windows Domain Server Authentication

Example 8-2 demonstrates the
Apache::AuthenSmb module, which authenticates users
against a Windows domain server—a nice feature for Unix
web servers in a Windows environment. This is a stripped
down example, lacking the authorization phase; you can
obtain the complete module from CPAN or create your own.

Example 8-2. The Apache::AuthenSmb module
1 package Apache::AuthenSmb;
2
3 use strict;
4 use Apache::Constants ':common';
5 use Authen::Smb;
6
7 sub handler {

159

8 my $r = shift;
9 my($res, $sent_pwd) =
$r->get_basic_auth_pw;
10 return $res if $res; # Decline if
not Basic
11
12 my $name = $r->connection->user;
13
14 my $pdc = $r->dir_config('myPDC');
15 my $bdc =
$r->dir_config('myBDC') ||$pdc;
16 my $domain =
$r->dir_config('myDOMAIN') || "WORKGROUP";
17
18 if ($name eq "") {
19 $r->note_basic_auth_failure;
20 $r->log_reason("No Username
Given", $r->uri);
21 return AUTH_REQUIRED;
22 }
23
24 if (!$pdc) {
25 $r->note_basic_auth_failure;
26 $r->log_reason("Configuration
error, no PDC", $r->uri);
27 return AUTH_REQUIRED;
28 }
29
30 my $return =
Authen::Smb::authen($name,
31
$sent_pwd,
32
$pdc,
33
$bdc,
34
$domain);

160

35
36 if ($return) {
37 $r->note_basic_auth_failure;
38 $r->log_reason("user $name:
password mismatch", $r->uri);
39 return AUTH_REQUIRED;
40 }
41
42 return OK;
43 }
44
45 1

The configuration directives for this module make use of
PerlSetVar to avoid hardcoding configuration details.
(PerlSetVar allows you to set variables that will be
accessible in your Apache modules.) In addition to some
mod_perl directives, you must use the AuthName,
AuthType, and require directives for Apache to invoke
the
authentication handlers. Documentation on these is bundled
with Apache.

AuthName "

Authentication Realm"
AuthType Basic
PerlSetVar myPDC PDCSERVER
PerlSetVar myBDC BDCSERVER
PerlSetVar myDOMAIN DOMAIN
PerlAuthenHandler Apache::AuthenSmb
require valid-user

In addition to the PerlSetVar directives, which in this case
provide several configuration details for the module, a
handler directive is required. This directive behaves just like

161

the access control module directive that we used for
Apache::HostLimit.

The interesting part begins on line 9, where a call into the
Apache API obtains the type of authentication and the
password sent. Line 10 checks to make sure the authentication
type is basic. Line 12 makes another call into the request
object to get the username entered by the client. Lines 14 to
16 pull in the configuration information set by
PerlSetVar.

The downside of basic password authentication is that it sends
the username and password to the server in the clear. Apache
also supports digest authentication, a more secure method,
but some browsers don’t support it.

Until this point, this listing shows a standard setup for an
authentication module. Now we start getting into the heart of
the module. The first step is to check that the user actually
entered a username. If not, the module calls
note_basic_auth_failure on line 19, logs the error,
and returns AUTH_REQUIRED, which indicates that
authentication was unsuccessful. The next lines, 24 to 28,
check to make sure a PDC (Primary
Domain Controller) was configured. If not, the module again
notes and logs the failure and returns AUTH_REQUIRED.
Line 30 makes a call into the Authen::Smb module (on
CPAN) using the username and password sent, along with the
configuration details. Line 36 checks the return value of the
Authen::Smb call. If the call fails, it notes and logs the failure,
returning AUTH_REQUIRED. If the request makes it this far,
line 42 returns OK indicating success and allows Apache to
continue with the request.

162

More NT Authentication

The
Apache::AuthenOverrideSmb module builds on
Apache::AuthenSmb. It allows you to override or supplement
the users available in your NT
domain with an external password file. This can be
convenient if you need to grant access to individuals or
groups that might not have an NT account.

This module is configured in much the same way as
Apache::AuthenSmb,
adding only the definition of the external password file:

AuthName "

Authentication Realm"
AuthType Basic
PerlSetVar myPDC PDCSERVER
PerlSetVar myBDC BDCSERVER
PerlSetVar myDOMAIN DOMAIN
PerlSetVar password_file /your/.htpasswd
PerlAuthenHandler

Apache::AuthenOverrideSmb
require valid-user

The Apache::AuthenOverrideSmb module (Example 8-3) is
similar to the previous two. However, it adds line 11, which
pulls in the path to the password file. Lines 18 to 22 create an
HTTPD::UserAdmin object using the path to our password
file. Lines 24 to 32 check to see if an entry exists in the
password file. If so, the module checks to make sure the
password is correct. In that case, the module returns OK;

163

otherwise, the module notes and logs the failure and returns
AUTH_REQUIRED. From this point the module is the same
as Apache::AuthenSmb, making a call to Authen::Smb to
determine if the user should be granted access.

Example 8-3. Adding an external password file with
Apache::AuthenOverrideSmb

1 package Apache::AuthenOverrideSmb;
2
3 use strict;
4 use HTTPD::UserAdmin ();
5 use Apache::Constants qw(OK
AUTH_REQUIRED);
6 use Authen::Smb;
7
8 sub handler {
9 my $r = shift;
10
11 my $PASSWD_FILE =
$r->dir_config("password_file") || "";
12
13 my ($res, $sent_pwd) =
$r->get_basic_auth_pw;
14 return $res if $res; #decline if not
Basic
15
16 my $user = $r->connection->user;
17
18 my $u = HTTPD::UserAdmin->new(
19 DB =>
$PASSWD_FILE,
20 DBType
=> "Text",
21 Server
=> "apache",
22
Locking => 0);

164

23
24 if (my $passwd =
$u->password($user)) {
25 if (crypt($sent_pwd, $passwd) eq
$passwd) {
26 return OK;
27 }
28 else {
29 $r->note_basic_auth_failure;
30 $r->log_reason("user $user:
password mismatch", $r->uri);
31 return AUTH_REQUIRED;
32 }
33 }
34 else {
35 my $pdc =
$r->dir_config('myPDC');
36 my $bdc =
$r->dir_config('myBDC') || $pdc;
37 my $domain =
$r->dir_config('myDOMAIN) || "WORKGROUP";
38
39 if ($name eq "") {
40 $r->note_basic_auth_failure;
41 $r->log_reason("No Username
Given", $r->uri);
42 return AUTH_REQUIRED;
43 }
44
45 if (!$pdc) {
46 $r->note_basic_auth_failure;
47
$r->log_reason("Configuration error, no
PDC", $r->uri);
48 return AUTH_REQUIRED;
49 }
40
51 my $return =

165

Authen::Smb::authen($user,
52
$sent_pwd,
53
$pdc,
54
$bdc,
55
$domain);
56
57 if ($return) {
58 $r->note_basic_auth_failure;
59 $r->log_reason("user $user:
password mismatch", $r->uri);
60 return AUTH_REQUIRED;
61 }
62 return OK;
63 }
64 }
65
66 1;

166

Authorization

Once a user has been authenticated, we’re ready for the final
stage: authorization. This stage determines whether an
authenticated user possesses the proper credentials to access
the protected URL. This is where you can use the Apache
require directive in most any Apache module, allowing
you to specify whether access should be granted to a valid
user, a list of users, or to a Unix group.

Basic Authorization

Example 8-4 shows the
Apache::AuthzExample module, which demonstrates a very
basic
authorization handler that handles the require user
<username> and require valid-user directives.
The configuration details for authorization handlers are
similar to other handlers. However, in addition to the
require directive, you have to add a mod_perl directive
like the one below:

PerlAuthzHandler

Apache::AuthzExample
require valid-user

Example 8-4. Authorizing particular users with
Apache::AuthzExample

1 package Apache::AuthzExample;
2

167

3 use strict;
4 use Apache::Constants ':common';
5
6 sub handler {
7 my $r = shift;
8 my $requires = $r->requires;
9 return OK unless $requires;
10
11 my $name = $r->connection->user;
12
13 for my $req (@$requires) {
14 my ($require, @rest) = split
/\s+/, $req->{requirement};
15 if ($require eq "user") {
16 return OK if grep $name eq
$_, @rest;
17 }
18 elsif ($require eq "valid-user")
{
19 return OK;
20 }
21 }
22
23 $r->note_basic_auth_failure;
24 $r->log_reason("user $name: not
authorized", $r->uri);
25 return AUTH_REQUIRED;
26 }
27
28 1;

This module begins much like the others, pulling in the
required modules and getting the request object. Line 8 makes
an API call to get the array of require directives. If no
directives have been defined, line 9 returns OK. Line 11
obtains the username entered in the authentication phase.

168

(Remember that this user has already passed the
authentication phase by this point.)

Lines 13 to 21 iterate over the require directives. Line 14
splits off the type of require from the rest of the
information for that directive. Line 15 checks to see if the
type is user, and if so, line 16 checks to see if the username
is present. If so, it returns OK. Line 18 checks whether the
type is valid-user, returning OK if so because the user
has already been authenticated. If any of these checks fail, the
module drops through to the final statements, which logs the
failure and returns AUTH_REQUIRED to the client.

More Sophisticated Authorization

The
Apache::AuthzManager module (
Example 8-5) is similar to Apache::AuthzExample, but it
shows how easily you can add a type to the require
directive. Assume that you want to limit access based on the
user’s manager, a good tool for department-level web pages.
I’ll assume the existence of a function named CheckManager
that takes care of the work behind the scenes.

Example 8-5. More sophisticated authorization with
Apache::AuthzManager

1 package Apache::AuthzManager;
2
3 use strict;
4 use CheckManager;
5 use Apache::Constants ':common';
6
7 sub handler {

169

8 my $r = shift;
9 my $requires = $r->requires;
10 return OK unless $requires;
11
12 my $name = $r->connection->user;
13
14 for my $req (@$requires) {
15 my ($require, @rest) = split
/\s+/, $req->{requirement};
16 if ($require eq "manager") {
17 for my $manname (@rest) {
18 if
(checkManager($manname, $name)) {
19 return OK;
20 }
21 }
22 }
23 }
24
25 $r->note_basic_auth_failure;
26 $r->log_reason("user $name: not
authorized", $r->uri);
27 return AUTH_REQUIRED;
28
29 }

This module is exactly the same as Apache::AuthzExample,
except for how the require type is handled in lines 16 to
22. Here, the module looks for the manager keyword and calls
the checkManager function for each keyword found. It
returns OK if the user is allowed access; it falls through to the
failure state and returns AUTH_REQUIRED if the user is not
authorized.

170

Conclusion

These examples illustrate some of the simplest mechanisms
for access checking. You can customize them in as
sophisticated a manner as you wish; for instance, you could
limit access to URLs during business hours, exclude hosts
from a continuously-updated blacklist, or authenticate against
a company LDAP database. For more information on
mod_perl, see http://www.modperl.com and
http://perl.apache.org. Questions about mod_perl can be sent
to the mod_perl mailing list; to join, send a message to
modperl-subscribe@perl.apache.org.

171

Chapter 9. Navigation Bars with
mod_perl

Lincoln D. Stein
I admit it. I love navigation bars. I go completely green with
envy whenever I browse one of those fancy web sites with
navigation bars that change color as you move the mouse over
them or expand and contract a table of contents with one
click.

Sometimes I think, “Okay, that’s it. I’m going to install a
navigation bar like this one right now.” So I download the
HTML source code for the page and have a peek. What I see
always diminishes my enthusiasm substantially. Navigation
bars are a lot of work! Either they’re done by hand using
individually crafted HTML pages, or they require a
slow-loading Java applet, or most frequently, they consume
several pages of JavaScript code filled with convoluted
workarounds for various makes and models of browser.

One of the cardinal virtues of programming is laziness, and as
a Perl programmer I have this virtue in spades. I don’t want to
do any hard work to create my navigation bar. I just want it to
appear, automatically, when I write an HTML page and save
it into my web site’s document directory. When I finally bit
the bullet and got down to writing a site-wide navigation bar,
I used mod_perl, the nifty embedded Perl module for Apache,
to create a system that automatically adds a navigation bar to
all my pages without my having to lift a finger. You need the
Apache web server, Version 1.3.3 or higher, mod_perl

172

Version 1.16 or higher, and Perl 5.004_03 or higher to use
this system.

Figure 9-1 shows a page from my laboratory’s web site with
the navigation bar at the top. The bar is a single row of links,
embedded inside an HTML table, running along the top and
bottom of the page. Each link represents a major subdivision
of the site. In this case, the subdivisions are groups of
software products that I maintain, namely “Jade”, “AcePerl”,
“Boulder”, and “WWW.” There’s also a “Home” link for the
top level page of the site. When the user selects a link, it takes
him directly to the chosen section. The link then changes to
red to indicate that the selected section is currently active.
The link remains red for as long as the user is browsing pages
contained within or beneath the section (as determined by the
URL path). When the user jumps out of the section, either by
selecting a link from the navigation bar or by some other
means, the navigation bar updates to reflect his new position.

173

Figure 9-1. http://stein.cshl.org/

The Configuration File

The nice feature about this system is that there’s no
hardcoded information anywhere: neither the HTML pages
themselves about the organization of the site nor the
appearance of the
navigation bar. The navigation bar is added to the page using
configuration information contained in a site-wide

174

configuration file. The bar’s appearance is determined by Perl
code. I favor a visually simple horizontal navigation bar with
text links with a few adjustments to the code; however, you
could change the bar so that it displays vertically, or uses
inline images as its links. It’s also possible to associate
different sections of the site with different navigation bars, or
hide the navigation bar completely.

The configuration file is usually stored with Apache’s other
configuration files inside the server root directory’s etc
subdirectory. Below you can see the configuration I use at my
site. It’s a simple text file consisting of tab-delimited text. The
first column contains the URLs to link to for each of the site’s
major sections. The second column contains the text to
display for each link. Blank lines and lines beginning with the
comment character are ignored.

stein.cshl.org navigation bar
file etc/navigation.conf
/index.html Home
/jade/ Jade
/AcePerl/ AcePerl
/software/boulder/ BoulderIO
/software/WWW/ WWW
/linux/ Linux

Notice that you can link to either a filename, e.g., index.html,
or to a directory name, e.g., /jade/. The navigation bar
systems treats the two cases slightly differently when
deciding whether to consider a certain section “active.” The
system uses prefix mapping to determine whether a page lies
within a section. In the example above, any page that starts
with the URL /jade will be considered to be part of the
“Jade” area, and the corresponding label will be highlighted
in red. However, since /index.html refers to a file rather

175

than a partial path, only the home page itself is ever
considered to be within the “Home” area.

Major sections do not have to correspond to a top level
directory. For example, the “Boulder” and “WWW” sections
are both subdirectories beneath “software”, which doesn’t
have an explicit entry. The navigational system will also work
with user-supported directories. For example:

/~lstein/ Lincoln's Pages

176

Activating the Navigation Bar

Apache itself needs to be configured to use the navigation bar
system. This is done by adding the <Location> directive
section shown below to one of Apache’s configuration files.
There are three directives in this section. The SetHandler
directive tells Apache that every URL on the site is to be
passed to the embedded Perl interpreter. The PerlHandler
directive tells the Perl interpreter what to do with the URL
when it gets it. In this case, we’re telling Perl to pass the URL
through the Apache::NavBar module. The last directive,
PerlSetVar, sets a configuration variable named
NavConf to the relative configuration file path etc/
navigation.conf. The Apache::NavBar module will use
NavConf to find its configuration file.

<Location />
SetHandler perl-script
PerlHandler Apache::NavBar
PerlSetVar NavConf etc/navigation.conf

</Location>

In this example, the <Location> directive’s path argument
is /, indicating that the navigation bar system is to be applied
to each and every URL served by the web site. To apply the
navigation bar to a portion of the site only, you would just
modify the path accordingly. You can even apply different
navigation bar configuration files to different parts of your
web site!

177

Generating the Navigation Bar

Example 9-1 shows the code for the navigation bar module.
The file should be named NavBar.pm and stored in the
Apache subdirectory of the Perl library directory. This is a
slightly longer code example than you’ve seen in previous
columns, so we’ll walk through it in chunks.

Example 9-1. NavBar.pm
package Apache::NavBar;
file Apache/NavBar.pm

use strict;
use Apache::Constants qw(:common);
use Apache::File ();

my %BARS = ();
my $TABLEATTS = 'WIDTH="100%" BORDER=1';
my $TABLECOLOR = '#C8FFFF';
my $ACTIVECOLOR = '#FF0000';

sub handler {
my $r = shift;

$r->content_type eq 'text/html' ||
return DECLINED;

my $bar = read_configuration($r) ||
return DECLINED;

my $table = make_bar($r, $bar);

$r->update_mtime;
$r->set_last_modified($bar->modified);
my $rc = $r->meets_conditions;
return $rc unless $rc = = OK;

178

my $fh =
Apache::File->new($r->filename) || return
DECLINED;

$r->send_http_header;
return OK if $r->header_only;

local $/ = "";
while (<$fh>) {

s:(<BODY.*?>):1table:soi;
s:(</BODY>):$table$1:oi;

} continue {
$r->print($_);

}
return OK;

}

sub make_bar {
my ($r, $bar) = @_;

Create the navigation bar
my $current_url = $r->uri;
my @cells;
foreach my $url ($bar->urls) {

my $label = $bar->label($url);
my $is_current = $current_url =~

/^$url/;
my $cell = $is_current ?

qq(<FONT COLOR="$ACTIVECOLOR"
CLASS="active">$label) :

qq(<A HREF="$url"
CLASS="inactive">$label);

push @cells,
qq(<TD CLASS="navbar"

ALIGN=CENTER
BGCOLOR="$TABLECOLOR">$cell</TD>\n);

}
return qq(<TABLE CLASS="navbar"

179

$TABLEATTS><TR>@cells</TR></TABLE>\n);
}

Read the navigation bar configuration
file and return it as a hash.
sub read_configuration {

my $r = shift;
return unless my $conf_file =

$r->dir_config('NavConf');
return unless -e ($conf_file =

$r->server_root_relative($conf_file));
my $mod_time = (stat _)[9];

return $BARS{$conf_file} if
$BARS{$conf_file}

&& $BARS{$conf_file}->modified
>= $mod_time;

return $BARS{$conf_file} =
NavBar->new($conf_file);
}

package NavBar;

sub new { #
Create a new NavBar object

my ($class, $conf_file) = @_;
my (@c, %c);
my $fh = Apache::File->new($conf_file)

|| return;
while (<$fh>) {

chomp;
next if /^\s*\#/; # skip comments
my($url, $label) = /^(\S+)\s+(.+)/;
push @c, $url; # keep the url

in an ordered array
$c{$url} = $label; # keep its label

in a hash
}
return bless { 'urls' => \@c,

180

'labels' => \%c,
'modified' => (stat

$conf_file)[9]}, $class;
}

Return ordered list of all the URLs in
the navigation bar
sub urls { return @{shift->{'urls'}}; }

Return the label for a particular URL in
the navigation bar
sub label { return
$_[0]->{'labels'}->{$_[1]} || $_[1]; }

Return the modification date of the
configuration file
sub modified { return $_[0]->{'modified'};
}

1;

After declaring the package, the module turns on the
strict pragma, thus avoiding the use of barewords,
undeclared globals, and other sloppy programming practices.
The module then brings in two helper packages.

package Apache::NavBar;
file Apache/NavBar.pm

use strict;
use Apache::Constants qw(:common);
use Apache::File ();

As its name implies, Apache::Constants provides various
constant values that are meaningful to the Apache server. We
bring in the “common” constants, and then Apache::File,
which contains routines useful for manipulating files.

181

my %BARS = ();
my $TABLEATTS = 'WIDTH="100%" BORDER=1';
my $TABLECOLOR = '#C8FFFF';
my $ACTIVECOLOR = '#FF0000';

These lines define several file-wide lexical variables. %BARS
is a hash that will be used to hold a set of “NavBar”
navigation bar objects. The NavBar class, which we’ll
examine later, defines methods for reading and parsing
navigation bar configuration files, and for returning
information about a particular navigation bar. Because a site
is free to define several different navigation bars, the %BARS
hash is necessary to keep track of them. The hash’s keys are
the paths to each navigation bar’s configuration file, and its
values are the NavBar objects themselves.

The $TABLEATTS, $TABLECOLOR, and
$ACTIVECOLOR globals control various aspects of the
navigation bar’s appearance. $TABLEATTS controls the
table’s width and border attributes, $TABLECOLOR sets the
background color of each cell, and $ACTIVECOLOR sets the
color of the active links.

sub handler {
my $r = shift;

This begins the definition of the handler subroutine, which
Apache calls to fetch a requested document. The subroutine
begins by shifting the request object off the subroutine stack.
The request object will be used subsequently for all
communication between the subroutine and Apache.

$r->

content_type eq 'text/html' || return
DECLINED;

182

my $bar = read_configuration($r) || return
DECLINED;
my $table = make_bar($r, $bar);

In this section we attempt to read the configuration file and
create or retrieve the appropriate navigation bar object. The
first thing we do is test the requested document’s MIME type
by calling the content_type method. If the MIME type
is anything other than text/html, it doesn’t make any
sense to add a navigation bar, so we return a result code of
DECLINED. This tells Apache to pass the request on to the
next module that has expressed interest in processing
requests. Usually this will be Apache’s default document
handler, which simply sends the file through unmodified.

Otherwise, we try to read the currently configured navigation
bar definition file, using an internal routine named
read_configuration. If this routine succeeds, it will
return the navigation bar object. Otherwise, it returns undef.
Again, we exit with a DECLINED error code in case of
failure.

In the fourth line, we call an internal routine named
make_bar, which turns the NavBar object into a properly
formatted HTML table.

$r->

update_mtime;
$r->

set_last_modified($bar->modified);
my $rc = $r->

meets_conditions;
return $rc unless $rc = = OK;

183

This bit of code represents a useful optimization. In order to
reduce network usage, most modern browsers temporarily
cache the files they retrieve on the user’s hard disk. Then, in
the request header, the browser sends the server an HTTP
header called If-Modified-Since, which contains the
modification time and date of the cached file. In order to
avoid an unnecessary file transmission, the server should
compare the modification time specified in the
If-Modified-Since header to the modification time of
the file on disk. If the modification time of the server’s copy
is the same as the time specified by the browser, then there’s
no reason to retransmit the document, and the server can
return an HTTP_NOT_MODIFIED status code. Otherwise,
the server should send the updated file.

In this case, the logic is more complicated, because the
contents of the requested document depend on two factors:
the modification time of the file, and the modification time of
the navigation bar configuration file. Fortunately, Apache has
a general mechanism for dealing with these situations. We
begin calling the request object’s update_mtime method
to copy the requested file’s modification time into Apache’s
internal table of outgoing HTTP header fields. Next, we call
set_last_modified with the modification date of the
navigation bar configuration file. This updates the
modification time that is sent to the browser, but only if it’s
more recent than the modification time of the requested file.
The navigation bar’s modification date is, conveniently
enough, returned by the NavBar object’s modified
method.

The next line calls the request object’s
meets_conditions method. This checks whether the

184

browser made a conditional request using the
If-Modified-Since header field (or any of the
conditional fetches defined by HTTP/1.1). The method
returns OK if the document satisfies all the conditions and
should be sent to the browser, or another result (usually
HTTP_NOT_MODIFIED) otherwise. To implement the
conditional fetch, we simply check whether the result code is
OK. If not, we return the status code to Apache and it
forwards the news on to the browser. Otherwise, we
manufacture and transmit the page.

my $fh = Apache::File->new($r->filename)
|| return DECLINED;

This next line attempts to open the requested file for reading,
using the Apache::File class. Apache::File is an
object-oriented filehandle interface. It is similar to IO::File,
but has less of an impact on performance and memory
footprint. The request object’s filename method returns
the physical path to the file. If anything fails at this point, we
return DECLINED, invoking Apache’s default handling of
the request. Otherwise, the filehandle object returned by
Apache::File->new is stored in a variable named $fh.

$r->

send_http_header;
return OK if $r->header_only;

The send_http_header method makes Apache send the
HTTP header off to the browser. This header includes the
If-Modified-Since field set earlier, along with other
header fields set automatically by Apache. The second line
represents yet another optimization. If the browser sent a
HEAD request, then it isn’t interested in getting the document

185

body and there’s no reason for this module to send it. The
header_only method returns true if the current request
uses the HEAD method. If so, we return OK, telling Apache
that the request was handled successfully.

local $/ = "";
while (<$fh>) {

s:(<BODY.*?>):1table:soi;
s:(</BODY>):$table$1:oi;

} continue {
$r->

print($_);
}
return OK;

These lines send the document body. We read from the
HTML file paragraph by paragraph, looking for <BODY> and
</BODY> tags. When we find either, we insert the HTML
table containing the navigation bar adjacent to it. The bar is
inserted beneath <BODY> and immediately above
</BODY>. The reason for using paragraph mode and a
multiline regular expression is to catch the common situation
in which the <BODY> tag is spread across several lines. The
regular expression isn’t guaranteed to catch all possible
<BODY> tags (in particular, it’ll mess up on tags with an
embedded > symbol), but it works for the vast majority of
cases.

We then send the possibly modified text to the browser using
the request object’s print method. After reaching the end
of the file, we return OK, completing the transaction. Note
that there is no need to explicitly close the Apache::File
object. The filehandle is closed automatically when the object
goes out of scope.

186

We now turn our attention to some of the utility functions
used by this module, starting with make_bar:

sub make_bar {
my ($r, $bar) = @_;

Create the navigation bar
my $current_url = $r->uri;
my @cells;
foreach my $url ($bar->urls) {

my $label = $bar->label($url);
my $is_current = $current_url =~

/^$url/;
my $cell = $is_current ?

qq(<FONT COLOR="$ACTIVECOLOR"
CLASS="active">$label) :

qq(<A HREF="$url"
CLASS="inactive">$label);

push @cells,
qq(<TD CLASS="navbar"

ALIGN=CENTER
BGCOLOR="$TABLECOLOR">$cell</TD>\n);

}
return qq(<TABLE CLASS="navbar"

$TABLEATTS><TR>@cells</TR></TABLE>\n);
}

The make_bar function takes two arguments, the request
object and the previously-created NavBar object. Its job is to
create an HTML table that correctly reflects the current state
of the navigation bar. make_bar begins by fetching the
current URL, calling the request object’s uri method. Next,
it calls the NavBar object’s urls method to fetch the list of
partial URLs for the site’s major areas, and iterates over them
in a foreach loop.

187

For each URL, the function fetches its human-readable label
by calling $bar->label and determines whether the
current document is part of the area. What happens next
depends on whether the current document is contained within
the area or not. If so, the code generates a label enclosed
within a tag with the COLOR attribute set to red and
enclosed in a tag. In the latter case, the code generates a
hypertext link. The label or link is then pushed onto a
growing array of HTML table cells. At the end of the loop,
the code incorporates the table cells into a one-row table, and
returns the HTML to the caller.

The next bit of code defines the read_configuration
function, which is responsible for parsing the navigation bar
configuration file and returning a new NavBar object.

Read the navigation bar configuration
file and return it as a hash.
sub read_configuration {

my $r = shift;
return unless my $conf_file =

$r->dir_config('NavConf');
return unless -e

($conf_file=$r->server_root_relative($conf_file));

my $mod_time = (stat _)[9];
return $BARS{$conf_file} if

$BARS{$conf_file}
&& $BARS{$conf_file}->modified

>= $mod_time;
return $BARS{$conf_file} =

NavBar->new($conf_file);
}

The most interesting feature of read_configuration is
that it caches its results so that the configuration file is not

188

reparsed unless it has changed recently. The function begins
by calling the request object’s dir_config method to
return the value of the directory configuration variable
NavConf (this was previously set in the <Location>
section with the PerlSetVar configuration directive). If
no such configuration variable is defined, dir_config
returns undef and we exit immediately.

Otherwise, we can call server_root_relative in
order to turn a relative pathname (etc/
navigation.conf) into an absolute one (/usr/
local/apache/etc/navigation.conf). We test
for the existence of the configuration file using Perl’s -e
switch, and then fetch the file’s modification time using the
stat call. We now test the cached version of the
configuration file to see if we can still use it by comparing the
modification time of the configuration file with the time
returned by the cached copy’s modified method. We
return the cached copy of the navigation bar object if it exists
and it is still fresh. Otherwise, we invoke the NavBar class’s
new method to create a new object from the configuration
file, store the returned object in the %BARS object cache, and
return the object.

The next bit of code defines the NavBar class, which is really
just an object-oriented interface to the configuration file.

package NavBar;

create a new NavBar object
sub new {

my ($class, $conf_file) = @_;
my (@c, %c);
my $fh = Apache::File->new($conf_file)

189

|| return;
while (<$fh>) {

chomp;
next if /^\s*#/; # skip comments

next unless my($url, $label) =
/^(\S+)\s+(.+)/;

push @c, $url; # keep urls in an
array

$c{$url} = $label; # keep its
label in a hash

}
return bless { 'urls' => \@c,

'labels' => \%c,
'modified' => (stat

$conf_file)[9]}, $class;
}

Following the package declaration, we define the
NavBar::new method. The method takes two arguments,
the classname and the path to the configuration file. The
method begins by opening the configuration file, again using
the Apache::File utility class to return an open filehandle. The
code reads from the filehandle line by line, skipping
comments and blank lines. Otherwise, we parse out the
section URL and its label and store them it into an array and a
hash. Both are necessary because we need to keep track of
both the mapping from URL to section label and the order in
which to list the sections in the navigation bar. When the
navigation bar has been completely read, the list of section
URLs, the labels, and the modification time of the
configuration file are all stored into a new object, which we
return to the caller.

Return ordered list of the URLs in the
bar
sub urls { return @{shift->{'urls'}}; }

190

Return the label for a URL in the
navigation bar
sub label { return $_[0]->{'labels'} ||
$_[1]; }

Return the modification date of the
config file
sub modified { return $_[0]->{'modified'};
}

The last three subroutines defined in this module are
accessors for NavBar configuration date. urls returns the
ordered list of URLs that define the configured main sections
of the site. label takes a section URL and returns the
corresponding section label. If no label is configured, it just
returns the original URL. Finally, modified returns the
modification time of the configuration file, for use in caching.

191

A Foundation to Build On

The navigation bar displayed by this module is spartan in
appearance because my taste runs to simplicity. However,
with a little work, it can be made as snazzy as you desire. One
of the simpler ways to change the appearance of the
navigation bar is to take advantage of the cascading stylesheet
standard. Both the navigation bar table and the individual
cells are tagged with the “navbar” style, which is currently
unused. Further, the links themselves contain style tags. The
links for the active, current section are tagged with the style
class named active, while the links for the other sections
are tagged with inactive. By placing a stylesheet
definition in your pages, you can adjust the appearance of the
table to suit your preferences.

You might wish to enhance the navigation bar by turning it
into a column of labels that runs down the left hand side of
the page. To do this, you’d either have to use frames, or place
both the navigation bar and the HTML page into a table in
two side-by-side cells. Or you could replace the links with
in-line images of buttons or tabs to create a spiffy graphical
navigation bar. In this case, you’d want two sets of buttons:
one for the button in unpressed inactive state, and one for its
pressed active state to indicate that the user is in its
corresponding section.

Finally, a nice enhancement would be to add an extra
dimension to the navigation bar, creating a hierarchical list of
sections and subsections that expands outward to show more
detail when the user enters a particular section. That’ll put an
end to navigation bar envy!

192

In the next article, I’ll explore the LWP library, which allows
you to create your own spiders and otherwise automate many
of the tasks that a web browser performs.

193

Chapter 10. Scripting the Web with
LWP

Lincoln D. Stein
In previous articles I’ve focused on the Web from the server’s
point of view. We’ve talked about how the CGI protocol
works, how to write server scripts, and how to maintain
long-running transactions across the Web. But what about the
client side of the story? Does Perl offer any support for those
of us who wish to write our own web-creeping robots, remote
syntax verifiers, database accessors, or even full-fledged
graphical browsers? Naturally it does, and the name of this
support is
LWP.

LWP (Library for WWW access in Perl), is a collection of
modules written by Martijn Koster and Gisle Aas and is
available on CPAN. To understand what LWP can do,
consider the tasks your average Web browser is called upon
to perform:

▪ Read and parse a URL

▪ Connect to a remote server using the protocol
appropriate for the URL (e.g., HTTP, FTP)

▪ Negotiate with the server for the requested document,
providing authentication when necessary

▪ Interpret the retrieved document’s headers

194

▪ Parse and display the document’s HTML content

The LWP library provides support for all of the tasks listed
above, and several others, including handling proxy servers.
In its simplest form, you can use LWP to fetch remote URLs
from within a Perl script. With more effort, you can write an
entirely Perl-based web browser. In fact, the Perl/Tk library
comes complete with a crude but functional graphical browser
based on LWP.

The LWP modules are divided into the following categories:

URI::*

URL creation and parsing

HTML::*

HTML creation, parsing, and formatting

HTTP::*

The HTTP protocol

LWP::UserAgent

Object-oriented interface to the library

LWP::Simple

Procedural interface to the library

LWP::Protocol::*

Interfaces to various protocols

195

To illustrate what you can do with LWP, I’ve written a Perl
script called get_weather (Example 10-1) that fetches
and prints the current weather report.

Example 10-1. get_weather: an LWP program that fetches the
current weather report

1 #!/usr/bin/perl
2
3 use LWP::UserAgent;
4 use HTML::TokeParser;
5
6 $CITY = shift || 'BOS';
7 $URL = "http://www.wunderground.com/

cgi-bin/findweather/getForecast?query=";
8
9 # Retrieve the content of the Web page

10 $agent = new LWP::UserAgent;
11 $request = new HTTP::Request('GET',
"URLCITY");
12 $response = $agent->request($request);
13 die "Couldn't get URL. Status code = ",
$response->code
14 unless $response->is_success;
15
16 # Parse the HTML
17 $parser =
HTML::TokeParser->new(\$response->content);
18 while ($tokeref = $parser->get_token) {
19 if ($tokeref->[0] eq "T") {
20 $text .=
HTML::Entities::decode($tokeref->[1]),
"\n";
21 }
22 }
23
24 $text =~ s/\A.*?Forecast as of/Forecast
as of/sm;

196

25 $text =~ s/Yesterday's.*?\Z//sm;
26 $text =~ s/\n+/\n/gm;
27 $text =~ s/[\t]+/ /gm;
28 print $text;

You invoke this script from your shell with the city code as its
argument (with a default of “BOS”). An example of the
script’s chilling output:

Forecast as of 11:35 am EST on February 6,
2002

This Afternoon
Partly sunny. Highs 30 to 35. West wind
around 10 mph.

Tonight
Partly cloudy. Lows from near 20
Countryside to upper 20s Boston.
Southwest wind around 10 mph.

Thursday
Cloudy. A chance of rain or snow in the
afternoon. Highs in the lower 40s.
Southwest wind 10 to 15 mph becoming
southeast late. Chance of precipitation
40 percent.

Thursday Night
A chance of snow or rain early...otherwise
clearing. Lows near 30. Chance
of precipitation 30 percent.

Friday
Mostly sunny. Highs in the lower 40s.

Friday Night
Partly cloudy. Lows in the mid 20s.

197

Saturday
Cloudy. A chance of snow or rain late.
Highs in the lower 40s.

Sunday
Snow or rain likely. Lows near 30 and
highs in the lower 40s.

Monday
Partly cloudy and breezy. Lows in the
lower 30s and highs in the lower 40s.

Tuesday
Mostly cloudy. Lows in the upper 20s and
highs near 40.

You could run this script from an hourly cron job and
incorporate the result into an HTML page, or use it to produce
the text for a scrolling marquee applet (and produce a special
effect that does something useful for a change!).

This script uses the weather forecasts provided by the
Weather Underground. Its servers were designed for human
interactive use using fill-out forms; by changing the form, you
can choose any city for which forecasts are available. Casual
inspection of Wunderground URLs reveals that you can
obtain a basic weather report for Boston via this URL:

http://www.wunderground.com/cgi-bin/
findweather/getForecast?query=BOS

Every weather report our script retrieves uses this URL, but
with whatever city code we want in place of BOS. When you
fetch this URL you’ll receive a page of HTML containing the
weather report plus a bunch of graphics and links.

198

Thanks to the LWP library, the code is very straightforward.
Lines 3 and 4 load the components of the LWP library that we
need. In addition to the LWP::UserAgent module, which
provides URL-fetching functionality, we use the
HTML::TokeParser module, which will give us the ability to
extract just the text from the web page, leaving tags, links,
and other HTML information behind.

Lines 6 and 7 declare the two global variables. The city is
read from the command line, and globals for the server URL
and its CGI parameters are defined.

The interesting part begins in lines 10–14, where we connect
to the NOAA server, send the query, and retrieve the result.
First, we create a LWP::UserAgent object, which is
essentially a virtual browser. Next, we create an
HTTP::Request object to hold information about the URL
we’re requesting. We initialize the request object with the
string GET to indicate we want to make a GET request, and
with the URL we want to fetch. The actual connection and
data transfer occurs in line 12, where we invoke the
UserAgent’s request method and receive an
HTTP::Response object as the result. Lastly, we check the
transaction’s result code by calling the response object’s
is_success method and die with an informative error
message if there was a problem.

We now have an HTTP::Response object in hand. It contains
the HTTP status code, the various MIME headers that are
transmitted along with the document, and the document itself.
In lines 17–22, we extract the text from the document, using
HTML::Entities::decode to turn HTML entities into
human-readable versions. First, we extract the HTML
document using the response object’s content method, and

199

immediately pass a reference to the result to an
HTML::TokeParser object that we create on the fly and store
in $parser. We then iterate through the tokens in
$parser, appending all of the plain text that we find to one
long string: $text.

The script isn’t quite done, however, because the
pretty-printed page still contains details that we’re not
interested in. Lines 24 and 25 narrow down $text to just
the portion that interests us: the text beginning with
Forecast as of and ending immediately before
Yesterday’s. We collapse extra newlines and spaces in
lines 26 and 27, and finally print out the weather report in line
28.

This example only gives a taste of what you can do with
LWP. The LWP library distribution is itself a good source for
ideas. Among the sample application programs that
accompany it is a web mirror application that can be used to
replicate a tree of web pages, updating the local copies only if
they are out of date with respect to the remote ones. Other
parts of the library include the basic components required to
write your own web crawling robots.

200

201

Chapter 11. Five Quick Hacks:
Downloading web Pages

Jon Orwant

Dan Gruhl
Sometimes it’s nice to visit web sites without being in front of
your computer. Maybe you’d prefer to have the text of web
pages mailed to you, or be notified when a web page changes.
Or maybe you’d like to download a lot of information from a
huge number of web pages (as in the article webpluck), and
you don’t want to open them all one by one. Or maybe you’d
like to write a robot that scours the web for information. Enter
the LWP bundle (sometimes called libwww-perl), which
contains two modules that can download web pages for you:
LWP::Simple and LWP::UserAgent. LWP is available on
CPAN and is introduced in Scripting the Web with LWP.

Dan Gruhl submitted five tiny but exquisite programs to TPJ,
all using LWP to automatically download information from a
web service. Instead of sprinkling these around various issues
as one-liners, I’ve collected all five here with a bit of
explanation for each.

The first thing to notice is that all five programs look alike.
Each uses an LWP module (LWP::Simple in the first three,
LWP::UserAgent in the last two) to store the HTML from a
web page in Perl’s default scalar variable $_. Then they use a
series of s/// substitutions to discard the extraneous

202

HTML. The remaining text—the part we’re interested in—is
displayed on the screen, although it could nearly as easily
have been sent as email with the various Mail modules on
CPAN.

Downloading Currency Exchange
Rates

The currency.pl program converts money from one
currency into another, using the exchange rates on
www.oanda.com. Here’s how to find out what $17.39 is
worth in Euros:

$ currency 17.39 USD EUR
--> 17.39 US Dollar = 20.00069 Euro

The
LWP::Simple module has a function that makes retrieving
web pages easy: get. When given a URL, get returns the
text of that web page as one long string. In currency.pl,
get is fed a URL for oanda.com containing the three
arguments provided to the program: $ARGV[0],
$ARGV[1], and $ARGV[2], which correspond to 17.39,
USD, and EUR in the sample run above. The resulting web
page is stored in $_, after which four s/// substitutions
discard unwanted data.

#!/usr/bin/perl -w

Currency converter.
Usage:

currency.pl [amount] [from curr] [to curr]

203

use LWP::Simple;

$_= get("http://www.oanda.com/convert/

classic?value=$ARGV[0]&exch=$ARGV[1]&expr=$ARGV[2]");

Remove the text we don't care about
s/^.*<!-- conversion result starts//s;
s/<!-- conversion result ends.*$//s;
s/<[^>]+>//g;
s/\s+/ /gm;

print $_, "\n";

The first s/// removes all text before the HTML comment
<!-- conversion result starts; the tail of that
comment (-->) becomes the arrow that you see in the output.
The second s/// removes all text after the conversion result.
The third s/// dumbly removes all tags in the text that
remains, and the final s/// replaces consecutive spaces and
newlines with a single space each.

204

Downloading Weather Information

Weather information is downloaded from
www.intellicast.com in much the same way as currency
information is downloaded from www.oanda.com. The URL
is different, some of the s/// substitutions are different, but
the basic operation is the same. As an added treat,
weather.pl uses the
Text::Wrap module to format the output to 76 columns.
Here’s the gloomy forecast for Boston in February:

$ weather bos
Wednesday: Overcast. High near 49F. Winds
SSE 15 to 20 mph. Wednesday
night: Rain showers early becoming steady
overnite. Low near
43F. Winds S 10 to 15 mph. Rainfall around
a quarter of an inch.

Thursday: A steady rain in the morning.
Showers continuing in the
afternoon. High near 55F. Winds SW 15 to
20 mph. Chance of precip
80%. Rainfall around a quarter of an inch.
Thursday night: A few clouds
from time to time. Low around 38F. Winds W
10 to 15 mph.

Friday: More clouds than sun. Highs in the
low 50s and lows in the low 30s.

Saturday: Mostly cloudy. Highs in the mid
40s and lows in the low 30s.

Sunday: More clouds than sun. Highs in the

205

upper 40s and lows in the upper
30s.

Monday: Occasional showers. Highs in the
upper 40s and lows in the upper 20s.

Tuesday: Showers possible. Highs in the
low 40s and lows in the upper 20s.

Wednesday: Considerable cloudiness. Highs
in the low 40s and lows in the
upper 20s.

Thursday: Considerable cloudiness. Highs
in the low 40s and lows in the
upper 20s.

Friday: Partly Cloudy

Here’s weather.pl:

#!/usr/bin/perl

Prints the weather for a given airport
code
#
Examples: weather.pl bos
weather.pl sfo

use LWP::Simple;
use

Text::Wrap;

$_ = get("http://intellicast.com/Local/
USLocalStd.asp?loc=k" . $ARGV[0] .

"&seg=LocalWeather&prodgrp=Forecasts&product=Forecast&prodnav=
none&pid=nonens");

206

Remove the text we don't care about
s/Click Here for Averages and Records/\n/
gim;
s/<[^>]+>//gm;
s/Trip Ahead.*$//sim;
s/ / /gm;
s/^(?!\w+day:).*?$//gm;
s/^\s+$//gm;

print wrap('', '', $_); # Format and
print the weather report

207

Downloading News Stories

The CNN home
page displays the top
news story; our cnn.pl program formats and displays it
using
Text::Wrap. I sandwiched Dan’s code in a while loop that
sleeps for 5 minutes (300 seconds) and retrieves the top story
again. If the new story (as usual, stored in $_) is different
than the old story ($old), it’s printed.

#!/usr/bin/perl
#
cnn.pl: continuously display the top
story on CNN

use LWP::Simple;
use Text::Wrap;

$| = 1;

while (1) { #
Run forever

$_ = get("http://www.cnn.com");
s/FULL STORY.*\Z//sm;
s/\A.*Updated.*?$//sm;
s/<[^>]+>//gm;
s/\n\n+/\n\n/gm;
if ($old ne $_) { #

If it's a new story,
print wrap('', '', $_); #

Format and print it
$old = $_; #

...and remember it
}

208

sleep 300; #
Sleep for five minutes
}

209

Completing U.S. Postal Addresses

Back in 1999, there was a TPJ subscriber in Cambridge who
wasn’t getting his issues. When each issue went to press, Jon
FTP’d the TPJ mailing list to a professional mail house for
presorting and bagging and labeling that the U.S. Post Office
requires (an improvement over the days when Jon addressed
every issue himself in a cloud of Glu-Stik vapors).

The problem was that the mail house fixed addresses that
seemed incorrect. “Albequerque” became “Albuquerque,” and
“Somervile” became “Somerville”. Which is great, as long as
the rules for correcting addresses—developed by the Post
Office—work. They usually do, but occasionally a correct
address is “fixed” to an incorrect address. That’s what
happened to this subscriber, and here’s how Jon found out.

The address.pl program pretends to be a user typing
information into the fields of the post office’s web page at
http://www.usps.com/ncsc/. That page asks for six fields:
company (left blank for residential addresses),
urbanization (valid only for Puerto Rico), street,
city, and zip. You need to provide the street, and
either the zip or the city and state. Regardless of
which information you provide, the site responds with a
complete address and mail route:

$ address company "O'Really" urbanization ""

street "90 Shirman" city "Cambridge" state
"MA" zip ""

90 SHERMAN ST

210

CAMBRIDGE MA 02140-3233
Carrier Route : C074
County : MIDDLESEX
Delivery Point : 90
Check Digit : 3

Note that I deliberately inserted a spelling error: O’Really
and Shirman. The post office’s database is reasonably
resilient.

One inconvenience of address.pl is that you have to
supply placeholders for all the fields, even the ones you’re
leaving blank, like urbanization and zip above.

This program is trickier than the three you’ve seen. It doesn’t
use LWP::Simple, but two other modules from the LWP
bundle:
LWP::UserAgent and
HTTP::Request::Common. That’s because LWP::Simple can
handle only HTTP GET queries. This web site uses a POST
query, and so Dan used the more sophisticated
LWP::UserAgent module, which has an object-oriented
interface.

First, a LWP::UserAgent object, $ua, is created with new
and its request method invoked to POST the address data
to the web page. If the POST was successful, the
is_success method returns true, and the page contents
can then be found in the _content attribute of the response
object, $resp. The address is extracted as the _content
is being stored in $_, and two more s/// substitutions
remove unneeded data.

#!/usr/bin/perl -w
Need *either* state *or* zip

211

use LWP::UserAgent;
use

HTTP::Request::Common;

Create a new UserAgent object and invoke
its request() method
$ua = new LWP::UserAgent;
$resp = $ua->request(POST
'http://www.usps.com/cgi-bin/zip4/
zip4inq2', [@ARGV]);

exit -1 unless $resp->is_success;

Remove the text we don't care about
($_ = $resp->{_content}) =~ s/^.*address
is:<p>\n//si;
s/Version .*$//s;
s/<[^>]+>//g;

print;

You can use address.pl to determine the zip code given
an address, or to find out your own nine-digit zip code, or
even to find out who’s on the same mail carrier route as you.
If you type in the address of the White House, you’ll learn
that the First Lady has her own zip code, 20500-0002.

212

Downloading Stock Quotes

Salomon Smith Barney’s web site is one of many with free
15-minute delayed
stock quotes. To find the stock price for Yahoo, you’d
provide stock with its ticker symbol, yhoo:

$ stock.pl YHOO

$17.30

Like address.pl, stock.pl needs the
LWP::UserAgent module since it’s making a POST query.

Just because LWP::UserAgent has an OO interface doesn’t
mean the program has to spend an entire line creating an
object and explicitly storing it ($object = new
Class), although that’s undoubtedly what Gisle Aas
envisioned when he wrote the interface. Here, Dan’s
preoccupation with brevity shows, as he invokes an object’s
method in the same statement that creates the object: (new
LWP::UserAgent)->request(…).

#!/usr/bin/perl

Pulls a stock quote from Salomon Smith
Barney's web site.
#
Usage:

stock.pl ibm
#
or whatever stock ticker symbol you like.

use LWP::UserAgent;

213

use HTTP::Request::Common;

$response = (new
LWP::UserAgent)->request(POST

'http://www.salomonsmithbarney.com/
cgi-bin/benchopen/sb_quote',

[search_type => "1",
search_string => "$ARGV[0]"

]);

exit -1 unless $response->is_success;
$_ = $response->{_content};
m/ Price.*?(\$\d+\.?\d+)/gsm;
print $1;

214

Conclusion

These aren’t robust programs. They were dashed off in a
couple of minutes for one person’s pleasure, and they most
certainly will break as the companies in charge of these pages
change the web page formats or the URLs needed to access
them.

We don’t care. When that happens, these scripts will break,
we’ll notice that, and we’ll amend them accordingly. Sure,
each of these programs could be made much more flexible.
They could be primed to adapt to changes in the HTML, the
way a human would if the information were moved around on
the web page. Then the s/// expressions would fail, and the
programs could expend some effort trying to understand the
HTML using a more intelligent parsing scheme, perhaps
using the HTML::Parse or Parse::RecDescent modules. If the
URL became invalid, the scripts might start at the site home
page and pretend to be a naive user looking for his weather or
news or stock fix. A smart enough script could start at Yahoo
and follow links until it found what it was looking for, but so
far no one has written a script like that.

Of course, the time needed to create and test such programs
would be much longer than making quick, brittle, and
incremental changes to the code already written. No, it’s not
rocket science—it’s not even computer science—but it gets
the job done.

215

Afterword

All five of these programs worked as originally printed in TPJ
#13, but as one would expect, all five of them broke in the
two years between publication of the magazine and
publication of this book. Since the template of the programs
was sound, it took only a few minutes to update each, and the
programs you see here all work perfectly as of December
2002.

The next article, Downloading Web Pages Through a Proxy
Server, shows how to adapt these programs for use in
computing environments with firewalls.

216

217

Chapter 12. Downloading Web
Pages Through a Proxy Server

Rob Svirskas
The previous article presented five simple but elegant
programs that download information from various web
services: stock quotes, weather predictions, currency
information, U.S. postal address correction, and CNN
headline news. If you’re like me, your company uses a
firewall to repel wily hackers, which means that we have to
use a
proxy server to access most URLs. A
proxy server (sometimes called a “gateway”) is simply an
intermediary computer that sends your request to a server and
returns its response to you. The bad news: if you try to use the
LWP::Simple get function without first letting it know about
your proxy server, it returns nothing at all.

The good news: there’s a simple way around this. The
LWP::Simple module checks an environment variable called
http_proxy. If $ENV{http_proxy} contains the
name of a computer, your calls to get use it as a proxy
server. You can set environment variables in two ways: either
by assigning a value to $ENV{http_proxy}, or by using
whatever mechanism your shell or operating system provides.
For instance, you can define your proxy server under the Unix
bash shell as follows:

% export
http_proxy=http://proxy.mycompany.com:1080

218

This makes LWP::Simple route requests through port 1080 of
the proxy server proxy.mycompany.com. You may
need to use the set or setenv command, depending on
your shell. There are also related environment variables for
non-http services: ftp_proxy, gopher_proxy, and
wais_proxy. There’s also a no_proxy variable; we’ll
talk about that in a bit. Since we are using Perl, There’s More
Than One Way To Do It. We can still access URLs via a
proxy without mucking with environment variables if we
replace LWP::Simple with LWP::UserAgent and
HTTP::Request::Common. Let’s look at a version of the
currency converter (the first example from Five Quick Hacks:
Downloading Web Pages) that uses LWP::UserAgent:

#!/usr/bin/perl -w

Currency converter.
Usage:

currency.pl [amount] [from curr] [to curr]

use LWP::UserAgent;
use HTTP::Request::Common;

$ua = new LWP::UserAgent();

Set up the proxy server
$ua->proxy('http','http://proxy.mycompany.com:1080');

Retrieve the page
$resp = $ua->request(GET

"http://www.oanda.com/convert/
classic?value=$ARGV[0]&exch=$ARGV[1]&expr=$ARGV[2]");
$_ = $resp->{_content};

Remove the text we don't care about

219

s/^.*<!-- conversion result starts//s;
s/<!-- conversion result ends.*$//s;
s/<[^>]+>//g;
s/\s+/ /gm;

print $_, "\n";

The line beginning $ua->proxy defines our proxy server.
This routes the user agent’s HTTP requests through
proxy.mycompany.com. To use a proxy server for multiple
protocols, specify them in a list as below:

$ua->proxy(['http','ftp','wais'] =>
'http://proxy.mycompany.com:1080');

The programs that download the weather report and the CNN
top story (the second and third examples from Five Quick
Hacks: Downloading Web Pages) are also easy to convert:
replace LWP::Simple with LWP::UserAgent and
HTTP::Request::Common, and the calls to get with the user
agent code as described above. The U.S. Postal Address
program, address.pl, already has the UserAgent code—all we
need to do is add the single line of code after the UserAgent
has been created:

$ua = new LWP::UserAgent();
$ua->proxy('http','http://proxy.mycompany.com:1080');

Or, if you’re into brevity, create the user agent and set its
proxy server in one line:

($ua=(new LWP::UserAgent))->proxy('http',
'http://proxy.mycompany.com:1080');

Most
proxy servers will not let you access URLs within your own
domain. That’s why you often need to use your browser’s
Preferences menu to identify exceptions, telling your browser

220

which domains to access without using the proxy.
Fortunately, we can do that in our programs as well. If you
prefer using environment variables:

export no_proxy="mycompany.com"

this will bypass the proxy server for URLs ending in
mycompany.com (including URLs like
www.itsmycompany.com). As you might expect, this can be
done in the program instead:

$ua->no_proxy('mycompany.com');

If your program only needed to access web sites inside your
firewall, you wouldn’t need to declare the proxy server in the
first place, so the no_proxy would be superfluous.

Afterword

Since this article was originally published, an additional twist
was added where I work: we have to authenticate ourselves to
the proxy server with a username and password. If we don’t,
we get an error stating “Proxy Authentication Required”.
Fortunately, authenticating to a proxy is something that
HTTP::Request has in its bag of tricks. All we need to do is
add a call to the proxy_authorization_basic
subroutine after the GET (or POST). Let’s revisit the currency
converter as an example. In the version of the program shown
in this chapter, we have a single statement that sets the
request and gets the response:

$resp = $ua->request(GET
"http://www.oanda.com/convert/classic ...

We’ll just need to split it up:

221

$request = GET "http://www.oanda.com/
convert/classic?value=$ARGV[0]&exch

=$ARGV[1]&expr=$ARGV[2]";
$request->proxy_authorization_basic(qw(username
password));
$resp = $ua->request($request);

We first put the GET request in the variable $request. We
then authenticate to the proxy with username and password.
Finally, we get the response. The rest of the program remains
the same.

If we’re doing a POST instead of a GET, the method for
authenticating is identical. To change the address.pl program
as shown in Five Quick Hacks: Downloading Web Pages,
simply replace the line that gets the response:

$resp = $ua->request(POST
'http://www.usps.com/cgi-bin/zip4/
zip4inq2',
[@ARGV]);

with these four lines:
$ua->proxy('http','http://proxy.mycompany.com:1080');
$request = POST 'http://www.usps.com/
cgi-bin/zip4/zip4inq2',[@ARGV];
$request->proxy_authorization_basic(qw(username
password));
$resp = $ua->request($request);

We can take the same approach with the stock.pl program. In
keeping with the brevity of the original program in Five
Quick Hacks: Downloading Web Pages, we’ll replace Dan’s
single statement:

$response = (new
LWP::UserAgent)->request(POST ...

222

with these three:
($ua = (new LWP::UserAgent))->proxy
('http','http://proxy.mycompany.com:1080');
($request = POST
'http://www.salomonsmithbarney.com/cgi-bin/
benchopen/sb_quote',

[search_type => 1,
search_string =>

"$ARGV[0]"])->proxy_authorization_basic
(qw(username password));

$resp =
$ua->request($request);

223

Chapter 13. HTML::Parser

Ken MacFarlane

Tip ?

Since the original publication of this article, the
HTML::Parser module has continued to evolve (version
evolved (Version 3.25 as of this update), enabling one
you to write develop powerful parsing tools with a
minimum of coding. For those readers who are using this
wonderful tool for the first time, the examples here
should provide the means and feel for basic HTML
parsing techniques, which can then be further extended to
meet one’s needs. This article may also be useful for
those new to object-oriented programming (I once was
myself!) as it covers the concept of subclassing.

Perl is often used to manipulate the HTML files constituting
web pages. For instance, one common task is removing tags
from an HTML file to extract the plain text. Many solutions
for such tasks usually use regular expressions, which often
end up complicated, unattractive, and incomplete (or wrong).
The alternative, described here, is to use the HTML::Parser
module available on CPAN. HTML::Parser is an
object-oriented module, and so it requires some extra
explanation for casual users.

224

HTML::Parser works by scanning HTML input, and breaks it
up into segments by how the text would be interpreted by a
browser. For instance, this input: input would be broken up
into three segments: a start tag (), text (This is a link),
and an end tag ().

This is a link

As each segment is detected, the parser passes it to an
appropriate subroutine. There’s a subroutine for start tags, one
for end tags, and another for plain text. There are subroutines
for comments and declarations as well.

In this article, I’ll first give a simple example on how to read
and print out all the information found by HTML::Parser.
Next, I’ll demonstrate differences in the events triggered by
the parser. Finally, I’ll show how to access specific
information passed along by the parser.

As of this writing, there are two major versions of
HTML::Parser available. Both version Version 2 and version
Version 3 work by having you subclass the module. For this
article, I will mostly concentrate on the subclassing method,
because it will work with both major versions, and is a bit
easier to understand for those not overly familiar with some
of Perl’s finer details. In version Version 3, there is more of
an emphasis on the use of references, anonymous subroutines,
and similar topics; advanced users who may be interested will
see there is a brief example at the end of this article for
advanced users who may be interested.

225

Getting Started

The first thing to be aware of when using HTML::Parser is
that, unlike other modules, it appears to do absolutely
nothing. When I first attempted to use this module, I used
code similar to this:

#!/usr/bin/perl -w

use strict;
use HTML::Parser;

my $p = new HTML::Parser;
$p->parse_file("index.html");

No output whatsoever. If you look at the source code to the
module, you’ll see why:

sub text
{
my($self, $text) = @_;
}

sub declaration
{
my($self, $decl) = @_;
}

sub comment
{
my($self, $comment) = @_;
}

sub start
{
my($self, $tag, $attr, $attrseq,
$origtext) = @_;

226

$attr is reference to a HASH, $attrseq
is reference to an ARRAY

}

sub end
{
my($self, $tag, $origtext) = @_;
}

The whole idea of the parser is that as it chugs along through
the HTML, it calls these subroutines whenever it finds an
appropriate snippet (start tag, end tag, and so on). However,
these subroutines do nothing. My program works, and the
HTML is being parsed—but I never instructed the program to
do anything with the parse results.

227

The Identity Parser

The following is an example of how
HTML::Parser can be subclassed, and its methods overridden,
to produce meaningful output. This example simply prints out
the original HTML file,
unmodified:

1 #!/usr/bin/perl -w
2
3 use strict;
4
5 # Define the subclass
6 package IdentityParse;
7 use base "HTML::Parser";
8
9 sub text {

10 my ($self, $text) = @_;
11 # Just print out the original text
12 print $text;
13 }
14
15 sub comment {
16 my ($self, $comment) = @_;
17 # Print out original text with
comment marker
18 print "<!--", $comment, "-->";
19 }
20
21 sub start {
22 my ($self, $tag, $attr, $attrseq,
$origtext) = @_;
23 # Print out original text
24 print $origtext;
25 }

228

26
27 sub end {
28 my ($self, $tag, $origtext) = @_;
29 # Print out original text
30 print $origtext;
31 }
32
33 my $p = new IdentityParse;
34 $p->parse_file("index.html");

Lines 6 and 7 declare the IdentityParse package, having it
inherit from HTML::Parser. (Type perldoc perltoot
for more information on inheritance.) We then override the
text, comment, start, and end subroutines so that
they print their original values. The result is a script which
reads an HTML file, parses it, and prints it to standard output
in its original form.

229

The HTML Tag Stripper

Our next example strips all the tags from the HTML file and
prints just the text:

1 #!/usr/bin/perl -w
2
3 use strict;
4
5 package HTMLStrip;
6 use base "HTML::Parser";
7
8 sub text {
9 my ($self, $text) = @_;

10 print $text;
11 }
12
13 my $p = new HTMLStrip;
14 # Parse line-by-line, rather than the
whole file at once file at once
15 while (<>) {
16 $p->parse($_);
17 }
18 # Flush and parse remaining unparsed
HTML
19 $p->eof;

Since we’re only interested in the text and HTML tags, we
override only the text subroutine. Also note that in lines
13–17, we invoke the parse method instead of
parse_file. This lets us read files provided on the
command line. When using parse instead of
parse_file, we must also call the eof method (line 19);
this is done to check and clear HTML::Parser’s internal
buffer.

230

Another Example: HTML
Summaries

Suppose you’ve hand-crafted your own search engine for
your web site, and you want to be able to generate summaries
for each hit. You could use the HTML::Summary module
described in the article , but we’ll describe a simpler solution
here. We’ll assume that some (but not all) of your site’s pages
use a tag to describe the content:

<META NAME="DESCRIPTION"
CONTENT="description of file">

When a page has a <META> tag, your search engine should
use the CONTENT for the summary. Otherwise, the summary
should be the first H1 tag if one exists. And if that fails, we’ll
use the TITLE. Our third example generates such a
summary:

1 #!/usr/bin/perl -w
2
3 use strict;
4
5 package GetSummary;
6 use base "HTML::Parser";
7
8 my $meta_contents;
9 my $h1 = "";

10 my $title = "";
11
12 # Set state flags
13 my $h1_flag = 0;
14 my $title_flag = 0;
15

231

16 sub start {
17 my ($self, $tag, $attr, $attrseq,
$origtext) = @_;
18
19 if ($tag =~ /^meta$/i &&
$attr->{'name'} =~ /^description$/i) {
20 # Set if we find META
NAME="DESCRIPTION"
21 $meta_contents =
$attr->{'content'};
22 } elsif ($tag =~ /^h1$/i && ! $h1)
{
23 # Set state if we find <H1> or
<TITLE>
24 $h1_flag = 1;
25 } elsif ($tag =~ /^title$/i && !
$title) {
26 $title_flag = 1;
27 }
28 }
29
30 sub text {
31 my ($self, $text) = @_;
32 # If we're in <H1>...</H1> or
<TITLE>...</TITLE>, save text
33 if ($h1_flag) { $h1 .=
$text; }
34 if ($title_flag) { $title .=
$text; }
35 }
36
37 sub end {
38 my ($self, $tag, $origtext) = @_;
39
40 # Reset appropriate flag if we see
</H1> or </TITLE>
41 if ($tag =~ /^h1$/i) { $h1_flag
= 0; }

232

42 if ($tag =~ /^title$/i) { $h1_flag
= 0; }
43 }
44
45 my $p = new GetSummary;
46 while (<>) {
47 $p->parse($_);
48 }
49 $p->eof;
50
51 print "Summary information: ",
$meta_contents ||
52 $h1 || $title || "No summary
information found.", "\n";

The magic happens in lines 19–27. The variable $attr
contains a reference to a hash where the tag attributes are
represented with key/value pairs. The keys are lowercased by
the module, which is a code-saver; otherwise, we’d need to
check for all casing possibilities (name, NAME, Name,
and so on).

Lines 19–21 check to see if the current tag is a META tag and
has a field NAME set to DESCRIPTION; if so, the variable
$meta_contents is set to the value of the CONTENT
field. Lines 22–27 likewise check for an H1 or TITLE tag. In
these cases, the information we want is in the text between the
start and end tags, and not the tag itself. Furthermore, when
the text subroutine is called, it has no way of knowing which
tags (if any) its text is between. This is why we set a flag in
start (where the tag name is known) and check the flag in
text (where it isn’t). Lines 22 and 25 also check whether or
not $h1 and $title have been set; since we only want the
first match, subsequent matches are ignored.

233

Chapter 22 Summarizing Web Pages with
HTML::Summary<META>

234

Another Fictional Example

Your company has been running a successful product site,
http://www.bar.com/foo/. However, the web marketing team
decides that http://foo.bar.com/ looks better in the company’s
advertising materials, so a redirect is set up from the new
address to the old.

Fast forward to Friday, 4:45 in the afternoon, when the phone
rings. The frantic voice on the other end says, “foo.bar.com
just crashed! We need to change all the links back to the old
location!”
Just when you though a simple search-and-replace would
suffice, the voice adds: “And marketing says we can’t change
the text of the web pages, only the links.”

“No problem,” you respond, and quickly hack together a
program that changes the links in A HREF tags, and nowhere
else.

1 #!/usr/bin/perl -w -i.bak
2
3 use strict;
4
5 package ChangeLinks;
6 use base "HTML::Parser";
7
8 sub start {
9 my ($self, $tag, $attr, $attrseq,

$origtext) = @_;
10
11 # We're only interested in
changing <A ...> tags
12 unless ($tag =~ /^a$/) {

235

13 print $origtext;
14 return;
15 }
16
17 if (defined $attr->{'href'}) {
18 $attr->{'href'} =~
s[foo\.bar\.com][www\.bar\.com/foo];
19 }
20
21 print "<A ";
22 # Print each attribute of the <A
...> tag
23 foreach my $i (@$attrseq) {
24 print $i, qq(="$attr->{$i}");
25 }
26 print ">";
27 }
28
29 sub text {
30 my ($self, $text) = @_;
31 print $text;
32 }
33
34 sub comment {
35 my ($self, $comment) = @_;
36 print "<!--", $comment, "-->";
37 }
38
39 sub end {
40 my ($self, $tag, $origtext) = @_;
41 print $origtext;
42 }
43
44 my $p = new ChangeLinks;
45 while (<>) {
46 $p->parse($_);
47 }
48 $p->eof;

236

Line 1 specifies that the files will be edited in place, with the
original files being renamed with a .bak extension. The real
fun is in the start subroutine, lines 8–27. First, in lines
12–15, we check for an A tag; if that’s not what we have, we
simply return the original tag. Lines 17–19 check for the
HREF and make the desired substitution.

$attrseq appears in line 23. This variable is a reference to
an array with the tag attributes in their original order of
appearance. If the attribute order needs to be preserved, this
array is necessary to reconstruct the original order, since the
hash $attr will jumble them up. Here, we dereference
$attrseq and then recreate each tag. The attribute names
will appear lowercase regardless of how they originally
appeared. If you’d prefer uppercase, change the first $i in
line 24 to uc($i).

237

Using HTML::Parser Version 3

Version 3 of the module provides more flexibility in how the
handlers are invoked. One big change is that you no longer
have to use subclassing; rather, event handlers can be
specified when the HTML::Parser constructor is called. The
following example is equivalent to the previous program but
uses some of the version Version 3 features:

1 #!/usr/bin/perl -w -i.bak
2
3 use strict;
4 use HTML::Parser;
5
6 # Specify events here rather than in a

subclass
7 my $p = HTML::Parser->new(api_version

=> 3,
8 start_h

=> [\&start,

9
"tagname, attr, attrseq, text"],
10 default_h
=> [sub { print shift }, "text"],
11);
12 sub start {
13 my ($tag, $attr, $attrseq,
$origtext) = @_;
14
15 unless ($tag =~ /^a$/) {
16 print $origtext;
17 return;
18 }
19

238

20 if (defined $attr->{'href'}) {
21 $attr->{'href'} =~
s[foo\.bar\.com][www\.bar\.com/foo];
22 }
23
24 print "<A ";
25 foreach my $i (@$attrseq) {
26 print $i, qq(="$attr->{$i}");
27 }
28 print ">";
29 }
30
31 while (<>) {
32 $p->parse($_);
33 }
34 $p->eof;

The key changes are in lines 7–10. In line 8, we specify that
the start event is to be handled by the start subroutine.
Another key important change is line 10; version Version 3 of
HTML::Parser supports the notion of a default handler. In the
previous example, we needed to specify separate handlers for
text, end tags, and comments; here, we use default_h as a
catch-all. This turns out to be a code saver as well.

Take a closer look at line 9, and compare it to line 9 of the
previous example. Note that $self hasn’t been passed. In
version Version 3 of HTML::Parser, the list of attributes
which that can be passed along to the handler subroutine is
configurable. If our program only needed to use the tag name
and text, we can change the string tagname, attr,
attrseq, text to simply tagname, text and then
change the start subroutine to only use two parameters.
Also, handlers are not limited to subroutines. If we changed

239

the default handler like this, the text that would have been
printed is instead pushed onto @lines:

my $p = HTML::Parser->new(api_version =>
3,

start_h =>
[\&start,

"tagname, attr, attrseq, text"],
default_h =>

\@lines, "text"],
);

Version 3 of HTML::Parser also adds some new features;
notably, one can now set options to recognize and act upon
XML constructs, such as <TAG/> and <?TAG?>. There are
also multiple methods of accessing tag information, instead of
the $attr hash. Rather than go into further detail, I
encourage you to explore the flexibility and power of this
module on your own.

240

241

Acknowledgments

The HTML::Parser module was written by Gisle Aas and
Michael A. Chase. Excerpts of code and documentation from
the module are used here with the authors’ permission.

242

Chapter 14. Scanning HTML

Sean M. Burke

Tip ?

This article turned out to be so popular that I ended up
writing a whole book, Perl & LWP (O’Reilly), which
goes into great detail about the many ways of pulling
data out of markup languages like HTML.

In the previous article, Ken MacFarlane describes how the
HTML::Parser module scans HTML source as a stream of
start tags, end tags, text, comments, and so on. In another
issue of TPJ (and republished in Computer Science & Perl
Programming: Best of the Perl Journal), I described tree data
structures. Now I’ll tie it together by discussing trees of
HTML.

The CPAN module
HTML::TreeBuilder takes the tags that HTML::Parser
extracts, and builds a parse tree—a tree-shaped network of
objects representing the structured content of an HTML
document. Once the document is parsed as a tree, you’ll find
the common tasks of extracting data from that HTML
document/tree to be quite straightforward.

243

HTML::Parser, HTML::TreeBuilder,
and HTML::Element

HTML::TreeBuilder can construct a parse tree out of an
HTML source file simply by saying:

use HTML::TreeBuilder;
my $tree = HTML::TreeBuilder->new();
$tree->parse_file('foo.html');

$tree now contains a parse tree built from the HTML in
foo.html. The parse tree is represented as a network of
objects—$tree is the root, an element with tag name
html. Its children typically include head and body
elements, and so on. Each element in the tree is an object of
the class
HTML::Element.

If you take this source:
<html><head><title>Doc 1</title></head>
<body>
Stuff <hr> 2000-08-17
</body></html>

and feed it to
HTML::TreeBuilder, it’ll return a tree of objects that looks
like this:

html
/ \

head body
/ / | \

title "Stuff" hr "2000-08-17"
|

"Doc 1"

244

This is a pretty simple document. If it were any more
complex, it’d be a bit hard to draw in that style, since it
sprawls left and right. The same tree can be represented a bit
more easily sideways, with indenting:

• html
• head

• title
• "Doc 1"

• body
• "Stuff"
• hr
• "2000-08-17"

Both representations express the same structure. The root
node is an object of the
class
HTML::Element (actually, of HTML::TreeBuilder, but that’s
just a subclass of HTML::Element) with the tag name html,
and with two children: an HTML::Element object whose tag
names are head and body. And each of those elements
have children, and so on down. Not all elements have
children—the C element doesn’t, for instance. And not all
nodes in the tree are elements—the text nodes (Doc 1,
Stuff, and 2000-08-17) are just strings.

Objects of the class HTML::Element have three noteworthy
attributes:

_tag

Best accessed as $element->tag. The element’s tag
name, lowercased (e.g., em for an EM element).[1]

245

_parent

Best accessed as $element->parent. The element
that is the element’s parent, or undef if this element is
the root.

_content

Best accessed as $element->content_list. The
list of nodes (i.e., elements or text segments) that are the
element’s children.

Moreover, if an element has any attributes, those are readable
as $element->attr(‘name’)—for example, with the
object built from bar, the method
call $element->attr(‘id’) returns the string foo.
Furthermore, $element->tag on that object returns the
string “a”, $element->content_list returns a list
consisting of just the single scalar bar, and
$element->parent method returns the parent of this
node—which might be, for example, a <p> element.

And that’s all that there is to it: you throw HTML source at
TreeBuilder, and it returns a tree of HTML::Element objects
and some text strings.

However, what do you do with a tree of objects? People code
information into HTML
trees not for the fun of arranging elements, but to represent
the structure of specific text and images—some text is in this
li element, some other text is in that heading, some images
are in this table cell with those attributes, and so on.

246

Now, it may happen that you’re rendering that whole HTML
tree into some layout format. Or you could be trying to make
some systematic change to the HTML tree before dumping it
out as HTML source again. But in my experience, the most
common programming task that Perl programmers face with
HTML is trying to extract some piece of information from a
larger document. Since that’s so common (and also since it
involves concepts required for more complex tasks), that is
what the rest of this article will be about.

[1] Yes, this is misnamed. In proper SGML lingo, this is
instead called a GI (short for “generic identifier”) and the
term “tag” is used for a token of SGML source that represents
either the start of an element (a start tag like <em
lang=‘fr’>) or the end of an element (an end tag like
). However, since more people claim to have been
abducted by aliens than to have ever seen the SGML
standard, and since both encounters typically involve a
feeling of “missing time,” it’s not surprising that the
terminology of the SGML standard is not closely followed.)

247

Scanning HTML Trees

Suppose you have a thousand HTML documents, each of
them a press release. They all start out:

[...lots of leading images and junk...]

<h1>ConGlomCo to Open New Corporate Office
in Ouagadougou</h1>

BAKERSFIELD, CA, 2000-04-24 -- ConGlomCo's
vice president in
charge of world conquest, Rock Feldspar,
announced today the
opening of a new office in Ouagadougou,
the capital city of
Burkina Faso, gateway to the bustling
"Silicon Sahara" of
Africa...

[...etc...]

For each document, you’ve got to copy whatever text is in the
h1 element, so that you can make a table of its contents.
There are three ways to do this:

▪ You can just use a regex to scan the file for a text
pattern. For simple tasks, this will be fine. Many HTML
documents are, in practice, very consistently formatted
with respect to placement of linebreaks and whitespace,
so you could just get away with scanning the file like so:

sub get_heading {
my $filename = $_[0];
local *

248

HTML;
open(HTML, $filename) or die

"Couldn't open $filename);
my $heading;

Line:
while (<HTML>) {

if(m{<h1>(.*?)</h1>}i) {
$heading = $1;
last Line;

}
}
close(HTML);
warn "No heading in $filename?"

unless defined $heading;
return $heading;

}

This is quick, fast, and fragile—if there’s a newline in
the middle of a heading’s text, it won’t match the above
regex, and you’ll get an error. The regex will also fail if
the h1 element’s start tag has any attributes. If you have
to adapt your code to fit more kinds of start tags, you’ll
end up basically reinventing part of HTML::Parser, at
which point you should probably just stop and use
HTML::Parser itself.

▪ You can use HTML::Parser to scan the file for an h1
start tag token and capture all the text tokens until the h1
end tag. This approach is extensively covered in the
previous article. (A variant of this approach is to use
HTML::TokeParser, which presents a different and
handier interface to the tokens that HTML::Parser
extracts.)

Using HTML::Parser is less fragile than our first
approach, since it is insensitive to the exact internal

249

formatting of the start tag (much less whether it’s split
across two lines). However, when you need more
information about the context of the h1 element, or if
you’re having to deal with tricky HTML bits like tables,
you’ll find that the flat list of tokens returned by
HTML::Parser isn’t immediately useful. To get
something useful out of those tokens, you’ll need to
write code that knows which elements take no content
(as with C elements), and that </p> end tags are
optional, so a <p> ends any currently open paragraph.
You’re well on your way to pointlessly reinventing much
of the code in
HTML::TreeBuilder, and as the person who last rewrote
that module, I can attest that it wasn’t terribly easy to get
right! Never underestimate the perversity of people
creating HTML. At this point you should probably just
stop and use HTML::TreeBuilder itself.

▪ You can use HTML::Treebuilder and scan the tree of
elements it creates. This last approach is diametrically
opposed to the first approach, which involves just
elementary Perl and one regex. The TreeBuilder
approach involves being comfortable with the concept of
tree-shaped data structures and modules with
object-oriented interfaces, as well as with the particular
interfaces that HTML::TreeBuilder and HTML::Element
provide.

However, the TreeBuilder approach is the most robust,
because it involves dealing with
HTML in its “native” format—the tree structure that HTML
code represents, without any consideration of how the source
is coded and with what tags are omitted.

250

To extract the text from the h1 elements of an HTML
document with
HTML::TreeBuilder, you’d do this:

sub get_heading {
my $tree = HTML::TreeBuilder->new;
$tree->parse_file

($_[0]);
my $heading;
my $h1 = $tree->look_down('_tag', 'h1');
if ($h1) {

$heading = $h1->as_text;
} else {

warn "No heading in $_[0]?";
}
$tree->delete; # clear memory
return $heading;

}

This uses some unfamiliar methods. The parse_file
method we’ve seen before builds a tree based on source from
the file given. The delete method is for marking a tree’s
contents as available for garbage collection when you’re
done. The as_text method returns a string that contains all
the text bits that are children (or otherwise descendants) of the
given node; to get the text content of the $h1 object, we
could just say:

$heading = join '', $h1->content_list;

but that will work only if we’re sure that the h1 element’s
children will be only text bits. If the document contained this:

<h1>Local Man Sees <cite>Blade</cite>
Again</h1>

then the subtree would be:

251

• h1
• "Local Man Sees "
• cite

• "Blade"
• " Again'

so join ‘’, $h1->content_list will result in
something like this:

Local Man Sees
HTML::Element=HASH(0x15424040) Again

Meanwhile, $h1->as_text would yield:

Local Man Sees Blade Again

Depending on what you’re doing with the heading text, you
might want the as_HTML method instead. It returns the
subtree represented as HTML source. $h1->as_HTML
would yield:

<h1>Local Man Sees <cite>Blade</cite>
Again</h1>

However, if you wanted the contents of $h1 as HTML, but
not the $h1 itself, you could say:

join '',
map(

ref($_) ? $_->as_HTML : $_,
$h1->content_list

)

This map iterates over the nodes in $h1’s list of children,
and for each node that’s only a text bit (like Local Man
Sees is), it just passes through that string value, and for each
node that’s an actual object (causing ref to be true),
as_HTML will be used instead of the string value of the

252

object itself (which would be something quite useless, as most
object values are). So for the cite element, as_HTML will
be the string <cite>Blade</cite>. And then, finally,
join just combines all the strings that the map returns into
one string.

Finally, the most important method in our get_heading
subroutine is the look_down method. This method looks
down at the subtree starting at the given object (here, $h1),
retrieving elements that meet criteria you provide.

The criteria are specified in the method’s argument list. Each
criterion consists of two scalars: a key and a value expressing
an element and attribute. The key might be _tag or src,
and the value might be an attribute like h1. Or, the criterion
can be a reference to a subroutine that, when called on an
element, returns true if it’s a node you’re looking for. If you
specify several criteria, that means you want all the elements
that satisfy all the criteria. (In other words, there’s an implicit
“and.”)

And finally, there’s a bit of an optimization. If you call the
look_down method in a scalar context, you get just the first
node (or undef if none)—and, in fact, once look_down
finds that first matching element, it doesn’t bother looking
any further. So the example:

$h1 = $tree->look_down('_tag', 'h1');

returns the first element at or under $tree whose _tag
attribute has the value h1.

253

Complex Criteria in Tree Scanning

Now, the above look_down code looks like a lot of bother,
with barely more benefit than just grepping the file! But
consider a situation in which your criteria are more
complicated—suppose you found that some of your press
releases had several h1 elements, possibly before or after the
one you actually want. For example:

<h1><center>Visit Our Corporate Partner

</center>
</h1>
<h1><center>ConGlomCo President Schreck to
Visit Regional HQ

<a href="/photos/
Schreck_visit_large.jpg">

<img src="/photos/
Schreck_visit.jpg">

</center></h1>

Here, you want to ignore the first h1 element because it
contains an ad, and you want the text from the second h1.
The problem is how to formalize what’s an ad and what’s not.
Since ad banners are always entreating you to “visit” the
sponsoring site, you could exclude h1 elements that contain
the word “visit” under them:

my $real_h1 = $tree->look_down('_tag',
'h1',

sub {
$_[0]->as_text !~ m/\bvisit/i });

254

The first criterion looks for h1 elements, and the second
criterion limits those to only the ones with text that doesn’t
match m/\bvisit/. Unfortunately, that won’t work for
our example, since the second h1 mentions “ConGlomCo
President Schreck to Visit Regional HQ”.

Instead, you could try looking for the first h1 element that
doesn’t contain an image:

my $real_h1 = $tree->look_down('_tag',
'h1',

sub { not
$_[0]->look_down('_tag', 'img') });

This criterion subroutine might seem a bit odd, since it calls
look_down as part of a larger look_down operation, but
that’s fine. Note if there’s no matching element at or under
the given element, look_down returns false (specifically,
undef) in a boolean context. If there are matching elements,
it returns the first. So this means “return true only if this
element has no img element as descendants and isn’t an img
element itself.”

sub { not $_[0]->look_down('_tag', 'img') }

This correctly filters out the first h1 that contains the ad, but
it also incorrectly filters out the second h1 that contains a
non-advertisement photo near the headline text you want.

There clearly are detectable differences between the first and
second h1 elements—the only second one contains the string
“Schreck”, and we can just test for that:

my $real_h1 = $tree->look_down('_tag',
'h1',

sub {
$_[0]->as_text =~ m{Schreck} });

255

And that works fine for this one example, but unless all
thousand of your press releases have “Schreck” in the
headline, it’s not generic enough. However, if all the ads in
h1 s involve a link with a URL that includes /dyna/, you
can use that:

my $real_h1 = $tree->look_down('_tag',
'h1',

sub {
my

$link = $_[0]->look_down('_tag','a');

No
link means it's fine

return 1 unless $link;

A
link to there is bad

return 0 if $link->attr('href') =~ m{/dyna/
};

return 1; # Otherwise okay
});

Or you can look at it another way, and say that you want the
first h1 element that either contains no images, or else with
an image that has a src attribute whose value contains
/photos/:

my $real_h1 = $tree->look_down('_tag',
'h1',

sub {
my

$img = $_[0]->look_down('_tag','img');

No

256

image means it's fine

return 1 unless $img;

#
Good if a photo

return 1 if $img->attr('src') =~ m{/photos/
};

return 0; # Otherwise bad
});

Recall that this use of look_down in a scalar context
returns the first element at or under $tree matching all the
criteria. But if you can formulate criteria that match several
possible h1 elements, with the last one being the one you
want, you can use look_down in a list context, and ignore
all but the last element of the returned list:

my @h1s = $tree->look_down('_tag', 'h1',
...maybe more criteria...);

die "What, no h1s here?" unless @h1s;

my $real_h1 = $h1s[-1]; # last or only
element

257

A Case Study: Scanning Yahoo!
News

The above (somewhat contrived) case involves extracting
data from a bunch of pre-existing HTML files. In such
situations, it’s easy to know when your code works, since the
data it handles won’t change or grow, and you typically need
to run the program only once.

The other kind of situation faced in many data extraction
tasks is in which the program is used recurringly to handle
new data, such as from ever-changing web pages. As a
real-world example of this, consider a program that you could
use to extract headline links from subsections of
Yahoo! News (http://dailynews.yahoo.com/). Yahoo! News
has several subsections, such as:

http://dailynews.yahoo.com/h/tc/ for technology news
http://dailynews.yahoo.com/h/sc/ for science news
http://dailynews.yahoo.com/h/hl/ for health news
http://dailynews.yahoo.com/h/wl/ for world news
http://dailynews.yahoo.com/h/en/ for entertainment news

All of them are built on the same basic HTML template—and
a scarily complicated template it is, especially when you look
at it with an eye toward identifying the real headline links and
screening out the links to everything else. You’ll need to
puzzle over the HTML source, and scrutinize the output of
$tree->dump on the parse tree of that HTML.

Sometimes the only way to pin down what you’re after is by
position in the tree. For example, headlines of interest may be

258

in the third column of the second row of the second table
element in a page:

my $table = (
$tree->look_down('_tag','table'))[1];
my $row2 = ($table->look_down('_tag',
'tr'))[1];
my $col3 = ($row2->look-down('_tag',
'td'))[2];

...then do things with $col3...

Or they might be all the links in a <p> element with more
than two
 elements as children:

my $p = $tree->look_down('_tag', 'p',
sub { 2 < grep { ref($_) and $_->tag

eq 'br' } $_[0]->content_list });

@links = $p->look_down('_tag', 'a');

But almost always, you can get away with looking for
properties of the thing itself, rather than just looking for
contexts. If you’re lucky, the document you’re looking
through has clear semantic tagging, perhaps tailored for CSS
(Cascading Style Sheets):

<a href="...long_news_url..."
class="headlinelink">Elvis seen in
tortilla

If you find anything like that, you could leap right in and
select links with:

@links = $tree->look_down('class',
'headlinelink');

Regrettably, your chances of observing such semantic markup
principles in real-life HTML are pretty slim. (In fact, your

259

chances of finding a page that is simply free of HTML errors
are even slimmer. And surprisingly, the quality of the code at
sites like Amazon or Yahoo! is typically worse than at
personal sites whose entire production cycle involves simply
being saved and uploaded from Netscape Composer.)

The code may be “accidentally semantic,” however—for
example, in a set of pages I was scanning recently, I found
that looking for td elements with a width attribute value of
375 got me exactly what I wanted. No one designing that
page ever conceived of width=375 as meaning “this is a
headline,” but if you take it to mean that, it works.

An approach like this happens to work for the
Yahoo! News code, because the headline links are
distinguished by the fact that they (and they alone) contain a
b element:

Elvis
seen in tortilla

Or, diagrammed as a part of the parse tree:
• a [href="...long_news_url..."]

• b
• "Elvis seen in tortilla"

A rule that matches these can be formalized as “look for any
a element that has only one daughter node, which must be a b
element.” And this is what it looks like when cooked up as a
look_down expression and prefaced with a bit of code to
retrieve the
Yahoo! News page and feed it to TreeBuilder:

use strict;
use HTML::TreeBuilder 3;
use LWP 5.64;

260

sub get_headlines {
my $url = $_[0] || die "What URL?";

my $response =
LWP::UserAgent->new->get($url);

unless ($response->is_success) {
warn "Couldn't get $url: ",

$response->status_line, "\n";
return;

}

my $tree = HTML::TreeBuilder->new();
$tree->parse($response->content);
$tree->eof;

my @out;
foreach my $link (

$tree->look_down('_tag', 'a',
sub {

return
unless $_[0]->attr('href');

my @c
= $_[0]->content_list;

@c = =
1 and ref $c[0] and $c[0]->tag eq 'b';

})) {
push @out, [$link->attr('href'),

$link->as_text];
}

warn "Odd, fewer than 6 stories in
$url!" if @out < 6;

$tree->delete;
return @out;

}

261

And we add a bit of code to call get_headlines and
display the results:

foreach my $section (qw[tc sc hl wl en]) {
my @links = get_headlines(

"http://dailynews.yahoo.com/h/$section/");
print $section, ": ", scalar(@links),

" stories\n",
map((" ", $_->[0], " : ",

$_->[1], "\n"), @links), "\n";
}

Now we have our own headline extractor service! By itself, it
isn’t amazingly useful (since if you want to see the headlines,
you can just look at the
Yahoo! News pages), but it could easily be the basis for
features like filtering the headlines for particular topics of
interest.

One of these days, Yahoo! News will change its HTML
template. When this happens, the above program finds no
links meeting our criteria—or, less likely, dozens of
erroneous links that meet the criteria. In either case, the
criteria will have to be changed for the new template; they
may just need adjustment, or you may need to scrap them and
start over.

262

Regardez, Duvet!

It’s often a challenge to write criteria that match the desired
parts of an HTML parse tree. Very often you can pull it off
with a simple $tree->look_down(‘_tag’, ‘h1’),
but sometimes you have to keep adding and refining criteria,
until you end up with complex filters like I’ve shown in this
article. The benefit of HTML parse trees is that one main
search tool, the look_down method, can do most of the
work, making simple things easy while keeping hard things
possible.

263

Chapter 15. A Web Spider in One
Line

Tkil
One day, someone on the IRC #perl channel was asking some
confused questions. We finally managed to figure out that he
was trying to write a
web robot, or “spider,” in Perl. Which is a grand idea, except
that:

1. Perfectly good spiders have already been written and are
freely available at http://info.webcrawler.com/mak/
projects/robots/robots.html.

2. A Perl-based
web spider is probably not an ideal project for novice
Perl programmers. They should work their way up to it.

Having said that, I immediately pictured a one-line Perl robot.
It wouldn’t do much, but it would be amusing. After a few
abortive attempts, I ended up with this monster, which
requires Perl 5.005. I’ve split it onto separate lines for easier
reading.

perl -MLWP::UserAgent -MHTML::LinkExtor
-MURI::URL -lwe '

$ua = LWP::UserAgent->new;
while (my $link = shift @ARGV) {

print STDERR "working on $link";
HTML::LinkExtor->new(

sub {
my ($t, %a) = @_;

264

my @links = map { url($_,
$link)->abs() }

grep { defined }
@a{qw/href img/};

print STDERR "+ $_" foreach
@links;

push @ARGV, @links;
}) -> parse(
do {

my $r = $ua->simple_request

(HTTP::Request->new("GET", $link));
$r->content_type eq "text/

html" ? $r->content : "";
}

)
}'http://slinky.scrye.com/~tkil/

I actually edited this on a single line; I use shell-mode inside
of Emacs, so it wasn’t that much of a terror. Here’s the
one-line version.

perl -MLWP::UserAgent -MHTML::LinkExtor
-MURI::URL -lwe
'$ua = LWP::UserAgent->new; while (my
$link = shift @ARGV) {
print STDERR "working on
$link";HTML::LinkExtor->new(sub
{ my ($t, %a) = @_; my @

links = map { url($_, $link)->abs()
} grep { defined } @a{qw/href img/}; print
STDERR "+ $_"
foreach @links; push @ARGV, @links}
)->parse(do { my $r =
$ua->simple_request
(HTTP::Request->new("GET", $link));
$r->content_type eq "text/html" ? $r->

265

content : ""; })
}' http://slinky.scrye.com/~tkil/

After getting an ego-raising chorus of groans from the hapless
onlookers in #perl, I thought I’d try to identify some cute
things I did with this code that might actually be instructive to
TPJ readers.

Callbacks and Closures

Many modules are designed to do grunt work. In this case,
HTML::LinkExtor (a specialized version of HTML::Parser)
knows how to look through an HTML document and find
links. Once it finds them, however, it needs to know what to
do with them.

This is where callbacks come in. They’re well known in GUI
circles, since interfaces need to know what to do when a
button is pressed or a menu item selected. Here,
HTML::LinkExtor needs to know what to do with links (all
tags, actually) when it finds them.

My callback is an anonymous subroutine reference:
sub {

my ($t, %a) = @_;
my @links = map { url($_,

$link)->abs() }
grep { defined } @a{qw/

href img/};
print STDERR "+ $_" foreach @links;
push @ARGV, @links;

}

I didn’t notice until later that $link is actually scoped just
outside of this subroutine (in the

266

while loop), making this subroutine look almost like a
closure. It’s not a classical closure—it doesn’t define its own
storage—but it does use a lexical value far away from where
it is defined.

267

Cascading Arrows

It’s amusing to note that, aside from debugging output, the
while loop consists of a single statement. The arrow operator
(->) only cares about the value of the left hand side. This is
the heart of the Perl/Tk idiom:

my $button = $main->Button(...)->pack();

We use a similar approach, except we don’t keep a copy of
the created reference (which is stored in $button above):

HTML::LinkExtor->new(...)->parse(...);

This is a nice shortcut to use whenever you want to create an
object for a single use.

268

Using Modules with One-Liners

When I first thought of this one-liner, I knew I’d be using
modules from the libwww-perl (LWP) library. The first few
iterations of this “one-liner” used LWP::Simple, which
explicitly states that it should be ideal for one-liners. The -M
flag is easy to use, and makes many things very easy.
LWP::Simple fetched the files just fine. I used something like
this:

HTML::LinkExtor->new(...)->parse(get
$link);

Where get is a function provided by LWP::Simple; it returns
the contents of a given URL.

Unfortunately, I needed to check the Content-Type of
the returned data. The first version merrily tried to parse
.tar.gz files and got confused:

working on ./dist/irchat/irchat-3.03.tar.gz
Use of uninitialized value at

/usr/lib/perl5/site_perl/5.005/LWP/
Protocol.pm line 104.
Use of uninitialized value at

/usr/lib/perl5/site_perl/5.005/LWP/
Protocol.pm line 107.
Use of uninitialized value at

/usr/lib/perl5/site_perl/5.005/LWP/
Protocol.pm line 82.

Oops.

Switching to the “industrial strength” LWP::UserAgent
module allowed me to check the Content-Type of the fetched

269

page. Using this information, together with the
HTTP::Response module and a quick ?: construct, I could
parse either the HTML content or an empty string.

270

The End

Whenever I write a one-liner, I find it interesting to think
about it in different ways. While I was writing it, I was mostly
thinking from the bottom up; some of the complex nesting is
a result of this. For example, the callback routine is fairly
hairy, but once I had it written, I could change the data source
from LWP::Simple::get to LWP::UserAgent and
HTTP::Request::content quite easily.

Obviously, this spider does nothing more than visit HTML
pages and try to grab all the links off each one. It could be
more polite (as the LWP::RobotUA module is) and it could be
smarter about which links to visit. In particular, there’s no
sense of which pages have already been visited; a tied DBM
of visited pages would solve that nicely.

Even with these limitations, I’m impressed at the power
expressed by that “one” line. Kudos for that go to Gisle Aas
(the author of LWP) and to Larry Wall, for making a
language that does all the boring stuff for us. Thanks Gisle
and Larry!

271

Chapter 16. Webpluck

Ed Hill
The promises of
smart little web
agents that run around the web and grab things of interest
have gone unfulfilled. Like me, you probably have a handful
of web pages that you check on a regular basis, and if you had
the time, you’d check many more.

Listed below are a few of the bookmarks that I check on a
regular basis. Each of these pages has content that changes
every day, and it is, of course, the content of these pages that I
am interested in—not their layout, nor the advertising that
appears on the pages.

Dilbert (of course)
CNN U.S. News
Astronomy Picture of the Day
C|Net’s News.com
The local paper (The Daily Iowan)
ESPNET Sportszone

These pages are great sources of information. My problem is
that I don’t have time to check each one every day to see what
is there or if the page has been updated. What I want is my
own personal newspaper built from the sources listed above.

272

Similar Tools

This is not an original idea, but after spending many hours
searching for a tool to do what I wanted, I gave up. Here are
the contenders I considered, and why they didn’t do quite
what I wanted.

First there is the “smart” agent, a little gremlin that roams the
net trying to guess what you want to see using some AI
technique. Firefly was an example; you indicate interest in a
particular topic and it points you at a list of sites that others
have ranked. When I first looked at Firefly, it suggested that
since I was interested in “computers and the internet,” I
should check out (Figure 16-1).

273

Figure 16-1. The Amazing Clickable Beavis

This is why I don’t have much confidence in agents. Besides,
I know what I want to see. I have the URLs in hand. I just
don’t have the time to go and check all the pages every day.

The second type of technology is the “custom newspaper.”
There are two basic types. CRAYON (Create Your Own
Newspaper, headquartered at http://www.crayon.net/), is one
flavor of personalized newspaper. CRAYON is little more
than a page full of links to other pages that change everyday.
For me, CRAYON just adds to the problem, listing tons of

274

pages that I wish I had time to check out. I was still stuck
clicking through lists of links to visit all the different pages.

Then there are sites like My Yahoo (http://my.yahoo.com/), a
single page that content changes every day. This is very close
to what I wanted—a single site with all of the information I
need. My Yahoo combines resources from a variety of
different sources. It shows a one-line summary of an article; if
it’s something that I find interesting, I can click on the link to
read more about it. The only problem with My Yahoo is that
it’s restricted to a small set of content providers. I want
resources other than what Yahoo provides.

Since these tools didn’t do exactly what I wanted, I decided to
write my own. I figured with Perl, the LWP library, and a
weekend, I could throw together exactly what I wanted. Thus
webpluck was born. My goal was to write a generic tool
that would automatically grab data from any web page and
create a personalized newspaper exactly like My Yahoo. I
decided the best approach was to define a regular expression
for each web page of interest. webpluck uses the LWP
library to retrieve the web page, extracts the content with a
regular expression tailored to each, and saves it to a local
cache for display later. Once it has done this for all the
sources, I use a template to generate my personal newspaper.

275

How to Use webpluck

I don’t want this article to turn into a manual page (since one
already exists), but here’s a brief summary of how to use
webpluck. You first create a configuration file containing a
list of targets that define which pages you want to read, and
the regular expression to match against the contents of that
page. Here is an example of a target definition that retrieves
headlines from the CNN U.S. web page.

name cnn-us
url http://www.cnn.com/US/
regex <h2>([^\<]+)<\/h2>.*?<a
href=\"([^\"]+)\"
fields title:url

These definitions define the following: the name of the file to
hold the data retrieved from the web page; the URL of the
page (if you point at a page containing frames, you need to
determine the URL of the page that actually contains the
content); the Perl regular expression used to extract data from
the web page; and the names of the fields matched in the
regular expression that you just defined. The first pair of
parentheses in the regex field matches the first field, the
second pair matches the second, and so on. For the
configuration shown, ([^\<]+) is tagged as the title and
([^\″]+) is tagged as the url. That url is the link to the
actual content, distinct from the url definition on the second
line, which is the starting point for the regex.

Running webpluck with the target definition above creates
a file called cnn-us in a cache directory that you define.
Here’s the file from March 25, 1997:

276

title:Oklahoma bombing judge to let
'impact witnesses' see trial
url:http://www.cnn.com/US/9703/25/okc/
index.html

title:Simpson's attorneys ask for a new
trial and lower damages
url:http://www.cnn.com/US/9703/25/
simpson.newtrial/index.html

title:U.S. playing low-key role in latest
Mideast crisis
url:http://www.cnn.com/WORLD/9703/25/
us.israel/index.html

title:George Bush parachutes -- just for
fun
url:http://www.cnn.com/US/9703/25/
bush.jump.ap/index.html

As you might expect, everything depends on the regular
expression, which must be tailored for each source. Not
everyone, myself included, feels comfortable with regular
expressions; if you want to get the most use out of
webpluck, and you feel that your regular expression skills
are soft, I recommend Jeffrey Friedl’s book Mastering
Regular Expressions (O’Reilly).

The second problem with regular expressions is that as
powerful as they are, they can only match data they expect to
see. So if the publisher of the web page you are after changes
his or her format, you’ll have to update your regular
expression. webpluck notifies you if it couldn’t match
anything, which is usually a good indication that the format of
the target web page has changed.

277

Once all the content has been collected, webpluck takes
those raw data files and a template file that you provide, and
combines them to create your “dynamic”
HTML document.

webpluck looks for any <clip> tags in your template
file, replacing them with webplucked data. Everything else in
the template file is passed through as is. Here is an example
of a segment in my daily template file (again using the CNN
U.S. headlines as an example):

<clip name="cnn-us">
title
</clip>

This is replaced with the following HTML (the lines have
been split to make them more readable):

<a href="http://www.cnn.com/US/9703/25/
okc/index.html">

Oklahoma bombing judge to let
'impact witnesses' see trial

<a href="http://www.cnn.com/US/9703/25/
simpson.newtrial/index.html">

Simpson's attorneys ask for a new
trial and lower damages

<a href="http://www.cnn.com/WORLD/9703/
25/us.israel/index.html">

U.S. playing low-key role in latest
Mideast crisis

<a href="http://www.cnn.com/US/9703/25/
bush.jump.ap/index.html">

278

George Bush parachutes -- just for
fun

I personally use webpluck by running one cron job every
morning and one during lunch to re-create my “daily” page. I
realize webpluck could be used for a lot more than this;
that’s left as an exercise for the reader.

279

How webpluck Works

Now on to the technical goodies. For those who don’t know
what the
LWP library is—learn! LWP is a great collection of Perl
objects that allows you to fetch documents from the web.
What the CGI library does for people writing web server
code, LWP does for people writing web client code. You can
download LWP from CPAN.

webpluck is a simple program. Most of the code takes care
of processing command-line arguments, reading the
configuration file, and checking for errors. The guts rely on
the LWP library and Perl’s powerful regular expressions. The
following is part of the main loop in webpluck. I’ve
removed some error checking to make it smaller, but the real
guts are shown below.

use LWP;

$req = HTTP::Request->new(GET =>
$self->{'url'});
$req->header(Accept => "text/html,
/;q=0.1");
$res = $main::ua->request($req);

if ($res->is_success()) {
my (@fields) = split(':',

$self->{'fields'});
my $content = $res->content();
my $regex = $self->{'regex'};

while ($content =~ /$regex/isg) {
my @values = ($1, $2, $3, $4, $5,

280

$6, $7, $8);

URL's are special fields; they
might be relative, so check for that

for ($i = 0; $i <= $#fields; $i++) {
if ($fields[$i] eq "url") {

my $urlobj = new
URI::URL($values[$i], $self->{'url'});

$values[$i] =
$urlobj->abs()->as_string();

}
push(@datalist, $fields[$i] .

":" . $values[$i]);
}

push(@{$self->{'_data'}},
\@datalist);

}
}

The use LWP imports the LWP module, which takes care of
all the web-related tasks (fetching documents, parsing URLs,
and parsing robot rules). The next three lines are all it takes to
grab a web page using LWP.

Assuming webpluck’s attempt to retrieve the page is
successful, it saves the document as one long string. It then
iterates over the string, trying to match the regular expression
defined for this target. The following statement merits some
scrutiny:

while ($content =~ /$regex/isg) {

The /i modifier of the above regular expression indicates
that it should be a case-insensitive match. The /s modifier
treats the entire document as if it were a single line (treating
newlines as whitespace), so your regular expression can span

281

multiple lines. /g allows you to go through the entire
document and grab data each time the regular expression is
matched, instead of just the first.

For each match webpluck finds, it examines the fields
defined by the user. If one of the fields is url, it’s turned
into an absolute URL—specifically, a URI::URL object. I let
that object translate itself from a relative URL to an absolute
URL that can be used outside of the web site from where it
was retrieved. This is the only data from the target page that
gets massaged.

Lastly, I take the field names and the data that corresponds to
each field and save that information. Once all the data from
each matched regular expression is collected, it’s run through
some additional error checking and saved to a local file.

282

The Dark Side of the Force

Like any tool, webpluck has both good and bad uses. The
program is a sort of web
robot, which raises some concerns for me and for users. A
detailed list of the considerations can be found on the Web
Robots Page at http://www.robotstxt.org/wc/robots.html, but
a few points from the Web Robot Guide to
Etiquette stand out.

Identify Yourself

webpluck identifies itself as webpluck/2.0 to the
remote web server. This isn’t a problem since few people use
webpluck, but it could be if sites decide to block my
program.

Don’t Overload a Site

Since webpluck only checks a finite set of web pages that
you explicitly define—that is, it doesn’t tree-walk sites—this
isn’t a problem. Just to be safe, webpluck pauses for a
small time period between retrieving documents. It should
only be run once or twice a day—don’t launch it every five
minutes to ensure that you constantly have the latest and
greatest information.

283

Obey Robot Exclusion Rules

This is the toughest rule to follow. Since webpluck is
technically a robot, I should be following the rules set forth
by a web site’s /robots.txt file. However, since the data that I
am after typically changes every day, some sites have set up
specific rules telling robots not to index their pages.

In my opinion, webpluck isn’t a typical robot. I consider it
more like an average web client. I’m not building an index,
which I think is the reason that these sites tell robots not to
retrieve the pages. If webpluck followed the letter of the
law, it wouldn’t be very useful since it wouldn’t be able to
access many pages that change their content. For example,
CNN has this in their robot rules file:

User-agent: *
Disallow: /

If webpluck were law-abiding, it wouldn’t be able to
retrieve any information from CNN, one of the main sites I
check for news. So what to do? After reading the Robot
Exclusion Standard (http://www.robotstxt.org/wc/
norobots.html), I believe webpluck doesn’t cause any of
the problems meant to be prevented by the standard. Your
interpretation may differ; I encourage you to read it and
decide for yourself. webpluck has two options
(--naughty and --nice) that instruct it whether to obey
the robot exclusion rules found on remote servers. (This is my
way of deferring the decision to you.)

Just playing nice as a web
robot is only part of the equation. Another consideration is
what you do with the data once you get it. There are obvious

284

copyright considerations. Copyright on the web is a broad
issue. I’m just going to mention a few quandaries raised by
webpluck; I don’t have the answers.

1. Is it okay to extract the URL from the Cool Site of the
Day home page and jump straight to the cool site? The
Cool Site folks don’t own the URL, but they would
certainly prefer that you visit their site first.

2. Is it okay to retrieve headlines from CNN? What about
URLs for the articles?

3. How about grabbing the actual articles from the CNN
site and redisplaying them with your own layout?

4. And for all of these tasks, does it matter if they’re for
your own personal use as opposed to showing it to a
friend, or redistributing it more widely?

Obviously, people have different opinions of what is right and
what is wrong. I personally don’t have the background,
knowledge, or desire to try to tell you what to do. I merely
want to raise the issues so you can think about them and make
your own decisions.

For a final example of a potential problem, let’s take a look at
Dilbert. Here’s the target I have defined for Dilbert at the time
of this writing.

name dilbert
url http://www.unitedmedia.com/comics/
dilbert/
regex SRC=\"?([^>]?\/comics\/dilbert\/
archive.*?\.gif)\"?\s+
fields url

285

The cartoon on the Dilbert page changes every day, and
instead of just having a link to the latest cartoon
(todays-dilbert.gif), they generate a new URL every day and
include the cartoon in their web page. They do this because
they don’t want people setting up links directly to the cartoon.
They want people to read their main page—after all, that’s
where the advertising is. Every morning I find out where
today’s Dilbert cartoon is located, bypassing all of United
Media’s advertising. If enough people do this, United Media
will probably initiate countermeasures. There are at least three
things that would prevent webpluck (as it currently works)
from allowing me to go directly to today’s comic.

▪ A CGI program that stands between me and the comic
strip. The program would then take all kinds of steps to
see if I should have access to the image (e.g., checking
Referer headers, or planting a cookie on me). But
almost any such countermeasure can be circumvented
with a clever enough webpluck.

▪ The advertising could be embedded in the same image as
the cartoon. That’ll work for Dilbert since it’s a graphic,
but not for pages where the content is plain HTML.

▪ The site could move away from HTML to another
display format such as VRML or Java that takes over an
entire web page with a single view. This approach makes
the content far harder for robots to retrieve.

Most funding for web technology exists to solve the needs of
content providers, not users. If tools like webpluck are
considered a serious problem by content providers, steps will
be taken to shut them down, or make them harder to operate.

286

It isn’t my intent to distribute a tool to filter web advertising
or steal information from web pages so that I can redistribute
it myself, but I’m not so naïve as to think this can’t be done.
Obviously, anyone intent on doing these things can do so;
webpluck just makes it easier. Do what you think is right.

You can find more information about webpluck at
http://www.edsgarage.com/ed/webpluck/. The program is also
on this book’s web site at http://www.oreilly.com/catalog/
tpj2.

287

Chapter 17. Torture-Testing Web
Servers and CGI Scripts

Lincoln D. Stein
It’s a sad fact of life that computer programs aren’t bug free.
Loops overwrite array boundaries, memory is mistakenly
freed twice, if-then statements make decisions based on
random data in uninitialized variables, and while blocks go
into endless loops. Perl programmers like ourselves have
much to rejoice about because we don’t have to worry about
the memory management problems that plague C and C++
programmers. Of course, we have our own idiosyncratic
problems, such as inadvertently using a string in a numeric
context.

Many of the programs you use on any given day have
bugs. Many of the bugs are minor, and most are invisible.
You won’t know a program contains a bug until a particular
combination of conditions triggers it. For example, a word
processing program might work fine for months, and then
crash one day when memory is tight and you attempt a global
search and replace on a large document.

Bugs are usually just a nuisance. The text editor eats your
homework, the printer pours out reams of gibberish, the
graphics program flood fills the diagram you’ve labored over
for hours with magenta polka dots. When the bug occurs in
software that’s part of a
web site, however, the consequences can be more frightening.
A bug in a

288

web server can cause it to crash, making the site unavailable
until someone notices and reboots the server. A bug in a CGI
script or server module may cause the browser to display a
bewildering “Internal Error” message.

Worse, however, is the risk that a bug in the server software
or one of its CGI scripts can be exploited by a malicious
remote user. A bug that crashes a web server can be used
deliberately to bring a site down in a denial-of-service attack.
Scarier still is the possibility that the bug can be exploited to
break into the host machine, steal information from it, or
modify its files. If this is possible, the software bug becomes
a major security hole.

In the past, there have been two major types of bugs that blast
security holes in web sites. The first is the
failure of the programmer to check user-provided input before
passing it to a command shell. This kind of bug shows up
frequently in CGI scripts, and unfortunately more often than
not in Perl CGI scripts. A clever user can trick a CGI script
containing this bug into executing whatever Unix or NT
command he likes. Fortunately, there’s an easy way to avoid
this trap. Activate Perl
taint checks by placing a -T flag on the top line of your
script, right after #!/usr/bin/perl. (A tainted variable
is something that contains data from the outside, like $name
= <>, that might be used by nefarious people for nefarious
purposes. Taint-checking ensures that $name is a name and
not something suspicious like /etc/passwd.)

The second type of bug is more commonly found in CGI
scripts and
web servers written in a compiled language, typically C. In
this type of bug, the programmer fails

289

to check the length of data before copying it into a statically
allocated buffer. Unexpectedly long data will overwrite
memory, and again, a clever remote user can exploit this to
gain access to both Unix and NT shells. This bug plagued the
NCSA httpd server up to version 1.3. Remote users could
exploit it to run any Unix program they cared to on the web
server. More recently, this bug surfaced in Microsoft’s
Internet Information Server (up to Version 3.0). By sending
the server a URL of a particular length, remote users could
make it crash.

In this article, I present a short Perl script called
torture.pl designed to catch
web servers and CGI programs that suffer from
memory allocation problems. It employs a technique called
“random input testing”
in which the web server is pummeled with a long series of
requests for random URLs of varying lengths, some of which
can be quite large. A well-designed server or CGI script will
accept the random input gracefully and produce some sort of
reasonable error message. Software with a memory allocation
bug will crash or behave unpredictably. Although this type of
testing is inefficient, the program does catch the problem in
both the NCSA httpd and IIS servers.

torture.pl can be used locally to test your own server,
or remotely to test other peoples’ (but be sure to get their
permission first!). To use it, provide torture.pl with the
URL of the server or CGI script you wish to test. For
example:

$ torture.pl http://www.foo.bar.com/cgi-bin/
search
torture.pl version 1.0 starting

290

Base URL: http://www.foo.bar.com/cgi-bin/
search
Max random data length: 1024
Repetitions: 1
Post: 0
Append to path: 0
Escape URLs: 0

200 OK

In this example, we’ve asked the script to test the server at
www.foo.bar.com, using the default settings of one test
repetition and a maximum URL length of 1,024 bytes. After
echoing its settings, the script does a single fetch of the
indicated URL and returns the HTTP result code, in this case
200 OK, indicating that the URL was fetched successfully.
If we look at the server log, we’ll see an entry something like
this:

pico lstein - [22/Nov/1997:12:54:17 -0400]
"GET /cgi-bin/search?%F18n%99%DB
%15_a%5E8%C2%A7)%7D%AD%196%9DZ%C1%0FX%%D9K%5D%AA%BA=%CC%C7%85%A4%93%81%A9%7F
%E3%B7%A6%B0%E1%_%FA%5B%FCV%1D%AEC%E6%F9%A0%91%B4%DE%5E%7De%04%11%85%85%BA
%05j%C3%BD%12t%9F7%D4%9A%93%D1%F1%B1%DE%A0%F4%C5%9B%96XPu%B7%CD%D
B%BB%DFbB%9Ag%AC_&%BE%D4%C6%F6%A9b%8A%7CT%3C%5C%F42
HTTP/1.0" 200 928

This entry shows that torture.pl generated a URL
containing a query string consisting of 928 bytes of random
data.

Fetching a URL just once isn’t much of a torture test. Let’s
make things more challenging for the CGI script by fetching
1,000 random URLs, each containing a random query string
of up to 5K in length:

291

$ torture.pl -t 1000 -l 5000
http://www.foo.bar.com/cgi-bin/search
torture.pl version 1.0 starting
Base URL: http://www.foo.bar.com/cgi-bin/

search
Max random data length: 5000
Repetitions: 1000
Post: 0
Append to path: 0
Escape URLs: 0

200 OK
200 OK
200 OK
200 OK
...

This time we use the -t option to set the repetitions to 1,000,
and the -l option to set the maximum length to 5,000 bytes.
The script fires off the URLs and begins printing out the
server responses.

By default, the torture script uses the GET method to access
the server. This actually imposes a server-specific limit on the
length of the URL. Many
servers will truncate URLs that are larger than some
reasonable length. If you’d like to blast a CGI script with
large requests, use the POST command instead. To do this,
pass -P to torture.pl.

If you’re more interested in
testing the server itself than a CGI script, you should use the
-p option. That makes the script randomly generate URL
paths rather than query strings. The output looks like this:

$ torture.pl -p -t 1000 -l 5000
http://www.foo.bar.com/

292

torture.pl version 1.0 starting
Base URL: http://www.foo.bar.com/
Max random data length: 5000
Repetitions: 1000
Post: 0
Append to path: 1
Escape URLs: 0

400 Bad Request
404 File Not Found
404 File Not Found
404 File Not Found
400 Bad Request
400 Bad Request
...

Now, because the script is generating random URL
pathnames, the expected outcome is either 400 Bad
Request for a URL that contains invalid characters, or 404
File Not Found for a valid URL that doesn’t point to
any particular file.

The server log shows the difference between this and the
previous tests:

pico.foo.bar.com lstein - [22/Nov/
1997:13:21:03 -0400] "GET /%F2%F1%FE%98
%8C%F5%8E0%BC%17%A0%F1%DE%DD%9D%99%D4%9C%ACb%EA%AEg%BC*%B3%D2E%8C%E39~%E3
%D1%D9%60=%97x%DE%89W%BC'%F0%91%C4%FA?(%E5%EE%90%A3%19Ew_%D1%5C%98QAj%5D
%1B%CB%9A%B3Dz%3E%9C7e%8D%C9+%88 HTTP/1.0"
500 404

When -p is used, the random data is appended to the URL
with a / character rather than a ? character. The server treats
the request as an attempt to fetch a document, rather than as
an attempt to pass a query string to a CGI script.

293

The final option that torture.pl recognizes is -e. When
this is provided, the script uses URL escape codes to generate
invalid but legal URLs. Otherwise, the script generates
arbitrary binary data, including nulls and control characters.
This tests the server’s ability to handle binary input.

In all the examples I’ve shown so far, the script and server
have passed the test by processing the request or exiting with
an error. What happens when a program fails the test? If the
testing causes a CGI script to crash, you’ll see something like
this:

200 OK
200 OK
200 OK
500 Internal Server Error
200 OK
200 OK
500 Unexpected EOF

Every so often the random testing triggers a bug in the CGI
script that causes it to abort. Depending on whether the bug
occurred before or after the script printed its HTTP header
you may see a 500 Internal Server Error
message or 500 Unexpected EOF message. Either way,
you’ve got a problem.

If the server itself crashes during testing, the results are even
more dramatic:

200 OK
200 OK
200 OK
200 OK
200 OK
500 Internal Server Error
500 Could not connect to www.foo.bar.com:80

294

500 Could not connect to www.foo.bar.com:80
500 Could not connect to www.foo.bar.com:80
500 Could not connect to www.foo.bar.com:80
...

In this sequence, everything went along well until the torture
script triggered a bug in the server, causing a 500
Internal Server Error message. The server then
went down completely, making it unavailable for future
incoming connections.

The Code

Example 17-1 shows the code for torture.pl. It makes
extensive use of Martijn Koster and Gisle Aas’s excellent
LWP web client library, available from CPAN and discussed
in web_lwp.

Example 17-1. torture.pl
1
2 # file: torture.pl
3 # Torture test

web servers and scripts by sending them
large
4 # arbitrary URLs and record the outcome.
5
6 use LWP::UserAgent;
7 use URI::Escape 'uri_escape';
8 require "getopts.pl";
9
10 $USAGE = <<USAGE;
11 Usage: $0 -[options] URL
12 Torture-test

295

Web servers and CGI scripts
13
14 Options:
15 -l <integer> Max length of random URL
to send [1024 bytes]
16 -t <integer> Number of times to run the
test [1]
17 -P Use POST method rather
than GET method
18 -p Attach random data to path
instead of query string
19 -e Escape the query string
before sending it
20 USAGE
21 ;
22 $VERSION = '1.0';
23
24 # Process command line
25 &Getopts('l:t:Ppe') || die $USAGE;
26 # Seed the random number generator (not
necessary in modern Perls)
27 srand();
28
29 # get parameters
30 $URL = shift || die $USAGE;
31 $MAXLEN = $opt_l ne '' ? $opt_l : 1024;
32 $TIMES = $opt_t || 1;
33 $POST = $opt_P || 0;
34 $PATH = $opt_p || 0;
35 $ESCAPE = $opt_e || 0;
36
37 # Can't do both a post and a path at
the same time
38 $POST = 0 if $PATH;
39
40 # Create an LWP agent
41 my $agent = new LWP::UserAgent;
42

296

43 print <<EOF;
44 torture.pl version $VERSION starting
45 Base URL: $URL
46 Max random data length: $MAXLEN
47 Repetitions: $TIMES
48 Post: $POST
49 Append to path: $PATH
50 Escape URLs: $ESCAPE
51
52 EOF
53 ;
54
55 # Do the test $TIMES times
56 while ($TIMES--) {
57 # create a string of random stuff
58 my $garbage =
random_string(rand($MAXLEN));
59 $garbage = uri_escape($garbage) if
$ESCAPE;
60 my $url = $URL;
61 my $request;
62
63 if (length($garbage) = = 0) { # If
no garbage to add, fetch URL
64 $request = new HTTP::Request
('GET', $url);
65 }
66
67 elsif ($POST) { # handle POST
request
68 my $header = new HTTP::Headers (
6 Content_Type =>
'application/x-www-form-urlencoded',
7 Content_Length =>
length($garbage)
71
);
72 # Garbage becomes the POST

297

content
73 $request = new HTTP::Request
('POST',$url,$header,$garbage);
74
75 } else
{ # Handle GET
request
76
77 if ($PATH)
{ # Append garbage to
the base URL
78 chop($url) if substr($url,
-1, 1) eq '/';
79 $url .= "/$garbage";
80 } else { # Append garbage to
the query string
81 $url .= "?$garbage";
82 }
83
84 $request = new HTTP::Request
('GET', $url);
85 }
86
87 # Do the request and fetch the
response
88 my $response =
$agent->request($request);
89
90 # Print the numeric response code
and the message
91 print $response->code, ' ',
$response->message, "\n";
92 }
93
94 # Return some random data of the
requested length
95 sub random_string {
96 my $length = shift;

298

97 return unless $length >= 1;
98 return join('', map chr(rand(255)),
0..$length-1);
99 }

In lines 6–8, we bring in the LWP::UserAgent library, which
provides all the functions we need for generating and
processing HTTP requests. We next import the
uri_escape function from the URI::Escape module,
which implements the rules for escaping URLs. Finally, we
load the getopts library, a handy package for parsing a script’s
command-line options.

Warning ?

getopts.pl is obsolete; today the Getopt::Std
module should be used instead.

In lines 24–38, we process the command-line options and
assign defaults to any not provided. The only required
argument is the base URL to fetch. If present on the command
line, we assign it to $URL. Otherwise we abort with a usage
statement.

We also seed the random number generator in order to avoid
generating the same series of random URLs each time the
script is run. This step is no longer necessary as of Perl 5.004,
which seeds the random number the first time you invoke the
rand function.

In lines 41–53, we create a new UserAgent object (think of it
as a virtual browser) that will connect to the

299

web server and make the URL request. We then print the test
parameters so that they can be recorded.

Lines 56–92 are the meat of the program. We enter a loop that
repeats as many times as requested. Each time through the
loop, we create a string of random data by calling the
random_string function described below, assigning the
result to a variable with the inelegant but descriptive name
$garbage. We also assign the base URL to a local variable
named $url.

What we do now depends on the length of the random data
and the script’s options. If the random data happens to be of
zero length, we do nothing with it. We simply generate a GET
request to fetch the base URL by creating a new
HTTP::Request object (line 64). The two arguments to
HTTP::Request::new are the request method (GET in
this case) and the URL to fetch.

Otherwise, if the user requested a POST transaction, we need
to set up the HTTP headers that will be sent to the server. We
do this by creating a new HTTP::Headers object in line 68,
passing the new method a hash with the HTTP headers we
wish to send. For a valid POST operation, we’ll need two
header fields: a Content-Type field with a value of
application/x-www-form-urlencoded, to fool
the script into thinking that the random data was generated by
a bona fide fill-out form, and a Content-Length field
containing the length of the random data. We now create an
HTTP::Request using the four-argument form of
HTTP::Request::new (line 73). As before, the first and
second arguments correspond to the request method and the
URL to fetch. The optional third and fourth arguments

300

contain the HTTP::Headers object and content to be POSTed.
In this case, the content is the random data that we generated
earlier.

In lines 77–84, we create a GET request for non-zero–length
random data. This is merely a matter of appending the
random data to the requested URL and generating the
appropriate HTTP::Request object. If the command-line
options indicate that we’re to generate a query string for a
CGI script, we append the random data to the base URL after
a ? character. If the user wishes to generate a random URL
instead, we append the data after a / character.

On line 88, we perform the actual network fetch by calling the
UserAgent object’s request method. The response is
returned as an HTTP::Response object, and stored in a
like-named variable. We use this object on line 91 to print the
result code (e.g. 500) and result message (e.g., Internal
Server Error).

Lines 95–99 define the random_string function, which
generates an array of random numbers between 0 and 255,
then transforms the array into a random ASCII character
string using Perl’s map and chr functions. Notice that this
function isn’t particularly memory efficient, since it generates
a temporary integer array as long as the requested random
string. Replace it with a loop if this bothers you.

301

Wrapping Up

That’s all there is to it. Point the script at your favorite server
and let it rip! For best results I recommend that you run the
torture script overnight, using at least a thousand test
repetitions (the more the better). Redirect its output to a file
so that you can analyze the results at your leisure. Be careful
not to run the tests on a server that’s being used for a live web
site. Even if there aren’t any bugs to trigger, the script will
load down the server and might hurt its performance.

In the next article, I’ll show you how to secure your CGI
scripts, ensuring that evildoers can’t exploit them to wreak
havoc on your
system.

302

Chapter 18. Securing Your CGI
Scripts

Lincoln D. Stein

Tip ?

Since this article was written, a new module has become
available: Roland Giersig’s Expect.pm, available on
CPAN. I recommend it over both chat2.pl and
Comm.pl; not only is it a full-fledged module, but it
uses IO::, which renders Lincoln’s workaround in the
section Oops unnecessary.

I like to keep my
CGI scripts puny and weak, and you should too. CGI scripts
are a gateway into your system from the Internet, and are,
unfortunately, all too often exploited by unscrupulous people
for nefarious ends. The more access a CGI script has to your
system, the more dangerous it becomes when used for
unintended purposes.

To keep CGI scripts under control, most webmasters, myself
included, run the web server under an unprivileged user
account. On Unix systems, this is often an account called
nobody. On Windows, it’s an anonymous account with
guest logon access. On correctly configured systems, the web
server user account has even fewer privileges than an ordinary

303

user. It doesn’t own a home directory, have a shell, or even
have the ability to log in as a normal user.

Under most circumstances you’ll never notice the fact that
CGI scripts run as an unprivileged user. However, sometimes
this fact becomes inconvenient. For example, what if you
want to give remote users read/write access to their home
directories from across the web, allow web access to a
database that uses account privileges for access control, or
perform administrative tasks that require superuser
privileges? When you face challenges like these, your only
choice is to give the script a little more power than usual. In
this article I’ll show you how to accomplish this without
creating a monster.

The Example Script

The example I use here lets Unix users change their login
passwords remotely via a web page. When the user first
accesses the script, the screen shown in Figure 18-1 prompts
him for the account name, old password, and new password
(twice). After pressing the Change Password button, the script
verifies the input and then attempts to make the requested
change. If the change is successful, the user is presented with
a confirmation screen. Otherwise, an error message (in large
red letters) is displayed, and the user is prompted to try again,
as shown in Figure 18-2.

304

Figure 18-1. Changing your system password

Figure 18-2. An unsuccessful attempt

Note that this password-changing script is designed to change
not the user’s web access password, but his system login
password. An Internet service provider might use something

305

like this to allow users to change their POP (Post Office
Protocol), NNTP (Net News Transfer Protocol), or dialup
passwords without bothering the system administrator or
accessing a shell.

306

Designing the Script

An ordinary CGI script has a snowball’s chance in hell of
accomplishing this password-changing task. It can’t modify
the system password file directly, because write access to the
file is off-limits to anyone but the superuser. It can’t even run
the system passwd utility on the remote user’s behalf,
because passwd prevents one user from changing another’s
password, and will detect the attempt by the web server
account to do so as a
security violation.

To get around these problems, we have several choices:

1. Launch the CGI script as the superuser (with suid), and
modify the system password files directly.

2. Launch the CGI script as the superuser (with suid), and
run the system passwd utility to change the user’s
password.

3. Launch the CGI script as the superuser (with suid),
immediately change to the remote user’s access
privileges, and run the system passwd utility to change
the password.

4. Launch the CGI script normally, and call the su
program to run the passwd utility under the privileges
of the remote user.

The first solution is by far the worst. Running a CGI script as
the superuser and then using its far-reaching powers to
modify essential system files is an invitation to disaster. The

307

solution is also extremely nonportable, since many Unix
systems use shadow password systems or Network
Information System (NIS) databases to hold user account
information.

The second solution is somewhat more appealing. Instead of
modifying system files directly, we call the system passwd
utility to change the user’s password on our behalf. This
avoids many of the portability problems because the
passwd program presumably knows all about the fiddly
details of the system password database. However, it still
requires that the script be run as root, and this makes me
nervous.

The next solution isn’t much different. The CGI script is
again launched with root privileges, but it quickly changes its
identity to run as the remote user. With the remote user’s
account privileges, it then invokes passwd. This is an
improvement because the script gives away its superuser
privileges as soon as possible. However, the script is still
launched as root, and this is a Bad Thing.

I like the last solution the best. The script isn’t run as root at
all. Instead, after parsing the CGI parameters and deciding
what to do, it calls the su program to change its identity to
that of the remote user. In order to run su, the script needs
the remote user’s password, which, conveniently enough, he
has already provided. If su grants the request, the script calls
the passwd program to change the user’s password. Not
only does this solution avoid the problem of becoming root,
but it works with systems that have disabled suid scripts and
even with servers that don’t run
CGI scripts as separate processes, such as Apache equipped
with mod_perl (see the article mod_perl earlier in this book).

308

This is the design I use here.

309

The chat2.pl Library

Unfortunately, there’s one little problem. Both su and
passwd are interactive programs. They read their input
directly from the terminal rather than from standard input, so
you can’t just send them input via a pipe. Instead, you have to
trick them into thinking they’re talking to a human typing at a
terminal rather than to a Perl script.

Happily, there’s a ready-made solution. The chat2.pl
library, part of the standard Perl 5.004 distribution, allows
you to open up a pseudo tty to any program on the system and
hold an interactive conversation with it. All we have to do is
to figure out what prompts the program produces and what
inputs to provide.

In preparation for writing a script that uses chat2.pl, it’s
good to run the desired program from the command line a few
times and provide it with a range of inputs so that you can see
all the possible outcomes. Here’s a transcript of the session
that I used to design the
password-changing script:

1> su -c /usr/bin/passwd impostor
su: user impostor does not exist

2> su -c /usr/bin/passwd wanda
Password: wrong_password
su: incorrect password

3> su -c /usr/bin/passwd wanda
Password: llamas2
Changing password for wanda
Enter old password: wrong_password

310

Illegal password, impostor.

4> su -c /usr/bin/passwd wanda
Password: llamas2
Changing password for wanda
Enter old password: llamas2
Enter new password: zebras
The password must have both upper- and
lowercase letters, or non-letters; try
again.
Enter new password: zeBrAs
Re-type new password: zeBras
You misspelled it. Password not changed.

5> su -c /usr/bin/passwd wanda
Password: llamas2
Changing password for wanda
Enter old password: llamas2
Enter new password: ZeBrAs
Re-type new password: ZeBrAs
Password changed.

In each attempt, I called su with the -c flag to make it run
the passwd program with the privileges of the indicated
user. In the first attempt, I deliberately gave su the name of a
bogus user, and it replied with an error message. In the
second attempt, I gave su the name of a legitimate user of the
system, but deliberately mistyped her password.

In the third try, I gave su the correct password; it accepted
the password and passed me on to the passwd program,
which printed Changing password for wanda. I
then deliberately entered the incorrect password at this point,
to see the message Illegal password.

Continuing to work my way through the possibilities, I
invoked the program again, this time giving the correct

311

password both times. This got me to the Enter new
password : prompt. When I typed in zebras, however,
the passwd program rejected it because it was too easy (my
system rejects passwords that are too short or consist only of
lowercase letters; other systems may have even more
stringent rules). The system accepted ZeBrAs as a
password, but when I confirmed it, I made a spelling error
and was booted out.

Finally, on trial 5, I was able to work my way through the
password changing process, getting to the final confirmation
Password changed.

Armed with this information, we can design a series of calls
to chat2.pl that automate the password changing
operation.

312

Oops

But not quite yet. Soon after I began writing this script I
discovered that the chat2.pl library, which was originally
written for Perl 4, hasn’t been brought up to date for a long
time. As a result, it’s not as portable as other parts of Perl 5.
chat2.pl uses a number of system-specific constants for
creating sockets and pseudo ttys. Some of the constants are
obtained from .ph files (system include files that have been
run through the h2ph converter), while others are,
unfortunately, hard coded. h2ph is notoriously difficult to
run correctly, and the .ph files it produces often have to be
tuned by hand. Worse, the hardcoded value for one essential
constant, TIOCNOTTY, was just plain wrong for my Linux
system, causing chat2.pl to fail miserably.

To get things working, I patched my copy of chat2.pl
slightly to bring it up to date. The
patch replaces hardwired and .ph constants with ones
imported from the Socket.pm and Ioctl.pm modules. You can
find a copy of this patch file on the web site for this book.

Although Socket.pm is a standard part of Perl, Ioctl.pm isn’t
in all distributions, so you may have to download it from
CPAN. Be warned that installing Ioctl.pm is not as
straightforward as most other modules. After the standard
perl Makefile.PL and make steps, you must open a
file named Ioctl.def and define a comma-delimited list of
those constants you wish to make available. A good list can
be found in the autogenerated file genconst.pl, where it is,
inexplicably, commented out. I created an Ioctl.def for my

313

system by cutting and pasting between the two files. After
this, you must make again and then make install.

Recently, Eric Arnold wrote an alternative to chat2.pl
called Comm.pl. Its advantages over chat2.pl include a
more intuitive interface that resembles Tcl’s expect
program, and includes some extra goodies like an
interact function for interactively getting input from the
user. However, Comm.pl is still a Perl 4 library with lots of
hardcoded system-specific constants. Until Comm.pl is
updated to use Perl 5’s Socket and Ioctl modules, I’ll continue
to use my patched copy of chat2.pl. For those who want
to investigate Comm.pl further, it can be found on CPAN.

314

The CGI Script

The
complete password-changing script is shown in below. We’ll
focus first on lines 58 through 110, where the subroutine
named set_passwd is defined. This is the core of the
script, where the
password is actually changed.

0 #!/usr/bin/perl -T
1
2 # Preliminaries to satisfy taint checks
3 $ENV{PATH} = '/bin:/usr/bin';
4 $ENV{IFS} = '';
5
6 # Prevent buffering problems
7 $| = 1;
8
9 use CGI qw/:standard :html3/;
10
11 print header,
12 start_html(-title => 'Change Unix

Password', -bgcolor => 'white'),
13
14 h1('Change your Unix password');
15
16 import_names('Q');
17
18 TRY: {
19 last TRY unless $Q::user;
20 my ($rv, $msg) = check_consistency(
);
21 do_error($msg), last TRY unless $rv;
22

315

23 # Change the password, after
temporarily turning off
24 # an annoying (and irrelevant) error
message from su
25 open(SAVERR, ">&STDERR");
26 open(STDERR, ">/dev/null");
27 ($rv, $msg) =
set_passwd($Q::user,$Q::old,$Q::new1);
28 open(STDERR, ">&SAVERR");
29 do_error($msg),last TRY unless $rv;
30
31 print $msg;
32 $OK++;
33 }
34
35 create_form() unless $OK;
36
37 print
38 p,
39 a({href=>"$Q::referer" ||
referer() },"[EXIT

SCRIPT]");
40 hr,
41 a({href=>'/'},'Home page'),
42 end_html;
43
44 sub check_consistency {
45 return (undef,'Please fill in the
user name field.') unless $Q::user;
46 return (undef,'Please fill in the
old

password field.') unless $Q::old;
47 return (undef,'Please fill in the
new

316

password fields.') unless $Q::new1 &&
$Q::new2;
48 return (undef,"New password fields
don't match.") unless $Q::new1 eq $Q::new2;
49 return (undef,"Suspicious user name
$Q::user.") unless $Q::user=~/^\w{3,8}$/;
50 return (undef,'Suspiciously long old
password.') unless length($Q::old) <= 30;
51 return (undef,'Suspiciously long new
password.') unless length($Q::new1) <= 30;
52 my $uid = (getpwnam($Q::user))[2];
53 return (undef,"Unknown user name
$Q::user.") if $uid eq '';
54 return (undef,"Can't use this script
to set root password.") if $uid = = 0;
55 return 1;
56 }
57
58 sub set_passwd ($$$) {
59 require "chat2.pl";
60 my $TIMEOUT = 2;
61 my $PASSWD = "/usr/bin/passwd";
62 my $SU = '/bin/su';
63
64 my ($user, $old, $new) = @_;
65
66 my $h =
chat::open_proc($SU,'-c',$PASSWD,$user)
67 || return (undef,"Couldn't open
$SU -c $PASSWD: $!");
68
69 # Wait for su to prompt for password
70 my $rv = chat::expect($h, $TIMEOUT,
71 'Password:' =>
"'ok'",
72 'user \w+ does
not exist' => "'unknown user'"
73);

317

74 $rv || return (undef,"Didn't get su
password prompt.");
75 $rv eq 'unknown user' && return
(undef,"User $user unknown.");
76 chat::print($h, "$old\n");
77
78 # Wait for passwd to prompt for old
password
79 $rv = chat::expect($h, $TIMEOUT,
80 'Enter old
password:' => "'ok'",
81 'incorrect
password' => "'not ok'");
82 $rv || return (undef, "Didn't get
prompt for old password.");
83 $rv eq 'not ok' && return
(undef,"Old password is incorrect.");
84
85 # Print old password
86 chat::print($h, "$old\n");
87 $rv = chat::expect($h, $TIMEOUT,
88 'Enter new
password: ' => "'ok'",
89 'Illegal' =>
"'not ok'");
90 $rv || return (undef,"Timed out
without seeing prompt for new password.");
91 $rv eq 'not ok' && return
(undef,"Old password is incorrect.");
92
93 # Print new

password
94 chat::print($h,"$new\n");
95 ($rv, $msg) = chat::expect($h,
$TIMEOUT,
96 'Re-type
new

318

password: ' => "'ok'",
97
'([\s\S]+)Enter new password:' =>
"('rejected',\$1)"
98);
99 $rv || return (undef,"Timed out
without seeing 2d prompt for new
password.");
100 $rv eq 'rejected' && return
(undef,$msg);
101
102 # Reconfirm password
103 chat::print($h, "$new\n");
104 $rv = chat::expect($h, $TIMEOUT,
105 'Password
changed' => "'ok'");
106 $rv || return (undef,"Password
program failed at very end.");
107 chat::close($h);
108
109 return (1,"Password changed
successfully for $user.");
110 }
111
112 sub create_form {
113 print
114 start_form,
115 table(
116 TR({ align => RIGHT },
117 th('User name'),
118 td(textfield(-name =>
'user')),
119 th('Old password'),
120
td(password_field(-name => 'old'))),
121 TR({ align => RIGHT },
122 th('New password'),

319

123
td(password_field(-name => 'new1')),
124 th('Confirm new
password'),
125
td(password_field(-name => 'new2'))),
126),
127 hidden(-name =>
'referer',-value => referer()),
128 submit('Change Password'),
129 end_form;
130 }
131
132 sub do_error ($) {
133 print font({ -color => 'red',-size
=> '+1' },
134 b('Error:'), shift, " Password not
changed.");
135 }

Our first step is to bring in chat2.pl, which we do using
an old-fashioned require, because chat2.pl is still a
Perl 4 library file. It’s not a real module, so we can’t use use.
We also define some constants: $PASSWD and $SU give the
absolute path to the passwd and su programs, respectively,
and $TIMEOUT specifies a timeout of two seconds for our
conversation with the su and passwd programs. If an
expected output is not seen within this time, the subroutine
aborts.

On line 64, we recover the name of the account to change as
well the old and new passwords. We call the
chat::open_proc function to open up a pseudo tty to
the command su -c /usr/bin/passwd username.
If successful, the chat package returns a filehandle we use

320

for the subsequent conversation. Otherwise, we abort with an
error message.

We wait for su to prompt for the original
password (lines 69 through 73) by calling the function
chat::expect. This function takes the pseudo tty
filehandle, a timeout value, and a series of pattern/expression
pairs, and scans through the opened program’s output looking
for a match with each of the provided patterns. When a match
is found, its corresponding expression is eval’d and the
result is returned. If no pattern is matched during the specified
timeout period, an undef value is returned.

In the first call to expect, we’re looking for two possible
patterns. The first pattern is the string Password :,
indicating that su is prompting for the user’s current
password. The second possible pattern is user \w+ does
not exist, which means that the account name we are
attempting to su to is invalid. In the first case, we return the
string ok. In the second case, we return the string unknown
user. Notice that because these expressions will be passed
to eval, we must enclose them in quotes in order to prevent
Perl from trying to execute them as functions or method calls.

Next, in lines 74 to 76, we examine the return value from
chat::expect and act on it. If there’s no return value at
all, we return an error indicating that we timed out before
seeing one of the expected patterns. If the return value is the
unknown user string, we abort with an appropriate error
message. Otherwise, we know that su is waiting for the
password. We oblige it by calling chat:print to send the
old password to su.

321

We now repeat this chat::expect and chat::print
sequence several times. First we await confirmation from su
that the password was correct (lines 78–83). Next we provide
passwd with the old and new passwords (lines 85–106) and
wait for confirmation that they were acceptable. When done,
we close the pseudo tty by calling chat::close (line
107).

The only trick worth noting here is the call to
chat::expect on lines 95 to 98, where we provide
passwd with the user’s new password. With my version of
passwd, there’s a chance of the new password being
rejected as too simple. Sometimes the password is rejected as
too short, sometimes for being composed of lower-case letters
only, and sometimes for other reasons. In addition to
detecting the fact that the password has been rejected, we’d
like to capture the reason given by passwd. We do this
using parentheses in the regular expression match to create a
backreference. The matched string is then returned from
expect when the expression $1 is evaluated.

The return value from set_passwd is a two-element array.
The first element is a numeric result code, where a true value
indicates a successful outcome. The second element is a string
that gives the reason for failure, if any.

322

The Rest of the Script

Changing the password was the hard part. Let’s step back
now and walk through the rest of the script. At the top of the
script we invoke Perl with the -T switch to turn taint checks
on. Taint checks cause Perl to abort if we attempt to pass
unchecked user input to external programs or shells. Since we
invoke the su and passwd programs, it is a good idea to
include these checks. We’d use the -w warning switch too,
but chat2.pl generates many noise warnings about unused
variables.

Lines 2 through 4 are there to make the taint checks happy.
Explicitly setting the PATH and IFS environment variables
prevents programming practices that rely on unsafe
assumptions about the environment. We turn off I/O buffering
on line 7, to avoid conflicts between the standard I/O
buffering used by Perl and the external programs we launch.

On line 9 we load the standard
CGI library and import the standard and HTML3 sets of
functions. The HTML3 set gives us access to HTML table
definition tags. We now print the standard HTTP header, and
begin the HTML page (lines 11 through 14).

Line 16 calls CGI::import_names to import all the
current CGI parameters into like-named Perl variables in the
Q: : namespace. This
script expects five different CGI parameters:

user

The name of the user

323

old

The user’s old
password

new1

The user’s new password

new2

Confirmation of the user’s new password

referer

The URL of the page that originally linked to the script

After import_names is called, there will be variables
named $Q::user, $Q::old, and so forth.

Lines 18 through 33 define a block labeled TRY. In TRY we
attempt to recover the user’s information and set the
password. If we encounter an error during this process, we
call last TRY to fall through to the bottom of the block
immediately (this is essentially a goto written in a structured
manner). First, we test whether the $Q::user parameter is
defined at all. If it isn’t, we just jump to the end of the block.
Otherwise, we call a routine named
check_consistency to check whether all the other
parameters are present and are in the expected format. If
check_consistency fails, we print out an error
message and exit the block.

If we pass the consistency check, we call the set_passwd
routine that we looked at in detail above. If set_passwd is

324

successful, we print an acknowledgment message and set the
variable $OK to true.

The actual call to set_passwd is on line 27. The mess
above and below it are a workaround for an error message
that I found appearing in my server’s error log: stty:
standard input: Invalid argument. This error
message is issued when su tries to suppress the terminal’s
echo of the user’s typed
password. Since this error is irrelevant, we suppress it by
temporarily redirecting standard error to /dev/null.

Outside the TRY block, line 35 calls create_form to
generate the fill-out form. We do this when $OK is false,
causing the form to be displayed the first time the
script is called, and regenerated if any errors occur during the
TRY block. Because
CGI.pm generates “sticky” fill-out forms automatically, the
values the user previously typed into the form fields are
retained.

Lines 37–42 generate the end of the page, a hypertext link
labeled EXIT SCRIPT that takes the user back to the page
that originally linked to the script, and a link to the site’s
home page. The URL for the EXIT SCRIPT link is
generated from a CGI parameter named “referer.” If that isn’t
defined, it uses the value returned by the referer function.
The rationale for this is discussed below.

Finally, let’s look at the definitions of
check_consistency and create_form. The
check_consistency subroutine, defined in lines 44 to
56, performs various sanity checks on the username and other
CGI parameters. First, it checks that the $Q::user,

325

$Q::old, $Q::new1, and $Q::new2 fields are all
present, and returns a warning message if any are missing.
Next, it checks that the $Q::new1 and $Q::new2
passwords are identical. If not, it warns the user that the new
password and its confirmation don’t match. The routine now
verifies that the username has printable nonwhitespace
characters only, and is no longer than 8 characters (this is the
limit on my Linux system; it may be different on yours).
Passwords must be no more than 30 characters in length.
Finally, the routine uses getpwnam to check that the
username provided is a valid account name on this system. If
getpwnam returns an empty list, the name is unknown and
we return an error message to that effect. If the user name
corresponds to the root user (user ID equals 0), we also return
an error. It’s not a good idea to let anyone change the
superuser password via the web!

Lines 112 to 130 define create_form, the routine
responsible for creating the fill-out form. Using CGI’s HTML
shortcuts, it generates a straightforward two-row by
four-column table that prompts the user for her account name,
and old and new passwords. We use call textfield to
generate the field that prompts the user for her account name,
and call password_field to create input fields for the
passwords. (Password fields differ from ordinary text fields in
that the letters the user types in are displayed as stars.)

The only trick in this form appears on line 127, where we
create a hidden field named referer. This field stores the
value returned by CGI::referer, the URL of the page
that linked to the script. We use the hidden field to turn this
value into an invisible CGI parameter the very first time the
script is called, which we later retrieve and use to generate the

326

link labeled EXIT SCRIPT. We have to store this value
when the form is first generated because later, after the form
has been submitted and the script reinvoked, referer will
return the URL of the script itself rather than the original
page. The stickiness of CGI form fields guarantees that the
original value of referer will be maintained through all
subsequent invocations.

Lines 132 to 135 define do_error, which creates a
standard error message. The call to CGI::font creates an
HTML tag that causes the text to be enlarged and colored red.

327

Caveats

Before you install this script on your own system, you may
need to make a few changes. Your versions of su and
passwd may not behave exactly like mine. You may need to
experiment a bit and change the prompt strings that
chat::expect scans for. This is particularly likely to be
true if you use NIS or a shadow password system.

You should also be aware that web communications are not,
by default, encrypted. When the remote user fills out the form
and sends in her account name and passwords, this
information could, theoretically, be intercepted by someone
armed with a packet sniffer who had somehow gained access
to one of the computer systems on the link between the
remote user and the web server. If this bothers you, you can
avoid the risk by installing the script on a server that uses the
SSL (Secure Sockets Layer) encryption protocol, and
configuring the server so that users can only access the page
when SSL is active.

If you run a Windows system, this script won’t work at all
because, thankfully, the Windows interfaces to user account
databases are quite different from their Unix counterparts.
Thanks to David Roth’s excellent Win32::AdminMisc
module, you can change Windows passwords simply by
replacing the set_passwd routine with this much simpler
piece of code:

sub set_passwd ($$$) {
use Win32::AdminMisc;
use Win32::NetAdmin;
my $DOMAIN = "NT Domain";

328

my $CONTROLLER = '';
my ($user, $old, $new) = @_;

return (undef, "Couldn't get primary
domain controller name.")

unless
Win32::NetAdmin::GetController('', '',
$CONTROLLER);

return (undef, "Couldn't log in as
$user.")

unless
Win32::AdminMisc::LogonAsUser($DOMAIN,
$user, $old);

return (undef, "Couldn't change
password for $user.")

unless
Win32::AdminMisc::SetPassword($CONTROLLER,
$user, $new);

return (1, "Password changed
successfully for $Q::user.");

}

You’ll need to change $DOMAIN to whatever the correct
domain is for your system.

329

Chapter 19. Building Web Sites
with Mason

Joe Johnston

Tip ?

When this introduction to HTML::Mason was first
published, Version 0.80 was the state of the art. The
examples in this article still work under the current
version, 1.04. I have corrected the anachronisms where
possible and note them when not.

The scene: a dusty afternoon in a rickety one horse town. The
sign over the “Last Chance” saloon leans drunkenly forward
and tumbleweed skips lazily across your path. You’ve fought
your way through seven ambushing web projects and just
barely escaped to tell about them. To your left, a shifty-eyed
city slicker named ASP hawks his miracle invention to
eliminate work-a-day web drudgery. To your right, a young,
ruddy-faced preacher thumps his ham fist righteously on his
leather bound Cold Fusion manual. All around you, the young
and blind pound the dry earth, desperately trying to hold
together their company’s legacy home page with NotePad and
Frontpage. And staring down at you from the end of the
street, is the meanest, neediest, most market-driven web site
east of the Mississippi that threatens to eat your lunch.

Yep, there’s no doubt about it. You’re in web country.

330

What Is Mason?

When the person responsible for designing an appealing web
site is different from the person who writes the code to make
it happen, traditional hard-wired CGI scripts just get in the
way. As a web programmer, you probably don’t have much
trouble adding print statements to spew HTML. But every
time the designer wants to alter the site, a traditional CGI
script requires the programmer to implement those changes,
no matter how small. Wouldn’t you rather give control of the
HTML to the designer so that you’re not in the critical path?
Mason solves this problem.

Mason (http://www.masonhq.com) is an open source project
authored by Jonathan Swartz which, together with mod_perl
and Apache, offers web developers a tool to slay the
maintenance dragon. In the words of the FAQ, Mason is “a
Perl-based web site development and delivery engine.”
HTML::
Mason is a freely available Perl module that makes Mason
available to your Perl programs.

SSI Redux

Mason accomplishes its magic with a venerable trick. It
allows Perl code to be embedded in an otherwise ordinary
HTML file. In fact, these bits of embedded Perl can be
collected into files called components which in turn can be
called from other Mason-rendered HTML files. Components
are to Mason what subroutines are to Perl.

Yes, Server Side Include (

331

SSI) technology is alive and well. In fact, Mason has some
very successful closed-source brethren. Microsoft’s Active
Server Pages and Allaire’s Cold Fusion also use a special SSI
language. Let’s not forget about open source competitors like
Python’s Zope, Java Server Pages, or PHP! SSI is here to
stay.

Form Versus Function

To tame the wild beast of creating and maintaining a living
web site, traditional HTML-spewing CGI programs are not
enough. Even with a flexible language like Perl, changing the
look and feel of a traditional CGI script often requires an
experienced coder. “Vital” changes thought up by marketing
folks and their graphic designers can often amount to several
hours of patching and testing new CGI code. Even simple
changes like moving a button or adding text can take time
when a web site’s presentation is tied to its functionality. This
is the issue that transcends the choice of implementation
language and speaks to the core of dynamic web site design.

Any SSI technology will greatly reduce the friction between
coders and graphics people because site functionality (a
navigation widget, for example) can be encapsulated into a
component which is then called from an otherwise static web
page. The graphic designer can simply treat this code, which
looks like a funny HTML tag, as a black box and move this
widget to wherever his fickle heart desires. The good news is
that, after implementing the navigation widget, the coder is no
longer required.

332

For those that want the benefits of code reusability and data
hiding, HTML::Mason components can be used in an
object-oriented fashion.

333

Installation

Tip ?

My, how time flies. I successfully tested this code on the
same machine that is now running Red Hat 7.1, Apache
1.3.20, mod_perl 1.26 and HTML::Mason 1.04.

Mason works best with Apache and mod_perl. For the record,
the system I used was a Celeron 400 running Red Hat 6.0
with 128M of RAM, Apache 1.3.9 compiled from source,
mod_perl 1.21, and HTML::Mason 0.8. If you don’t already
have mod_perl, install mod_perl first. Normally, I don’t use
the CPAN module to install mod_perl, since I often play with
various configuration options for both mod_perl and Apache.
You can get a copy of mod_perl from CPAN or the web
(http://www.cpan.org/modules/by-module/Apache/). When
you are ready to build mod_perl, make sure to build all the
mod_perl options like so:

$ perl Makefile.PL EVERYTHING=1 && make

HTML::
Mason likes to use Apache::Table, which isn’t normally built
with the default mod_perl install.

Building Mason is usually very easy. To get the source, try
your local CPAN mirror at http://www.cpan.org/modules/
by-module/HTML. Better yet, use the CPAN module. From
your shell, and with administrator privileges if necessary,
type:

334

perl -MCPAN -e "install HTML::Mason"

Have I mentioned how much I love the CPAN.pm module? A
lot.

Mason comes with a complete installation guide in the file
Mason.html. For those familiar with Apache, the httpd.conf
changes are trivial, although I’m not sure I’d commit my
entire web directory to Mason, as this installation guide
suggests. I made a directory off the root of my htdocs called
mason.

The changes I made to httpd.conf amounted to this:
PerlSetVar MasonCompRoot /home/jjohn/src/
apache_1.3.20/htdocs/mason
PerlSetVar MasonDataDir /home/jjohn/tmp/
mason_data
PerlModule HTML::Mason::ApacheHandler

<Directory /home/jjohn/src/apache_1.3.20/
htdocs/mason>

<FilesMatch "*.html">
SetHandler perl-script
PerlHandler HTML::Mason::ApacheHandler

</FilesMatch>
<FilesMatch "*.pl">

SetHandler perl-script
Options +ExecCGI
PerlHandler Apache::Registry

</FilesMatch>
</Directory>

The first two lines are simply configuration variables Mason
needs to oriented itself to your system. MasonCompRoot is
the real filesystem path to the directory from which Mason
components will be served. This directory typically needs to
be under Apache’s DocumentRoot (I have an Apache

335

installation in my home directory which isn’t standard).
MasonDataDir is a directory writable by Apache where
Mason stores compiled components. It shouldn’t be under
your DocumentRoot. The Mason Apache handler module is
then pulled in.

I only want files with the extension “html” under my Mason
directory to be parsed by Mason, and any “pl” files to be
handled by the standard Apache::Registry module. The final
lines of the httpd.conf section handle these requirements.

Next, you’ll want to create a handler.pl file in your new
mason root directory. This is where you’ll use modules
common to all your components, avoiding the overhead of
including the same module in multiple components. You’ll
find a very serviceable handler.pl file in the eg subdirectory
in the unpacked Mason directory. I recommend
uncommenting this line in the handler subroutine:

#return -1 if $r->content_type &&
$r->content_type !~ m|^text/|io;

This prevents Mason from trying to parse nontext files served
from your mason directory. I suppose an entry for next year’s
Obfuscated Perl Contest might include a carefully engineered
GIF meant to be parsed by Mason to produce The Perl
Journal, but it won’t be submitted by me.

Another source of confusion about configuring handler.pl has
to do with the initialization of Mason’s Interp (Interpreter)
object, which requires a few user-dependent paths. Because
this file will execute under mod_perl, we can use the
Apache::Request object to get the configuration variables
from httpd.conf. In the default handler.pl file, find the section

336

where the parser and interpreter objects are created and
substitute these lines:

my $r = Apache->request;
my $parser = new HTML::Mason::Parser;
my $interp = new HTML::Mason::Interp
(parser=>$parser,

comp_root =>

$r->dir_config('MasonCompRoot'),

data_dir =>

$r->dir_config('MasonDataDir'));

By calling Apache::Request’s dir_config method, you can
find the values for any variable defined in httpd.conf with a
PerlSetVar directive.

Although most new users won’t need to directly manipulate
it, the Interpreter object is responsible for executing the
components and directing the resulting output.

Tip ?

Unless you’re using HTML::Mason Version 0.80, you
may skip this last section.

Mason 0.8 has some new syntax than earlier versions. While I
believe the development is heading in the right direction,
there are some issues worth noting. For instance, Mason 0.8
won’t send HTTP headers for a page with no text. This makes
redirection and issuing cookies less than ideal, since you
would need to write a dummy page just to serve the HTTP

337

headers. There is a workaround on the Mason mailing list, but
I’d recommend staying with the last 0.7x version or
downloading 0.81.

338

339

340

Building a Dynamic Site

The site I designed demonstrates some common tasks that
most web designers face. Please note: I’m no layout expert;
one of the compelling reasons to use Mason is to bridge the
gap between coders and designers, and I’m a coder. The task I
most commonly tackled was to have a web page display
information stored in a database. The designer wants the
coder to provide a method for accessing this data, and this is
where a Mason component comes in handy. I will be
querying my web site Aliens, Aliens, Aliens (A3). It’s about
aliens. It is a MySQL-driven web site with a mod_perl
frontend.

Headers and Footers

The best place to begin a discussion of components is with
the Mason equivalent of “Hello, World”. Many sites have
standard
headers and footers that provide a common look and feel to
pages on the site. Here’s my header (stored in a file called
header.html):

<html>
<title><%$title%></title>
<body bgcolor="<%$color%>">
<h1><%$title%></h1>

<%args>
$title => 'Nonsuch'
$color => 'FFFFFF' # White
</%args>

341

From Mason’s perspective, this is a component, because it’s a
mixture of HTML and specially delimited Perl code. For the
most part, it looks like boring HTML.

There are two different Mason tags to notice here. The first is
the ubiquitous <% %> tag. Any arbitrary Perl code found
inside will be evaluated and the resulting value displayed in
the render page. <% 2 + 2 %> will display in a browser as
4.

Mason also has a small set of special tags used for more
complex or special purpose blocks of code. Here, the
<%args>…</%args> section is used to prototype the two
expected arguments for this component: $title and
$color. In this case, two scalars may be passed to the
header component; if they aren’t, “Nonsuch” and white will
be used as defaults. You may declare arguments without
defaults, which forces the caller to pass parameters. These
parameters are lexically scoped, which means these variables
cease to exist outside of the component. If you’ve wanted
stronger subroutine prototyping in Perl, this may appeal to
you.

The footer component, stored in the file footer.html, is even
simpler, since it takes no arguments at all:

<hr>
<div align=center>
<address>
© <% 1900+(localtime)[5] %> Joe
Johnston

Use this code to your maximium advantage,
but
due credit is always appreciated.
<address>
</div>

342

</body>
</html>

Passing Parameters

Mason provides many flexible ways to pass arguments to
components. One way is to simply attach URL-encoded
arguments (spaces become %20, for example) to the URL of
the component, just like in a GET query. Another is to call the
component directly from another component, as seen in the
first line of my index page:

<& header.html, title=>'Welcome to the
World of Mason', color=>'tan' &>

<P>Gawk in amazement as I build an
interactive, database driven site before
your eyes!

<P>Here's a link to a nonexistent subdirectory.
<P>Pssst! Want to look at some headlines
from other sites?

Slashdot
Perl

News
Aliens, Aliens,

Aliens
Microsoft

News
<FORM Method=post Action="news/

dhandler">
URL to your favorite RDF: <input

type=text name=RDF>
<input type=submit>
</FORM>

343

<& departments.html &>
<& footer.html &>

Mason’s <& &> is similar to Perl’s ampersand operator in
that it calls a component much like a subroutine. The return
value is discarded; the side effects are what’s important. Let’s
look at the first line of this component more closely:

<& header.html, title => 'Welcome to the
World of Mason', color => 'tan' &>

This inserts the rendered version of the header, modified with
the appropriate parameters, onto the web page. The rendered
version of this page appears in Figure 19-1. Yet another way
to pass arguments is to use default handlers and extra path
information.

Default Handlers and XML

When a component is called that Mason can’t find, it looks in
that directory for a file called dhandler (notice there’s no
.html). For example, I have the dhandler shown below in the
mason directory:

<& header.html &>

Oops! I'm not certain where you were
going!

<p>Back
<& footer.html &>

This is just a custom “404 Not Found”
document. The generated page is shown in Figure 19-2.

344

Figure 19-1. A web page generated by Mason

345

Figure 19-2. A customized “File Not Found” page

In the news subdirectory, I have another dhandler, which is
meant to be called with extra path information.

<%init>
use XML::RSS;
use LWP::Simple qw(get);

my $news_site = $m->dhandler_arg;

my $rss = new XML::RSS;
my $rdf;

for ($news_site) { # This is like a
'switch' statement

/slashdot/ && do {
$rdf = get('http://slashdot.org/

slashdot.rdf');
last;

346

};
/perl_news/ && do {

$rdf =
get('http://www.news.perl.org/
perl-news.rdf');

last;
};
/a3/ && do {

$rdf =
get('http://aliensaliensaliens.com/
a3.rdf');

last;
};

}

$rdf ||= get($ARGS{RDF}); # Was I passed
in something?

unless ($rdf) {
a little tricky, use the existing

mechanism
for this 404, use old standby CGI

env hack

use CGI qw/:all/;
print

redirect("http://$ENV{SERVER_NAME}/mason/
tpj/404");

return;
}

$rss->parse($rdf);
</%init>

<& ../header, title=>
($news_site||$rss->{'channel'}->{'title'})
&>

347

<p>See the rest of <a href="<%
$rss->{'channel'}->{'link'} %>">

% for my $bit (@{ $rss->{'items'}}){ #
Not very OO ;-)

<a href="<% $bit->{'link'} %>"><%
$bit->{'title'} %>

% if($bit->{'description'}) {
: <% $bit->{'description'} %>

% }

% }

Back
<& ../footer.html &>

In this case the dhandler will try to retrieve an
RSS (Rich Site Summary) file, an XML description that many
news sites (including Perl News) use to broadcast their
headlines. Looking back at the index.html component shown
earlier, you can see that the dhandler parameter resembles a
file in the news subdirectory. Selecting the A3 link produces
the page seen in Figure 19-3. This is the kind of magic that
makes some coders soil themselves. Unfortunately there’s
equal and opposite kind of magic that can burn you here:
those leading percent signs that indicate Perl code needs to be
in the first column of the line in your component to be
correctly interpreted.

348

Figure 19-3. Aliens, aliens, aliens

Something else is going on in this news /dhandler component.
Because we want users to be able to enter an arbitrary URL to
an RDF (Resource Description Framework) file, this
component also accepts the more traditional
parameter-passing method in a variable called %ARGS.

Accessing MySQL

If you’re familiar with DBI,

349

database access is performed no differently in Mason. In fact,
you can use Apache::DBI to transparently give you persistent
database handles. Aliens, Aliens, Aliens is divided up into
several departments, which themselves contain other
departments. The departments component generates a nice
table with links to all the top level departments:

<%init>
my $dbh =

DBI->connect("DBI:mysql:aliens:nfs.daisypark.org",
"username",

"password")
or die "ERROR: Couldn't

connect to DB $DBI::errstr";

Find all the top level departments
All top level departments have 'home' as
a parent
my $sql = "select homepage_id,segment from
departments

where parent_id=1 order by
segment";

my $sth = $dbh->prepare($sql)
or die "ERROR: prepare failed "

. $dbh->errstr;

$sth->execute or die "ERROR: couldn't get
departments! " . $dbh->errstr;
</%init>

<TABLE Border=1>
<TR>
% while (my $hr = $sth->fetchrow_hashref
) {

<TH><A HREF="http://nfs.daisypark.org/
cgi-bin/render_article.pl?

350

article_id=<%$hr->{homepage_id}%>">
<% $hr->{segment} %></TH>

% }

</TR>
</TABLE>

<%cleanup>
$dbh->disconnect;
</%cleanup>

I’ll skip the discussion of DBI and SQL and draw your
attention to the embedded fetchrow loop which retrieves
all the pertinent links and labels. Notice how even though the
while statement is preceded by the % symbol (meaning that
the rest of the line is Perl code), the plain HTML is repeated
as needed. Compare this to a more traditional Perl CGI
program in which the loop has a print statement outputting
HTML. Although this may seem like two sides of the same
coin, the difference with Mason is that your layout expert can
now tweak the non-code bits without bothering you. This
generally leads to more beer time, which is the second thing
any good job should give you.

Finally, you’ll notice the <%cleanup> section. This is Perl
code to be executed when the component has finished. Here, I
would normally kill my database handle, close filehandles, or
free objects. However, since Apache::DBI (which should be
included in the httpd.conf file) lets me keep database handles
open from visit to visit, I have commented this out.

351

What Now?

I have provided only a brief introduction to this great tool.
Other topics that await you in Mason-land are the fabulous
Component Manager (written by Mark Schmick), lots of
documentation, component debugging files, and component
staging. Do yourself a favor and check Mason out.

Not surprisingly, Mason has been under constant
development since this article first appeared. Included in
HTML::Mason archive file is a sample shopping cart system
and examples of the very excellent Apache::Session module.
Check out masonhq.com for the most recent news.

352

Chapter 20. Surreal HTML

Lincoln D. Stein
If you’ve poked around the eg directory in old Perl
distributions, you might have noticed a small program called
travesty. This program takes any regular text file,
processes it, and spews out a curious parody of the original.
For example, here’s a small part of what you get when you
feed it this article:

Travesty achieves this by calling the Perl
distribution's eg
directory, you may have noticed a small
program called travesty. This
program takes any regular text file,
processes it, and spews out a
curious parody of the number of words to
generate (lines 81 to
82). Travesty::regurgitate returns a parse
tree in turn, calling
ref to determine whether the node is any
of the tree by returning a
value of 0 from the LWP modules, as well
as back to Mangler's fill-out
form.

Travesty’s output is almost, but not quite, English.
Reasonable phrases and sometimes whole sentences pop out,
but the whole makes no sense at all. However, if you were to
analyze the word frequency of the output, you’d find it
identical to the original. Furthermore, if you were to count the
frequency of word pairs, you’d find them the same as well.

353

Travesty achieves this by using the original text to create a
lookup table of word triples (A,B,C), in which C is indexed
on the (A,B) pair. After creating this table, it spews out a
parody of the text using a Markov chain: the program chooses
a random (A,B) pair and uses the lookup table to pick a C.
The new (B,C) pair is now used to look up the fourth word,
and this process continues ad infinitum.

This article presents the Mangler, a CGI script that runs any
web page on the Internet through the travesty program
and returns the result.

How It Works

You can see Mangler’s entry page in . When the user
connects, she’s shown a page that prompts her to type in the
URL for a web page with text. When she presses the
“Mangle” button, the script extracts the text from that page,
slices and dices it with the travesty algorithm, and displays
the result, shown in .

354

Figure 20-1. The Mangler’s introductory page

355

Figure 20-2. A Mangled page

The
Mangler uses routines from the LWP modules (described in
Scripting the Web with LWP), as well as from the CGI.pm
module discussed in CGI Programming. Both of these
libraries are available from CPAN, and the full
source code is shown in Example 20-1.

Example 20-1. The Mangler
0 #!/usr/bin/perl
1 # File: mangler.cgi
2
3 use LWP::UserAgent;

356

4 use HTML::Parse;
5 use HTTP::Status;
6 use CGI qw(:standard :html3);
7 $ICON = "pow.gif";
8
9 srand();
10
11 $url_to_mangle = param('mangle') if
request_method() eq 'POST';
12
13
14 print header();
15
16 if ($url_to_mangle &&
mangle($url_to_mangle)) {
17 ; # nothing to do
18 } else {
19 prompt_for_url();
20 }
21
22 #

23 # THIS SECTION IS WHERE URLs ARE
FETCHED AND MANGLED
24 #

25 sub mangle {
26 my $url = shift;
27 my $agent = new LWP::UserAgent;
28 my $request = new
HTTP::Request('GET', $url);
29 my $response =
$agent->request($request);
30
31 unless ($response->isSuccess) {
32 print h1('Error Fetching URL'),
33 "An error occurred while
fetching the document located at ",

357

34 a({href=>$url},"$url."),
35 p(),
36 "The error was
",strong(statusMessage($response->code)),".",
37 hr();
38 return undef;
39 }
40
41 # Make sure that it's an HTML
document!
42 my $type =
$response->header('Content-type');
43 unless ($type eq 'text/html') {
44 print h1("Document isn't an
HTML File!"),
45 "The URL
",a({href=>$url},"$url"),
46 " is a document of type
",em($type),". ",
47 "Please choose an HTML
file to mangle.",
48 hr();
49 return undef;
50 }
51
52 print start_html(-title =>
'Mangled Document',
53 -xbase => $url),
54 div({ -align => CENTER },
55 h1("The

Mangler"),
56 strong(a({-href =>
$url},$url))
57),
58 p(),
59 a({-href => self_url()
},"Mangle another page"), hr();

358

60
61 my $parse_tree =
parse_html($response->content);
62 $parse_tree->traverse(\&swallow);
63
$parse_tree->traverse(\®urgitate);
64 $parse_tree->delete();
65 1;
66 }
67
68 sub swallow {
69 my ($node, $start, $depth) = @_;
70 return 1 if ref($node);
71 return &Travesty::swallow($node);
72 }
73
74 sub regurgitate {
75 my ($node, $start, $depth) = @_;
76 if (ref($node)) {
77 return 1 if $node->tag =~
/^(html|head|body)/i;
78 return 0 if
$node->isInside('head');
79 &Travesty::reset() if $start;
80 print $node->starttag if
$start;
81 print $node->endtag unless
$start;
82 } else {
83 my @words = split(/\s+/,$node);
84 print
&Travesty::regurgitate(scalar(@words));
85 }
86 1;
87 }
88
89 #

359

90 # THIS SECTION IS WHERE THE PROMPT IS
CREATED
91 #

92 sub prompt_for_url {
93 print start_html('The Mangler'),
94 -e $ICON ?
img({-src=>$ICON,-align=>LEFT}) : '',
95 h1('The Mangler'), "Enter the
URL of an HTML page and press ",
96 em("Mangle. "), "For best
results, choose a document containing ",
97 "several pages of text. Very
large documents may take a long ",
98 "time to process, so have
patience.",
99
100 start_form(),
101 textfield(-name => 'mangle',
-size => 60),
102 submit(-value => 'Mangle'),
103 end_form(),
104 hr(),
105 address("Author: ",
106 a({ -href =>
'http://www.genome.wi.mit.edu/~lstein/' },
107 'Lincoln D. Stein'),
108),
109 end_html();
110 }
111
112 # derived from the

code in Perl's eg/ directory
113 package Travesty;
114
115 sub swallow {
116 my $string = shift;

360

117 $string =~ tr/\n/ /s;
118
119 push(@ary, split(/\s+/, $string));
120 while ($#ary > 1) {
121 $a = $p;
122 $p = $n;
123 $w = shift(@ary);
124 $n = $num{$w};
125 if ($n eq '') {
126 push(@word, $w);
127 $n = pack('S', $#word);
128 $num{$w} = $n;
129 }
130 $lookup{$a . $p} .= $n;
131 }
132 1;
133 }
134
135 sub reset {
136 my ($key) = each(%lookup);
137 ($a,$p) = (substr($key,0,2),
substr($key,2,2));
138 }
139
140 sub regurgitate {
141 my $words = shift;
142 my $result = '';
143 while (--$words >= 0) {
144
145 $n = $lookup{$a . $p};
146 ($foo, $n) = each(%lookup) if
$n eq '';
147 $n =
substr($n,int(rand(length($n))) & 0177776,
2);
148 $a = $p;
149 $p = $n;
150 ($w) = unpack('S', $n);

361

151 $w = $word[$w];
152
153 # Most of this formatting is
only for <PRE> text.
154 # We'll leave it in for that
purpose.
155 $col += length($w) + 1;
156 if ($col >= 65) {
157 $col = 0;
158 $result .= "\n";
159 } else {
160 $result .= ' ';
161 }
162 $result .= $w;
163 if ($w =~ /\.$/) {
164 if (rand() < .1) {
165 $result .= "\n";
166 $col = 80;
167 }
168 }
169
170 }
171 return $result;
172 }

362

Figure 20-1

363

Figure 20-2

364

Prompting the User

The
Mangler uses
CGI.pm to parse the CGI parameters and create the fill-out
form. We pull in CGI.pm on line 6 and import both the
standard and HTML3-specific subroutines. On line 11 we
look for a parameter named “mangle.” If defined, we call the
mangle subroutine (line 16). Otherwise, we call
prompt_for_url. As an aside, line 11 shows a technique
for initializing field values in a fill-out form. Only if the
request method is a POST resulting from the user pressing the
“Mangle” button do we actually do the work. Otherwise, if
the request method is a GET, we ignore it and let CGI.pm’s
“sticky” behavior initialize the text field automatically. This
allows you to create a default URL for
Mangler by creating a link to it like this one:

<A HREF="/cgi-bin/
mangler?mangle=http://www.microsoft.com/">
Mangle Uncle Bill

The prompt_for_url routine is defined in lines 92
through 110. It follows the form that should be familiar to
readers of my previous columns. Using CGI.pm’s fill-out
form and HTML shortcuts, we create a form containing a
single text field labeled “mangle” and a submit button.

365

Fetching the Document

The first half of the mangle subroutine (lines 25–50) does
the work of fetching the remote document. We use the
LWP::UserAgent library to create an HTTP request and to
retrieve the document across the net. Several things may go
wrong at this point. For example, the user may have typed in
an invalid URL, or the remote server may be down. On line
31, we check the success status of the transfer. If the transfer
fails, the subroutine prints out the nature of the error using
LWP’s statusMessage subroutine and returns. When the
script sees that the subroutine has returned a false value, it
regenerates the fill-out form by invoking
prompt_for_url again.

Next, we extract the retrieved document’s MIME type from
its Content-type header field. We get the field on line
42 by making a call to the LWP::Response header method.
We can only process HTML files, so if the type turns out not
to be “text/html” we print an error message and again return
false.

If all has gone well so far, we print out a small preamble
before the mangled document itself (lines 52–59). The
preamble creates a title for the page, a descriptive header, and
links to the original document location and to Mangler’s
fill-out form. One interesting question: How do we ensure
that the document’s relative URLs and in-line images work
properly? We set the document’s BASE attribute to the URL
of the unmodified document by passing -xbase to the
start_html method in CGI.pm.

366

Running the Travesty Algorithm

This is the most interesting part of the program. If we were to
pipe the retrieved HTML through the travesty generator,
it would scramble the tags with the text, creating an illegible
mess. We want to mangle the text of the file but leave its
HTML structure, including tags and in-line images, intact.

We do this using the HTML manipulation routines defined in
LWP. On line 61, we call parse_html, a routine defined
in HTML::Parse. This parses the HTML document and
returns a parse tree object, which we store in the scalar
$parse_tree.

On line 62, we make the first of two calls to the parse tree’s
traverse method. This method performs a depth-first
traversal of the parse tree, calling the subroutine of our
choosing for each element of the tree. In this case, we pass it
a reference to our swallow subroutine (lines 68–72).
swallow examines each node in turn and extracts the ones
that contain straight text, passing them to the travesty
algorithm. There are two types of node to worry about: those
that are branches in the tree (tag pairs surrounding content),
and those that are leaves (plain text). We can distinguish
between branches and leaves by calling Perl’s ref function
on the node. If the node is a reference, it’s a branch and we
return immediately. Otherwise we know that the node is a
leaf. We pass its text to the subroutine
Travesty::swallow which breaks up the string into an
array of words using split and adds them to the travesty
algorithm’s lookup table.

367

The travesty algorithm itself is defined in the last sixty lines
of the Mangler. The code here is a slight modification of the
original code in Perl’s eg directory, and I won’t go into the
details here. It’s worth studying, particularly if you’re
interested in entering the Obfuscated Perl contest.

368

Printing the Mangled Document

The last task is to print out the mangled document. In line 61,
we make the second call to traverse, this time passing it a
reference to the regurgitate subroutine (lines 74–87).
As before, the subroutine examines each node of the parse
tree in turn, calling ref to determine whether the node is a
leaf or a branch. If the node is a branch corresponding to any
of the tags <HTML>, <HEAD>, or <BODY> we skip it
completely—we’ve already begun to create the HTML
document and we don’t need to repeat these sections.
Similarly, we skip the entire contents of the HTML head
section by asking the parse tree’s isInside method (line
78) whether the node lies within a <HEAD> tag. If it does, we
abort the traversal of this part of the tree by having
regurgitate return 0. Otherwise, we print out the tag,
using the node’s starttag and endtag methods to
produce the appropriate opening and closing tags.

Whenever we encounter a leaf node containing text, we pass
the number of desired words we’d like ($words) to
Travesty::regurgitate (lines 83 to 84). It returns a
series of scrambled words, which we simply print out. That’s
it!

369

370

371

Chapter 21. Web Page
Tastefulness

Lincoln D. Stein
The Web is slowly but surely turning into a cyber-stripmall,
complete with flashing neon signs, tasteless ads, and outlet
stores. Snazzy graphics crowd out textual information, giving
both myself and my low-bandwidth modem a headache. A
page purporting to be the definitive guide to some subject
turns out to consist of lists of links, most of which are dead.
Frames proliferate like weeds, crowding out the page content
with scrollbars within scrollbars within scrollbars.
Meanwhile, hopping, jittering, flashing, bleeping, and
morphing applets dance in and out of my visual field, jerking
my attention away from whatever mindless promotional copy
I was trying to wade through.

What to do about the proliferation of web junk? Will the
Internet actually collapse under its own weight as technology
pundit Bob Metcalfe predicted way back in 1995?

Perl to the rescue. You don’t have to wade through 19 pages
of trash to find the gem buried in the twentieth. You can have
a Perl agent do the wading for you. In a column that I wrote
for WebTechniques in May 1997, I suggested a series of
indexes to measure the tastefulness of a web page. Some of
the indexes were serious, such as the ratio of words in
hyperlinks to total words on the page (pages with sparsely
scattered links are more likely to contain real information
than pages consisting almost entirely of links), or the number

372

of potential advertisements on the page. Others were
tongue-in-cheek, such as the TutieFrutie Index to measure the
number of clashing color changes on the page, or the “Cool!”
Index to count the times the words “cool,” “neat,” or
“awesome” appeared. Nevertheless, the intent was sincere: to
have a script capable of screening out frivolous or tasteless
pages according to whatever your personal criteria happen to
be. See Tastefulness Indexes for a listing of the indexes that I
proposed.

The agent might be something that you invoke on the spur of
the moment. (“Hmmm. That URL looks like it might be
interesting. Let’s have Perl give it the once-over.”) A more
likely prospect would be to incorporate the agent into a search
engine. At the same time the search engine is indexing the
keywords on a remote site’s pages, it can be calculating and
recording the site’s tastefulness.

Tastefulness Indexes

Information Index (II)

Basic measure of the word to link ratio, defined as:
II = 100 x (1 - (words inside links /
total words in document))

Graphics Index (GI)

Measure of the graphics usage of a page, defined as:
GI = number of IMG tags / number pages

373

Doodads Index (DI)

Measure of the number of applets, controls, and scripts,
defined as:

DI = number of doodads / number pages

TutieFrutie Index (TFI)

Measure of how “colorful” a document is, defined as:
TFI = number of color changes /
number of pages

Frames Index (FI)

Measure of the use of frames, defined as:
FI = number of frame tags

Cool! Index (C!I)

Measure of how excited a page is about itself, defined
as:

C!I = 100 x (exclamation marks +
superlatives) / total sentences

Crass Commercialism Index (CCI)

Indication of banner advertising on the page, defined
as:

CCI = number of ads / number of pages

This program uses heuristics to count banner
advertisements and may not always guess correctly.

374

Reactions to the proposal have ranged from the mildly
amused to the wildly enthusiastic. It will probably never
become part of a commercial product, but at the very least the
agent is a good example of how to write a robot with the
LWP library.

For fun, I implemented the agent as a CGI script. When you
first invoke it, it displays a screen prompting the user to type
in a URL, as shown in Figure 21-1. When the user presses the
submit button, the script fetches the page, rates it, and
displays the results in a table. If the URL contains links to
other local pages at the same or lower level in the document
tree, the script recurses into them and adds them to the
aggregate listing. Since processing lots of pages can take
significant time, the script updates the web page as it goes
along, displaying each URL as it is processed. To allow
people to see what others have been rating, the page also
displays the results from the last thirty URLs fetched; you can
see a screenshot in Figure 21-2.

I’ll spend the rest of this article walking through the script.
Although more complex than other example scripts in this
series, it’s a good example of how to write a web-walking
robot with LWP. It also illustrates a few CGI tricks that
haven’t popped up in these pages before.

375

Figure 21-1. The Rating Game

The script has four objectives:

1. Display the welcome page and prompt for input.

2. Fetch the provided URL and all pages linked from it.

3. Collect statistics on the pages and crunch them into
rating indexes.

4. Record recent results into a file that can be displayed at
the bottom of the page.

How It Works

Because this script is 400 lines long, I’ll intersperse the code
with explanations of what’s going on. In some places, I depart

376

from the strict linear order of the code in order to make the
explanations clearer. If you find this hopelessly confusing,
don’t despair: you can fetch the entire listing online from this
book’s web page at http://www.oreilly.com/catalog/tpj2.

0 #!/usr/bin/perl
1
2 # File: nph-rater.cgi
3 # Copyright 1997, Lincoln D. Stein.

All rights reserved.
4 # Permission is granted to use,

modify and redistribute
5 # in whole or in part, provided that

the above
6 # copyright statement remains

prominently displayed.
7 use

LWP::UserAgent;
8 use HTML::Parse;
9 use HTTP::Status;

10 use CGI qw/:standard :html3 :nph/;
11 use CGI::Carp;
12

377

Figure 21-2. Tastefulness ratings of selected web pages

The beginning of the script (lines 7 through 11) loads all the
modules we need for the agent. We use the
LWP::UserAgent module for fetching URLs, the
HTML::Parse module for creating a parse tree of the
document’s HTML, and the HTTP::Status module for access
to various HTTP status code constants. In addition, we load
the CGI and CGI::Carp modules. The first provides us with
shortcuts for processing CGI variables and writing HTML,
while the second makes any error messages generated by the
script more informative. A new feature of the CGI library
that’s not been previously demonstrated in these articles is

378

support for no-parsed header (NPH) scripts, a dialect of CGI
in which the script’s output is forwarded directly to the
browser without extra processing by the web server. When
the symbol :nph is imported from the CGI module, it will
automagically generate the HTTP header information
necessary to run as an NPH script. In this case, the only
reason we want an NPH script is to turn off buffering at the
web server’s side of the connection so that we can update the
page incrementally. In most cases the server also has to be
told that the script is of the NPH variety, usually by tacking
the prefix nph- to its name.

13 $MAX_DEPTH = 2; # How
deeply to recurse
14
15 # Words counted towards the cool! index
16 @COOL_WORDS = qw/cool hot groovy neat
wild snazzy great awesome wicked/;
17
18 # Words that might indicate an
advertisement
19 @AD_WORDS = qw/promotion ad
advertisement sponsor banner
20 banner commercial
promotions ads advertisements
21 banners sponsors
commercials doubleclick/;
22
23 # The attributes to count towards
tutie-frutie
24 @COLOR_ATTR = qw/color bgcolor text
link alink vlink background/;
25
26 # The number of previous rankings to
list
27 $PREVIOUS_RANKS = 30;
28

379

29 # The file containing the previous
rankings
30 $RANK_FILE = '/usr/local/etc/www/
INDEXER.RANKS';

Lines 13 through 30 contain various
user-adjustable globals, including strings to look at when
trying to decide if a graphic is an advertisement, and words
like “cool” and “snazzy” that might indicate a hyped-up web
page. An important constant here is $MAX_DEPTH, which
tells the script how deeply to recurse into linked pages. In the
code listing here it’s set to 2, meaning that only one level of
links will be traversed. Higher values make the script
investigate a site more thoroughly, at the cost of a longer
wait. Also defined here is the name of the file containing the
results from previous ratings. You’ll need to create this file
and make it writable by your web server before you run this
script for the first time.

32
#---
33 # No user serviceable parts below
34
35 # Global for collecting statistics
36 %COUNTS = (
37 'pages' => 0,
38 'images' => 0,
39 'doodads' => 0,
40 'colors' => 0,
41 'frames' => 0,
42 'ads' => 0,
43 'link_words' => 0,
44 'cool_words' => 0,
45 'total_words' => 0,
46);
47
48 grep ($COLOR_ATTR{$_}++, @COLOR_ATTR);

380

49 $LEVEL =
0; # Recursion
level
50 $HTML::Parse::IGNORE_UNKNOWN =
0; # Don't ignore unknown tags
51
52 $COOL_PATTERN = join("|", @COOL_WORDS);
53 $AD_PATTERN = join("|", @AD_WORDS);
54 $SIG{ALRM} = \&do_alarm;
55 $FH =
'FH0000'; # Just a filehandle
56 $| =
1; # Turn off
buffering

Lines 35 through 56 set up various
internal globals. We initialize the %COUNTS hash to keep
track of web page statistics. Among the things we record are
the number of pages counted, the number of images, the
number of applet tags, the number of words in links, and so
on. We also create some patterns to find advertisements and
hyped-up pages. Several obscure globals are also set here. We
zero the variable $LEVEL, which monitors the recursion
level, and we set the internal HTML::Parse global
$IGNORE_UNKNOWN to false, because by default the parser
skips over any HTML tags that it’s unfamiliar with, including
some of the newer tags that matter to us, such as <FRAME>.
We also set up a signal handler for alarm—this becomes
important later. Finally, we unbuffer output by setting $| to
true, allowing partial pages to be sent to the browser.

58 print header,
59 start_html('The Rating Game'),
60 h1('The Rating Game');
61
62 if (param('action') eq 'explain') {

381

63 print 'The idea is to automatically
collect information about a linked set of
',
64 'pages that gives the reader some
idea of the flavor of the document. The ',
65 'ratings measure pages\'
information content, the amount of
graphics they ',
66 'use, the presence of applets, and
the presence of commercial content.',
67 p(),
68 h2('Key'),
69 dl(
70 dt(strong('Information Index
(II)')),
71 dd('Basic measure of the word to
link ratio, defined as:', p(),
72 pre('II = 100 x (1 - (words
inside links / total words in document))'),
73 p()),
74 dt(strong('Graphics Index (GI)')),
75 dd('Measure of the graphics usage
of a page, defined as:',p(),
76 pre('GI = number IMG tags /
number pages'),
77 p()),
78 dt(strong('Doodads Index (DI)')),
79 dd('Measure of the number of
applets, controls and scripts, defined
as:',p(),
80 pre('DI = number of doodads /
number of pages'),
81 p()),
82 dt(strong('TutieFrutie Index
(TFI)')),
83 dd('Measure of how "colorful" a
document is, defined as:',p(),
84 pre('TFI = number of color

382

changes / number of pages'),
85 p()),
86 dt(strong('Frames Index (FI)')),
87 dd('Measure of the use of frames,
defined as:',p(),
88 pre('FI = number of frame
tags'),
89 p()),
90 dt(strong('Cool! Index (C!I)')),
91 dd('Measure of how excited a page
is about itself, defined as:',p(),
92 pre('C!I = 100 x (exclamation
marks + superlatives) / total sentences'),
93 p()),
94 dt(strong('Crass Commercialism
Index (CCI)')),
95 dd('Indication of banner
advertising on the page, defined as:',p(),
96 pre('CCI = number of ads /
number of pages'),
97 p(),
98 'This program uses heuristics to
count banner advertisements and may ',
99 'not always guess correctly.'
100)
101);
102 } else {
103 print
104 'This CGI script was written to go
along with my May 1997',
105
a({-href=>'http://www.webtechniques.com/
'}, 'WebTechniques'),' column',
106 cite('Sifting the Wheat from the
Chaff'),'. It demonstrates a way of ',
107 'rating Web pages automatically
for information content. To use it, ',
108 'enter a full URL in the text

383

field below and press', strong('Rate'),
109 '. After some processing, the ',
110 'script will report a variety of
rating indexes.',
111 p(),
112 'This script isn\'t fast, so be
patient. In order to minimize system load,
',
113 'the script currently only
descends one level of links.',
114 p(),
115 a({-href=>script_name() .
'?action=explain', -target=>'explanation'},

'Explain the ratings.');

Lines 58 through 115 print out the
welcome page and instructions for the user. This part of the
script makes extensive use of the HTML shortcuts provided
by the CGI module; see the article CGI Programming for
details. If you don’t know what’s going on, suffice it to say
that h1 produces a level 1 header, a produces a link, and so
on. The script actually includes its own documentation; if
called with the CGI parameter named action set to
explain (i.e., cgi-bin/nph-rater.cgi?action=explain), it
displays text explaining the rating system. Otherwise, it prints
the normal welcome page. The check for this parameter is in
line 62. An interesting trick related to this can be found on
line 115, where you’ll find this bit of code used to generate
the self-referencing URL that summons up the explanatory
text:

a({-href => script_name().
'?action=explain', -target =>
'explanation'},

'Explain the ratings.');

384

This generates a link with the TARGET attribute set. On
frames-aware browsers (primarily Netscape and Internet
Explorer), this causes the explanatory text to be displayed in a
newly-created browser window.

117 print_prompt();
118 %stats = process_url($URL) if $URL =
param('url_to_process');
119 print_previous(%stats);
120 }
121
122 print_tail();
123
124 exit 0;
125
126 sub print_prompt {
127 print hr,
128 start_form,
129 'URL to Rate:', br,
130
textfield(-name=>'url_to_process',-size=>60),br,
131 submit('Rate'),
132 end_form;
133 }
...
146 sub print_tail {
147 print hr(),
148 address(a({-href=>'/
~lstein'},"Lincoln D. Stein"), br,
149
a({-href=>'http://www.genome.wi.mit.edu/
'},'Whitehead Institute/MIT

Center for Genome Research'));
150 }

Line 117 invokes the print_prompt subroutine (lines
126–133), which uses standard CGI module calls to create a

385

small fill-out form. Aside from the submit button, only one
form element is defined: a text field named
url_to_process. After the form is submitted, a
like-named CGI parameter will contain the URL to process.
Line 118 checks this parameter, and, if present, passes its
value to the aptly-named process_url function for
processing and display. The previous thirty statistics are next
fetched from a disk file and printed at the bottom of the page.
Finally, the script prints out the bottom of the HTML page
(subroutine print_tail, lines 146–150) and exits.

135 sub process_url {
136 my $url = shift;
137 print hr(),
138 h2('

Progress');
139 print "<PRE>\n";
140 collect_stats(new URI::URL $url);
141 print "</PRE>\n";
142
143 return summary_statistics($url) if
$COUNTS{'pages'};
144 }

The clever
LWP agent begins with the call to process_url (lines
135–144). Because the script may take some time to traverse
the linked pages, we’re careful to keep the user on top of
what’s going on. We print out a level 2 header labeled
“Progress” and then start a preformatted section with the
<PRE> HTML tag. In line 140, we call the LWP library to
create a new URI::URL object, and pass this object to the
subroutine collect_stats. As collect_stats
traverses the document tree, it prints out an indented set of

386

URLs, which are immediately displayed. As
collect_stats works, it adds the collected statistics to
the global variable %COUNTS. When it’s finished, we call the
routine summary_statistics to crunch the numbers
and format them.

245 sub collect_stats {
246 local $CURRENT_DOC = shift;
247 return undef unless $LEVEL <
$MAX_DEPTH;
248
249 my $path = $CURRENT_DOC->abs->path;
250 return undef if $BEEN_THERE{$path}++;
251
252 my $href =
$CURRENT_DOC->abs->as_string;
253
254 print ' ' x ($LEVEL*3), "Examining
", a({-href => $href}, $href)," ";
255
256 $LEVEL++;
257 my $agent = new

LWP::UserAgent;
258 my $request = new
HTTP::Request('GET', $CURRENT_DOC);
259 my $response =
$agent->request($request);
260
261 local ($BASE,$INSIDE_A_LINK,$TEXT);
262
263 TRY:
264 {
265 # Replace with a more informative
error message later
266 do { print em("unable to fetch

387

document\n"); last TRY }
267 unless $response->is_success;
268 # This guarantees that we get the
correct base document
269 # even if there was a redirect
thrown in there.
270 if
($response->request->url->abs->path ne
$path) {
271 $CURRENT_DOC =
$response->request->url;
272 last TRY if
$BEEN_THERE{$CURRENT_DOC->abs->path}++;
273 }
274
275
276 # Make sure that it's an HTML
document!
277 my $type =
$response->header('Content-type');
278 do { print em("not an HTML
file\n"); last TRY; }
279 unless $type eq 'text/html';
280 my $parse_tree =
parse($response->content);
281 do { print em("unable to parse
HTML\n"); last TRY; }
282 unless $parse_tree;
283 print "\n";
284
285 $COUNTS{'pages'}++;
286
$parse_tree->traverse(\&process_page);
287
288 # For non-obvious reasons, we have
to collect all
289 # the text before we can count the
sentences.

388

290 $COUNTS{'sentences'} +=
sentences($TEXT);
291
292 $parse_tree->delete;
293 }
294 $LEVEL--;
295 return 1;
296 }

Lines 245 through 296 contain the code for
collect_stats, the subroutine responsible for fetching
the document at the indicated URL and its linked pages. We
begin by loading the URI::URL object previously created in
the call to process_url into a dynamically-scoped
variable named $CURRENT_DOC. Although
lexically-scoped variables created with my are usually
preferable, dynamic scoping with local comes in handy
when you want to create a set of variables that can be shared
among a series of recursive subroutines. We use the same
trick on line 261, where the values of pseudo-globals $BASE,
$INSIDE_A_LINK, and $TEXT are defined.

Next, we perform a check for the depth of recursion. We
return immediately if the global variable $LEVEL reaches
$MAX_DEPTH (line 247). Following this is another
important check: If we’ve seen this URL before, we must also
return without processing the page. Because tasteless web
pages often contain a series of tangled self-referential links,
we have to be careful not to count the same page twice. This
is done by calling the URL object’s abs and path methods.
Together, these methods resolve relative URLs into absolute
ones (taking the BASE tag, if any, into account), strip off the
protocol, host name, query string and “#” parts of the URL,
and return the naked URL path. We compare this path to

389

%BEEN_THERE, a hash of visited URLs, and exit if we’ve
seen it already.

On lines 252 through 254, we convert the URL object into a
string by calling the URL’s as_string method, and print
it out, tabbing over an appropriate number of spaces
according to the recursion level. When this is done, we bump
up the $LEVEL global.

The section between lines 257–259 creates a new
LWP
UserAgent and attempts to fetch the
document at the current URL. The HTTP response from the
attempt (whether successful or unsuccessful) is stored in the
variable $response. We now attempt to process the
response (lines 263–296). First, we check the HTTP result
code by calling the response’s is_success method. If
unsuccessful, we print an error message and bail out. Next,
we fetch the actual URL associated with the response and
update the $CURRENT_DOC variable if it is different from
what we attempted to fetch. Usually, an HTTP request returns
the same URL that we attempted to fetch, but redirections
muddy the waters. Again, we need to check that we aren’t
counting the same document twice. The final sanity check is
for the returned document’s MIME type (lines 277 and 278).
If it’s an HTML file we proceed; otherwise, we exit the
subroutine.

Now that we have an HTML document in hand, we parse it
(line 280) by passing it to parse. If successful, this returns
an HTML::Parse object containing a tree of the document’s
HTML. We bump up the page count (line 285) and scrutinize
the document by calling the traverse method.

390

378 sub parse {
379 my $content = shift;
380 return eval <<'END';
381 alarm(10);
382 my $f = parse_html($content);
383 alarm(0);
384 $f;
385 END
386 }

The parse subroutine (lines 378 through 386) is worth a
quick look. A problem with the LWP HTML parsing routines
is that bad HTML (which, sadly, is far from uncommon!)
causes them to hang indefinitely. For this reason, we wrap
LWP’s parse_html function in an eval statement
containing an alarm. If LWP hasn’t finished parsing the
document after ten seconds has elapsed, we print a warning
message and return an undefined value.

Tip ?

The HTML::Parser module (as opposed to
HTML::Parse) is now available and is more robust.

298 sub process_page {
299 my ($node, $start, $depth) = @_;
300 if (ref($node)) { #
We have subparts
301
302 $BASE = $node->attr('href') if
$node->tag eq 'base';
303
304
305 $COUNTS{'images'}++ if $start &&
$node->tag eq 'img';

391

306 $COUNTS{'doodads'}++ if $start &&
$node->tag =~ /^(applet|object|script)/;
307 #
308 # count the number of color changes
309 grep($COLOR_ATTR{$_} &&
$COUNTS{'colors'}++, keys %{$node}) if
$start;
310
311 $COUNTS{'frames'}++ if $start &&
$node->tag eq 'frame';
312 $COUNTS{'ads'}++ if $start &&
$node->tag eq 'img' && is_ad($node->

attr('src'));
313
314 # Here's where we handle links and
recursion
315 if ($node->tag eq 'a') {
316 my $href = $node->attr('href');
317 if ($href) {
318 if (is_child_url($href)) {
319 my $newdoc = new
URI::URL($href,$BASE || $CURRENT_DOC->abs);
320 collect_stats($newdoc)
unless $start;
321 }
322 $INSIDE_A_LINK = $start;
323 }
324 }
325
326 # Step into frames correctly
327 if ($start && ($node->tag eq
'frame')) {
328 my $href = $node->attr('src');
329 if ($href &&
is_child_url($href)) {
330 my $newdoc = new
URI::URL($href,$BASE || $CURRENT_DOC->abs);

392

331 collect_stats($newdoc);
332 }
333 }
334
335 } else { # If we get
here, we've got plain text
336 my @words = $node =~ /(\S+)/g;
337 $COUNTS{'link_words'} += @words
if $INSIDE_A_LINK;
338 $COUNTS{'total_words'} += @words;
339 $COUNTS{'cool_words'} +=
is_cool($node);
340 $TEXT .= $node . " ";
341 }
342
343 return 1;
344 }
345
346 sub is_cool {
347 my $text = shift;
348 my ($exclamation_marks) = $text=~tr/
!/!/;
349 my (@cool_words) = $text =~
/\b($COOL_PATTERN)\b/oig;
350 return $exclamation_marks +
@cool_words;
351 }
352
353 sub sentences {
354 my $text = shift;
355 # Count capital letters followed by
some non-punctuation,
356 # followed by punctuation and a
space.
357 my (@sentences) = $text =~
/([A-Z].+?[.!?]\s)/gm;
358 return scalar(@sentences);
359 }

393

360
361 sub is_ad {
362 my $url = shift;
363 return undef unless $url;
364 return $url =~ /\b($AD_PATTERN)\b/oi;
365 }
366
367 sub is_child_url {
368 my $url = shift;
369 return undef if $url =~ /^\w+:/;
370 return undef if $url =~ m!^/!;
371 return undef if $url =~ /^\.\./;
372 1;
373 }

The statistics-gathering takes place in the subroutine named
process_page (lines 298–344). process is called
recursively by the HTML object’s traverse method. Each
time it’s invoked, process is passed three parameters: a
node corresponding to the current HTML element, a flag
indicating whether the element is an opening tag or a closing
tag, and the depth of the element in the parse tree. The
subroutine’s main task is to collect
statistics about the page.

First, we check whether the node is a reference to an HTML
object, which occurs when we’re inside a tag of some sort. If
we are, we can extract the tag’s name by calling the object’s
tag method and the values of any attributes with its attr
method. In most cases the statistics we gather are pretty
simple. For example, if we see an tag (line 305), we
bump up the images field in the %COUNTS global.
Similarly, we bump the doodads field if we find an
<APPLET>, <OBJECT>, or <SCRIPT> tag.

394

Detecting potential advertisements is a little more difficult.
We look for an tag whose SRC URL contains one or
more of the words “promotion,” “ad,” “advertisement,”
“sponsor,” “banner,” or “commercial.” The majority of
banner ads contain one of these telltale strings. We also
specifically check for URLs from the ubiquitous DoubleClick
advertising agency.

395

The <BASE> Tag

A few tags are special. If we encounter a <BASE>
tag, we extract its HREF attribute and store it in the
packagewide variable $BASE. This allows us to properly
resolve relative URLs detected anywhere in the document. If
we find a hyperlink anchor (lines 315 to 324), we extract its
HREF attribute and check whether it is a relative reference to
a document on the same or lower level as the current one. If it
satisfies this test, we create a new URL object (line 319),
being careful to resolve the relative reference with $BASE if
defined, or the URL of the current document if not. We then
recursively pass the resolved URL object to
collect_stats, processing the linked document in a
depth-first manner.

On line 322, we set the $INSIDE_A_LINK
dynamically-scoped global to true when we encounter the
opening
tag of a link, and false when the corresponding closing tag is
encountered. This flag allows us to identify words that are
inside links for the purposes of creating the Information
Index.

Lines 326 to 333 contain code for handling frames correctly.
The code here is almost identical to that used for handling
links.

Lines 335 to 341 are executed when the parse tree traverses
the plain text part of the HTML page. This section tallies
various word counts, keeping track of total words, words
inside links, and words of the “cool” persuasion. We also

396

need to tally the number of sentences on the page. Since the
HTML parser, by its nature, breaks sentences into chunks and
presents them to process in discontinuous pieces, we
simply concatenate the sentence fragments into the
dynamically-scoped variable $TEXT, and defer tallying
sentences until the entire HTML tree traversal is finished (line
290).

152 sub summary_statistics {
153 my $href = shift;
154 print h2('Raw Data'),
155 table({-border=>''},
156 TR({-align=>LEFT},
157 th('Pages'),
td($COUNTS{'pages'}),
158 th('Total Words'),
td($COUNTS{'total_words'})),
159 TR({-align=>LEFT},
160 th('Total
Sentences'),td($COUNTS{'sentences'}),
161 th('Words in
links'),td($COUNTS{'link_words'})),
162 TR({-align=>LEFT},
163 th('Applets/Controls'),
td($COUNTS{'doodads'}),
164 th('Cool! Words'),
td($COUNTS{'cool_words'})),
165 TR({-align=>LEFT},
166 th('Graphics'),
td($COUNTS{'images'}),
167 th('Custom colors'),
td($COUNTS{'colors'})),
168 TR({-align=>LEFT},
169 th('Possible
Advertisements'), td($COUNTS{ads}),
170 th('Frames'),
td($COUNTS{'frames'}))

397

171);
172 my %i = (compute_indices(%COUNTS),
'href' => $href);
173 print
h2('Ratings'),summary_table(\%i);
174 return %i;
175 }
176
177 sub summary_table {
178 my (@row) = @_;
179 my (@rows, $i);
180 foreach $i (@row) {
181 push(@rows,
182 td([a({-href => $i->{href}},
$i->{href}),
183
sprintf("%2.1f",$i->{II}),
184
sprintf("%2.1f",$i->{GI}),
185
sprintf("%2.1f",$i->{DI}),
186
sprintf("%2.1f",$i->{TFI}),
187 $i->{FI},
188
sprintf("%2.1f",$i->{'C!I'}),
189
sprintf("%2.1f",$i->{CCI})]
190)
191);
192 }
193 return join("\n",
194 table({-border =>
''},
195 TR(th(),
196
th('Information'),
197

398

th('Graphics'),
198
th('Doodads'),
199
th('Colors'),
200
th('Frames'),
201
th('Cool!'),
202
th('Ads')),
203
TR({-align=>RIGHT},\@rows)
204)
205);
206 }
...
231 sub compute_indices {
232 my (%COUNTS) = @_;
233 my %indices = (
234 II => 100 *
(1-$COUNTS{'link_words'}/
($COUNTS{'total_words'} || 1)),
235 GI => $COUNTS{'images'}/
$COUNTS{'pages'},
236 DI => $COUNTS{'doodads'}/
$COUNTS{'pages'},
237 TFI => $COUNTS{'colors'}/
$COUNTS{'pages'},
238 FI => $COUNTS{'frames'},
239 'C!I'=> 100 *
($COUNTS{'cool_words'}/
($COUNTS{'sentences'} || 1)),
240 CCI => $COUNTS{'ads'}/
$COUNTS{'pages'},
241);
242 return %indices;
243 }

399

When collect_stats has finished processing all the
linked documents, %COUNTS contains the final tallies. The
subroutine summary_statistics (lines 152 through
175) creates an HTML table showing the raw statistics, and
invokes compute_indices (lines 231–243) to crunch
these numbers according to the rating scheme. The crunched
results are passed on to summary_table (lines 177–206)
to format the results into a nice HTML table.

208 sub print_previous {
209 my (%current) = @_;
210 my $fh = open_and_lock($RANK_FILE);
211 my (@previous_ranks);
212 chomp(@previous_ranks = <$fh>);
213 if (@previous_ranks) {
214 my (@processed) = map {
{split("\t")} } @previous_ranks;
215 print hr(), h2('Recent Ratings'),
summary_table(@processed);
216 }
217
218 unless ($COUNTS{'pages'}) {
219 unlock($fh);
220 return;
221 }
222
223 unshift(@previous_ranks, join("\t",
%current));
224 pop(@previous_ranks) if
@previous_ranks > $PREVIOUS_RANKS;
225 seek($fh, 0, 0);
226 print $fh join("\n",
@previous_ranks), "\n";
227 truncate($fh,tell($fh));
228 unlock($fh);
229 }

400

The script’s last task is to add the current site’s rating results
to a list of the last thirty ratings. We do this in a fairly crude
manner in the subroutine print_previous, which you’ll
find in lines 208 through 229. We keep the results as a simple
text file, one line per rating. Using Perl’s flock call, we
gain exclusive read/write access to the text file. This is
necessary to avoid multiple instances of the CGI script from
trying to update the file simultaneously.

392 # ------------------- File locking
code ------------
393 # This bit of code creates an advisory
lock on the
394 # indicated file and returns a file
handle to it.
395 sub LOCK_SH { 1 }
396 sub LOCK_EX { 2 }
397 sub LOCK_NB { 4 }
398 sub LOCK_UN { 8 }
399
400 sub open_and_lock {
401 my $path = shift;
402 my $fh;
403
404 local ($msg) = '';
405 local ($oldsig) = $SIG{'ALRM'};
406 $SIG{'ALRM'} = sub { $msg='timed
out'; $SIG{ALRM}=$oldsig; };
407 alarm(5);
408
409 $fh = ++$FH;
410 open ($fh,"+<$path") or
die("Couldn't open $path: $!");
411
412 # Now try to lock it
413 die("Couldn't get write lock (" .
($msg || "$!") . ")")

401

414 unless flock ($fh,LOCK_EX);
415
416 $fh;
417 }
418
419 sub unlock {
420 my $fh = shift;
421 flock($fh, LOCK_UN);
422 close $fh;
423 }

Lines 392–423 contain the boilerplate code that I use for this
type of file locking. If we successfully obtain a lock, we read
the entire contents of the file into list, and format it into an
HTML table by calling summary_table once more to do
the dirty work. When this is done, we throw out the first entry
in the list and add the current document’s ratings to the end of
the list. We then format the numbers into a table and write the
results back to the file. Finally, we unlock the file and return.

402

For Extra Credit

The demonstration script on my web site is slightly more
sophisticated than what I’ve shown here. It turns out that
many high-end web sites customize their content for their
user’s browser. Browsers that identify themselves as Netscape
or Internet Explorer get snazzy graphics, frames, and applets.
Other browsers get a toned-down page. With a little extra
programming effort, the rater script can pretend to be various
popular brands of browser. Try rating the same pages while
impersonating different browsers and see what happens!

403

404

Chapter 22. Summarizing Web
Pages with HTML::Summary

Tony Rose

Ave Wrigley
Canon, like many other large companies, is a multinational
organization with multiple web sites, each managed by a
different part of the company. This is a problem for the
typical Canon customer, who knows nothing about Canon’s
internal organization and simply wants to find information
about their cameras or download a new printer driver. They
need a single clear way to find what they want.

CS-Web: A Search Engine for
Canon’s Web Space

Back in 1997, we wrote CS-Web, a set of Perl programs to
collect information from all of Canon’s web sites, index it,
and make it searchable from the web. We wrote our own
solution because at the time the available products were either
services designed for searching the entire web (such as
AltaVista), or tools for indexing and searching a single web
site.

CS-Web consists of a robot, a database, and a web interface
(written in mod_perl). The robot traverses all of Canon web

405

sites and stores a description of each page in the database.
The search engine queries the database and gives you a list of
candidate documents, and their descriptions. You can try
CS-Web for yourself: it is linked from the main “gateway”
page for Canon (http://www.canon.com/). You can also
access it directly at http://csweb.cre.canon.co.uk/.

CS-Web presented a variety of challenges, many of which
make suitable war stories for TPJ. However, for this article,
we will focus on one crucial problem: generating the
summary of an HTML document.

406

META Tags

Unlike some other search engines, CS-Web doesn’t index the
full text of the document. Instead, it indexes document
descriptions. When web page authors use the META tag’s
NAME and CONTENT attributes to encode information about
the document, CS-Web will use it. However, when no such
information is conveniently provided by the author, CS-Web
tries to boil down the text of the document into a description
it can use.

One important limitation on a document’s description is
length; each web page corresponds to a row in a relational
database table, and for performance reasons the size of each
field in each row is fixed in advance. This is because with the
database engine we were using at the time, MySQL,
fixed-width fields were much quicker to search than
variable-width fields. You’ll see later how this length
constraint introduced its own problems.

If we were deploying CS-Web across a lot of public web
sites, we’d have quickly found that very few web page
authors consistently provide accurate metadata. In fact,
deliberately misleading metadata is often included by
unscrupulous authors to enhance the page’s prominence in
search engine results.

However, the outlook for CS-Web was a little more
promising. Since Canon’s webmasters are generally working
together, we could expect a certain level of integrity, and
assume that they were not trying to deceive the CS-Web
robot. In turn, the CS-Web robot could acknowledge this

407

trust: if it found a page description within a META tag, it
would accept it as legitimate. However, the task of adding
these META tags to existing pages can be a time-consuming
process, and we couldn’t rely on their presence on all of the
pages.

So how could we generate a text description from the raw
HTML when no metadata are present? By using a
combination of some natural language processing techniques
and Perl. The result was the HTML::Summary module. We’ll
explore it shortly, but before we do we’ll look at some basic
summarization methods for text.

408

Basic Summarization Methods

The basic approach of most summarization systems is to
examine each sentence in the original document, assess its
importance (using one or more known heuristics) and then
output a summary of the desired length by omitting the less
important sentences. Obviously, our success relies on how
well we can measure importance. Usually, a combination of
the following six simple methods is used:

Location method

Sentences are scored according to their position or
location within the document. For example, sentences
occurring at the beginning or end of the first paragraph, or
within a heading, are given a higher score than sentences
in the middle of a paragraph.

Cue method

Certain words in the document indicate the presence of
more (or less) important material. For example, strongly
positive words like “best,” “significant,” and “greatest”
increase the sentence score. By contrast, negative words
like “impossible” or “hardly” decrease the sentence score.

Title-keyword method

The title of the document is assumed to be a reliable
indication of the focus of its contents; sentences referring
to those concepts are given a higher score. To help out,
some pre-processing can be used; for example, a stemmer
can conflate inflected terms to a single root (“runs” and

409

“running” become “run”). Similarly, a stop list may be
used to filter out stop words (“the,” “of,” “and,” and so
on).

Frequency-keyword approach

The important concepts in a document will yield
particular keywords that occur with a
greater-than-expected frequency, so sentences containing
these words are given a higher score. The keywords are
usually identified by sorting word frequencies and
removing the stop words. A slightly more sophisticated
variant involves the use of “distinctiveness” rather than
raw frequency—normalizing the frequency counts by a
priori frequencies taken from an independent large text
corpus.

Indicator phrase method

This method is similar to the cue method, except that in
this case one looks for certain phrases rather than words.
For example, “The aim of this paper is…” and “This
document attempts to review…” both indicate that the
important concept is about to be introduced, so documents
containing such constructions should receive higher
scores. There are obviously many different indicator
phrases, but research suggests that these are usually
derived from a small number of underlying templates.[2]

The syntactic method

Experiments from up to thirty years ago have attempted to
correlate sentence importance with syntactic structure, so
far without conclusive results.[3]

410

Edmundson performed a comparative evaluation of the above
six methods, and found the first four to be superior, in the
order shown above. In addition, he evaluated their
performance in combination, and found a linear combination
of the first three (with an appropriate weighting given to the
scores obtained from each method) to be even better.[4]

[2] Paice, C. “Constructing literature abstracts by computer.”
Information Processing and Management, Volume 26(1),
1990. Emundson 1969.
[3] Earl, L.L. “Experiments in automatic extracting and
indexing.” Information Storage and Retrieval, Volume 6,
313–334, 1970.
[4] Edmundson, H. P. “New methods in automatic extracting.”
Journal of the ACM, 16(2):264-285, 1969.

411

HTML::Summary

HTML::Summary is available from CPAN; Version 0.016 is
described in this article. This is how it is used.

First, you create an HTML::Summary object, using the new
method. You can provide configuration parameters as
arguments to new:

my $html_summarizer = new HTML::Summary
LENGTH => 200;

The LENGTH parameter is the maximum length in bytes for
the generated summary. Next, you need an HTML::Element
object corresponding to the HTML page that you want to
summarize. You can generate one with HTML::TreeBuilder:

my $html_tree = new HTML::TreeBuilder;
$html_tree->parse($html_document);

$html_document is a string containing the HTML of the
web page; this could have been read in from a file, or returned
as the contents of an HTTP request, such as through
LWP::Simple’s get method.

Finally, you call the generate method of the
HTML::Summary object, with the HTML::Element object as
an argument, which returns the summary of the page as a
string:

$html_summary =
$html_summarizer->generate($html_tree);

That’s how you use it. But how does it work?

412

The Summarization Algorithm

One of the main tasks before us was generating a good
fixed-length abstract from arbitrary text. As described above,
this is known to be a important and difficult problem, and a
quality solution requires sophisticated natural language
techniques that can analyze the structure of the original,
identify key phrases and concepts, and regenerate them in a
more succinct format.

Luckily for us, there are some quick and dirty ways to
generate summaries. We only needed to provide a gist of the
original for someone browsing the CS-Web search results. In
addition, for retrieval purposes, we want the summary to
contain representative keywords.

One advantage that we had over people trying to generate
summaries from plain text is that HTML pages contain
markup information—the HTML tags. Markup tells us about
the structure of the content, and often about its relative
importance as well. For example, it is usually clear in HTML
pages where paragraphs begin and end, and when important
text is italicized, emboldened, or made into a heading.

The
HTML::Summary module uses the location method of text
summarization described above. This identifies important
sentences (based primarily on their location in the text), and
concatenating them together to produce an abstract. A simple
example of this would be to take the first sentence of every
paragraph in an article and string them together. This can
sometimes be surprisingly effective:

413

Canon, like many other large companies, is
a multi-national
organization with multiple (26) web sites,
each managed by a different
part of the company. In 1997 we wrote
CS-Web, a set of Perl programs
to collect information from all of Canon's
web sites, index it, and
make it searchable from the web. CS-Web
consists of a robot, a
database, and a web interface (written in
mod_perl). CS-Web presented
a variety of challenges, many of which
would make suitable war stories
for TPJ.

The text summarization method used in
HTML::Summary is an adaptation of the location method. It
works as follows:

Split into sentences

First, the text is split into sentences. (More about this
later.)

Score the sentences

The sentences are scored according to what HTML
element they appear in, and whether or not they are the
first sentence in that element. The
algorithm here is pretty simple: each element has a score.
The first sentence in that element gets this score; the rest
of the sentences get nothing.

414

Sort the sentences by score

The sentences are stored in an array of hashes. Each hash
corresponds to a sentence, and contains information about
the text in the sentence, its length, the HTML element it
appeared in, its score, and its original order in the text.

$summary[scalar(@summary)] = {
'text' => $text,
'length' => length($text),
'tag' => $tag,
'score' => $score,
'order' => scalar(@summary

),
};

The scores, as described above, are based on the HTML
element that the sentences appear in. These scores are
stored in a global hash:

my %ELEMENT_SCORES = (
'p' => 100,
'h1' => 90,
'h2' => 80,
'h3' => 70,

);

These scores were arrived at by empirical investigation;
we have no theoretical justification for them.

Truncate the list of sentences

Calculate how many sentences are needed before the
requested summary length is met (or exceeded).

415

Sort the sentences by original order again

Having remembered the original sentence order in the text
in the hash for that sentence, we can now re-sort the
sentences in that order.

Concatenate the sentences to create the summary

Spaces are added between the sentences, since whitespace
was stripped when the sentences were split.

Truncate the summary at the requested length

This last step assumes that if you want a summary of 200
characters, 201 characters are not acceptable—even if it
means chopping the summary off midsentence. This is
what we wanted in CS-Web. Maybe in other applications
a less severe approach would be appropriate—it’s easy to
add more options to HTML::Summary, so let us know
what you think.

416

Sentence Splitting

Now for the nitty gritty. The remainder of this article focuses
on just one aspect of the HTML::Summary: splitting the
element contents into sentences. Japanese character encodings
were a particular problem for CS-Web; our approach is
described in the section Afterword: Truncating Japanese Text.

The task of splitting text into sentences seemed like a more
general problem than its application to text summarization, so
this is contained in a separate module, Text::Sentence (also
available from CPAN).

Text::Sentence is basically just a regex. It is has a
non-object-oriented interface that exports one function,
split_sentences, that takes the text to be split into
sentences as an argument, and returns a list of the sentences.

sub split_sentences {
my $text = shift;
return () unless $text;

The function first checks if there really is any text to split into
sentences; if not, it just returns an empty list.

$capital_letter is a character set; to
account for locale, this
includes all letters for which lc is
different from that letter.

my $capital_letter =
'[' .

join('',
grep { lc($_) ne ($_) }
map { chr($_) } ord("A")

417

.. ord("\xff")
) .

']'
;

Although it would be more efficient to compute this regex
component once at the package level, doing it in
split_sentences allows the user to change locales
between calls.

The next few lines build up the components of the regex that
split the text into sentences. The first of these components is
the capital letter found at the start of a sentence. Instead of
using the character class [A-Z] as you would normally,
Text::Sentence accounts for locale-specific capital letters. For
example, in French, a capital A acute (Á) won’t be matched
by [A-Z] . The method used in Text::Sentence makes use of
the fact that lc is sensitive to locale settings, and returns a
lowercase version of all capitalized characters. A set of
locale-specific capital letters can be built up for the extended
ASCII range by filtering any characters changed by lc . For
more information on how Perl handles locales, see the
perllocale documentation bundled with Perl.

@PUNCTUATION = ('\.', '\!', '\?');

The @PUNCTUATION array is a global variable in
Text::Sentence containing any punctuation used to indicate
the end of a sentence. The fact that it’s a global means that
you’re able to change it (although the interface could be
improved—an options hash passed to
split_sentences, perhaps. For example, you might
want to add locale specific punctuation for the Spanish ¡.

418

push(@Text::Sentence::PUNCTUATION, chr(
161));

Back to split_sentences:

This needs to be alternation, not a
character class,
because of multibyte characters
my $punctuation = '(?:' . join('|',
@PUNCTUATION) . ')';

As mentioned above, one of our concerns was dealing with
multibyte character encodings (see Afterword: Truncating
Japanese Text). Japanese punctuation characters may be more
than one character long, so we can’t use a character class for
punctuation in the
sentence splitting regex. For example, an exclamation point in
the EUC Japanese encoding is “\xA1\xAA”.

Return $text if there is no punctuation
...
return $text unless $text =~
/$punctuation/;

If these isn’t any end-of-sentence punctuation in the text, then
we might as well return the text now.

my $opt_start_quote = q/['"]?/;
my $opt_close_quote = q/['"]?/;

These are distinguished because
(eventually!) I would like to do
locale stuff on quote characters

my $opt_start_bracket = q/[[({]?/; # }{
my $opt_close_bracket = q/[\])}]?/;

Sentences sometimes have quotation marks or parentheses
that come before the capital letter at the beginning, or after

419

the full stop (period, question mark, or exclamation point) at
the end. For example, the following sentence:

Larry said "let there be light!" (And
there was.)

is two sentences; the first ends after the second double quote.
However, this is one sentence:

Larry said "let there be light!" (and
there was).

Here is the regex in all its glory:
my @sentences = $text =~ /
(

Sentences
start with ...

$opt_start_quote # an optional
start quote

$opt_start_bracket # an optional
start bracket

$capital_letter # a capital
letter ...

.+? # at least
some (non-greedy) anything ...

$punctuation # ... followed
by any one of !?.

$opt_close_quote # an optional
close quote

$opt_close_bracket # and an
optional close bracket
)
(?= # with
lookahead that it is followed by ...

(?: # either ...
\s+ # some

whitespace ...
$opt_start_quote # an optional

420

start quote
$opt_start_bracket # an optional

start bracket
$capital_letter # an uppercase

word character (for locale
sensitive

matching)
| # or ...

\n\n # a couple (or more)
of CRs (i.e. a new para)

| # or ...
\s*$ # optional whitespace,

followed by end of string
)

)
/gxs
;
return @sentences if @sentences;
return ($text);

}

This regex makes use of the lookahead feature of regular
expressions. In this case, it allows us to specify that a
sentence must not only start with a capital letter, and end in a
full stop, but that there must be another capital letter that
follows the full stop. The only exception to this is when the
sentence is either at the end of a paragraph, or at the end of
the string.

The lookahead accounts for the whitespace between
sentences, so it’s not part of the matched patterns that end up
in the @sentences array. That’s why concatenating the
sentences won’t give you back the exact original text.

The main problem with trying to split text into sentences is
that there are several uses for periods, such as abbreviations.

Dr. Livingstone, I presume.

421

This phrase counts as two sentences according to
Text::Sentence—the first sentence is three characters long.
The performance of Text::Sentence could be improved by
taking into account special cases like honorifics (Mr., Mrs.,
Dr.), common abbreviations (e.g., etc., i.e.), and so on.
However, as with many natural language problems, this obeys
the law of diminishing returns; a little bit of effort will do a
decent 90% job, but that last 10% is pretty difficult. For our
purposes, the 90% is good enough.

422

Conclusion

We chose to use Perl for CS-Web because of the obvious
benefits: the LWP modules for web programming, DBD/DBI,
mod_perl, and so on. We found that Perl is also a useful tool
for doing natural language work. Its text processing features,
rapid development cycle, and ability to generate complex data
structures on the fly make it particularly appropriate.

A lot of interesting work in natural language research
involves analyzing corpus data; collecting statistics about
language use over large databases of typical usage. The web
is an obvious rich source of this type of data, and in view of
this, it is a little surprising how few tools and modules
appeared to be available in Perl for this field. Certainly, when
we posted about Text::Sentence to a language processing
mailing list, there seemed to be quite a lot of interest in what
we were doing, as well as extensive Perl expertise in that
community. Hopefully, natural language processing will
become yet another nut for Perl to crack!

423

Afterword: Truncating Japanese
Text

Canon is a Japanese company, with Japanese text on many of
its web pages. Japanese text is usually encoded in one of
several possible multibyte encoding schemes (not including
Unicode!), and some of these schemes use variable numbers
of bytes to represent single Japanese characters, or
intermingle Japanese and regular ASCII characters. This was
a problem.

The summaries generated by Text::Summary are truncated at
a fixed length, and this length is specified in bytes, not
characters. If Japanese text is truncated at an arbitrary byte
length, this might mean truncation in the middle of a
character.

Worse, our page abstracts can appear in result listings for
keyword searches. If a page summary broken midcharacter is
inserted into running text, the byte immediately following the
summary could be interpreted as the next byte of the
previously uncompleted Japanese character, upsetting the
character boundaries for the rest of the text.

The Text::Sentence used another module,
Lingua::JA::Jtruncate (also available on CPAN), which
addresses this problem. Lingua::JA::Jtruncate contains just
one subroutine, jtruncate, used as follows:

use Lingua::JA::Jtruncate qw(jtruncate);
$truncated_jtext = jtruncate($jtext,
$length);

424

where $jtext is some Japanese text that you want to
truncate, $length is the maximum truncation length, and
$truncated_text is the result. Here’s how it works.

First, some regexes are defined that match characters in each
of the three main Japanese coding schemes: EUC, Shift-JIS,
and JIS.

%euc_code_set = (
ASCII_JIS_ROMAN => '[\x00-\x7f]',

JIS_X_0208_1997 =>
'[\xa1-\xfe][\xa1-\xfe]',

HALF_WIDTH_KATAKANA =>
'\x8e[\xa0-\xdf]',

JIS_X_0212_1990 =>
'\x8f[\xa1-\xfe][\xa1-\xfe]',
);

%sjis_code_set = (
ASCII_JIS_ROMAN => '[\x21-\x7e]',
HALF_WIDTH_KATAKANA => '[\xa1-\xdf]',

TWO_BYTE_CHAR =>
'[\x81-\x9f\xe0-\xef][\x40-\x7e\x80-\xfc]',
);

%jis_code_set = (
TWO_BYTE_ESC =>

'(?:' .
join('|',

'\x1b\x24\x40',
'\x1b\x24\x42',
'\x1b\x26\x40\x1b\x24\x42',
'\x1b\x24\x28\x44',

) .
')'

,
TWO_BYTE_CHAR =>

'(?:[\x21-\x7e][\x21-\x7e])',

425

ONE_BYTE_ESC =>
'(?:\x1b\x28[\x4a\x48\x42\x49])',

ONE_BYTE_CHAR =>
'(?:' .
join('|',

'[\x21-\x5f]', # JIS7
Half width katakana

'\x0f[\xa1-\xdf]*\x0e', # JIS8
Half width katakana

'[\x21-\x7e]', #
ASCII / JIS-Roman

) .
')'

);

%char_re = (
'euc' => '(?:' . join('|',

values %euc_code_set) . ')',
'sjis' => '(?:' . join('|',

values %sjis_code_set) . ')',
'jis' => '(?:' . join('|',

values %jis_code_set) . ')',
);

Each of the regexes in %char_re matches one character
encoded in the scheme corresponding to the keys of the hash.

Now for the definition of the jtruncate subroutine; first,
some fairly obvious sanity checks:

sub jtruncate
{

my $text = shift;
my $length = shift;

sanity checks

426

return '' if $length == 0;
return undef if not defined $length;
return undef if $length < 0;
return $text if length($text) <=

$length;

Now we save the original text; this is used later if the
truncation process fails for some reason.

my $orig_text = $text;

Now we use Lingua::JA::Jcode::getcode to
detect which encoding the text uses.
Lingua::JA::Jcode::getcode is a simple wrapper
around the jcode.pl Perl library for
Japanese character code conversion. Kazumasa Utashiro
kindly agreed to let us distribute the code with
HTML::Summary.

my $encoding = Lingua::JA::Jcode::getcode(
\$text);

If getcode returns undef, or a value other than euc,
sjis, or jis, then it has either failed to detect the
encoding, or detected that it is not one of those that we are
interested in. We then take the brute force approach, using
substr.

if (not defined $encoding or $encoding !~
/^(?:euc|s?jis)$/)
{

return substr($text, 0, $length);
}

The actual truncation of the string is done in
chop_jchars—more on this subroutine in a bit.

427

$text = chop_jchars($text, $length,
$encoding);

chop_jchars returns undef on failure. If we have failed
to truncate the Japanese text properly, we resort to substr
again. We had to decide whether it was more important to
meet the $length constraint or risk returning a Japanese
string with broken character encoding. We chose the former:

return substr($orig_text, 0, $length)
unless defined $text;

Next, a special case: JIS encoding uses escape sequences to
shift in and out of single-byte and multibyte modes. If the
truncation process leaves the text ending in multi-byte mode,
we need to add the single-byte escape sequence. Therefore,
we truncate (at least) three more bytes from JIS encoded
string, so we have room to add the single-byte escape
sequence without going over the $length limit.

if ($encoding eq 'jis' and
$text =~ /$jis_code_set{ TWO_BYTE_CHAR

}$/) {
$text = chop_jchars($text, $length -

3, $encoding);
return substr($orig_text, 0, $length

) unless defined $text;
$text .= "\x1b\x28\x42";

}

And we’re done!
return $text;

}

Now for chop_jchars, which simply lops off Japanese
characters from the end of the string until it is shorter than the

428

requested length. It’s pretty ugly, and slow for large strings
truncated to small values, but it does the job!

sub chop_jchars
{

my $text = shift;
my $length = shift;
my $encoding = shift;

while(length($text) > $length)
{

return undef unless $text =~
s!$char_re{ $encoding }$!!o;

}

return $text;
}

429

Chapter 23. Wireless Surfing with
WAP and WML

Dan Brian
Mobility! In my day we had to pick up the phone and put it on
the acoustic modem. Now you can get stuff any time,
anywhere. These kids…

I bought a new mobile phone with wireless Internet not long
ago. The prospect of tracking news headlines, stock prices,
and checking email over the phone seemed appealing. But
after only a few minutes of browsing, I felt disappointed.
Navigation was cumbersome, the viewscreen very small, and
most frustrating of all, it took a really long time to get all the
information I wanted. I read a bit more about the various
portals that consolidate data from various sources, but after
using one of them, I realized that no existing service would
give me the variety of content I wanted. Besides, I’ve never
much liked the idea of my username, passwords, and
messages passing through someone else’s servers. And this
was about the same time I read the fine print on my service
contract, explaining that I was paying for talk-time whenever
I used my wireless Internet access.

In this article, I’ll explore application development for
wireless devices, first providing an
overview of the WAP (Wireless Application Protocol)
architecture, and then introducing some Perl modules to help
create WAP applications.

430

A Quick Look at WAP

Wireless web browsers are the embodiment of a dominant
trend in modern information technology. This trend is to
equate “client” with “accessor,” and “server” with “provider”.
While that definition might apply to most network
applications, it has one of its simplest models in WAP, where
dynamic functionality is best executed at the server, and no
data is typically stored at the client. (Granted, you can, if you
try hard enough, use cookies with wireless devices, but such
processing is interface-centric, like client-side JavaScript.
Furthermore, support for such features is inconsistent.) This
paradigm shift from client-distributed computing is evidenced
by the popularity of personalized “my-” portals, web-based
messaging, centralized file storage services, and the porting of
major applications to the web.

WAP (Wireless Application Protocol) is a communications
standard that includes specifications for markup, session,
transaction, security, and transport application layers. These
standards are maintained by the WAP Forum, founded by
Ericsson, Nokia, Motorola, and Phone.com. (Phone.com was
originally Unwired Planet, the company that pioneered
wireless Internet services in the mid-1990s. Consequently,
most of the browsers within modern phones run the
Phone.com software.) Although the WAP Forum is currently
working on Version 1.3 of the specifications, most phones
currently support only Version 1.1.

The basics of WAP architecture are shown in Figure 23-1. An
application server on the Internet receives WAP requests and
responds with data (typically WML documents), sent over the
Internet between the application server and a WAP gateway.

431

The gateway routes and translates WAP requests to HTTP
requests, determining what WAP data gets sent over a
wireless network to a communications tower and eventually
to your phone.

Figure 23-1. WAP architecture

432

Enabling WAP on Apache

Thanks to the WAP gateway, any web server can deliver
WML-formatted documents over HTTP by simply adding
them to the MIME types for the server. In the case of Apache,
you can add the following to an .htaccess file to WAP-enable
the server (most newer Apache servers already have these
types in their mime.types file):

addtype text/vnd.wap.wml wml
addtype text/vnd.wap.wmlscript
wmls
addtype application/vnd.wap.wmlc
wmlc
addtype application/vnd.wap.wmlscriptc
wmlsc
addtype image/vnd.wap.wbmp
wbmp

When a wireless user wants to visit your site, they enter the
URL. Unless you want to require your visitors to type .wml
after a request, Apache will usually serve up an HTML
document by default. To remedy this situation, we could use
Apache’s mod_rewrite engine to rewrite every request for an
.html file to look for a .wml file in the same directory.[5]

Again, since the WAP gateway supports HTTP headers, we
can do this easily by adding the following to httpd.conf.
Additional HTTP_USER_AGENT entries would need to be
added, since this one will only rewrite Phone.com’s
UP.Browser client (http://www.phone.com/developers/
index.html):

RewriteEngine on
RewriteLog logs/rewrite

433

RewriteLogLevel 9
RewriteCond %{HTTP_USER_AGENT} UP\.Browser
RewriteRule ^(.+)\.html$ $1.

wml

There is another option, which makes use of Apache’s
HTTP_ACCEPT variable to list the MIME types that the
connecting browser supports. However, most WAP clients
report the ability to accept responses of type text/html,
even though they lack the ability to translate the data. A better
option is to determine if the connecting browser supports
WML, since most HTTP browsers cannot read WML.

RewriteCond %{HTTP_ACCEPT} text\/
vnd\.wap\.wml

Of course, to serve any dynamic content will require a bit
more work. Before delving into that, let’s look a bit at WML.

[5] If mod_rewrite isn’t part of your Apache installation, and
you’ve compiled the Apache apxs utility, you can add
mod_rewrite from the Apache 1.3.12 source directory with:
apxs -i src/modules/standard/
mod_rewrite.c.

434

WML Basics

WML (Wireless Markup Language) is a standard set of XML
tags for the display of documents on mobile devices. Similar
in function to HTML, these tags allow content to be formatted
and linked. But given the limitations of wireless displays, the
feature set is much more limited than HTML. And this is a
good thing.

Since it is XML, WML requires strict formatting. Any errors
in the markup, such as unterminated paragraph tags
(<p></p>), should cause a client to return an error. (So long
as we’re talking about them, note that all text content must be
within paragraph tags.) XML is usually explained to novices
as the opposite of display data: rather than containing
information about the formatting of data, as in HTML, XML
contains information about the data itself: its structure,
interrelation, and organization. WML would seem to be an
exception—but when it comes to wireless applications, the
appearance of the data and its structure become intertwined.

A simple WML document is shown below. If you aren’t
familiar with XML, all you need to know about the document
header is that it occurs within every WML document, and
provides a data type definition for the client parsing the code.
This header will only change if documents use different
versions of WAP. Most do not.

<?xml version="1.0"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML
1.1//EN"

"http://www.wapforum.org/DTD/
wml_1.1.xml">

435

<wml>
<card id="main" title="First Example">

<p>
Hello WAP World!

</p>
</card>
</wml>

When saved as hello.wml in a web server directory and
requested from a wireless client, it will display what’s shown
in Figure 23-2.

Figure 23-2. hello.wml

If our web server enabled rewrites using the httpd.conf
directives shown earlier, this document could be requested as
hello.html, and still produce the desired result.

There are many tools available to developers to aid in
wireless development. The screenshots in this article are
taken from Phone.com’s Up.Simulator program, which allows
you to browse the wireless web without using your phone (or
the precious minutes you pay for if you share my service
plan). Keep in mind that no two wireless browsers are
identical. Although there are far fewer hornet’s nests in the
nested tags of WML than there are for HTML, there is no real

436

consolation here for those craving a “write-once,
read-the-same-everywhere” environment. But it is a standard
that is adhered to between enterprises, if not functionally, at
least syntactically. (Are you out there, XHTML?)

437

WAP Cards

Latency is a bigger issue for WAP than for HTTP, since the
system architecture itself is a many-hop, many-protocol
network. In part to address the problem of delivery time, but
also to fit markup to the WAP model, WAP applications
don’t use pages as they exist on the web. Instead, WAP has
cards. A card is simply what is displayed on a device at any
given time. A single WML document might contain many
cards. A collection of cards within a document is referred to
as a deck, and can be explained as many analogous web pages
folded into a single document with hyperlinks between the
cards. The following example shows a WML document
containing three cards and a menu to navigate between them,
defined in the <template></template> element.

<?xml version="1.0"
encoding="iso-8859-1"?> <!DOCTYPE wml
PUBLIC "-//WAPFORUM//DTD
WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<template>

<do type="accept" label="Back">
<prev/>

</do>
<do type="accept" label="Football">

<go href="#football"/>
</do>
<do type="accept" label="Basketball">

<go href="#basketball"/>
</do>

</template>

438

<card id="main" title="Main">
<p>

Use the option menu to find sports
scores.

</p>
</card>

<card id="football" title="football">
<p>

Saints 31, Rams 24

Chargers 17, Chiefs

16

Eagles 23, Redskins

20

</p>

</card>

<card id="basketball" title="Basketball">
<p>

Lakers 102, Clippers
98

Timberwolves 88, Magic
87

</p>
</card>
</wml>

I won’t touch on the markup here much, other than to explain
that the do/ tags specify an options menu to be displayed
when the “Options” button on a phone is selected. Note that
the href links specify a link within the local document,
prefixed with the #. (These links could also be fully-qualified
URLs to non-local
cards.) Also, the <template> tags enclose data that will be
applied to every card in the deck, saving space.

439

Initially, this document will display what’s shown in
Figure 23-3.

Figure 23-3. The initial sports scores menu

Pushing the button beneath “Menu” will bring up the <do/>
option menu, enclosed in the <template/> element (see
Figure 23-4). Selecting the “Football” option from the list will
take us to the card labeled football (see Figure 23-5).

Figure 23-4. The do/ option menu

440

Figure 23-5. The “football” menu

A set of
cards organized into a tree can collect many pages of data
before sending a network request back to the web server,
resulting in quicker WAP applications.

WML has other features intended to eliminate costly
round-trips between mobile devices and WAP application
servers. For example, WML has a <select/> element that
is much more functional than its HTML cousin, with
<option/> elements that may contain events to handle a
given selection. For example:

<card id="products" title="Products">
<p>

<select title="Flavors">
<option

onpick="#vanilla">Vanilla</option>
<option

onpick="#chocolate">Chocolate</option>
</select>
<do type="accept" label="Go">

<noop/>
</do>

</p>
</card>

441

In this example, selecting an option from the <select>
menu loads a different card from the deck, without another
trip to the server and back.

Variables are another part of the core WML specification, and
use a familiar syntax:

<setvar name="phone" value="432-0911">
<p>

Call me at $phone.
</p>

Variables can even be used within select lists to carry
variables between
cards, much the same way as the HTML <input
type=“hidden”> tag is often used to make data
persistent across requests.

<select title="products" name="product">
<option value="Model B">Model </option>
<option value="Model D">Model </option>

</select>

A subsequent card can then use the selected value, stored in
$product:

Are you sure you want to buy a
$(product) Steinway?

And finally, variables can be posted to a server using the
WML <go/> elements with <postfield/> tags, placed
inside an <anchor/> element in order to link responses of
“Yes” or “No” to their appropriate locations:[6]

<anchor>
Yes

<go method="post"
href="http://www.mypianostore.com/buy.cgi">

442

<postfield name="product"
value="$(product)"/>

</go>
</anchor>
<anchor>

<go href="#products"/>
No

</anchor>

For a comprehensive look at WML, I recommend the new
O’Reilly text Learning WML & WMLScript by Martin Frost.
Wrox’s Professional WAP contains more information on
general mobile phone development (beyond WML), but is not
as concise a read as the Frost book, probably due to the
many-author model that Wrox seems to favor.

[6] WML also supports some traditional HTML tags for ease
of use. For example, <a/> tags may be used in place of
<anchor/>.

443

Developing WAP Applications

Typically, the purpose of a display markup language is to
enhance the appearance of data, sometimes to a fault. This is
true of WML. However, the simplicity of wireless displays
demands that the formatting of display elements be basic and
straightforward. For this reason, it is generally not too much
work to develop an entire WAP site using a simple text editor.
Introducing dynamic content into a document, however,
presents many breeds of challenges. With HTML, creating
dynamic content usually means adding one type of markup to
another; for instance, adding Perl or PHP “programmatic
markup” to the conventional display markup. An alternative
solution is to print the HTML directly from a program either
by embedding HTML within the program code, or by calling
functions that create the interface themselves, much as
CGI.pm’s printing functions automate the creation of HTML.
A third approach is a total separation of content (such as
XML) from interface (such as HTML/CSS or XSL), with
application data stored elsewhere.

I won’t argue here for a particular model. As is the case with
HTML, each has its own strengths for WML development.
Because of the simplicity of WML, display code generally
represents a smaller portion of the total
application than with HTML development. On the other hand,
WML’s notion of cards moves much of the application logic
to the interface, simplifying the server. In the case of using
XML with XSL to generate WML, there are serious issues of
complexity and overhead, especially considering the limited
information being generated.[7] There are many such

444

considerations to be made when choosing a design model for
WAP applications. For the remainder of this article, I’ll
explore three styles of WML generation: using the
CGI::WML module to automate the creation of WML,
marking up WML with Perl using a web development kit like
Mason, and embedding WML directly within Perl programs.
I’ll show examples of each.

[7] While I’m a big fan of XSLT, being able to transform a
single data set to many types of interfaces does not
necessarily address the core issue here. A WAP application
will hopefully not differ from an HTTP application only in its
presentation, but also in its design, flow, and function. WAP
usability concerns require that applications go far beyond
simply translating data for presentation.

445

CGI::WML

If you ever shied away from using CGI.pm’s printing
functions, you probably justified it because of the complexity
of your HTML. No such excuse can be made when delivering
WML. The CGI::WML module, by Angus Wood, subclasses
Stein’s CGI.pm to give users a familiar interface to WML
programming. All of the input parameter processing functions
remain, as well as new functions to help you create WML
documents:

use CGI::WML;
$cgi = new CGI::WML;

print
$cgi->header(),
$cgi->start_wml(),
$cgi->template(-content=>$cgi->prev()),
$cgi->card(-id=>"first_card",

-title=>"First card",
-content=>"<p>No one when

he has got <i>sufficient</i> ".
"furniture for his house

dreams of making further ".
"purchases on this head, but

of silver no one <i>ever</i> ".
"yet possessed so much that

he was forced to cry ".
"\"enough.\"</p>"),

$cgi->end_wml();

This example displays:
Content-Type: text/vnd.wap.wml;
charset=ISO-8859-1
<?xml version="1.0"

446

encoding="iso-8859-1"?> <!DOCTYPE wml
PUBLIC "-//WAPFORUM//DTD
WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<template>

<do type="accept" label="Back">
<prev/>

</do>
</template>
<card id="first_card" title="First card" >

<p>No one when he has got
<i>sufficient</i> furniture for

his house dreams of making
further purchases on this head,

but of silver no one <i>ever</i> yet
possessed so much that he was

forced to cry "enough."</p>
</card>
</wml>

See Figure 23-6 to see how this is viewed within a browser
window.

Figure 23-6. WML document

(For those interested, the text is from “On Revenues” by
Xenophon. Good stuff. Emphasis mine.)

447

The
CGI::WML module also has functions for automated
HTML-to-WML conversion and WML-to-WMLC
conversion. WMLC documents compress deck content for
quicker delivery, a task usually performed by a WAP
gateway. WMLC conversion is also useful for testing the size
of a compiled WML deck, since most WAP browsers have a
maximum compiled deck size around 2000 bytes. Using the
wml_to_wmlc() function, you can continually check
what size your deck will be after it has passed through the
WAP gateway:

if (length($cgi->wml_to_wmlc($wml)) >
2000) {

do something
}

For the moment, CGI::WML lacks functions to automate the
creation of many WML 1.1 elements, including option menus
and variables. These will be added in a future version,
according to Wood.

448

A Small File Browser with
CGI::WML and mod_perl

To use CGI::WML within an
application, we’ll write a short
file browser. Often, when an HTTP browser accesses a web
server directory without an index file, Apache’s
mod_autoindex module generates a file list. WAP browsers
can’t display a listing unless the WAP gateway being used is
translating HTML responses, which is unlikely. We’ll write a
very basic module to provide this capability.

To start, we need a way for our module to know whether to
handle this request. In a production environment, we’d want
to determine if the requesting browser was a WAP client, as
well as look for any index files within that directory prior to
handling the request. Look at the Apache::AutoIndex module
for code to perform such tasks. For now, we’re going to treat
any incoming request that ends in filelist.wml as a directory
request. Here’s the module:

package Apache::WAP::AutoIndex;
use strict;
use

CGI::WML;
use Apache::Constants qw(:common);

sub handler {
my $r = shift;
my $cgi = new CGI::WML;

my $filename = $r->filename;

449

my $url_filename = $r->uri;
$filename =~ s/filelist\.wml$//;
$url_filename =~ s/filelist\.wml$//;

unless (opendir DH, $filename) {
return FORBIDDEN; }

my $content = "<p>Directory
$url_filename:
";

my $filelink;
foreach my $file (readdir DH){

if (-d "$filename/$file")
{ $file .= "/"; $filelink =

$file . "filelist.wml"; }
else { $filelink = $file; }

$content .= CGI::a({href =>
"$filelink"}, "$file");

}
$content .= "</p>";
close DH;

$r->print($cgi->header(),
$cgi->start_wml(),

$cgi->template(-content=>$cgi->prev()),
$cgi->card(-id=>"dirlist",

-title=>"Directory
$filename",

-content=> $content),
$cgi->end_wml());

}
1;

To enable it, we need to add the following to httpd.conf:
PerlModule Apache::WAP::AutoIndex
<Location ~ "filelist\.wml$">

SetHandler perl-script
PerlHandler Apache::WAP::AutoIndex

</Location>

450

Figure 23-7 is the result when pointed at /wap/filelist.wml on
the site.

Figure 23-7. /wap/filelist.wml

451

Generating WML with
HTML::Mason

Sometimes it is easier to work directly with the WML markup
and surround with it program code. If you’d prefer to mark up
WML code with Perl, Mason is a good choice.

Mason is a comprehensive site development and delivery
engine in pure Perl. Running with mod_perl under Apache, it
allows you to create dynamic and modular web sites easily.
Incorporating programmatic features into web pages is as
simple as importing a module and directly calling its
functions from within that page, and component-based
development means that you can reuse and consolidate
information that appears within many pages (or decks, in our
case).

For those who haven’t used Mason, you can download and
install it from CPAN using the standard perl
Makefile.PL, make, make test, and make
install commands. There are a few prerequisites, and you
need to configure mod_perl to load the HTML::Mason
modules. Consult the Mason documentation for help on this;
it’s quick and painless. Once installed and loaded, you simply
tell Mason which directories or files to handle, and then write
your pages. You embed Perl directly into your HTML, by
placing it within some predefined Mason tags, such as a
%perl block:

<%perl>
use DBI;
my $DSN = 'dbi:mysql:books';

452

my $dbh = DBI->connect($DSN, "user",
"pass", { RaiseError => 1 })

or die "Couldn't connect to
database: $!\n";
</%perl>

Single lines of Perl can be placed into pages by prefixing
them with a %:

% my $query = $dbh->prepare("select
name,author from books");
% $query->execute;

Mason treats anything not beginning with % as HTML to be
displayed. Mason’s ability to understand blocks of Perl code,
interspersed with HTML, makes this a powerful feature for
program flow:

% # Print out all the books and authors
% while (my $dat =
$query->fetchrow_hashref) {

<% $dat->{name} %> by <%
$dat->{author} %>

% }

If you let
Mason handle your HTTP headers, it trusts Apache to print a
header appropriate for the type of file (determined by the
extension). More to the point, if
Mason is handling all requests for a given directory by having
this in your httpd.conf file:

<Location /mason>
SetHandler perl-script
PerlHandler HTML::Mason

</Location>

453

then you can simply save Mason files in this directory with a
.wml extension, and they will be delivered with the proper
MIME type. You can also test the user agent within a Mason
file, and thereby deliver the MIME type and content
appropriate for the browser. This is done using the Mason
%init section, which makes an Apache request object
available as the familiar $r:[8]

<%init>
my $content_type;
if ($r->header_in('Accept') =~ /text\/

vnd\.wap\.

wml/) {
$content_type = "wml";
$r->content_type('text/vnd.wap.wml');

} else {
$content_type = "html";
$r->content_type('text/html');

}
</%init>

Note what happens here: to determine the browser type, we’re
using the HTTP header HTTP_ACCEPT (seen by mod_perl
as Accept), rather than the User Agent. (The only potential
problem here: if future HTTP browsers support WML, they’ll
display the WML instead of the HTML.)

In the rest of the document, different content could be served
for the two content types:

% if ($content_type eq "wml") {
<card id="first_card" title="First

card" >
<p>The weather for today is cold

and hard.</p>
</card>

454

% } else {
<p>The weather for today

is cold and hard.</p>
% }

[8] If you aren’t familiar with the Apache API as in mod_perl,
consult O’Reilly’s Writing Apache Modules with Perl and C
by Stein and MacEachern for information that will change
your development life and world view.

455

A WML Phone Directory with
Mason

The real benefits of placing program code markup within
interface documents arises when the bulk of the content is
dynamic. Assume we had an address book, and we wanted
users to be able to browse it on WAP devices and directly call
numbers in the address book. In the following example, the
list of addresses is being generated from a MySQL database.
We’ve stored the WML header information in a file,
header.wml, which is loaded as a component using the <&
&> syntax.

<%perl>
use DBI;
my $DSN = 'dbi:mysql:directory';

my $dbh =
DBI->connect($DSN,"user","pass", {
RaiseError => 1 })

or die "Couldn't connect to
database: $!\n";

my $query = $dbh->prepare("select
name,phone from addresses");

$query->execute;
</%perl>

<& header.

wml &>
<wml>

<card id="phonelist">
<p>Place a call to:
<do type="accept">

<go href="wtai://vc/sc;$number;1" />

456

</do>
<select name="number">

% while (my $dat =
$query->fetchrow_hashref) {

<option value="<% $dat->{phone}
%>"><% $date->{name} %></option>
% }

</select>
</p>

</card>
</wml>

The href tag here makes use of the WTAI standard WAP
libraries, which contain functions for interacting with the
phone itself. This example accesses the vc (Voice Call
Control) library to dial the number stored in variable
$number. The resulting display appears as shown in
Figure 23-8, and selecting a name from the list causes the
phone to dial that number.

Figure 23-8. WMP phone directory

Of course, this could easily be extended to include more
information from the address book, placing different types of
information in different cards.

457

WML with Straight Perl

When working with a markup language as simple as WML,
there’s something to be said for developing an application
entirely in plain Perl, and embedding the WML tags directly
into your program. While that may sound like a regression to
the hardcoded CGIs of our youth, the simplicity of WML
actually makes such interfaces easy to update and manage.
Speaking of hardcoded CGIs, remember how useful that
printenv or env.cgi script was? It’s just as useful for
debugging environments for WAP applications. Here it is in
straight Perl with WML output:

#!/usr/bin/perl
$output = <<EOF; Content-type: text/
vnd.wap.wml
<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML
1.1//EN"

"http://www.wapforum.org/
DTD/wml_1.1.xml">
<wml><card id="env"><p>
EOF
foreach $var (sort(keys(%ENV))) {
$val = $ENV{$var};
$val =~ s|\n|\\n|g;
$val =~ s|"|\\"|g;
$val =~ s|<|\<|g;
$val =~ s|>|\>|g;
$output .= "${var}=\"${val}\"
\n";
}
$output .= "</p></card></wml>";
print $output;

458

A Remote Control for Home
Automation

Accessing information is only one use for wireless browsers.
Wouldn’t it be great if you could also use your phone to
perform tasks? An interface to the Perl home automation
package Control::X10 makes that possible.

Our application will have the user choose a house location
and an appliance, and then be prompted to turn it on or off.
The deck will consist of eight cards; the last card (turn on/off)
will use values from previous cards for the action prompt, and
will then post to the web server.

Translating this to a WML expression is trivial. In this
example, we place the deck directly in our Perl program. This
excerpt could be run within a Perl module under mod_perl, or
as a CGI script (gasp!). In our example, it’s running within a
module, with an Apache directive causing this module to
handle all requests to /mister on the server.

First, we’ll create our main card (see Figure 23-9).
my $main_card = <<EOF;

<card id="main" title="Main">
<p>

Select an area:
<select title="Areas">

<option
onpick="#outside">Outside</option>

<option
onpick="#living">Living Room</option>

<option
onpick="#kitchen">Kitchen</option>

459

</select>
</p>
<do type="accept" label="Back">

<prev/>
</do>
<do type="accept" label="Go">

<noop/>
</do>

</card>
EOF

Figure 23-9. Home automation card

Next, the “outside” card (see Figure 23-10):
my $outside_card = <<EOF;

<card id="outside" title="Outside">
<p>

Select an appliance:
<select name="appliance"

title="Outside">
<option value="flood

light">Flood light</option>
<option value="christmas

lights">Christmas lights</option>
</select>

</p>
<do type="accept" label="Back">

460

<prev/>
</do>
<do type="accept" label="Go">

<go href="#toggle"/>
</do>

</card>
EOF

Figure 23-10. Outdoor lighting card

We’ll skip the cards for “Living Room” and “Kitchen,” and
go directly to the last card of the deck (Figure 23-11).

my $toggle_card = <<EOF;
<card id="toggle" title="Toggle

appliance">
<p>

Turn on/off the
\$(appliance)?

<a href="/
mister?toggle=\$(appliance:e)">Yes

</p>
<do type="accept" label="Back">

<prev/>
</do>

</card>
EOF

461

Figure 23-11. Christmas light control

The $(appliance:e) syntax above causes the value of
$appliance to be escaped for inclusion on the URL line.
Keep in mind that this entire deck will be sent to the client at
once. The server will not hear back from the client until the
user gets to the last card and selects the “Yes” href link,
which will repost to the same program. Assuming that we are
running this code as a mod_perl module, here’s the rest of the
program.

package MisterHouseWAP;
use Apache::Constants qw(:common);
use CGI::WML;
require 'start_port.pl';
use ControlX10::CM17;

our %appliances = ('christmas lights' =>
'A1J',

'flood light' =>
'A4J');
sub handler {

my $r = shift;
my @msgnos = ();
my %params = $r->method eq 'POST' ?

$r->content : $r->args;

462

if ($params{'toggle'}) {
toggle($params{'toggle'});

}

my $deck = CGI::WML::header() .
"<wml>\n" . $main_card .

$outside_card . $toggle_card .
"</wml>";

$r->send_http_header('text/vnd.wap.wml');
$r->print($deck);

}

sub toggle {
pseudo-sending code; see the X10

modules for real examples
my $serial = open_port('COM1');
send_cm17($serial, $appliances{$_[0]});
$serial->close;

}
1;

463

Creating a Personal Portal

Finally, we come to my
personal motivation for this article. The difficulty of
navigating information on commercial portals prompted me
to create my own. It’s really quite simple, consisting of eight
cards, and using CPAN modules to interface with stock
quotes (Finance::Quote), news, new mail summaries
(Mail::Cclient), and DBM files for everything else.
Everything is delivered in a single deck, so I can connect with
my phone, download the deck, disconnect, and be able to
browse the updates offline.

The following example allows a user to browse unread mail
messages by first prompting for a username and password,
and then using the Mail::Cclient module by Malcolm Beattie
to fetch the unread messages from an IMAP server.

First, the login screen, which we’ll call login.wml:
<?xml version="1.0"?> <!DOCTYPE wml PUBLIC
"-//WAPFORUM//DTD WML 1.1//EN"
"http://www.wapforum.org/DTD/wml_1.1.xml">
<wml>
<card title="Login">

<!-- Reset fields when entered
backwards. -->

<onevent type="onenterbackward">
<refresh>

<setvar name="username"
value=""/>

<setvar name="password"
value=""/>

</refresh>

464

</onevent>

<!-- Read login and password from
user. -->

<p>Username: <input
name="username"/></p>

<p>Password: <input type="password"
name="password"/></p>

<!-- Submit button sends data to
server. -->

<do type="accept" label="Submit">
<go href="/wmlmail/" method="post">

<postfield name="username"
value="$(username)"/>

<postfield name="password"
value="$(password)"/>

</go>
</do>

</card>
</wml>

This will prompt for a username and password as shown in
Figure 23-12 and Figure 23-13.

Figure 23-12. Username prompt

465

Figure 23-13. Password prompt

The module that handles the post from the above deck is also
handling all requests to /wmlmail/ using a Location
directive in httpd.conf. If the login is successful, the user gets
a list of unread mail messages with the sender and the subject.
(See Figure 23-14.)

package Apache::WAP::MailPeek;
use strict;
use Apache::Constants qw(:common);
use Mail::Cclient;

our $mail_server = 'brians.org';
Mail::Cclient::parameters(
'NIL',
RSHTIMEOUT => 0,
OPENTIMEOUT => 1,
READTIMEOUT => 1,
CLOSETIMEOUT => 1,
MAXLOGINTRIALS => 1,
);
sub handler {
my $r = shift;
my @msgnos = ();
my %params = $r->method eq 'POST' ?
$r->content : $r->args;

466

Mail::Cclient::set_callback
login => sub {

return $params{'username'},
$params{'password'}

},
searched => sub {

push (@msgnos, $_[1]);
},
log => sub { print @_ }, dlog

=> sub { print @_};

my $mail =
Mail::Cclient->new("{$mail_server/imap}")
or die $!;

$r->content_type('text/vnd.wap.wml');
$r->send_http_header;

$r->print(<<END);
<?xml version="1.0"

encoding="iso-8859-1"?>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD

WML 1.1//EN"
"http://www.wapforum.org/

DTD/wml_1.1.xml">
<wml><card id="mail">

END
$mail->search("UNSEEN");
foreach my $msgno (@msgnos) {

my ($envelope,$body) =
$mail->fetchstructure($msgno);

my $subject = $envelope->subject;
my $from =

${$envelope->{from}}[0]->{

personal} ||

467

${$envelope->{from}}[0]->{mailbox} . "@" .

${$envelope->{from}}[0]->{host};
$from =~ s/\&/\&\;/g; $subject =~

s/\&/\&\;/g;
$from =~ s/\$/\$\$/g; $subject =~

s/\$/\$\$/g;
$r->print ("<p>", $from, ":

", $subject, "</p>\n");
}
$mail->close;
$r->print("</card></wml>");

} 1;

Figure 23-14. Unread email messages

In time, I’ll abstract the entire
portal enough to get it on CPAN. But as you can see, creation
of such a system is quite straightforward, thanks to the
compact nature of WML and the ease of developing
applications in Perl.

468

Part II. Graphics

In this part:

Chapter 24

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Chapter 31

Chapter 32

In this section, nine articles will demonstrate some of the
ways that Perl can be used for graphics programming. By
“graphics programming,” I don’t mean graphical applications
like those you’d create with Perl/Tk, but rather the creation
and manipulation of raw pictures: graphs, logos, art, scenes,
and video.

We begin with two articles about graphs: Lincoln Stein’s
article demonstrating how to glue the Gnuplot graphing
program into a CGI program (Web Plots with Gnuplot), and
Jeremy Wadsack’s article (GD-Graph3d) showing how to
create threedimensional graphs from your Perl programs
using the gd library. Jason Reed follows with an article about

469

how you can use that library to evolve your own images of
plants in GD and L-Systems.

Two articles about three-dimensional graphics follow:
Alligator Descartes’s OpenGL introduces the OpenGL library
and its use from Perl, and Mark Jason Dominus explains a
popular rendering technique in Ray Tracing.

The Gimp is a popular image manipulation program similar to
Adobe Photoshop, but free. You can create plug-ins for it that
enable you to control Gimp from Perl. Aaron Sherman’s
article, Perl and the Gimp, shows you how.

Next, Ace Thompson writes about the Perl interface to Glade
in Glade. Glade is a graphical interface designer for GTK, a
GUI library used by Gnome, one of the two popular graphical
user environments on Linux (the other is KDE). Joe Nasal
follows with Gnome Panel Applets, which shows you how to
create applications that reside on the Gnome panel visible on
your desktop.

Finally, Marc Lehmann concludes the section with one of the
more bizarre articles ever to appear in TPJ. Marc uses Perl,
PDL, the venerable Kermit protocol, an HP-48 calculator, and
information extracted from the vertical blanking interval (the
horizontal stripe you see when your television is out of sync)
to create a Frankenstein system that records television
programs appearing at hard-to-predict intervals—kind of a
Perl TiVo. His article demonstrates how to frame-grab
television in Capturing Video in Real Time.

470

Chapter 24. Web Plots with
Gnuplot

Lincoln D. Stein
With all the excitement over the things that we can make Perl
do, we sometimes lose sight of the fact that Perl’s greatest
strength is the ease with which you can use it to glue
independent programs together into a single powerful
application. This toolkit philosophy, in which large
applications are built from many small command-line tools, is
the great simplifying principle of the Unix operating system,
and one that Perl readily takes advantage of.

This column addresses a case in point. Say you’re interested
in seeing the hourly breakdown of accesses to your web site
in order to do capacity planning. When does traffic peak and
when is it at a minimum? Say that you want to be able to view
this data graphically as a bar chart and that you’d like the
chart to be generated on the fly from a CGI script. How
would you go about doing this?

One approach would be to do all the work in Perl. Running as
a CGI script, Perl can parse the server’s access log file, tally
up the hourly hits, generate the bar chart using the graphics
primitives in the GD or Image::Magick modules, and output
the plot as a GIF image. The script would be responsible for
drawing the plot axes, calculating the width and position of
the bars, creating the X and Y tics, and drawing the labels.
Although the job is relatively straightforward, the program
would likely take at least half a day to write and debug and

471

would certainly be several pages of code by the time you
were finished.

But why reinvent the wheel? There are many plotting
packages available for Unix and Windows systems, and most
of these can be called as subprocesses from within Perl. One
of the more ubiquitous plotting packages is
Gnuplot, an open source package that comes preinstalled on
many Linux systems, and is available as source and
precompiled binaries for a variety of Unix and Microsoft
Windows architectures. By taking advantage of this existing
tool, we can write this CGI script in just a few minutes. The
complete application comes to just 46 lines of code.

Using Gnuplot

Before we dive into the log-processing application itself, let’s
look at a simple use of Gnuplot from within Perl. Gnuplot
was designed to draw complex mathematical functions and
plot scientific data. It can be run interactively under the X
Windows and Microsoft Windows systems, in which case
plots are displayed in a graphics window, or run in batch
mode from the command line, in which case the output
graphics are written to standard output or a file. Gnuplot is
able to generate a large variety of graphics file formats,
including GIF and Postscript.

Gnuplot has a command language that can be used to control
the graphs it generates. In interactive mode, you can type in
commands and watch them take effect immediately. In batch
mode, you feed Gnuplot commands from a file or standard
input.

472

Let’s look at an example. From the Gnuplot command line,
here’s how to graph the equation y = sin(x)/cos(x):

gnuplot> plot sin(x)/cos(x)

In a fraction of a second, Gnuplot displays the graph shown in
Figure 24-1.

Figure 24-1. Gnuplot output

It’s almost as easy to call Gnuplot as a subprocess from
within Perl. Just open up a pipe to Gnuplot, and send it the
commands. For example, here’s a 6-line program to plot
sin(x)/cos(x) from within Perl and output the result in GIF
format:

0

473

#!/usr/bin/perl

1 use strict;
2 use constant GNUPLOT => '/usr/local/bin/
gnuplot';
3 open (GP,'|'.GNUPLOT) || die "Gnuplot:
$!";
4 print GP "set terminal gif\n";
5 print GP "plot sin(x)/cos(x)\n";
6 close GP;

The script begins by defining a GNUPLOT constant indicating
the path to the Gnuplot executable. It then opens up a pipe to
Gnuplot by calling Perl’s open function with a pipe symbol
as the first character in the command’s name. The program
next sends two commands to Gnuplot. The first (line 4)
changes the default terminal type to gif, telling Gnuplot to
output the graph as a GIF format
image. Next, the script sends the plot command as before.
The pipe is now closed and the program exits.

Note that you’ll need Gnuplot Version 3.7 or higher to get
GIF support, plus Tom Boutell’s libgd graphics library.

Gnuplot can graph experimental data as well as equations.
The simplest format it accepts consists of a two-column table
indicating the X and Y values of a data series.
Comment lines beginning with the # symbol are ignored. As
an example, here’s a data table containing one day’s worth of
hourly tallies on my laboratory web site. The first column is
the hour (using the 24-hour clock), and the second column is
the total number of hits:

#hour hits
00 309
01 408

474

02 427
03 353
04 342
05 450
06 326
07 332
08 385
09 527
10 751
11 849
12 657
13 566 ...

Plotting this data as a bar chart is a matter of setting the chart
type by providing the set data style command with
boxes, and then issuing the plot command with the data
file name as its argument:

gnuplot> set data style boxes
gnuplot> plot 'hours.dat'

By fussing with various set commands, you can adjust
many aspects of Gnuplot’s display, including the graph and
axis labels, the position of the key, the positioning and
frequency of tics, and so forth. However, Gnuplot is oriented
towards scientific rather than business applications, so the
number of plot types is limited. For example, pie charts aren’t
supported.

What if you want the data table to be computed dynamically
by an external program?
Gnuplot provides the equivalent of Perl’s open pipe syntax.
By prepending the < symbol to the filename passed to the
plot command, Gnuplot treats the filename as a command
to execute. For example, if we had a Perl script named
tally_log.pl whose job was to parse a web access log and

475

produce a tabular list similar to the columns above, we could
plot its output dynamically with this command:

gnuplot> plot '< tally_log.pl ~www/logs/
access_log'

476

Parsing Log Files

Running Gnuplot is half of our CGI script. The other half is
the part that parses the web server’s log file. Table 24-1
shows the fields in the “common” web access log file format.

Table 24-1. Fields in the “common” web access log file
format.

Field
name Description

Remote
host DNS name or IP address of the remote host.

RFC931

Login name of the remote user, determined using the
RFC1413 protocol. This protocol relies on a correctly
configured and running identd daemon on the remote user’s
side. Since most systems don’t run this daemon, this field is
usually blank (a hyphen).

Username
If the requested document was password protected, this field
contains the username the remote user provided for
authentication. Otherwise the field contains a hyphen.

Date The date of the request, in local time.

Request The text of the HTTP request, usually GET, POST, or HEAD
followed by the requested URL.

477

Field
name Description

Status The status code that the server responded to the request with,
usually 200 for OK.

Response
size The total number of bytes transferred from server to browser.

The
standard or common log file format used by most web servers
was established years ago by the NCSA httpd and CERN
servers. Each line of the access log records a single hit on
your site and is subdivided into the seven fields described in
Table 24-1. A typical entry looks like this one:

phage.cshl.org - - [07/May/1999:01:17:19
-0400] "GET / HTTP/1.0" 200 6118

To parse the various fields from within Perl, just match each
line against the following regular expression:

$REGEX = /^(\S+) (\S+) (\S+) \[([^]]+)\]
"(\w+) (\S+).*" (\d+) (\S+)/;
while (<>) {

($host,$rfc931,$user,$date,$request,$URL,$status,$size)
= m/$REGEX/o;
}

You can then tally or otherwise manipulate the fields in any
way you choose.

478

Putting It All Together

The
tally_hourly.pl script parses the web server’s access log,
tallies the hourly hits, and passes the result to Gnuplot. It’s
intended to be called from an inline tag:

<img src="/cgi-bin/

tally_hourly.pl?file=access_log.1">

The script expects a single CGI parameter named file,
which tells the script what access log file to open and parse.
On my web site, log files are rotated once a day, access_log
becoming access_log.1, access_log.1 becoming access_log.2,
and so forth. So access_log.1 always holds the complete
record of yesterday’s activities. You can put multiple days’
graphs on the same page just by repeating the tag
with different file parameters.

A page created by
tally_hourly.pl is shown in Figure 24-2. For the day plotted,
accesses peaked at 11:00 in the morning, and then peaked
again at about 5:00 in the afternoon. This pattern is typical of
scientific sites that are most heavily accessed during the work
day. Recreational sites are more heavily used in the evenings.

479

Figure 24-2. tally_hourly.pl is actually two programs: a CGI
script that calls Gnuplot, and a log file parser that is called
by Gnuplot

Example 24-1 shows the code for tally_hourly.pl.
The main trick used here is that the script is actually two
programs which execute independently of one another (see
Figure 24-3). The first program is a CGI script that processes

480

the CGI file parameter and invokes Gnuplot. The second
program is the log file parser. It is invoked by Gnuplot when
Gnuplot runs its plot command. The script determines
which context it’s running in by looking at the @ARGV array.
If @ARGV is not set, then the script is running in the CGI
context. Otherwise, it’s been invoked by Gnuplot in order to
process the log file given by the first @ARGV argument.

Example 24-1. tally_hourly.pl collates log file entries and
displays them as a bar chart

0 #!/usr/bin/perl -T

1 use strict;
2 use CGI qw(param header -no_debug);
3 use CGI::Carp qw(fatalsToBrowser);
4 $ENV{'PATH'} = '/bin:/usr/bin';

5 use constant GNUPLOT => '/usr/local/
bin/gnuplot';

6 use constant LOGFILES => '/home/www/
logs';

7 $| = 1;

8 # If REQUEST_METHOD is set, then
we're a CGI script,

9 # so we get the logfile name with
param() and generate

10 # the GIF image.
11 unless (@ARGV) {
12 my $logfile = param('file');
13 die "Bad log file name:

$logfile\n"
14 unless $logfile =~

/^([a-zA-Z][\w.-]*)$/;
15 $logfile = LOGFILES . "/$1";
16 die "Can't open log file

481

$logfile\n" unless -r $logfile;
17 generate_gif($logfile);
18 }
19 # Otherwise we're running as a

regular program, and we
20 # parse the log file for use by

GNUPLOT
21 else {
22 generate_data();
23 }

24 # Make the GIF image (as a CGI
script)

25 sub generate_gif {
26 my $logfile = shift;
27 print header('image/gif');
28 open (GP, "|".GNUPLOT) || die

"Couldn't open GNUPLOT: $!";

29 while (<DATA>) {
30 print GP $_;
31 }
32 print GP "plot '< $0 $logfile'";
33 close GP;
34 }
35 # Generate the data for use by

GNUPLOT
36 sub generate_data {
37 my %HITS;
38 while (<>) {
39 next unless m!\[\d+/\w+/

\d{4}:(\d+):\d+:\d+ [\d+-]+\]!;
40 my $hour = $1;
41 $HITS{$hour}++;
42 }
43 foreach (sort {$a<=>$b} keys

%HITS) {
44 print join("\t", $_,

482

$HITS{$_}), "\n";
45 }
46 }

__DATA__
set terminal gif small size 640,480
interlace
set border
set boxwidth
set nogrid
set nokey
set nolabel
set data style boxes
set noxzeroaxis
set noyzeroaxis
set tics out
set xtics nomirror 0,1,23
set ytics nomirror
set xlabel "Hour" 0,0
set xrange [-0.75 : 23.75]
set ylabel "Hits" 0,0

Figure 24-3. A bar chart produced by tally_hourly.pl

Turning to the listing, the script begins by activating Perl’s
taint check features with the -T switch. This is particularly
important to do in this script, because it will be shelling out to

483

a subprocess using untrusted user-provided data (the value of
the file parameter). The script then turns on strict syntax
checking and imports various functions from the CGI and
CGI::Carp libraries. Among the functions imported from CGI
is the -no_debug pragma, which disables CGI.pm’s
command-line debugging features. This is important to do;
otherwise, CGI.pm might enter command-line debugging
mode when it was invoked by Gnuplot. We bring in the
fatalsToBrowser function from CGI::Carp, which
automatically redirects fatal errors to the browser, helping
track down any script failures.

Line 4 hard-codes the PATH environment variable. This is
necessary in order for the script to pass Perl’s taint checks.

Lines 5–6 define file paths for Gnuplot and the directory that
contains the server’s log files. These constants will need to be
adjusted for your system. Line 7 puts standard output into
unbuffered (autoflush) mode. This is necessary when calling
out to subprocesses to ensure that the output produced by the
script and the subprocess appear in the order you intend rather
than the order determined by incompatible I/O buffering
schemes.

Line 11 examines the @ARGV array. If it is not set, then the
script is running in the CGI environment. Otherwise, the
script is running under Gnuplot. In the former case, the script
recovers the log file name from the file parameter, untaints
it using a pattern match, and prepends the log directory path
to the untainted file name. The pattern match is set up to
match any file name beginning with an alphabetic character
and followed by zero or more alphanumeric characters, the
hyphen, or the dot. This specifically excludes filenames
containing shell metacharacters such as > and relative path

484

names such as .. to indicate the parent directory. The script
tests that the file exists and is readable. If so, it calls a
function named generate_gif to create the bar chart
(line 17).

If there is a command-line argument in the @ARGV array,
then the script knows it has been invoked by Gnuplot. The
command-line argument contains the full path to the log file
to process. The script calls generate_data to tally the
indicated log file and produce the tabular summary for
Gnuplot’s use (line 22).

Lines 24–34 contain the definition of generate_gif. It
emits an HTTP header with a content type field of image/
gif. It then opens up a pipe to Gnuplot and sends it graphing
commands. Most of the commands are constant boilerplate
read from the script’s _ _DATA_ _ section. I arrived at this
set of commands by playing with Gnuplot interactively until
the graph looked the way I wanted it. Then the subroutine
sends Gnuplot the plot command, telling it to run a pipe
constructed from the $0 variable, which holds the name of
the currently running script and the value of the file
parameter. The plot command ends up looking something like
this:

plot '< /www/cgi-bin/

tally_hourly.pl/www/logs/access_log.1'

The subroutine closes the Gnuplot pipe and exits. Gnuplot
sends its output to standard output, which then forwarded to
the waiting browser.

Lines 35–46 define generate_data, which is called on
to process the log file and produce a summary in Gnuplot data

485

format. It reads through the log file line by line using the <>
operator and parses out the hour component of the request
time. In this case, we don’t need any of the other fields, so the
more general regular expression that we looked at previously
isn’t needed. The parsed hour is added to a hash named
%HITS, which keeps track of how many hits we’ve seen in
each interval. When the subroutine reaches the end of the log
file, it sorts the keys of %HITS numerically and prints out a
two column table in Gnuplot format.

486

Simple Things Made Easy

The tally_hourly.pl script is another example of how
Perl makes simple things easy and hard things possible. By
using a preexisting tool rather than rolling our own, a script
that might have been a bear to write became almost trivial.

With a little more work, you could adapt this script for other
sorts of log processing tasks, such as plotting hits by day of
the week, summing over domain names, or tallying up the
bandwidth used by the web server. By replacing Gnuplot with
a charting package oriented towards business graphics, you
can produce pie charts, stacked column charts, and other
displays with little additional effort.

487

Chapter 25. GD-Graph3d

Jeremy Wadsack
When it comes to understanding large amounts of data, we
humans have two stages of interpretation. First, we analyze
the data, organizing it in myriad ways to find the hidden
relationships, quantities, and trends that deliver meaning to
our world. Second, we present it somehow, often by
displaying it visually. With graphs and charts we can
visualize trends, understand relationships, and compare
quantities at a glance.

I developed the Perl package
GD-Graph3d to accompany some statistics presentation tools
I work on for analyzing the huge amounts of data available to
and generated by web servers. Our freely available Report
Magic presentation package uses GD-Graph3d to present
analyses in a friendly manner with graphs like Figure 25-1.

488

Figure 25-1. Sample GD-Graph3d output.

GD-Graph3d is an extension to Martien Verbruggen’s
GDGraph package. GDGraph draws only two-dimensional
images (except for the 3d option on pie charts) but provides
the basis for data management, labeling, legends, and other
routine graph operations that are common to both packages.

Using GD-Graph3d

In order to use GD-Graph3d, you will need to install several
packages: at a minimum, the GDGraph, GD-TextUtil, and
GD Perl modules, and the libgd library. Fortunately for
Windows and Mac users, GD and the libgd library are
included in ActivePerl and MacPerl. If you have ActivePerl,
you can use the PPM or VPM tool to acquire the latest
version of GD. With PPM you can simply use this command:

489

> ppm install GD

On Unix (and Unix-like) systems, the
installation is a lot more complex. libgd itself is a C library
that depends on the libpng and zlib libraries. If you want
TrueType font support (recommended if you’re using a
character set other than Latin-1), you’ll need FreeType’s
libfreetype. In order to build GD on top of libgd,
you will also need to install the jpeg-6b library. Complete
details for installing this are listed on the libgd web site
(http://www.boutell.com/gd/); a summary is available at the
end of this article.

Installing GDGraph and GD-Graph3d is simple. They’re on
CPAN and can be found with the CPAN search engine at
http://search.cpan.org. Install the GDTextUtil package, which
you can find there as well. Once you have the proper modules
and libraries installed, write some code and make some
pictures. Example 25-1 contains a simple script to generate
the graph in Figure 25-2. We’ll go through the script line by
line.

Example 25-1. A sample GDGraph3D program
#!/usr/bin/perl -w
##
#
Description:
Draws a basic multi-set line chart with
GD-Graph3d
#
Created: 31.May.2000 by Jeremy Wadsack
for Wadsack-Allen Digital Group
Copyright (C) 2000 Wadsack-Allen. All
rights reserved.
#

490

This script is free software; you can
redistribute it and/or
modify it under the same terms as Perl
itself.
##
use strict;

**** Line numbering in the article
starts here ****
use GD::Graph::lines3d;

Create an array of data
my @data = (
["Jan", "Feb", "Mar", "Apr", "May",

"Jun", "Jul", "Aug", "Sep", "Oct", "Nov",
"Dec"],
[860, 813, 1694, 957, 1805,

1835, 2335, 1272, 1562, 2296, 2123,
1882,],
[1249, 483, 1731, 1617, 1166,

1761, 1111, 1635, 2158, 2007, 2250,
2858,],
[747, 1216, 525, 1028, 1053,

1860, 2282, 1871, 2143, 1845, 2924,
2858,],
[1220, 864, 1325, 967, 1200,

1371, 1759, 1512, 1484, 1683, 1965,
2458,],
[1276, 639, 931, 1288, 2049,

909, 1617, 1432, 1615, 2605, 2712,
2429,],
);

Make a new graph object that is 600
pixels wide by 400 pixels high
my $graph = new GD::Graph::lines3d(600,
400);

491

Set some labels
$graph->set(

x_label => 'Month, 1999',
y_label => 'Revenue ($US)',

title => 'Monthly revenue
for 1999',
);

Plot the graph to a GD object
my $gd = $graph->plot(\@data);

Figure out what the default output
format is
my $format = $graph->export_format;

Now open a file locally and write it
open(IMG, ">sample.$format") or die $!;
binmode IMG;
print IMG $gd->$format();
close IMG;

492

Figure 25-2. The output of listing 1

The first line tells Perl which graph module you want to use.
With both GDGraph and GD-Graph3d, you use the type of
graph you wish to make. So in this instance, because we are
making a line graph, we use GD::Graph::lines3d.

The next set of lines creates a data structure containing the
data to be graphed. GD-Graph3d uses an array of an array of
values. The first row holds the labels for the x-axis, and the
subsequent rows are the data for each line of the graph. In this
example, we’ve coded the values by hand, but in a real
application, you’d get these from a database, an external file,
or some other source. Check out the GD::Graph::Data class
for methods that make it easy to read data from delimited text
files and DBI sources.

On line 14, we create a new graph lines3d object.
GD-Graph3d objects cannot be reused—you create a new one
for each set of data you wish to plot. Lines 17 to 21 set
several self-explanatory options for the graph. GD-Graph3d
supports all the options that GDGraph does (and there are
many), as well as a few options specifically for
three-dimensional
output (such as the z-directional depth of the lines). We go
into more detail later about using options to improve the look
of the graph. Line 24 tells GD-Graph3d to plot the data to an
image. The plot method returns a reference to a GD image
object. If you wish, you can further process this image with
additional GD methods.

Because the GD library can output in different formats (GIF,
PNG, JPEG, and so on) GD-Graph3d offers the

493

export_format method to return the default format. For
new installations, this call will return png. If you happen to
have an old version of GD and libgd on your system, this
returns the patent-infringing gif.

Now, using the format that GD-Graph3d found for us, we can
write the contents of the image to a file on the system: in our
example, either sample.png or sample.gif. The
binmode call is included for systems that make a distinction
between binary and text files (like Windows). On other
systems, this has no effect.

GDGraph and GD-Graph3d allow you to adjust the graph in
many ways. We start by setting some
colors. GD-Graph3d has 29 predefined colors (white, lgray,
gray, dgray, black, lblue, blue, dblue, gold, lyellow, yellow,
dyellow, lgreen, green, dgreen, lred, red, dred, lpurple, purple,
dpurple, lorange, orange, pink, dpink, marine, cyan, lbrown,
and dbrown) or can accept any RGB color defined with
HTML syntax. To set the colors, add some key/value pairs to
the $graph->set statement so it looks like this:

Set some labels
$graph->set(

x_label => 'Month, 1999',
y_label => 'Revenue ($US)',

title => 'Monthly revenue for 1999',
dclrs => ['#9999CC', '#CCCC66',

'#339900', '#990000', '#FFCC33'],
boxclr => '#FFFFCC',

long_ticks => 1,
);

dclrs sets a list of colors to use for each data set, boxclr
sets the color to use in the background of the plot, and setting

494

long_ticks to a true value tells GD-Graph3d to draw a
grid on the background (connecting all the ticks). See
Figure 25-3 for the results.

Figure 25-3. Choosing colors.

Now let’s work on the fonts.
GD-Graph3d uses GD’s font mechanisms (through
GD::Text). This means, that by default, you can choose one
of five predefined fonts, defined in the GD::Font class
(GD::Font->Small, GD::Font->Large,
GD::Font->MediumBold, GD::Font->Tiny, or
GD::Font->Giant). If you built libgd with TrueType
support (ActiveState’s build includes this on Win32), then
you can also use TrueType fonts (if you give the full
pathname to the font). For this example, we’ll use built-in
fonts and insert these three lines after the $graph->set

495

call to specify the fonts to use for the title above the graph
and the labels on each axis:

$graph->set_title_font (GD::Font->Giant
);
$graph->set_x_label_font(
GD::Font->MediumBold);
$graph->set_y_label_font(
GD::Font->MediumBold);

We’d also like to add a legend to the graph so that the people
who see it know what each line refers to. First, we add these
key/value pairs to the $graph->set statement:

legend_placement => 'RC',
legend_spacing => 10,

(RC means Right Center.) We also add these two new
statements later to create the legend, by defining the labels
associated with each data set and setting the font for the
legend text.

Define a legend
$graph->set_legend('Affiliate A',
'Affiliate B', 'Affiliate C',

'Affiliate D',
'Affiliate E');
$graph->set_legend_font(
GD::Font->MediumBold);

The result is shown in Figure 25-4.

496

Figure 25-4. Specifying fonts and adding a legend

There’s a lot more you can do with GD-Graph3d. For
example, you could format the y-axis labels to include the “$”
sign, or you could adjust the maximum y-value by hand to
better fit the data, as shown in Figure 25-5. Read the
documentation in GDGraph and GD-Graph3d for details on
the options and settings available.

497

Figure 25-5. Bells and whistles

498

What the Future Holds

Like many Perl modules, GD-Graph3d is a work in progress.
I’d like to include a drop-shadow option for the pie charts.
The drop-shadow rendering could be improved to look more
shadow-like, although it would slow down graph generation. I
would also like to complete three-dimensional versions of the
point, area, and point-and-line graphs available in GDGraph.
Finally, the ultimate goal of GD-Graph3d would be to handle
the projections for any viewing angle.

GD-Graph3d isn’t meant to meet the needs of all applications.
There are now a number of graphing modules available for
Perl, mainly differentiated by which graphics library they
require under the hood. GD-Graph3d also does not provide
for graphing of true three-dimensional data—it merely graphs
two-dimensional data with a three-dimensional extrusion. For
real three-dimensional rendering, users should use the Perl
Data Language (PDL) and its associated graphing and
rendering modules.

499

Installing GD

To install GD on your system, you’ll need to install some
system libraries first. Here is a step-by-step guide to
retrieving and installing them. Again, none of this is
necessary if you’re using Perl on Windows or a Mac.

zlib

The zlib compression library can be obtained from one
of the mirrors listed at http://www.info-zip.org/pub/
infozip/zlib/. Download and extract the archive. On most
systems (Solaris is an exception) you will not have to
build the zlib library, because when you build libpng
later, it incorporates the source files rather than the actual
library. If you choose to build and install zlib, use the
standard install procedure:

% ./configure
% make
make install (as root)

libpng

Installing libpng is a little more complicated. You can
get the latest version from a mirror listed at
http://www.libpng.org/pub/png/libpng.html. Look for
something like libpng-x.y.z.tar.gz, where x.y.z is the
highest version number. Download and extract the
archive. You’ll need zlib on the same level as the
libpng directory, and they should both be named
without their versions. In other words, your directory
structure should look like this:

500

|
+- zlib
|
+- libpng

Something like the following should do it. The actual
commands may differ from system to system. You’ll have
to remove the archive before doing this (rm *.tar or
rm *.tar.gz).

% mv zlib* zlib
% mv libpng* libpng
% cd libpng
% cp scripts/makefile.stf Makefile
% make
make install (as root)

You should choose one of the makefiles in the libpng/
scripts directory according to your system (such as
scripts/makefile.linux for Linux or scripts/makefile.sunos
for Solaris).

libfreetype (optional)

If you want support for TrueType fonts in your graphs
(say, because you want your axis labels in Japanese), you
can install the libfreetype library. You cannot build
this if you don’t have X Windows installed. You can
download lttf from http://freetype.sourceforge.net/
download.html and then build it as usual:

% ./configure
% make
make install (as root)

501

jpeg-6b

You will need the jpeg-6a (or later) library on your
system for GD.pm to compile. It is often already installed,
so check /usr/lib or /usr/local/lib for libjpeg. If it’s not
installed, you can download it from ftp://ftp.uu.net/
graphics/jpeg/ and build it with the steps shown
previously. Alternately, there may be a precompiled
packaged version (RPM, DEB, etc.) available from your
local package site.

libgd

Installing libgd should now be straightforward.
Download the latest version from
http://www.boutell.com/gd/. After extracting the archive,
edit the Makefile so that it includes support for jpeg and
ttf if you installed those packages. You may also have
to add -I/usr/local/include/freetype to
the INCLUDEDIRS= line to make it work with
freetype-1.3.1. You can then build the library as
follows:

% make
make install (as root)

You will now be able to install GD and the rest of the Perl
modules mentioned in this article.

502

Chapter 26. GD and L-Systems

Jason Reed
(Or, how to see plants on your computer without getting soil
on the keyboard.)

In GD-Graph3d, you learned how Perl could create
three-dimensional graphics. Naturally, Perl is quite
comfortable with two-dimensional images as well. Lincoln
Stein’s
GD module (based on Thomas Boutell’s gd library and
available from the CPAN) makes it possible to import,
manipulate, and even generate
GIFs from the comfort of your very own Perl. In this article,
we’ll use GD to create images of plants using mathematical
constructs called L-systems.

GD

Using GD is straightforward: all that’s necessary to create a
GIF suitable for displaying on a web page is a GD::Image
object, some colors, and a few drawing commands. It takes
only six lines of code to produce a lone brown dot on a white
background, a work surely worth millions to a sufficiently
avant-garde patron of the arts:

#!/usr/bin/perl

use GD;

503

$im = new GD::Image(100,100);
$white = $im->colorAllocate(255, 255, 255);
$brown = $im->colorAllocate(128, 0, 0);

$im->setPixel(42, 17, $brown);

open (OUT, ">masterpiece.gif") or die $!;
print OUT $im->gif();

Here we create an image 100 pixels square and allocate two
colors.
GIFs use color tables (in particular, a 256-color palette) so it’s
necessary to specify in advance which colors are to be used.
The colors themselves are specified by their red, green, and
blue components, which range from 0 to 255.

The dot is then drawn with setPixel, 42 pixels to the right
of the edge and 17 pixels below the top left corner. Finally,
the contents of the GIF itself, obtained through the
GD::Image::gif method, is printed to the file
masterpiece.gif.

GD provides other drawing commands, special brushes and
patterns, and the ability to load existing GIFs from files. But
we already have everything we need. The rest of this article is
devoted to using GD to build and use code that implements
L-systems, a task that proves quite comfortable in Perl,
because it requires both graphical output and text
manipulation.

504

L-Systems

For our purposes, an L-system is simply a very abstract way
of modeling cell-scale growth within a plant. Bear in mind
that the level of abstraction is quite high—an L-system won’t
tell you much about how real plants grow. Real plant growth
depends on cytoplasm structure, cell membranes, mitosis
rates, and plenty of other hard-to-model phenomena.
However, L-systems are quite good at generating realistic
images of plants.

Originally developed by Astrid Lindenmayer (hence the ‘L’)
in the late 1960’s, L-systems have undergone a number of
generalizations and improvements in the decades since,
including the addition of randomness, multiple transition
tables, and non-discrete evolution. The core of the idea is
quite simple: take a string, called the axiom, and apply a
series of rules to each character of the string. For example,
suppose your axiom (commonly designated ω) is A and you
have two production rules:

1. Every A is translated to BA, and

2. Every B is translated to AB.

This system would be written in L-system notation as:

ω: A
p1: A -> BA

p2: B -> AB

These rules are applied simultaneously to the axiom,
producing BA, since we start with A and change according to
rule p1. The rules are then applied to that result, yielding

505

ABBA (no relation to the band). Then the rules are applied
again, generating BAABABBA.

When does the process stop? It doesn’t. In principle, the
combination of axiom and rules describes an infinite sequence
of words:

A
BA
ABBA
BAABABBA
ABBABAABBAABABBA
BAABABBAABBABAABABBABAABBAABABBA

and so on. This might seem to have little relevance to plant
development. However, the output of an L-system can be
interpreted as the shape of the plant at various ages. Finding
the appropriate time to stop, then, is equivalent to deciding
how big or old a tree (or fern, or flower, or blue-green algae
colony) you want.

How could an L-system resemble a tree, then? To get
branches we can use a bracketed L-system. That just means
that we add [and] to our L-system’s alphabet. Any string
enclosed in brackets is interpreted as separate branch,
protruding from the string it would otherwise be part of.
Brackets can also be nested. For example,
A[B][CD[E[F]G]H] can be loosely interpreted as
Figure 26-1.

506

Figure 26-1. A[B][CD[E[F]G]H]

507

Turtles

Typically, objects modeled with L-systems are rendered with
turtle graphics. Turtle graphics were invented for the LOGO
programming language; they’re used to give children a simple
metaphor for expressing graphics algorithmically.
Implementations of LOGO have virtual turtles that turn,
move, and leave trails across the screen. Older versions
sometimes had an actual robot controlled by the program. The
robot moved a pen around on paper and was sometimes
fashioned to look like a small, plastic-shelled turtle.

The Turtle class (in the Turtle.pm module on this book’s
web site) implements simple turtle graphics. The humble
turtle can produce some striking graphics if controlled, but
itself knows little more than its position, orientation, how to
turn, and how to move forward at an angle. The most
important method of the Turtle class is forward :

sub forward {
my $self = shift;
my ($r, $what) = @_;
my ($newx, $newy) = ($self->{x} + $r *

sin($self->{theta}),
$self->{y} + $r *

-cos($self->{theta}));
if ($what) {

Do something related to motion
according to

the coderef passed in
&$what($self->{x}, $self->{y},

$newx, $newy);
}

#... and change the old coordinates

508

($self->{x}, $self->{y}) = ($newx,
$newy);

}

forward first uses a bit of trigonometry to calculate the (x,
y) position given the distance r and angle Θ. (All angles are
measured in radians, with zero being directly up and angles
increasing as you move clockwise.). Then it does something
with the old and new coordinates, but exactly what it does is
up to $what. Whoever calls Turtle::forward passes
in a code reference; that coderef gets the turtle’s old and new
coordinates as parameters and can do whatever it wants with
them. For now, all we want the
turtle to do while moving forward is draw a line, but this
flexibility will prove quite handy later. Another method worth
examining is turn:

sub turn {
my $self = shift;
my $dtheta = shift;

$self->{theta} += $dtheta *
$self->{mirror};
}

Our
turtle will occasionally need to turn left into right and right
into left; this is accomplished by calling the turtle’s mirror
method; that toggles the mirror attribute between 1 and –1
and has the effect of changing clockwise rotations into
counterclockwise rotations.

509

A Turtle Draws a Tree

A turtle can’t do much by itself. Starting with a subroutine in
lsys.pl, we’ll make it more useful. To get an L-system
rule to tell the turtle what to do, we create a turtle, an image,
and a hash to translate characters into behavior:

sub lsys_init {
S => Step Forward
- => Turn Counter-clockwise
+ => Turn Clockwise
M => Mirror
[=> Begin Branch
] => End Branch
%translate=(

'S' => sub {
$turtle->forward($changes->{"distance"},

$changes->{"motionsub"}) },
'-' => sub {

$turtle->turn(-$changes->{"dtheta"}) },
'+' => sub {

$turtle->turn($changes->{"dtheta"}) },
'M' => sub {

$turtle->mirror() },
'[' => sub {

push(@statestack, [$turtle->state()]) },
']' => sub {

$turtle->setstate(@{pop(@statestack)}) },
);

my ($imagesize) = @_;

Create the main image
$im = new GD::Image($imagesize,

$imagesize);

510

Allocate some colors for it
$white = $im->colorAllocate(255,

255,255);
$dark_green = $im->colorAllocate(0,

128, 0);
$light_green = $im->colorAllocate(0,

255, 0);

Create the turtle, at the midpoint of
the bottom

edge of the image, pointing up.
$turtle = new Turtle($imagesize/2,

$imagesize, 0, 1);
}

To have the turtle perform the action identified by the
character $chr, we just say &{$translate{$chr}},
which calls the appropriate anonymous subroutine.

$changes, the hash reference inside %translate, holds
information specific to a given L-system rule. It’ll go in a
separate file, tree.pl, whose beginning is shown below.

#!/usr/bin/perl

require "lsys.pl";

Set some parameters
$changes = { distance => 40,

dtheta => 0.2,
motionsub => sub {

$im->line(@_, $dark_green) } };

The first two keys of the hash referred to by $changes are
straightforward: distance is how far the turtle moves
every instance of S, and dtheta is how much the turtle’s
angle changes for every + or -. The last key, motionsub,

511

identifies the anonymous subroutine passed to
Turtle::forward. Recall that Turtle::forward
passes the old position and the new position of the turtle.
sub{ $im->line(@_, $dark_green); } merely
takes that argument list, tacks on $dark_green, and hands
everything off to GD::Image’s line method. That draws the
line.

Now we have a turtle that can turn, flip, go forward, and trace
a line. Only the left and right bracket characters
remain—they’ll help the turtle remember a position and later
recall where it was. The [character pushes the turtle’s
current state (x, y, q, and mirror) onto a stack,
@statestack. The] character, conversely, pops an
element off @statestack and forces the turtle back into
that state.

512

Putting L-Systems to Work

To create an honest-to-goodness L-system inside all this
mess, we just need one more hash table to describe the
production rules and a scalar initialized with the axiom. Let’s
start with a small system:

ω: A
p1: A -> S[-A][+A]

This system has every A go forward (S) and produce two
branches, each with an A : one to the left ([-A]), and one to
the right ([+A]). On every iteration, the tree will split in
half, yielding a binary tree growing upward from the turtle’s
initial location. This L-system is expressed in Perl, as follows:

%rule = (A => 'S[-A][+A]');
$axiom = "A";

%rule contains the single rule of our L-system; $axiom is
our start string. The lsys_execute subroutine, in
lsys.pl on the book web site, applies the rules to the
axiom $repetitions times:

sub lsys_execute {
my ($string, $repetitions, $filename,

%rule) = @_;
Apply the %rule to $string,

$repetitions times,
and print the result to $filename
for (1..$repetitions) {

$string =~ s/./defined ($rule{$&})
? $rule{$&} : $&/eg;

}

513

…and calls the appropriate subroutines held in
%translate…

foreach $cmd (split(//, $string)) {
if ($translate{$cmd})

{&{$translate{$cmd}}();}
}

…and finally prints out the GIF itself:
open (OUT, ">

tree.gif") or die $!;
print OUT $im->gif;
close(OUT);

}

This program creates the GIF shown in Figure 26-2.
#!/usr/bin/perl

require "lsys.pl";

%rule = ('A' => 'S[-A][+A]',);
$axiom = "A";

$changes = { distance => 40,
dtheta => 0.2,

motionsub => sub {
$im->line(@_, $dark_green) } };

$repetitions = 8;
$imagesize = 400;
$filename = "tree1.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

514

Figure 26-2. A small L-system

Not breathtaking, but moderately tree-like. Its most glaring
flaw is that all the branches are the same length. Younger
branches should be shorter, because they’ve had less time to
grow. Changing the system makes every G produce an S at
every step.

ω: A
p1: A -> GS[-A][+A]

p2: G -> GS

Here’s the program to code the rule in Perl and shorten the
distance a bit:

#!/usr/bin/perl

515

require "lsys.pl";

%rule = ('A' => 'GS[-A][+A]', 'G' =>
'GS');
$axiom = "A";

$changes = { distance => 10,
dtheta => .2,

motionsub => sub {
$im->line(@_, $dark_green) } };

$repetitions = 8;
$imagesize = 400;
$filename = "

tree2.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

This produces the tree shown in Figure 26-3.

516

Figure 26-3. Shortened distances

A definite improvement. However, most plants aren’t
perfectly symmetrical. Let’s try forcing the right branch to
wait before splitting. Specifically, we’ll use this L-system:

ω: A
p1: A -> GS[-A][+B]

p2: G -> GS

p3: B -> C

p4: C -> A

Now every right branch spends less time splitting and
growing. Here’s the program that implements this system:

#!/usr/bin/perl

517

require "lsys.pl";

%rule = ('A' => 'GS[-A][+B]',
'G' => 'GS',
'B' => 'C',
'C' => 'A');

$axiom = "A";
$changes = { distance => 2.8,

dtheta => .2,
motionsub => sub {

$im->line(@_, $dark_green) } };

$repetitions = 15;
$imagesize = 400;
$filename = "

tree3.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

The result is shown in Figure 26-4.

518

Figure 26-4. Right branches stunted

Interesting, but kind of lopsided. Remember Turtle’s
mirror method? Now’s a good time to take advantage of it.
Let’s try changing the first rule of the L-system to

p1: A -> GS[---A][++MB]

and decreasing dtheta a bit:

#!/usr/bin/perl

require "lsys.pl";

%rule = ('A' => 'GS[---A][++MB]',
'G' => 'GS',
'B' => 'C',
'C' => 'A');

$axiom = "A";
$changes = { distance => 2.8,

dtheta => .06,
motionsub => sub {

$im->line(@_, $dark_green) } };

$repetitions = 15;
$imagesize = 400;
$filename = "

tree4.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

519

The tree produced by this program is shown in Figure 26-5.
Now the second branch of every subtree is flipped, and the
tree looks less like the victim of gale-force winds.

Figure 26-5. Every second branch flipped

Merely drawing branches may be good enough for
trees in winter, but around this time of year, plants acquire
things that are harder to draw:
leaves and flowers. Fortunately, GD can draw and fill
polygons and import other GIFs.

520

Leaves

Our leaves will be polygons oriented in some direction
relative to the branch they’re on. We’ll use the
already-existing turtle code and create a “polygon mode,”
using the traditional L-system notation of curly braces. The
turtle will trace out the polygon and then fill it.
Turtle::forward can perform any sort of movement as
long as we pass it the appropriate coderef—we just need to
construct one that tells GD to convert part of the turtle’s path
into polygon vertices.

It would be convenient to modify distance and dtheta
in polygon mode independently of their values in “stem
mode.” Since these two values are stored in %$changes,
we’ll create two hashes: %stemchanges for stem mode,
and %polychanges for polygon mode. $changes will
always be current whatever the mode, so it’ll initially refer to
%stemchanges. The most important difference between
them is their motionsub ; %stemchanges has the
familiar sub { $im->line(@_, $dark_green)
}, but %polychanges has sub {
$poly->addPt(@_[0..1]) }.

Skipping what that means for the moment, let’s handle curly
braces with two more entries to %translate :

%translate = (...
'{' => sub { $poly = new

GD::Polygon;
$changes =

\%polychanges; },

521

'}' => sub {
$im->filledPolygon($poly, $light_green);

undef $poly;
$changes =

\%stemchanges; });

What’s going on? The GD module defines the GD::Polygon
class, an instance of which $poly gets created whenever we
encounter a {. Every time the turtle moves in polygon mode,
$polychanges{motionsub} is called, so we call
GD::Polygon::addPt to add a point to the list of
vertices in $poly. Once the polygon is drawn, a } is
processed, filling the polygon with $light_green. Then
$poly is thrown away and stem mode is restored.

#!/usr/bin/perl

require "lsys.pl";

%rule = ('A' => 'SLMA', 'L' =>
'[{S+S+S+S+S+S}]');
$axiom = "A";

%stemchanges = (distance => 24,
dtheta => .15,

motionsub => sub{
$im->line(@_, $dark_green) });

%polychanges = (distance => 6,
dtheta => .4,

motionsub => sub{
$poly->addPt(@_[0..1]) });

$changes = \%stemchanges;
$repetitions = 15;
$imagesize = 400;

522

$filename = "tree5.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

The result (Figure 26-6) resembles a vine.

Figure 26-6. Single stem with leaves

This system is pretty easy to follow—it merely leaves
commands for moving forward, drawing a leaf, and flipping
the turtle, repeated an arbitrary number of times. The M
character once again proves useful, this time allowing easy

523

alternating placement of leaves. Also note that GD
automatically closes polygons if they’re not closed already.

524

Flowers

Let’s use some GIFs of flowers: flower.gif,
flower2.gif, and flower3.gif, all available on the
book web site.
Creating a GD::Image from an existing file is easy—the
newFromGif method does exactly that. All you need to add
to lsys_init is the following:

open(IN, "flower.gif") or die $!;
$flower = newFromGif GD::Image(IN);
close(IN);

open(IN, "flower2.gif") or die $!;
$flower2 = newFromGif GD::Image(IN);
close(IN);

open(IN, "flower3.gif") or die $!;
$flower3 = newFromGif GD::Image(IN);
close(IN);

Once all the flowers are loaded, we need to copy them onto
the main image. We’ll delegate that to a small subroutine in
lsys.pl, which centers the image at the turtle’s current
coordinates. It uses GD::Image’s getBounds method:

sub flower {
my $flower=shift;

my ($width, $height) =
$flower->getBounds();

my ($x, $y) = $turtle->state();
$im->copy($flower, $x-$width/2,

$y-$height/2, 0, 0, $width, $height);
}

525

GD::Image::copy does the dirty work here, even
copying the
flowers’ color tables if necessary. We’ll add a few more
entries to %translate :

%translate = (...
'f' => sub {

flower($flower) },
'g' => sub {

flower($flower2) },
'h' => sub {

flower($flower3) });

We can test the new features with this program:
#!/usr/bin/perl

require "lsys.pl";

%rule = ('A' => 'GS[-fA][+fA]', 'G' =>
'GS');
$axiom = "A";

%stemchanges = (distance => 9,
dtheta => .25,

motionsub => sub{
$im->line(@_, $dark_green) });

%polychanges = (distance => 6,
dtheta => .4,

motionsub => sub{
$poly->addPt(@_[0..1]) });

$changes = \%stemchanges;
$repetitions = 8;
$imagesize = 400;
$filename = "tree6.gif";

526

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

Now our tree has flowers, as shown in Figure 26-7.

It looks odd with flowers growing out of every branch. One
way to avoid this is forcing flowers to die every step, leaving
live flowers only at the very tips:

#!/usr/bin/perl

require "lsys.pl";

%rule = ('A'=>'GS[-fA][+fA]', 'G'=>'GS',
'f'=>'');
$axiom = "A";

%stemchanges = (distance => 9,
dtheta => .25,

motionsub => sub {
$im->line(@_, $dark_green) });

%polychanges = (distance => 6,
dtheta => .4,

motionsub => sub {
$poly->addPt(@_[0..1]) });

$changes = \%stemchanges;
$repetitions = 8;

527

Figure 26-7. Flowers

$imagesize = 400;
$filename = "tree7.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

The result is shown in Figure 26-8.

528

Figure 26-8. Flowers only on the tips

Alternately, you can have the flowers change before they die:
#!/usr/bin/perl

require "lsys.pl";

%rule = ('A' => 'GS[-fA][+fA]', 'G' =>
'GS', 'f' => 'g', 'g' => 'h', 'h' => '');
$axiom = "A";

%stemchanges = (distance => 9,
dtheta => .25,

motionsub => sub {
$im->line(@_, $dark_green) });

%polychanges = (distance => 6,
dtheta => .4,

motionsub => sub {
$poly->addPt(@_[0..1]) });

529

$changes = \%stemchanges;
$repetitions = 8;
$imagesize = 400;
$filename = "tree8.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

Figure 26-9 shows the changed
flowers.

Figure 26-9. Changed flowers

530

Bringing It All Together

The L-system itself is an incredible source of variety; even
the primitive system I’ve presented is still capable of making
appealing pictures. For a few final examples, we’ll
experiment with some additional rules. Using just one type of
flower:

#!/usr/bin/perl
require "lsys.pl";
%rule = ('A' => 'GS[---fMA][++++B]',

'B' => 'C',
'C' => 'GS[-fB][++A][++++A]',
'f' => '',
'G' => 'HS',
'H' => 'HSS');

$axiom = "A";

%stemchanges = (distance => 4,
dtheta => 0.12,

motionsub => sub {
$im->line(@_, $dark_green) });

%polychanges = (distance => 6,
dtheta => 0.4,

motionsub => sub {
$poly->addPt(@_[0..1]) });

$changes = \%stemchanges;
$repetitions = 10;
$imagesize = 400;
$filename = "tree9.gif";

lsys_init($imagesize);

531

lsys_execute($axiom, $repetitions,
$filename, %rule);

The result is illustrated in Figure 26-10.

Figure 26-10. A single type of flower

With leaves and a different flower:
#!/usr/bin/perl
require "lsys.pl";
%rule = ('A' => 'S[---LMA][++++B]',

'B' => 'S[++LBg][--Cg]',
'C' => 'S[-----LB]GS[+MC]',
'g' => '',
'L' => '[{S+S+S+S+S+S}]');

$axiom = "A";
%stemchanges = (distance => 18.5, dtheta
=> 0.1,

532

motionsub => sub {
$im->line(@_, $dark_green) });

%polychanges = (distance => 3, dtheta =>
0.4,

motionsub => sub {
$poly->addPt(@_[0..1]) });

$changes = \%stemchanges;
$repetitions = 10;
$imagesize = 400;
$filename = "tree10.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

This gives us a bush (Figure 26-11).

Figure 26-11. A bush

533

With all three flower types, leaves, and slightly weird axial
growth, use this program:

#!/usr/bin/perl

require "lsys.pl";

%rule=('A' => 'GS[---fA][++MB]',
'B' => 'C',
'C' => 'A',
'f' => 'g',
'g' => 'h',
'h' => '',
'G' => 'HS',
'H' => 'IS',
'I' => 'GLMS',
'L' => '[{S+S+S+S+S+S}]');

$axiom = "A";
%stemchanges = (distance => 2.8, dtheta
=> 0.06,

motionsub => sub {
$im->line(@_, $dark_green) });

%polychanges = (distance => 3, dtheta =>
0.4,

motionsub => sub {
$poly->addPt(@_[0..1]); });

$changes = \%stemchanges;
$repetitions = 17;
$imagesize = 400;
$filename = "tree11.gif";

lsys_init($imagesize);
lsys_execute($axiom, $repetitions,
$filename, %rule);

Figure 26-12 depicts our final L-system-generated tree.

534

Figure 26-12. Three types of flowers and leaves

535

Resources

You can find several L-systems programs for Unix, Macs,
and DOS platforms at http://www.cpsc.ucalgary.ca/projects/
bmv/software.html. If you don’t mind peeling your eyes off
the monitor, the definitive text on L-systems is The
Algorithmic Beauty of Plants, by Lindenmayer and
Prusinkiewicz (Springer-Verlag, 1990).

536

Chapter 27. OpenGL

Alligator Descartes
With the plethora of emerging Doom clones and dancing web
logos, we tend to take three-dimensional graphics for granted.
This is due in part to the surging capabilities of computers to
render scenes quickly. In recent years, Silicon Graphics
Incorporated (SGI) has pioneered not only hardware tuned
especially for 3D graphics, but software as well, notably
OpenGL, an elegant and stable graphics API. OpenGL has
proven a success, with implementations for all major
platforms and the resulting portability advantages for
applications. Add to the mix the plummeting costs of cheap
3D graphics cards and free OpenGL-like implementations,
and you have a force to be reckoned with.

Enter Perl, stage left. Portable. Compilable. Powerful. Couple
it with OpenGL and you have a match made in heaven for
rapid 3D development.

Back to Basics

Before we delve into the soupy, steaming innards of 3D
graphics and OpenGL, we ought to explain some of the
concepts needed for 3D graphics programming.

The three-dimensional space we’re used to can be navigated
in any of three directions: up/down, left/right, and forward/
backward. The premise of Euclidean 3D space is exactly the

537

same, although it requires more precision than “up and left a
bit,” or “a few yards backward.” Imagine being blindfolded in
a large field with a tree near the middle and have a friend
direct you to that tree. Difficult? Try it and see! Even the
simple matter of “forward” becomes a relative concept with
different meanings depending on the person’s orientation. We
need to establish some ground rules.

First, we need to define our origin, the central reference point
in the 3D space. Everything we describe is relative to this
point. The origin is usually dubbed (0, 0, 0) in coordinate
systems.

So how do we agree which direction corresponds to which
axis in our
coordinate system? This requires the creation of another
concept known as the handedness of a coordinate system.
Coordinate systems can be either left-handed or right-handed.
Wrap your hand around the Z-axis, with your thumb pointing
along the Z-axis and the X-axis running back along your arm.
If you had to use your right hand, you’re in a right-handed
coordinate system. Illustrations of each are shown in
Figure 27-1.

538

Figure 27-1. Left-handed and right-handed coordinate
systems

Right-handed coordinate systems are more common in
today’s applications, yielding the directions shown in
Table 27-1.

Table 27-1. Right-handed coordinate system directions

Axis Direction

X-axis Right

Y-axis Up

Z-axis Backward

For the programmer looking at the screen, the directions to
use are shown in Table 27-2.

Table 27-2. Right-handed coordinate system directions

Axis Direction

X-axis Right

Y-axis Up

Z-axis Backward

539

Now that we’ve sorted out the framework of our space, we
can look at how to fill it.

540

Graphical Primitives

Graphical primitives are the most basic components that can
be used by a 3D graphics system. These range from the fairly
obvious to the not-so-obvious. We shall deal with these in
turn.

The Vertex

Any discrete point in 3D space is called a vertex. The origin
is a vertex because it’s a point at (0, 0, 0).

Vertices by themselves are only partly useful, since by
themselves they create only a “point cloud,” which is fairly
useless for discerning objects in. Consider Figure 27-2.

Figure 27-2. A point cloud

Do these five vertices form a star, a pentagon, or something
else? It’s impossible to be sure, since it all depends on how
your perceive it. That’s an inherent problem with point cloud
rendering; it’s nigh-impossible to construct any sort of
coherent impression from points alone. They can be used to
render real clouds, but that’s about it.

541

The Line

Lines are the building blocks of wireframe models, a staple of
3D graphics. On a slow computer, they provide a quick way
to render scenes. If you want to see through objects, they let
you do that as well. They are of most use in CAD tools,
where the designer needs to be able to manipulate any part of
the design. If the models were solid, they wouldn’t be able to
see all of it at once.

Lines allow us to depict the edges of an object, which helps
the viewer’s brain assign meaning to the picture on the
screen. But for rendering solid objects,
polygons are preferable.

The Polygon

Polygons are 2D surfaces bounded by vertices. Triangles are
polygons with three vertices; squares, rectangles, and other
quadrilaterals are polygons with four vertices, and so on.
Polygons must always be flat (or planar)—all the vertices
must lie on the same plane. Polygons that are non-planar are
usually automatically split up into smaller planar polygons by
the rendering software. In many rendering libraries, including
OpenGL, polygons with more than three vertices are split into
triangles. This process of polygon-splitting is referred to as
tessellation, where large complicated polygons become sets
of smaller polygons that aren’t necessarily triangles, or
triangulation where larger polygons are split completely into
triangles. (OpenGL doesn’t actually perform automatic
triangulation of polygons, but you can use its GLU routines to
do that.) This is all quite a mouthful, so let’s look at a

542

diagram that illustrates the principles. Figure 27-3 shows a
quadrilateral and how it might be triangulated.

Figure 27-3. Triangulating a quadrilateral

Polygons are the most common tool for rendering 3D
graphics, since they can be filled to produce solid-looking
objects. Now that we’re armed with the basic concepts of
three-dimensionality, we can address how to render scenes on
screens.

543

Drawing on the Screen

Drawing things on the screen is the whole point of graphics.
But how do we get our collection of points and polygons onto
the screen? And what will it look like? Will it look realistic?
All simple questions with complicated answers.

To make any headway into this subject, we need to introduce
a few more concepts: the viewport, the view frustum, and
perspective.

The Viewport

The viewport is our window onto our 3D world. Imagine
standing at the window of your house, looking out onto the
world outside. That’s your viewport. We’ll only discuss
rectangular viewports for the moment, which means we can
assume that the viewport can be described by a width and a
height. How do we work out what we’re looking at in the
world, and how do we translate that into the boundaries of
this viewport? To accomplish this, we need to consider the
view frustum.

The View Frustum

The view frustum enables our rendering engine to work out
what the user can see through their viewport onto the world.
To help envision this, consider Figure 27-4.

The view frustum is pyramid-shaped, with the apex
positioned at the eyes of the viewer. To use our house

544

window analogy, the eyepoint of the view frustum is right
between our eyes as we look out the window. The other two
planes we’ll discuss in a later section, but the far clipping
plane can be considered the base of the pyramid and
constitutes the farthest distance at which we can see objects in
the world. Anything farther is invisible.

Figure 27-4. The view frustum

Hopefully you can orient this diagram in your mind’s eye as
if you were looking through the window outside. The edges
of the pyramid depicted in dashed lines extend from your eyes
through each corner of the viewport until they intersect with
the far clipping plane. From knowing these points of
intersection with the pyramid base, we could calculate the
dimensions of the base if we desired.

Fine, so now we know what we can see in the world, but how
do we translate that onto the viewport? How can we resolve
those 3D objects into 2D objects for displaying on our screen?
The answer is simple and one known by artists for centuries.

545

Perspective

Perspective is an optical effect that makes identically sized
objects far away from us appear smaller than objects nearby.
Therefore, with perspective, we can judge distance between
two objects by the difference in apparent size.

We project perspective towards a vanishing point
(Figure 27-5), a point on the horizon at which all objects
converge. That’s the opposite of our view frustum, which
converges squarely between the user’s eyes.

Do not despair. We can still tackle the vanishing point
perspective—we just need to think of it back-to-front. We
project the objects away from the horizon and toward the
eyepoint. But what do we project? The vertices, of course.
Once the vertices have been mapped onto the viewport, the
polygons will automatically be projected too, since they’re
defined by their vertices. In OpenGL, a polygon has no
knowledge of where it is—it only knows what it is
constructed from. Therefore, if we can calculate the
projection from a three-dimensional coordinate system onto a
two-dimensional coordinate system, we can determine where
our objects should lie on the viewport.

And, that, in a nutshell, is how we convert our
three-dimensional world into something we can view on a
two-dimensional screen!

546

Figure 27-5. Perspective is projected toward a vanishing
point

Now, on to the fun part: techniques for representing objects
on the screen. These different drawing techniques are called
rendering pipelines and constitute the gory innards of any
graphics engine. They can be implemented in either software
or hardware.

Rendering Pipelines

At this point, we have a good idea of what we want to draw
and where on the screen we want to draw it. The big question
is how do we draw it? Do we draw it as lines, filled polygons,
or with some other funky technique? We’ll now discuss the
various rendering pipelines available to today’s programmers.

Wireframes. The wireframe pipeline is the simplest by far; it
draws only polygon outlines. As we discussed before, the
outline of the polygon is essentially a set of lines that connect

547

the vertices in the object. We’re drawing a lot of lines, as seen
in Figure 27-6.

Figure 27-6. A wire-frame cube

Wire-frame pipelines are generally the fastest pipeline in
graphics engines, since painting pixels is usually the slowest
part of any rendering pipeline, and we’re painting a lot less
here than we would if our polygons were filled.

There are, however, a few additional things we can do to our
wire-frame pipeline to make it more realistic, without slowing
it down too much. We could use a technique called
depth-cueing, which darkens the lines as they get further
away from the viewport. This heightens the perception of
depth and is a very useful technique. A second and more
complex technique is hidden-line removal, which makes
objects appear solid. A cube rendered with hidden-line
removal is shown in Figure 27-7.

548

Figure 27-7. A wire-frame cube with hidden-line removal

Flat shading. Unlike the wireframe pipeline, the flat-shaded
pipeline actually fills polygons. Each polygon is
rasterized—converted into horizontal lines—and then drawn
on the screen. The result: All the objects in the scene seem
like solid 3D objects.

An important aspect of a filled pipeline is that each polygon
can be given a different brightness, implying the orientation
of that polygon to the source of light. For example, if we hold
a toaster near a light bulb, the parts of the toaster facing the
bulb will be brighter than those facing away from the light.
Hidden-line removal can’t simulate this, making “filled”
pipelines a better choice. Figure 27-8 illustrates a flat-shaded
Utah teapot. (Martin Newell’s Utah teapot is widely used as a
test object for
rendering engines.) A light shines from the viewport towards
the teapot, causing the polygons in the center to appear
brighter than those on the sides.

549

Figure 27-8. A flat-shaded object.

Smooth shading. The smooth-shaded pipeline is an
enhancement of the flat-shaded pipeline. Instead of uniformly
coloring the polygons in the scene, we grade the colors across
the polygons, dependent on the colors of the neighboring
polygons. This algorithm is known as Gouraud shading, after
its discoverer, Henri Gouraud.

This approach is slightly more time-consuming than the
simple uniform color filling flat-shaded pipeline, but the
effects are spectacular. Objects that previously looked blocky
now have the appearance of being curved, as can be seen in
Figure 27-9, which depicts a Gouraud-shaded Utah teapot.

550

Figure 27-9. A Gouraud-shaded object

Texture mapping. The fourth and final pipeline we’ll
consider is the texture mapped pipeline. This is probably the
most realistic and can be generated in real-time by today’s
(but not yesterday’s)
rendering engines. Most of you will be acquainted with games
like Doom, Quake, Half-Life, or Tomb Raider, all popular 3D
games that make heavy use of texture mapping.

The basic purpose of texture mapping is to allow the artist to
create realistic looking surfaces, such as a stone wall, with a
minimum of computation. You could do without texture
mapping, modeling each individual stone using points and
polygons. Or you could simply map the texture of some
stones onto a single flat polygon. That’s texture mapping.

Anyway, you now know enough of the theory involved in 3D
graphics to be dangerous, so let’s take a look at the rendering
engine we’re going to be using:
OpenGL.

551

Introduction to OpenGL

OpenGL is a powerful and elegant 3D graphics API
developed by SGI. It provides platform-independent
mechanisms to let you to manipulate the graphical primitives
discussed earlier and has an unofficial extension library
providing programmers with standard routines for
platform-dependent tasks, such as the manipulation of
windows and the handling of window events. Even though
these libraries are not officially part of
OpenGL, they’re found with most OpenGL implementations.

The OpenGL architecture is basically a large state machine:
you can pull levers at any point in the execution of the
machine to alter any subsequent operations the machine may
execute. For example, if we were rendering a cube comprised
of six polygons and had already rendered three of these
polygons with a flat-shaded pipeline, we could then make a
single function call to pull a lever in the state machine and
render the final three with a smooth-shaded pipeline instead.

552

OpenGL and Perl

Brian Paul’s superb
Mesa, an OpenGL-like library, makes possible OpenGL
programming on lower-end PCs. Mesa provides an almost
fully-featured OpenGL implementation (although not a
licensed one, so it can’t call itself OpenGL). Currently at
Version 5.0, it’s fast and stable.

Keeping pace with Mesa is Perl’s OpenGL module, which
provides access to most OpenGL functions. The module’s
speed is comparable to compiled C code but allows for the
ease of use we have come to know and love from Perl!

Since the readership of this article are probably champing at
the bit to get on with some groovy Perl hacking, let’s discuss
how to use the OpenGL module.

Creating a Viewport

The first thing we need to do is create our
viewport. The OpenGL module provides
glpOpenWindow, a useful method that pops up a GL
canvas for us. It also handles some of the icky stuff like
allocating colors. The following short example creates a
default window for us.

1 #!/usr/bin/perl -w
2 #
3 # Creates a GL viewport
4
5 use OpenGL;
6

553

7 glpOpenWindow();
8
9 print "Press return to exit\n";
10
11 while (<>) {
12 exit;
13 }

You’ll notice that the window is empty. And if you move it
around, it’ll never redraw. Not so useful. What we need to do
now is create the view frustum, so that OpenGL will at least
have some clue about what it’s going to be rendering.

Creating the View Frustum

The example code below provides
OpenGL with an idea of where you want objects to be in the
world and how it should project those objects onto your
viewport.

1 #!/usr/bin/perl -w
2 #
3 # Creates a GL viewport and

view frustum
4
5 use OpenGL;
6
7 sub glInit {
8 # Creates the OpenGL viewport to
render into
9 glpOpenWindow();
10
11 # Creates the view frustum, with
near clipping
12 # plane at z = 1 and far clipping
plane at z = 20

554

13 glMatrixMode(GL_PROJECTION);
14 glFrustum(-1.0, 1.0, -1.0, 1.0,
1.0, 20.0);
15 }
16
17 ### Main program body
18
19 # Initialize any GL stuff
20 glInit();
21
22 print "Press return to exit\n";
23
24 while (<>) {
25 exit;
26 }

In the listing above, lines 13 and 14 are the most important.
Line 13 pulls the lever in the OpenGL state machine that says
“Any operations from now on alter my idea of the view
frustum.” These operations might be matrix arithmetic if we
needed to scale or rotate our view frustum. Line 14 defines
the frustum itself, by fixing the coordinates of the viewport
corners and the near and far clipping planes.

However, after running the script, you’ll see the same thing as
before. A window containing nothing, and that won’t redraw.

555

Drawing Objects

Drawing objects in OpenGL is relatively simple. We need a
method that redraws the screen and all of the objects on it.
This sounds quite intensive, but OpenGL is a state
machine-based rendering engine, which means that a good
majority of the work is already done for us.

To begin drawing, we change the MatrixMode from
GL_PROJECTION to GL_MODELVIEW to calculate matrix
operations from our viewpoint and define a display
method that will be invoked when the screen needs to be
redrawn.

1 #!/usr/bin/perl -w
2
3
4 use

OpenGL;
5
6 ### Initialization function
7 sub glInit {
8
9 # Create the viewport
10 glpOpenWindow();
11
12 # Define the view frustum
13 glMatrixMode(GL_PROJECTION);
14 glFrustum(-1.0, 1.0, -1.0, 1.0,
1.0, 20);
15
16 # Prepare to specify

556

objects!
17 glMatrixMode(GL_MODELVIEW);
18 }
19
20 ### Display callback
21 sub display {
22
23 # Make sure we're smooth-shading
now, so
24 # we can to blend the colors of the
25 # background polygon.
26 glShadeModel(GL_SMOOTH);
27
28 # Draw graded black->blue polygon
first
29 glBegin(GL_POLYGON);
30 glColor3f(0, 0, 0);
31 glVertex3f(-20, 20, -19);
32 glVertex3f(20, 20, -19);
33 glColor3f(0, 0, 1);
34 glVertex3f(20, -20, -19);
35 glVertex3f(-20, -20, -19);
36 glEnd();
37
38 glFlush();
39 glXSwapBuffers();
40 }
41
42 ### Main body of program
43
44 glInit();
45 display();
46
47 print "Press return to exit\n";
48
49 while (<>) {
50 exit;
51 }

557

This program is a little more involved! The interesting chunk
is the display method between lines 21 and 40, which has
OpenGL set the graphics pipeline to be smooth-shading, and
then draw a polygon.

After the polygon is begun with
glBegin(GL_POLYGON), the next step is to tell OpenGL
“Anything I do from now on will be black,” as specified by
glColor3f(0,0,0). We then create two vertices at the
top left and top right of the far clipping plane. Then we switch
to blue by calling glColor3f again with the new RGB
value (0, 0, 1). Finally, we create another two vertices of the
polygon at the bottom right and bottom left of the far clipping
plane, and then tell OpenGL that we have finished specifying
that polygon with glEnd.

Lines 38 and 39 contain two commands to flush the graphics
pipeline, resulting in the viewport being filled with a
smoothly-shaded polygon as shown in Figure 27-10.

Figure 27-10. A smoothly-shaded polygon

558

And that’s how we draw
objects in OpenGL.

Some Viewport Tricks

You may have noticed that the viewport filled in as shown in
Figure 27-11.

Figure 27-11. A smoothly-shaded polygon

This is quite a disturbing effect. Now, if you run the example
program called planespin on the book web site, you can
see the plane flickering and various visual artifacts appearing.
This is horrible! What can we do?

Well,
OpenGL supports double buffering, which means that instead
of having only one buffer for your viewport, you have two.
You render onto the off-screen buffer, and when rendering is
complete, that buffer is swapped with the on-screen buffer.
This completely eliminates the flickering, with very little
overhead. If you alter the glpOpenWindow as follows,
double-buffering will be enabled.

glpOpenWindow(attributes => [GLX_RGBA,
GLX_DOUBLEBUFFER]);

559

We can also use other parameters with the
glpOpenWindow call, such as the width and height of the
viewport. For example, this creates a 200x200
double-buffered viewport for you.

glpOpenWindow(width => 200, height =>
200,

attributes => [GLX_RGBA,
GLX_DOUBLEBUFFER]);

Viewport Resize Issues

What happens if we resize the viewport in planespin?
The actual window resizes, but the viewport doesn’t. Yuck.
We really ought to handle these events gracefully.

Stan’s solution in the Perl OpenGL module is to add event
handlers for certain events that we want to trap. We first need
to add another parameter to glpOpenWindow informing
the viewport which events to keep and which to discard. In
the case of
resizing the viewport, we wish to know only about
StructureNotify requests, so the corresponding call is:

glpOpenWindow(width => 300, height =>
300,

attributes => [GLX_RGBA,
GLX_DOUBLEBUFFER],

mask =>
StructureNotifyMask);

The mask is a bit vector, so if we wished to trap keyboard
events as well, we would bitwise OR
StructureNotifyMask with KeyPressMask:

560

glpOpenWindow(width => 300, height =>
300,

attributes => [GLX_RGBA,
GLX_DOUBLEBUFFER],

mask =>
StructureNotifyMask | KeyPressMask);

We also want to add an event handler for
ConfigureNotify requests, which we store in the
%eventHandler hash:

$eventHandler{&ConfigureNotify} =
sub {

my ($event, $width, $height) = @_;
print "Resizing viewport to $width x

$height\n";
glViewport(0, 0, $width, $height);

};

Now, all we need to do is process these events within the
main while loop.

While there are events in the X event
queue
while ($pendingEvent = XPending) {

Fetch the next event in the queue
my @event = &glpXNextEvent;

If we have a handler for this event
type

if ($s = $eventHandler{$event[0]}) {

Execute the handler
&$s(@event);

}
}

And that’s all there is to it!

561

For your delectation and delight, there’s a program called
paperplane on this book’s web site that whizzes some
paperplane objects around inside the view frustum. It
illustrates some of the more useful facets of Perl and
OpenGL and is a good guide to help you navigate the murky
waters of 3D
programming.

562

Resources

To allow you to program OpenGL code from within Perl,
you’ll need the following:

▪ Perl.

▪ OpenGL. If you have a lot of money, there’s a possibility
that you may have a real OpenGL implementation on
your machine already. This is quite likely on SGI
platforms. If you don’t have OpenGL, you can use Mesa
instead; see http://www.mesa3d.org/.

▪ The Perl OpenGL module. You’ll find this on CPAN.

563

References

Some literature that budding OpenGL gurus might find of
interest:

▪ Computer Graphics: Principles and Practice, Second
Edition, by Foley & Van Dam (Addison-Wesley). This
weighty tome tells you everything you need to know
about 3D graphics. If you’re serious about graphics, this
book is a must.

▪ OpenGL Reference Manual: The Official Reference
Document to OpenGL, Version 1.1 (OpenGL ARB
Architecture Review Board). This book has all you need
to know to start programming with OpenGL, from basics
such as creating polygons to complex lighting effects
and texture mapping.

▪ The OpenGL web site: http://www.opengl.org.

▪ Programming OpenGL for the X Window System, by
Kilgard (Addison-Wesley). This book details the use of
OpenGL in the X Window System environment. It’s
filled with useful information and sample code, and
discusses the interaction between OpenGL and X, which
is of utmost importance in getting the best out of the
Perl, OpenGL, and Tk threesome.

564

565

Acknowledgments

Thanks, in no particular order, go to: Mark Kilgard for
graciously allowing permission to use parts of the
paperplane code in this article; Stan Melax for writing
the OpenGL module and reviewing this article; Andy
Colebourne for reviewing this article and writing the splendid
AC3D modeller which helped build many of the example
code models. See http://www.ac3d.org.

566

Chapter 28. Ray Tracing

Mark Jason Dominus
In this article, we’ll look at one of the most flexible and
versatile methods of rendering three-dimensional images with
a computer: ray tracing. Suppose you have a model of a
three-dimensional space, with some three-dimensional objects
in it, and some light sources. Somewhere in that space is an
observer, whom we’ll call “you,” and we’d like to render your
view of the space and the objects in it. Ray tracing is a way to
do it. This is serious stuff, used to render all kinds of
computer graphics, including special effects in the movies
Terminator II and Toy Story.

In order for an object to be visible to you, a ray of light must
leave one of the light sources, bounce off the object, and
reach your eye without bumping into anything opaque along
the way. The idea behind ray tracing is simple: you can’t see
any light that doesn’t enter your eye, so we can ignore all the
other light. To understand what you see, all we need to do is
follow the path of the light rays backwards from your eye and
see if they eventually intersect a light source, perhaps after
bouncing off of some objects along the way. If so, we render
the objects appropriately. We’ll see what “appropriately”
means later on.

The important thing to notice here is all the zillions of light
rays that we never had to consider at all. All sorts of light is
bouncing around our space, and we ignored most of it,

567

because we only followed the rays that came back to your
eye.

I’ve written a small ray-tracing application called tracer.
You can download it from the web page for this book and
from http://perl.plover.com/RayTracer/. In the rest of this
article, you’ll see how it works.

Technique

We’re going to be rendering your view into a rectangular
“canvas” of pixels. Let’s say for concreteness that this canvas
is 200 pixels tall by 320 wide. The first thing we do is to
imagine a view plane hanging in space in front of you.
Figure 28-1 shows a rudimentary view plane, used by the
artist Albrecht Dürer to help him study perspective and
foreshortening effects.

Figure 28-1. A rudimentary view plane

Dürer’s view plane has only 36 divisions, because he could
fill in all sorts of detail into each of his divisions; ours is
going to have 64,000 divisions, one for each pixel. (We’re
crossing Dürer and Seurat here.)

568

For each pixel on the screen, we compute the
ray that starts at your eye and passes through the pixel. We do
some computations to see if it intersects any of the objects.

One tactic we can use to make things a lot simpler, at the
expense of a little reality, is to just forget about the
light sources. Instead, we’ll just suppose that the entire space
is uniformly lit from some invisible source. Each object will
have a color, and if a ray strikes an object, we’ll assume that
we could have traced the reflected ray back to the
omnipresent light source if we wanted to and render the
appropriate pixel in that color without actually following the
ray any farther.

How do we decide if the ray intersected an object or not? It
depends on the object. For example, let’s suppose that the
object is a polyhedron. A polyhedron is made of faces, which
are plane segments. To decide if the ray has intersected the
polyhedron, we need to know if it has intersected any of the
plane segments that contain its faces.

To do this, we first have to understand rays. The easiest way
to represent a ray in the computer is with parametric
equations. Imagine an insect flying along the ray; at each
moment it has a particular x, y, and z position. Each of these
depends on the current time, so there are three functions that
depend on the time t: x (t), y (t), and z (t)>. These tell you the
x, y, and z coordinates of the insect at any given moment. The
path of the insect is completely determined by these three
functions. t is the parameter that the parametric equations get
their name from.

For straight lines such as light rays, the three equations are
particularly simple. Suppose the ray starts at point (O x, O y,

569

O z) and also passes through the point (S x, S y, S z). Then the
three equations for the line are shown below.

x(t) = O x + t • (S x – Ox)
y(t) = Oy + t • (Sy – Oy)
z(t) = Oz + t • (Sz – Oz)

Mathematicians get tired of writing everything three times, so
they have a shorthand. They represent points by single
boldface letters, so that each boldface letter stands for the
three coordinates of some point.

For example, we’ll write O instead of (Ox, Oy, Oz). For triples
of functions like (x(t), y(t), z(t)), they use ordinary function
notation with boldface, so they might write P(t) as an
abbreviation for (x(t), y(t), z(t)), and the (t) in P(t) means the
same as in x(t): the whole thing still depends on t.

Then they play a trick, and call the boldface letters vectors
and say that you can add and subtract them. You don’t need
to worry about what that really means; it’s just a notational
shorthand, so that we can write simply:

P (t) = O + t • (S – O)

instead of the three equations above. This one vector equation
means exactly the same as the three earlier equations, no
more and no less; the only difference is that the vector
equation is quicker to write. The boldface tells you that it’s
standing for three equations instead of one; S – O is
shorthand for the three expressions that look like (Sx – Ox), so
t • (S – O) is shorthand for the three expressions that look like
t • (Sy – Oy). The t isn’t in boldface; that tells you that the t is
the same in all three equations instead of having x, y, and z

570

versions. The whole thing is shorthand for the three equations
shown earlier.

Now let’s return to the polyhedron. Each face of the
polyhedron is defined in terms of two parameters like this:
F(u, v). We won’t see a detailed example of this, because we
won’t need it. The ray intersects the face if there are some
values for u and v and some number d that satisfy P(d) = F(u,
v).

Once we’ve found the point of intersection, P(d), we can
figure out how far away from you it is. If there are two points
of intersection, we just take the closer one, and render it; we
can ignore the farther intersection because the closer one is in
front of it, blocking your view of the farther one.

To handle a complete polyhedron, we do the same thing for
each face. We compute whether or not the ray intersects each
face, and if it does, we make a note of where; then we find the
closest of all the intersection points and render it. We can
ignore the intersection points that are farther away; you can’t
see them, because the faces with closer intersection points are
in the way. I’m going to skip the
mathematics again.

571

Make It Faster

To compute a low-resolution picture of 320 x 200 pixels, we
need to send out 64,000 rays. If the space contains, say seven
pyramids, nine cubes, and thirteen spheres, that makes 7 x 5 +
9 x 6 + 13 = 102 objects altogether and that means we have to
compute 64,000 x 102 = 6,528,000 intersections in all. You
can see that
ray tracing even simple images requires either a very fast
computer or a lot of time—sometimes both. (In computer
graphics, “We took a lot of time with a very fast computer” is
often the answer. In Toy Story, the character Andy had 12,384
hairs on his head, and Pixar had to render 114,240 frames of
animation.)

Perl is not the best language for ray tracers, because Perl is
pretty slow. For a good
ray tracing demonstration that draws a reasonable picture
before the seasons change, we have to cut some corners.
We’ll use a two-dimensional space instead of a
three-dimensional space.

In two dimensions, we have to forget about fancy things like
spheres and pyramids, and restrict ourselves to straight line
segments. These can represent walls, so we’ll be rendering
pictures of mazes, as shown in Figure 28-2.

572

Figure 28-2. Bird’s eye view of a maze

Why is this a win? Observers in two-dimensional spaces have
two-dimensional eyeballs with one-dimensional retinas, and
that means that the view plane, which was 320 x 200 pixels,
becomes a view line 320 pixels long. Because there’s no Y
direction any more, instead of 64,000 rays, we only need to
send out 320. That speeds things up about 200 times.

The picture that we draw should theoretically be 320 pixels
wide by 1 pixel high, but unless you actually live in a
two-dimensional universe, you probably haven’t learned how
to interpret such pictures. We’ll cheat a little to fake an
appearance of height without actually having to compute a
lot. Walls look smaller when they’re farther away, and the
relationship between how far away they are and how big they
look is very simple. Each time we trace a ray and find the
wall that it intersects, instead of drawing one pixel, we’ll
draw a vertical line, and if we draw taller lines for nearer
walls and shorter lines for farther walls, then the various parts
of an oblique wall will appear to recede into the distance as

573

the wall gets farther away from you. Figure 28-3 shows the
output of tracer for the maze in Figure 28-2.

Figure 28-3. tracer output for the maze in
graphics-ray-figure-2

This is an awful cheat but does make things faster. Don’t be
too quick to dismiss it, because when the folks at id Software
wanted to put real-time ray-traced graphics into their game
DOOM, this cheat is exactly what they used. DOOM takes
place in a two-dimensional universe; consequently there are
no stairwells or underpasses in DOOM. Sometimes things
seem lower than other things, but that’s because the id folks
are faking height just the way we are. DOOM sold at least
250,000 copies, and you can’t laugh at that kind of success.
(DOOM also uses some other tricks that we’ll see later.)

574

Mathematics

Let’s suppose that our program knows where the walls are. A
wall is just a line segment, and a line segment is completely
determined by its two endpoints, let’s say G and H.
Remember that boldface letters represent entire points: three
numbers in a three-dimensional space, or just an x and y
coordinate in our flat space. The equation for a line segment
is:

P(t1) = G + t1• (H – G) (0 ≤ t1≤ 1)

a line, not a line segment. When we find the intersection of
our line of sight with P(t1), we won’t immediately know
whether the ray actually intersected the wall. But this
equation also has some other properties that make it easy to
decide whether a given point is actually on the segment of
interest:

▪ P(0) = G

▪ P(1) = H

▪ P(t1) is on the line segment, between G and H, when 0 ≤
t1 ≤ 1

▪ If t1 < 0 or t1 > 1, then P(t1) is not in the segment,
although it is on the line that contains the segment.

The ray we want to follow starts at O (for “observer”) and
passes through the point S on the view plane that we’re going
to render. (View line, really.) Its equation:

I(t2) = O + t2 – (S – O) (t2 ≥ 0)

575

Again, this is the equation of a line, and that line passes
through you. Since we’ll be finding the intersection of this
line with other lines, we’ll need a way to decide if the
intersection is in front of you or behind you. Happily, this
equation has the property that if t2 is positive, I(t2) is in your
line of sight, and if t2 is negative, then I(t2) is behind you. For
example, I(1) = S, which is in front of you on the view plane,
and I(0) = O, which is neither in front of nor behind you.

Computing an intersection between P(t1) and I(t2) requires
finding two parameters, t1 and t2, such that P(t1) = I(t2).
There are two unknowns here, t1 and t2, and even though it
looks like there’s only one equation, the equation has
boldface letters in it. That means it’s shorthand for two
equations, one involving x and one involving y, so finding the
appropriate values for t1 and t2 is a simple exercise in high
school algebra, which we’ll omit because it’s tedious (just
like everything else in high school).

If you think you might enjoy the tedium, examine the
program’s Intersection subroutine. The best way to
understand this is to solve the algebra problem on paper first,
and then look at the code, because that’s what I did to write it.
This is an important general strategy for writing programs
that need to do a lot of calculations: don’t try to have the
program actually do any mathematics, because mathematics is
hard, and programming it is ten times as hard. Instead, do the
mathematics yourself, until you get a totally canned solution
that only requires that the numbers be plugged in, and then
implement the canned solution.

The interesting part of the equations is the special cases. The
equations for t1 and t2 turn out to be quotient of two
complicated quantities, which I’ll call A and B. B turns out to

576

be zero exactly when the wall is parallel to your line of sight.
In this case, the equations have no solution because they’re
going to say what part of the wall you see, and if your line of
sight is parallel to the wall you can’t see any of it. (In the
code, B is stored in the variable $DEN.)

If t2 turns out to be negative, the wall is actually behind you,
and you can’t see it, as Figure 28-4 shows.

Figure 28-4. t2 is negative, so the wall must be behind you

If t1 < 0, or if t1 > 1, then your line of sight misses the wall
entirely, and you’ll see past it to something else, as
Figure 28-5 depicts.

In these cases, we shouldn’t render part of the wall. But if t2 >
0 and t1≥ 0 and t1 ≤ 1, then we have a real intersection, and
your line of sight will intersect the wall if it hasn’t intersected
something else closer. TrueIntersection checks for
these special cases.

577

Figure 28-5. A missed ray

578

The Program

The main part of the program is structured like this:
for $p (0 .. 319) {

Compute the appropriate point S on the
view plane

Compute the line of sight ray through S
foreach wall (all the walls) {

if (the line of sight intersects
the wall) {

find the intersection point X
if (X is nearer to you than

N) {
N = X;
W = wall;

}
}

}

W is now the nearest wall in the
line of sight,

and N is the point on the wall that
you see

Figure out what color W is
Figure out how far away N is
Render this part of W appropriately

}

There’s some code up front that reads a configuration file that
says where the walls are and some code at the end to print out
the rendered image in a suitable format, but the important part
is right there.

579

The only interesting part of this that we haven’t seen yet is
“render appropriately.” What that means is this: objects get
smaller in proportion to how far away they are, so compute h
= 1/d, where d is the distance that the wall is from the
observer. Multiply h by an appropriate constant scaling factor,
and the result is the apparent height of the wall, in pixels. In
this program, the scaling factor we use arranges that a wall at
distance 1 exactly fills the canvas; a wall at distance 2 fills
half the canvas, and so on. Then “render appropriately”
means to color a vertical line of pixels from h/2 to 200 – h/2
in whatever color the wall is.

580

The Input

Input is simple. The file you provide contains descriptions of
walls, one per line. Each line of data should have the x and y
coordinates for each of the wall’s two endpoints and a fifth
number that says what color the wall is. These colors go from
0 to 360, with 0=red, 120=green, and 240=blue. Blank lines
are ignored, and comments begin with a #, just like in Perl.
You can find some sample files at my site and on the web
page for this book.

The program understands a number of command-line options:
-X and -Y set the size of the
output picture in pixels and default to 320 and 200,
respectively. Normally, the observer is at position (0,0),
facing north; to change this, use -P X, Y, F, where X and
Y are the x and y coordinates you want and F is the facing you
want, with north=0 and east=90. For example, to position the
observer at x=3, y=5, facing northwest, use -P 3,5,315.

Figure 28-6 illustrates the meaning of some other
command-line parameters. You are at P, looking in the
direction of the arrow. The view plane is the perpendicular
segment from Sl to Sr. The -d command-line argument
controls the distance between P (you) and the view plane; the
default is 1. Object heights are computed relative to this
distance, so if you make it too close, everything else will look
really far away in relation. The -a option sets your range of
vision. In the picture, that’s the angle ∠SlPSr. The default is
90 degrees, so that you will be able to see 1/4 of the universe.
You can set this parameter to any value larger than zero and

581

less than 180°. Making it smaller will give you tunnel vision,
and making it larger will turn you into a frog that can see on
both sides of his head at once. Zero would mean that the view
plane would have zero length, and 180° would give the view
plane infinite length. Both are hard to divide into pixels, so
tracer won’t let you choose such extreme values.

Figure 28-6. d, the distance between you and the view plane

582

The Output

I had a conundrum in designing the output routine. The ray
tracer has to emit graphics in some format. GIF was an
obvious choice, but GIF files are complicated, and I would
have needed to use the GD library to write them. I didn’t want
to make everyone get GD just to run my ray tracer, so I made
what might turn out to be a bad decision. I had tracer
write its output as PPM.

PPM is an extremely simple 24-bit color graphics format; it
was designed to be used as an interchange format, which
means that if you need to convert from weird format A to
weird format B, you probably don’t have an appropriate
converter program—but you might very well have a program
for converting A to PPM and another from PPM to B . PPM is
simple and fairly common; many popular image display
programs can display it. For example, if you have the X
Window System program xv, just say tracer | xv -.
You probably have some PPM-capable conversion programs
installed on your computer already; for example, the reference
implementation of the JPEG standard comes with a program
called cjpeg for converting PPM to JPEG. If you don’t
have any, the page http://www.acme.com/software/pbmplus/
has links to programs that will convert PPM files to almost
any format you care to name.

583

Internals

There are two important
data structures in this program. One of these is the
rendering canvas that the program draws on; the other is the
collection of lines and vectors used to compute what you see.

The rendering canvas is a 320 x 200 array of pixels, where
each pixel has three numbers from 0 to 255 representing the
red, green, and blue intensities at that point. This is stored as
an array of 200 strings, each with 320 x 3 = 960 characters.
To set the color of the pixel in row $y and column $x, you
just use a simple assignment:

substr($canvas[$y], $x*3, 3) = "j4K";

To make it black, you assign the string “\x0\x0\x0”; to
make it bright green, assign “\x0\xff\x0”. (ff is the
hexadecimal code for 255, the maximum possible value.)
Under some circumstances, assigning to substr is slow,
because if the assigned-to string changes length, Perl has to
copy the end part of it to a new position. In our program,
we’re always replacing exactly three bytes with exactly three
new bytes, so the assignment is very quick.

It so happens that these 320 strings are already in PPM format
(I told you it was simple); the output function
(DisplayCanvas) is only two lines long. Another win for
PPM.

Points and vectors in the program are represented as
references to arrays with two elements: [$x, $y] is the
point (x, y). There are a bunch of utility functions for adding

584

vectors, scaling them, and so on; most of these are pretty
simple. Here’s an example: the Partway subroutine. It take
three arguments: two points and a number t, and computes a
third point partway between the two points, t of the way from
the first to the second. If t = 0, you get the first point back; if t
= 1/2 you get the point halfway between the two points; if t =
2/3 you get the point 2/3 of the way from the first point to the
second.

sub Partway {
my ($p1, $p2, $t) = @_;
[($p1->[0] * (1-$t)) + ($p2->[0] * $t),

($p1->[1] * (1-$t)) + ($p2->[1] *
$t)];
}

Lines, rays, and line segments are also references to arrays.
Each array has three elements; the third is a string identifying
the type: SEGMENT, RAY, or LINE. The first two items in
each array are two points. For segments, they are the two
endpoints; for rays, they’re the endpoint and any other point;
for lines, they’re any two points on the line. All lines in this
program are assumed to be parameterized in terms of the two
points. That is, if the program needs a parametric equation for
the line [$p1, $p2, WHATEVER], it just uses P(t) = p1
+ t • (p2 – p1), which, as we’ve seen, has convenient
properties.

585

Other Directions

Ray tracing is such a useful and flexible technique that there
are a lot of directions you can go. Here are just a few.

Sorting the objects

If there are a lot of objects in the space, you can get a big
performance win by sorting the objects into a list with the
nearest objects first. Then when you’re looking for
intersections, you can try them in order from nearest to
farthest. Near objects are likely to occlude farther objects,
so doing this can save you from having to check a lot of
far-away objects for intersections if you can decide that
they’d be invisible anyway. Good-quality ray tracing
software always does this.

Mirrors

One fun and easy feature that this program omits is
mirrors. Mirrors are awfully easy to handle in ray tracing
software: when the line of sight intersects a mirror, you
just change direction as appropriate and keep following it
to its final destination. Ray tracing was invented in the
early 1980’s and caused an immediate outpouring of
computer-generated pictures of stacks of ball bearings,
Christmas tree ornaments, chrome teapots, and other
shiny items. An excellent beginning project would be to
add reflective walls to this ray
tracer.

586

Light sources

We made the simplifying assumption that there were no
specific sources of light and that the whole space was
uniformly lit from all directions. That was convenient, but
not realistic. OMAR (Our Most Assiduous Reader) might
like to try to add real light sources to this ray tracer. One
complication: When the line of sight hits a wall, it
scatters, and you have to follow every scattered ray to see
how many of them make it back to the light source. You
can tackle this head-on, if you have a big enough
computer, or you can devise some clever ways to cheat.

If you’re going tackle the problem head-on, you end up
following a lot of useless rays, and at some point, you’re
doing so much work that it makes more sense to just start
at the light source and follow the rays forward instead.
Rays start out with a certain intensity when they leave the
source, and every time they reflect, you compute how far
they’ve travelled and how much was absorbed in being
reflected, and follow the new, dimmer rays, until you find
the ones that reach the observer’s eye. This is called
radiosity modeling. It wasn’t popular as long ago as
backwards ray tracing, because it requires so much more
computer power. As computers have gotten better,
radiosity methods have become more common.

Stereoscopic images

One nifty trick you can play for cheap is to render the
same space from two slightly different positions, and then
put them in a stereoscope. A stereoscope is a gadget that
presents one picture to each eye at the same time; if the
two pictures depict the same scene from slightly different

587

positions, your brain will be fooled into seeing the scene
in three dimensions. Details vary depending on what kind
of stereoscopic equipment you have. If you have
red-and-green 3-D glasses, then run the ray tracer in
grayscale mode with the -G option, use image
modification software to make the left one pink and the
right one green, superimpose the pink and green images
into one file, and print it on a color printer.

If you don’t have a stereoscope or 3-D glasses, you can
make a cheap stereoscope with a small pocket mirror.
Reverse one of the images left-to-right, print out both
images, and arrange the two pictures side by side on a
table. Hold the mirror perpendicular to the table, between
the pictures, silvered side facing left. With your right eye,
look directly at the right image; with your left eye, look at
reflection of the left image in the mirror. Adjust the
mirror, the pictures, and your head until the left and
right-eye images are superimposed.

Texture mapping

The walls drawn by tracer are single-colored.
However, it’s easy to render walls covered with arbitrarily
complicated wallpaper. The intersection computation
knows how far along the wall the intersection with the
line of sight is (that’s simply the t1 parameter), and from
that we can compute what part of the wallpaper you’re
looking at, and so what color to draw. This is quick and
easy, and it’s the second big trick that DOOM used to get
good-looking pictures. This wallpapering technique is
called texture mapping.

588

More interesting objects

In this program, everything is a wall, and all the walls are
the same height. That makes it easy to draw the picture,
because walls are simple, and if they’re all the same
height, you can’t see over one to what’s behind it. But the
pictures are pretty dull. OMAR might like to modify this
ray-tracer to support variable-height walls. With walls of
uniform height, we just computed the intersection with the
nearest wall, rendered that wall, and threw away the other
intersection points. With variable-height walls, a tall wall
farther away might be visible over a short nearby wall, so
we must adopt a more complicated rendering strategy. We
retain all the intersection points, and render all the visible
walls, starting from the farthest and working toward the
nearest, overwriting older walls with nearer ones as
appropriate.

With this change, walls no longer need to start at the
ground and go up; they could start in the air, or they could
be very tall walls with horizontal windows in them, or
whatever you like; you get all that for free. Doom does
this, too.

589

Chapter 29. Perl and the Gimp

Aaron Sherman
Once, early in my career, I needed a high resolution version
of my company’s logo. Any hand drawing of this logo would
have been ugly, so I decided to write a small program in Tcl/
Tk that drew the image and generated PostScript. This had the
advantage of producing an infinitely scalable, mathematically
perfect version of the company logo (which happened to be
quite regular).

Well, times have changed, but I’m still doing company logos
for projects that I’m working on. Now I have a new tool in
my belt: the Gimp (http://www.gimp.org). The Gimp is a
powerful, Photoshop-like image manipulation program with a
plug-in interface. Unlike Photoshop, this plug-in interface is
self-documenting and extensible. Also, the Gimp allows
programmers complete control from their favorite language.
Mine is Perl, of course, but APIs also exist for Scheme, C,
and C++.

As an introduction to the Gimp and its Perl interface, I will go
over what you might want to do with the Gimp. If you’re
familiar with the Gimp, you might want to skip this section.
Then I’ll discuss where you can get the tools you need, and
finally I’ll walk you through a simple Gimp/Perl script that
generates the logo for my current company (nothing like a
shameless plug). Figure 29-1 shows the beginning of this
process. This is a very simple example, but it has the
advantage of being small enough to analyze in depth.

590

Using the Gimp

The Gimp (which is an acronym for GNU Image
Manipulation Program) was written by Spencer Kimball and
Peter Mattis, two graduate students at UC Berkeley. They
released the source code for an early version, and since then
development has been a whirlwind of effort by hundreds of
people writing everything from simple plug-ins to language
interfaces to documentation. The graphics toolkit (Gtk+) that
was written to handle the Gimp’s display (buttons, scroll-bars,
and so on) has even become the cornerstone of many other
efforts, including the GNOME user interface.

Figure 29-1. Creating a Gimp image using Gimp-Perl

591

So what does it do? The simple explanation is that the Gimp
can be thought of as a paint program with several key
features:

Layers

Layers allow you to work on different parts of the image
as though they were on separate sheets of transparent
plastic. Anyone who has ever cut up a newspaper and
pasted portions onto a single sheet of paper for
photocopying is familiar with the process: you pull
elements from different sources together and combine
them.

Channels

Your image is made up of pixels, and each pixel has
several channels. For example, in a typical color image
there is one red channel, one green channel, and one blue
channel. In the Gimp, you can manipulate each of these
channels separately. You can also add other channels,
which might be useful for storing information which
relates to the image, but is not visual (for instance, a
selection shape). Such user-defined layers do not appear
in the composite image, but can be saved in certain file
formats. You can also break down an image into the
alternate cyan, magenta, yellow, and black colorspace for
pesky physical processes like printing.

Alpha channels

In order for layers to have transparent or translucent parts,
there needs to be a separate chunk of data associated with
each pixel of a layer that describes how opaque or
transparent it is. This is called the alpha channel and is

592

stored along with the other channels used for holding
color information.

Animation

Use
Gimp’s layers as as series of frames to edit animation,
such as animated GIFs.

Scripting

Many programming languages can be used to write
extensions for the
Gimp, including new image effects and filters and scripts
that use the Gimp to generate an image of their own (as
our example will do).

The Gimp builds on and combines each of these concepts,
creating a wealth of tools that can be used to do just about
anything to an image, including analysis of an image in
alternate colorspaces (for printing); photographic touch-up
features including burning and dodging (techniques used in
photo developing); and many other advanced features. For an
excellent reference to the Gimp, I recommend
http://www.gimp.org/docs.html, which has a good list of
tutorials and manuals. There is also a book, The Artists’
Guide to the Gimp by Michael J. Hammel (Frank Kasper and
Associates, Inc.), which has a web page at
http://www.thegimp.com/.

The Perl
interface to the Gimp is built on top of the standard Gimp C
API. It allows you to create new functions and menu entries
called plug-ins that are indistinguishable from the standard

593

Gimp menus and functions. When you write a plug-in, you
are writing a stand alone program using Gimp libraries. The
Gimp executes this program once during start-up to register
the plug-in name and to add its menu entry. When that menu
entry is selected (or the function is called from another
plug-in), the Gimp runs the plug-in again. For example, if you
select the Xtns (extensions) menu from the toolbox window
and then select the Render sub-menu, you will see an SNS
Logo entry if and only if you have installed the example
code from below in your .gimp/plug-ins directory. It will
appear as shown in Figure 29-2.

Figure 29-2. A registered plug-in

594

When the user runs a plug-in, they are presented with a dialog
box that lists each of the plug-in’s parameters. Fortunately,
you don’t have to write the code that displays the dialog box;
that’s all been taken care of for you. You just have to specify
the parameter types so that the Gimp knows what sorts of
things to ask the user.

To demonstrate
plug-ins, you can run the many Script-Fu Logo
plug-ins (under Xtns/Script-Fu/Logos), which all
take a text string and render it using an effect (e.g., chrome,
neon, or alien glow.) A demonstration of the Cool Metal
plug-in is shown in Figure 29-3.

Figure 29-3. The Cool Metal plug-in

Perl opens up many areas to Gimp developers unavailable in
other languages. For example, one of the recently contributed
Perl plug-ins, image-tile, can render an image by tiling
several thousand other images as the parts of the overall
picture. This technique is so memory-intensive that the
information stored about each image needs to be stored in a
Berkeley DB database, which Perl knows how to map to a

595

hash, transparently. This kind of convenience makes writing
large, complex plug-ins for the Gimp quite simple and puts
the focus of the programmer back on the effect.

596

Getting the Tools

Right now the Gimp works on both Unix and Windows, but
the Windows version doesn’t support Perl yet.

You can get a precompiled version of Gimp from
http://www.gimp.org/download.html and Gtk+/Glib from
http://www.gtk.org/download.html. The development series is
available from the same places but usually only in source
code form.

The Gimp and PDL Perl modules can be downloaded from
CPAN. For access to the source, I highly recommend the
article (by Zach Beane, the maintainer of the Gimp News site)
at: http://www.xach.com/gimp/tutorials/cvsgimp.html.

If you want, you can get the Gimp straight from the source
code repository. It will be more unstable (this is where new
bugs first appear) but can be worth the extra effort in terms of
getting access to the latest features. When reading Zach’s
article, add gnome-perl to the list of modules to download
and install:

cd $PREFIX
cvs -z3 get gnome-perl
cd gnome-perl
perl Makefile.PL PREFIX=$PREFIX
make
make install

Do this after the steps described for downloading the source,
compiling Glib and compiling gtk+, but before compiling
Gimp.

597

The 5.004 Perl series may work for Gimp, but there are some
features that will not be supported. For example, the Last Vals
button will not work without Data::Dumper, which is bundled
with 5.005.

For all versions, the Gimp module really wants to have both
the Perl Data Language (the PDL module; see
http://pdl.perl.org), which in turn likes to have Mesa (a 3D
OpenGL library described in OpenGL) around. Mesa is
supposedly optional for PDL, but I’ve had problems
compiling without it. It’s a very nice library to have around,
especially in combination with the xscreensaver
program, which can take advantage of it. PDL is quite large
by itself, but the Gimp uses it to allow efficient manipulation
of image data (which would be very slow in Perl if you had to
do it pixel-by-pixel). Most of the time, you’ll find that you
don’t need PDL, because many high-level functions already
exist to generate the effects that you want. You can find Mesa
at http://www.mesa3d.org/.

The order of installation should be:

1. Perl

2. Mesa (optional)

3. PDL (optional)

4. Glib

5. Gtk+ (C library)

6. Gtk (Perl module)

7. Gimp (program)

8. Gimp (Perl module)

598

Using the Gimp Module

A Gimp/Perl plug-in, as mentioned previously, is a Perl
program. It is called by the Gimp and uses the Gimp API to
perform some action. Some plug-ins affect the current image,
such as the blur filter; others let you type a string and then
render it with a special effect, such as Cool Metal’s chrome.
The example in this article is like a logo plug-in, but
generates a shape instead of text.

Plug-ins for the
Gimp go into your $HOME/.gimp/plug-ins directory. (If you
are using Gimp version 1.1, you will need to put things under
$HOME/.gimp-1.1/plug-ins.) They need to be made
executable, so chmod a+x the program from your Unix
prompt. I recommend that you edit them elsewhere and copy
them in, as things such as backup copies and auto-save files
can confuse the Gimp.

Before getting into the example, let’s discuss a few basic
concepts. Your plug-in is either being provided with an
image, or (as in this example) you’ll be
creating one. This image is represented by a Perl scalar
variable, and most plug-ins call it $img or $image. When
you want to modify an image, you will need a drawable. A
drawable is an abstract term that can refer to a layer or any
other part of an image that you can draw into. Your plug-in
doesn’t have to worry about this, it just needs to use the
drawable that it was given. Or, if it’s creating its own image,
the layer that you create. To make this even more convenient,
every Gimp/Perl plug-in that operates on an existing image
takes the image and drawable as its first two parameters.

599

There are a few other types to know about when writing
plug-ins, but the only one that we will work with here is a
color. Colors are manipulated by reference in a three-element
array (red, green, and blue), but most often, you simply tell
Gimp/Perl that your plug-in needs the user to select a
color, and it will be passed to your plug-in. Other types such
as layers and channels are similar to the image type. They are
opaque data-structures, which you manipulate by reference.
(Actually, they’re objects, but unless you want to use the
object-oriented interface you don’t have to worry about that.)

Now let’s see the Gimp in action. Example 29-1 creates a new
image and draws the logo for my company in it. The current
foreground and background colors are used, as well as the
currently selected paintbrush (check out the Brushes menu
option under Dialogs, which is under File from the toolbox
window for the available brush styles).

Example 29-1. A sample Gimp Perl script
#!/usr/bin/perl
#
The Safety Net Solutions, Inc. Logo as a
Gimp plug-in
#
Written by Aaron Sherman, and
distributed under the same terms
as the Gimp itself. See
http://www.gimp.org/ for details.
#
This is an

example script. For purposes of
distribution of the logo
which this program generates the Safety
Net logo is a trademark of

600

Safety Net Solutions, Inc. All rights
reserved. (they made me say it ;)

Initialize the Gimp library modules
use Gimp qw(:auto); # The core Gimp API
use

Gimp::Fu; # Gimp registration and
data types
use Gimp::Util; # Gimp helper
functions

use strict;

Our plug-in function:
sub perl_fu_safety_logo {

my $width = shift;
my $height = shift;

my $img = gimp_image_new($width,
$height, RGB); # Create the new image

Add a layer for us to work in:
my $layer = gimp_layer_new($img, $width,

$height, RGB_IMAGE,
"Safety

Logo", 100, NORMAL_MODE);
gimp_image_add_layer($img, $layer, 0);

Add background
my $oldcolor =

gimp_palette_get_foreground();

gimp_palette_set_foreground(gimp_palette_get_background());
gimp_selection_all($img);
gimp_bucket_fill($layer, FG_BUCKET_FILL,

NORMAL_MODE, 100, 0, 0, 0, 0);

Draw the vertical and horizontal axes:

601

gimp_palette_set_foreground($oldcolor);
gimp_selection_none($img);
gimp_paintbrush($layer,0,

[$width/2, $height/18,
$width/2, $height-$height/18]);

gimp_paintbrush($layer,0,
[$width/18, $height/2,

$width-$width/18, $height/2]);

Draw the diagonal axes:
my $magic = ($width/18*7) / sqrt(2);
gimp_paintbrush($layer,0,

[$width/2-$magic,
$height/2-$magic,

$width/2+$magic,
$height/2+$magic]);

gimp_paintbrush($layer,0,
[$width/2-$magic,

$height/2+$magic,
$width/2+$magic,

$height/2-$magic]);

Draw the concentric ellipses:
for (my $i = 0; $i < 4; $i++) {

gimp_ellipse_select($img, $width/
18*(2+$i), $height/18*(5+$i),

$width/
18*(14-$i*2), $height/18*(8-$i*2),

SELECTION_REPLACE, 1, 0, 0);
gimp_edit_stroke($layer);

gimp_ellipse_select($img, $width/
18*(5+$i), $height/18*(2+$i),

$width/
18*(8-$i*2), $height/18*(14-$i*2),

SELECTION_REPLACE, 1, 0, 0);
gimp_edit_stroke will use current

602

foreground color and brush
gimp_edit_stroke($layer);

}

Finish up, and display:

gimp_selection_none($img);
gimp_displays_flush();
return $img;

}

Register the plug-in:
register("safety_logo", "Render a

stand-alone Safety Net Logo image",
"Renders the Safety Net

Solutions company logo in the " .
"currently selected brush and

fg/bg colors.",
"Aaron Sherman", "(c) 1999,

Aaron Sherman",
"1999-03-29", "<Toolbox>/Xtns/

Render/Safety Logo", "*",
[
[PF_INT32, "Width", "Width",

256],
[PF_INT32, "Height", "Height",

256]
],
\&perl_fu_safety_logo);

Call Gimp::Fu's main():
exit main();

Let’s look at what each step of this plug-in does. You need to
include and initialize the Gimp modules:

use Gimp qw(:auto);
use Gimp::Fu;

603

These are the two basic libraries. (The :auto forces
inclusion of the entire Gimp Procedural Database as
auto-loaded functions.) Don’t confuse the Gimp::Fu
module, which implements things like the registration
interface, with Script-Fu. Script-Fu is the Scheme scripting
interface for the Gimp. (Scheme is a programming language
derived from LISP.) Gimp::Fu and Script-Fu have nothing to
do with each other.

use Gimp::Util;

Gimp::Util is not strictly necessary, but if you include it, you
can use a few extra goodies that it provides. For
example, this module provides functions for adding text to an
image (usually a multiple-step process) or finding a layer’s
position in an image. You can use perldoc
Gimp::Util for more information. This script does not
use these functions, so the line has been commented out.

Most of your plug-in will be a subroutine, whose name can be
whatever you like. Since you can register the function under a
different name with the Gimp, you can choose any name here.
However, be careful to avoid any name which is currently in
use in the Gimp’s Procedural Database (PDB). Use the DB
Browser under the Xtns menu to make sure that your function
name is not already in use. If you choose the same name as a
PDB function, you will hide the Gimp version of the function
from your program.

sub perl_fu_safety_logo {

In this function, you need to receive any arguments that were
passed to you, and (as you’ll see below) you can tell the

604

Gimp what types of parameters you expect. If your plug-in is
for working on an existing image, the first two parameters
will always be an image and a drawable. In this case, we are
creating our own image, so we expect only the plug-in
specific parameters:

sub perl_fu_safety_logo {
my $width = shift;
my $height = shift;

Now, this is where we need to actually start talking to the
Gimp. You do this through calls to the PDB. The Perl
interface for doing this looks just like normal function calls.
Use the DB Browser, as mentioned previously, to search the
PDB for the function you’re looking for. This browser allows
you to look at all of the Gimp functions and plug-ins, their
arguments and return values, and documentation for each one.
In the following examples, I won’t touch on all of the
parameters for every function; you can use the PDB browser
to look up anything from the
example source code that I skip.

The first thing we want to do is create our new image with the
given width and height:

my $img = gimp_image_new($width, $height,
RGB);

That’s it! You’ve now got a new image (of type RGB—full
color). Of course, it has nothing in it. That’s not quite the
same as being blank, which would mean that it has a
background and nothing else. This image really has nothing in
it. In order to have actual image content in the Gimp, we must
add a layer:

605

my $layer = gimp_layer_new($img, $width,
$height,

RGB_IMAGE,
"Safety Logo", 100, NORMAL_MODE);
gimp_image_add_layer($img, $layer, 0);

Notice that the type for this layer is RGB_IMAGE, and not
RGB as we used for our image. Also, an opacity must be
specified, which tells us how opaque or transparent this layer
is (here, we give 100%). NORMAL_MODE refers to the layer
combination mode, which is an advanced feature that can be
used for some stunning effects.

The third parameter to gimp_image_add_layer
specifies which layer this should be in the image’s list of
layers. The first layer, layer 0, is the closest to the observer.
Each successive layer is farther away from the viewer and
may thus be obscured by layers above it. Here, we’ll use only
the one layer, to keep things simple.

Now you have to clear out your new layer, because at first it
might have random garbage in it. You can do this by using
gimp_bucket_fill to put a background color in it or by
using gimp_edit_clear. gimp_edit_clear will
have different behavior, depending on whether the layer can
have transparent areas (an alpha channel). Here we simply
paint our background using gimp_bucket_fill, which
could also be used to paint a pattern, if we wished. Note that
gimp_drawable_fill is a new function that should be
a little faster and easier but may not exist in your version of
Gimp yet.

my $oldcolor =
gimp_palette_get_foreground();
gimp_palette_set_foreground(gimp_palette_get_background());

606

gimp_selection_all($img);
gimp_bucket_fill($layer, FG_BUCKET_FILL,
NORMAL_MODE,

100,0,0,0,0);
gimp_palette_get_foreground() and

gimp_palette_set_foreground()

gimp_palette_get_foreground and
gimp_palette_set_foreground both work on the
user-selected foreground and background colors. This is why
we save the value: so that it can be restored later. We could
have used the BG_BUCKET_FILL parameter, and then none
of this would be necessary, but doing it this way lets us
demonstrate more features.

gimp_selection_all selects the entire image, and
gimp_bucket_fill fills up the entire selection with the
current foreground color. As before, the NORMAL_MODE and
100 arguments are layer mode (paint mode, in this case) and
opacity. The last four arguments only matter if there is no
selection, and that is not the case, here. So, we’ve filled the
entire layer with the background color, which is a good
starting place.

An important thing to note: the second parameter to
gimp_bucket_fill must be a drawable. In this case, we
pass a layer, which is one kind of drawable. There are other
drawables, and you will find them as you work with the
Gimp. However, keep in mind that if you write a plug-in that
works on an existing image (see the register function,
below) you will be given a drawable, which you can use for
calls like gimp_bucket_fill, but it may not actually be
a layer. You should never assume that it is, which is what

607

you’re doing if you pass it to a a function such as
gimp_layer_resize.

gimp_palette_set_foreground($oldcolor);
gimp_selection_none($img);
gimp_paintbrush($layer, 0, [$width/2,
$height/18,

$width/2, $height-$height/18]);
gimp_paintbrush($layer, 0, [$width/18,
$height/2,

$width-$width/18, $height/2]);

Here, we reset the user’s foreground color, unset the
selection, and draw our first two lines. It is possible to select a
brush shape for the gimp_paintbrush function, but we
leave this up to the user. Note that the third parameter to
gimp_paintbrush is an anonymous array (the list inside
brackets); more on this later.

my $magic = ($width/18*7) / sqrt(2);
gimp_paintbrush($layer, 0,

[$width/2-$magic, $height/
2-$magic,

$width/2+$magic, $height/
2+$magic]);
gimp_paintbrush($layer, 0,

[$width/2-$magic, $height/
2+$magic,

$width/2+$magic, $height/
2-$magic]);

Here, we draw the next lines, diagonally, using a little bit of
geometry to figure out where the endpoints of the vertical or
horizontal lines would be if we rotated them by 45 degrees:

for (my $i = 0; $i < 4; $i++) {
gimp_ellipse_select($img, $width/

18*(2+$i),

608

$height/18*(5+$i), $width/
18*(14-$i*2),

$height/18*(8-$i*2),
SELECTION_REPLACE,

1, 0, 0);
gimp_edit_stroke($layer);

gimp_ellipse_select($img, $width/
18*(5+$i),

$height/18*(2+$i), $width/
18*(8-$i*2),

$height/18*(14-$i*2),
SELECTION_REPLACE,

1, 0, 0);
gimp_edit_stroke($layer);

}

The gimp_ellipse_select function selects an
elliptical region defined by the given x, y, width, and height.
The SELECTION_REPLACE parameter tells it to replace
any existing selection, and the next parameter tells it to use
anti-aliasing for smoothing the “stair-stepping” on the edges.
gimp_edit_stroke is like gimp_paintbrush but
traces the current selection. So the two functions together
draw an ellipse:

gimp_selection_none($img);
gimp_displays_flush();
return $img;

These are final steps that should be used to leave the user in a
sane state. We unset the selection, flush any pending display
draws, and return the image that we created. The Gimp
module will display it for us.

Now, the most important part:
registration. In order for the Gimp to use our plug-in, it must
know what it is called and how to execute it. Here is the

609

registration statement:
register("safety_logo", "Render a stand
alone Safety Net Logo image",

"Renders the Safety Net Solutions
company logo in the " .

"currently selected brush and fg/bg
colors.",

"Aaron Sherman", "(c) 1999, Aaron
Sherman",

"1999-03-29", "<Toolbox>/Xtns/
Render/Safety Logo", "*",

[
[PF_INT32, "Width", "Width",

256],
[PF_INT32, "Height", "Height", 256]

],
\&perl_fu_safety_logo);

The full documentation can be found in Gimp::Fu, but the
basic idea is that the first seven parameters are just strings
that set the name of the plug-in, the description, help text,
author’s name, copyright message, date of last modification,
and the menu in which the plug-in appears. The menu path is
the only interesting parameter. If it begins with <Image>,
then it will be placed in the menu that comes up when the
user right-clicks in an image. If it begins with <Toolbox>/
Xtns, then it will show up under the Xtns menu in the
main Gimp window. You can also use the menu <None> to
tell the Gimp not to display your plug-in as a menu option.
You might do this if you were writing a function meant to be
used only by other plug-ins.

The eighth parameter describes the image types that this
plug-in can work on. In our case, * makes sense because
there is no input image, only an output.

610

The next parameter specifies the list of parameters to the
plug-in. It is a list of lists, using anonymous arrays. Each of
the inner anonymous arrays contains the description of a
single expected parameter. The description is made up of at
least four values: the type, name, description, and default
value. As an example, let’s say you added the following item
to the end of the list of plug-in parameters:

[PF_COLOR, "Brush stroke color", "Color",
[0, 0, 0]]

The
Gimp module displays a dialog box like the one in
Figure 29-4. Notice the black button [0, 0, 0] is black in
RGB notation. If the user clicks on the button, they get a nice
color selection dialog box for choosing a new brush color
Figure 29-5. The parameter types are all defined in the
PARAMETER TYPES section of the Gimp::Fu
documentation. The only remaining argument to register
is a reference to your new function.

611

Figure 29-4. A Gimp dialog box

Figure 29-5. A color selection dialog

Plug-ins in the <Image> menu will be available under the
pop-up menu that appears when you click the right mouse
button in an image. They will automatically get the image and
drawable to work on as their first two parameters, so don’t list
these parameters yourself. Plug-ins such as ours that live in
the <Toolbox> menu aren’t associated with any particular
image, although you can declare one or more image
parameters that allow the user to select from any currently
open image. The last parameter to register is a reference
to the function that actually implements the plug-in.

The last thing that your plug-in should do is exit with the
status returned from the main function, like so:

612

exit main;

This closes the loop with the Perl::Fu interface, allowing
it to take over. The
Gimp can then tell it which of several ways it is being asked
to behave. You don’t have to worry about any of this; just call
main. Be sure not to define a subroutine in your plug-in
called main, or you’ll be sorry. The finished product is
shown in Figure 29-6.

613

Figure 29-6. Our logo in progress

614

Moving On

Some notes to help you in your budding career as a plug-in
author:

▪ There is a mailing list for discussion about Gimp-Perl.
To subscribe, send mail with the single line
subscribe to gimp-perl-request@lists.netcentral.net.

▪ You can be notified of new versions. Send mail with the
single line subscribe notify-gimp to
majordomo@plan9.de.

▪ Please upload anything you think would be useful to
others to the
Gimp Plug-In Registry: http://registry.gimp.org/.

▪ In the example above, gimp_paintbrush
demonstrated a very useful feature of the Perl Gimp
module. If you look in the PDB documentation for
gimp_paintbrush, you will see that the third
parameter is a number of stroke coordinates, and the
fourth parameter is the array of stroke coordinates. In
Perl, we only have to give an array reference, and the
module will calculate its length for us. So wherever you
see a function that needs a count followed by an array,
just pass the array.

▪ Fonts are the most evil thing ever, because (like X) the
Gimp failed to abstract them sufficiently. As a result,
you have to force the user to select a font and size, even
though the font selection box already includes a size
parameter. This is because some font names (such as

615

scalable fonts from a TrueType font server) don’t
include size information, and the Gimp only tracks fonts
by their full XFont name. I’ve started using the
convention that if the user enters a size of < 1, I use the
font-provided size, but that’s a kludge around a broken
feature.

▪ You will really want to study other sources of Gimp user
info (see www.gimp.org) and find out more about
feathering, alpha layers, and channels.

▪ For the menu path, don’t put your plug-ins under
Script-Fu, and don’t invent new menus if you can help it.
Put them in with the other plug-ins that are written in C
(e.g., <Image>/Filters/section/plug-in
or <Toolbox>/Xtns/section/plug-in).

▪ Read the Gimp-Perl documentation. You can use your
plug-in standalone, or talk across the network to a Gimp
process. You can even debug plug-ins using the Perl
debugger, which is almost impossible with some of the
other plug-in interfaces.

▪ Gimp 1.0 and 1.1 differ in that some functions no longer
take an image as their first parameter. Gimp-Perl gets
around this by allowing you to leave out the image
parameter in the older Gimps, but you may have to patch
your 1.0 scripts to make them work with 1.1, or
eventually 1.2.

▪ If you write two or more related plug-ins, they can go in
the same file. You just need to have one register
statement per plug-in.

616

▪ If you want to know what’s going on inside your plug-in,
try using Gimp::set_trace(TRACE_ALL). This
spews a lot of information, but lets you see everything
that’s going on.

When you look at the PDB documentation, you’ll see that all
of the functions have dashes in their names. So that you can
call these as Perl functions, the Gimp module converts all
PDB names to use underscores instead of dashes. It will also
do the reverse to your plug-in’s name (as declared in the
register statement) so that other Gimp plug-ins can use
the standard Gimp naming conventions. This means that you
should name your plug-ins with underscores, not dashes (e.g.,
my_plug_in, not my-plug-in).

Good luck, and happy Gimping!

617

Chapter 30. Glade

Ace Thompson
There once was a time when “Windows” meant Microsoft.
Nowadays, if you don’t precede the word with “Microsoft” or
“X,” you may unwittingly reveal yourself as out-of-the-know.
There are very few Linux distributions that don’t try to start
an X session during the installation process, and the battle
over desktop environments (
Gnome versus KDE) and GUI toolkits (GTK+ versus Qt) puts
the Cola Wars to shame.

The Unix desktop wars are clearly not limited to the various
Linux distributions; the Gnome Project, for example, has
gained the support of several large corporations. And it isn’t
too far-fetched to imagine stable ports of XFree86 and other
Unix-y essentials coming to the Microsoft and Apple worlds
(think Cygwin and Apple’s OS X), opening up the possibility
of even more widespread exposure for these desktop
environments and the tools and applications that live in them.

How does this affect Perl developers? Perl has never lacked
muscle in the world of back-end tool development and is
often described as the duct-tape of the Internet. On the server
side, Perl is considered by many to be the language of choice
for web development (look at the hundreds of Apache::
modules), database tools (DBI), text processing, application
prototyping, haiku generation, and more. But GUI
development?

618

What does it mean when the ground Perl sits on most firmly
(the Unix world) begins its move to the desktop? In a peek at
an increasingly popular area, this article presents one of the
options available for developers wishing to develop GUIs
with Perl on Unix.

GTK+/Gnome

One of the major players in the Unix desktop game is the
Gnome Project, which is now steered by the Gnome
Foundation. A Gnome desktop consists of applications built
using GTK+ (Graphical ToolKit). The Gnome framework
also provides other important features, such as CORBA
services, internationalization, and session management.
GTK+ provides the widgets—buttons, windows, menus,
detachable toolbars, and so on—which, when assembled
properly, create the user experience.

There are also several Gnome widgets, many composed of
multiple GTK+ widgets, which provide a common
cross-application interface for basic tasks; there’s a Gnome
Number Entry widget for entering numbers, a Gnome File
Entry to let users select files, and a Gnome About Dialog that
provides a standard format for About dialog boxes.

These widgets save time for developers, providing built-in
functionality for basic tasks in addition to creating a common
and convenient user experience across applications. For
example, the Gnome Number Entry widget allows the user to
enter a number manually or to bring up a calculator for
complex calculations, without a single line of code by the
programmer. Also, the Gnome File Entry dialog box lets
users browse filesystems to choose a file. These types of

619

widgets make life easier for developers, and shorten the
learning curve as users move from one Gnome application to
another.

620

Perl and GTK+/Gnome

There are several tools that bring Perl to the world of GUI
development on the Gnome desktop. The most important are
the Perl bindings to the GTK+ library. The Perl GTK+
bindings, known collectively as
Gtk-Perl, are currently maintained by Paolo Molaro and
available on CPAN or at the Gtk-Perl homepage
(http://www.gtkperl.org/).

Gtk-Perl allows you to create widgets and respond to user
input in a fashion similar to Perl/Tk and Perl-Qt. Using
Gtk-Perl alone, however, forces you to manage the creation
and arrangement of widgets in your code. Not only is this
time-consuming and prone to error, it can also be an obstacle
in creating medium- to large-sized applications, because the
functionality of your application gets mixed up with the
definition of the user interface, one of the first no-no’s in
good GUI design.

621

Glade

Luckily, we have Glade. Glade is a free user interface builder
for GTK+ and Gnome, available at http://glade.gnome.org/.
Glade doesn’t force a language upon you; as of this writing,
Glade applications can be designed with C, C++, Ada95,
Python, or Perl.

Glade simply defines the arrangement of the graphical
widgets making up your application and stores this definition
as XML. Then special code in your language of choice reads
this definition, and using the GTK+/Gnome bindings in that
language, puts together the interface when your application
launches. Your code, and the main GTK+ user event handler,
do the rest. In the case of Perl, the “special code” gluing
Glade and Perl together is creatively named Glade-Perl and
was developed by Dermot Musgrove. It is available on CPAN
or at http://www.glade.perl.connectfree.co.uk/. To
summarize:

Gnome

A graphical user environment

GTK

GUI library used by Gnome

Glade

A graphical interface designer for GTK applications

622

Perl

A language that can implement a Glade-designed
interface

623

Installation

Setting up the Glade-Perl development environment is fairly
simple. First, you must have a Gnome desktop running. Most
Linux distributions include an option to install Gnome. If you
don’t want to go through a fresh Linux installation, you can
go to the Gnome Project web site (http://www.gnome.org)
and find installation information there. Ximian
(http://www.ximian.com) also provides an easy Gnome
installation.

The latest stable version of Glade-Perl (0.57) requires
gnome-libs 1.2.4 and GTK+ 1.2.7. You can discover your
version of gnome-libs by typing gnome-config
--version at a shell prompt, and you can find out which
version of GTK+ you have by typing gtk-config
--version at a shell prompt. Second, you must download
and install the most recent version of
Glade from http://glade.gnome.org/. Finally, you should
install the most recent versions of Glade-Perl and
XML::Parser from CPAN. You should get the latest version
of Gtk-Perl from the Gtk-Perl homepage
(http://www.gtkperl.org).

624

Designing an Interface

Putting together a user interface in Glade is easy. Start Glade,
and look at the Palette window, shown in Figure 30-1. This
window displays the various widgets you can use. The
widgets are grouped into various categories (more categories
and widgets can be added to the palette; for example, if you
install gnome-db, the Gnome database connectivity package,
you can include gnome-db widgets in your application).

Figure 30-1. The Palette window

Gnome applications typically start with a

625

Gnome application window. You can find this widget under
the Gnome tab in the Palette window. When you create this
widget, Glade gives it the name app1. We’ll use this name
later.

The Gnome application window contains a standard menu
bar, toolbar, and status line; it’s an effort to give Gnome
applications a standard look and feel (Figure 30-2).

Figure 30-2. The Gnome application window

626

Adding Code

A standard look and feel doesn’t do much good if the buttons
don’t do anything. To illustrate, we will attach some code to
the New button. First, click on the New button in the Gnome
application window you created. Then go to Glade’s
Properties window and select the Signals tab, shown in
Figure 30-3. Signals connect your code to user interface
events (button clicks, list selections, mouse movements, and
so on).

Figure 30-3. The Signals tab

Every widget has a set of signals which it emits if and when
the user interacts with it. Clicking on the ellipsis (…) next to

627

the Signal input box provides a list of the signals our New
button can emit (Figure 30-4). Select clicked, press OK,
and, returning to the Properties window, click the Add button
(Figure 30-5).

Figure 30-4. Signals from the New button

628

Figure 30-5. Setting the handler for a button

We want a Perl subroutine to be called when our button is
clicked. This subroutine is called a signal handler, and Glade
automatically gave ours a name: on_button1_clicked.
But where do we put this subroutine? As always in Perl,
There’s More Than One Way To Do It. See Writing the
Signal Handler Code below for our approach.

629

Saving and Building the Project

Now we will save and build our new project. First, click the
Save button in the main Glade window. The first time you
save a project, you are given a Project Options window where
you can set the name of your project (it should say
Project1) as well as the language you wish to have it built
in (Figure 30-6). Select Perl as your language and click OK.

Figure 30-6. The Project Options window

Now click the Build button in the main Glade window. The
source code for your application will be written to the

630

directory specified in the Source Directory input on the
Project Options window.

631

Writing the Signal Handler Code

There are several methods by which you can add
signal handlers to your application. Remember that signal
handlers are the Perl subroutines that respond to GUI events,
such as mouse clicks or cursor movements. In our example
application, we have specified that we wish to invoke a
subroutine when a user clicks on the New button.

Glade writes several files to the source code directory. The
names of the files are based on the project name specified in
the Project Options window (Figure 30-6). Project1UI.pm is a
module used by the other modules to build the user interface;
you generally won’t have to modify this code.
Project1SIGS.pm contains stub routines for the application’s
signal handlers.

Most of the time you’ll copy the stubs to another file and fill
them in with your signal handler code. As a convenience,
Glade-Perl creates such a file the first time you build your
project. This file is Project1.pm. Open it and locate the signal
handler stub that Glade created for the New button; remember
that it is called on_button1_clicked. Modify that
subroutine so that it looks like this:

sub on_button1_clicked {
my ($class, $data, $object, $instance,

$event) = @_;
my $me = __PACKAGE__ .

"->on_button1_clicked";

Get reference to a hash of all the
widgets on our form

my $form =

632

$__PACKAGE__::all_forms->{$instance};

We will display a message box to the
user.

my $button_pressed =
Gnome::MessageBox->new(

"New What?", # the message
"question", # the message

type
"New Car", # the button

labels...
"New House",
"Never Mind"

)->run();

} # End of sub on_button1_clicked

Now we just need to run our application. In the project
directory (see the Project Directory option in the Project
Options window, shown in Figure 30-6), create a file called
app.pl:

#!/usr/bin/perl
app.pl

use lib qw(./src);
use Project1;

app_run app1;

Project1.pm is the module to which we just added our signal
handler. We have to use lib, the recommended method of
altering @INC, to tell Perl where to find this module. As
explained previously, Glade writes this file to the Source
Directory specified in the Project Options window
(Figure 30-6). Since we are running app.pl in the parent

633

directory of the Source Directory, we provide use lib with
a relative directory reference (qw(./src)).

app1 is a package defined in Project1.pm. You will recall
that our Gnome application window was given the name
app1. The app1 package is thus a Perl class representing
the Gnome application window we created.

app_run is a class method defined for the app1 class,
created by Glade-Perl. Running this class method initializes
our Gnome application, creating a new instance of the app1
class, showing it to the user and entering the main GTK+/
Gnome event loop.

The GTK+ event loop handles user interactions, handing off
processing to our signal handler subroutines if the user does
anything to trigger one of those signals.

Execute the app.pl script from a shell prompt:

perl app.pl

Clicking the New button, we see the fruits of our
signal-handling labors in Figure 30-7. What is remarkable is
that we have written only four lines of code: one to fill in the
stub of our signal handler and three to start up the application.
Filling in a signal handler to make File › Exit quit the
application is left as an exercise to the reader (hint: use the
method Gtk->main_quit).

634

Figure 30-7. The dialog box shown after clicking the New
button

635

Inheritance as a GUI Development
Tool

Now we will see how class inheritance can make our life as a
GUI developer easier. Using Glade’s Palette window, create a
Gnome Dialog Box and fill it in with widgets as demonstrated
in Figure 30-8. Name the dialog box dialog_details
and name the combo boxes combo_model and
combo_color, respectively (hint: the Table widget greatly
simplifies layout).

Figure 30-8. The Gnome application window

The problem is simple. If a user wants a new car, we’d like to
ask the user for details on which new car they want. If the
user wants a new house, on the other hand, we want to
provide them with choices appropriate for a new house. But
designing two different dialog boxes which differ only in
their combo box options seems like overkill; in addition, what
if we want the choices to come from a database or some other
external data source? A better approach would be to separate
the design of the interface from the specific options
themselves.

636

To do this, we’ll create two classes that inherit from the
dialog_details class. Each will override the object
constructor, filling in the combo boxes with options
appropriate for its class. For simplicity, we’ll put the class
definitions in app.pl:

#!/usr/bin/perl
app.pl

use lib qw(./src);
use Project1;

Class definition for the "New Car
Details" window
package Car_Details;

use vars qw(@ISA);
@ISA = qw(dialog_details);

my @models = qw(Audi Ford Honda Toyota);
my @colors = qw(Blue Green Red Watermelon);

sub new {
my $class = shift;
my $self = bless $class->SUPER::new(),

$class;
$self->TOPLEVEL->title('New Car

Details');

$self->FORM->{'combo_model'}->set_popdown_strings(@models);

$self->FORM->{'combo_color'}->set_popdown_strings(@colors);
return $self;

}

Class definition for the "New House
Details" window
package House_Details;

637

use vars qw(@ISA);
@ISA = qw(dialog_details);

my @models = qw(Mobile Ranch Suburban
Victorian);
my @colors = qw(Brick Brown Red White);

sub new {
my $class = shift;
my $self = bless $class->SUPER::new(),

$class;
$self->TOPLEVEL->title('New House

Details');

$self->FORM->{'combo_model'}->set_popdown_strings(@models);

$self->FORM->{'combo_color'}->set_popdown_strings(@colors);
return $self;

}
package main;
app_run app1;

We have created two new classes: Car_Details and
House_Details. Each of these inherits from
dialog_details, the class Glade-Perl created for us
corresponding to the Details window (Figure 30-8). They
override the new method (the constructor) inherited from
dialog_details. The new first calls the inherited new,
thus obtaining a valid object reference for the Details window
being created. It then sets the appropriate window title and
combo box options.

Now we must modify our New button signal handler to load
up the appropriate Details window in response to the user

638

input. Remember that this signal handler is in Project1.pm.
Modify on_button1_clicked as follows:

sub on_button1_clicked {
my ($class, $data, $object, $instance,

$event) = @_;
my $me = __PACKAGE__ .

"->on_button1_clicked";
Get ref to hash of all widgets on

our form
my $form =

$__PACKAGE__::all_forms->{$instance};

We will display a message box to the
user.

my $button_pressed =
Gnome::MessageBox->new(

"New What?", # the message
"question", # the message type

"New Car", # the button
labels...

"New House",
"Never Mind"

)->run();

$button_pressed is the 0-based index
of the button pressed.

0 = "New Car", 1 = "New House", 2 =
"Never Mind", and so on.

Stop if user pressed "Never Mind".
return if $button_pressed = = 2;

Create details window based on user
response.

my $details = undef;
$details = Car_Details->new() if

$button_pressed = = 0;

639

$details = House_Details->new() if
$button_pressed = = 1;

Display the details window, hiding
it when the user is done choosing.

$details->TOPLEVEL->run_and_close();
Gnome::MessageBox->new(

"You are
using free software! " .

"You
obviously can't afford that model!",

"info", "Ok"
)->run();

} # End of sub on_button1_clicked

By virtue of being an instance of one of our two inherited
classes, the window referenced by $details has combo
box options appropriate to the user response (Figure 30-9).
Since $details inherits from dialog_details, the
TOPLEVEL method is available. This method returns the
top-level widget corresponding to that class, in this case a
Gnome::Dialog, widget which in turn implements the
run_and_close method.

Figure 30-9. The Gnome application window

640

Further Exploration

With just a few clicks of the mouse and a little organization
we have laid out an extensible framework for a new
application. We even used Perl’s OO features to provide the
framework for clean GUI development. Perl is already known
as a rapid development language; combining it with a tool
like Glade enables lightning-fast GUI application
development.

As is often mentioned on the perl5-porters mailing list, most
every problem domain Perl is brought into quickly becomes a
Simple Matter of Programming (SMOP). GUI development is
no different, and Glade fulfills the exciting potential of
bringing Perl and SMOP to the desktop.

641

More Information

For an introduction to using Gnome and Perl together, read
Simon Cozens’ excellent article at http://www.perl.com/pub/
a/2000/10/gnome.html.

An invaluable resource in working with Gtk-Perl is the
tutorial written by Stephen Wilhelm, available at
http://personal.riverusers.com/%7Eswilhelm/gtkperl-tutorial/.

For information on object-oriented Perl, read the definitive
book of the same name by Damian Conway.

642

Chapter 31. Gnome Panel Applets

Joe Nasal
Gnome is the desktop environment of choice on my home
Linux system, because it’s feature-packed and user friendly.
Gnome is also flexible, and thanks to the Gtk-Perl module
and associated desktop toolkit bindings, I can use my favorite
programming language to further customize and extend my
Gnome environment.

This article shows how a useful Gnome tool can be be built in
an afternoon. It is also an example of some common
techniques one employs when doing this sort of GUI
programming, including widget creation, signal handling,
timers, and event loops. It also reviews some Perl basics.
Read on, and you may be inspired with notions of your own.

Gnome

On a Gnome desktop, the panel contains a variety of buttons
and other widgets that launch applications, display menus,
and so on. It’s standard desktop fare, just like the Microsoft
Windows Start menu.

An applet is a particular kind of Gnome application that
resides within and operates on the panel itself. The Gnome
distribution comes with several of these, such as a variety of
clocks, the game of Life, and system resource utilization

643

monitors. The Gtk-Perl module enables a Perl programmer to
create custom Gnome panel applets.

The Gnome panel applet we’ll build finds the local host’s
default TCP/IP gateway and affixes the gateway’s status to
the label of a button. When the button is in an off position, the
gateway is not polled (Figure 31-1).

Figure 31-1. A Gnome panel applet

When the button is on, the gateway is polled at scheduled
intervals and the button’s label is updated with the result:
response or non-response (Figure 31-2 and Figure 31-3).

Figure 31-2. The gateway is up

Figure 31-3. The gateway is down

This diagnostic may be used to regularly and unobtrusively
report the status of the local network relative to the machine’s
default gateway. Users can check the button’s label to see
how things are faring on the upstream network. The applet

644

uses the netstat and ping commands familiar to Unix
users.

645

Program Overview

The top-level code in the program (shown in Example 31-1)
is contained in lines 1 through 21; lines 23 through 68
establish subroutines. One subroutine is called by our code
(fetch_gateway), but two others are callbacks
(check_gateway and reset_state). A callback is a
subroutine that will be called by the
Gnome code when something happens, such as a timer
expiring or a button clicking. Now, let’s learn how the
application is set up.

Example 31-1. The ping_gateway.pl Gnome program
1 #!/usr/bin/perl -w
2
3 use Gnome;
4
5 init Gnome::Panel::AppletWidget
'ping_gateway.pl';
6 $a = new Gnome::Panel::AppletWidget
'ping_gateway.pl';
7
8 $off_label = "Check\nGateway\n<click>";
9
10 Gtk->timeout_add(20000,
\&check_gateway);
11 $b = new
Gtk::ToggleButton("$off_label");
12 $b->signal_connect ('clicked',
\&reset_state);
13
14 $b->set_usize(50, 50);
15 show $b;
16 $a->add($b);

646

17 show $a;
18
19 &fetch_gateway;
20
21 gtk_main Gnome::Panel::AppletWidget;
22
23 sub fetch_gateway {
24
25 foreach $line (`netstat -r`) {
26
27 my ($dest, $gate, $other) =
split(' ', $line, 3);
28 $hostname = $gate if $dest eq
"default";
29 $hostname = lc($hostname);
30
31 }
32
33 }
34
35 sub reset_state {
36
37 $state = ($b->get_active());
38 if (!$state) {
$b->child->set("$off_label") }
39 else {
$b->child->set("Wait...") }
40
41 }
42
43 sub check_gateway {
44
45 my $uphost;
46
47 if (length ($hostname) > 8) {
48 $uphost = "gateway";
49 } else {
50 $uphost = $hostname;

647

51 }
52
53
54 if ($state) {
55
56 my $result = system("/bin/ping
-c 1 2>&1>/dev/null $hostname");
57
58 if ($result) {
59 $b->child->set(
"$hostname:\nNo\nResponse")
60 } else {
61 $b->child->set(
"$uphost\nis\nalive");
62 }
63
64 }
65
66 return 1;
67
68 }

648

Initialization

Line 3 indicates that we’ll be using the Gnome module.
Gnome.pm is distributed with the Gtk-Perl package. As of
this writing, the latest version of Gtk-Perl on CPAN is
0.7008; it’s also available at http://projects.prosa.it/gtkperl/.
Gnome.pm has to be installed separately; after downloading,
unpacking, and installing Gtk-Perl, change directories into the
Gnome distribution and install that too. If you want to
develop panel applets (as we’re doing here), you’ll need to
append the build option --with-panel to the end of the
usual perl Makefile.PL portion of the install process:

perl Makefile.PL --with-panel

Although Gnome.pm hasn’t made it to Version 1.0 yet, I’ve
found it to be stable. The biggest problem is the lack of
documentation.

Lines 5 and 6 initialize a new AppletWidget object in $a.
This object is the container for all the doodads that will be
part of our applet. Line 8 creates a label for use when our
button is in the off position.

Line 10 creates a timer. The prototype for the
Gtk->timeout_add function is:

Gtk->timeout_add($interval, \&function,
@function_data);

Here our interval is 20,000 (this value is in milliseconds, so
the timer will go off every 20 seconds), and the function to be
called when the timer goes off is check_gateway. We
could use the third parameter to pass some data into the

649

check_gateway function if it were appropriate to do so.
In this case it isn’t.

Line 11 creates a new ToggleButton object in $b, and labels
it off.

Line 12 registers the other callback in this application. This
one, signal_connect, will be called when a particular
signal occurs within Gnome. These aren’t normal Unix
signals like SIGINT and SIGCHLD, but specific GUI
events. In this case, the event is a button click. The
ToggleButton widget also has the signals “pressed”,
“released”, “enter”, and “leave”, each of which is emitted in
response to either mouse actions or direct function calls such
as $b->pressed. In our application, Gnome will call
reset_state whenever ToggleButton $b is clicked.

Line 14 sets the button’s size to be a square with sides of 50
pixels, a good fit for the default Gnome panel. Gnome
references theme and style information in shared libraries that
specifies how the button is to be drawn: line, color, shadow,
and so on. Line 15 calls the button’s show method,
indicating that we’re finished setting its attributes and that it
is ready for display. Line 16 adds the button to the applet.
Technically, we’ve packed the ToggleButton widget into the
AppletWidget container by invoking the AppletWidget’s add
method on the ToggleButton. The ToggleButton is now a
child of its container. In line 17, the applet is made visible by
calling its show method as well. A widget’s children are not
displayed until the parent’s show method is invoked.

Line 19 calls the fetch_gateway routine to gather the
local host’s default TCP/IP gateway. In that subroutine,
netstat -r captures the local routing table. The

650

comparison in line 28 forces a value into the scalar
$hostname when the first field within the captured text
matches the string default. Finally, we translate this value
to lowercase, so it will look better when we finally display it
on the button. Then fetch_gateway returns.

At line 21, we’re ready to hand off to the gtk_main event
loop, which is responsible for drawing the application on the
screen and managing user interaction. At this point our only
interface with the application will be through signal handling
and callback functions. The
Gnome Toolkit (GTK) is event driven: once we enter
gtk_main, the application stays put until an event occurs
(caught via a signal) and the associated callback function is
invoked. Therefore, we’d better have completed all of our
initialization beforehand.

651

The Callbacks

Now let’s examine the two callback functions:
reset_state on line 35, which catches a “clicked” signal
on our button (line 12), and check_gateway on line 43,
which catches timer expirations (line 10).

On line 37, we query the state of the toggle button by
invoking its get_active method. This returns 0 if the
button is off and 1 if it’s on. By default, the ToggleButton
widget has one child—its own label. So we label the button
with the contents of $off_label if it is in the off position,
or the string “Wait…” (Figure 31-4) if it is the on position,
because we know that check_gateway is going to be
called within the next 20 seconds. Part of
check_gateway’s job is to update the button with the
status of our TCP/IP gateway, which after all is the whole
point of this applet.

Figure 31-4. The gateway is down

Line 47–51 store in $uphost either the value in
$hostname or the string gateway, depending upon
whether $hostname is longer then eight characters. (Any
longer than eight characters, and it won’t fit comfortably
within the button’s label.)

652

If the button is in an on position (line 54), we go ahead and
attempt to ping the gateway with a single ICMP packet. We
only care about the return value of the ping command and
not its output, so we execute the command with system.
ping returns 0 upon success (the gateway is alive) and
something else if it fails (probably because the gateway is
dead), so we check the result and update the button’s label
appropriately in lines 58–62.

We want check_gateway to continue to be called, every
20 seconds, until the application terminates. So at line 66, the
function returns a true value. That true return value keeps the
timer alive.

Note that 20 seconds is enough time to allow the call to ping
to timeout and return a value to the application. It is also an
appropriate level of resolution for this kind of discovery
activity; if information about the status of my gateway is less
than 20 seconds old, I’m happy. Your mileage may vary.

653

Conclusion

It’s easy to write Gnome applets in Perl. This simple example
showed you the basic elements of Gnome programming,
including the event model and callbacks. Go forth and hack
your own applet!

654

Afterword

Author’s note: since this article was written, I’ve been
contacted by a number of people who have pointed out that
the program is more portable if the interface to the system
ping command is abstracted via Net::Ping. Something like:

use Net::Ping;

In the check_gateway function, call:

$p = Net::Ping->new("icmp");

Line 56 goes away, and the conditional at Lines 58 through
62 becomes:

if ($p->ping($hostname)) {
$b->child->set("$uphost\nis\nalive")

} else {
$b->child->set(

"$hostname:\nNo\nResponse");
}

Specifying icmp in construction of the ping object requires
that the program run as root or setuid root to support
ping() method calls. If you’re running Gnome on
something other than a Linux box, though, this might be
easier than massaging a system call to your local ping binary.

655

Chapter 32. Capturing Video in
Real Time

Marc Lehmann
Perl is not currently a common choice for real time
applications. The dynamic nature of the language makes it
difficult to predict run-time behavior (and speed) reliably.
However, video
capturing applications (for instance, digitizing a television
signal and saving it to disk) have to be real time. If you miss a
frame, it’s gone forever, so the programs have unavoidable
deadlines.

One of my principles for programming is to use the right
language for the job. In recent years, this has mutated into
“let’s combine the strengths of various languages to solve a
problem” or, more precisely, “write a Perl interface to the
problem.”

Video::Capture::V4l

The
Video::Capture::V4l module was created to solve such a
problem: I wanted to record a television show that was
broadcast daily at different times, on a TV channel that didn’t
properly support the Video Programming Service (VPS)
signal to switch on my VCR. What I will describe here will
not work in the U.S.—but being able to capture fifty 704 x

656

528 fields per second with a 333 MHz dual Pentium II is
worth attention anyway.

To do this, I had to get at the video data and compare it with
some prerecorded sequence, trying to match the beginning of
the show (which fortunately was always the same). I then
used the Kermit serial protocol to transfer commands to my
HP-48 calculator and switch on the VCR, but that’s another
story.

The Video::Capture::V4l module solves this problem in a
generic way. With it, you can control the tuner, capture
frames, compress them using the RTjpeg codec, and do
whatever processing you like in the time allotted. Another
interesting area is the Vertical Blanking Interval (VBI), which
can contain interesting data like videotext, electronic program
guides, intercast, and even MP3s.

657

Part I: Video Capturing

The V4l module follows the Video4linux standard (Version
1), so all the documentation for Video4linux applies to the
module as well. Actually, the documentation for the V4l
module (perldoc Video::Capture::V4l once
you’ve installed it) is nothing more than an enumeration of
the supported constants.

The simplest way to capture a single frame looks like this:
use Video::Capture::V4l;

Open the video device (the default is
/dev/video0)
my $grab = new Video::Capture::V4l or die
"Unable to open video device: $!";

my $frame = $grab->capture(0, 640, 480);

$grab->sync(0);

Now $frame contains 640x480x3 bytes of
RGB (BGR) pixel data.

While this is short, it’s not exactly intuitive. The call to new
Video::Capture::V4l creates a new V4l object and
opens the video device. The memory will be allocated as long
as this object exists, so a script should not use it longer than
necessary.

The next statement tells V4l that you want to capture a frame
into the variable $frame. The first argument tells V4l the
number of the frame you want to capture; most drivers can be

658

told to capture up to two frames. Since we only want to
capture a single frame, a zero (indicating the first buffer)
suffices.

The second and third arguments are the width and height of
the image. A standard PAL frame is 960 pixels wide and 625
lines high (of which only 768 x 576 contain usable image
data), but most chipsets can scale the image in steps of 16
pixels, so other sizes are usually not a problem.

The capture method supports a fourth argument
specifying the format of the video frame. The default (used in
the previous example) is VIDEO_PALETTE_RGB24,
where pixels are stored linearly as triplets of blue, green, and
red bytes (BGRBGRBGRBGR…). Another useful format is
VIDEO_PALETTE_GREY (each pixel is an intensity value
between 0–255). Other
formats are more hardware-oriented and less portable between
chipsets.

The capture method returns a Perl scalar that will
eventually contain the image data, which will be just large
enough to hold all the pixels you requested. And it will be
filled with garbage, since capture is just a request to fill it
once a frame is complete. You will therefore need to wait
until the actual image data has arrived before manipulating
the data, and you do this by calling the sync method with
the frame number you want to wait for.

In the above example, we just call sync(0) after the call to
capture, to ensure that $frame contains the image.

There are a number of ways to display the image data. All of
them require that the BGR data is reordered to the more

659

conventional RGB format. Since this whole process needn’t
be time-sensitive, we can use a simple regex:

$frame =~ s/(.)(.)(.)/$3$2$1/gs; # Takes a
second or so

You could also use PDL (the Perl Data Language;
http://pdl.perl.org) and some dimension magic to get the same
result much faster. But since you would usually only display
images for debugging purposes, you could use this regex to
view the BGR image in RGB mode by switching the red and
blue channels.

To display the image, we could save it as a PPM file and use
an image viewer like xv:

open PPM, ">frame.ppm" or die "frame.ppm:
$!";

print PPM "P6 640 480 255\n$frame";
close PPM;

Or pipe it directly into an image viewer, such as
ImageMagick’s display:

open IM, "| display -size 640x480 RGB:-"
or die;

print IM $frame;
close IM;

Or use the
ImageMagick Perl module:

use Image::Magick;
my $img = new Image::Magick;
$img->set(magick => 'RGB', size =>
"640x480");
$img->BlobToImage($frame);
$img->Display;

660

Or even create a PDL and save, display, and modify it, in
which case you don’t even need the earlier regex substitution:

use PDL;
use PDL::IO::Pnm;

Create an empty piddle. This should be
done outside the loop, actually,
but it doesn't hurt much this way.
my $img = zeroes byte, 3, 640, 480;

Replace PDL's data storage with our
frame data
${$img->get_dataref} = $fr;
$img->upd_data();

Reverse both the pixel order (BGR->RGB)
and
the top/bottom, since this is what PDL
requires
$img = $img->slice("2:0,:,-1:0");

Write a PNM file
wpnm $img, 'frame.ppm', 'PPM', 1;

Instead of simply writing the image unchanged, we could
perform some transformations on it. For instance, this
enhances the contrast:

$img -= $img->min;
$img = byte (ushort($img) * 255 /
$img->max);

Or we could mask out parts of the image that are brighter than
a given threshold. Figure 32-1 is a frame from the movie Plan
9 from Outer Space, captured with Perl and saved without any
modifications. Figure 32-2 is another image, with part of the

661

sky masked out (replaced by black) before saving, using PDL
code.

Figure 32-1. A frame from Plan 9 from Outer Space

662

Figure 32-2. Using PDL to black out the sky

663

Capturing Frames in a Loop

When capturing multiple frames, we have a classic buffering
problem. While we’re in the middle of processing one frame,
we have to begin processing the next to avoid missing it. All
V4l drivers can therefore accept at least one call to
capture in advance. To capture frames in a loop we have
to start capturing the next frame and then sync on the
previous one:

It's always good to use variables for
width and height.
my ($w, $h) = (640, 480);

my $buffer = 0; # the buffer to use next

Start capturing the first frame
my $frame = $grab->capture($buffer, $w,
$h);

Enter an endless capturing loop
for (;;) {

Start capturing the next frame
my $next_frame = $grab->capture

(1-$buffer, $w, $h);

Sync the current frame
$grab->sync($buffer) or die "unable to

sync";

Now do something with the frame data
in $frame

dosomething $frame;

And now switch buffers

664

$buffer = 1 - $buffer;
$frame = $next_frame;

}

The variable $buffer contains the number of the buffer, 0
or 1, used to capture the current frame. 1-$buffer is thus
the number of the other buffer.

So the loop simply starts by capturing the “next” frame
(1-$buffer) and then syncs on the “current” frame. After
that, the script has 0.02 seconds (for the PAL and SECAM
television formats; about 0.0167 seconds for NTSC) to
process the image data. After processing, the buffers are
switched, and $next_frame becomes the current frame
($frame).

The example script examples/grab bundled with the V4l
module prints some information about your capturing
hardware and then jumps into exactly this loop, so it’s a good
starting point when you want to create your own capturing
applications.

665

Channels, Tuners, and Audio and
Picture Settings

If the above scripts show white noise without printing an
error, then your hardware probably wasn’t initialized or tuned
to a channel. In that case, starting a program such as XawTV
and selecting a TV channel before starting the Perl script
should initialize your
video card and tune it to a useful source.

Most of my applications let the user use his program of
choice to select the
video source. In contrast, the V4l module offers full control
over the video hardware.

There are a number of building blocks in the V4l system, all
of which are represented by some object on the Perl level.
The most important of these objects is the “device”
object, which represents a single video device in the system.
It is returned by a call to
Video::Capture::V4l->new (PATH) and can be
used to query your hardware’s name, type, and capabilities.
The examples/grab script contains code that prints out all
useful information about device (and other) objects:

print "Device: ";
print "name ",$grab->name;
print ", type";
for (qw(capture tuner teletext overlay
chromakey clipping

frameram scales monochrome
subcapture)) {

print " $_" if eval "\$grab->$_";

666

}

print ",

channels ", $grab->channels;
print ", audios ", $grab->audios;
print ", sizes ", $grab->minwidth, "x",
$grab->minheight,

"-", $grab->maxwidth, "x",
$grab->maxheight;
print "\n";

$grab->name returns the device name,
$grab->capture returns a boolean specifying whether
the hardware can do video capturing, and so on. Here’s the
result for my video card:

Device: name BT878(Hauppauge new),
type capture tuner teletext

overlay clipping
frameram scales,

channels 3,
audios 1,
sizes 32x32-924x576

The “channels” entry shows the number of video sources the
card supports; my card supports television, composite, and
S-video inputs. The “audios” entry shows the number of
audio sources.

Each of the “channels” and “audios” is represented by another
object, which is returned by a call to the channel and
audios methods. To get information about the first video
source, you would use my $channel =
$grab->channel(0). The grab example script iterates
through all channels and audio sources and prints some
information about them:

667

Channel 0: name Television, tuners 1,
flags tuner audio, type tv, norm 0
Channel 1: name Composite1, tuners 0,
flags audio, type camera, norm 0
Channel 2: name S-Video, tuners 0, flags
audio, type camera, norm 0

Audio Channel 0: volume 65535, bass 32768,
treble 32768,

flags volume bass treble,
name TV, mode 1,

balance 0, step 0

You can change the settings for specific objects by calling the
same methods used for querying, followed by a call of the
set method to inform the
video driver of your change. For instance, to set the broadcast
norm of the first channel to PAL:

my $channel = $grab->channel(0);

$channel->norm(MODE_PAL);
$channel->set;

To tune the bass setting to its maximum, you do this:
Get the audio object
my $audio = $grab->audio(0);

Set bass to the maximum
print "old setting: ", $audio->bass, "\n";

$audio->bass(65535);
$audio->set;

print "new setting: ", $audio->bass, "\n";

Another interesting attribute is the mode of the audio source.
mode can be set to SOUND_MONO, SOUND_STEREO,

668

SOUND_LANG1, or SOUND_LANG2. Most cards (or
actually their drivers) automatically detect whether an audio
source is mono, stereo, or dual-channel, so about the only
time you need to change this setting is when you want to hear
the second language in dual-channel mode (this is quite
common in Europe).

In addition to being able to control audio parameters, most
cards can control
picture settings. Just as your TV can change contrast, hue,
color, and brightness, so can V4l:

my $picture = $grab->picture;

The range of all settings is 0-65535

Set contrast to some medium level
$picture->contrast(27648);

The same for brightness
$picture->brightness(32000)

Better leave the hue setting alone --
for PAL, changing the hue angle
starts to cancel the color. This is only
sensible for NTSC.

We want a slightly color-intensive
picture
$picture->colour(32900);

Don't forget to call "set"!
$picture->set;

In general, both the audio and picture settings should only be
changed by human interaction, as every card reacts differently
to the values.

669

Going back to the channels, we can see that the composite
and S-video inputs have the type camera, which means they
are hardwired to some physical
device (usually a camera). The television input is of type tv
and has a tuner associated with it.

A tuner is used to select different channels multiplexed on the
same medium. The tuner is what lets you tell your card which
TV channel, out of all the channels you could possibly
receive, is the one you want to receive now. Just like all other
objects, you can access the
tuner object by calling the tuner method of the V4l object:

my $tuner = $grab->tuner(0);

Check out the grab script to learn about your tuner’s
attributes. Mine has these:

Tuner 0: name Television, range
0-4294967295,

flags pal ntsc secam, mode 0,
signal 0

The most important setting is mode, which must be one of
TUNER_AUTO, TUNER_NTSC, TUNER_PAL, or
TUNER_SECAM. Since TUNER_AUTO doesn’t work with
most cards, you’ll probably have to choose the mode yourself.
The signal method returns the strength of the received
video signal (0-65535) and can be used to decide whether
there’s video to be had on a particular frequency.
Unfortunately, signal is not well defined. It can take a few
seconds until the card has finished its measurement, and not
all cards support it.

Interestingly, there is no method to set the frequency in the
tuner object. The only way to set a frequency is using the

670

freq method of the Video::Capture::V4l object
itself. I am not sure why Video4linux supports many tuners
when you cannot use them independently; hopefully the next
version will be saner.

Many programs (and many example scripts) use something
like the following to tune to some channel (all values are
hardwired):

use Video::Capture::V4l;

Initialize the card and tune it to a
specific frequency

"Arte" uses this frequency in my city
my $freq = 140250;

my $grab = new Video::Capture::V4l or die
"unable to open video device";
my $channel = $grab->channel(0);
my $tuner = $grab->tuner(0);

Let's use PAL
$channel->norm(MODE_PAL); $channel->set;
$tuner->mode(TUNER_PAL); $tuner->set;

Now tune.
$grab->freq($freq);

...and sleep for 400 milliseconds while
letting the card lock to the channel
select undef, undef, undef, 0.4;

671

Magic Constants for Frequencies?

Note that the above code hardcodes a frequency for the
particular city where I live. The frequencies used by TV
stations vary from town to town, or cable network to cable
network. (That’s why a new TV has to scan for available
channels before it can be used.) Later in this article, I’ll
describe a small program that can automate this task. But
first, I’ll explain some of the standards used to manage these
frequencies.

To help poor programmers like us, there is a module called
Video::Frequencies (part of the Video::Capture::V4l
package), which does nothing more than export some useful
tables. (Unlike its mother module V4l, it is fully
documented.)

For example, it tells me that Germany, Kuwait, and Sudan use
the PAL format, while Chile, Taiwan, and the U.S. use
NTSC. It also exports (among others) the hashes
%NTSC_BCAST (U.S. broadcast), %NTSC_CABLE_JP
(Japan cable), and %PAL_EUROPE (Europe broadcast).

These hashes contain the official channel name to
frequency mappings; for instance, %PAL_EUROPE defines
channels 21-69, E2-E12, S01-S03, and SE1-SE20. What
counts is not these historically-derived and senseless
designations, but that you often get a table from your cable or
broadcast provider that tells you that, in your area, channel
“E2” corresponds to “Zweites Deutsches Fernsehen.”

672

Instead of hardwiring the channel frequency, we could also
hardwire the channel designation (which is slightly better than
before):

use

Video::Frequencies;
$freq = $PAL_EUROPE{E2};

673

Example: Image Sequence
Detection

In addition to the examples/grab script, there are a few
other examples that might give you interesting ideas. The two
scripts indexer and finder together implement the
“identify re-occurring image sequences” task I needed to
recognize my favorite show.

indexer is used to record an
image sequence by scaling a 128x128 color image down by a
factor of 8 (to 16x16) and writing these into a file named db.
More interesting is the script finder, which constantly
captures video images, scales them down (just like
indexer), and compares them to the images stored in the
database.

While the first implementation of these scripts used PDL, I
didn’t want to waste more CPU power than necessary
(finder might run in the background for many hours), so I
implemented some functions inside the V4l module. While
this is not very clean programming practice, it was easy to
add a few functions to V4l/V4l.xs, written in C for speed. (My
first prototype was written in PDL, of course.)

The inner loop of finder, for example, is just this:

reduce2 reduces the image size by two in
each dimension
Video::Capture::V4l::reduce2($fr, $w<<4);
Video::Capture::V4l::reduce2($fr, $w<<3);
Video::Capture::V4l::reduce2($fr, $w<<2);
Video::Capture::V4l::reduce2($fr, $w<<1);

674

normalize() does some primitive contrast
enhancement
Video::Capture::V4l::normalize($fr);

findmin compares the frame $fr to all
images
in the database $db, by summing pixel
differences
($fr, $diff) =
Video::Capture::V4l::findmin($db, $fr,
$expect_frame, $expect_count);

Remember the frame number
push(@reg, $this_frame, $fr);

linreg is a simple linear approximation
my ($a, $b, $r2) =
Video::Capture::V4l::linreg(\@reg);

my $b1 = abs($b-1);
if ($r2 < 100 && $b1 < 0.01) {

$found++;
print "LOCKED\n";
do something

}

findmin simply compares the frame to all frames stored in
the database by taking pixel differences and summing these
together. The smaller the difference, the more similar the
frames. While false hits are quite common, a linear regression
afterwards filters them out. Since the images are sent in the
same
sequence as they were recorded, the detected frame numbers
should increase monotonically by one when the script has
synchronized the database to the video stream. The finder
script tries to detect repeated sequences and filter out jitter.

675

Example: Real Time Video
Capturing

The second capturing problem I had was to capture a
full-length movie in high resolution (640 x 480 or even
higher). A small calculation will show you why this is indeed
a problem: 640 x 480 pixels, two bytes per pixel when
digitized, and 25 frames per second makes for a data rate of
640 * 480 * 2 * 25 = = 15 megabytes per second. And that’s
not even full resolution. Nor does it include audio. It is very
difficult (read: impossible) to get a PC to handle this data rate
steadily over extended periods. Remember that there must
never be a pause longer than 20 milliseconds, or else the next
frame will be lost.

I first experimented with a program named streamer,
striping the movie data to different partitions. However, even
with
real time priority, Linux sometimes paused the program for
too long.

The next thing to try was writing a new program, in Perl of
course. The key idea was to compress the
image data before writing it to the disk, since this not only
saves space (one hour of uncompressed movie requires about
52 gigabytes!), but also cuts down on the required I/O
bandwidth. I took the existing RTjpeg code by Justin
Schoeman and wrote a Perl interface to it.

The compelling reason to use Perl, however, was that my
machine (a dual P-II 333) was fast enough to compress the
stream in

676

real time when I used two CPUs, but a single CPU wasn’t fast
enough. Thus, my capturing program had to manage a process
that captures and avoids other blocking syscalls, a process
that captures the audio, and two or more processes that
encode video images into a file. Splitting the encoding work
into multiple processes (and files) also made it easier to
surpass the two gigabyte filesize limit on Linux.
Implementing all this logic and experimenting with different
implementations in C would have been much more difficult.

This capturing script is named examples/capture in
the Video::Capture::V4l distribution. I confess that I’m lousy
at designing user interfaces; you have to edit it manually
before you can use it.

The first thing the program does is to fork the audio capturing
and video compression processes. It then goes into the
standard capturing loop we already saw. It then writes the
image data into a shared memory segment (using Perl’s
shmwrite builtin) and notifies an encoding process that a
new frame has arrived, to avoid being paused by some slow
subprocess (or heavy disk activity).

The encoding process sits in a tight loop reading frame data,
compressing it and writing it to a file:

Quality factor (255 is highest quality
and corresponds to
a setting of 75 in the IJG jpeg library)
my $Q = 255;

$M is the motion suppression value. 0 is
the highest quality
my $M = 0;

Create the output file

677

open DATA, "datafile" or die "$!";

Initialize the compressor (the RTjpeg
codec is not
thread safe, so we need one process per
encoder!)
my $tables =
Video::RTjpeg::init_compress(640, 480, $Q);

Also initialize motion suppression.
Video::RTjpeg::init_mcompress();

Save the compression parameters to the
file
syswrite DATA, $tables;

for (;;) {
...wait for next frame...

Read the image data
shmread $shm, $buf, $buffer * $fsize,

$fsize;
Motion compression. Since many

movies are shown in letterbox format
when broadcast on TV, you can

specify the offset and size of the image
part you want to compress. This

saves a lot of time!
my $fr =

Video::RTjpeg::mcompress($buf, $M, $M>1,
$x, $y, $w, $h);

Write the frame data
syswrite DATA, $fr;

}

The script examples/xsview is a very simple viewer
(not

678

real time, of course) that reads the stream files and
uncompresses the images in order. examples/mp2enc is
a similar script that uses mp2enc to encode the images into a
standard MPEG-1 (layer II) stream.

The only remaining question I have is: “Why hasn’t anybody
else used the RTjpeg codec so far?” As far as I know, the V4l
Perl module is the only place where that code is actually used.

679

Part II: The Vertical Blanking
Interval

In the second part of this article, I will describe the vertical
blanking interval (
VBI) decoder included with the V4l module.

Not all of the 625 lines of a standard PAL frame are used for
the image; some of them are empty, providing the TV set with
some regeneration time so that the electron gun can move
from the bottom of the screen back to the top. 32 of these
empty lines can carry data—videotext, for example, or the
VPS (Video Programming Service) signal used to tell my
VCR when a specific program starts and stops.

Videotext is pretty boring, but I wanted to find out why the
VPS signal didn’t work for my favorite TV show. To give
you an impression of what the VBI looks like, I made a few
snapshots of the raw analog data. Figure 32-3 is a snapshot of
the VBI area of France 3, which is quite boring and contains
a line carrying the VPS signal (the first non-empty line), two
test patterns, and a single line with videotext information.
Since each PAL frame consists of two half-frames, the pattern
is repeated for the other frame. Using only a single line for
videotext means that you can receive about two videotext
pages per second. The videotext line is a bit darker, because
the frequency used to transmit videotext is slightly higher
than most other protocols used in the VBI.

680

Figure 32-3. The vertical blanking interval of the France 3
channel

Figure 32-4 shows the VBI lines of Premiere World, featuring
videotext (the first six lines), four lines of some encrypted
data (it’s pay TV), a single line carrying the VPS signal, three
lines used to transmit test patterns and two additional
videotext lines. The pattern is then repeated for the second
half-frame.

Figure 32-4. The vertical blanking interval of the Premeire
World channel

The last example (Figure 32-5) is from NBC Europe. Apart
from the two bright test patterns, it consists of only videotext
lines. The reason is that NBC Europe transmits MP3 data at
128 kilobits per second, which requires almost the full
bandwidth that is available. This also causes its much more
random-looking appearance—videotext is quite repetitive
compared to MP3 data!

681

Figure 32-5. The vertical blanking interval of NBC Europe.

Of course, you don’t need to understand all these patterns to
use the
VBI module. An easier way to detect the kinds of services
available on a channel is to run the examples/vbi-info
script (a video capturing program such as XawTV can run in
parallel with a program using VBI, so that you can, for
example, capture videotext in the background while viewing
TV). Here is the output for some channels:

France 3
alloc[.........OOO.T...........OOO.T..]
VT NI30/1[33f3=France 3]

Premiere
alloc[TTT.TccccVOOOTT.TTT.Tcccc.OOOTT.]
3/31[f] VPS[fdac=Premiere|PREMIERE] VT

NI30/1[0000=]
Eurosport
alloc[TTTTTTTTTVOOTTTTTTTTTTTTT.O.TTTT]
VT 2/31[0] NI30/1[fe01=Euronews] 0/31[0]

7/31[0]
2/31[ffffff] 3/31[7] EPG VPS[0000=|]

1/31[0]

alloc shows the allocation of VBI lines to services. A dot
means that no signal was detected. T stands for videotext, V
for VPS, c for encrypted video, and O for other signals. In
addition to identifying the lines, vbi-info decodes the
videotext and VPS lines a bit more. For instance, France 3

682

transmits a so-called “Network Identification” code. You can
import the hash %VT_NI from the
Video::Capture::VBI module that maps NI-codes
(like 33f3) to station names (like France 3).

Premiere additionally sends a VPS line (which contains
another datum called the CNI (Country and Network
Identification) code. %VPS_VNI maps CNI codes to names.
Eurosport features videotext and an Electronic Program
Guide (EPG). Some channels even send Intercast (IC), which
is actually the Internet protocol over videotext!

683

Standards

Unfortunately, most of these protocols are based on videotext,
which is a very old protocol. It was invented at a time where
you had to be really careful not to waste a single bit and
where data compression wasn’t used at all. The main task of
the Video::Capture::VBI module therefore is to analyze the
VBI lines and do all the bit-shifting and unscrambling of the
VBI data, returning some decoded representation.

To understand this, however, you still have to know what to
expect. The best sources of information are the teletext
(videotext)
standards itself. The European Telecommunications
Standards Institute (ETSI) publishes almost all of their
standards on the web, and for free, which is very nice (and the
exception for standards organizations). The References
section at the end of this chapter mentions some of the more
important standards and their purpose.

The ETSI standards apply only to PAL television and
therefore mostly to western European countries only. If you
look at the source (VBI/VBI.xs), you can see that the PAL and
NTSC formats use different frequencies to encode videotext,
so you’ll need to change the source to make it work with
NTSC (just look for FREQ_VT_NTSC and follow the
comments). Unfortunately, just changing the frequency won’t
work, since the actual encoding is different.

This means that while PAL users can use the module out of
the box, NTSC users will need to work at it—but, they can be
sure that whatever they discover will be relatively new

684

knowledge, since the millions of other V4l users all use PAL.
If you find any standards on non-European teletext or other
protocols I haven’t found yet, I’d love to hear from you.

685

Decoding VPS

Capturing vertical blanking intervals is even easier than
capturing image data:

use Video::Capture::V4l;
use Video::Capture::VBI;

my $vbi = new Video::Capture::V4l::VBI
or die "unable to create VBI capturing

object";

The next line is optional
$vbi->backlog(25); # Maximum 1
second backlog (~1600kb)

We all love endless loops ;)
for (;;) {

Retrieve next vbi frame
my $field = $vbi->field;

Decode the field and iterate over
all lines

for (decode_field $vbi, VBI_

VPS) {
... Do something ...

}
}

Capturing and decoding the VBI are separate tasks and also
separate modules. The idea is that Video::Capture::V4l
captures VBI data using the V4l API (which is very
system-specific), but the actual VBI processing is done in an

686

OS-independent way (with Video::Capture::VBI). In the
future, other API’s besides V4l could be supported.

The program first creates a VBI capture object (of type
Video::Capture::V4l::VBI). The next line of code creates a
cache of 25 frames. This is implemented by launching a
separate thread that captures VBI frames and queues them in
memory, so your program can take as long as one second to
process a frame without losing any intermediate data. Since
each frame requires 64 kilobytes of memory, 25 frames
require 1.6 megabytes. Not too much, but if your program is
fast enough (or you can tolerate skipped frames), leave out
this line to conserve memory. It then enters an endless
capturing loop. If you want, you can use select (or the
great Event module) to wait on the filehandle returned by
the fileno method:

use Video::Capture::V4l;
use Event;

my $vbi = new Video::Capture::V4l::VBI
or die "unable to create VBI capturing

object";

Event->io(fd => $vbi->fileno, poll => "r",
cb => sub {

my $field =
$vbi->field;

... Decode and
process the field ...

});

Inside our capture loop, we fetch the next VBI field and call
decode_field, a function exported from the
Video::Capture::V4l module. decode_field
takes two arguments: the VBI data (a Perl scalar with a length

687

that’s a multiple of 2,048) and a bitmask that specifies which
types of VBI lines you are interested in, OR’ed together. In
this example, it’s merely VBI_VPS, but if we were interested
in VPS and videotext lines, we would use VBI_VPS |
VBI_VT. decode_field decodes the lines you requested
and returns an array reference for each line it could decode (it
returns an array of array references). The content of these
arrays depends on the line data and differs for each packet
type.

All VPS lines follow the same pattern, including several
time-related fields that specify the time of the last program
that started. A VCR constantly compares the programmed
date/time with the date/time sent via VPS and, if equal, starts
recording. The reason this didn’t work in my case—the
problem that inspired the module in the first place—was that
the VPS signal switch was performed manually. For instance,
the change from 13:55 to 14:10 took a few seconds and went
digit by digit: 13:55 => 14:55 => 14:15 =>
14:10 and was often delayed or simply forgotten. Sigh.

688

The Autotune Script

Now we are ready to look at how the examples/
autotune script works. If you use XawTV to watch
television, you can automate the task of scanning channels.
The basic idea of the autotune script is to scan through all
channels, wait a bit, test whether a valid TV signal is being
received, and try to identify the sender name. With the
modules we know, this should be easy. First, we need control
over the tuner and VBI device:

$v4l = new Video::Capture::V4l;
$tuner = $v4l->tuner(0);

$channel = $v4l->channel(0);
$tuner->mode(TUNER_PAL); $tuner->set;
$channel->norm(MODE_PAL); $channel->set;

$vbi = new Video::Capture::V4l::VBI or die;

The next step is to load an existing ~/.xawtv config file, which
we can parse with the Video::XawTV module.

One of the useful things stored inside the .xawtv file is the
frequency table that should be used (for
example, pal-europe). The Video::Frequencies module
provides a hash named %CHANLIST that maps these
frequency-table-names into the actual frequency table.
Iterating through all possible frequencies is thus quite easy:

Create a new Video::XawTV-object and try
to load an existing ~/.xawtv file
$rc = new Video::XawTV;
eval { $rc->load("$ENV{HOME}/.xawtv") };

689

Use the frequency table specified in it
$ftab = $rc->opt('freqtab') ||
"pal-europe";
$freq = $CHANLIST{$ftab} or die "no such
frequency table: $ftab";

Channel information will be stored here
my @channels;

Now iterate through all frequencies
for $chan (sort keys %$freq) {

tune to channel $chan and try to
detect the sender
}

Store the channel information int he
XawTV-Object...
$rc->channels(@channels);

...and save it locally (don't overwrite
the user's file!)
$rc->save("xawtvrc");

Inside the for loop, we first tune to the new frequency:

my $f = $freq->{$chan};
print "tuning to $chan ($f)...";
$vbi->backlog (0); # don't save frames
from old channel
$v4l->freq($f);
select undef, undef, undef, 0.2;

Before tuning, we remove any saved VBI frames using
backlog(0). Otherwise we might miss a new channel
while analyzing frames from the previous one.

After setting the frequency, we have to wait a bit until the
tuner stabilizes. While 200 milliseconds is good enough for

690

my video card, it might be too long or too short for your card,
so you might want to play around with that number if some
channels can’t be detected, because the tuner can’t cope with
our speed.

Once the tuner is stabilized we can measure the signal
strength. If it is more than 30,000, we assume that a sender
was received.

if ($tuner->signal > 30000) {
Capture 30 frames (at least one

second)
$vbi->backlog (30);
Wait some time so the buffer fills
select undef, undef, undef, 1.6;
As long as frames are available...
while ($vbi->queued) {

Decode frame and analyze...
for (decode_field $vbi->field,

VBI_VT|VBI_VPS) {
#
check VBI line data
#

}
}

}

The autotune script jumps through hoops to do the actual
sender name detection. It takes about a minute to scan all 106
frequencies in PAL-Europe (most are empty).

691

Decoding Videotext

The VPS signal is pretty lame. It always uses the same
format, is well-specified, and is very consistent between
stations. However, videotext and teletext are nothing like that.
They use a wild assortment of different encodings for
different lines, binary data (MP3, Intercast), VCR
programming information, subtitles, navigational hints,
program guide information, and occasionally just plain text.

This leads to the unsatisfactory situation where you have to
first decode videotext pages, and then dissect some of those
videotext pages into two or more datastreams, and finally
decode these streams into EPG blocks, all just to get at the
Electronic Program Guide. The
Video::Capture::VBI module handles most of this.

Now to the basics of videotext. The three digits used to select
a specific teletext page (000–799) are actually three hex
digits. The rule is, “If it’s decimal digits, it contains
human-viewable teletext data. If it’s hexadecimal data, it’s
probably something else.” “Normal” (non-subtitled) teletext
pages contain 24 lines. Each VBI line corresponds to one line
of the page (pages used for subtitles usually contain a single
line only) The first line (number zero) contains only the page
number, the sender name, and the current time. The lines that
follow contain the meat of the data.

In practice, there are oddities like subpages (pages consisting
of more than one screen) and interleaved pages (since
subtitles and other pages can interrupt other pages). This is

692

handled by the Video::Capture::VBI::VT class. Using it is as
simple as subclassing it:

package MyDecoder;

use Video::Capture::VBI;

Derive from videotext-decoder
use base 'Video::Capture::VBI::VT';
Enter_page gets called for each
assembled page
sub enter_page {

my($self, $page)=@_;
my $sub = $page->{ctrl} & VTX_SUB;

printf "Teletext page %03x /
%04x\n",$page->{page},$sub;

print "subtitle page\n" if
$page->{ctrl} & VTX_C5;

print "newsflash page\n" if
$page->{ctrl} & VTX_C6;

Now print the page
for ($y=0; $y<25; $y++) {

my $x = $page->{packet}[$y];
print $x ? decode_ansi

decode_vtpage $x : "", "\n";
}

}

Other (non-page-related) teletext
packages end up here
sub enter_packet {

my $packet = $_;
}

The

693

Video::Capture::VBI::VT class implements a simple teletext
decoder. The class itself does nothing with the decoded data
unless you overwrite either enter_page or
enter_packet, which are called when pages or packets
are received. The VBI module defines two functions to
convert the videotext data into a human-readable form:
decode_vtpage, which returns text in a national
language encoding, and decode_ansi, which takes that
text and approximates the page using ANSI codes. These
functions can be used to display the blocky graphics of the
vertical blanking interval, as in Figure 32-6.

Figure 32-6. Text hidden in the vertical blanking interval

Figure 32-7 shows an index page using the vtx web interface
(which is part of the PApp Perl module). Videotext suddenly
becomes usable when it is hyperlinked!

694

Figure 32-7. Hypertext derived from the vertical blanking
interval.

To manipulate the Electronic Program Guide, the

695

Video::Capture::VBI::VT module was subclassed to create
the Video::Capture::VBI::EPG package. This can be used to
present the user with a menu of choices (all movies marked
with two stars, all documentaries, all drama movies currently
running, and so on). Since EPG’s can be quite large (up to a
quarter megabyte) and the data rate is low (sometimes less
than one kilobyte per second), it can take up to 20 minutes to
gather the entire EPG database.

There are three programs in the V4l distribution that cope
with EPG data: examples/getepg, which starts
capturing EPG data as soon as it receives a valid data stream;
examples/dumpepg, which simply dumps a database in
text format; and examples/epgview, which is a
curses-based (it requires the Curses module) interactive
viewer. It continuously updates its display, so I often run it in
a separate window for the whole evening. That way I always
have an up-to-date program listing, shown in Figure 32-8.
The perfect toy for a TV addict.

696

Figure 32-8. The Electronic Program Guide.

697

References

Some
resources for your
video hacking:

Video::Capture::V4l

The module is available on CPAN and should build and
install cleanly using the CPAN shell.

http://v4l.sourceforge.net/

The V4l module is also a project on SourceForge. You
can get the newest version via CVS.

http://www.imagemagick.org

ImageMagick is a formidable image manipulation
package that even has a nice Perl interface!

http://www.etsi.org/

The European Telecommunications Standards Institute
(ETSI) offers the following standards for download:

▪ ETS 300 231, Programme Delivery Control (PDC)

▪ ETS 300 706, Enhanced Teletext Specification

▪ ETS 300 707, Electronic Programme Guide

▪ ETS 300 708, Data transmission within Teletext

▪ TR 101 231, Country and Network Identification
(CNI) codes

698

▪ TR 101 233, Code of practice for allocation of
services in the Vertical Blanking Interval (VBI)

▪ TR 101 288, Code of practice for an Electronic
Programme Guide (EPG)

▪ ETR 287, Code of practice for enhanced Teletext

▪ ETR 288, Code of practice for an Electronic
Programme Guide (EPG)

▪ EN 300 294, 625-line television Wide Screen
Signalling (WSS)

http://www.goof.com/pcg/marc/papp.html

PApp: multipage-state-preserving web applications.
Includes a sample application named vtx that “webbifies”
videotext.

699

Part III. Perl/Tk

In this part:

Chapter 33

Chapter 34

Chapter 35

Chapter 36

Chapter 37

Chapter 38

Chapter 39

Chapter 40

The eight articles in this section provide an introduction to
Perl/Tk, Perl’s full-featured and popular toolkit for
developing graphical applications. It works on both Unix/
Linux and Windows, and most Perl/Tk applications will run
without change in both environments.

Perl/Tk programming is different enough from regular Perl
programming that it sometimes strikes newcomers as hard to
learn. It doesn’t have to be, though; there are really just three
broad concepts that you have to keep in mind, and my A Perl/
Tk Roadmap article describes them. Steve Lidie follows with
an introduction to the basics of Perl/Tk programming in
Getting Started with Perl/Tk, and I walk through the creation

700

of a quick and dirty Perl/Tk application in Scoreboard: A
15-Minute Perl/Tk Application.

The rest of the section is all Steve. In The Mouse Odometer,
he illustrates how you can add menus, timers, color selection,
and widgets of your own devising to Perl/Tk applications.
Next, in Events, he shows how your programs can respond to
user actions such as keypresses, mouse clicks, or simply
moving the mouse over an area of the application. The article
also demonstrates the Photo widget and shows how to create
animations, culminating in a crude implementation of a
Breakout-style video game.

Geometry managers provide ways to organize spatial
elements in your applications. The Pack and Grid Geometry
Managers explores the two most common geometry
managers in Perl/Tk: Pack and Grid. If you’re just trying to
draw as though you had a blank sheet of paper in front of you,
you need the Canvas widget; Drawing on a Canvas shows
how to use it.

Steve concludes the section with a brand-new article written
specifically for this book, showing how you can manipulate
and display databases via DBI and Perl/Tk’s Tree widget.
You can read more of Steve’s writings in O’Reilly’s
Mastering Perl/Tk.

701

Chapter 33. A Perl/Tk Roadmap

Jon Orwant
While editing TPJ, I often had trouble finding authors to write
good beginner articles. I knew plenty of experts, but they
usually preferred articles that displayed their expertise.
Paradoxically, good articles on simple topics can be hard for
experts to write, because it’s been a long time since they were
beginners and they may not remember all of the pitfalls they
encountered when they started out.

Steve Lidie, the author of most of the articles in this section,
doesn’t have that problem: he’s written for both beginners
and experts. As I write this, he just finished
Mastering Perl/Tk for O’Reilly (co-authored with Nancy
Walsh), which adapted five of his ten TPJ articles that were
originally planned for this section. We didn’t feel right having
similar Perl/Tk material appear in two of our books, so now
you’ll have to settle for me.

I’m an intermediate Perl/Tk programmer. Every so often I
need to create an interactive graphical application, which I
always find I can slap together quickly with Perl/Tk. But I do
it infrequently enough that I forget the names of all the
widgets and functions, and the order of their parameters. This
makes me an unimpressive Perl/Tk programmer, but it has a
hidden silver lining—the lack of familiarity with the material
allows me to help novices learning Perl/Tk for the first time.

The goal of this article is modest: I’m going to give a nearly
code-free roadmap to the Perl/Tk universe, explain what I

702

think is important and what isn’t, and then step out of the way
so that Steve, the expert, can show you how it’s done in
subsequent articles.

Understand the Basics

Perl/Tk applications are Perl programs that use the Tk
module. There are three basic concepts in Perl/Tk
programming that distinguish it from regular Perl
programming.

1. Perl/Tk is all about widgets. (“Widget” is a name used
for something when you can’t think of anything else to
call it.) In Perl/Tk, widgets are graphical elements like
buttons, scrollbars, and menus.

2. Perl/Tk is event-driven. Most of your programs will have
a MainLoop statement in them; when Perl executes it,
your application will go into stasis, taking action only in
response to user-created events such as mouse clicks or
key presses.

3. Perl/Tk makes extensive use of callbacks. For instance,
when you create a button, you have to tell Perl/Tk what
Perl code to execute when the user presses that button.
The following expression creates a callback that prints
You pressed a button.

$mw->Button(-text => "Press me!",
-command => sub { print

"You pressed a button." }
);

703

Ignore What You Don’t Need

Perl/Tk is huge, and you shouldn’t care. Chances are you only
need a tiny subset to create your application. By my count,
there are 39 basic widgets, and I almost always get by with
just nine (Button, Canvas, Dialog, Frame, Label,
MainWindow, Menu, Text, and TopLevel).

Some other Perl/Tk features I’ve never needed:

▪ The ability to create my own Perl/Tk widgets

▪ Perl/Tk’s option database

▪ Tix widgets

▪ Interprocess communication

▪ Using C from Perl/Tk

If any of those topics interest you, or if you simply want the
definitive Perl/Tk book, Mastering Perl/Tk is a natural next
step.

If you’re determined to create applications without
understanding what you’re doing, you can still get remarkably
far by examining some of Steve’s programs (on both
http://www.oreilly.com/catalog/mastperltk/ and
http://www.oreilly.com/catalog/tpj2/) and the example
programs bundled with the Perl/Tk distribution, finding one
that approximates the behavior you need, and chopping out
the code for behaviors you don’t.

To help you decide what you don’t need,

704

Table 33-1 lists all the basic widgets, what they do, and what
options they accept.

Table 33-1. Perl/Tk widgets

Widget Purpose Options

Adjuster
Gives user
control of
widget size

Same as Frame plus -restore, -side,
-delay, -widget

Balloon

Displays text
when mouse
is positioned
over a widget

Same as MainWindow plus -font,
-balloonposition, -statusmsg,
-postcommand, -installcolormap,
-initwait, -state, -cancelcommand,
-balloonmsg, -motioncommand,
-statusbar

Bitmap
Simple
collection of
pixels

-background, -data, -file, -foreground,
-maskdata, -maskfile

BrowseEntry

Drop-down
listbox that
lets user type
entries

Same as Entry plus -labelHighlightcolor,
-labelHeight, -labelOffset, -arrowimage,

-label, -labelWraplength, -labelRelief,
-labelPadx, -labelPady,
-labelTextvariable,

-labelJustify, -command,
-labelHighlightbackground, -options,
-labelFont,

-labelVariable, -labelBackground,
-listcmd, -labelImage, -labelTile,
-labelActivetile,

705

Widget Purpose Options

-listwidth, -variable, -labelCursor,
-browsecmd, -labelTakefocus,
-labelDisabledtile,

-labelAnchor, -labelHighlightthickness,
-labelText, -labelWidth, -colorstate,
-labelPack, -labelForeground, -choices,
-labelUnderline, -labelBitmap,
-labelBorderwidth

Button

Something the
user presses to
trigger an
action

Same as Label plus -default, -state,
-command, -disabledforeground,

-activeforeground, -activeimage,
-activebackground

Canvas

A 2D area
giving you
pixel-by-pixel
control

-activegroup, -background, -bd, -bg,
-borderwidth, -closeenough, -confine,
-cursor,

-disabledtile, -height,
-highlightbackground, -highlightcolor,
-highlightthickness,

-insertbackground, -insertborderwidth,
-insertofftime, -insertontime, -insertwidth,

-offset, -relief, -scrollregion,
-selectbackground, -selectborderwidth,

-selectforeground, -state, -takefocus, -tile,
-width, -xscrollcommand,

-xscrollincrement, -yscrollcommand,
-yscrollincrement

706

Widget Purpose Options

Checkbutton

A Button that
the user can
select or
deselect

Same as Label plus -onvalue, -selectcolor,
-variable, -offvalue, -state, -command,

-disabledforeground, -activeforeground,
-indicatoron, -selectimage,

-activebackground

ColorEditor Lets user
select colors

-background, -bd, -bg, -borderwidth,
-class, -color, -color_space, -colormap,

-command, -container, -cursor,
-display_status, -fg, -foreground, -height,
-highlight, -highlightbackground,
-highlightcolor, -highlightthickness,
-initialcolor, -offset,

-overanchor, -popanchor, -popover,
-relief, -takefocus, -tile, -title, -visual,

-widgets, -width

Dialog

Pop-up
window for
immediate
user action

Same as Label plus -title, -overanchor,
-command, -popover, -popanchor

DirTree HList tailored
for

showing directories

Same as HList plus -dircmd, -value,
-image, -showhidden, -opencmd,
-ignoreinvoke,

-closecmd, -directory

707

Widget Purpose Options

Entry
Lets users
enter a little
text

-background, -bd, -bg, -borderwidth,
-cursor, -disabledtile, -exportselection,
-fg,

-font, -foreground, -fgtile,
-foregroundtile, -highlightbackground,
-highlightcolor,

-highlightthickness, -insertbackground,
-insertborderwidth, -insertofftime,

-insertontime, -insertwidth,
-invalidcommand, -invcmd, -justify,
-offset, -relief,

-selectbackground, -selectborderwidth,
-selectforeground, -show, -state,

-takefocus, -textvariable, -tile, -validate,
-validatecommand, -vcmd, -width,

-xscrollcommand

ErrorDialog

Dialog for
alerting user
about
application
errors

-appendtraceback, -background, -bd, -bg,
-borderwidth, -class, -cleanupcode,

-colormap, -container, -cursor, -fg,
-foreground, -height,
-highlightbackground,

-highlightcolor, -highlightthickness,
-menu, -offset, -relief, -screen, -takefocus,
-tile,

-use, -visual, -width

708

Widget Purpose Options

FileSelect
Listbox
tailored for
files

Same as Listbox plus
-labelHighlightcolor, -resetlabel,
-labelHeight, -labelOffset,

-scrollbars, -homelabel, -verify,
-defaultextension, -label,
-labelWraplength,

-labelRelief, -labelPadx, -labelPady,
-labelTextvariable, -labelJustify,
-command,

-labelHighlightbackground, -filelabel,
-labelFont, -labelVariable, -initialdir,

-labelBackground, -create, -title,
-labelImage, -transient, -labelTile,
-labelActivetile,

-cancellabel, -filter, -labelCursor,
-acceptlabel, -labelTakefocus,
-overanchor,

-labelDisabledtile, -dirlabel,
-labelAnchor, -labelHighlightthickness,
-labelText,

-labelWidth, -regexp, -dirlistlabel,
-labelPack, -initialfile, -accept, -directory,

-labelForeground, -popover, -popanchor,
-labelUnderline, -labelBitmap,

-labelBorderwidth, -filelistlabel

Frame Container for
other widgets

-background, -bd, -bg, -borderwidth,
-class, -colormap, -container, -cursor, -fg,

709

Widget Purpose Options

-foreground, -height,
-highlightbackground, -highlightcolor,
-highlightthickness,

-label, -labelPack, -labelVariable, -offset,
-relief, -takefocus, -tile, -visual, -width

HList Hierarchical
list

-background, -bd, -bg, -borderwidth,
-browsecmd, -columns, -command,
-cursor,

-dragcmd, -drawbranch, -dropcmd,
-exportselection, -fg, -font, -foreground,
-gap,

-header, -height, -highlightbackground,
-highlightcolor, -highlightthickness,
-indent, -indicator, -indicatorcmd,
-itemtype, -padx, -pady, -relief,
-selectbackground,

-selectborderwidth, -selectforeground,
-selectmode, -separator, -sizecmd,
-takefocus, -wideselection, -width,
-xscrollcommand, -yscrollcommand

Label

Noninteractive
widget
displaying an
image or text

-activetile, -anchor, -background, -bd,
-bg, -bitmap, -borderwidth, -cursor,

-disabledtile, -fg, -font, -foreground,
-height, -highlightbackground,
-highlightcolor,

-highlightthickness, -image, -justify,
-offset, -padx, -pady, -relief, -takefocus,
-text,

710

Widget Purpose Options

-textvariable, -tile, -underline, -width,
-wraplength

LabEntry An Entry with
a Label

Same as Entry plus -label, -labelPack,
-labelVariable

LabFrame A Frame with
a Label Same as Frame, plus -labelside

Listbox List of text
strings

-background, -bd, -bg, -borderwidth,
-cursor, -exportselection, -fg, -font,

-foreground, -height,
-highlightbackground, -highlightcolor,
-highlightthickness,

-offset, -relief, -selectbackground,
-selectborderwidth, -selectforeground,

-selectmode, -setgrid, -takefocus, -tile,
-width, -xscrollcommand,
-yscrollcommand

MainWindow

TopLevel
widget
displayed by
MainLoop

-background, -bd, -bg, -borderwidth,
-class, -colormap, -container, -cursor, -fg,

-foreground, -height,
-highlightbackground, -highlightcolor,
-highlightthickness,

-menu, -offset, -overanchor, -popanchor,
-popover, -relief, -screen, -takefocus,
-tile,

711

Widget Purpose Options

-title, -use, -visual, -width

Menu

Emergent
window
displaying
menu items

-activebackground, -activeborderwidth,
-activeforeground, -activetile,
-background,

-bd, -bg, -borderwidth, -cursor,
-disabledforeground, -disabledtile, -fg,
-font,

-foreground, -offset, -overanchor,
-popanchor, -popover, -postcommand,
-relief,

-selectcolor, -takefocus, -tearoff,
-tearoffcommand, -tile, -title, -type

Menubutton Individual
menu items

Same as Label plus -menu, -state,
-disabledforeground, -direction,
-activeforeground, -indicatoron,
-activebackground

Message
Displays
message for
user

-anchor, -aspect, -background, -bd, -bg,
-borderwidth, -cursor, -fg, -font,
-foreground, -highlightbackground,
-highlightcolor, -highlightthickness,
-justify, -padx, -pady,

-relief, -takefocus, -text, -textvariable,
-tile, -width

NoteBook
Groups tabbed
windows
together

-background, -backpagecolor, -bd, -bg,
-borderwidth, -cursor,
-disabledforeground,

712

Widget Purpose Options

-dynamicgeometry, -fg, -focuscolor,
-font, -foreground, -inactivebackground,
-ipadx,

-ipady, -relief, -slave, -tabpadx, -tabpady,
-takefocus, -width

Optionmenu

Menu offering
the user many
mutually
exclusive
options

Same as Menubutton plus -variable,
-command, -options

Pane A scrollable
Frame

Same as Frame plus -sticky,
-xscrollcommand, -gridded,
-yscrollcommand

Photo Holds an
image

-data, -format, -file, -gamma, -height,
-palette, -width

ProgressBar

Shows user
the
“percentage
complete”

Same as Canvas plus -colors,
-troughcolor, -value, -to, -blocks,
-variable, -foreground,

-from, -length, -resolution, -fg, -gap,
-anchor, -padx, -pady

Radiobutton

A Button that,
when selected,
deselects the
rest in the
group

Same as Label plus -value, -selectcolor,
-variable, -state, -command,

-disabledforeground, -activeforeground,
-indicatoron, -selectimage,

713

Widget Purpose Options

-activebackground

ROText Text widget,
read-only Same as Text

Scale
Slider for
controlling a
number

-activebackground, -activetile,
-background, -bigincrement, -bd, -bg,
-borderwidth,

-command, -cursor, -digits, -fg,
-disabledtile, -font, -foreground, -from,

-highlightbackground, -highlightcolor,
-highlightthickness, -label, -length,
-offset,

-orient, -relief, -repeatdelay,
-repeatinterval, -resolution, -showvalue,
-sliderlength,

-sliderrelief, -state, -takefocus,
-tickinterval, -tile, -to, -troughcolor,
-troughtile,

-variable, -width

Scrollbar

Slider for
moving a
widget
horizontally or
vertically

-activebackground, -activerelief,
-activetile, -background, -bd, -bg,
-borderwidth,

-command, -cursor, -elementborderwidth,
-highlightbackground, -highlightcolor,

-highlightthickness, -jump, -orient, -relief,
-repeatdelay, -repeatinterval, -takefocus,

714

Widget Purpose Options

-tile, -offset, -troughcolor, -troughtile,
-width

Table Displays a
table of items

Same as Frame plus -rows, -scrollbars,
-fixedcolumns, -fixedrows, -columns

Text
Displays text,
editable by
user

-background, -bd, -bg, -borderwidth,
-cursor, -disabledtile, -exportselection,
-fg,

-font, -foreground, -height,
-highlightbackground, -highlightcolor,

-highlightthickness, -insertbackground,
-insertborderwidth, -insertofftime,

-insertontime, -insertwidth, -offset, -padx,
-pady, -relief, -selectbackground,

-selectborderwidth, -selectforeground,
-setgrid, -spacing1, -spacing2, -spacing3,

-state, -tabs, -takefocus, -tile, -width,
-wrap, -xscrollcommand,
-yscrollcommand

TextUndo

Text widget
suited for
writing
documents

Same as Text

Tiler A Frame of
matrix cells

Same as Frame plus -rows, -columns,
-yscrollcommand

715

Widget Purpose Options

TList Text list

-background, -bd, -bg,
-highlightbackground, -borderwidth,
-browsecmd, -command, -cursor, -fg,
-font, -foreground, -height,
-highlightcolor, -highlightthickness,

-itemtype, -orient, -padx, -pady, -relief,
-selectbackground, -selectborderwidth,

-selectforeground, -selectmode, -state,
-sizecmd, -takefocus, -width,

-xscrollcommand, -yscrollcommand

Toplevel
Decorated
container for
other widgets

Same as MainWindow

Tree
HList that lets
user open and
close portions

Same as HList plus -opencmd,
-ignoreinvoke, -closecmd

In the next article, Getting Started with Perl/Tk, Steve
provides a gentle introduction to show you what some simple
Perl/Tk programs look like.

716

Chapter 34. Getting Started with
Perl/Tk

Steve Lidie
Perl/Tk is a marvelous object-oriented Perl extension that
provides a comprehensive collection of widgets for spiffy
graphical applications. Tk was developed by John K.
Ousterhout and adapted and extended for Perl by Nick
Ing-Simmons.

Perl/Tk runs on all variants of Unix, Linux, and Windows.
The original version ran on X windows, which uses a client/
server model. Clients (such as the one you’ll see in this
article) communicate with a server that manages the
computer’s display, keyboard, and mouse. For every display
there is a window manager that provides a consistent “look
and feel,” at least at a high level, for all clients sharing the
machine’s display. There are many different window
managers, but they all provide similar facilities, such as
iconifying, moving, and resizing windows, and framing them
in decorative borders. You’ll see window manager commands
in later columns.

This article contains a gentle introduction to the fundamentals
of Perl/Tk, after which it develops a real application
step-by-step. (All of the programs in this book are available at
http://www.oreilly.com/catalog/tpj2.)

Perl/Tk is available on CPAN, and a FAQ dedicated to it is
available at http://phaseit.net/claird/comp.lang.perl.tk/

717

ptkFAQ.html, the repository of Almost Everything Ever
Written About Perl/Tk, thoughtfully maintained by Cameron
Laird.

Perl/Tk Programming

Perl/Tk programs are written using the object-oriented syntax
$object->method, where $object refers to a Tk
widget (such as a Button or Menu, or even an image), and
method names an action to be performed. We’ll learn more
about objects and such in the next column, but now, without
further ado, here is your prototypical “Hello, world”
program written in Perl/Tk, swiped from the distribution:

#!/usr/bin/perl -w
A simple Tk script that creates a button
that prints "

Hello, world".
Clicking on the button terminates the
program.
#
The first statement imports the Tk
objects into the application, the
second statement creates the main
window, the third statement creates the
button and defines the code to be
executed when the button is pressed,
the fourth line asks the packer to
shrink-wrap the application's main
window around the button, and the fifth
line starts the event loop.

use Tk;

718

$MW = MainWindow->new;

$hello = $MW->Button(-text => 'Hello,
world',

-command => sub {print
STDOUT "Hello, world\n"; exit;});
$hello->pack;
MainLoop;

When the program is executed, the window shown in
Figure 34-1 appears.

Figure 34-1. A sample Perl/Tk window

The main window, $MW, is the program’s first top-level
window—the primary “container” for most, if not all,
descendant
widgets, which form a hierarchy (each widget always has a
parent and might have children as well).

This particular top-level widget has a single child object
belonging to the Button class. All
widgets are objects derived from some base class, inheriting
its characteristics. You might have several instances of button
objects that look quite different, but share the distinguishing
characteristics of the Button class: they display a text label or
bitmap, and “do something” when pressed. When the button
in the example is pressed, the anonymous subroutine is
executed, which prints “Hello, world” and exits. The
subroutine is called because it is bound to the button click.
Almost all widget classes have default button and keypress

719

bindings established by Perl/Tk, and you can add, delete, or
modify bindings on a class or per-widget basis as you see fit.

The statement $hello = $MW->Button(…); is a
widget creation command: an object of class Button is
constructed and configured with the specified options, which
becomes a descendant of widget $MW, the main window. The
variable $hello is initialized with an object reference to the
newly created button widget. In Perl, an object reference is
just an ordinary reference that points to something that has
been “blessed” (using the Perl bless function) into a certain
class. The “something” is typically a hash or a list, and the act
of blessing an object ties it to that particular class. Perl/Tk
widget objects are hashes, as you can see from this debugging
session:

% perl -de 0

Loading DB routines from $RCSfile: ch34,v
$$Revision: 1.11 $$Date:
92/08/07 18:24:07 $ Emacs support
available.

Enter h for help.

main::(-e:1): 0

D1 use Tk
D2 $ref = { }
D3 $MW = MainWindow->new
D4 $oref = $MW->Button
D5 print $ref
HASH(0x200f78c8)
D6 print $oref
Tk::Button=HASH(0x2021c780)

720

The variable $ref is a plain reference to an anonymous
hash, whereas $oref is an object reference to a hash of class
Tk::Button. But from now on, I’ll refer to variables like
$hello and $oref simply as objects or widgets. (If you’re
not familiar with the Perl debugger, the idiom perl -de 0
starts an interactive instance of Perl where you can debug, or
simply enter Perl commands—a great environment for testing
out code.)

The statement $hello->pack; is a method invocation:
the Tk geometry manager known as the packer is invoked to
assign a size and position to the $hello object, and then to
“map” it. A widget must be mapped (or realized) before it
becomes visible on the display. By default widgets are always
packed inside their parent, and if you don’t specify otherwise,
the packer aligns them in a column, from top to bottom.

Perl/Tk programs are event driven, meaning that you don’t
write a main loop, but rather delegate that job to Tk. Instead,
you write small code sections, referred to as callbacks, a
fancy name for a subroutine, to process those events and
which Tk invokes as required. There are many Tk events that
need to be processed in a timely fashion: timers, file input and
output, and motion and button events generated by your
mouse. You activate the Tk event loop with a MainLoop
statement, which should be the last line called by your
program.

Most Perl/Tk applications share these common features:

▪ A use Tk statement at the beginning of the program
that imports the base Tk definitions.

721

▪ A primary MainWindow as the root of the widget
hierarchy.

▪ A series of widget creation commands.

▪ Optional binding and callback creation and registration
commands. (More about those soon.)

▪ A series of geometry commands to pack widgets in a
pleasing and user friendly manner.

▪ A MainLoop command to begin program execution.
(Actually, there are times when you must control event
processing yourself; we’ll see an example of this in a
later column.)

Tk provides 15
standard widgets, listed below; Perl/Tk provides additional
derived widgets, as well as composite widgets, such as
ColorEditor, Dial, FileSelect, LabEntry, and Table.
Composite widgets, also called megawidgets, are complex
objects built from these standard widgets.

Button

These widgets execute a callback when invoked. They’re
derived from the
Label widget.

Canvas

These widgets provide a drawing surface for text and
graphics.

722

Checkbutton

These widgets select one or more items from a list.
They’re derived from the Label widget.

Entry

These widgets allow users to enter and edit a single text
string.

Frame

These widgets are primarily used as containers to group
other widgets; for instance, during packing. Frames might
be arranged inside an application’s main window, with
other widgets inside them. Frames are also used as spacers
and to add colored borders.

Label

These widgets display a text or image label. Button,
Checkbutton, and
Radiobutton widgets are derived from the Label widget.

Listbox

These widgets display a list of strings and allow the user
to select one, a range, or a scattered set of the strings.

Menu

These widgets are special widgets that work in
conjunction with MenuButtons. Invoking a
Menubutton displays its associated menu. There are
various kinds of menu items, like buttons, checkbuttons,
radiobuttons, separators, and cascades.

723

Menubutton

These widgets display a label (just like Buttons) but when
selected display a Menu.

Message

These widgets are similar to Labels, but they display
multiline strings instead of just single lines.

Radiobutton

These widgets select an item from a list. They’re derived
from the Label widget.

Scale

These widgets consist of a slider which allow users to
specify a value by moving the slider.

Scrollbar

These widgets control the view of other widgets, such as
Canvas, Entry, Listbox, and Text. Users can scroll the
widget by dragging the slider.

Text

These widgets display lines of editable text. Characters in
a text widget can be colored, given specific fonts, spacing,
margins, and more.

Toplevel

These widgets are essentially secondary MainWindows.
They resemble Frames in that they act as container
widgets, except they aren’t “internal” widgets.

724

A Sample Perl/Tk Program: plop

The Perl/Tk application that I develop here is called “Plot
Program,”
or plop for short, featuring Button, Canvas, Dialog, Frame,
Label, LabEntry, Menu, Menubutton,
Scrollbar, and
Text widgets. It plots a list of mathematical functions of the
form y = f($x), where $x iterates from the graph’s
X-minimum to X-maximum. Each function is evaluated in
turn for a particular value of $x; the y value is then computed
and a point is painted on the canvas. Plop emphasizes the
canvas widget because I’ve noticed that new Tk users, after
watching around two thousand lines of canvas documentation
roll by, tend to place “exploring the canvas widget” at the end
of their to-do list!

A canvas widget can be thought of as an artist’s canvas for
freehand drawing of graphics and text organized as a classical
Cartesian coordinate system. A key difference is that the
canvas origin, position (0,0), is defined to be the top left
corner of the canvas window, so canvas X coordinates
increase when moving right (as you’d expect) and Y
coordinates increase when moving down (as you wouldn’t).
Also, canvas coordinates can’t have negative values. For
these reasons, we’ll use and equation to transform between
canvas and Cartesian coordinates.

Here’s the first version of plop:

#!/usr/bin/perl -w
use strict;

725

use Tk;

my ($o, $s) = (250, 20);
my ($pi, $x, $y) = (3.1415926, 0);
my $mw = MainWindow->new;
my $c = $mw->Canvas(-width => 500, -height
=> 500);

$c->pack;
$c->createLine(50, 250, 450, 250);
$c->createText(10, 250, -fill => 'blue',
-text => 'X');
$c->createLine(250, 50, 250, 450);
$c->createText(250, 10, -fill => 'blue',
-text => 'Y');

for ($x = -(3*$pi); $x <= +(3*$pi); $x +=
0.1) {

$y = sin($x);
$c->createText($x*$s+$o, $y*$s+$o,

-fill => 'red', -text => '.');
$y = cos($x);

$c->createText($x*$s+$o, $y*$s+$o,
-fill => 'green', -text => '.');
}

MainLoop;

Granted, this is really ugly code, lacking in style, but it’s a
proof of concept. As you’ll see, I’ll whip this code into proper
shape pronto! Before I explain it, you can see what it looks
like in Figure 34-2.

726

Figure 34-2. A “plop” graph of sine and cosine

Some global variables are initialized, the main window ($mw)
and a canvas widget ($c) are created, and the canvas is
realized. The next four statements create two canvas line
items (for the graph axes) and two text items (for the axis
labels). Other canvas item types are arcs, bitmaps, groups,
images, ovals, polygons, rectangles, and windows.

These statements draw and annotate the X axis:

727

$c->createLine(50, 250, 450, 250);
$c->createText(10, 250, -fill => 'blue',
-text => 'X');

Here, I’m creating one line item and one text item. Since the
canvas is 500x500 pixels, I deliberately arranged for canvas
coordinate position (250,250) to coincide with the Cartesian
origin (0,0). I also wanted to have 50-pixel wide top/bottom
and left/right margins. Given these constraints, the X axis line
starts at (50,250) and extends horizontally to (450,250), with
a blue letter “X” painted in the left margin at (10,250).
Similarly, the Y axis is stroked vertically from top to bottom
and labeled with a blue “Y”. Now all that remains is to graph
some functions.

The for statement varies from -3π to +3π radians, and even
old biology-types like myself know that sine and cosine
return values in the range [-1,1]. Such tiny values aren’t
especially useful unless you’re looking for a graph one pixel
high, so a transform is required:

$y = sin($x);
$c->createText($x*$s+$o, $y*$s+$o, -fill
=> 'red', -text => '.');

We want to scale our $y values, which is what the expression
$y*$s+$o does: the Y value is enlarged 20 times and
translated to the canvas origin. Then a red dot is deposited on
the canvas. (There’s actually a bug is the transform equation.
Can you spot it? Hint: try graphing the exp function.)

728

Improving plop

So much for the ugly plop prototype; with a lot of work I
can turn this code into a first-rate Perl/Tk application. For
starters, I want to eliminate every single hardcoded value and
use variables instead. Then I’ll add these features:

▪ A menu across the top. Like all respectable applications,
it’ll have File and Help menubuttons.

▪ A title for the graph.

▪ Adjustable minimum and maximum X and Y values.

▪ An editable list of functions.

▪ The option to read in functions from a file. Heck, let’s
just do it: eval {require “plop.pl”;}. Just
store your private functions in the file plop.pl and
they’ll be available for plotting. For instance, plop.pl
might contain these lines if you wanted to graph the
hyperbolic arctangent:

sub atanh {
return undef if ($_[0] < -1 or

$_[0] > 1);
return .5 * log((1 + $_[0]) /

(1-$_[0]));
}

1;

Figure 34-3 illustrates a sample run of the new plop.

The main window is divided into three major regions: a top
frame with menubuttons (containing the File and Help

729

menus), the canvas in the middle (including the title and
boundary values), and a bottom area containing a series of
other widgets (including a scrollable text widget with the list
of functions).

Figure 34-3. A sample Perl/Tk window

The Perl code has been modularized and looks something like
this:

730

my $MW = MainWindow->new;
initialize_

dialogs;
initialize_menus;
initialize_canvas;
initialize_functions;

Subroutine initialize_dialogs creates
dialog widgets that aren’t part of the main window
proper—they pop up at certain times, wait for the user to
respond, and then go away. Typically they persist for the
lifetime of the application: thus, they are created once during
program initialization and are then hidden until it’s time to
“Show” them; Show is a dialog method that deiconifies the
widget, waits for the user to select a dialog button, and then
returns the label of the selected button to the program. Here is
how plop’s “About” dialog widget is created:

$DIALOG_ABOUT = $MW->Dialog(
-title => 'About',

-text =>
"plot_program $VERSION\n\n" . ' 1995/12/
04',

-bitmap => 'info',
-buttons =>

['Dismiss']);

Like all widget creation commands, $MW->Dialog returns
a reference to an object. The buttons attribute is a list of
strings that specify the button labels. In this case, there’s only
one button, “Dismiss,” which hides the dialog after you’ve
read the really informative “About” message!

To create the plop

731

menus, initialize_menus reuses some old code that
generates menubuttons from a data structure, mainly because
I’m lazy and menus always take time to get just right. My
next column goes into details on menus, cascades, and so on,
but for now examine this code:

$MBF = $MW->Frame(-relief => 'raised',
-borderwidth => 1);
$MBF->pack(-fill => 'x');

make_menubutton($MBF, 'File', 0, 'left',
[['Quit', \&exit, 0]]);
make_menubutton($MBF, 'Help', 0, 'right',

[['About', [$DIALOG_ABOUT
=> 'Show'], 0],

['', undef, 0],
['Usage', [$DIALOG_USAGE

=> 'Show'], 0]]);

The first statement creates the container frame to hold the
menubuttons, with a relief of “raised” and a
borderwidth of one. The relief attribute specifies the
widget’s 3D look, but you need a non-zero borderwidth to see
it. Notice that the frame is packed with its fill attribute set to
“x”, which makes the packer geometry manager expand the
frame in the X direction to fill all available space. Otherwise,
the File and Help menubuttons would be mapped side-by-side
and centered in the frame. Creating the menubuttons and their
corresponding menu items entails calls to
make_menubutton with these five parameters:

1. The parent widget.

2. The menubutton label.

732

3. The shortcut character index. All our menubuttons have
a shortcut character index of 0. For example, the 0th
(first) character of “File” is ‘f’, which means that users
can type Alt-f to activate the File menu.

4. The side of the menu frame to pack the menubutton.

5. A list of lists describing the menu items. Each inner list
has three components: a label, a callback that is executed
when the menu item is invoked, and a shortcut underline
character. Null labels are treated as
separators—do-nothing menu items that appear as lines.

Callbacks come in various flavors, and we’ll see more of
them in later columns. But in plop’s case there are just two:
an explicit reference to a subroutine (also called a code
reference), and a reference to an array. An example of the first
form is the Quit menu item, which calls exit. The Help
menu items use the second form, where the first array element
is an object (widget reference) and the second is the name of
the method to invoke. Thus, when the user selects “About,”
the about dialog widget appears. Note that widgets used in
callbacks must exist before they are referred to—that’s
precisely why we had to create the dialog widgets first.

The initialize_canvas subroutine generates the
middle area of plop’s main window but is slightly different
than the first version, because it has a title, embedded widgets
with editable X and Y values, and axes moved to the borders
of the area to reduce visual clutter.

$CANV = $MW->Canvas(-width => $MAX_PXL +
$MARGIN * 2,

-height => $MAX_PXL,
-relief => 'sunken');

733

$CANV->pack;
$CANV->CanvasBind('<Button-1>' =>
\&display_coordinates);

The above code creates the canvas but uses global “constants”
rather than hardcoded values: $MAX_PXL is obviously the
size of the canvas, in pixels. Here’s our first callback, which
binds the subroutine display_coordinates to mouse
button 1.

$CANV->createText(325, 25,
-text => 'Plot Continuous Functions Of

The Form y=f($x)',
-fill => 'blue');

Nothing new there, eh? But something new follows—the
window canvas item type, demonstrated in the second and
fourth statements below:

Create the X axis and label it. Then
label the minimum
and maximum X values, and draw tick
marks to
indicate where they fall. The axis
limits are LabEntry
widgets embedded in Canvas windows.

$CANV->createLine($MIN_PXL + $MARGIN,
$MAX_PXL - $MARGIN,

$MAX_PXL - $MARGIN,
$MAX_PXL - $MARGIN);

$CANV->createWindow($MIN_PXL + $MARGIN,
$MAX_PXL - $label_offset,

-window => $MW->LabEntry(
-textvariable => \$X_MIN,

-label => 'X Minimum'));

734

$CANV->createLine($MIN_PXL + $MARGIN,
$MAX_PXL - $MARGIN - $tick_length,

$MIN_PXL + $MARGIN,
$MAX_PXL - $MARGIN + $tick_length);

$CANV->createWindow($MAX_PXL - $MARGIN,
$MAX_PXL - $label_offset,

-window => $MW->LabEntry(
-textvariable => \$X_MAX,

-label => 'X Maximum'));

$CANV->createLine($MAX_PXL - $MARGIN,
$MAX_PXL - $MARGIN - $tick_length,

$MAX_PXL - $MARGIN,
$MAX_PXL - $MARGIN + $tick_length);

The first canvas line item is simply the horizontal X axis, and
the two remaining lines are the tick marks at each end. The
two window items are containers where other objects can be
stuffed, in this case two composite LabEntry widgets, which,
as you might guess, combine the features of label and entry
widgets. Their textvariable attributes are references to
scalars $X_MIN and $X_MAX; when the program changes
the variable’s value, it’s reflected on the display, and when
the user edits a LabEntry, the associated textvariable is
updated. The Y axis is handled in a similar manner.

Subroutine initialize_functions creates plop’s
remaining widgets, which are, in top-to-bottom packing order,
a spacer frame, a label providing rudimentary instructions, a
text widget with an attached scrollbar, and finally another
container frame to hold a button or so.

735

$MW->Frame(-height => 20)->pack;
$MW->Label(-text => 'Enter your
functions here',

-foreground => 'blue')->pack;

Create a Frame with a scrollable Text
widget that
displays the function list, and a Button
to
initiate plot activities.

my $functions_frame = $MW->Frame;
$functions_frame->pack;
$TEXT = $functions_frame->Text(-height =>
6);
$TEXT->pack;
$functions_frame->AddScrollbars($TEXT);
$functions_frame->configure(-scrollbars =>
'e');
update_functions;

my $buttons_frame = $MW->Frame;
$buttons_frame->pack(-padx => 10, -pady =>
5,

-expand => 1, -fill
=> 'x');
my @pack_attributes=qw(-side left -fill x
-expand 1);
$buttons_frame->Button(-text => 'Plot',

-command =>
\&plot_functions)->pack(@pack_attributes);

The above code creates a 20 pixel high frame (so much for
the ban on hardcoded constants!) to occupy space, and some
instructional text in blue. (Anywhere you can give a
dimension as an integer pixel value, you can also append the
characters i, c, m or p, to indicate inches, centimeters,
millimeters, or points.)

736

Next we create the text widget, $TEXT, with a scrollbar
anchored “east,” and finally a large “Plot” button. Notice the
convenient method AddScrollbars for attaching
scrollbars to the text widget. The text widget contains the
function list, which is particularly appropriate since each line
can be tagged and assigned a different color. The function
values are then plotted in that color.

The graphical interface in now complete, and when the user
invokes the “Plot” button, the callback plot_functions
is executed. Before plotting the function list, plop tidies up
the text window and ensures that each function is assigned its
proper color, providing for up to nine simultaneous functions
before the colors cycle. Here’s the code:

$TEXT->delete('0.0', 'end');
my $i = 0;
foreach (@FUNCTIONS) {

$TEXT->insert('end', "$_\n", [$i]);
$TEXT->tagConfigure($i, -foreground =>

$COLORS[$i % $NUM_COLORS],
-font =>

'fixed');
$i++;

}
$TEXT->yview('end');

First, everything is deleted, from line zero, character zero, to
the end of the text widget. Then, each function from the
@FUNCTIONS array is inserted and assigned a tag, which
just happens to be its order in the text widget. A tag is simply
an identifying string used for reference in other widget
commands. In this case, the tagged text items are configured
with their unique foreground color and assigned a fixed space
font.

737

Now that the text widget is in sync with the function list, let’s
plot some functions:

$CANV->delete('plot');
$canv_x = $MIN_PXL + $MARGIN; # X
minimum
$DX = $X_MAX - $X_MIN; # update
delta X
$DY = $Y_MAX - $Y_MIN; # update
delta Y

ALL_X_VALUES:
for ($x = $X_MIN; $x <= $X_MAX; $x +=
(X_MAX-X_MIN) / $ALEN) {

ALL_FUNCTIONS:
foreach (0 .. $#FUNCTIONS) {

$y = eval $FUNCTIONS[$_];
$canv_y = (($Y_MAX - $y) / $DY) *

$ALEN + $MARGIN;
if ($canv_y > $MIN_PXL + $MARGIN

and $canv_y < $MAX_PXL + $MARGIN) {
$CANV->createText($canv_x,

$canv_y,
-fill =>

$COLORS[$_ % $NUM_COLORS],
-tags =>

['plot'], -text => '.',);
}

} # end of ALL_FUNCTIONS
$canv_x++; # next X

pixel
} # end of ALL_X_VALUES

After all this we’re back to where we started, except that the
code has been made more general and the transform equation
has been fixed. $X_MIN and $X_MAX are dynamically
assigned because they’re part of the LabEntry widgets, and
the X increment is calculated dynamically based on those

738

values and the axis length. Y points painted on the canvas are
automatically assigned their proper colors. And each point is
tagged with the string “plot,” so all current graphs can be
easily deleted the next time the “Plot” button is pushed; that’s
what the $CANV->delete(‘plot’) is for.

But there’s one stone left unturned: the button binding
established during canvas creation. Since we already know
how to convert a Cartesian coordinate to a canvas coordinate,
I thought it would be interesting to do the opposite: click
anywhere on the canvas to display the Cartesian coordinates.
The following code demonstrates how to handle an X event
structure, in this case a button press:

sub display_coordinates {
my ($canvas) = @_;
my $e = $canvas->XEvent;
my ($canv_x, $canv_y) = ($e->x, $e->y);
my ($x, $y);

$x = $X_MIN + $DX * (($canv_x -
$MARGIN) / $ALEN);

$y = $Y_MAX - $DY * (($canv_y -
$MARGIN) / $ALEN);

print "\nCanvas x = $canv_x, Canvas y
= $canv_y.\n";

print "Plot x = $x, Plot y = $y.\n";
}

When a binding callback is executed, the subroutine is
implicitly passed a reference to its widget—here, the canvas.
Using XEvent, the variable $e is now assigned a reference
to the event structure. Two of $e’s methods, x and y, return
the relative position of the mouse when button 1 was pressed.
Once the coordinates are known, it’s a simple matter of using
the existing transform equation, solving for X and Y, and
printing the results.

739

In the next article, we’ll look more into objects, build a
composite widget, and examine menus in greater detail.

740

Chapter 35. Scoreboard: A
15-Minute Perl/Tk Application

Jon Orwant
In this article, I’ll walk you through the scoreboard
application I wrote for my Internet Quiz Show. (If you’re
interested in the show itself, the questions and answers will be
available in the third Best of TPJ book, Games, Diversions &
Perl Culture.) The application is a simple demonstration of
Text, Button, and Frame widgets, as well as huge fonts.

The Need

As an undergraduate, I participated in College Bowl—a quiz
competition for college students to test their trivia knowledge.
Later, as a graduate student, I became a judge for College
Bowl contests, during which I created an annual Perl Quiz
Show for the O’Reilly Perl Conferences. As the conference
grew in size and scope (becoming the Open Source
Convention), my quiz show changed accordingly, and was
rechristened the Internet Quiz Show.

In “real” College Bowl, there is a team of officials: the
moderator, who reads the questions; the judge, who
determines if player answers are correct; the recognizer, who
calls out the name of the player who buzzed in first; and one
or two scorekeepers who track the score on both paper and a
chalkboard.

741

However, on stage at the O’Reilly conference, there’s no
team of officials—I have to do everything. Combining these
roles isn’t too hard, but I can’t walk over to a chalkboard
every time the score changes—it would take too much time,
and people in the back of the 1,500-seat auditorium wouldn’t
be able to see. So I created a graphical application with Perl/
Tk. (Perl/Tk runs under both Unix and Windows, so whatever
operating system is running on the podium computer, chances
are I’ll be able to run scoreboard.)

742

The Design

As with all of my Perl/Tk programs, I began by envisioning
what I wanted the finished product to look like. I wanted the
score to be huge so that people in the back of the auditorium
could see it, and I wanted the buttons to be relatively large so
that I’d be less likely to hit the wrong one. I needed to be sure
that I could fix things in case I hit the wrong button.
Figure 35-1 shows scoreboard in action.

Figure 35-1. The Internet Quiz Show scoreboard

Some of my desiderata for scoreboard:

▪ In addition to showing the score, I wanted a title
showing the audience what round it was (e.g.,
“Semifinals Round 2”) as well as titles of the teams.

▪ I wanted huge numbers for the score so that people in the
back of the auditorium would be able to see.

743

▪ I wanted large buttons so that I didn’t have to spend a lot
of time positioning the mouse during the show.
However, I wanted the large buttons to have small text
so that it didn’t steal attention away from the score.

744

The Implementation

The result was a 78-line program that creates two Frame
widgets, five Text widgets, and 16 Button widgets.
Example 35-1 shows the entire program; we’ll walk through
it line by line.

Example 35-1. The scoreboard application
01 #!/usr/bin/perl
02 #
03 # scoreboard.pl -- scoreboard
appliation for the Internet Quiz Show
04
05 use Tk;
06
07 # Create the main window
08 $window = MainWindow->new;
09
10 # Create constants for the three fonts
on the scoreboard
11 use constant bigfont =>
'-*-Helvetica-Bold-R-Normal--*-1920-*-*-*-*-*-*';
12 use constant teamfont =>
'-*-Garamond-Bold-R-Normal--*-240-*-*-*-*-*-*';
13 use constant titlefont =>
'-*-Garamond-Bold-R-Normal--*-360-*-*-*-*-*-*';
14
15 # Create a text widget to display
which round this is
16 $title = $window->Text(-width => 119,
-height => 6, -bg => "light gray",
17 -relief =>
"flat")->pack(-side => 'top', -expand =>
"no", -padx => 1);
18 $title->tag(configure => 'big', -font

745

=> titlefont);
19 $title->insert('end', "O'Reilly
Internet Quiz Show\n" . $ARGV[0], 'big');
20
21 # Create two frames -- one for the
left team, one for the right
22 $left = $window->Frame->pack(-side =>
'left', -expand => yes,
23 -padx =>
1, -pady => 1);
24 $right = $window->Frame->pack(-side =>
'right', -expand => yes,
25 -padx =>
1, -pady => 1);
26
27 # Create a text widget to hold each
team name
28 $teamleft = $left->Text(width => 45,
height => 3, -relief => "flat",
29 -bg => "light
gray")->pack(-side => 'top');
30 $teamright = $right->Text(width => 45,
height => 3, -relief => "flat",
31 -bg =>
"light gray")->pack(-side => 'top');
32 $teamleft->tag(configure => 'team',
-font => teamfont);
33 $teamright->tag(configure => 'team',
-font => teamfont);
34 $teamleft->insert('end', $ARGV[1],
'team');
35 $teamright->insert('end', $ARGV[2],
'team');
36
37 # Create a text widget to hold each
team score
38 $textleft = $left->Text(width => 45,
height => 12)->pack(-side => 'top');

746

39 $textright = $right->Text(width => 45,
height => 12)->pack(-side => 'top');
40 $textleft->tag(configure => 'verybig',
-font => bigfont);
41 $textright->tag(configure =>
'verybig', -font => bigfont);
42
43 # Set the initial scores to 0
44 $scoreleft = $scoreright = 0;
45 $textleft->insert('end', $scoreleft,
'verybig');
46 $textright->insert('end', $scoreright,
'verybig');
47
48 # Create the 16 buttons
49 for (my $score = -10; $score <= 30;
$score += 5) {
50 next unless $score; # (We don't
want a button that adds zero points.)
51 $buttonleft[++$i] =
$left->Button(-text => $score,
52
-command => scoreleftmaker($score));
53 $buttonleft[$i]->pack(-side =>
'left', -padx => 10);
54 $buttonright[$i] =
$right->Button(-text => $score,
55
-command => scorerightmaker($score));
56 $buttonright[$i]->pack(-side =>
'left', -padx => 10);
57 }
58
59 # We're done creating widgets, so it's
time to play.
60 MainLoop;
61
62 sub scoreleftmaker {

747

63 my ($score) = shift;
64 return sub {
65 $scoreleft += $score;
66 $textleft->delete('1.0', 'end');
67 $textleft->insert('end',
$scoreleft, 'verybig');
68 }
69 }
70
71 sub scorerightmaker {
72 my ($score) = shift;
73 return sub {
74 $scoreright += $score;
75 $textright->delete('1.0', 'end');
76 $textright->insert('end',
$scoreright, 'verybig');
77 }
78 }

Lines 01–05 invoke the Perl interpreter and load the Tk
module, and line 08 creates the
application window. (Note that Figure 35-1 has a titlebar; the
Scoreboard title appearing there was created automatically by
Perl/Tk.)

Lines 11–13 create some font strings. They’re just regular
strings; there’s no need to store them in variables (here,
bigfont, teamfont, and titlefont), but the strings
are so long that I prefer to give them shorter names. (The
use constant pragma creates read-only variables,
although for this application I could just as well have used
regular Perl scalars.) These are X font strings, and Perl/Tk
uses them even if it’s not running under X (as is the case with
the Windows laptop on which I developed scoreboard).

748

An X font string contains 14 attributes that collectively
describe everything you might want to control about a font:
the foundry, family, weight, slant, set width, style, pixel size,
point sixe, horizontal and vertical resolution, spacing, average
width, character set registry, and character set encoding.
Typically, you’ll just care about family, size, weight, slant,
and set width. Whenever you don’t care about a font attribute,
you can defer the choice to Perl/Tk with an asterisk. So this
font string means the Garamond family, with a Bold weight,
Roman slant (i.e., no slant at all) and a size of 240:

'-*-Garamond-Bold-R-Normal--*-240-*-*-*-*-*-*'

Lines 16–19 create a Text widget to hold the title at the top of
scoreboard; in Figure 35-1, it’s the text reading
“O’Reilly Internet Quiz Show, Semifinal Round 1.” The
“Semifinal Round 1” was passed in as the first argument to
scoreboard (which I invoked as scoreboard
“Semifinal Round 1” “Race Conditions”
“Dining Philosophers”. We use a plain Text
widget, but we could also have used an ROText widget to
make the title read-only. We create the widget by invoking
the Text method of $window (lines 16–17), hardcoding
the dimensions of the widget as well as the background color
(chosen to match the application background) and a relief of
flat so that the text appears painted on rather than raised or
sunken. The widget is then packed—otherwise, the text
wouldn’t appear at all. Line 18 sets the font, and line 19
appends the text to the (currently blank) widget.

Lines 22–25 create two Frames: $left and $right. These
are expandable spaces on the scoreboard
application that are designed to hold other widgets. You can’t
point to anything in Figure 35-1 and say “That’s the Frame,”

749

but these two Frames are what enable the buttons for the Race
Conditions to be placed below the score for the Race
Conditions. Likewise for the Dining Philosophers.

Lines 28–35 create two Text widgets for each team name:
$teamleft and $teamright. Here’s the first use of our
two Frames: we invoke the Text method not from $window
(as we did to create the title) but from $left and $right.
We configure them with a smaller Garamond font and insert
the team names (provided on the command line as the second
and third arguments: $ARGV[1] and $ARGV[2]).

In lines 38–41, scoreboard creates one more Text
widgets to display the score for each team. Lines 44–46 sets
the initial score for each team to 0 and then displays it.

Lines 49–57 is the trickiest part of the program. Inside each
Frame, just below the score, we want to display eight buttons
for the different score changes (anywhere from subtracting 10
points to adding 30). We loop from –10 to 30 by increments
of five, skipping over zero (since we don’t need a button to
add zero points). As we iterate through the loop, we build up
an array of Button widgets. As you can see from the pack
expressions, we give them a padx of 10—that’s to ensure
that the button is substantially bigger than the text on its label.
(Remember, I wanted big buttons but small text.)

The -command => scoreleftmaker($score)
expression in line 52 and its counterpart in line 55 are the
keys to this application. scoreleftmaker and
scorerightmaker are subroutines that themselves
generate subroutines.. If you look at their definitions in lines
62–78, you’ll see that they return anonymous subroutines.
These anonymous subroutines are closures, because they

750

bring their own lexical scope (the scope that remembers the
$score) with them. scoreleftmaker and
scorerightmaker are only invoked at the very
beginning of the application, and not when the players are
actually spouting off trivia. In contrast, the anonymous
subroutines that they generate are invoked whenever I press
one of the buttons. These are the callbacks for our buttons.

Another way to think about this process is that Perl/Tk
evaluates whatever expression follows -command just
once—when your application launches. So it’s up to you to
ensure that the expression yields a subroutine that can be
executed. Usually, that will either look like an anonymous
subroutine declaration:

-command => sub { print "Hello, world!" }

or a reference to a named subroutine:
-command => \&hello

but in scoreboard, we add a level of indirection by
executing a subroutine that returns an anonymous subroutine:

-command => scoreleftmaker($score)

Finally, in line 60 we execute the usual last line of Perl/Tk
programs: MainLoop, which signals that it’s time to stop
arranging widgets and start paying attention to the user’s
keyboard and mouse.

So there you have it! A 15-minute Perl/Tk application that
uses the Text, Button, and Frame widgets. In the next article,
The Mouse Odometer, Steve develops a more complicated
application.

751

Chapter 36. The Mouse Odometer

Steve Lidie
If you read Getting Started with Perl/Tk and Scoreboard: A
15-Minute Perl/Tk Application, you should be a seasoned Tk
novice by now. Assuming so, let’s move right along and
examine the Perl/Tk implementation of the Mouse Odometer,
named modo and pictured in Figure 36-1.

Figure 36-1. modo, the mouse odometer

modo has got to be one of the most pointless programs ever
written. But it illustrates numerous Perl/Tk features, so it does
have some value. I first saw similar code for the Mac, written
by Sean P. Nolan, that simply tracked a machine’s cursor.
Currently I have logged well over 51 kilometers on my
cursor, and my mouse has careened around its pad some 14
kilometers.

752

Measuring Distance

Most of this column is not about modo and how it works, but
rather the Perl/Tk features it uses. This time we’ll learn how
to schedule asynchronous timer events, and look more closely
at window manager commands, menus, menubuttons, and the
ColorEditor. We’ll also create and explain in detail an
object-oriented Perl/Tk composite widget that we’ll create
called the Odometer. Like a car’s odometer, we want our
mouse odometer to record the physical distance traveled by
the mouse, not the number of pixels. In a car, you want to
know how many miles you’ve traveled, not merely the
number of tire-lengths, which will vary from car to car. In the
X window system you can use the xdpyinfo command to
find out the number of millimeters-per-pixel of your display,
and that, multiplied by a pixel count, gives the distance in
millimeters. Unfortunately, pixels aren’t always square, so
there are actually two numbers to worry about: the horizontal
and vertical millimeter per pixel ratios. Once we know those
numbers, we can figure out the distance D given the number
of pixels traversed in the X and Y directions, which we’ll call
dX and dY. In pseudocode:

D = sqrt((dX * ($mmX/$pixelsX)) ** 2 + (dY * ($mmY/
$pixelsY)) ** 2);

How can we figure out dX and dY? Well, Tk provides the
command pointerxy, which returns a two-element list:
the cursor’s absolute X and Y coordinates. (In deference to
Einstein, who taught us that nothing is absolute, we’ll say
“relative to the root window of your display.”) So if we call
pointerxy twice, we can subtract the results, yielding our
dX and dY. Then we can just apply the above formula. (Which

753

is thankfully just the Pythagorean Theorem, since we’re
dealing with a non-curved two-space. Otherwise we might
need Albert’s ten-dimensional tensors.)

The major components are a row of menubuttons (often
called a menu bar), two sets of odometers (one for the cursor
and one for the pointer), and a status line showing the
distance units and cursor coordinates. Here is modo’s main
loop, with a tiny amount of code dealing with pointing device
distance removed for clarity:

sub modo {
Track the cursor forever,

periodically updating the odometer file.
my($x, $y) = $MW->pointerxy;

$W_MISC_TEXT = sprintf("U=%-3s
(%4d,%4d)", $MODO_UNITS_HUMAN, $x, $y);

my ($dx, $dy) = (abs($x - $LAST_X),
abs($y - $LAST_Y));

($LAST_X, $LAST_Y) = ($x, $y);
my ($dxmm,$dymm) = ($dx*$MM_PIXEL_X,

$dy*$MM_PIXEL_Y);
my $d = sqrt(($dxmm * $dxmm) + ($dymm

* $dymm));
$W_CODO->add($d,$MODO_UNITS) if $d > 0;
if ($AUTOSAVE_COUNT-- <= 0) {

$AUTOSAVE_COUNT = $AUTOSAVE_TICKS;
eval {save_modo};

}
$MW->after($MILLISECOND_DELAY, \&modo);

}

Upon startup, modo is called once, and exactly once. The
modo subroutine performs several tasks:

▪ It fetches the pointer’s X/Y information and updates the
variable $W_MISC_TEXT with the current display

754

units and cursor’s root window coordinates. This
variable has been specified as the -textvariable
option of the label widget packed at the bottom of
modo’s window. As you learned last time, changing a
-textvariable updates the display immediately.

▪ It calculates the distance the cursor has moved, in
millimeters.

▪ It adds a non-zero
distance to the cursor Odometer widget $W_CODO. Note
that add is a method of class Odometer. Later we’ll see
how the Odometer class was created and why it behaves
like a standard Perl/Tk widget.

▪ It periodically saves the distance data to a file so that
useless odometer data is not lost. The tick count is based
on how often you want the state information saved and
the time interval between invocations of modo.

▪ It reschedules itself via a call to after. There are
several ways to invoke after, but in Tk-land the form
shown above is the most common. The first parameter is
the delay time in milliseconds after which the second
parameter, a standard Tk callback, is executed. Since this
event is asynchronous modo returns and “pops the
stack.” After the delay the callback is invoked and modo
is called once again, does its thing, reschedules itself,
and returns.

There are many aspects to designing and writing a robust
application, and one of them is to give the user adequate
real-time feedback so they know things are “working.” Since
modo takes some time to start up, we’ll open a new top-level

755

window that displays its current initialization state, along
these lines:

$QUIT_COMMAND = sub {save_modo; exit};
$MW = MainWindow->new(-screen =>
$OPT{'display'});
$MW->withdraw;
$MW->title($OPT{'title'});
$MW->iconname('modo');
$MW->iconbitmap("\@$LIBDIR/icon.xbm");
$MW->minsize(50, 50);
$MW->protocol('WM_DELETE_WINDOW' =>
$QUIT_COMMAND);
unless ($OPT{'iconic'}) {

Realize a transient toplevel to
display modo's initialization status.

$STATUS = $MW->Toplevel;
$STATUS->positionfrom('user');
$STATUS->geometry('+100+100');
$STATUS->title('Initializing modo');
$STATUS_B = $STATUS->Label(-bitmap =>

"\@$LIBDIR/icon.xbm")->pack;
$STATUS_L = $STATUS->Label(-text =>

'Main Window ...',
-width =>

25,)->pack;
$MW->idletasks;

}
update_status 'Global Stuff';

What’s that dangling anonymous subroutine doing there at the
top? Well, it simply defines what needs to be done when
terminating modo. There are at least two ways to exit: either
by selecting Quit or by having the window manager close
the main window, so it makes sense to define a subroutine.
Thus, $QUIT_COMMAND is initialized with a code reference
that can be used whenever necessary.

756

As always, we first open the main window on some
display—the new method accepts an optional parameter
specifying the particular display desired. (Be aware that
modo uses a special hash, named %OPT, to hold argument
name-value pairs, whether created by default or extracted
from the command line.) Next there is a series of main
window method calls known as window manager commands,
because they are used to interact with the window manager.

We withdraw the main window to unmap it from the display,
so only the status window will be visible (once it’s created).
The title method draws text at the top of the decorative
border provided by the window manager, and the two “icon”
methods specify a name and X bitmap for the application’s
icon. minsize restricts the user from resizing the window
smaller than fifty pixels in either dimension (there is also a
related maxsize method). Finally, note the idiom for
registering a callback with the window manger to terminate
an application: simply associate a standard Perl/Tk callback
with the WM_DELETE_WINDOW protocol.

Assuming the user didn’t fire up modo iconified, we next
create the top-level status widget. The methods
positionfrom and geometry are suggestions to the
window manager on where to place the new top-level. Some
window managers, fvwm for instance, normally require you
to explicitly place top-level windows;
positionfrom(‘user’) overrides this behavior.
Finally two label widgets are packed in the top-level, the first
containing modo’s X bitmap and the second containing the
current initialization state. Since the X server tries to buffer
events to improve performance, idletasks is used to flush
idle callbacks and hence keep the display responsive. (We’ll

757

see more of event management in the next column.) A
snapshot of the status window is shown in Figure 36-2.

Figure 36-2. modo’s initialization window

Lastly note the first call to subroutine update_status,
which simply uses configure to change the text in the
status window via $STATUS_L; there are numerous calls to
this subroutine sprinkled throughout modo’s initialization
code. Doing this keeps users happy.

758

Menus

Another key aspect in user-friendly GUI design is providing a
reasonably consistent “look and feel.” Whether an application
is written for X, Windows, or the Mac, you find, and indeed
expect, a row of menubuttons (the menu bar) at the top of the
program’s main window. And the leftmost button is a File
menubutton, which at least allows you to exit the application.
So to be conformant, modo also has a File menubutton,
which we’ll examine now.

A menubutton is a subclass of a button, meaning that it
shares, or inherits, many of a button’s characteristics. The big
difference is that pushing a button executes a callback
whereas pushing a menubutton posts a menu. A menu is
simply a rectangular widget that contains one or more menu
items that when pressed, might execute a callback, set a Perl
variable, or invoke yet another menu (an action called
cascading). Pressing the File menubutton displays the
menu shown in Figure 36-3.

Figure 36-3. The File menu

759

The File menu itself is composed of simple button-like
objects bound to callbacks. More precisely, we call these
command menu items because they execute a command
(callback) when pressed. Other types of menu items include
cascade, checkbutton, radiobutton, and
separator.

The File menu has three thin lines: separator menu
items, whose sole purpose is to visually separate logically
distinct portions of the menu.

The File menu also has a tear-off, which is the dashed line
above Abort. Pressing a tear-off reparents the menu and puts
it under control of the window manager. Thus, it gets its own
decorative border, can be moved, iconifed, closed, and so on.
By default all Perl/Tk
menus have a tear-off.

Here are some other facts you need to know about menus:

▪ As a convenience, Perl/Tk automatically generates a
menubutton’s associated menu widget when the first
menu item is created. Two common cases where you
need to manually create a menu are to disable the
tear-off and to create menu cascades.

▪ Menu items can be manipulated in several ways: added,
configured, deleted, or invoked. To manipulate a menu
item you refer to it either by its position in the menu
(starting at zero) or by its text label. If there is a tear-off
it is assigned index zero, making the first menu item
have an index of one. Since a separator is a menu item, it
too has a menu index. (I highly recommend referencing
menu items by label name rather than index. You’ll
know why as soon as you insert a new menu item in the

760

middle of a menu and then have to hunt through your
code changing index values!)

In case that was all as clear as mud, maybe some code will
clarify matters. Let’s create the application’s menubar using a
frame, $mb, and pack our menubuttons in a row, from left to
right:

File menu.
my $mbf=$mb->Menubutton(-text => 'File',
-underline => 0...);
$mbf->pack(qw(-side left));
$mbf->command(-label => 'Abort',
-underline => 0,

-command => \&exit);
$mbf->separator;
my $close_command = [$MW => 'iconify'];
$mbf->command(-label =>
'Close', -underline => 0,

-command => $close_command,
-accelerator => 'Ctrl-w');
$MW->bind('<Control-Key-w>' =>
$close_command);

When Perl/Tk finishes building the Abort menu item we
know that a menu widget has been generated with a tear-off
(index 0) and one command menu item (index 1, name
Abort). (An often asked question is: “How do I make a menu
without a tear-off?” The answer is you must explicitly create
a menu with -tearoff => 0, and then configure the
menubutton with -menu => $your_menu. Then you
can proceed normally.)

The Close menu item (index 2) has an associated keyboard
accelerator. However, this just adds more text to the menu
item label; you still have to create the key binding. Since the

761

close code is needed in two places, just create a code
reference and use that.

Another common menu item is the cascade, illustrated in
Figure 36-4.

Figure 36-4. Cascading preferences for modo

Pressing the Prefs menubutton from the menubar displays
the leftmost menu, containing a cascade and command menu
item. Pressing the Odometers cascade displays the
cascade’s menu, containing three radiobutton menu
items. (Of course, the cascade menu could contain another
cascade, which could have another cascade, which… well,
you get the picture.) Cascades are handled pretty much like
menus without a tear-off, in that you create a menu widget
manually and then configure the cascade to point to it,
like this:

Prefs menu.
my $mbp = $mb->Menubutton(-text =>
'Prefs', ...);
$mbp->pack(qw(-side left));
my $odometers = 'Odometers';
$mbp->cascade(-label => $odometers,
-underline => 0);
$mbp->separator;
$mbp->command(-label => 'Color Editor',
-underline => 0,

-state => $COLOR_STATE, ...);

762

So far, only -state might be unfamiliar. Many widgets
have this option, which can have one of three possible values:
normal, active, or disabled. Widgets start in the
normal state, and when the cursor passes over them they
become active. If you place a widget in the disabled state, it is
dimmed and becomes unresponsive to button presses and
other bindings. We’ll see how $COLOR_STATE is
initialized shortly.

my $mbpm = $mbp->cget(-menu);
my $mbpmo = $mbpm->Menu;
$mbp->entryconfigure($odometers, -menu =>
$mbpmo);
$mbpmo->radiobutton(-label => 'Cursor',
-variable => \$OPT{'odometer'},

-value => 'cursor');
$mbpmo->radiobutton(-label => 'Pointer',
-variable => \$OPT{'odometer'},

-value => 'pointer');
$mbpmo->radiobutton(-label => 'Both',
-variable => \$OPT{'odometer'},

-value => 'both');

Pay attention please: the Odometers cascade menu must be
a child of the menu containing the Odometer cascade itself
(here, the Prefs menu), hence the cget call to fetch the
menu reference. Note that entryconfigure is to
menus as configure is to other widgets, except you need
to tell it which menu entry needs attention (which is
analogous to itemconfigure for canvas items). Notice
also that the menu entry is referenced by name rather than
index.

Finally, three radiobutton menu items are added to the
cascade menu. Just like ordinary radiobutton widgets, they

763

allow you to select a single item from a list, and store its
value in a variable. The actual value stored in the common
variable depends on which radiobutton was pressed. (These
widgets got their name because using them is similar to
tuning an old fashioned car radio: selecting a station by
pushing one button deselects all the other buttons by popping
them out.)

If you’d like to see a complicated cascade created from a Perl
list-of-list-of-list data structure, take a gander at the modo
source code responsible for generating the Units cascades;
that’ll fry your eyes. The code is available at
http://www.oreilly.com/catalog/tpj2.

764

The ColorEditor Widget

Let’s add some colors and incorporate the
ColorEditor widget into our application. ColorEditor lets you
select a color attribute, say foreground, edit a color
swatch and then apply the final color by calling a special
ColorEditor subroutine (the colorizer) that descends through
the application’s widgets and configures each in turn.

A ColorEditor widget is created in the standard manner:
$COLOR_STATE = $MW->depth > 1 ? 'normal' :
'disabled';
if ($COLOR_STATE eq 'normal') {

$CREF = $MW->ColorEditor(-title =>
'modo');
}

But there’s no need for one if your display can’t support it, so
first check the pixel depth of the display using the window
information command depth. For monochrome displays we
don’t even bother creating the ColorEditor, and the menu item
to invoke it, which we just discussed, is dimmed.

Once the ColorEditor is created and initialized, you can use it
like a Dialog—just invoke its Show method. The most
important thing to remember about the ColorEditor is that it
maintains a list of widgets to colorize: every widget in the
application present when the
ColorEditor was created. Sometimes this is good, sometimes
bad, and in modo’s case it’s bad. Bad because when $CREF
is created, some of the applicable widgets aren’t there yet, and
there are some that are present that shouldn’t be colorized in

765

the first place. Of course, there are methods to deal with this,
so as the last step of initialization:

$CREF->configure(-widgets => [$MW,
$MW->Descendants]);
$CREF->delete_widgets(

[$CREF, #

ColorEditor...
$CREF->Descendants, # and all

its descendant widgets.
$W_CODO->Descendants, #

Odometer descendants because
$W_PODO->Descendants, # the

class handles configuration changes.
]);

The first line ensures that the main window, $MW, and all of
its descendants in the widget hierarchy are part of the color
list. The second line then removes particular widgets that
should not be colorized. As a rule of thumb, leave the
ColorEditor alone in case you really mess things up, like
setting the foreground and background to the same color! And
the two
composite odometers are excluded for the simple reason that
the foreground and background colors of digits to the right of
the “units” point are reversed, just like real odometers. How
we deal with this is somewhat subtle, as you’ll see in the next
section.

766

Composite Widgets

At last it’s time to discuss Perl/Tk composites featuring, of
course, the odometer widget. The OO tables have turned and
now you become a designer rather than a mere user! An
odometer widget “ISA” frame. That is, it’s a subclass of a
frame widget: odometer objects are simply “mega-widgets”
composed of standard Tk widgets packed inside a frame
(we’ll see what “ISA” is all about shortly). There are other
kinds of extended widgets: a dialog widget ISA a top-level,
while an axis widget is derived from, or “kind of,” a canvas.
A common attribute of all these extended widgets is that they
behave just like standard Tk widgets, basically because Nick
took great pains to ensure they do.

Since an odometer is contained in a frame you can create an
instance and pack it inside your application just like, say, a
button. Let’s create a default odometer and add one
millimeter to it:

$MW->Odometer->add(1, 1)->pack;

The result is shown in Figure 36-5.

Figure 36-5. A Tk::Odometer object

Notice how methods such as add and pack can be strung
together, as long as they return an object reference for the
next method to operate upon. The odometer is composed of

767

six widgets: the odometer label, left and right labels
indicating total distance, a trip reset button, and left and right
labels indicating trip distance. Two labels are used for total
and trip distances so that foreground and background colors
can be reversed on either side of the “units” point. When
modo creates its odometers it supplies some arguments in the
Perl/Tk “key => value” style, including
-odometerlabel, a keyword unique to class Odometer:

$W_CODO = $w->Odometer(-odometerlabel =>
'Cursor',

-font =>
$OPT{'fontname'},

-foreground =>
$OPT{'foreground'},

-background =>
$OPT{'background'},

-cursor =>
$CURSOR);

In order to see the primary features of a frame-like
composite, I need to gut Odometer.pm, which later I’ll
reconstruct piece by piece:

package Tk::Odometer;
require 5.002;
use Tk::Frame;
use base qw/Tk::Frame/;
Tk::Widget->Construct('Odometer');

sub Populate {
my ($cw, $args) = @_;
$cw->SUPER::Populate($args);
Create and pack frame subwidgets

here.
$cw->ConfigSpecs(...);
return $cw;

768

} # end Populate, Odometer constructor

1;

What we have is the definition of a new Perl/Tk widget class
named “Tk::Odometer”, with six salient features:

1. A unique class (package) name.

2. A use Tk::Frame that imports frame definitions
and methods.

3. Declaration of the @ISA list, which is how Perl
implements method inheritance. For instance, when you
configure an odometer Perl first looks for that
method in class Tk::Odometer. But as you’ll see, there is
no such method in this class, so Perl tries to locate that
method by looking at any classes in the @ISA array. As
it turns out, Tk::Frame has no configure method
either, but a frame has its own @ISA list, so the search
continues up the class hierarchy. Rest assured that Perl/
Tk does indeed provide a configure method
somewhere, but you don’t have to know just where—OO
at its best.

4. A call to Construct that dynamically creates the
class constructor. Among other things, this magic
arranges a call to the class method Populate when a
new object is instantiated.

5. The actual code for Populate, written by the class
implementor, which populates the incoming frame with
the requisite component widgets, specifies the widget’s
configuration options, and returns a
composite reference.

769

6. Any number of class-specific methods (not shown here)
to manipulate objects of the new class. We already know
of one for odometers: add.

Tk::Odometer::Populate is called with two
arguments. $cw is a reference to the partially completed
composite widget and $args is a reference to the argument
hash (i.e., the keyword/value pairs from the widget creation
command). By convention, $args is immediately passed to
SUPER::Populate, where, sometimes, behind-the-scenes
bookkeeping such as modifying configuration specifications
is performed.

Now, in standard Perl/Tk fashion, we create and arrange the
component widgets of the composite, using $cw as their
parent (the list @PACK holds common pack attributes):

Odometer label.
my $l = $cw->Label->pack(@PACK);

Odometer total distance, left and right
labels.
$cw->make_odo('total')->pack(@PACK);

Odometer trip reset button. It's placed
inside a container frame so
there is a background to color, since
trying to configure the
composite containing frame results in
nasty recursion problems. The
button is anchored southwest so it stays
"attached to" the trip odometer.

my $rbf = $cw->Frame(-relief =>
'flat')->pack(@PACK);
my $rb = $rbf->Button(-height => 2,

770

-width => 5,
-bitmap =>

'gray50',
-relief => 'flat',
-command => [$cw =>

'reset_trip'],
-highlightthickness =>

0)->pack(-anchor => 'sw', -expand => 1);

Odometer trip distance, left and right
labels.
$cw->make_odo('trip')->pack(@PACK);

Maintain instance variables in the
composite widget hash. Instance
variables hold data particular to one
instance of an Odometer object.
#
reset = widget reference to
trip reset button for bind
total_mm = total distance in
millimeters
total_left = total distance left
label for add
total_right = total distance right
label for add
total_right_label = widget reference for
colorizing
(ditto for trip_mm, trip_left,
trip_right, and trip_right label.)

$cw->{'reset'} = $rb;
$cw->{'total_mm'} = 0;
($cw->{'total_left'},
$cw->{'total_right'}) = ($Z, $Z);
$cw->reset_trip;

Once again there are several items worthy of note:

771

▪ The -text attribute of the odometer label $l is not
specified. So, just when does this happen and who does
it? The answer follows shortly.

▪ The -command attribute of the reset button $rb
invokes the class method reset_trip, emulating the
reset button on a real odometer.

▪ make_odo packs the left and right labels side by side
in a frame and creates the -textvariable
references pointing to the above instance variables.

I hinted at this, but one job Populate should not do,
generally, is directly configure its components; instead it
makes a call to ConfigSpecs to specify configuration
options and default values. Then, when Populate returns,
Perl/Tk auto-configures the
composite, supplying ConfigSpec values or perhaps values
from the X options database:

Now establish configuration specs so
that the

composite behaves like
a standard Perl/Tk widget. Each entry is
a list of 4 items
describing the option: how to process a
configure request, its
name in the resource database, its class
name, and its default value.
#
The Tk::Configure->new specification
renames -odometerlabel to
-text, which is what Labels want,
because -odometerlabel IS a Label.
#

772

The DESCENDANTS specification applies
configure recursively to all
descendant widgets.
#
The METHOD specification invokes a
method by the same name as the
option (without the dash), e.g.:
#
$cw->background($bg);
#
Normally you don't need configurators
just for background and
foreground attributes, but an Odometer
is special since the colors
are reversed for the right half of the
odometers.
#
The -cursor specification says to
configure only the indicated list
of widgets (in this case there is but
one, $rb, the trip reset button.)

$cw->ConfigSpecs(
-odometerlabel =>

[[Tk::Configure->new($l => '-text')],
'odometerlabel',

'odometerLabel', 'Odometer'],
-font => ['DESCENDANTS',

'font', 'Font', 'fixed'],
-background => ['METHOD',

'background', 'Background', '#d9d9d9'],
-foreground => ['METHOD',

'foreground', 'Foreground', 'black'],
-cursor => [[$rb], 'cursor',

'Cursor',['left_ptr']]);

return $cw;

773

There’s still more work left, however. So far, we’ve created a
class constructor, but no methods to manipulate the objects it
creates. So let’s look at a few, starting with the simplest,
$W_CODO->get_total_distance. Our program uses
this method to save its state information:

sub get_total_distance {
shift->{'total_mm'} }

This method just returns the value from an odometer’s
total_mm instance variable. The shift idiom is a
shortcut for Perl’s builtin shift function, returning the
odometer reference. Here bind is overridden by providing a
version specific to our class:

Override bind to select trip reset
button, the only sensible widget.
Build an argument list to bind so that
the call behaves normally.
sub bind {

my ($odo, $event, $code) = @_;
my @args = ();
push @args, $event if defined $event;
push @args, $code if defined $code;
$odo->{'reset'}->bind(@args);
return $odo;

}

Finally, here’s add, which displays the millimeter count
(modulus 100,000) in the user’s units. The only thing new is
the use of BackTrace, the Perl/Tk way of including
traceback information:

sub add {
my ($odo, $d, $u) = @_;

$odo->BackTrace('Usage:
$odo->add($distance, $units)') if @_ != 3;

774

$odo->{'total_mm'} += $d;
$odo->{'trip_mm' } += $d;
my ($n1, $f1, $n2, $f2, $s);
$n1 = $odo->{'total_mm'} * $u;
$f1 = $n1 - int($n1);
$n2 = $odo->{'trip_mm' } * $u;
$f2 = $n2 - int($n2);
$s = sprintf("%011.5f%011.5f", ($n1 %

100000) + $f1, ($n2 % 100000) + $f2);
$odo->{'total_left'} = substr($s, 0,

5);
$odo->{'total_right'} = substr($s, 6,

5);
$odo->{'trip_left'} = substr($s, 11,

5);
$odo->{'trip_right'} = substr($s, 17,

5);
return $odo;

}

The Odometer class has several private methods too. Unlike
C++, in Perl a private method is only private because the class
designer doesn’t document the interface. Be polite and only
use documented public methods. Here, I need to show you
three private methods to complete the ColorEditor discussion.

Now, Populate used ConfigSpecs for foreground and
background configure options, specifying the METHOD
action, so when either of these odometer attributes are
configured, one of the following subroutines is called with
two parameters: an odometer widget reference and a color
value.

Odometer background/foreground color
subroutines.
sub background {

shift->bf(shift, '-foreground',

775

'-background')
}
sub foreground {

shift->bf(shift, '-background',
'-foreground')
}

These immediately call the following subroutine, bf.
Remembering that an odometer’s component widgets have
been removed from ColorEditor’s color list, it’s up to the
class to colorize them. So bf simply walks the composite
widget hierarchy, configuring each component in turn, but
swapping foreground for background (or vice-versa) upon
encountering any right-side label:

Reverse background/foreground colors on
right odometer labels.
sub bf {

my ($odo, $color, $bf1, $bf2) = @_;
my $total_right =

$odo->{'total_right_label'};
my $trip_right =

$odo->{'trip_right_label'};
$odo->Walk(sub {

my ($widget) = @_;
if ($widget = =

$total_right or
$widget = =

$trip_right) {

$widget->configure($bf1 => $color);
} else {

$widget->configure($bf2 => $color);
}

});
}

776

So, we’re finished implementing, right? Wrong. Gee, all the
code’s there, it’s tested and it works…what could be missing?
How about user documentation! The Perl Way is to include a
pod (Plain Old Documentation) in your class module. Check
out Odometer.pm for an example.

In the next article, we’ll look at ways to handle events (like
mouse clicks) in Perl/Tk.

777

Chapter 37. Events

Steve Lidie

event (î-vênt’): something that happens: a noteworthy
occurrence or happening: something worthy of remark:
an unusual or significant development. (Paraphrased
from Webster’s Third.)

Events are what drive Perl/Tk programs. In the past I’ve
described these events superficially, sweeping lots of detail
under the MainLoop rug, all for the sake of simplicity.
MainLoop is our friend, since it’s all that is needed for
nearly every Perl/Tk program. But sometimes it’s not enough.

Today’s featured program is a simple Pong-like game
sporting a new widget derived from the Canvas class, which
we’ll compare to the Odometer composite widget described in
The Mouse Odometer. Instead of using MainLoop, our
Pong game handles events itself with DoOneEvent.

Before discussing Pong, we’ll examine some other programs,
including a simple animation called neko, demonstrating the
Photo widget and some other Tk commands.

Tk defines four broad event categories: X,
timer,
input/output, and
idle. X events are generated in response to mouse motion,
button and keyboard actions, and window changes. You
already know that many of these events have built-in Tk

778

bindings, and that you can create your own bindings, so all
you need to do is define the callback to handle the event.
(There are lots of other X events, which we’ll examine in
detail in subsequent articles.) Timer events are used for
periodic occurrences, from blinking items to animating
images. Input/output events help prevent your application
from freezing when reading and writing to terminals, pipes, or
sockets. Finally, idle events are low priority callbacks invoked
only when all events from the previous three event queues
have been processed. Tk uses the idle events queue to redraw
widgets, since it’s generally a bad idea to redisplay a widget
after every change of state. By deferring redraws until there is
nothing left to do, widgets presumably reach their steady
state. The result is improved performance and a flicker-free
screen.

Timer Events

In The Mouse Odometer we saw a useful idiom for scheduling
asynchronous tasks:

modo();

...

sub modo { # Do stuff, then
reschedule myself.

$MW->after->($MILLISECOND_DELAY,
\&modo);
}

Before modo returns, it uses after to schedule a
timer event and define the handler (callback). This idiom is so
common that

779

Perl/Tk provides repeat as a shortcut, so the above code
can be condensed like so:

$MW->repeat->($MILLISECOND_DELAY, \&modo);

A working example named rpt is available at
http://www.oreilly.com/catalog/tpj2.

Tk uses timer events to flash the
insertion
cursor for entry widgets. After the widget gets the keyboard
focus, it displays the cursor and queues a timer callback. Then
the callback erases the cursor and the cycle repeats, several
times per second. This technique is often used to flash alert
messages or special buttons. You can use repeat, but this
is the idiom you’ll almost always see:

my $b = $MW->Button(-text => 'Hello
World!', -command => \&exit)->pack;
flash_widget($b, -background, qw(blue
yellow), 500);

MainLoop;

sub flash_widget { # Flash a widget
attribute periodically.

my ($w, $opt, $val1, $val2, $interval)
= @_;

$w->configure($opt => $val1);
$MW->after($interval, [\&flash_widget,

$w, $opt, $val2, $val1, $interval]);
}

As you see, the code is quite simple. On the first call to
flash_widget, the button’s background is configured
blue. A timer event is then scheduled, reversing the
background colors, so next time the widget is configured

780

yellow. The periodic change in background color every 500
milliseconds yields the desired flashing effect. A working
example, named flash, is on the book’s web site.

You can also perform crude animations with nothing more
than standard Tk timer events. To demonstrate, I created a
basic neko program, using frames borrowed from Masayuki
Koba’s well known xneko. In case you’re unfamiliar with
xneko, a cat chases the cursor around the window. When
you stop moving the cursor, the cat yawns and settles down to
take a nap. When the cursor moves again, Neko wakes up and
resumes the chase. My rendition of neko doesn’t follow the
cursor and moves solely in one dimension.

In the U.S., television creates the illusion of motion by
flashing 30 full images per second. Movies show 24 images
per second, but flash each image three times to lessen the
flicker. Psychophysicists have determined that 10 images per
second is, on average, the minimum number needed to
perceive motion, so that’s what we’ll use for neko. I don’t
actually have ten images to show, just two: one of Neko with
his feet together, and one with his feet apart.

When you run neko, Figure 37-1, depicting the six frames
used by the application, is momentarily displayed.

781

Figure 37-1. The Neko initialization screen

To make use of these frames we need to create Tk images. In
Tk parlance, an image is just another Tk object with special
methods for image manipulations. Once created, images are
then imported into other widgets, such as a button, canvas or
label. For example, this code creates a button with Neko’s
icon on it instead of text:

my $i = $MW->Photo(-file => 'images/
icon.ppm');
my $b = $MW->Button(-image => $i,
-command => sub {print "Meow\n"})->pack;

Images come in two flavors: bitmaps, which have only two
colors, and photos, which have many colors or shades of grey.
The six neko frames were originally plain X bitmaps, but
have since been converted to colorized PPM files, a format
(such as GIF) suitable for input to the Photo command.

The canvas widget provides an ideal backdrop for the
animation, since images can be drawn on it and moved using
standard canvas methods. Here’s the code that created much
of Figure 37-1:

Create the six Photo images from the
color PPM files and display
them in a row. The canvas image IDs are
stored in the global array
@IDS for use by the rest of the Neko
code. For instance, to perform
a canvas operation on the Neko icon,
simply fetch its item ID from
$IDS[5]. Sorry for using hardcoded
values, but this is just "proof

782

of concept" code!

my $x = 125;

foreach (qw(left1 left2 sleep1 sleep2
awake icon)) {

push @IDS, $C->createImage($x,
$SCAMPER_Y,

-image =>
$MW->Photo(-file => "images/$_.ppm"));

$x += 50;
}

Wait for the main window to appear
before hiding the

Neko
frames. (Otherwise you might never get
to see them.)

$MW->waitVisibility($MW);
$MW->after(2000, \&hide_nekos);

MainLoop;

An immediate problem arises: the
animation demands that only one frame be visible at any point
in time, so we need to hide arbitrary frames (including the six
frames currently on the canvas). One way might be to create
and delete the images continually, but that’s messy. Instead,
neko uses a trick based on the canvas display list.

Tk uses the display list to control the order in which canvas
items are displayed, so that items created later are displayed
after items created earlier. If two items are positioned at the
same (or overlapping) coordinates, the item earliest in the
display list is obscured because the other item is displayed on

783

top of it. Thus, the rightmost item in Figure 37-1, the neko
icon, is on top of the display list. We’ll move the icon off to
the side, hide all inactive images under it, and no one will be
the wiser!

my($i, $done, $rptid, $cb) = ($#IDS, 0, 0,
0);

$cb = sub {
my($ir) = @_;
hide_frame $IDS[$$ir--];
$done++ if $$ir < 0;

};

my $rptid = $MW->repeat(1000 => [$cb,
\$i]);

$MW->waitVariable(\$done);
$MW->afterCancel($rptid);

There’s more to these five statements than meets the eye, so
let’s examine them one by one. We want to move the icon
image first, so set $i to its index in the @IDS array. Even
though the icon is the first image moved, it will nevertheless
obscure the remaining images because it’s at the end of the
display list.

The second statement defines a
timer callback, $cb, whose sole purpose is to hide one neko
frame, decrement the index $i and set the $done flag after
the last image has been moved. Here’s where it gets tricky:
the parameter passed to the anonymous subroutine is not the
value of $i itself, but $$i, a reference to $i. Passing $i
directly would only postdecrement the copy local to the
subroutine, $ir, and not the “real” $i. Thus, only the icon

784

frame would be moved, and the callback would never set the
$done flag.

The repeat queues a
timer event that, until canceled, repeats once a second,
forever. However, the callback has been designed to modify
the $done variable after the last image has been hidden.
Notice that repeat, like all asynchronous
timer event scheduling methods, returns a timer ID, used to
subsequently remove the event from the timer queue.

The waitVariable waits until the value of $done
changes. Although the application’s flow is logically
suspended, it still responds to external events, and so is not
frozen.

The afterCancel cancels the repeat event. The end
result is that the images shown previously in Figure 37-1 are
hidden, one at a time, once a second, from right to left.
Figure 37-2 shows what the window looks like after all the
neko images have been moved off to the side.

Figure 37-2. Neko in action

Note the neko icon, sitting in the upper left corner, hiding
most of the other images. The snoozing Neko has

785

subsequently been unhidden and animated for your viewing
pleasure. So, how do we make Neko scamper across the
canvas? This code snippet does just that:

Move neko right to left by exposing
successive
frames for 0.1 second.

my $cb = sub {$done++};
my ($i, $k) = (0, -1);
$delay = 100;

for ($i = 460; $i >= 40; $i -= $DELTA_X) {
$id = $IDS[++$k % 2];
move_frame($id, $i, $SCAMPER_Y);
if ($BLOCK) { $MW->after($delay) }
else {

$MW->after($delay => $cb);
$MW->waitVariable(\$done);

}
hide_frame $id;

}

snooze;

Take one last look at Figure 37-1 and note the two leftmost
images. Essentially, all we need to do is periodically display
those images, one after another, at slightly different positions
on the canvas. The scampering code shown above does just
that: move one image from underneath the neko icon, wait
for 0.1 second, hide it, unhide the second image and display it
slightly to the left of the previous, wait for 0.1 second, and
repeat until Neko reaches the left edge of the canvas. The
exhausted Neko then takes a well-deserved nap.

It’s possible to animate Neko using a blocking or
non-blocking technique, depending on the state of the Block?

786

checkbutton. Try each alternative and note how the buttons
respond as you pass the cursor over them. $DELTA_X
controls how “fast” Neko runs, and is tied to the slender scale
widget to the right of the window. Varying its value by
moving the slider makes Neko either moonwalk or travel at
relativistic speeds!

Before we move on, here is how neko images are actually
translated (moved) across the canvas (or “hidden” and
“unhidden”):

Move a neko frame to an absolute canvas
position.
sub move_frame {

my($id, $absx, $absy) = @_;
my ($x, $y) = $C->coords($id);
$C->move($id, $absx-$x, $absy-$y);
$MW->idletasks;

}

The canvas move method moves an item to a new position
on the canvas relative to its current position. Here we don’t
even know the absolute coordinates, so we use coords to
get Neko’s current position and perform a subtraction to
determine the X and Y differences needed. When a neko
image is hidden it’s simply moved to the “hide” coordinates
occupied by the Neko icon. The idletasks statement
flushes the idle
events queue, ensuring that the display is updated
immediately.

787

I/O Events

If you think about it, a Tk application is somewhat analogous
to a multi-tasking operating system: event callbacks must be
mutually cooperative and only execute for a reasonable
amount of time before relinquishing control to other handlers;
otherwise, the application might freeze. This is an important
consideration if your Tk application performs terminal, pipe,
or socket I/O, since these operations might very well block,
taking control away from the user.

Suppose you want to write a small program where you can
interactively enter
Perl/Tk commands, perhaps to prototype small code snippets
of a larger application. The code might look like this:

use Tk;

while (<>) {
eval $_;

}

When prompted for input you could then enter commands
like this:

my $MW = MainWindow->new;
my $b = $MW->Button(-text => 'Hello
world!')->pack;

However, this doesn’t display the button as you might expect.
No MainLoop statement has been executed, so no events
are processed. Therefore the display isn’t updated, and users
won’t be able to see the new button.

788

Realizing what’s happening, you then enter a MainLoop
statement, and lo and behold, something appears! But now
you’re stuck, because MainLoop never returns until the
main window is destroyed,[9] so once again you’re blocked
and prevented from entering new Tk commands!

One solution is to rewrite your Perl/Tk shell using
fileevent, the I/O event handler:

$MW->fileevent('STDIN', 'readable' =>
\&user_input);
MainLoop;

sub user_input { # Called when
input is available on STDIN.

$_ = <>;
eval $_;

}

The key difference is that the read from STDIN is now a
non-blocking event, which is invoked by MainLoop
whenever input data is available.

The fileevent command expects three arguments: a file
handle, an I/O operation (readable or writable), and a
callback to be invoked when the designated file handle is
ready for input or output.

Although not necessary here, it’s good practice to delete all
file event handlers, in the same spirit as closing files and
canceling timer events:

$MW->fileevent('STDIN', 'readable' => '');

The entire ptksh1 program is on this book’s web site.
Another program, tktail, demonstrating a pipe I/O event
handler, is available from the Perl/Tk FAQ.

789

[9] You can have more than one main window, so strictly
speaking this should be “until all the main windows have
been destroyed.”

790

Idle Events

The
idle event queue isn’t restricted to redisplaying. You can use
it for low priority callbacks of your own. This silly example
uses afterIdle to ring the bell after 5 seconds:

#!/usr/bin/perl -w
#
Demonstrate use of afterIdle() to queue a
low priority callback.

require 5.002;
use Tk;
use strict;

my $MW = MainWindow->new;
$MW->Button(-text => 'afterIdle',

-command =>
\&queue_afterIdle)->pack;
MainLoop;

sub queue_afterIdle {
$MW->afterIdle(sub {$MW->bell});

print "afterIdle event queued, block for 5
seconds...\n";

$MW->after(5000);
print "5 seconds have passed; call

idletasks() to activate the handler.\n";

$MW->idletasks;
print "The bell should have sounded

...\n";

791

$MW->destroy;
}

To recap, we are responsible for three event-related activities:
registering events, creating event handlers, and dispatching
events. Until now MainLoop has dispatched events for us,
running in an endless loop, handing off events to handlers as
they arise, and putting the application to sleep if no events are
pending. When the application’s last main window is
destroyed, MainLoop returns and the program terminates.

Perl/Tk allows low-level access to Tk events via
DoOneEvent. This event dispatcher is passed a single
argument: a bit pattern describing which events to process. As
you might guess, the event categories are those we’ve just
explored. Direct access to the DoOneEvent bit patterns is
via a use Tk qw/:eventtypes/ statement, here are
the symbol names:

DONT_WAIT
WINDOW_EVENTS
FILE_EVENTS
TIMER_EVENTS
IDLE_EVENTS
ALL_EVENTS = WINDOW_EVENTS | FILE_EVENTS |
TIMER_EVENTS | IDLE_EVENTS;

These symbols can be inclusively OR’d to fine-tune the list of
events we want to respond too.

As it turns out, MainLoop is implemented using
DoOneEvent, similar to this meta-code:

MainLoop {
while (NumMainWindows > 0) {

DoOneEvent(ALL_EVENTS)

792

}
}

When passed ALL_EVENTS, DoOneEvent processes
events as they arise and puts the application to sleep when no
further events are outstanding. DoOneEvent first looks for
an X or I/O event and, if found, calls the handler and returns.
If there is no X or I/O event, it looks for a single timer event,
invokes the callback, and returns. If no X, I/O, or timer event
is ready, all pending
idle callbacks are executed. In all cases DoOneEvent
returns 1.

When passed DONT_WAIT, the DoOneEvent function
works as above, except that if there are no events to process,
it returns immediately with a value of 0, indicating it didn’t
find any work to do.

With this new knowledge, here is another implementation of
our Perl/Tk shell that doesn’t need fileevent:

#!/usr/bin/perl -w
#
ptksh2 - another Perl/Tk shell using
DoOneEvent()
rather than fileevent().

require 5.002;
use Tk;
use Tk qw/:eventtypes/;
use strict;

my $MW = MainWindow->new;
$MW->title('ptksh2');
$MW->iconname('ptksh2');

while (1) {

793

while (1) {
last unless DoOneEvent(DONT_WAIT);

}
print "ptksh> ";
{ no strict; eval <>; }
print $@ if $@;

}

The outer while loop accepts terminal input, and the inner
while loop cycles as long as Tk events arise as a result of that
input.

794

Pong

I confess. This implementation of pong isn’t the real thing.
You won’t see multiple game levels of ever increasing
difficulty or even a database of high scores. All you get is the
basic paddle and ball shown in Figure 37-3, and the chance to
bounce the ball around until you grow bored, which took less
than a minute for me.

The idea in this game is to keep the ball confined within the
playing field; you get a point every time you hit the ball with
the paddle, but lose a point every time the ball hits the floor or
ceiling. This means that the paddle is tied to your mouse and
follows its every motion. If at game’s end the score is positive
you win, else you lose. pong is derived in large part from
bounce, the widget bouncing ball simulation written by
Gurusamy Sarathy.

795

Figure 37-3. A pong prototype

Of course pong isn’t meant to be fun, but to showcase Perl/
Tk features: events, canvas commands, and the Pong derived
widget.

pong really wants to be a CPU resource hog in order to keep
the ball and paddle lively, but at the same time it needs to
allow Tk events safe passage, so it has its own version of
MainLoop:

while (1) {
exit if $QUIT;

DoOneEvent($RUNNING ? DONT_WAIT :
ALL_EVENTS);

$pong->move_balls($SPEED->get / 100.0)
if $RUNNING;
}

The variable $RUNNING is a boolean indicating whether the
game is in progress or has been paused. If the game has been
paused ($RUNNING = 0), DoOneEvent is called with
ALL_EVENTS, and sleeps until Tk events arise, but the ball
and paddle aren’t moved. Otherwise, DoOneEvent is called
with DONT_WAIT, which may process one or more events
(but certainly won’t block), and then the game’s ball and
paddle are moved.

If this is the entire pong MainLoop, obviously the $PONG
widget must be handling a lot behind the scenes. Indeed, the
heart of the game is this single widget, which maintains the
entire game state: paddle and ball position and movement,
and game score. $PONG is a widget derived from a canvas,
meaning that it automatically assumes all methods inherent in

796

a canvas (and may provide more of its own, like
move_balls).

A properly defined derived widget like Pong follows standard
Perl/Tk conventions:

$PONG = $drawarea->Pong(-relief => 'ridge',
-height => 400,
-width => 600,

-bd => 2,
-balls =>

[{-color => 'yellow',

-size => 40,

-position => [90, 250]}]);

This command creates a 400x600 pixel canvas, with one
paddle and one ball, and is placed at canvas coordinates
(90,250). Because the
Pong widget ISA canvas, anything you can do with a canvas
you can do with a
Pong widget. Defining a derived widget class is similar to
defining a composite class (like Odometer from last issue).

package Tk::Pong;
require 5.002;
use Tk::Canvas;

use base qw/Tk::Derived Tk::Canvas/;
Tk::Widget->Construct('Pong');

sub Populate { # the
Pong constructor

my ($dw, $args) = @_;
$dw->SUPER::Populate($args);
$dw->ConfigSpecs(...); #

Create needed canvas items here.

797

return $dw;
}

1;

These statements:

▪ Define the new Tk::Pong class.

▪ Import canvas definitions and methods.

▪ Declare the @ISA list, which specifies how Perl looks
up object methods. One difference between a derived
widget and a composite widget is inclusion of
Tk::Derived, first, in the @ISA list.

▪ Create the Pong class constructor.

▪ Provide a Populate method (the class constructor)
that customizes the canvas whenever a Pong widget is
created,

pong’s Populate procedure is really quite simple because
it relies on existing canvas methods to create the game
interface. This code automatically creates the paddle and one
or more balls:

my $paddle = $dw->

createRectangle(@paddle_shape, -fill =>
'orange',

-outline => 'orange');

$dw->{paddle_ID} = $paddle;
$dw->CanvasBind('<Motion>' =>
\&move_paddle);

$dw->ConfigSpecs(-balls => ['METHOD',

798

undef, undef, [{ }]],
-cursor => ['SELF',

undef, undef,
['images/

canv_cur.xbm',
'images/

canv_cur.mask',

($dw->configure(-background))[4],
'orange']]);

The createRectangle statement makes an orange
paddle, whose shape is defined by the canvas coordinates of
diagonally opposed rectangle corners. The paddle’s canvas ID
is saved in the object as an instance variable so that
move_paddle can move the paddle around the
canvas—this private class method is bound to pointer motion
events.

Once again, in general, Populate should not directly
configure its widget. That’s why there’s no code to create the
ball. Instead, ConfigSpecs is used to define the widget’s
valid configuration options (-balls is one) and how to
handle them. When Populate returns, Perl/Tk then
examines the configuration specifications and auto-configures
the derived widget.

A call to ConfigSpecs consists of a series of keyword
=> value pairs, where the widget’s keyword value is a list
of four items: a string specifying exactly how to configure the
keyword, its name in the X resource database, its class name,
and its default value.

We’ve seen the ConfigSpecs METHOD option before:
when Perl/Tk sees a -balls attribute, it invokes a method

799

of the same name, minus the dash: balls. And if you
examine the source code on this book’s web page, you’ll see
that all the balls subroutine really does is execute a
$PONG->createOval command.

The -cursor option to ConfigSpecs option is
moderately interesting. The SELF means that the cursor
change applies to the derived widget itself. But why do we
want to change the canvas’ cursor? Well, just waggle your
mouse around and watch the cursor closely. Sometimes it’s
shaped like an arrow, and sometimes an underscore,
rectangle, I-beam, or X. But in a
Pong game, when you move the mouse you only want to see
the paddle move, not the paddle and a tag-along cursor. So
pong defines a cursor consisting of a single orange pixel and
associates it with the Pong widget, neatly camouflaging the
cursor.

Like neko, the Pong widget uses the canvas move method
to move the paddle around, but is driven by X motion events
rather than timer events. An X motion event invokes
move_paddle:

sub move_paddle {
my ($canvas) = @_;
my $e = $canvas->XEvent;
my ($x, $y) = ($e->x, $e->y);

$canvas->move($canvas->{paddle_ID},
$x -

$canvas->{last_paddle_x},
$y -

$canvas->{last_paddle_y});

$canvas->{last_paddle_x},

800

$canvas->{last_paddle_y}) = ($x, $y);
}

This subroutine extracts the cursor’s current position from the
X event structure, executes move using instance data from
the Pong widget, and saves the paddle’s position for next
time.

That takes care of paddle motion, but ball motion we handle
ourselves, via the class method move_balls, which has its
own DoOneEvent mini MainLoop. Ball movement boils
down to yet another call to the move canvas method, with
extra behaviors such as checking for collisions with walls or
the paddle. Here’s the code:

Move all the balls one "tick." We call
DoOneEvent() in case there are
many balls; with only one it's not
strictly necessary.

sub move_balls {
my ($canvas, $speed) = @_;
my $ball;
foreach $ball (@{$canvas->{balls}}) {

$canvas->move_one_ball($ball,
$speed);

be kind and process XEvents as
they arise

DoOneEvent(DONT_WAIT);
}

}

Although the details of reflecting a ball and detecting
collisions are interesting, they’re not relevant to our
discussion, so feel free to examine move_one_ball
yourself.

801

Miscellaneous Event Commands

There are three other event commands that merit a little more
explanation: update, waitWindow, and
waitVisibility.

The update method is useful for CPU-intensive programs
in which you still want the application to respond to user
interactions. If you occasionally call update, all pending Tk
events will be processed and all windows updated.

The waitWindow method waits for a widget, supplied as
its argument, to be destroyed. For instance, you might use this
command to wait for a user to finish interacting with a dialog
box before using the result of that interaction. However,
doing this requires creating and destroying the dialog each
time. If you’re concerned about efficiency, try
withdrawing the window instead. Then use
waitVisibility to wait for a change in the dialog’s
visibility state.

We’ve now covered most everything you need to know about
event handling in Perl/Tk. In the next article, we’ll explore
how to lay out widgets on the screen with the grid geometry
manager.

802

Chapter 38. The Pack and Grid
Geometry Managers

Steve Lidie
We know that every Perl/Tk graphical application consists of
a number of widgets arranged in a particular manner on a
display. Although we may suggest the size and location of the
widgets, the final say in the matter is up to a geometry
manager, the software responsible for computing the actual
layout of the widgets.

In essence, a geometry manager’s job is to stuff what are
known as, in X parlance, slave widgets inside a master
widget. The topmost
master widget in a Perl/Tk application is of course the
MainWindow. In the simplest case it’s the only master, but
usually we need to employ one or more frames within which
more slaves are packed. Once the slaves in these frames have
been arranged, the frames themselves are laid out within the
MainWindow.

This means that in order to calculate the final look of an
application, geometry information propagates outwards from
the innermost masters to the MainWindow. We’ll see why
and how to override this behavior later.

Before any widget can appear on the display, it must be
managed by a geometry manager. There can actually be
multiple

803

geometry managers controlling an application, although this
is unusual, and a widget can only be managed by one
geometry manager at a time.

The Perl/Tk distribution contains various geometry managers,
including place, pack, and grid, and in this article we’ll
discuss the “packer” and the “gridder.” As its name suggests,
the grid geometry manager places widgets in rows and
columns inside a master. But why include the packer in a
gridder discussion? The answer to that question begins
innocently enough, with a simple pack problem posted to the
Perl/Tk mailing list.[10] After comparing equivalent pack and
grid programs, we’ll see that the gridder provides a simpler
solution for this problem.

A Brief Look at the Packer

Here’s the question that stimulated this article:

I’m having a problem understanding how ‘
anchor’ is working. My current problem is: I want to
display a list of names in one column and a list of
numbers in a second column. I want the names to be
left justified and the numbers to be right justified. I
have tried playing with the ‘anchor’ and ‘width’
mechanisms, but with no success.

This code sample (prob1 on the web site for this book:
http://www.oreilly.com/catalog/tpj2) represents the
questioner’s valiant attempt:

#!/usr/bin/perl -w

use Tk;

804

use strict;

my $MW = MainWindow->new;
my $f1 = $MW->Frame->pack;
my $f2 = $MW->Frame->pack;

$f1->Label(-text => 'This is a very long
label',

-width => 30) ->pack(-side =>
'left', -anchor => 'w');
$f1->Label(-text => 123)->pack(-side =>
'left');

$f2->Label(-text => 'A short one',
-width => 30)->pack(-side =>

'left', -anchor => 'w');
$f2->Label(-text => 456)->pack(-side =>
'left');

$MW->Button(-text => 'Quit',
-command => ['destroy',

$MW])->pack(-side => 'bottom');
MainLoop;

The names are packed left and anchored west, which seems
reasonable. Packing the numbers left as well looks dubious,
however. Figure 38-1 shows what happens when the code is
run.

805

Figure 38-1. The prob1 application: the names aren’t
left-justified

Surprisingly, the names are not left justified but appear to be
centered, and the numbers, which we thought might be left
justified, seem to be right justified!

Something must be amiss. To figure out what’s going on,
consider these tips:

▪ When dealing with columnar data, use a fixed-width font
rather than a proportional font.

▪ Use strings of varying lengths to expose boundary
conditions, so that you know whether your data is
justified properly.

▪ Use different background colors for your widgets to
illuminate the allocation and placement decisions made
by the geometry manager.

Here is a slightly modified version of the first program
(program prob2).

#!/usr/bin/perl -w

use Tk;
use strict;

my $MW = MainWindow->new;

$MW->configure(-bg => 'white');
$MW->optionAdd('*font' => 'fixed');

my $f1 = $MW->Frame->pack;
my $f2 = $MW->Frame->pack;

806

$f1->Label(-text => 'This is a very long
label', -width => 30,

-bg => 'gray')->pack(-side =>
'left', -anchor => 'w');
$f1->Label(-text => 1234567890, -bg =>
'yellow')->pack(-side => 'left');

$f2->Label(-text => 'A short one', -width
=> 30,

-bg => 'gray')->pack(-side =>
'left', -anchor => 'w');
$f2->Label(-text => 456, -bg =>
'yellow')->pack(-side => 'left');

$MW->Button(-text => 'Quit', -command =>
['destroy', $MW])->pack;

MainLoop;

The changes just implement my three tips, with the exception
of the last one: by default, the
packer arranges a master’s slave widgets from top to bottom,
so -side => ‘bottom’ is superfluous. Because I’m
lazy, I used optionAdd to change the X11 resource
database so that all widgets use the default font fixed. Our
newly instrumented program is illustrated in Figure 38-2.

807

Figure 38-2. The prob2 application: background colors
illuminate the widgets

First, note that the numbers are allocated an area just large
enough to contain them. This is the default pack action and is
sometimes called shrink-wrapping. Next, note that the names
are allocated a space 30 characters wide (because that’s what
we requested) and the label text is centered—again, the
default pack action. Remember, the
packer likes to shrink-wrap and center widgets unless you
specify otherwise. So, the two container frames are assigned
the minimum required space and centered inside their master
widget, the MainWindow. That’s why unused space is equally
apportioned on either side of the bottom frame.

Some observations about prob2:

▪ Packing the names with -anchor => ‘w’ is useless.

▪ But creating the label widgets with -anchor =>
‘w’ would make a difference. It doesn’t solve the
problem, but it does left-justify the names in their 30
character allocated space.

▪ Packing the second frame with -fill => ‘x’ tells
the
packer to fill the frame east-west instead of
shrink-wrapping. Once you do this, the frames will be
the same length, and the names will be left-justified. But
the numbers are also left-justified—after all, that’s what
we told the packer to do. The numbered should be
packed right with -side => ‘right’.

808

Our solution is called pack:

#!/usr/bin/perl -w
#
Create two columns of data:
left-adjusted text labels and
right-adjusted
numbers. Each row consists of a frame
with two labels packed on opposite
sides. The packer fills unused space in
the X-dimension so that all
frames are the same length (that of the
widest frame).

use Tk;
use strict;

my $MW = MainWindow->new;
my @text = ('This is a long label', 'Then
a short',

'Frogs lacking lipophores are
blue');

my ($i, $w, $f) = (0, undef, undef);

foreach (@text) {
$f = $MW->Frame->pack(-fill => 'x');
$w = $f->Label(-text => $_);
$w->pack(-side => 'left');
$w = $f->Label(-text => $i . '0' x $i);
$w->pack(-side => 'right');
$i++;

}

MainLoop;

The output of pack is shown in Figure 38-3.

809

Figure 38-3. The pack application: all frames are now the
same length and left justified

[10] The Perl/Tk mailing list, “ptk,” is archived at
http://www.rosat.mpe-garching.mpg.de/mailing-lists/ptk/; you
can subscribe by sending mail to
majordomo@lists.stanford.edu.

810

The Gridder

The corresponding code using the grid geometry manager,
named grid, produces an identical display. Unlike the rest
of Tk, grid elements are referenced by row (Y coordinate) and
column (X coordinate), starting from 0 at the top left corner
of the master widget.

#!/usr/bin/perl -w
#
Create two columns of data:
left-adjusted text labels and
right-adjusted
numbers. Each row consists of two labels
managed by the

gridder, which
are "stuck" to opposite sides of their
respective column. The gridder
fills unused space in the east-west
direction so that all rows are the
same length -- that of the widest row.

use Tk;
use strict;

my $MW = MainWindow->new;
my @text = ('This is a long label', 'Then
a short',

'Frogs lacking lipophores are
blue');

my ($i, $w) = (0, undef);

foreach (@text) {

811

$w = $MW->Label(-text => $_);
$w->grid(-row => $i, -column => 0,

-sticky => 'w');
$w = $MW->Label(-text => $i . '0' x

$i);
$w->grid(-row => $i, -column => 1,

-sticky => 'e');
$i++;

}

MainLoop;

The obvious difference is that here we define a grid, with
three rows and two columns. -sticky replaces pack’s
-anchor and -fill attributes, so it’s easy to west-align
names in column zero and east-align numbers in column one.
Also, we’ve dispensed with all the row frames required with
the pack model.

As a more exhaustive test drive of the gridder, let’s look at an
implementation of the old chestnut 15-puzzle, a game where
you try to arrange 15 numbered tiles in numerical order. If
you don’t know what I’m talking about, try out the demo in
the Tk widget program bundled with the Perl/Tk
distribution.

This version of 15-puzzle is called npuz because it’s not
limited to a 4 x 4 square; you can choose n, the length of a
side, from the set (3, 4, 6, 8). To make the puzzle more
difficult, the numbered squares have been replaced with
segments of an image: the official Perl/Tk icon, which we all
know as Camelus bactrianus. See Figure 38-4.

812

Figure 38-4. The npuz application

The grid geometry manager is well suited for this problem,
not only for the initial layout of the puzzle, but also for
moving the pieces. When a new game starts, the pieces are
randomized. Then each is assigned an image and gridded,
with one piece becoming the “space piece.” Moving a piece
simply involves exchanging it with the space, which entails a
call to grid to swap the row and column coordinates.

Here’s simp, a tiny program that gives you a feel for what
npuz does:

#!/usr/bin/perl -w
#
simp (simple_puz) - randomly grid 15
buttons and a space in a 4x4
rectangle.

use Tk;

813

use strict;
use subs qw(create_puz xy);

my $MW = MainWindow->new;
my $PIECES = 16;
my $SIDE = sqrt $PIECES;
my @ORDER = (3, 1, 6, 2, 5, 7, 15, 13, 0,
4, 11, 8, 9, 14, 10, 12);

create_puz;

MainLoop;

sub create_puz {
my ($i, $text, $num, $but, $c, $r);
for ($i = 0; $i <= $PIECES-1; $i++) {

$num = $ORDER[$i];
$text = ($num = = 0) ? 'Space' :

$num;
$but = $MW->Button(-text => $text,

-command => [$MW => 'bell']);
($c, $r) = xy $i;
$but->grid(-column => $c, -row =>

$r, -sticky => 'nsew');
} # forend all puzzle pieces

}

sub xy { # ordinal to
X/Y

my ($n) = @_;
return ($n % $SIDE, int $n / $SIDE)

}

For simplicity, think of the puzzle pieces as a linear list rather
than a two dimensional array. So for n = 4, the pieces are
numbered from 0 to 15, with piece 0 as the space. To position
a piece we just need to convert a puzzle ordinal to a row/
column pair—that’s what subroutine xy does—and then grid

814

it. The @ORDER list in effect shuffles the pieces so the game
doesn’t start already solved. (Perhaps @ORDER isn’t an
appropriate variable name, since the end result is to increase
the game’s entropy, or add disorder to it.) Running simp
creates Figure 38-5.

Figure 38-5. The simp application

The -sticky => ‘nsew’ attribute is analogous to the
packer’s -fill => ‘both’, and ensures that all buttons
completely fill their allocated space. Notice that grid column
zero is wider than the other columns. This is because the
gridder assigns the column a width equal to that of the widest
button—the button labeled “Space.” Rerun this program
without -sticky and you’ll see the difference. But this
won’t be a problem for npuz, since all the buttons have
images of identical size.

Three changes to simp will give us npuz:

1. Create a Photo image of Camelus bactrianus and replace
button numbers with a portion of the image.

2. Keep track of every button widget and its grid position
so we know when it’s adjacent to the space piece.

815

3. Devise a button callback to re-grid a piece when it’s
eligible to move.

Since we think of the puzzle pieces as a list, we’ll store the
widget references in an array: @PUZ. The grid geometry
manager obviously knows the location of all its slave widgets
so npuz can simply ask the
gridder for this data.

This npuz code is analogous to simp. A few lines have
been excerpted from other areas of the program and included
here for completeness.

$CAMEL = $MW->Photo>(-file => 'images/
Xcamel.npuz');
$PF = $MW->Frame->grid; #
create puzzle frame grid master

my ($i, $o, $c, $r, $w, $h, $x, $y, $but,
$gif);

for ($i = 0; $i <= $#PUZ; $i++) {
$o = $ORDER[$i]->[0];
($c, $r) = xy $o; #

puzzle ordinal to column/row
$w = $CAMEL->image('width') / $SIDE;
$h = $CAMEL->image('height') / $SIDE;
$x = $c * $w; #

x/column pixel offset
$y = $r * $h; #

y/row pixel offset
$gif = $PF->Photo; #

new, empty, GIF image
$gif->copy($CAMEL, -from => $x, $y,

$x+$w, $y+$h);
$but = $PF->Button(-image => $gif,

-relief => 'flat',
-borderwidth => 0,

816

-highlightthickness => 0);
$PUZ[$o] = $but;
($c, $r) = xy $i;
$but->grid(-column => $c, -row => $r,

-sticky => 'nsew');
$but->configure(-command =>

[\&move_piece, $but]);
} # forend all puzzle pieces

The first statement creates a Photo object of our friendly
camel. Like Tk objects, a Photo object has methods to
manipulate it, which we’ll use to create smaller rectangular
photos from the main image. These new photos are then
assigned to the game buttons.

Notice that frames are still used as containers with the
gridder. Here the puzzle frame $PF, a slave of the
MainWindow, is the grid master for the puzzle. (There’s
another MainWindow slave frame that holds the npuz menu
bar, but I’ll talk about that later.)

Once a puzzle ordinal is selected, we can use its row and
column position, along with the width and height of a puzzle
piece, to compute a bounding box that defines a sub-region of
the main camel image. Then an empty photo is created and
populated with the image sub-region using the copy method,
which copies from the source image $CAMEL to the new
image $gif.

It’s important to note that when you’re finished with an image
you must explicitly delete it. Images don’t magically go away
just because a widget that happens to use it is destroyed. After
all, several widgets might be sharing the same image. To
prevent a memory leak when a new game is started and all
previous buttons are deleted, we first delete all their images:

817

foreach (@PUZ) { $_->cget(-image)->delete }

After updating @PUZ with the new button, the piece is
gridded and a callback to move_piece is created, passing
$piece, a reference to the button. Pushing a button invokes
the callback.

sub move_piece {
my ($piece) = @_;
my (%info, $c, $r, $sc, $sr);
%info = $piece->gridInfo;
($c, $r) = @info{-column, -row};
%info = $SPACE->gridInfo;
($sc, $sr) = @info{-column,-row};
if (($sr = = $r and ($sc = = $c-1 or

$sc = = $c+1)) or
($sc = = $c and ($sr = = $r-1 or

$sr = = $r+1))) {
$SPACE->grid(-column => $c, -row

=> $r);
$piece->grid(-column => $sc, -row

=> $sr);
}

}

A call to gridinfo returns a hash of grid configuration
information. The hash keys are the same as the attributes you
can give to a grid (or gridConfigure) command, such
as -column and -row. It’s a simple matter to take a slice
of this hash, check to see if the puzzle piece is directly north,
south, east, or west of the space, and if so, swap their grid
locations.

As you can see, choosing the grid
geometry manager for this problem greatly simplified the
programming. pack could be used, with a lot of
bookkeeping and packForgeting, but the experience

818

would not be pleasant. place is the second best choice, but
you’d have to maintain button coordinates manually, so
@PUZ would be a list of list of three:

$PUZ[$ordinal] = [$column, $row, $but].

You can grid menu bars easily as well. Here’s an example
that doesn’t work:

#!/usr/bin/perl -w
#
menu1 - first attempt at gridding a
menubar.

use Tk;
use strict;

my $MW = MainWindow->new;
my $mf = $MW->Frame->grid;
my $PF = $MW->Frame(-width => 300)->grid;

my $mbf = $mf->Menubutton(-text =>
'File', -relief => 'raised');
my $mbp = $mf->Menubutton(-text =>
'Prefs', -relief => 'raised');
my $mbq = $mf->Menubutton(-text =>
'Help', -relief => 'raised');

$mbf->grid(-row => 0, -column => 0,
-sticky => 'w');
$mbp->grid(-row => 0, -column => 1,
-sticky => 'w');
$mbq->grid(-row => 0, -column => 2,
-sticky => 'e');

MainLoop;

819

The frame $PF represents the puzzle frame and artificially
fixes the width of the application’s display to 300 pixels. I did
this so there’s unused space for the menu buttons to move
about in to help illustrate
gridder mechanics. The goal in this example is to grid the
File and Prefs menu buttons side by side west, the Help
menu button east, with unused space in the center of the
frame. Instead, Figure 38-6 is the result.

Figure 38-6. Improperly gridded buttons

Like the packer, the default grid action is to shrink-wrap the
menu bar frame around the three menu buttons and center it
in the 300 pixel allocated space. We’ll need two small
changes to achieve the effect shown in Figure 38-7.

Figure 38-7. Properly gridded buttons

First, the menu bar row needs to be east-west sticky:
my $mf = $MW->Frame->grid(-sticky => 'ew');

By itself, this change doesn’t make any difference in the
geometry arrangement, because the three grid columns
containing the menu buttons have no weight. Without weight,
a grid column (or row) can’t be apportioned unallocated

820

space. We can arrange for menubar column 1 (the Prefs
menu button) to get all the unused space in the frame like this:

$mf->gridColumnconfigure(1, -weight => 1);

The -weight attribute is a relative value, and because the
other columns are weightless, the Prefs column gets 100% of
the unallocated space. It’s important that Prefs be west sticky,
but the other two columns don’t need to be sticky at all, since
they get no unused space. Although the current version of
grid accepts floating point weight values, the next one will
not, so always use integers.

Sometimes you’ll want to disable the outward propagation of
geometry configuration information. For instance, suppose
you want to manage a frame of a particular size, and within
the frame pack or grid other widgets. This example grids a
frame with an embedded button but prevents the
gridder from shrink-wrapping the frame around the button:

#!/usr/bin/perl -w
#
Remove the gridPropagate() statement to
shrink-wrap the display.

use Tk;
use strict;

my $MW = MainWindow->new;
my $f = $MW->Frame(-width => 200, -height
=> 100);

$f->gridPropagate(0);

$f->Button(-text => 'To shrink or not to
shrink', -command => \&exit)->grid;

821

MainLoop;

There’s an analogous function for the packer as well:
packPropagate.

That wraps up my grid introduction. Be sure to read the grid
documentation in the Perl/Tk distribution for further details.

822

Chapter 39. Drawing on a Canvas

Steve Lidie
Last year, I mowed my
lawn on a warm and wonderful late summer day. As I
followed my usual mowing pattern. I wondered if there was a
better way to do it. In this article, we’ll use Perl/Tk to
visualize some different mowing patterns and see how well
they represent reality—and along the way demonstrate
drawing on a Perl/Tk canvas.

Our Mower Is Programmable!

For this exercise we have at our disposal a programmable
robotic mower. Our job is to write a software simulation of
lawnmowing. It’s exceedingly difficult to model the
complexities of the physical world with a computer, so we’ll
make some simplifying assumptions. First, we’ll define the
lawn as a rectangular area without trees, gardens, rocks,
ponds, or cats.[11] The lawn is also a perfect mowing surface
without bumps or undulations, and the grass has uniform
thickness; this way we know that the mower can be steered
accurately. Finally, we’ll assume the mower has a turning
radius of zero: that is, it can pivot. (Automatic mowers that
are always going forward have a nonzero turning radius.)

823

[11] I once saw a solar-powered robot that mowed in a random
direction until it bumped into something, at which time it took
off in a new, random direction. Given enough time, it would
mow any area completely. I hear these mowers use color/
luminance to detect edges, so I guess my cats are safe as long
as they don’t turn green.

824

A Canvas Widget Is the Lawn

To represent the mowing area, we’ll use a Perl/Tk canvas
widget, colored chlorophyll green of course. Let’s assume
that to program the mower all we need is to write Perl/Tk
code that overlays various items that display the mower’s
path (lines, arcs, ovals, and such) on the canvas, making sure
that no green remains.

Our first program starts by mowing (drawing a line) 100 feet
in a straight line and turning right. It repeats three times until
it’s mowed the periphery of the lawn. Then the mower shifts
right by the width of one cut (I mow clockwise) and repeats
the process until there’s nothing left to mow.

825

Defining the Perl Mowing Module

We’ll be creating several variants of the mowing program, so
we’ll program for reusability by including constants in a
module, Mow.pm. This module simply exports a list of
variables. It’s not object-oriented, although it does inherit
some methods from Exporter. Here it is:

Mow.pm - mowing module.

package Mow;

use 5.004;
use Exporter;
@ISA = qw(Exporter);
@EXPORT = qw/$CHLOROPHYLL $COLOR $CUT $D2R
$PPF $SIDE $TURN/;

$CHLOROPHYLL = '#8395ffff0000'; #
Rye-grass-green, maybe
$COLOR = 0xffff; #
Initial line color
$CUT = (38 / 12); # Cut
width in feet
$D2R = 3.14159265 / 180.0; # Map
degrees to radians
$PPF = 2; #
Pixels/foot
$SIDE = 100; # Size
of square mow area
$TURN = (27 / 12); # Turn
radius in feet

1;

826

When Perl sees a use Mow statement it populates the
program with the variables from the @EXPORT list. With the
definitions $CHLOROPHYLL, $CUT, and $SIDE in place
(more on “color numbers” like $CHLOROPHYLL shortly) we
can write a simple zero turning radius mowing program.

827

Zero Turning Radius, Take One
use Mow;
use Tk;
my $mw = MainWindow->new;
my $canvas = $mw->Canvas(-width =>
$SIDE, -height => $SIDE,

-background =>
$CHLOROPHYLL)->grid;
$mw->waitVisibility;

A chlorophyll green, 100-pixel-square canvas is created and
gridded. The waitVisibility statement forces Tk to
display the canvas before the program can proceed, so we can
watch the mowing process in real time. Otherwise, the
simulation might complete before we could see it. All we
need to do now is define a recursive subroutine and call it
once:

mow $canvas, 0, 0, $SIDE, $SIDE;

sub mow { # Recursively mow until done.
my ($canvas, $x1, $y1, $x2, $y2) = @_;
return if $x1 >= $x2 or $y1 >= $y2;

$canvas->createLine($x1, $y1, $x2,
$y1, $x2, $y2, $x1, $y2, $x1, $y1);

$canvas->idletasks;
$canvas->after(250);

mow $canvas, $x1+$CUT, $y1+$CUT,
$x2-$CUT, $y2-$CUT;
}

Besides the reference to the canvas, the arguments to mow are
simply coordinates of the top left and bottom right corners of

828

a square. mow invokes createLine to paint four line
segments—one across the top, right, bottom, and left of the
canvas, in that order. Then mow updates the display and waits
a quarter of a second ($canvas->after(250)) before
invoking itself again, to mow a smaller square. Figure 39-1
shows the not-so-satisfying result.

Figure 39-1. Using createLine to animate lawnmowing

The main problem is that the width of the cut is pencil thin, so
the robot leaves lots of green behind. Luckily,
createLine has some options that help.

829

The Canvas Line Item Type

createLine draws a line between two points. If you
provide more than two points, it draws a series of joined line
segments. The line segments can even be smoothed using a
Bezier spline with the smooth parameter, as this code
demonstrates:

my $mw = MainWindow->new;
my $canvas = $mw->Canvas(qw/-width 90
-height 100/)->grid;

$canvas->createLine(qw/10 25 20 55 48 15
80 95 -fill blue/);
$canvas->createLine(qw/10 25 20 55 48 15
80 95 -fill red -smooth yes/);

Figure 39-2 shows the smoothing effect of splines.

Figure 39-2. Smoothed lines

The ends of a single line segment can be adorned in several
ways—with arrowheads (the widget demo, which Tk
installs in the same directory as Perl, shows you the

830

arrowheads to choose from), or one of these shapes, called a
capstyle (Figure 39-3):

Figure 39-3. Perl/Tk’s three capstyles

Capstyles become important as the width of the line increases.
In the previous picture the fat lines with capstyles were each
25 pixels long and 20 pixels wide. The skinny white lines
connect the same canvas points, but have a width of 1 and no
capstyle. Notice that the width of the fat items is equally
apportioned on each side of the connecting line.

But our
mowing program cuts with multiple, fat, and connected line
segments, so we need to use another attribute called the
joinstyle (Figure 39-4).

Figure 39-4. Perl/Tk’s three joinstyles

831

The miter’s right angle looks ideal. Finally, fat lines can be
filled with a solid color or a stipple. The next version of mow
uses graduated fill colors to highlight the mower’s path.

832

Zero Turning Radius, Take Two

Putting everything together gives us the program below,
called zero-tr2 on the web site for this book
(http://www.oreilly.com/catalog/tpj2).

my $canvas = init;
mow $canvas, (0, 0), ($SIDE, $SIDE);
MainLoop;

sub init {
my $mw = MainWindow->new;
my $mow_side = $SIDE * $PPF;
my $canvas = $mw->Canvas(-width

=> $mow_side, -height => $mow_side,
-background

=> $CHLOROPHYLL)->grid;
$mw->waitVisibility;
$mw->after(1000);
return $canvas;

}

sub mow { #
Recursively mow until done.

my ($canvas, $x1, $y1, $x2, $y2) = @_;
return if $x1 >= $x2 or $y1 >= $y2;
my $color = sprintf("#ffff%04x%04x",

$COLOR, $COLOR);
$COLOR -= 0x0800;
$canvas->createLine($x1 * $PPF, $y1 *

$PPF, $x2 * $PPF, $y1 * $PPF,
$x2 * $PPF, $y2 *

$PPF, $x1 * $PPF, $y2 * $PPF,
$x1 * $PPF, $y1 *

$PPF, -width => $CUT * $PPF + 0.5,
-fill => $color,

833

-joinstyle => 'miter');
$canvas->idletasks;
$canvas->after(250);

mow $canvas, $x1+$CUT, $y1+$CUT,
$x2-$CUT, $y2-$CUT;
}

Four comments about zero-tr2:

▪ The variable $PPF is the scaling factor, in pixels per
foot, which enlarges the canvas for better viewing.

▪ Anywhere a color name like CadetBlue or
MediumOrchid4 is specified, a hexadecimal RGB
number can be substituted. The program starts by
drawing lines with a fully saturated color and darkens it
slightly each time mow is called.

▪ The mowing width is a floating point number that must
be rounded after scaling, otherwise we miss mowing
parts of the
lawn. Try running zero-tr2 without the 0.5 rounding
term and see what happens. For a great primer on
floating point gotchas, read the article “Unreal Numbers”
in Computer Science & Perl Programming: Best of the
Perl Journal (O’Reilly).

▪ All line segments are joined with a miter cut.

Figure 39-5 shows the result of zero-tr2.

834

Figure 39-5. A well-mowed lawn

835

Rotating Simple Objects in Canvas
Space

Let’s complicate matters and assume our robot is in the shop
for repairs. We have an older model with a nonzero turning
radius; that is, it turns with an arc, leaving a small swath of
green behind. To simulate this, the mowing program could
draw connected lines and arcs for each side of the mowing
area. While these eight items are still manageable, it might be
easier to define one line and one arc, and have mow rotate
them as required.

Rotating a line in a Cartesian coordinate space is simple if
one of the endpoints is at (0, 0). Then the rotation reduces to
rotating the other endpoint. Given such a point (x, y), we can
rotate it through the angle Θ using these equations:

x’ = x cos Θ- y sin Θ
y’ = x sin Θ + y cos Θ
(x’, y’) is the new location of the point.

Rotating a line about an arbitrary point requires that the line
be translated to the origin, rotated, and then translated back to
its original location. The following code rotates (clockwise)
the line whose endpoints are (0,0) and (20,40) about the
center point of the canvas, (65,65). It draws a line and then
creates an invisible bounding rectangle. We’ll employ one of
those shortly to define an oval for the turning radius arc.

my $mw = MainWindow->new;
my $canvas = $mw->Canvas(-width => 130,
-height => 130)->grid;
$mw->waitVisibility;

836

my $origin = 65; #
Origin of canvas
my($x2, $y2) = (20, 40); #
Endpoint of line segment

rotate $canvas, 0, $x2, $y2, 'black';
rotate $canvas, 90, $x2, $y2, 'red';
rotate $canvas, 180, $x2, $y2, 'green';
rotate $canvas, 270, $x2, $y2, 'blue';

MainLoop;

sub rotate {
my ($canvas, $theta, $x2, $y2, $color)

= @_;

$theta *= $D2R; #
Degrees to radians

my $nx2 = $x2 * cos($theta) - $y2 *
sin($theta);

my $ny2 = $x2 * sin($theta) + $y2 *
cos($theta);

$canvas->createLine(0+$origin,
0+$origin, $nx2+$origin, $ny2+$origin,

-fill => $color);
$canvas->createRectangle(0+$origin,

0+$origin, $nx2+$origin, $ny2+$origin,
-outline =>

$color);

my $coords = sprintf("(%d,%d)",
int($nx2), int($ny2));

$canvas->createText ($nx2+$origin,
$ny2+$origin,

-text => $coords,
-font => 'fixed');

837

$canvas->idletasks;
$canvas->after(250);

}

Figure 39-6 shows four rotations of a line.

Figure 39-6. Line rotations

838

The Canvas Rectangle and Text
Item Types

The previous code introduced two new canvas items:
rectangle and text. Like the
mowing area, two diagonally opposed corners define a
rectangle (here, the endpoints of the rotating line segment).
You can’t do much else with a rectangle other than specify
the width and color of its outline, or fill it with a color or
stipple.

The canvas text item annotates the business end of a line with
its coordinates (the other endpoint is always (0,0)). These
floating point values are truncated without rounding, which is
why some of the numbers are a bit off. Text items can be
anchored, justified and filled, as you’d expect. There are
methods to insert and delete characters, too.

839

The Canvas Arc Item Type

The tools for the next mowing program are now at hand. We
can take a line and rotate it through an arbitrary angle and
draw it anywhere on the canvas. We can also use the two
points that define a line and draw a rectangle instead, at any
angle, anywhere on the canvas. And since an arc is defined by
an oval which is defined by a bounding rectangle, we can
rotate and draw an arc anywhere on the canvas. Figure 39-7
shows three arc styles: pieslice, chord, and arc.

The three arc styles were created with the following
statements. The first four elements represent the bounding
boxes:

$canvas->createArc(qw/10 10 50 50 -start 0
-extent 270

-style pieslice
-fill black -stipple error/);

$canvas->createArc(qw/70 10 110 50 -start
45 -extent -135 -style chord/);

$canvas->createArc(qw/130 10 170 50 -start
-90 -extent -180 -style arc/);

840

Figure 39-7. Three arc styles

Each arc has a starting angle and an extent, both in degrees,
with zero degrees along the x-axis. Positive angles rotate
counterclockwise and negative angles clockwise. The pie
slice arc is stipple filled with a built-in bitmap.

841

Nonzero Turning Radius, Take
One

The new controller code starts by defining two points: an
endpoint of a line, and one corner of the arc’s bounding box.
The point (0,0) doubles as the line’s other endpoint, as well as
the opposite corner of the arc’s bounding box. The bounding
box is square, because the mower’s circular turning radius
must fit inside.

@LINE = ($SIDE, 0); # Initial straight
line

mowing path
@ARC = ($TURN, $TURN); # Generic turning
radius arc

The change to mow: it now rotates the line and arc, computes
three points, and then draws the two items (the full program is
called nz-tr1). Points one and two are the line’s endpoints;
points two and three are the arc’s bounding box. Thus, the
end of the line and the start of the arc coincide. Here’s an
excerpt:

$canvas->createLine($start[0], $start[1],
$end[0], $end[1],

-fill => $color,
-width => $CUT,

-capstyle => 'round',
-tags => 'path');

($x2, $y2) = @ARC[0,1];

$nx2 = $x2 * cos($theta) - $y2 *

842

sin($theta);
$ny2 = $x2 * sin($theta) + $y2 *
cos($theta);

$canvas->createArc($end[0], $end[1],
$end[0]+$nx2, $end[1]+$ny2,

-start =>
270-20-$angle, -extent => 180+40,

-style => 'arc',
-outline => $color,

-width => $CUT, -tags
=> 'path');

This simulation produces the same visible results as the zero
turning radius code.

843

Canvas Tags

The previous snippet demonstrates tags, a powerful canvas
concept. Tags are simply strings used to identify canvas
items, which you add or delete as needed. A canvas item can
have any number of tags, and the same tag can be applied to
any number of items. The
mowing program uses the path tag to group all the lines and
arcs that define the mowing path. (Every canvas item has at
least one tag, the string all.)

Tags are supplied to canvas methods to select which items to
operate upon; for example, this binding turns all fat lines and
arcs into skinny lines and arcs. This allows the green canvas
background to show through:

$canvas->CanvasBind('<Double-1>' =>
sub {

$canvas->itemconfigure('path', -width =>
1) });

Figure 39-8 shows the output of nz-tr1.

844

Figure 39-8. Non-zero turning radius lawnmowing

845

Scaling Canvas Items

A canvas can also be scaled to implement a primitive zoom
function. Scaling adjusts each of the points defining an item
by changing the points’ distance from an origin by the scale
factor. For example, this code uses the middle of the canvas
as the origin and doubles the x and y coordinates of all items
tagged with the string path. Scaling doesn’t affect the line
width, however.

my $origin = $SIDE / 2;

my $zi = $zf->Button(qw/-text ZoomIn
-command/ =>

[$canvas => 'scale',
'path', $origin, $origin, 2.0, 2.0]);

After a few presses of the ZoomIn button we see the detail
shown in Figure 39-9.

846

Figure 39-9. Zooming in on our lawnmowing

847

The Real World Is Uncertain

I can’t mow as nicely as the robot. As I turn my tractor it
continues to move forward, so the turning arc is almost
teardrop in shape. My mowing surface is sloping and bumpy,
and I don’t always start and finish turns at the same time. No
two turns are identical. My sloppiness often leads to uncut
grass, as illustrated in Figure 39-10.

Figure 39-10. A little grass left uncut

I realized this was more like reality, and the global view of
the situation gave me an idea. Modifying the program, I used
two lines to paint a large X on the canvas, and a few trials
later found that this code sufficed to cut the remaining grass:

$canvas->createLine(0, 0, $SIDE, $SIDE,
-width => (2 * $CUT)+0.5, -fill =>
'yellow');
$canvas->createLine($SIDE, 0, 0, $SIDE,

848

-width => (2 * $CUT)+0.5, -fill =>
'yellow');

The magic number was two mower widths, a trip up and back
each diagonal. Last year I went out and performed the
experiment, and the results agreed nicely with theory.

849

Chapter 40. Displaying Databases
with the Tree Widget

Steve Lidie
This article discusses
Perl/Tk’s Tk::
Tree widget, which displays hierarchical data in a
tree format. In computer science, a tree is a data structure that
starts at a root node and branches to other nodes, which can
be internal nodes or leaf nodes at the bottom of the tree. An
internal node has one or more child nodes; it’s called the
parent of those nodes. (Any child node at the end of a branch
is a leaf node, since it has no children.) Nodes sharing the
same parent are siblings. Unlike a physical tree, the root node
is usually shown at the top, and leaves at the bottom of the
structure. See Figure 40-1.

Figure 40-1. A sample tree

In contrast, Tk::Tree draws “sideways” trees, with the root
node at the top left and branches growing down and to the

850

right. While Tk::Tree is in the standard Perl/Tk distribution,
there’s another tree widget on CPAN: Tk::TreeGraph, by
Dominique Dumont. I won’t describe it here, but Figure 40-2
shows it, and you can read about it on the Perl/Tk modules
page http://www.Lehigh.EDU/~sol0/ddumont/
ptk_module_list.html.

Tk::Tree is derived from Tk::HList, the hierarchical list
widget. From a programming point of view, Tree is much
simpler to use because it masks the complexity of HList and
automatically adds open and close buttons, thus exposing a
much simpler interface. Figure 40-3 (interestingly enough,
created using an HList widget), shows us the widget hierarchy
of a Tree graphically. You can see that Tk::HList is a base
class of Tk::Tree. For a detailed explanation of the Perl/Tk
widget hierarchy, see Chapter 14, Creating Custom Widgets
in Pure Perl/Tk, in O’Reilly’s Mastering Perl/Tk.

851

Figure 40-2. The Tk::TreeGraph widget in action.

852

Figure 40-3. Widget hierarchy of a tree

The structure of a
Tree is specified with an entry path when a node is created,
consisting of one or more entry names separated by a
character of your choosing, often a dot. This is analogous to a
Unix or Windows file path name, in which the separator is a
slash or reverse slash. Entry paths are simply the internal
names used by Tk::Tree when generating the
Tree layout. The names aren’t drawn on the screen—there’s a
separate -text option for that.

As an example, suppose I have a database with several tables,
and I’d like to visualize that structure. I might start by adding
the root node and with the entry path tables. Let’s say the
first table is called video_catalog, because that’s where
I record interesting data about my video collection of DVDs,
VHS tapes, and 8mm tapes. Giving it the entry path of
tables.video_catalog would create a child node of
the root. Now, for each DVD I could use entry paths of the
form tables.video_catalog.dvd1,
tables.video_catalog.dvd2, and so on,
creating a series of siblings under the internal node
tables.video_catalog.

If I had a second table of Tk widget information, I’d use an
entry path of the form tables.widgets, and for each
widget, entry paths of the form
tables.widgets.widget1, and so on.

853

Using Databases from Perl

Since we are already talking of viewing a database, let’s
broaden the concept and write a simple database browser in
Perl/Tk. I’ll use MySQL, a popular and fast database that is
freely available and relatively simple to use. Naturally I’ll use
DBI, Perl’s database interface.

DBI allows you to manipulate every popular database engine
from within Perl. If you haven’t been using databases already,
you need to do three things to get started:

1. Install a database engine, such as MySQL from
http://www.mysql.org/downloads.

2. Install DBI from CPAN or dbi.perl.org.

3. Install the appropriate database driver; this is the
database-dependent layer that mediates communiation
between DBI and the database engine. If you chose
MySQL, you’d install DBD::mysql; if you chose Oracle,
you’d install DBD::Oracle. All database drivers are
available on CPAN and at dbi.perl.org.

Fortunately, DBI and DBD utilize the standard Perl sequence
for installing modules:

% perl Makefile.PL
% make
% make test
% make install

Ensure that the database is running before the DBD
install—otherwise, the make test phase will fail.

854

Overview of the tkdb Application

Figure 40-4 shows us what the application looks like; you can
find all of the code on the web page for this book:
http://www.oreilly.com/catalog/tpj2. There’s a Label widget
at the top of the application displaying help instructions;
please read them to learn what tkdb can do. Below the
instructions is an Optionmenu that selects the database of
interest, here tpj. Once that happens, the database tables are
displayed in the Tree widget to the left. To the right of the
Tree widget is an ROText widget that displays the results
(and errors) of our activities. Next is a SQL Entry widget
where the user can enter SQL select statements. And lastly,
the Quit button that disconnects from the database server and
exits the application.

Figure 40-4. The tkdb application

We’ll walk through the code in chunks.

855

#!/usr/local/bin/perl -w

use DBI;
use Tk;
use Tk::widgets qw/ItemStyle LabEntry
ROText Tree/;
use subs qw/create_db_tree do_insert
do_query get_input

ins new_table update_db/;

use strict;

our ($DBH, # The DBI
database handle

$GET_IN, # Get user input
window reference

$MW, # The Perl/Tk
main window

$RNUM, # Unique row
number

$TNUM, # Unique table
number

$ROTEXT, # ROText widget
reference

$STYLE, # Item style
$TREE); # Reference to

the Tree widget

$RNUM = 1; # Table row number
$TNUM = 1; # DB table number
*ins = \&Tk::Error; # Alias ins() to
Tk::Error()

$MW = MainWindow->new; # Our main window

I first import the DBI and Tk modules, as well as a number of
Tk widgets, and I then predeclare some of the subroutines I’ll

856

be defining later. As always, my program uses the strict
pragma.

The our declaration lists the program’s global variables:

$DBH

Database handle. The primary object for manipulating the
database. To make an analogy, $DBH is to DBI as $MW is
to
Perl/Tk.

$GET_IN

Widget reference to a Toplevel widget containing a single
Entry widget I use to gather user input. The Toplevel
widget is created once, and remains in a withdrawn state
until needed.

$MW

Main window of the application.

$RNUM and $TNUM

Used to generate node entry paths; these variables are
incremented after every row or table to keep entry paths
unique. They are immediately initialized to 1 after the
our declaration.

$ROTEXT

Widget reference to the read-only text widget.

857

$STYLE

Reference to a Tk::ItemStyle object. Item styles are used
to configure Tree options like colors and fonts; with it, I
can highlight tables names in blue.

$TREE

Widget reference to the Tree widget.

Later, you’ll learn more about the *ins glob in the
second-to-last line, but for now it’s sufficient to know that
calling ins is just like calling Tk::Error. Soon, you’ll
also learn what Tk::Error does.

858

Building the Graphical Interface

Here is the help Label, simply a long string with double
newlines wherever I want a paragraph break. As you can infer
from the last two options, it’s justified left in a window nine
inches (“9i”) wide.

$MW->Label(-text =>
"The Optionmenu widget below

enumerates all your

databases. Make " .
"a selecton to load a list of the

database's tables in the Tree " .
"widget on the left. Double-click on

a blue table name to " .
"delete the entire table. Double-click

on a \"Contents of ...\" " .
"line to add new row, or sort and

print the table. Double-clicking " .
"on a table row lets you change or

delete the row. Double-clinking " .
"the first \"Tables\" line creates a

new table." .

"\n\nThe SQL> Entry widget at the
bottom of the window lets you " .

"execute SQL statements." .
"\n\nAll output and error messages

appear in the Text widget on " .
"the right.",
-wraplength => '9i',
-justify => 'left',

)->pack;

859

After the help Label, I create the Optionmenu containing the
list of
database tables:

my $db;
my (@dbs) = DBI->data_sources('mysql');
@dbs = map {m/.*:(.*)/} @dbs;

my $om = $MW->Optionmenu(-options =>
[reverse @dbs], -textvariable => \$db);
$om->pack;
$om->configure(

-command => sub {create_db_tree($_[0],
qw/db_user db_pw/)}
);

The DBI call to data_sources returns a list of
databases of the form “DBI:mysql:db_name”, so the regular
expression discards all but the database name. I add the
database names to the Optionmenu in reverse order, since
MySQL has two built-in databases and I want mine at the
head of the list. The -command option is configured
separately to inhibit an automatic invocation—it seems that
during widget creation the -textvariable changes and
the callback is triggered! But when the callback is legally
invoked, create_db_tree is called with the database
name, user name, and password. This subroutine actually
builds the tree structure, as I’ll explain shortly.

Now I create the container Frame that holds the scrolled Tree
on the left and the scrolled ROText widget for collecting
output and errors on the right:

my $frame = $MW->Frame->pack;

$TREE = $frame->Scrolled('Tree',

860

-width => 40, -height => 20,
-separator => '.',

-itemtype => 'text', -relief =>
'solid', -borderwidth => 2,

-selectmode => 'single', -command =>
\&update_db,
);
$TREE->pack(qw/-side left/);

$STYLE = $TREE->ItemStyle('text');
$STYLE->configure(-foreground => 'blue');

$ROTEXT =
$frame->Scrolled('ROText')->pack(qw/-side
right/);

I chose the period as my entry path separator, set single select
mode because I only want to process one Tree node at a time,
and established a callback that’s invoked when the user
double clicks on a Tree entry. Finally, I make a text item style
to colorize selected text entries. For complete details on item
styles read the documentation on Tk::DItem (perldoc
Tk::DItem).

Below, I create a LabEntry to accept and execute user select
commands:

my $query;
my $le = $MW->LabEntry(

-label => 'SQL>',
-labelPack => [qw/-side left/],
-textvariable => \$query,

);
$le->pack(qw/-fill x -expand 1/);
$le->bind('<Return>' => sub {

my ($fc, $rc, @rows) = do_query
$_[0]->get;

foreach my $row (@rows) {

861

ins @$row;
}

});

The <Return> binding calls do_query, passing the SQL
statement from the Entry widget and saving the results in the
ROText widget. I’ll explain do_query shortly, but, briefly,
it returns a list of lists: a list of table rows, each of which is a
list of row fields. The ins subroutine simply inserts a row
into the ROText widget and positions the widget so the last
line is visible. As I mentioned earlier, you’ll learn more about
ins and its relation to the
Perl/Tk subroutine Tk::Error later.

To complete the interface, I build a Quit button that
disconnects from the database and exits the application. I also
ensure that the callback is invoked even if the user closes the
window. Finally, MainLoop takes control:

my $quit = sub {
$DBH->disconnect if defined $DBH;
exit;

};
$MW->protocol('WM_DESTROY_WINDOW' =>
$quit);
$MW->Button(-text => 'Quit', -command =>
$quit)->pack;

MainLoop;

862

Creating a Tree View of a Database

If you look back to Figure 40-4, you’ll see that the database
tpj is open and that its two tables, video_catalog and
widgets, are depicted in the
Tree widget. The widgets table is empty (it has no row
data), but video_catalog has four rows. (tkdb caches
row data in individual node entries using the -data option.)
The idea is to manipulate the row data locally and only update
the database when the table is closed (although I didn’t
implement this feature in the actual application).

The create_db_tree subroutine is responsible for
opening a database and building a tree structure of all the
tables and the contents of their rows. With those thoughts in
mind, let’s examine the code in detail:

sub create_db_tree {
my ($db, $user, $pw) = @_;
$DBH = DBI->connect("dbi:mysql:$db",

$user, $pw,
{PrintError => 0,

RaiseError => 1});
$TREE->deleteAll;

my ($fc, $rc, @tables) = do_query
'show tables';

my $path = 'tables';
$TREE->add($path, -text => "Tables For

Database '$db'");
$TREE->Activate($path, 'open');

foreach my $table (@tables) {

863

my $tname = $table->[0];
$path = new_table $path, $tname;

my ($fc, $rc, @rows) = do_query
"select * from $tname;";

foreach my $row (@rows) {
$TREE->add("$path.$RNUM",

-text => join(' |
', @$row),

-data => join(' |
', @$row),

);
$RNUM++;

}

$path = 'tables';

} # forend

} # end create_db_

tree

First, tkdb connects to the database and creates the database
handle, $DBH. The PrintError and RaiseError
attributes are important. Setting PrintError to a false
value means that DBI will not call warn to display errors.
Setting RaiseError to a true value, however, tells the DBI
to call die. Normally this would terminate the program, but
Perl/TK has a die handler to catch these errors, named
Tk::Error. I’ve supplied my own Tk::Error so that it
intercepts die calls and inserts the error message into the
ROText widget. We’ll see the connection between
Tk::Error and ins eventually, I promise.

864

$TREE->deleteAll deletes all
Tree nodes, in case there were any lying around from a
previous call.

The do_query subroutine is called to fetch all the database
table names, which are then stored in the array @tables.
$fc is the field count (one in this case) and $rc is the row
count (the number of tables).

Next, we add the root node of the Tree and open it. (The
Activate method also draws the plus and minus boxes.)

Finally, we iterate over all the table names, calling
new_table to actually add the node entry. Remember that
@tables is really a list of lists, but the second list has only
one field—the table name. For each table, we fetch all the
rows and add them as sibling nodes, saving the row data in
the -data option, and displaying it with the -text option.
For simplicity, fields in a row are delimited by a vertical bar.
$RNUM ensures that every row of every table has a unique
entry path.

Here is a listing of new_table, which adds a special node
with a blue foreground color, followed by the Contents node,
which it activates. $TNUM ensures that every table has a
unique entry path.

sub new_table {
my ($path, $tname) = @_;

$TREE->add("$path.$tname", -text =>
$tname, -style => $STYLE);

$path = "tables.$tname.$TNUM";
$TNUM++;
$TREE->add($path, -text => "Contents

of $tname:");

865

$TREE->Activate($path, 'open');

$path;

}

The do_query subroutine prepares and executes an SQL
select statement, returning the number of fields per row, the
number of rows, and the contents of all the rows as a list of
lists.

sub do_query {
my $query = shift;

my $sth = $DBH->prepare($query);
$sth->execute;

my @rows;
while (my @row = $sth->fetchrow_array

) { push @rows, [@row] }

($sth->{'NUM_OF_FIELDS'}, scalar
@rows, @rows);

}

866

Making Changes to a Database

As the user double clicks on different
tree nodes, various actions take place. For instance, he or she
can click on a Contents node to add a new row, and clicking
on the name of a row allows it to be modified or deleted.
When user input is required, I popup an Entry box, let the
user type their input, hide the Entry and return the data. This
is all done with the get_input subroutine:

sub get_input {
my ($data, $msg) = @_;

unless (Exists $GET_IN) {
$GET_IN = $MW->Toplevel;
$GET_IN->geometry("400x100");

$GET_IN->{m} =
$GET_IN->Message->pack;

$GET_IN->{e} =
$GET_IN->Entry->pack;

$GET_IN->{b} =
$GET_IN->Button(-text => 'Done')->pack;

}

my $done = 0;
$GET_IN->{m}->configure(-text

=> $msg);
$GET_IN->{e}->configure(-textvariable

=> \$data);
$GET_IN->{b}->configure(-command

=> sub {$done++});
$GET_IN->deiconify;

$GET_IN->waitVariable(\$done);
$GET_IN->withdraw;

867

return $data;

}

Rather than creating the input window over and over, I use
Exists to see whether it already exists. If not, I create the
window, consisting of a Message widget with instructions, the
Entry widget, and a Button to withdraw the window.
Subsequent calls to get_input realize that the window
already exists and simply reconfigure the widgets and
deiconify the window.

But there is a trick here: the Message, Entry, and Button
widgets need to be reconfigured every time this subroutine is
called, since \$msg, \$data, and \$done change each
time. This is because the variables are lexically scoped, and
Perl/Tk only remembers the last reference. That’s why I store
the widget references as Toplevel instance variables for easy
access.

Double clicking on a node invokes update_db, the master
subroutine (not shown in its entirety due to its length) that
figures out how to handle such events. By examining the
node’s entry path and -data option, update_db can
differentiate between the various nodes and call the
appropriate handler. If a node’s -data option is defined,
then the user wants to modify or delete a row. Otherwise, I
pattern match on the entry path and perform other tasks, like
deleting any tables.

For instance, when the user wants to modify or delete a row,
update_db gets the user’s input, and if the input is defined
the Tree and

868

database are updated. If it’s not defined, the user must want to
delete the row, so update_db removes the data from the
Tree and database. In both cases, the ins subroutine appends
useful information to the ROText widet, as this portion of the
update_db subroutine shows:

$data = get_input $data, 'Make changes or
clear to delete.';
if ($data) {

ins $data;
$TREE->entryconfigure($path, -data =>

$data, -text => $data);
update DB table here

} else {
ins 'row deleted';
$TREE->deleteEntry($path);
#update DB table here

}

Similarly, to add a new row to a table I first add a new node
to the Tree and then insert the row into the table:

$data = get_input $data, 'Enter new row or
clear to ignore.';
return unless $data;
$TREE->add("$path.$RNUM",

-text => $data,
-data => $data);

$RNUM++;
do_insert $tname, split /\|/, $data;
ins $data;

Here’s do_insert, which expects a table name and a list
of row fields. The field values are quoted before insertion into
the database.

sub do_insert {
my $table = shift;

869

my $query = "insert into $table
values(" .

join(',', map {$DBH->quote($_)} @_
) . ");";

my $sth = $DBH->prepare($query);
$sth->execute;

}

To delete a table, users can simply click on its node, which
invokes this code:

my $answer = $MW->messageBox(
-message => "OK to delete table

'$tname'?",
-type => 'okcancel',
-default => 'cancel',

);
return if $answer =~ /cancel/i;

$TREE->deleteEntry($path);
$DBH->do("drop table $tname;");
ins "table '$tname' deleted";

870

The Tk::Error Subroutine

As I mentioned at the top of this article, the following glob
statement:

*ins = \&Tk::Error; # Alias
ins() to Tk::Error

makes ins a synonym for Tk::Error, so that calling
either ins or Tk::Error does the same thing. Tk::Error is
Perl/Tk’s die handler, called with a widget reference and an
error message string as arguments. I’ve hijacked
Tk::Error, and instead of messages going to STDERR (or
a Dialog if a use Tk::ErrorDialog is in effect), I
append them to the ROText widget instead.

sub Tk::Error {
$ROTEXT->insert('end', "@_\n");
$ROTEXT->yview('end');

}

Since I update the ROText widget in many places, the Perl
virtue of laziness compelled me to use a short subroutine
name like ins—and then to avoid writing ins by
piggybacking on Tk::Error.

871

Index

A note on the digital index ?

A link in an index entry is displayed as the section title in
which that entry appears. Because some sections have
multiple index markers, it is not unusual for an entry to
have several links to the same section. Clicking on any
link will take you directly to the place in the text in
which the marker appears.

872

Symbols

(pound sign), Gnuplot comments, Using Gnuplot
15-puzzle example (Perl/Tk gridder geometry manager),
The Gridder
3D graphics programming, The Viewport, The Viewport,
Perspective, Rendering Pipelines, Rendering Pipelines,
Rendering Pipelines

perspective, Perspective
rendering pipelines, Rendering Pipelines, Rendering
Pipelines, Rendering Pipelines
view frustum, The Viewport
viewport, The Viewport

404 Not Found documents (Mason), Default Handlers and
XML
<BASE> tag, tastefulness index agent, The <BASE> Tag,
For Extra Credit, For Extra Credit

873

A

access control (mod_perl), Authentication with mod_perl
agents, Webpluck, How webpluck Works, Web Page
Tastefulness, How It Works, How It Works, How It
Works, How It Works, How It Works, How It Works,
How It Works, How It Works

LWP, How webpluck Works, Web Page Tastefulness,
How It Works, How It Works, How It Works, How It
Works, How It Works, How It Works, How It Works
UserAgent, How It Works

algorithms, The Summarization Algorithm, The
Summarization Algorithm, The Summarization
Algorithm, The Summarization Algorithm

HTML::Summary module, The Summarization
Algorithm, The Summarization Algorithm, The
Summarization Algorithm, The Summarization
Algorithm

alignment, HTML form elements, A Sample Cookie
Program
alpha channels (Gimp), Using the Gimp
anchor (Perl/Tk), A Brief Look at the Packer
animation, Using the Gimp, Timer Events, I/O Events, I/O
Events, I/O Events

Gimp, Using the Gimp
Perl/Tk, Timer Events, I/O Events, I/O Events, I/O
Events

anonymizing proxies, Why Proxy?
Apache, mod_perl, Getting Fancy: A Stately Script,
Getting Fancy: A Stately Script, Writing Your Own

874

Handler, Preload Your Modules, Use Multiple Servers,
Our Sample Application, Components, A Quick Look at
WAP

mod_perl, mod_perl, Getting Fancy: A Stately Script,
Getting Fancy: A Stately Script, Writing Your Own
Handler, Preload Your Modules, Use Multiple
Servers, Our Sample Application, Components

creating handlers, Writing Your Own Handler
maintaining state, Getting Fancy: A Stately Script,
Getting Fancy: A Stately Script
multiple servers, Use Multiple Servers
preloading modules, Preload Your Modules
sample application, Our Sample Application,
Components

WAP, enabling, A Quick Look at WAP

Apache server, advantages, mod_perl
Apache::Adblocker module, How the Proxy Protocol
Works, Identifying Ads, How the Proxy Protocol Works,
Identifying Ads, Identifying Ads, Identifying Ads

identifying advertisements, Identifying Ads

Apache::AuthDB module, DBI and Apache::DBI
Apache::AuthenOverrideSmb module, More NT
Authentication
Apache::AuthenSmb module, Windows Domain Server
Authentication
Apache::AuthzExample module, Basic Authorization
Apache::AuthzManager module, More Sophisticated
Authorization
Apache::HostLimit module, Access Control

875

Apache::Registry module, Apache::Registry,
Apache::Registry
Apache::Sandwich module, Components
applications, Downloading Currency Exchange Rates,
Downloading Weather Information, Downloading News
Stories, Completing U.S. Postal Addresses, Downloading
Stock Quotes, CGI::WML, A Small File Browser with
CGI::WML and mod_perl, Generating WML with
HTML::Mason, Generating WML with HTML::Mason,
A WML Phone Directory with Mason, Creating a
Personal Portal, Creating a Personal Portal

address.pl, Completing U.S. Postal Addresses
cnn.pl, Downloading News Stories
currency.pl, Downloading Currency Exchange Rates
developing, CGI::WML, Generating WML with
HTML::Mason, Generating WML with
HTML::Mason, A WML Phone Directory with
Mason, Creating a Personal Portal, Creating a
Personal Portal

CGI::WML module, CGI::WML
Mason and WML, Generating WML with
HTML::Mason, Generating WML with
HTML::Mason
personal portal (wireless applications), Creating a
Personal Portal, Creating a Personal Portal
WML and straight Perl, A WML Phone Directory
with Mason

file browser example (CGI::WML module), A Small
File Browser with CGI::WML and mod_perl
stock.pl, Downloading Stock Quotes
weather.pl, Downloading Weather Information

876

arrays, saving as cookies, Retrieving Cookies
attributes, HTML::Element class, HTML::Parser,
HTML::TreeBuilder, and HTML::Element
authentication, mod_perl, Authentication, More NT
Authentication, Authentication, Windows Domain Server
Authentication, More NT Authentication, More NT
Authentication
authorization, mod_perl, Authorization, Basic
Authorization, More Sophisticated Authorization
autotune example script (video capture), The Autotune
Script, The Autotune Script, The Autotune Script

B

bugs, Torture-Testing Web Servers and CGI Scripts,
Torture-Testing Web Servers and CGI Scripts

failure to check input, Torture-Testing Web Servers
and CGI Scripts
failure to check length of data, Torture-Testing Web
Servers and CGI Scripts

877

C

878

caches, proxy servers and, Proxying with mod_perl
callbacks, Callbacks and Closures, Initialization, Perl/Tk
Programming

Gnome panel applet example, Initialization
Perl/Tk, Perl/Tk Programming

canvas (Perl/Tk), Drawing on a Canvas, The Real World
Is Uncertain, Zero Turning Radius, Take Two, Scaling
Canvas Items, The Real World Is Uncertain

drawing on, Steve Lidie, Drawing on a Canvas, The
Real World Is Uncertain, Zero Turning Radius, Take
Two, The Real World Is Uncertain
scaling items, Scaling Canvas Items

Canvas widgets, Perl/Tk Programming
capstyles (Perl/Tk lines), The Canvas Line Item Type
cards (WAP), WAP Cards, Developing WAP
Applications, WAP Cards, WAP Cards, WAP Cards,
Developing WAP Applications
CGI (Common Gateway Interface), CGI Programming,
CGI Programming, CGI Programming Without CGI.pm,
The CGI.pm Module, CGI Programming Without
CGI.pm, The CGI.pm Module, Saving CGI State, A
Sample State-Maintaining CGI Script, State in CGI
Scripts, State in CGI Scripts, A Sample State-Maintaining
CGI Script, A Sample State-Maintaining CGI Script, A
Sample State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, Retrieving Cookies,
mod_perl

879

basic script, CGI Programming
invoking with URLs, CGI Programming Without
CGI.pm
limitations of, mod_perl
programming, CGI Programming Without CGI.pm,
The CGI.pm Module, The CGI.pm Module
scripts, State in CGI Scripts, A Sample
State-Maintaining CGI Script, Retrieving Cookies

cookies, Retrieving Cookies
state-maintaining, State in CGI Scripts, A Sample
State-Maintaining CGI Script

state, Saving CGI State, A Sample State-Maintaining
CGI Script, State in CGI Scripts, A Sample
State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script

CGI scripts, Torture-Testing Web Servers and CGI
Scripts, Torture-Testing Web Servers and CGI Scripts,
Torture-Testing Web Servers and CGI Scripts, Designing
the Script, The chat2.pl Library, The CGI Script, The
CGI Script, The Rest of the Script, The Rest of the Script,
The Rest of the Script

880

password changing example, The chat2.pl Library,
The CGI Script, The CGI Script, The Rest of the
Script, The Rest of the Script, The Rest of the Script

chat2.pl library, The chat2.pl Library
complete script, The CGI Script, The CGI Script
script explanation, The Rest of the Script, The Rest
of the Script, The Rest of the Script

security, Designing the Script
testing, Torture-Testing Web Servers and CGI Scripts,
Torture-Testing Web Servers and CGI Scripts,
Torture-Testing Web Servers and CGI Scripts

CGI.pm module, CGI Programming Without CGI.pm,
The CGI.pm Module, The CGI.pm Module, The CGI.pm
Module, The CGI.pm Module, Cookies, Prompting the
User

cookies, creating, Cookies
Mangler and, Prompting the User
script, CGI Programming Without CGI.pm, The
CGI.pm Module, The CGI.pm Module, The CGI.pm
Module, The CGI.pm Module

CGI::WML module, Developing WAP Applications,
CGI::WML, CGI::WML, A Small File Browser with
CGI::WML and mod_perl, A Small File Browser with
CGI::WML and mod_perl

application development, Developing WAP
Applications, CGI::WML, CGI::WML, A Small File
Browser with CGI::WML and mod_perl
file browser example application, A Small File
Browser with CGI::WML and mod_perl

881

channels (video capture), Channels, Tuners, and Audio
and Picture Settings
chat2.pl library, The chat2.pl Library, Oops

password-changing example, The chat2.pl Library
patch for, Oops

Checkbutton widgets, Perl/Tk Programming
color (Gimp), Using the Gimp Module
ColorEditor widget, Mouse Odometer example, The
ColorEditor Widget, Composite Widgets, The
ColorEditor Widget, Composite Widgets
colors, GD-Graph3d, Using GD-Graph3d
comment lines, Gnuplot, Using Gnuplot
composite widgets, Mouse Odometer example, Composite
Widgets, Composite Widgets, Composite Widgets,
Composite Widgets, Composite Widgets, Composite
Widgets
configuration, Putting It All Together, httpd.conf,
httpd.conf, httpd.conf, The Configuration File, Channels,
Tuners, and Audio and Picture Settings, Channels,
Tuners, and Audio and Picture Settings, Channels,
Tuners, and Audio and Picture Settings, Channels,
Tuners, and Audio and Picture Settings, Channels,
Tuners, and Audio and Picture Settings, Channels,
Tuners, and Audio and Picture Settings

mod_perl applications, Putting It All Together,
httpd.conf, httpd.conf, httpd.conf
mod_perl navigation bar example, The Configuration
File
video capture devices, Channels, Tuners, and Audio
and Picture Settings, Channels, Tuners, and Audio
and Picture Settings, Channels, Tuners, and Audio
and Picture Settings, Channels, Tuners, and Audio

882

and Picture Settings, Channels, Tuners, and Audio
and Picture Settings, Channels, Tuners, and Audio
and Picture Settings

content handlers (mod_perl), Transaction Handlers, A
Typical Non-Content Handler, A Typical Content
Handler, A Typical Content Handler, Apache::Registry,
Apache::Registry, A Typical Non-Content Handler

Apache::Registry, Apache::Registry

content type (HTTP headers), specifying, CGI
Programming Without CGI.pm
content_type method, Generating the Navigation Bar
cookies, Creating Cookies, Creating Cookies, Retrieving
Cookies

CGI methods, Creating Cookies
creating, Creating Cookies
retrieving value of, Retrieving Cookies

coordinate system (3D graphics), handedness, Back to
Basics
createRectangle statement (Perl/Tk), Pong
cron, old state files, deleting, A Sample State-Maintaining
CGI Script
cue (summarization method), Basic Summarization
Methods
currency.pl example program, Downloading Currency
Exchange Rates, Downloading Web Pages Through a
Proxy Server, Afterword, Afterword

proxy servers, Downloading Web Pages Through a
Proxy Server, Afterword, Afterword

cursor (insertion), flashing in Perl/Tk, Timer Events

883

custom newspapers, Similar Tools

884

D

885

database access, Mason, Accessing MySQL
database browser (Perl/Tk), Displaying Databases with
the Tree Widget, Overview of the tkdb Application,
Creating a Tree View of a Database, Making Changes to a
Database, Creating a Tree View of a Database, Creating a
Tree View of a Database, Making Changes to a Database,
The Tk::Error Subroutine, Making Changes to a
Database, Making Changes to a Database, The Tk::Error
Subroutine

creating, Displaying Databases with the Tree Widget
editing database contents, Making Changes to a
Database, The Tk::Error Subroutine, Making
Changes to a Database, The Tk::Error Subroutine
GUI, creating, Creating a Tree View of a Database
overview, Overview of the tkdb Application
tree view, creating, Creating a Tree View of a
Database, Making Changes to a Database, Creating a
Tree View of a Database, Making Changes to a
Database

database connections, mod_perl, Other mod_perl
Features
databases (displaying), Steve Lidie, Using Databases from
Perl, Building the Graphical Interface, Building the
Graphical Interface
date command, CGI scripts, CGI Programming Without
CGI.pm
DBI module (mod_perl), DBI and Apache::DBI
depth-cueing, Rendering Pipelines
dialog widgets, Improving plop
double-buffering, OpenGL, Drawing Objects

886

downloading web pages, Downloading Web Pages
Through a Proxy Server, Downloading Web Pages
Through a Proxy Server

LWP::Simple module, Downloading Web Pages
Through a Proxy Server
proxy servers, Downloading Web Pages Through a
Proxy Server

dynamic web sites (building with Mason), Passing
Parameters

passing parameters, Passing Parameters

E

Embperl, mod_perl and, Embperl
entry path (Tree widget), Displaying Databases with the
Tree Widget
Entry widgets, Perl/Tk Programming
errors, Passing Parameters

Mason, Passing Parameters

etiquette (web robots), The Dark Side of the Force, Obey
Robot Exclusion Rules, Obey Robot Exclusion Rules
event handlers, HTML::Parser module, Using
HTML::Parser Version 3
events (Perl/Tk), Events, Events, Events, Events, Timer
Events, I/O Events, Timer Events, I/O Events, Idle Events,
Pong, Idle Events, Pong

idle, Events, Idle Events, Pong, Idle Events, Pong
input/output, Events
timer, Events, Timer Events, I/O Events, Timer
Events, I/O Events
X, Events

887

F

far clipping plane, The View Frustum
filters, proxy servers, Why Proxy?
firewalls, proxy servers, Why Proxy?
flat-shaded pipeline, Rendering Pipelines
fonts, Moving On

Gimp and, Moving On

footers and headers, Mason, Headers and Footers
formats, video capture, Part I: Video Capturing
Frame widgets, Perl/Tk Programming
frames (video capture), capturing in a loop, Capturing
Frames in a Loop
frequency mappings (video capture), Magic Constants for
Frequencies?
frequency-keyword (summarization method), Basic
Summarization Methods

888

G

GD, Web Plots with Gnuplot, GD-Graph3d, GD and
L-Systems

GIFs, creating, Web Plots with Gnuplot, GD-Graph3d,
GD and L-Systems

GD-Graph3d, GD-Graph3d
Gnuplot, Web Plots with Gnuplot
L-systems, GD and L-Systems

GD-Graph3d, Using GD-Graph3d, Using GD-Graph3d,
What the Future Holds

customizing output, Using GD-Graph3d
future enhancements, What the Future Holds
installation, Using GD-Graph3d

geometry managers, A Brief Look at the Packer, The
Gridder, The Gridder, The Gridder, The Gridder, The
Gridder

gridder, The Gridder, The Gridder, The Gridder, The
Gridder, The Gridder
packer, A Brief Look at the Packer

get_weather example LWP script, Scripting the Web with
LWP, Scripting the Web with LWP, Scripting the Web
with LWP
GIF support (Gnuplot), Using Gnuplot
GIFs, creating, GD and L-Systems
Gimp, Using the Gimp, Using the Gimp, Using the Gimp,
Using the Gimp Module, Using the Gimp Module, Using
the Gimp Module, Using the Gimp Module, Using the
Gimp Module, Using the Gimp Module, Using the Gimp

889

Module, Using the Gimp Module, Using the Gimp
Module, Moving On

color, Using the Gimp Module
example script, Using the Gimp Module, Using the
Gimp Module, Using the Gimp Module, Using the
Gimp Module, Using the Gimp Module
features, Using the Gimp
fonts and, Moving On
interface, Using the Gimp
layers, adding, Using the Gimp Module, Using the
Gimp Module, Using the Gimp Module
plug-ins, Using the Gimp

Glade, Installation, Adding Code, Saving and Building the
Project, Saving and Building the Project

GUIs, Adding Code, Saving and Building the Project,
Saving and Building the Project

adding code, Adding Code
building projects, Saving and Building the Project
saving projects, Saving and Building the Project

installation, Installation

Gnome, Designing an Interface
Gnome Application Window (Glade), Designing an
Interface

Gnuplot, Parsing Log Files
parsing log files, Parsing Log Files

Gouraud shading, Rendering Pipelines

890

graphics, Rendering Pipelines, Introduction to OpenGL,
Drawing Objects, Some Viewport Tricks, Viewport Resize
Issues

3D programming, Rendering Pipelines, Introduction
to OpenGL, Drawing Objects, Some Viewport Tricks,
Viewport Resize Issues

OpenGL, Rendering Pipelines, Introduction to
OpenGL, Drawing Objects, Some Viewport Tricks,
Viewport Resize Issues

gridder geometry manager, The Gridder, The Gridder,
The Gridder, The Gridder, The Gridder, The Gridder,
The Gridder
GTK+/Gnome, GTK+/Gnome
Gtk-Perl, Perl and GTK+/Gnome
GUIs, Overview of the tkdb Application, Creating a Tree
View of a Database, Building the Graphical Interface,
Building the Graphical Interface, Creating a Tree View of
a Database

Perl/Tk database browser, creating, Overview of the
tkdb Application, Creating a Tree View of a Database,
Building the Graphical Interface, Building the
Graphical Interface, Creating a Tree View of a
Database

891

H

892

handlers, Transaction Handlers, TopTenTrans.pm, How
the Proxy Protocol Works, Adding Code

mod_perl, Transaction Handlers
content, Transaction Handlers

proxy server example, How the Proxy Protocol Works
signal (Glade), creating, Adding Code
translation, mod_perl sample application,
TopTenTrans.pm

headers and footers, Mason, Headers and Footers
headers, HTTP, CGI Programming Without CGI.pm,
Creating Cookies

incorporating cookies, Creating Cookies

Hello world (Perl/Tk example), Perl/Tk Programming
hidden-line removal, Rendering Pipelines
home automation, A Remote Control for Home
Automation, Creating a Personal Portal, A Remote
Control for Home Automation, Creating a Personal Portal
HTML::Element class, attributes, HTML::Parser,
HTML::TreeBuilder, and HTML::Element
HTML::Element module, parse trees, HTML::Parser,
HTML::TreeBuilder, and HTML::Element
HTML::LinkExtor module, callbacks and, Callbacks and
Closures
HTML::Parser module, Another Example: HTML
Summaries, Another Fictional Example, Scanning HTML
Trees, Complex Criteria in Tree Scanning, Complex
Criteria in Tree Scanning

893

generating summaries, Another Example: HTML
Summaries
modifying links, Another Fictional Example
scanning HTML, Scanning HTML Trees, Complex
Criteria in Tree Scanning, Complex Criteria in Tree
Scanning

HTML::Summary module, HTML::Summary, The
Summarization Algorithm, The Summarization
Algorithm, The Summarization Algorithm, The
Summarization Algorithm, Sentence Splitting,
Conclusion, Sentence Splitting, Sentence Splitting,
Conclusion, Afterword: Truncating Japanese Text,
Afterword: Truncating Japanese Text, Afterword:
Truncating Japanese Text, Afterword: Truncating
Japanese Text

algorithm, The Summarization Algorithm, The
Summarization Algorithm, The Summarization
Algorithm, The Summarization Algorithm
Japanese text, Afterword: Truncating Japanese Text,
Afterword: Truncating Japanese Text, Afterword:
Truncating Japanese Text, Afterword: Truncating
Japanese Text
sentence splitting, Sentence Splitting, Conclusion,
Sentence Splitting, Sentence Splitting, Conclusion

HTML::TreeBuilder, HTML::Parser,
HTML::TreeBuilder, and HTML::Element, Scanning
HTML Trees, Complex Criteria in Tree Scanning

parse trees, HTML::Parser, HTML::TreeBuilder, and
HTML::Element
scanning HTML, Scanning HTML Trees, Complex
Criteria in Tree Scanning

894

HTTP, Saving CGI State, State in CGI Scripts
servers, maintaining state with, State in CGI Scripts
state and, Saving CGI State

HTTP::Request::Common module, Completing U.S.
Postal Addresses
httpd.conf file, httpd.conf
http_proxy environment variable, downloading web
pages, Downloading Web Pages Through a Proxy Server

895

I

896

idle events (Perl/Tk), Events, Idle Events, Idle Events, Idle
Events
image format support (Gnuplot), Using Gnuplot
image sequence detection (video capture), Example:
Image Sequence Detection, Example: Real Time Video
Capturing, Example: Real Time Video Capturing,
Example: Real Time Video Capturing
ImageMagick Perl module, Part I: Video Capturing
images, GD, Putting L-Systems to Work, Putting
L-Systems to Work, Leaves, Flowers, Flowers, Flowers,
Flowers, Using the Gimp Module, Using the Gimp
Module, Using the Gimp Module, Using the Gimp Module

creating (Gimp), Using the Gimp Module, Using the
Gimp Module, Using the Gimp Module, Using the
Gimp Module
GIFs, creating with GD, GD
L-systems, Putting L-Systems to Work, Putting
L-Systems to Work, Leaves, Flowers, Flowers,
Flowers, Flowers

creating flowers, Flowers, Flowers, Flowers,
Flowers
creating leaves, Putting L-Systems to Work, Leaves
creating trees, Putting L-Systems to Work

indicator phrase (summarization method), Basic
Summarization Methods
inheritance, Glade (GUI development), Inheritance as a
GUI Development Tool, More Information, More
Information
input/output events (Perl/Tk), Events, Timer Events
insertion cursor, flashing in Perl/Tk, Timer Events

897

installation, mod_perl, What Is Mason?, Installation,
Installation, Installation, Installation, GD-Graph3d,
Installing GD, Installing GD, Installation

GD, Installing GD
GD-Graph3d, GD-Graph3d
Glade, Installation
libpng, Installing GD
Mason, What Is Mason?, Installation, Installation,
Installation, Installation
mod_perl, mod_perl

interfaces, Gimp, Using the Gimp

J

joinstyle (Perl/Tk lines), The Canvas Line Item Type
jpeg-6a library, installing, Installing GD

K

keyword list style, CGI script parameters, CGI
Programming Without CGI.pm

L

L-systems, Turtles
turtle graphics, drawing example, Turtles

Label widgets, Perl/Tk Programming
lawn mowing example (drawing on Perl/Tk canvas),
Drawing on a Canvas, The Real World Is Uncertain,
Defining the Perl Mowing Module, The Canvas Line Item
Type, Zero Turning Radius, Take Two, Rotating Simple

898

Objects in Canvas Space, The Canvas Rectangle and Text
Item Types, Nonzero Turning Radius, Take One, Canvas
Tags, The Real World Is Uncertain
layers (Gimp), Using the Gimp
legends, GD-Graph3d, Using GD-Graph3d
light sources (ray tracing), Technique, Other Directions
lines (3D graphics), The Line
lines (Perl/Tk canvas), The Canvas Line Item Type,
Rotating Simple Objects in Canvas Space

rotating, Rotating Simple Objects in Canvas Space

links, callbacks and, A Web Spider in One Line
Listbox widgets, Perl/Tk Programming
location (summarization method), Basic Summarization
Methods
log files, Using Gnuplot, Parsing Log Files

parsing, Using Gnuplot
Gnuplot, Using Gnuplot

standard format, fields in, Parsing Log Files

logging, mod_perl handlers, Transaction Handlers
LWP (Library for WWW access in Perl), Scripting the
Web with LWP, Scripting the Web with LWP, Scripting
the Web with LWP, Scripting the Web with LWP,
Downloading Currency Exchange Rates, Downloading
Weather Information, Downloading News Stories,
Downloading Stock Quotes, How to Use webpluck

899

currency.pl application, Downloading Currency
Exchange Rates
get_weather application, Scripting the Web with LWP,
Scripting the Web with LWP, Scripting the Web with
LWP
modules, Scripting the Web with LWP
news stories application, Downloading News Stories
stock quotes application, Downloading Stock Quotes
weather information application, Downloading
Weather Information
webpluck application, How to Use webpluck

LWP::Simple module, Downloading Currency Exchange
Rates, Downloading Web Pages Through a Proxy Server

proxy servers and, Downloading Web Pages Through
a Proxy Server

LWP::UserAgent module, Completing U.S. Postal
Addresses

900

M

901

magic cookies, A Sample State-Maintaining CGI Script
MainLoop command (Perl/Tk), Perl/Tk Programming
make_bar function, Generating the Navigation Bar
Mangler, How It Works, Prompting the User, How It
Works, Prompting the User, Prompting the User,
Fetching the Document, Running the Travesty Algorithm

CGI.pm and, Prompting the User
fetching documents, Fetching the Document
source code, How It Works, Prompting the User, How
It Works, Prompting the User
travesty algorithm, Running the Travesty Algorithm

Mason, SSI Redux, Generating WML with
HTML::Mason, Generating WML with HTML::Mason,
Generating WML with HTML::Mason, Generating WML
with HTML::Mason, Generating WML with
HTML::Mason

SSI and, SSI Redux
WML generation, Generating WML with
HTML::Mason, Generating WML with
HTML::Mason, Generating WML with
HTML::Mason, Generating WML with
HTML::Mason
WML phone directory example, Generating WML
with HTML::Mason

master widgets, The Pack and Grid Geometry Managers
mathematics, ray tracing, Technique, Mathematics
meets_conditions method, Generating the Navigation Bar
memory allocation errors, Torture-Testing Web Servers
and CGI Scripts
Menu widgets, Perl/Tk Programming
Menubutton widgets, Perl/Tk Programming

902

menus, Perl/Tk, Improving plop
Mesa (OpenGL implementation), OpenGL and Perl
Message widgets, Perl/Tk Programming
META tags, CS-Web, META Tags
method invocation, Perl/Tk, Perl/Tk Programming
methods (CGI), cookies, Creating Cookies
MIME type, specifying (HTTP headers), CGI
Programming Without CGI.pm
mirrors (ray tracing), Other Directions
modules, The CGI.pm Module, Apache::Registry,
Components, Apache::Sandwich, How the Proxy Protocol
Works, How the Proxy Protocol Works, Access Control,
Windows Domain Server Authentication, More NT
Authentication, Basic Authorization, More Sophisticated
Authorization, Scripting the Web with LWP, Five Quick
Hacks: Downloading web Pages, Downloading News
Stories, Completing U.S. Postal Addresses, Completing
U.S. Postal Addresses, HTML::Parser,
HTML::TreeBuilder, and HTML::Element, Callbacks
and Closures, How It Works, HTML::Summary, GD and
L-Systems, Video::Capture::V4l, Part I: Video Capturing,
Magic Constants for Frequencies?, Displaying Databases
with the Tree Widget

903

Apache::AdBlocker, How the Proxy Protocol Works,
How the Proxy Protocol Works
Apache::AuthenOverrideSmb, More NT
Authentication
Apache::AuthenSmb, Windows Domain Server
Authentication
Apache::AuthzExample, Basic Authorization
Apache::AuthzManager, More Sophisticated
Authorization
Apache::HostLimit, Access Control
Apache::Registry, Apache::Registry
Apache::Sandwich, Apache::Sandwich
CGI, The CGI.pm Module
DBI, Components
GD, creating GIFs, GD and L-Systems
HTML::Element, HTML::Parser,
HTML::TreeBuilder, and HTML::Element

class attributes, HTML::Parser,
HTML::TreeBuilder, and HTML::Element

HTML::LinkExtor, callbacks and, Callbacks and
Closures
HTML::Summary, HTML::Summary
HTTP::Request::Common, Completing U.S. Postal
Addresses
ImageMagick, Part I: Video Capturing
loading, tastefulness index agent, How It Works
LWP, Scripting the Web with LWP
LWP::Simple, Five Quick Hacks: Downloading web
Pages
LWP::UserAgent, Completing U.S. Postal Addresses
Text::Wrap, Downloading News Stories
Tk, Displaying Databases with the Tree Widget

904

Video::Capture::V4l, Video::Capture::V4l
Video::Frequencies, Magic Constants for
Frequencies?

modules (mod_perl), Apache::Registry, Developing with
mod_perl, Preload Your Modules, Components,
Apache::Sandwich, How the Proxy Protocol Works, How
the Proxy Protocol Works, Access Control, Windows
Domain Server Authentication, More NT Authentication,
Basic Authorization, More Sophisticated Authorization

Apache::Adblocker, How the Proxy Protocol Works,
How the Proxy Protocol Works
Apache::AuthenOverrideSmb, More NT
Authentication
Apache::AuthenSmb, Windows Domain Server
Authentication
Apache::AuthzExample, Basic Authorization
Apache::AuthzManager, More Sophisticated
Authorization
Apache::HostLimit, Access Control
Apache::Registry, Apache::Registry, Developing with
mod_perl
Apache::Sandwich, Apache::Sandwich
DBI, Components
preloading, Preload Your Modules

mod_perl, mod_perl, mod_perl, A Typical Content
Handler, A Typical Non-Content Handler, A Typical
Non-Content Handler, Getting Fancy: A Stately Script,
Impaled by the Fork, Getting Fancy: A Stately Script,
Getting Fancy: A Stately Script, Getting Fancy: A Stately
Script, Impaled by the Fork, Impaled by the Fork,
Embperl, Components, Database Setup,

905

TopTenTrans.pm, index.epl, index.epl, httpd.conf, How
the Proxy Protocol Works, Access Control,
Authentication, More NT Authentication, Authentication,
Windows Domain Server Authentication, Windows
Domain Server Authentication, More NT Authentication,
More NT Authentication, More NT Authentication,
Authorization, Basic Authorization, More Sophisticated
Authorization, More Sophisticated Authorization, The
Configuration File, Generating the Navigation Bar

906

access control, Access Control
adding passwords for authentication, More NT
Authentication
authentication, Authentication, More NT
Authentication, Authentication, Windows Domain
Server Authentication, More NT Authentication, More
NT Authentication
authorization, Authorization, Basic Authorization,
More Sophisticated Authorization, More Sophisticated
Authorization

example, More Sophisticated Authorization

content handlers, A Typical Content Handler, A
Typical Non-Content Handler, A Typical Non-Content
Handler
database setup, Database Setup
document index, index.epl
document rating form, index.epl
Embperl processing, Embperl
installation and configuration, httpd.conf
installing, mod_perl
modules, Components
navigation bars, The Configuration File, Generating
the Navigation Bar

configuration file, The Configuration File
generating, Generating the Navigation Bar

proxy server example, How the Proxy Protocol Works
handlers, How the Proxy Protocol Works

single-process mode, Impaled by the Fork
state, maintaining, Getting Fancy: A Stately Script,
Impaled by the Fork, Getting Fancy: A Stately Script,

907

Getting Fancy: A Stately Script, Getting Fancy: A
Stately Script, Impaled by the Fork
translation handler, TopTenTrans.pm
Windows domain server authentication example,
Windows Domain Server Authentication

Mouse Odometer (Perl/Tk), Measuring Distance,
Measuring Distance, Measuring Distance, Menus, The
ColorEditor Widget, Menus, Menus, Menus, The
ColorEditor Widget, Composite Widgets, The
ColorEditor Widget, Composite Widgets

ColorEditor widget, The ColorEditor Widget,
Composite Widgets, Composite Widgets
measuring distance, Measuring Distance, Measuring
Distance, Measuring Distance
menus, Menus, The ColorEditor Widget, Menus,
Menus, Menus, The ColorEditor Widget

N

named parameter list, CGI scripts, CGI Programming
Without CGI.pm
neko program (Perl/Tk animation demonstration), Timer
Events, I/O Events, Timer Events, I/O Events
news sites, RSS files, retrieving with Mason, Default
Handlers and XML
news stories downloader application, Downloading News
Stories
non-content handlers (mod_perl), A Typical Non-Content
Handler

908

O

OpenGL, Creating a Viewport, Creating the View
Frustum, Drawing Objects, Some Viewport Tricks,
Drawing Objects, Drawing Objects, Some Viewport
Tricks, Viewport Resize Issues, References

drawing objects, Drawing Objects, Some Viewport
Tricks, Drawing Objects, Drawing Objects, Some
Viewport Tricks
programming requirements, Viewport Resize Issues
references, References
view frustum, creating, Creating the View Frustum
viewport, creating, Creating a Viewport

origin (3D graphics), Back to Basics

909

P

910

packer geometry manager, A Brief Look at the Packer, A
Brief Look at the Packer, A Brief Look at the Packer, A
Brief Look at the Packer, A Brief Look at the Packer
page, Downloading News Stories
PageSession module, Impaled by the Fork
panel applets (Gnome), Program Overview, Initialization,
The Callbacks

callbacks, The Callbacks
initialization, Initialization
overview, Program Overview

parameters, Getting Fancy: A Stately Script, Passing
Parameters

mod_perl state maintenance, Getting Fancy: A Stately
Script
passing, Mason, Passing Parameters

parse trees, Scanning HTML, Scanning HTML Trees,
HTML::Parser, HTML::TreeBuilder, and
HTML::Element, HTML::Parser, HTML::TreeBuilder,
and HTML::Element, Scanning HTML Trees, Complex
Criteria in Tree Scanning, Scanning HTML Trees,
Complex Criteria in Tree Scanning

HTML::Element, HTML::Parser,
HTML::TreeBuilder, and HTML::Element
HTML::TreeBuilder, Scanning HTML, Scanning
HTML Trees, HTML::Parser, HTML::TreeBuilder,
and HTML::Element, Scanning HTML Trees
scanning, Scanning HTML Trees, Complex Criteria in
Tree Scanning, Complex Criteria in Tree Scanning

parse_file method, Scanning HTML Trees

911

passwords, The CGI Script, The CGI Script, The CGI
Script, The CGI Script, The Rest of the Script, The Rest
of the Script

CGI script, The CGI Script, The CGI Script, The CGI
Script, The CGI Script, The Rest of the Script, The
Rest of the Script

complete password changing script, The CGI
Script, The CGI Script, The CGI Script
password changing script, The CGI Script, The
Rest of the Script, The Rest of the Script

performance, Make It Faster, Mathematics, Make It
Faster, Mathematics

ray tracing, Make It Faster, Mathematics, Make It
Faster, Mathematics

Perl/Tk, Ignore What You Don’t Need, Perl/Tk
Programming, A Sample Perl/Tk Program: plop, Perl/Tk
Programming, Perl/Tk Programming, A Sample Perl/Tk
Program: plop, Improving plop, A Sample Perl/Tk
Program: plop, Improving plop, Improving plop,
Improving plop, Improving plop, Timer Events, Timer
Events, Pong, Miscellaneous Event Commands, Pong,
Miscellaneous Event Commands

912

animation, Timer Events, Timer Events
callbacks, Perl/Tk Programming, Improving plop
dialogs, Improving plop
menus, Improving plop
plot program example, A Sample Perl/Tk Program:
plop, Improving plop, Improving plop
Pong example program, Pong, Miscellaneous Event
Commands, Pong, Miscellaneous Event Commands
programming overview, Perl/Tk Programming, A
Sample Perl/Tk Program: plop, A Sample Perl/Tk
Program: plop
table of widgets, Ignore What You Don’t Need
widgets, Perl/Tk Programming

PerlLogHandler directive, Transaction Handlers
persistent database connections, mod_perl, Other
mod_perl Features
personal portals (wireless application example), Creating
a Personal Portal, Creating a Personal Portal, Creating a
Personal Portal, Creating a Personal Portal
perspective (3D graphics), Perspective
phone directory example (Mason), A WML Phone
Directory with Mason
picture settings (video capture), Channels, Tuners, and
Audio and Picture Settings
plot example program (Perl/Tk), A Sample Perl/Tk
Program: plop, Improving plop, Improving plop
plotting (graphs), Gnuplot, Parsing Log Files, Putting It
All Together, Simple Things Made Easy, Putting It All
Together, Putting It All Together, Simple Things Made
Easy

913

parsing log files, Parsing Log Files
tally_hourly.pl, Putting It All Together, Simple Things
Made Easy, Putting It All Together, Putting It All
Together, Simple Things Made Easy

plug-ins (Gimp), Using the Gimp, Using the Gimp
Module, Using the Gimp Module, Using the Gimp Module

registration, Using the Gimp Module, Using the Gimp
Module, Using the Gimp Module

pointerxy command (Perl/Tk), Measuring Distance
polygons (3D graphics), The Line
Pong (Perl/Tk example), Pong, Miscellaneous Event
Commands, Pong, Pong, Pong, Miscellaneous Event
Commands
print method, navigation bar example, Generating the
Navigation Bar
programming, CGI Programming, The CGI.pm Module,
CGI Programming Without CGI.pm, The CGI.pm
Module, The CGI.pm Module, The CGI.pm Module, The
CGI.pm Module, A Perl/Tk Roadmap, Ignore What You
Don’t Need, Understand the Basics, Ignore What You
Don’t Need

CGI, CGI Programming, The CGI.pm Module, CGI
Programming Without CGI.pm, The CGI.pm Module,
The CGI.pm Module, The CGI.pm Module, The
CGI.pm Module
Perl/Tk overview, A Perl/Tk Roadmap, Ignore What
You Don’t Need, Understand the Basics, Ignore What
You Don’t Need

protocols, proxy server example, Why Proxy?

914

proxy servers, Why Proxy?, Downloading Web Pages
Through a Proxy Server

caching, Why Proxy?
LWP::Simple module, downloading web pages,
Downloading Web Pages Through a Proxy Server

915

R

916

Radiobutton widgets, Perl/Tk Programming
ray tracing, Technique, Technique, The Program, Other
Directions, The Input, The Output, Other Directions,
Other Directions

ray behavior, Technique
technique, Technique
tracer example program, The Program, Other
Directions, The Input, The Output, Other Directions,
Other Directions

read_configuration function, Generating the Navigation
Bar
real time video capture, Example: Real Time Video
Capturing, Part II: The Vertical Blanking Interval,
Example: Real Time Video Capturing, Example: Real
Time Video Capturing, Part II: The Vertical Blanking
Interval
registration, Gimp plug-ins, Using the Gimp Module,
Using the Gimp Module, Using the Gimp Module, Using
the Gimp Module, Using the Gimp Module
rendering canvas (ray tracing), Internals
rendering pipelines (3D graphics), Perspective, Rendering
Pipelines, Rendering Pipelines, Rendering Pipelines,
Rendering Pipelines
repeat command (Perl/Tk), Timer Events
robot etiquette, The Dark Side of the Force, Obey Robot
Exclusion Rules, Obey Robot Exclusion Rules, Obey
Robot Exclusion Rules
rotating lines (Perl/Tk), Rotating Simple Objects in
Canvas Space
RSS (Rich Site Summary) file, retrieving with Mason,
Default Handlers and XML

917

S

Scale widgets, Perl/Tk Programming
scanning HTML, Scanning HTML Trees, Complex
Criteria in Tree Scanning, Scanning HTML Trees,
Complex Criteria in Tree Scanning, Complex Criteria in
Tree Scanning, A Case Study: Scanning Yahoo! News, A
Case Study: Scanning Yahoo! News, A Case Study:
Scanning Yahoo! News, A Case Study: Scanning Yahoo!
News

complex criteria, Complex Criteria in Tree Scanning
HTML::Treebuilder module, Scanning HTML Trees,
Complex Criteria in Tree Scanning, Scanning HTML
Trees, Complex Criteria in Tree Scanning
Yahoo! News, A Case Study: Scanning Yahoo! News,
A Case Study: Scanning Yahoo! News, A Case Study:
Scanning Yahoo! News, A Case Study: Scanning
Yahoo! News

Scorecard application (Perl/Tk), Scoreboard: A
15-Minute Perl/Tk Application, The Implementation, The
Implementation, The Implementation, The
Implementation, The Implementation
scripting, CGI programming, CGI Programming, The
CGI.pm Module, CGI Programming Without CGI.pm,
CGI Programming Without CGI.pm, The CGI.pm
Module, The CGI.pm Module, The CGI.pm Module
scripts, CGI Programming Without CGI.pm, Getting
Fancy: A Stately Script, Impaled by the Fork, Getting
Fancy: A Stately Script, Getting Fancy: A Stately Script,
Impaled by the Fork, Other mod_perl Features,
Downloading Currency Exchange Rates, Completing U.S.
Postal Addresses, Downloading Stock Quotes,

918

Downloading Web Pages Through a Proxy Server, The
Identity Parser, Scanning HTML Trees, Callbacks and
Closures, How It Works, Prompting the User, How It
Works, Prompting the User, Prompting the User, A Small
File Browser with CGI::WML and mod_perl, Generating
WML with HTML::Mason, GD-Graph3d, Creating the
View Frustum, Using the Gimp, Using the Gimp Module,
Using the Gimp Module, Using the Gimp Module, Using
the Gimp Module, Using the Gimp Module, Using the
Gimp Module, Program Overview, Part I: Video
Capturing, Perl/Tk Programming, The Implementation,
Measuring Distance

919

callbacks, Callbacks and Closures
capturing video, Part I: Video Capturing
CGI, CGI Programming Without CGI.pm

basic CGI, CGI Programming Without CGI.pm

CGI::WML module, file browser example, A Small
File Browser with CGI::WML and mod_perl
currency.pl, proxy servers, Downloading Web Pages
Through a Proxy Server
GD-Graph3d, sample graph, GD-Graph3d
Gimp and, Using the Gimp
Gimp example, Using the Gimp Module, Using the
Gimp Module, Using the Gimp Module, Using the
Gimp Module, Using the Gimp Module, Using the
Gimp Module
Gnome panel applet, Program Overview
HTML::Parser module, The Identity Parser

printing unmodified HTML files, The Identity
Parser

LWP, Downloading Currency Exchange Rates,
Completing U.S. Postal Addresses, Downloading Stock
Quotes

address.pl, Completing U.S. Postal Addresses
currency.pl example, Downloading Currency
Exchange Rates
stock.pl, Downloading Stock Quotes

Mangler, How It Works, Prompting the User, How It
Works, Prompting the User, Prompting the User
Mason, WML phone directory example, Generating
WML with HTML::Mason
OpenGL, drawing objects, Creating the View Frustum

920

PageSession module, Other mod_perl Features
Perl/Tk, Perl/Tk Programming, The Implementation,
Measuring Distance

Hello world example, Perl/Tk Programming
Mouse Odometer main loop, Measuring Distance
Scorecard example program, The Implementation

scanning HTML, regex scanning, Scanning HTML
Trees
state maintaining, mod_perl, Getting Fancy: A Stately
Script, Impaled by the Fork, Getting Fancy: A Stately
Script, Getting Fancy: A Stately Script, Impaled by
the Fork

Scrollbar widgets, A Sample Perl/Tk Program: plop
security, Proxying with mod_perl, Torture-Testing Web
Servers and CGI Scripts, Securing Your CGI Scripts,
Caveats, Designing the Script, The CGI Script, The CGI
Script, The CGI Script, The CGI Script, The CGI Script,
The CGI Script, The Rest of the Script, The Rest of the
Script, Caveats

bugs, types of, Torture-Testing Web Servers and CGI
Scripts
CGI scripts, Securing Your CGI Scripts, Caveats,
Designing the Script, The CGI Script, The Rest of the
Script, The Rest of the Script, Caveats
Internet access, proxy servers and, Proxying with
mod_perl
password changing script, The CGI Script, The CGI
Script, The CGI Script, The CGI Script, The CGI
Script

send_http_header method, Generating the Navigation Bar

921

server-side includes, mod_perl, Other mod_perl Features
servers, Performance, Authentication, More NT
Authentication, Windows Domain Server Authentication,
More NT Authentication, More NT Authentication

mod_perl, using multiple, Performance
Windows domain, authentication example,
Authentication, More NT Authentication, Windows
Domain Server Authentication, More NT
Authentication, More NT Authentication

session object, updating, mod_perl, Getting Fancy: A
Stately Script
set_last_modified method, Generating the Navigation Bar
shrink-wrapping (Perl/Tk), A Brief Look at the Packer
signal handlers, creating (Glade), Writing the Signal
Handler Code
single-process mode (Apache), Getting Fancy: A Stately
Script
smart agents, Webpluck
smooth-shaded pipeline, Rendering Pipelines
sorting objects (ray tracing), Other Directions
SSI (Server Side Includes), Mason and, SSI Redux
standards, video capture, Standards
startup scripts, mod_perl, Other mod_perl Features
state, Saving CGI State, State in CGI Scripts, State in
CGI Scripts, A Sample State-Maintaining CGI Script, A
Sample State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script, Getting Fancy: A Stately
Script, Getting Fancy: A Stately Script

CGI, State in CGI Scripts, State in CGI Scripts, A
Sample State-Maintaining CGI Script, A Sample

922

State-Maintaining CGI Script, A Sample
State-Maintaining CGI Script
HTTP, Saving CGI State
maintaining, mod_perl, Getting Fancy: A Stately
Script, Getting Fancy: A Stately Script
session keys, creating and implementing, A Sample
State-Maintaining CGI Script

stereoscopic images (ray tracing), Other Directions
stock quotes downloader example program, Downloading
Stock Quotes
subclassing, HTML::Parser module, The Identity Parser
summarizing web pages, META Tags, HTML::Summary

HTML::Summary mode, HTML::Summary
summarization methods, META Tags

surfing (wireless), Enabling WAP on Apache
WML, Enabling WAP on Apache

syntactic (summarization method), Basic Summarization
Methods
system, Wrapping Up

923

T

924

tag, A Web Spider in One Line, How It Works, How It
Works, How It Works, How It Works, How It Works,
How It Works, How It Works, How It Works, The
<BASE> Tag, For Extra Credit, The <BASE> Tag, For
Extra Credit, For Extra Credit, For Extra Credit, WAP
Cards, Turtles, Creating a Viewport, Creating the View
Frustum

document fetching, How It Works
document parsing, How It Works
internal globals, How It Works
loading modules, How It Works
printing welcome and instructions, How It Works
progress tracking, How It Works
statistics gathering, How It Works
turtle graphics drawing example, Turtles
user-adjustable globals, How It Works
view frustrum (OpenGL), Creating the View Frustum
viewport (OpenGL), Creating a Viewport
WAP cards, WAP Cards
web spider, A Web Spider in One Line

tags, Perl/Tk canvas, Canvas Tags
taint checking, Torture-Testing Web Servers and CGI
Scripts
tally_hourly.pl (Gnuplot example), Putting It All
Together, Simple Things Made Easy, Putting It All
Together, Putting It All Together, Putting It All Together,
Putting It All Together, Simple Things Made Easy
testing, Torture-Testing Web Servers and CGI Scripts,
Wrapping Up, Torture-Testing Web Servers and CGI
Scripts, The Code, Wrapping Up

web servers and CGI scripts, Torture-Testing Web
Servers and CGI Scripts, Wrapping Up,

925

Torture-Testing Web Servers and CGI Scripts, The
Code, Wrapping Up

Text widgets, A Sample Perl/Tk Program: plop
text, Perl/Tk canvas, The Canvas Rectangle and Text Item
Types
Text::Wrap module, Downloading Weather Information,
Downloading Weather Information
texture mapped pipeline, Rendering Pipelines
texture mapping (ray tracing), Other Directions
timer events (Perl/Tk), Events, Timer Events, Timer
Events, Timer Events, I/O Events
title-keyword (summarization method), Basic
Summarization Methods
Tk::Error subroutine, The Tk::Error Subroutine
tkdb (Perl/Tk database browser), Overview of the tkdb
Application

overview, Overview of the tkdb Application

Toplevel widgets, Perl/Tk Programming
torture.pl script, The Code

source code, The Code

tracer example program (ray tracing), The Input, The
Input, Internals

data structures, Internals
input, The Input
output, The Input

transaction handlers (mod_perl), Transaction Handlers
translation handlers (mod_perl), TopTenTrans.pm
travesty, Running the Travesty Algorithm

926

algorithm, Mangler and, Running the Travesty
Algorithm

tree graphic, creating with L-systems, A Turtle Draws a
Tree, Putting L-Systems to Work, Putting L-Systems to
Work, Putting L-Systems to Work, Putting L-Systems to
Work, Putting L-Systems to Work, Putting L-Systems to
Work, Putting L-Systems to Work, Flowers, Putting
L-Systems to Work, Leaves, Flowers, Bringing It All
Together, Flowers, Flowers, Flowers, Flowers, Bringing It
All Together

flowers, Flowers, Bringing It All Together, Flowers,
Flowers, Flowers, Bringing It All Together
leaves, Putting L-Systems to Work, Flowers, Leaves,
Flowers
trees, Putting L-Systems to Work

tree view (Perl/Tk database browser), creating, Creating a
Tree View of a Database, Making Changes to a Database,
Creating a Tree View of a Database, Making Changes to a
Database, Making Changes to a Database
Tree widget, overview, Displaying Databases with the
Tree Widget, Using Databases from Perl, Displaying
Databases with the Tree Widget, Displaying Databases
with the Tree Widget, Using Databases from Perl
tuner object (video capture), Channels, Tuners, and Audio
and Picture Settings

927

U

U.S. postal address application, Completing U.S. Postal
Addresses
update method (Perl/Tk), Miscellaneous Event
Commands
update_mtime method, Generating the Navigation Bar
URLs, CGI Programming Without CGI.pm, A Sample
State-Maintaining CGI Script

CGI scripts, invoking, CGI Programming Without
CGI.pm
session keys, storing in, A Sample State-Maintaining
CGI Script

928

V

vanishing point, Perspective
variables, Torture-Testing Web Servers and CGI Scripts,
WAP Cards

tainted, Torture-Testing Web Servers and CGI Scripts
WML, WAP Cards

VBI (vertical blanking interval) decoder (video capture),
Part II: The Vertical Blanking Interval, Part II: The
Vertical Blanking Interval, Part II: The Vertical Blanking
Interval, Part II: The Vertical Blanking Interval,
Decoding VPS

capturing VPS (video programming service), Decoding
VPS

vectors, Technique
vertex (3D graphics), The Vertex
video capture, Part I: Video Capturing, Channels, Tuners,
and Audio and Picture Settings, Channels, Tuners, and
Audio and Picture Settings, Example: Image Sequence
Detection, Example: Real Time Video Capturing,
Example: Image Sequence Detection, Example: Real Time
Video Capturing, Part II: The Vertical Blanking Interval,
Example: Real Time Video Capturing, Part II: The
Vertical Blanking Interval, Standards, Decoding VPS,
References

device configuration, Channels, Tuners, and Audio
and Picture Settings, Channels, Tuners, and Audio
and Picture Settings
displaying images, Part I: Video Capturing
image sequence recognition, Example: Image
Sequence Detection, Example: Real Time Video

929

Capturing, Example: Image Sequence Detection,
Example: Real Time Video Capturing
real time, Example: Real Time Video Capturing, Part
II: The Vertical Blanking Interval, Part II: The
Vertical Blanking Interval
resources, References
standards, Standards
VPS (video capture service), Decoding VPS

video text, decoding, Decoding Videotext, References,
Decoding Videotext, Decoding Videotext, References,
References
Video::Capture::V4l module, Capturing Video in Real
Time, Part I: Video Capturing, Video::Capture::V4l, Part
I: Video Capturing, Capturing Frames in a Loop

capturing frames in a loop, Capturing Frames in a
Loop
capturing video, Capturing Video in Real Time, Part
I: Video Capturing, Part I: Video Capturing

Video::Frequencies module, Magic Constants for
Frequencies?
VIDEO_PALETTE_GREY video format, Part I: Video
Capturing
VIDEO_PALETTE_RGB24 video format, Part I: Video
Capturing
view frustum (3D graphics), Drawing on the Screen,
Creating the View Frustum

creating, Creating the View Frustum

viewport, Creating a Viewport, Viewport Resize Issues
creating, Creating a Viewport
resizing issues, Viewport Resize Issues

930

viewport (3D graphics), Drawing on the Screen
VPS (video programming service), capturing, Decoding
VPS

931

W

932

waitVisibility method (Perl/Tk), Miscellaneous Event
Commands
waitWindow method (Perl/Tk), Miscellaneous Event
Commands
WAP (Wireless Application Protocol), Wireless Surfing
with WAP and WML, Enabling WAP on Apache, WAP
Cards, Developing WAP Applications, Developing WAP
Applications, Developing WAP Applications

application development, Developing WAP
Applications
cards, WAP Cards, Developing WAP Applications,
Developing WAP Applications
enabling on Apache, Enabling WAP on Apache
overview, Wireless Surfing with WAP and WML

weather information example program, Downloading
Weather Information
web pages, Downloading Currency Exchange Rates,
Downloading Web Pages Through a Proxy Server, How It
Works, How It Works

downloading, Downloading Currency Exchange Rates,
Downloading Web Pages Through a Proxy Server

currency exchange rate application, Downloading
Currency Exchange Rates
LWP::Simple module and web pages, Downloading
Web Pages Through a Proxy Server

internal globals, How It Works
user-adjustable globals, How It Works

web servers, testing, Torture-Testing Web Servers and
CGI Scripts, Wrapping Up, Torture-Testing Web Servers

933

and CGI Scripts, Torture-Testing Web Servers and CGI
Scripts, The Code, The Code, Wrapping Up
web spiders, A Web Spider in One Line, The End, The
End
while loops, Callbacks and Closures
widgets, Glade, The Pack and Grid Geometry Managers,
The Pack and Grid Geometry Managers

geometry managers and, The Pack and Grid
Geometry Managers
Gnome, Glade
master, The Pack and Grid Geometry Managers

widgets (Perl/Tk), Perl/Tk Programming, Perl/Tk
Programming, The ColorEditor Widget, Composite
Widgets, The ColorEditor Widget, The ColorEditor
Widget, Composite Widgets, Composite Widgets,
Composite Widgets, Composite Widgets, Composite
Widgets, Displaying Databases with the Tree Widget,
Using Databases from Perl, Displaying Databases with the
Tree Widget, Using Databases from Perl, Overview of the
tkdb Application

ColorEditor, The ColorEditor Widget, Composite
Widgets, The ColorEditor Widget, Composite Widgets
composite, The ColorEditor Widget, Composite
Widgets, Composite Widgets, Composite Widgets,
Composite Widgets
standard, Perl/Tk Programming
Tree overview, Displaying Databases with the Tree
Widget, Using Databases from Perl, Displaying
Databases with the Tree Widget, Using Databases
from Perl, Overview of the tkdb Application

934

window manager commands (Perl/Tk), Measuring
Distance
wireframe pipeline, Rendering Pipelines
wireless surfing, Enabling WAP on Apache

WML, Enabling WAP on Apache

WML (Wireless Markup Language), WML Basics, WAP
Cards, WAP Cards

select element, WAP Cards
variables, WAP Cards

X

X events (Perl/Tk), Events

Y

Yahoo! News, scanning, A Case Study: Scanning Yahoo!
News, A Case Study: Scanning Yahoo! News, A Case
Study: Scanning Yahoo! News, A Case Study: Scanning
Yahoo! News, A Case Study: Scanning Yahoo! News

Z

zlib compression library, installing, Installing GD

935

Colophon

Our look is the result of reader comments, our own
experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to
technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of Web, Graphics, and Perl/Tk: Best
of the Perl Journal is an emu (Dromaius novaehollandiae).
This large, flightless bird is found throughout the Australian
bush steppes. The emu is one of the largest birds in existence,
second only to its cousin, the ostrich. Adult emus stand about
5 feet high and weigh up to 120 pounds. The grayish-brown
emu’s small wings contain only six or seven feathers. They
are hidden by the long, hairlike rump plumage. Emus have
extremely long legs, which they use as defensive and
offensive weapons when fighting. A human limb can be
broken by a kick from an emu. Their powerful legs make
emus strong swimmers and fast runners; they can reach
speeds of up to 50 kilometers per hour.

Male emus, which are slightly smaller than females, tend to
the incubation of eggs and the raising of the young. An emu
nest contains as many as fifteen to twenty-five deep green
eggs, laid by several hens. Incubation of the eggs takes from
twenty-five to sixty days. The large discrepancy in incubation
time occurs because the male needs to leave the nest
periodically to find food and drink. The length of time he is
away affects the time for incubation. Newly hatched emus
weigh about 15 ounces. They are fully grown at two to three
years.

936

The relationship between emus and Australian farmers has
always been adversarial; three coastal subspecies of emu have
been exterminated. Because emus can jump over high fences,
it is difficult to keep them out of fields, where they eat and
trample crops. In the arid Australian bush, emus also compete
with cattle and sheep for grass and water. On the other hand,
emus eat many insects that would otherwise eat crops. In
1932, Australian farmers declared war on the emus, making
an all-out effort to eradicate them. Fortunately, the effort
failed. The battle between emus and farmers continues to this
day.

Colleen Gorman was the production editor and the copyeditor
for Web, Graphics, and Perl/Tk: Best of the Perl Journal.
Claire Cloutier, Genevieve d’Entremont, and Jane Ellin
provided quality control. Tom Dinse wrote the index.

Hanna Dyer and Ellie Volckhausen designed the cover of this
book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from Johnson’s Natural
History II. Emma Colby produced the cover layout with
Quark-XPress 4.1 using Adobe’s ITC Garamond font.

David Futato designed the interior layout. Erik Ray, Mike
Sierra, and Neil Walls converted the files from pod to
FrameMaker 5.5.6. The text font is Linotype Birka; the
heading font is Adobe Myriad Condensed; and the code font
is LucasFont’s TheSans Mono Condensed. The illustrations
that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was written by Clairemarie
Fisher O’Leary.

937

	Web, Graphics, and Perl/Tk: Best of the Perl Journal
	Preface
	Finding Perl Resources
	Conventions Used in This Book
	Comments and Questions
	Acknowledgments

	1. Introduction
	I. Web
	2. CGI Programming
	CGI Programming Without CGI.pm
	The CGI.pm Module

	3. Saving CGI State
	State in CGI Scripts
	A Sample State-Maintaining CGI Script

	4. Cookies
	Creating Cookies
	Retrieving Cookies
	A Sample Cookie Program

	5. mod_perl
	Transaction Handlers
	A Typical Content Handler
	Apache::Registry
	A Typical Non-Content Handler
	Getting Fancy: A Stately Script
	Impaled by the Fork
	Other mod_perl Features

	6. Creating mod_perl Applications
	So, What Is This mod_perl Thing, Anyhow?
	Developing with mod_perl
	Apache::Registry
	Embperl
	Writing Your Own Handler
	Performance
	Preload Your Modules
	Use Multiple Servers

	Our Sample Application
	Components
	DBI and Apache::DBI
	Apache::AuthDBI
	Apache::Sandwich
	Writing the Application Code
	Database Setup
	TopTenTrans.pm
	index.epl
	rateit
	ttadmin

	Putting It All Together
	httpd.conf

	7. Proxying with mod_perl
	Why Proxy?
	How the Proxy Protocol Works
	Identifying Ads

	8. Authentication with mod_perl
	Access Control
	Authentication
	Windows Domain Server Authentication
	More NT Authentication

	Authorization
	Basic Authorization
	More Sophisticated Authorization

	Conclusion

	9. Navigation Bars with mod_perl
	The Configuration File
	Activating the Navigation Bar
	Generating the Navigation Bar
	A Foundation to Build On

	10. Scripting the Web with LWP
	11. Five Quick Hacks: Downloading web Pages
	Downloading Currency Exchange Rates
	Downloading Weather Information
	Downloading News Stories
	Completing U.S. Postal Addresses
	Downloading Stock Quotes
	Conclusion
	Afterword

	12. Downloading Web Pages Through a Proxy Server
	Afterword

	13. HTML::Parser
	Getting Started
	The Identity Parser
	The HTML Tag Stripper
	Another Example: HTML Summaries
	Another Fictional Example
	Using HTML::Parser Version 3
	Acknowledgments

	14. Scanning HTML
	HTML::Parser, HTML::TreeBuilder, and HTML::Element
	Scanning HTML Trees
	Complex Criteria in Tree Scanning
	A Case Study: Scanning Yahoo! News
	Regardez, Duvet!

	15. A Web Spider in One Line
	Callbacks and Closures
	Cascading Arrows
	Using Modules with One-Liners
	The End

	16. Webpluck
	Similar Tools
	How to Use webpluck
	How webpluck Works
	The Dark Side of the Force
	Identify Yourself
	Don’t Overload a Site
	Obey Robot Exclusion Rules

	17. Torture-Testing Web Servers and CGI Scripts
	The Code
	Wrapping Up

	18. Securing Your CGI Scripts
	The Example Script
	Designing the Script
	The chat2.pl Library
	Oops
	The CGI Script
	The Rest of the Script
	Caveats

	19. Building Web Sites with Mason
	What Is Mason?
	SSI Redux
	Form Versus Function

	Installation
	Building a Dynamic Site
	Headers and Footers
	Passing Parameters
	Default Handlers and XML
	Accessing MySQL

	What Now?

	20. Surreal HTML
	How It Works
	Prompting the User
	Fetching the Document
	Running the Travesty Algorithm
	Printing the Mangled Document

	21. Web Page Tastefulness
	How It Works
	The <BASE> Tag
	For Extra Credit

	22. Summarizing Web Pages with HTML::Summary
	CS-Web: A Search Engine for Canon’s Web Space
	META Tags
	Basic Summarization Methods
	HTML::Summary
	The Summarization Algorithm
	Sentence Splitting
	Conclusion
	Afterword: Truncating Japanese Text

	23. Wireless Surfing with WAP and WML
	A Quick Look at WAP
	Enabling WAP on Apache
	WML Basics
	WAP Cards
	Developing WAP Applications
	CGI::WML
	A Small File Browser with CGI::WML and mod_perl
	Generating WML with HTML::Mason
	A WML Phone Directory with Mason
	WML with Straight Perl
	A Remote Control for Home Automation
	Creating a Personal Portal

	II. Graphics
	24. Web Plots with Gnuplot
	Using Gnuplot
	Parsing Log Files
	Putting It All Together
	Simple Things Made Easy

	25. GD-Graph3d
	Using GD-Graph3d
	What the Future Holds
	Installing GD

	26. GD and L-Systems
	GD
	L-Systems
	Turtles
	A Turtle Draws a Tree
	Putting L-Systems to Work
	Leaves
	Flowers
	Bringing It All Together
	Resources

	27. OpenGL
	Back to Basics
	Graphical Primitives
	The Vertex
	The Line
	The Polygon

	Drawing on the Screen
	The Viewport
	The View Frustum
	Perspective
	Rendering Pipelines

	Introduction to OpenGL
	OpenGL and Perl
	Creating a Viewport
	Creating the View Frustum

	Drawing Objects
	Some Viewport Tricks
	Viewport Resize Issues

	Resources
	References
	Acknowledgments

	28. Ray Tracing
	Technique
	Make It Faster
	Mathematics
	The Program
	The Input
	The Output
	Internals
	Other Directions

	29. Perl and the Gimp
	Using the Gimp
	Getting the Tools
	Using the Gimp Module
	Moving On

	30. Glade
	GTK+/Gnome
	Perl and GTK+/Gnome
	Glade
	Installation
	Designing an Interface
	Adding Code
	Saving and Building the Project
	Writing the Signal Handler Code
	Inheritance as a GUI Development Tool
	Further Exploration
	More Information

	31. Gnome Panel Applets
	Gnome
	Program Overview
	Initialization
	The Callbacks
	Conclusion
	Afterword

	32. Capturing Video in Real Time
	Video::Capture::V4l
	Part I: Video Capturing
	Capturing Frames in a Loop
	Channels, Tuners, and Audio and Picture Settings
	Magic Constants for Frequencies?
	Example: Image Sequence Detection
	Example: Real Time Video Capturing
	Part II: The Vertical Blanking Interval
	Standards
	Decoding VPS
	The Autotune Script
	Decoding Videotext
	References

	III. Perl/Tk
	33. A Perl/Tk Roadmap
	Understand the Basics
	Ignore What You Don’t Need

	34. Getting Started with Perl/Tk
	Perl/Tk Programming
	A Sample Perl/Tk Program: plop
	Improving plop

	35. Scoreboard: A 15-Minute Perl/Tk Application
	The Need
	The Design
	The Implementation

	36. The Mouse Odometer
	Measuring Distance
	Menus
	The ColorEditor Widget
	Composite Widgets

	37. Events
	Timer Events
	I/O Events
	Idle Events
	Pong
	Miscellaneous Event Commands

	38. The Pack and Grid Geometry Managers
	A Brief Look at the Packer
	The Gridder

	39. Drawing on a Canvas
	Our Mower Is Programmable!
	A Canvas Widget Is the Lawn
	Defining the Perl Mowing Module
	Zero Turning Radius, Take One
	The Canvas Line Item Type
	Zero Turning Radius, Take Two
	Rotating Simple Objects in Canvas Space
	The Canvas Rectangle and Text Item Types
	The Canvas Arc Item Type
	Nonzero Turning Radius, Take One
	Canvas Tags
	Scaling Canvas Items
	The Real World Is Uncertain

	40. Displaying Databases with the Tree Widget
	Using Databases from Perl
	Overview of the tkdb Application
	Building the Graphical Interface
	Creating a Tree View of a Database
	Making Changes to a Database
	The Tk::Error Subroutine

	Index

	Colophon

